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Abstract 

Analysing objects interacting in a 3D environment and captured by a video camera requires 

knowledge of their motions. Motion estimation provides such information, and consists of re­

covering 2D image velocity, or optical flow, of the corresponding moving 3D objects. A gradient­

based optical flow estimator is implemented in this thesis to produce a dense field of velocity 

vectors across an image. An iterative and parameterised approach is adopted which fits pla­

nar motion models locally on the image plane. Motion is then estimated using a least-squares 

minimisation approach. The possible approximations of the optical flow derivative are shown to 

differ greatly when the magnitude of the motion increases. However, the widely used derivative 

term remains the optimal approximation to use in the range of accuracies of the gradient-based 

estimators i. e. small motion magnitudes. 

Gradient-based estimators do not estimate motion robustly when noise, large motions and 

multiple motions are present across object boundaries. A robust statistical and multi-resolution 

estimator is developed in this study to address these limitations. Despite significant improve­

ment in performance, the multiple motion problem remains a major limitation. A confidence 

measurement is designed around optical flow covariance to represent motion accuracy, and is 

shown to visually represent the lack of robustness across motion boundaries. 

The recent hyperplane technique is also studied as a global motion estimator but proved 

unreliable compared to the gradient-based' approach. A computationally expensive optical flow 

estimator is then designed for the purpose of detecting at frame-rate moving objects occlud­

ing background scenes which are composed of static objects captured by moving pan and tilt 

cameras. This was achieved by adapting the estimator to perform global motion estimation i. e. 

estimating the motion of the background scenes. Moving objects are segmented from a thresh­

olding operation on the grey-level differences between motion compensated background frames 

and captured frames. Filtering operations on small object dimensions and using moving edge 

information produced reliable results with small levels of noise. The issue of tracking moving 

objects is studied with the specific problem of data correspondence in occlusion scenarios. 
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Chapter 1 

Introduction 

The general motivation of this study, discussed in the first section, is the investigation of grey­

level changes in image sequences caused essentially by the motion of 3D objects projected onto 

image plane of cameras for motion detection purposes in surveillance applications. The last 

section introduces the organisation of the thesis and the content of the chapters. 

1.1 Motivation 

Rays of light reflected by a scene and captured by a camera produce grey-level patterns on 

the image plane of the camera. The apparent instantaneous shift of grey-level structures in the 

image plane due to relative motion between scene objects and camera is referred to as opticalfiow 

[681. However, modern cameras capture images of a scene with relatively small time intervals 

so that the grey-level variations due to the change of scene lighting environment are neglected. 

Analysing such grey-level motion is referred to as motion analysis and is mainly performed by two 

approaches. The first approach estimates motion of features, or structures, and produces sparse 

motion vectors across a frame. The second approach produces dense optical flow (i.e. at each 

pixel in a frame) by using the constant brightness approach approach. Gradient-based motion 

estimators are one family of optical flow estimator to produce such dense motion information 

by analysing grey-level gradients. A gradient-based technique is developed and investigated in 

this study whose estimation is parameterised by a motion model of the projected motion of 3D 

object surfaces. 

Knowing pixel motion between successive images is a powerful tool for computer vision 

applications as described in the review in chapter 2. However, the use of dense optical flow 

vectors is limited by the accuracy of the results at object boundaries where multiple motions 

occur and cannot be easily segmented. In addition, producing dense motion fields is a very 

computationally expensive task. The second motivation of this study is how to use optical flow 

in frame-rate applications and the one chosen here concerns detecting moving objects surveyed 

in indoor and outdoor scenes captured by either static or moving PTZ (pan, tilt and zoom) 

13 



CHAPTER 1. INTRODUCTION 14 

cameras involved. Detecting moving objects in such scenarios is usually performed by pixel 

differencing which consists of thresholding grey-level differences. When background scenes, 

assumed to cover the majority of the frame dimensional space, are non-moving relative to a 

camera (with no zooming operation involved) moving pixels are easily segmented from the 

background. Grouping moving pixels into individual objects, referred to as blobs allow temporal 

analysis of their motions on the image plane and they can be therefore tracked using trajectory 

models. However, although such traditional procedure is efficient, tracking becomes a significant 

challenge when the problem of occlusion and fragmentation occur where the objects shape and 

their grey-level distribution do not match between frames. These problems are here addressed 

by using appearance models of the objects features to improve tracking. Moreover, an additional 

problem occurs when PTZ cameras are allowed to move where the pixels of the background scene 

move with the camera motions. The dense optical flow algorithm previously introduced here 

is designed to estimate the global motion of the background scene before pixel differencing is 

possible and to allow the subsequent tracking of moving objects in frame-rate PTZ applications. 

This global motion algorithm could permit, for example, the detection of a moving object before 

being tracked and recognised automatically by automatic adjustments of the pan, tilt and zoom 

of a camera. 

1.2 Structure 

The second chapter reviews the main approaches used in the literature to estimate optical flow. 

Much of this review focuses on the gradient-based approach. A gradient-based technique is 

then developed in chapter 3 around the constant brightness assumption. In this chapter, a 

planar motion model is fitted to local neighbourhoods of pixels representing the projected 3D 

object surfaces on the image plane. Chapter 4 investigates the main limitations of the optical 

flow estimator caused by the contamination of pixel neighbourhoods by noise and multiple 

motions and caused by the small motion restriction problem. The problem of estimating the 

globa.l motion of background scenes captured by moving pan and tilt cameras is addressed by 

a hyperplane estimator in chapter 5. This technique does not compete with the version of the 

gradient-based estimator developed in chapter 3 which can estimate background motions using 

a designed edge-based sampling technique described in chapter 6. In this chapter, the gradient­

based estimator is tested in two applications, first a pan and tilt application and second a 

zooming application. When background scenes are not moving relative to a camera, foreground 

moving objects are accurately segmented in cha.pter 7. In this chapter, the problem of tracking 

these objects in occlusion scenarios is addressed. This study concludes in chapter 8 with a 

successful segmentation of moving objects in static background scenes captured using moving 

pan and tilt cameras. Chapter 9 reviews the investigations achieved in this study on dense 

motion analysis and on the results obtained with the surveillance applications. 



Chapter 2 

Review 

Optical flow is the prominent source of temporal variations in image sequences. The relative 

movement between a 3D scene and the camera induces apparent motion in image sequences 

as explained, for example, by Stiller et al [123J. One of the key problems in dynamic image 

analysis arises from the fact that motion is geometric in nature but manifests itself as a change 

of image pixel intensity. Therefore, the core of the image motion estimation problem concerns 

relating time-varying image intensity to the movement of objects in the scene. Motion anal­

ysis in computer vision is divided in two main areas of study: motion estimation and motion 

segmentation. 

Motion estimation aims to study the object motions that gives rise to the pixel changes, and 

is based on the assumption that object structures remain relatively rigid from frame to frame. 

Such analysis is usually based on a further assumption that pixel intensity generated by the 3D 

scene remains relatively constant over short period of times [1,4,10, 15, 19,63,68,97, 123, 141J. 

The goal of motion segmentation is to partition the image into regions that have uniform 

motion characteristics or properties [21, 69, 95, 133, 117, 138J. Motion boundaries generally 

coincide with pixel intensity boundaries (though the converse is not true). Therefore, intensity 

boundaries can be used to hypothesise motion boundaries. 

2.1 Motion estimation 

Two distinct approaches have been developed for the computation of motion from image se­

quences. The first of these is based on extracting a set of relatively sparse but highly discrimi­

natory 2D features in the image plane. These features correspond to the perspective projection 

of 3D object features such as edges as in the works of Bouthemy [20J, corners as studied by 

Jones et al [74J, occluding boundaries of surfaces, boundaries demarcating changes in surface 

reflectivity, etc. Such features in the image plane can be modelled as lines, texture information, 

curves and other possible geometrical shapes. In order to match features from one frame to 

another in the image sequence, constraints are formulated based on many assumptions such 

15 
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as rigid body motion i. e. that the 3D distance between two features on a rigid body remains 

the same after both object and camera motion. Matching techniques using this first approach 

to compute motion from features exploit what may be called the constant structure constraint. 

The result is a sparse set of motion vectors in each frame. Several techniques exist to extract 

and establish feature correspondence but in general the task is difficult, mainly because of the 

presence of occlusion, which may cause features to be hidden, false features to be generated and 

hidden features to reappear as investigated by Girard et al [45] and Baumberg et al [14]. The 

second approach to motion estimation is based on computing the optical flow i. e. the visual 

velocities of each pixel in the image plane [15]. Optical flow is the apparent instantaneous shift 

of grey-level structures in the image plane due to relative motion between scene objects and 

camera (as defined by Horn [68]). This approach to motion estimation is more appropriate 

to applications which require dense motion fields i.e. every pixel in the image should have a 

motion vector associated with it. In order to generate dense optical flow fields, the constant 

brightness equation may be used, which states that the intensity of a pixel undergoing motion 

should remain relatively constant from frame to frame. Two major matching techniques for 

computing optical flow are derived from the constant brightness equation: the correlation (or 

block-matching) technique and gradient-based technique. 

Two comprehensive papers on the subject of optical flow performance exist. Barron et al 

[13] compared nine state of the art optical flow algorithms on the basis of accuracy and density. 

The authors provide a clear test set of image sequences that can be used for quantitative and 

qualitative comparison of the different algorithms. More recent work by Liu et al [87] has im­

proved on Barron et al study. Performing 2D motion detection involves the processing of scenes 

where the sensor is moving within an environment containing both stationary and moving ob­

jects. Furthermore, visual events such as occlusion, transparent motions and non-rigid obj~cts 

increase the inherent complexity of the measurement of optical flow. 

Having estimated a reliable 2D image motion, optical flow may then be used to recover the 

3D motion of the visual sensor (to within a scale factor) and the 3D surface structure (shape or 

relative depth). This is achievable through assumptions concerning the structure of the optical 

flow field and the type of motion exhibited by the sensor as studied by Adiv [lJ. Optical flow may 

also be used to perform motion detection [70J, object segmentation and tracking [8, 135J, motion­

compensation [41, 43J, motion analysis of oceanographic and atmospheric image sequences [37] 

or stereo disparity measurement [15, 125J. 

2.2 Correlation-based methods 

Window-matching, block-matching or correlation-based techniques are the most intuitive and 

one of the most widely applied techniques to compute optical flow from an image sequence as 
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performed by Giachetti et al [59J and Sun et al [124J. These correlation-based methods analyse 

the grey-level pattern around the point of interest and search the most similar pattern in the 

successive image. The search of best match is performed within a chosen search window between 

a certain numbers of frames, typically neighbouring pairs. The estimated image displacement 

(or optical flow) is taken as the shift corresponding to the minimum of a distance metric, or 

maximum of a correlation measure between the different intensity patterns of the different 

frames. Motion estimation between two patterns is typically achieved by a normalised cross­

correlation function such as the sum-of-squared difference (SSD). This technique is also referred 

to as a least-squares minimisation technique. 

Generally, features such ascorner points are successfully matched. However, such points do 

not constitute the majority of pixels within an image and denser features such as edges are easily 

mismatched. Moreover, establishing the correct correspondences of reasonably unique features 

such as the corner points can be problematic. Bouthemy [20J shows for example that edges that 

can be modelled as 3D step edges Can be successfully tracked. 

Phase-based techniques are another method to estimate motion [32, 36, 57J. They analyse 

the image grey-level motion in the frequency space using discrete Fourier analysis and use the 

property that motion in the spatial domain is equivalent to a convolution in the frequency 

domain. 

For region-based techniques referred to as the block-matching techniques, motion is mea­

sured by analysing displaced grey-level differences. The larger the template window, the more 

efficient the match as there are more pixel comparisons. However, time computation increases 

quadratically when increasing the template window which is likely to contain pixels belonging to 

other objects undergoing different motion. This occurs when pixels are closed to object bound­

a.ries. Moreover, motions can be expected to be large in magnitude, requiring a large search 

window to ensure the match is found (where there is no prior information provided on the pixel 

motion). Such large search windows increase the potential for faIse matches particularly in the 

presence of noise, blur or repeated structures. Therefore a trade-off exists in choosing the size 

of the template and search window which can be estimated if information about the objects 

to match are known, such as their sizes and their velocities. For large motions, initialisation 

techniques (reviewed in section 2.8) can limit the search area. 

2.3 Gradient-based methods 

The image brightness of the projection of a single point is assumed to remain constant with 

time. This is strictly true only in the idealised context of Lambertian 1 surfaces being viewed by 

1 Dull, matte surfaces can be modelled by Lambertian surfaces and are said to exhibit Lambertian reflection, 

or diffuse reflection (Nagel [97]). The assumption is that these surfaces reflect light with equal intensity in all 

directions, and hence appear equally bright from all directions. For a given surface, the brightness depends only 
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a moving camera. This is a reasonable approximation for a wide range of practical situations. 

Let I{x, y, t) be the irradiance at time t of the image point located at (x, y) in pixel unit on the 

vertical and horizontal axis respectively. If (u, v) is the grey-level velocity at location (x, y) then 

if no occlusion occurs the irradiance remains unchanged at this location within a small interval 

of time ot, or from time t to t + Ot: 

I(x, y, t) = I(x + ox, Y + oy, t + ot) (2.1) 

where 

ox = u.ot, and oy = v.ot (2.2) 

Equation 2.1 is known as the constant brightness equation (CBE). However, the 2 unknowns of 

the optical flow displacement, (ox,oy), cannot be directly estimated by the single constraint of 

equation 2.1. Using the fact that ot is small so that any 3D object motion induces image optical 

flow with relatively small displacement allows the second term of the CBE to be expanded into 

its Taylor series: 

I(x + ox, y + oy, t + ot) 
81 81 81 

~ I(x, y, t) + ax c5x + ay c5y + at c5t + € 

~ I(x, y, t) + Ixox + Iyoy + Itc5t + € 

where, 
aI aI aI 

Ix = ax' I y = ay and It = 8t 

(2.3) 

(2.4) 

(2.5) 

and € contains the remaining higher order terms in ox, oy, and ot, and Ix = aI/ax, Iy = aI/ay 

and It = aI/at. Using equation 2.4 in the CBE of equation 2.1 gives 

I(x, y, t) + Ixox + Iyoy + Itot + € ~ I(x, y, t) 

Ixox + Iyc5y + It&t + € ~ 0 

Ixu + Iyv + It ~ -f/c5t 

(2.6) 

(2.7) 

(2.8) 

The right hand side of equation 2.8 represents the remaining terms of the Taylor expansion. 

This contains products of higher spatial and temporal derivatives of the brightness function as 

well as higher orders of the displacements. Such derivatives are estimated from the image using 

various kernel filters as evaluated by Christmas [34J. The validity of ignoring the right hand 

side of equation 2.8 is dependent on the spatial frequency content of the local intensity pattern 

and the magnitude of the displacement (Chin [33]). However, the remaining terms of the Taylor 

expansion Can in general be neglected which simplifies equation 2.8 to 

(2.9) 

The CBE equation 2.9 is also referred to as the optical flow constraint equation and is the 

equation to be solved in gra~ient-based optical flow methods. Unlike equation 2.1, the two 

on the angle between the direction of the light source and the surface norma.! 
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motion unknowns can be estimated if additional constraints are provided, as described in the 

following sections. In practice, discretisation of the image sequence in time and space affects 

the equivalence between the intensity invariance assumption and hence affects the validity of 

equation 2.9. Two ways to satisfy the eBE are to shorten the temporal sampling rate or to 

somehow reduce the high frequency components in the intensity function. The latter can be 

achieved by pre-smoothing or intentionally blurring the images before gradients are computed as 

achieved by Kearney [80] in order to diminish the second and higher order brightness gradients. 

Pre-smoothing also reduces the effect of noise in the brightness measurement by providing spatial 

averaging. The optical flow constraint equation holds in high temporal sampling in distant 

imagery by modern cameras where the following conditions are met: 

1. uniform temporal illumination of the 3D object surfaces, 

2. Lambertian surface reflectance, and 

3. object motion consistency through time to avoid motion discontinuity. 

Equation 2.9 is a single equation in two unknowns which forms a single constraint line in 

velocity space (u, v) satisfied by any velocity on this line. Ai; this constraint is not sufficient to 

compute the unknown motion, optical flow computation is ill-posed. If It is temporarily set to 0, 

equation 2.9 is equivalent to as the dot product of the gradient vector [/x'/II] with the velocity 

vector [u, v] being O. In other words, the previous line of solution is passing through the origin 

(u=v=O) and has for normal vector the gradient vector. Therefore, optical flow is only available 

in the direction of the gradient vector. This phenomenon is referred to as the aperture problem 

[67] and implies that velocity can not be locally determined uniquely. Additional gradient 

constraints are thus required for a unique optical flow to be computed and this is performed in 

the literature by three major techniques: 

• Parametric techniques, which assume that optical flow can be locally modelled by a para­

metric motion field and is usually the result of restricted motions such as a planar or affine 

motion model, see section 2.5. 

• Multiconstraint techniques which combines several variants of the constant brightness con­

straint, see section 2.4. 

• Regularisation techniques which constrain motion by enforcing local smoothness i.e. allow 

neighbouring pixels to influence the estimation of a pixel's optical flow, see section 2.7. 

2.4 Multiconstraint techniques 

M ulticonstraint methods obtain extra constraints necessary to solve optical flow in equation 

2.9 by taking advantage of the fact that image properties other than intensity, such as colour 

channels, contrast or entropy (a measure of the amount of information in the image) also satisfy 
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the brightness constancy model. However such constraints are often noisy and highly correlated 

and thus do not in general provide stable and accurate solutions. These approaches are explored 

in the works of many authors [89, 92]. For example Haralick et al[61] and Tretiak 1132] employ 

constraints with noisy second-order partial derivatives. Woodham [140) uses images illuminated 

with different sources of light. Liu et al [89) take images at different spectra and use one optical 

flow constraint equation for each spectrum. 

2.5 Parametric techniques 

Motion information can be represented in different ways: 2D displacement, affine or other para­

metric transformations, 3D ego-motion etc. A common general framework has been suggested 

to parameterise motion models (see Anandan [4)). The unification of motion models within 

a general framework is possible because all the problems associated in estimating motion can 

be viewed, at least locally, from the perspective of image registration (as viewed by Tistarelli 

[129]). That is, given an image sequence, compute a representation of the motion field that best 

aligns pixels in one frame of the sequence with these in the next. The various approaches in 

motion parameters estimation differ only in terms of the assumptions the authors make about 

the spatial structure (or model) of the motion field, and choice of estimator. 

Most typical optical flow techniques presume brightness constancy, which is often violated 

by time-dependent physical processes. These include changing surface orientation with respect 

to a directional illuminant, motion of the illuminant, and physical models of heat transport in 

infrared images. Additional models of image brightness variation are now used by many authors 

[64, 141, 63]. Negahdaripour [98) for example parameterises the image brightness by using geo­

metric cues (based on the projection geometry, constraining the position of points in the scene 

in terms of the coordinates of their projections onto the image plane); and radiometric cues 

(which are tied to a large number of scene properties, including illumination condition, medium 

properties, sensor spectral response characteristics, as well as shape, position, and reflectance 

characteristics of the scene surfaces). 

It has been recognised that applied motion models lead to accurate optical flow estimation as 

discussed by Black [19]. For example, a number of researchers have investigated the estimation of 

rigid body motion parameters without the prior estimation of optical flow (see Negahdaripour 

[99]). Since all the pixels within a region can contribute to this estimation, highly accurate 

results may be obtained. Although these models may be applicable under limited circumstances, 

they are often good approximations for a wide range of situations. For instance, the motion 

of the image of a planar surface under orthographic projection can be described as an affine 

transformation. But the same model forms a good approximation to motion in images of distant 

shallow surfaces under perspective projection, a situation not uncommon in many aerial image 
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sequences. Similarly, the motion of the image of the planar surface under perspective projection 

can be described by a eight-parameter quadratic transformation. Given the motion parameters 

vector a for a given set of pixels locally located at x with the motion model matrix X(x) 

(also called transform matrix) the 2D displacement vector or optical flow is calculated from the 

velocity equation 2.10: 

:ic = X(x)a (2.10) 

Four motion model examples are given below with their motion matrix X: the translational, 

zoom, affine and planar model which corresponding motion vector a contains 2, 4, 6 and 8 

parameters respectively. More details of these motion models are given in chapter 3. 

• translational model: X(x) = [0
10

1] 

• zoom model: X(x) = [ : ] 
• affine model: X(x) = [ ~ x y 0 0 : ] 0 0 1 x 

[1 , Y o 0 o " XlI] • planar model: X(x) = 
- 0 0 0 1 x y xy y2 

In parametric techniques, the problem of computing optical flow is reformulated to one of 

parameter estimation in image neighbourhoods of pixels and, after linearisation of the model, 

standard linear regression can be used to estimate the motion parameters. A neighbourhood of 

pixels 'R.l' consists of a group of pixels located within a square bounding box centred on the pixel 

located at x = [x, yj which motion is to be determined. The least-squares regression approach, 

for example, attempts to minimise the functional f( U, v), the sum of the squared error~ given by 

the constant brightness equation in equation 2.9 by all the pixels of the neighbourhood 'R.: 

f(U,V) = E e(x',u,v)2 (2.11) 
x'E'Rx 

where x' denotes the index of the neighbouring pixels. The new constant brightness equation is 

written as an error function as follows 

e(x, u, v) = Ixu + I"v + It (2.12) 

Minimising f is equivalent to solving a set of quadratic equations governed by the neigh­

bouring pixel brightness gradients. The functional of equation 2.11 becomes minimal when the 

optical flow measurement at each pixel gives a minimum error term. Hence in the least-squares 

regression method, each pixel of a neighbourhood of pixels will contribute equally to the minimi­

sation of Ed' In the case where all pixels of R belong to the same moving object in the image, 

the least-squares regression method is the most appropriate method. Pixels situated in the 
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neighbourhood are now considered to undergo different motions due to multiple motions in the 

3D scene, or noise is introduced. These situations are very likely to happen in image sequences. 

In this case, the least-squares regression method will attempt to satisfy the constraints brought 

by all the pixels inside R simultaneously. The violations introduced by these pixels, also called 

outliers give an erroneous optical flow estimate for the central pixel. Data are becoming outliers 

if they do not fit any model represented by the dominant data distribution. The least-squares 

method hence lacks robustness in the presence of outliers whereas robust statistical techniques, 

introduced in the next section 2.6, can overcome such problems as implemented by Black [17J 

and in chapter 4. 

2.6 Robust statistics 

The field of robust statistics (investigated by Bunke et al [28J and Rousseeuw et al [110]) has 

developed methods to address the fact that the parametric models of classical statistics are 

often approximations of the phenomena being modelled. In particular, the field addresses how 

to handle outliers, or large errors, that do not conform to the statistical assumptions as explained 

in the works of different authors [18, 114, 136J. The main goals of robust statistical methods are 

to, 

1. describe the structure best fitting the bulk of the data and, 

2. identify deviating data points (outliers) or deviating substructures for further treatment, 

if desired. 

Specifically, robust estimation addresses the problem of finding the values of the parameters 

that best fit a model to a set of data measurements in cases where the data differs statistically 

from the model assumptions. To state the issue more concretely, robust statistics addresses 

the problem of finding the values for the parameters, a that provides the best fit of the model 

u(di ; a) to a set of n data measurements d = [d1 , ••• , dnl. A robust estimator is in general 

defined as p and the goal in robust statistics is to find the values for the parameters a that 

minimise the size of the residual errors (di - u(di ; a)): 

(2.13) 

where (1i is a scale parameter [17J. The minimisation process of equation 2.13 can also be 

referred to as a Maximum-likelihood estimation process which make this estimator a so-called 

M-estimator. The choice of the function p selects the robustness of a particular estimator 

which refers to its insensitivity to outliers or deviations from the assumed statistical model. 

Beauchemin et al [16J, for example, analyse image motion in the frequency space with respect 

to motion discontinuities and surface translucence. The authors derive by means of models 

of constant and linear optical flow, the frequency structure of motion discontinuities due to 



CHAPTER 2. REVIEW 23 

occlusion. The median technique is deployed in chapter 4 to discriminate optical flow outliers 

from the dominant motion in neighbourhood of pixels. 

2.7 Regularisation techniques 

Most current techniques for recovering optical flow exploit two constraints on the image motion: 

data conservation and spatial coherence. The data conservation constraint is derived from the 

observation that surfaces generally persist in time and hence the intensity structure of a small 

region in one image remains constant over time, although its position may change. The spa­

tial coherence constraint embodies the assumption that surfaces have spatial extent and hence 

neighbouring pixels in an image are likely to belong to the same surface. 

Since the motion of neighbouring points on a smooth rigid surface changes gradually, a 

smoothness constraint can enforce the motion of neighbouring points in the image plane. The 

smoothness constraint of Horn and Schunck used by the authors [68, 3, 96], for example, min­

imises the square of the velocity gradient over the image. Black [17] uses robust statistics to 

minimise the error terms given by the differences in motion estimates. Estimates obtained at 

points of non-zero intensity gradient are propagated iteratively over the image. Tretiak et al 

[132] regularise motion by applying Gaussian smoothing to their motion field. Weber and Malik 

[136] present a common regularisation method for computing optical flow using a robust version 

of the gradient-based least-squares framework presented in section 2.5. 

2.8 Initialisation techniques 

The goal in motion analysis is essentially to estimate the 2D motion fields from -a given set 

of two consecutive frames of a sequence of images. Unless an initial estimate is provided, 

the estimator is expected to fail in certain conditions. For example, it is difficult to estimate 

large motions accurately by gradient-based optical flow techniques. There exist three main 

initialisation procedures, which are designed to give a quick and rough first estimate of what the 

motion is expected to be so that a gradient-based optical flow technique can perform accurately 

thereafter. These three initialisation procedures are: 

• feed-forward 

• block-matching 

• hierarchical 

The feed-forward technique bases its estimation on a short history of the previous motion 

estimates. The simplest case would be to project the previous motion estimate. More developed 

techniques might use Q - f3 predictors (using weighted averages of previous estimates), Kalman 

filtering predictors (described in Appendix B) or projection of the motion model parameters 
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derived from the previous frame. Although this technique is quick, its reliability and efficiency 

rely directly on the accuracy of the previous estimates and the motion constancy of the 3D 

objects. 

The second approach, the block-matching technique is a correlation-based technique which 

only estimate translational vector as initial estimate as described in section 2.2. These techniques 

can involve expensive search of grey-levels matches and are usually more expensive than the 

feed-forward techniques. 

Arguments for use of the third hierarchical (or pyramid based) estimation techniques (see 

Burt [29]) have usually focused on issues of computational efficiency. A matching process that 

must accommodate large displacements can be very expensive to compute. Intuition suggests 

that if large displacements can be computed using a low-resolution version of the image, great 

savings in computation time may be achieved. Full-resolution images can then be used to im­

prove the accuracy of displacement estimation by incrementally estimating small displacements. 

However, it can also be argued that it is not only efficient to avoid the high-resolution image 

when dealing with large displacements but necessary. This is because of aliasing of components 

of high spatial frequency undergoing large motion. Aliasing is the source of false matches in 

correspondence solutions or local minima in the objective function used for minimisation. Min­

imisation or matching in a multi-resolution framework helps to eliminate problems of this type. 

Another way of expressing this is to say that many sources of non-convexity that complicate the 

matching process are not stable with respect to scale. Thus the motivation for using hierarchical 

processing is twofold: to eliminate false matches by using 'large scale' structures, and to achieve 

a computationally e.fficient estimation. 



Chapter 3 

Gradient-based optical flow 

Image motion generates pixel grey-level changes which can be measured by the optical flow tech­

nique. More specifically, the gradient-based estimator briefly reviewed in the previous chapter is 

implemented. Optical flow estimation relies on the constant brightness equation (CBE) which 

states that brightness at any location in space does not change over small time intervals. An 

optical flow estimator based on this constraint is developed in section 3.3 around the assumption 

of small motion magnitudes. This single constraint results in an ill-posed estimation problem 

referred to as the aperture problem. Additional constraints are typically provided by fitting 

a motion field to local neighbourhoods of pixels. Motion fields can be modelled by different 

models as explored in section 3.2 (which gives four examples). The planar motion model is 

implemented in the optical flow estimator developed here. A least-squares regression technique 

is then applied to minimise the error function associated with the CBE. 

A non-iterative and iterative optical flow estimator are evaluated in section 3.5 and 3.6 

against ground-truth data provided by a motion compensation technique described in section 3.4. 

The first experiments in section 3.5 show that both estimators can only estimate small motion 

accurately. Large motion can be relatively well estimated if a smoothing operation is performed 

with a Gaussian operator with kernel width the size of the motion magnitude. Therefore, 

large motions cannot be estimated automatically without knowledge of their magnitudes. The 

iterative estimator is shown to estimate a larger range of small motions (of maximum 4 pixels), 

and is more accurate than the non-iterative technique. A minimum of 10 iterations with at least 

100 constraining points in the neighbourhood are necessary for the flow results to converge to a 

final and accurate estimate. The second set of experiments conducted in section 3.6 evaluates 

several estimators differing only in their implementation of an image gradient term. The results 

show that the traditional gradient approximation used in the literature is an accurate and 

computationally efficient version of the true expression and shall be used as the default term 

for the rest of this study. Dense optical flow algorithms are known to be computationally 

expensive. For example, it takes approximately 15 minutes to compute the motion of 576x768 

pixels (using a traditional Pentium III). Computational times are reported in section 3.7. In 

25 
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addition, complexity analysis demonstrates how the cost involved in computing optical flow 

largely depends on the number of neighbouring pixels to which the motion model is fitted. 

3.1 Review 

Gradient-based optical flow techniques recover motion vectors using spatia-temporal variations 

of the image intensity, as performed by numerous authors [4, 10, 17, 136J. Spatia-temporal 

variations do not always occur when objects are moving, causing difficulties in estimating optical 

flow (as explained for example by Horn [67]). For example, some of the variations in the scene 

intensity may not be due to motion, but may be caused by variations in the lighting environment 

as discussed in the work of Negahdaripour and Horn [99]. Nevertheless, the first assumption that 

is often made is that the intensity of a point in the scene is conserved, and that all variations in 

the image sequence are due to motion. The conservation of these assumptions gives rise to the 

commonly used constant brightness equation, or CBE (introduced in section 2.3) and developed 

in this chapter. The CBE is a single equation in two unknowns which forms a single constraint 

line in velocity space satisfied by any velocity on this line. As this constraint is not sufficient 

to compute both components of the optical flow, the computation is ill-posed. That is to say, 

only the motion component in the direction of the local gradient of the image intensity function 

may be estimated. This phenomenon, known as the aperture problem [67] implies that at any 

pixel the velocity can not be determined uniquely. The aperture problem is addressed by three 

alternate techniques: multi-constraint, parametric and regularisation techniques reviewed in 

sections 2.4, 2.5 and 2.7 respectively. A parametric technique is used in this chapter to increase 

the degree of constraint by combining the constant brightness equations with a planar motion 

model fitted locally to neighbourhoods of pixels. 

3.2 Motion models 

Objects moving in 3D scenes produce image motion when captured by a camera. The produced 

image motion of each individual moving object can be expressed as a 8 parameters motion 

model and derived using the small motion assumption. The motion parameters are expressed in 

terms of the 3D motion, the camera parameters and the depth of the 3D object at each pixel. 

In this formulation, this depth dependency means that a motion model cannot be fitted to a 

neighbourhood of pixels as the depth of the 3D scene is required i.e. the optical flow equation 

remains under-constrained. Section 3.2.2 eliminates this depth dependency by modelling 3D 

scene objects by 3D planes to allow motion fields to be locally fitted to image neighbourhoods 

i.e. the planar motion model. Section 3.2.3 introduces the well-known affine motion model 

approximation to the planar motion model, as well as for translational and zooming models 

derived for particular 3D motions. 
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3.2 .1 Relationship between 3D object motion and image motion 

This section des ribes the relationsbip between image motion and the relative motion between 

the camera and independent 3D object points. Let x be a point on th image plane with global 

coordinate [x, y]T. Tbe image motion of x is described by its velocity: 

. ax 
x=-at (3.1) 

A pin-bole camera model with a perspective projection model is assumed [671 and is often an 

acceptable model in distant imagery. Let X be the 3D point [X Y ZlT and x its proj cted image 

on the iI\lage plane. The 3D world coordinate system is centred on the optical axis at a focal 

length distance f behind the image plane, and the X and Y axis are parallel to the image plane 

axis x and y respectively as shown in figure 3.1. Th Z direction coincides with the optical axis, 

therefore the origin of the coordinate system (x, y) is the inter ection of the optical axis with 

tbe image plane. The perspective projection equation gives the following relationship between 

tbe world and the image coordinates: 

x = [x, y1T 

[
X ~]T 

f Z' Z 

x 

y 

Figur 3.1: Pin-hole camera r pr sentation 

Using the persp ctive equation 3.3, the image velocity in equation 3.1 b comes 

x = [x, y1T 

[
ax ay] T 

at' at 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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= (3.6) 

= (3.7) 

where X, ii, X, Y and j are the derivatives with respect to time t of x, y, X, Y and 1 respectively. 

Using the constraint that the 3D rotational angles are small, which is often true over short 

time intervals, then the 3D velocity can be expressed by the velocity matrix 0 followed by a 

translational velocity vector K as derived in Appendix D: 

(3.8) 

where K = [Kx, Ky , Kz]T and 

(3.9) 

with Ox, Oy and Oz the small angular velocities around the X, Y and Z directions respectively. 

Therefore, according to equation 3.8 and the small rotations assumption in equation 3.9, the 3D 

velocity becomes: 

x = [X, y, ZjT (3.10) 

[ 

OzY+OyZ+Kx 1 
~ OzX-OxZ+Ky 

-f!yX +f!xY +Kz 

(3.11) 

and the corresponding image velocity of equation 3.7 using the perspective projection in equation 

3.3 becomes 

x= [x, yf (3.12) 

where, 

X 
·x X x· 

= 1 Z +1 Z -I Z2 Z 

::::: ·x 1 X 
1 Z +z(OzY+f!yZ+Kx)-1 Z2(-f!y X+f!x Y + Kz) 

·x 1 Z X Z Z 
::::: 1- + -(Oz-y +OyZ +Kx) - -(-Oy-X + f!x-y + Kz ) 

1 Z 1 Z 1 1 
·X 1 x2 f!x X 

::::: 1- -Ozy+Oyl+Kx - +f!y- - -xy- Kz-
1 Z lIZ 

~ ( Kx) (i KZ) Oy 2 f!x 1 Oy + - + - - - X - Ozy + -x - -xy 
Z 1 Z 1 1 

(3.13) 

and 

y .y y y. 
= I-+I--I-Z Z Z Z2 

.y 1 Y 
::::: 1- + -(OzX - OxZ + Ky) - 12 (-f!yX + f!x Y + Kz) 

Z Z Z 
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(3.14) 

The velocity vector components in equation 3.13 and 3.14 can be expressed in terms of matrices 

as the product of a model matrix X and a motion model vector a defined in equation 3.16 and 

the expression of the image velocity becomes 

X= X(x} a (3.15) 

where 
T 

1 0 f (Oy + I¥) 
x 0 i _!:S..z.. 

I z 

y 0 -Oz 

X(x} = 0 1 f (-Ox +-¥-) 
a:::::: (3.16) 

0 x Oz 

0 y i _!:S..z.. 
I z 

x 2 xy & 
I 

xy y2 & - I 

The vector of the motion model a represented by the 8 parameters in equation 3.16 describes 

the relationship between a 3D moving object point regarding the camera coordinate system and 

its corresponding projected image velocity. However, the description of this 3D-2D relationship 

is dependent on the depth of the object point Z projected onto the image plane before motion 

occurs. This means a motion field cannot be fitted to a neighbourhood of pixels without the 

depth of the corresponding scene (which is usually unavailable). The next section shows that 

this depth dependency can be avoided if objects are constrained to lie on 3D surfaces. 

3.2.2 Depth-independent motion field: the planar constraint 

One approach to eliminating the depth dependency in the relationship between 3D motion and 

image motion is to use the planar constraint [1, 4]. This constraint assumes that the depth of a 

neighbourhood of 3D object points can be modelled locally as a planar surface, or alternatively 

a single and fixed 3D point captured by a camera at different locations is assumed to be moving 

on a planar surface. If such a planar surface exists then it can be represented by the general 

surface equation 3.17: 

kxX+kyY+kzZ=l (3.17) 

where kx, ky and kz are the surface coefficients in the X, Y and Z respectively and represent 

the 3D vector normal to the surface plane. Using the perspective projection equation 3.3 in 
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which x = IX/Z and y = IY/Z, we can convert from world to image plane coordinates as 

follows 
1 x y 
- = kx - + ky - + kz 
Z I I 

(3.18) 

where at most two of the three parameters kx, ky and kz can be zero. Replacing the above 

expression into the image velocity equations 3.13 and 3.14 gives 

x ~ I ( fly + ~x ) + (~ - ~z ) x - flzy + flf x2 - Or xy 

~ lOy + IKx (kxy + KII7 + kz) + ~x - Kzx (kxy + KII7 + kz) 

Oy 2 Ox 
-Ozy + yx - TXY 

~ !(fly + Kxkz) + (~+ Kxkx - KZkZ) x + (Kxky - Oz)y 

+y(Oy - Kzkx )x2 + y( -Ox - Kzky)xy (3.19) 

and in the y direction 

I (-Ox + i) + OzX + (~ - ~z ) Y + fl; xy - Or y2 

~ -lOx + IKy (kxy +KY7 +kz ) + ozx+ ~y - Kzy (kxy +KY7 +kz) 

Oy ox; +yxY-TY 

~ I(-Ox + Kykz) + (Kykx +Oz)x+ (~+KYkY-KZkZ)Y 
1 ( ) 1 2 +i Oy - Kzkx xy + i(-Ox - Kzky)y (3.20) 

The above image velocity x can be expressed in the same linear form of equation 3.15 i.e. 

equation 3.21 but with the new motion model vector a in defined in equation 3.22: 

x = X(x)a (3.21) 

where 
T 

1 0 I(Oy + Kxkz) 

x 0 + + Kxkx - Kzkz 

Y 0 Kxky -Oz 

X(x) = 0 1 
a~ 

-/(Ox -Kykz) 
(3.22) 

0 x Kykx+Oz 

0 y + + Kyky - Kzkz 

x2 xy 7 (Oy - Kzkx) 

xy y2 -7 (Ox + Kzky) 

Therefore, using the planar constraint assumption, the vector of the motion model a (referred to 

as the planar motion model) is expressed independently to the object depth Z. The 3D motion 
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can now be estimated onto the image plane as a local motion field. Using a local coordinate 

system x' with origin Xo in the global coordinate system x (with origin the centre of the image 

plane), see equation 3.24, it can be easily shown that the image velocity is alternatively expressed 

by also a 8-parameters model a' as follows 

x = X(x')a' (3.23) 

where 

x=xo+x' (3.24) 

and 
T 

1 0 al + a2xo + a3Yo + a7x~ + asxoYo 

x' 0 a2 + 2a7xo + asyo 

y' 0 a3 +asxo 

X(x') = 
0 1 

a'::::::: 
a4 + asxo + a6Yo + a7XoYo + asy~ 

0 x' as +a7Yo 
(3.25) 

0 y' a6 + a7Xo + 2asYo 

xl2 x'y' a7 

x'y' y,2 as 

where the motion parameters a = [al, ... , as]T are defined in equation 3.16. It can be noted that 

under the planar constraint, the image motion in x2, y2 and xy terms do not change i. e. a7 = a7 

and a~ = as. The pixels in the neighbourhood locally located by x' around Xo corresponding 

to the 3D surface (kx, ky , kz) therefore all contribute to the estimation of the same motion 

parameters. Further simplifications of the motion model can be obtained (as detailed in the 

next section) by using furhter assumptions about the dynamic of the 3D world relative to the 

camera. 

3.2.3 Simplified motion models 

Three further simplifications of the above planar motion model are given in this section: the 

affine, zoom and translational motion models. These simplified models correspond to particular 

or restricted motions between the 3D world and the camera. 

Affine model 

The planar motion model defined in equation 3.25 involves quadratic terms (xy, x2 and y2). An 

affine motion model is defined by 6 parameters, and is realised if the quadratic terms are zero 

i.e. a7 = as = 0 in equation 3.22 are zero if: 

fix = -Kzky 

fly = Kzkx 

(3.26) 

(3.27) 
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In other words, an affine model exists if the depth change is restricted by the change in param­

eters of the 3D rotation and the surface normal vector in the X and Y directions: 

Ox Oy 
Kz=--=-

ky kx 
(3.28) 

It is not easy to imagine the highly restricted surface and motion configurations which satisfy 

equation 3.28. However, simpler configurations which although more marginally restrictive are 

easier to state. The first is given when there is no translation in Z and no 3D rotation around 

the X and Y axes: 

Ox =Oy =Kz =0 (3.29) 

Hence the motion of the 3D object surface, relative to the camera image plane, is restricted 

to rotations around the optical axis and translations parallel to the image plane. In practice, 

this means angular rotations and depth changes should be small. The second configuration is 

found using the same translational restriction but requiring the surface and the image plane to 

be parallel to each other (or alternatively the optical axis and the surface normal vector are 

parallel). Unlike the first configuration, the motion of the 3D surface in Z is allowed to vary: 

Ox = Oy = kx = ky = 0 (3.30) 

Using orthographic projection [68], the 3D world position and the corresponding 2D image 

position are equivalent i.e. x = X and y = Y, so is their velocities: :i; = X and iJ = Y an affine 

motion model can be also obtained from the planar constraint. 

Zooming operation on static scenes 

The zooming operation with a camera is often used to magnify details of a specific area of a scene. 

For example surveillance cameras are often used to zoom into suspect packages in underground 

stations or parking lots. In the case where only the zooming operation of a camera is used on a 

static scene, only the focal length changes and the 3D motion parameters are all zero: 

Ox = Oy = Oz = Kx = Ky = Kz = 0 (3.31) 

The image velocity is then described by a I-parameter model: 

. j 
x= -x 

f 
{3.32} 

where j is the amount of focal length change per unit of time i.e. focal velocity. 

Translational model 

Translational motion fields consist of pixels whose optical flow are moving in the same direction 

with the same magnitude i.e. the same motion vector. Such uniform vectors are obtained if the 

3D surface moves only in the X and Y directions and is parallel to the image plane. Assuming 
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the focal length does not vary in time, and the rotation angles (Rx, Ry and Rz) and the depth 

changes (Tz) are zero i.e. 

Ox = Oy = Oz = Kz = kx = ky = j = 0 (3.33) 

then a translational motion model of image velocity can be expressed as 

[ ~ 1 = [ / Kxkz 1 
y /Kykz 

(3.34) 

3.2.4 Summary 

Relative motions between 3D object points and a camera can be modelled by a simple pin­

hole camera model. The projected image of the 3D motion into the image plane of a camera 

referred to as image velocity is formulated in section 3.2.1. The small 3D rotation assumption 

is usually met with distant objects. Section 3.2.2 shows that image velocity can be expressed 

independently of the object depths at each pixel if 3D objects are modelled as planes. Image 

velocities are then modelled by the planar motion model. Further simplifications to this model 

are described in section 3.2.3 i. e. the affine, zoom and translational models which further restrict 

the motion of 3D surfaces. The remaining of this chapter investigates an optical flow estimator 

with a planar motion model fitted onto local neighbourhoods of pixels. 

3.3 Optical flow formulations 

In this section, an iterative gradient-based optical flow estimator is developed. The iterative 

term simply means that optical flow estimation converges to an accurate solution iteratively. 

The constant brightness equation, CBE, is expanded in the first section into a Taylor series 

expansion using the assumption that the motion to be estimated is small in magnitude. Optical 

flow is then formulated in the second section after a least-squares minimisation procedure and 

the last section describes different possible interpretations of the gradient term of the optical 

flow expression. 

3.3.1 Expansion of the CBE: constant brightness equation 

Let It{x) be the image brightness or grey-level of an intensity function I at time t and at location 

x in the image plane. After motion, from time t to T, this grey-level moves to a different location 

p(x,a) where a describes the motion. The CBE is then defined by 

(3.35) 

where the warping function p(x, a) defined in equation 3.36 is simply x displaced by .D.x cal­

culated in equation 3.37 from a motion model a and model matrix X {described in section 

3.2}: 

p(x, a} = x + .D.x; (x, a) {3.36} 
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where the displacement ~xt(x, a) is defined from the velocity in the image plane (see previous 

section) : 

~xr(x,a) = LlrX(x) a (3.37) 

Optical flow estimators aim to estimate the unknown motion vector a which allow the calculation 

of the optical flow displacement ~x. For better accuracy, a is embedded into an iterative process 

where the deviation ~ak+l from one iteration denoted k to the next denoted k + 1 is assumed 

small: 

(3.38) 

where ak and ak+l are the motion estimates after k and k + 1 iterations respectively. Because 

we shall embed this in a least-squares formulation, the minimisation process is guaranteed to 

converge. The estimates ak+l converge toward a final solution after K iterations and the final 

motion vector is hence a sum of small motions: 

a = 
~ 

~ 

ak_oo 

aK 

ao+ E 
k=[O:K-l] 

~ak+l 

(3.39) 

(3.40) 

(3.41 ) 

It will be shown in the experimental section 3.5 that the maximum number of iterations typically 

required to reach convergence in motion estimation is K = 15. Convergence is here defined in 

the estimation as a certain number of iterations. The initial motion is assumed unknown and set 

to zero before the iteration process starts: ao = o. Only an initialisation technique (see section 

2.8) can provide such an initial estimate as demonstrated in chapter 4. Using the iterative 

process of equation 3.38, the CBE of equation 3.35 can be expressed as 

It (x) ~ IT (p(x, ak+l)) 

~ IT (p(x, ak + ~ak+d) 

First approximation 

(3.42) 

(3.43) 

Assuming the deviation ~ak+l to be small, the transformation function p(.) of equation 3.43 can 

be expanded into its Taylor series around Llak+l, and neglecting terms higher than second-order: 

(3.44) 

to give the new CBE 

(3.45) 

Second approximation 

If the deviation ~ak+l is assumed small then the product 81':.':k)~ak+l can also be assumed 

small compared to the deviation p(x, ak) and a second Taylor series approximation in equation 
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3.45 gives a new CBE 

where 

3.3.2 Least-squares optical flow estimator· 
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(3.46) 

(3.47) 

(3.48) 

In real captured imagery, pixel grey-level rarely keep their intensities constant and the CBE is 

instead expressed as an error measurement 

where 

e"T(x, ak+l) = l1I[(x, ak) + CP"T(x, ak)ak - CP"T{x, ak)ak+l 

= l1J[ (x, ak) - CP"T(x, ak)ak+l 

l1I[(x,ak) = It(x) - I"T(p(x,ak)) 

l1J[{x, ak) = l1I[(x, ak) - CP"T(x, ak)ak 

{3.49} 

(3.50) 

(3.51) 

(3.52) 

(3.53) 

(3.54) 

(3.55) 

In order to optimise the motion estimation at a pixel location x, a minimisation process is 

performed over a sum of squared errors given by a set of n pixels neighbouring x and located at 

x' = [xl : x~J. This minimisation is referred to as the least-squares regression technique. It is 

also performed over n pixels in m neighbouring frames denoted (i. e. over time) by T = [Tl : T mJ 
and is expressed in equation 3.56 as 

X, "T 

where 

(3.56) 

(3.57) 

(3.58) 

with the following vectors e and l1J and matrix lIt defines as 

e = [e"T!(x~,ak), ... ,e"T!(x~,ak), ... ,e"Tm(X~,ak), ... ,e"Tm(x~,ak)]T (3.59) 

l1Jk = [l1J;! (x~, ak),"" l1J[! (x~, ak), ... , l1J;m(x~, ak), ... , l1J[m (x~, ak)( (3.60) 

lIt k = [CP"Tl (x~, ak), ... , CPT! (x~, ak),"" CP"Tm (x~, ak),"" CP"Tm (X~, ak)]T (3.61) 
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The term CPr (x', ak+ 1) is a row vector of p parameters described in the next section 3.3.3. The 

optical flow ak+1 is found for the minimum f(ak+l) when its derivative with respect to ak+l is 

zero: 

8a~+1 f(ak+d = 0 

&a~+1 (~Jk - Wkak+dT{~Jk - Wkak+l» = 0 

8a~+1 (~JI~Jk - ~JIWkak+l - aI+l wI ~Jk + aI+l WIWkak+l) = 0 {3.62} 

Both terms ~JIwkak+l and aI+l Wk~Jk are scalars and since one is the transpose of the other, 

equation 3.62 simplifies to 

aa~+l (~J[ ~Jk - 2~J[Wkak+l + a[+l W[Wkak+1) = 0 

-2aa~+1 {~JIWkak+d + aa~+1 {a[+1 {wI lI1 k}ak+l} = 0 {3.63} 

Moreover, by definition 

and 

{3.64} 

{3.65} 

(3.66) 

Using the two previous equalities 3.64 and 3.66 in the minimisation process of equation 3.63: 

hence 

where 

2ak+1 (1I1[Wk) = 2~J[Wk 

(W[Wk)ak+1 = w[ ~Jk (3.67) 

ak+l = {W[lI1k)-lWk ~Jk (3.68) 

= (~~ cp;(x', ak)CPr(X', a k )) -1 ~ ~ cp;{x', ak}~Jr(X', ak} {3.69} 

CPr{x, ak) = 
8Ir(P{x, ak) (3.70) 

8ak 
~J;(x,ak) = ~I[(x, ak) - CPr (x, ak)ak (3.71 ) 

~I[(x,ak) = It(x) - Ir(p(x,ak)) (3.72) 

Matrix W contains the N(= nm) row vectors cP (defined in equation 3.61) and matrix ~J contains 

N scalars ~J (defined in equation 3.60). The term (wIWk)-1 in equation 3.68 is oft.en referred 

to as the pseudo-inverse of matrix Wk. The optical flow formulation can also be expressed in 

terms of ~ak+l: 

(3.73) 
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= (WkWk)-lll{(~Ik + Wkak) 

= (Wk1l1k)-lWk ~Ik) + (1l1k 1l1k)-11l1kWkak) 

= (1l1k1l1k)-11l1k~Ik+ak 

where the motion parameters between iterations are 

37 

(3.74) 

(3.75) 

(3.76) 

(3.77) 

(3.78) 

and similarly to the vector ~Jk (equation 3.60), ~Ik is a column vector containing the N = nm 

grey-level differences given by the N neighbouring pixels (equation 3.72). 

3.3.3 Interpretation of the optical flow derivatives 

This section contributes to the accurate definition of the optical flow gradient term and its 

comparison to the approximations used in the literature. It will be shown in the experiments 

in the next section that given small motion magnitudes, the traditional implementation of the 

gradient term is a quick and acceptable approximation of the correct expression. 

The general optical flow expression developed in the previous section 3.3.2 (see equation 3.69) 

is implemented via the calculation of two terms: ~I[(x, ak) (see equation 3.72) and 'P .. (x, ak) 

written in equation 3.79. The ~I[(x,ak) term is an easily implemented grey-level difference 

whereas the interpretation and implementation of the derivative term 'P .. (x, ak) is difficult. By 

further development 

81 .. (p(x, ak» 8p(x, ak) 
= 

8p(x,ak) 8ak 
(3.79) 

~ 8IT (p(x,ak)) (8P(x,ak))-1 8p(x,ak) 
Ox Ox 8ak 

(3.80) 

Using the expression of the motion displacement (~x = ~T X a in equation 3.36 and 3.37), the 

third term of equation 3.80 is developed into 

8p(x, air) = 8(x + ~T X(x)ak) = ~T X(x) 
8ak 8ak 

and the derivative term 'PT(X, ak) becomes 

where 

'P .. (x,ak) = ~T8I .. (p~:,ak)) (8P(;~ak)) -1 X(x) 

= ~T 'V pI .. (x, ak) X(x) 

(3.81 ) 

(3.82) 

(3.83) 

The new derivative term I{) .. formulated in equation 3.82 does not present any implementation 

problems. The implementation of the second term 'V pI .. (x, ak) expressed in equation 3.83 is 

generally approximated to a much simpler expression in the optical flow literature: approxi­

mation method 5 stated below and used by the authors Horn and Schunk [68], Haussecker et 

KINGSTON UNIVERSfTYttBRARY -
~ 
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al [63] and Kearney et al [80]. For example, there exists other possible approximations of 

equation 3.83 where four examples are given below in methods 1 to 5 with method 0 being the 

non-approximated correct expression in equation 3.82: 

• method 0: V pIT (x, ak} = 8JT (pJ:,Bk» (8P(;::c8k»)-1 

• method 1· V I (x ak) :::::: 8IT (x) (8P(X,8 k »)-1 . pT' ax ax 

• method 2: VpIT(x,ak}:::::: all/xx) (ap(;~ak»)-l 

• method 3: V pIT (x, ak) :::::: 8q~:.8k» 

where V It (x) = 8IJLx). This gradient expression CPT is called for every neighbouring pixels of 

equation 3.69 hence x in this section represents x' in equation 3.69. The inverse term present 

in method 0, 1 and 2 is derived for a planar motion model as 

a ax (x + D.rX(x}ak
) (3.84) 

a = 1+ D.r ax (X(xak
) (3.85) 

a [1 x Y 0 0 0 x 2 
xy 1 T = 1+ D.ra [at. ... , as] 

x 0 0 0 1 x Y xy y2 
(3.86) 

[ 

a2 + 2a7x + asy a3 + asx 1 
= I +D.r 

as + a7Y a6 + a7x + 2asY 
(3.87) 

where I is the 2x2 identity matrix. The two translational parameters of the motion model are 

usually the most dominant parameters, i.e. {a1,a4} » ai, Vi i- {1,4}. The non-translational 

components will be shown to be less then 1 in magnitude and the inverse term will be shown 

negligible in the estimation process, i. e. 

(3.88) 

Most optical flow frameworks implement cP by the approximation method 5 which is a good 

approximation if ak is close to the correct motion parameters to be estimated. This implies that 

the initial estimation at k = 0 is to be close to the right solution too. Provided equation 3.88 is 

valid, the correct expression in method 0 is equivalent to method 5, i.e. 

(3.89) 

where aoo is the true motion model, i.e. a, when the system has converged (aK = a oo - see 

section 3.3.1). It can be noted that when the system starts, motion estimates are usually zero 

and the correct expression in method 0 is the same as method 4, provided equation 3.88 is valid: 

(3.90) 
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The expression tp can be hence expected to behave differently from one method to the other as 

the system converges and as evaluated in section 3.6. 

3.3.4 Summary 

The general expression of an iterative optical flow estimator is previously developed in section 

3.3 using the constant brightness equation stating grey-levels remain similar in small interval 

of time and using the small motion assumption. An optical flow solution can be obtained if 

constrains are brought to the system and are provided here by neighbourhoods of pixels to 

which a motion field model (explained in section 3.2) is fitted. Optimal estimation is given from 

a least-squares regression technique and the optical flow estimation is evaluated in sections 3.5 

and 3.6 using the methodology developed in the next section 3.4. 

3.4 Developing an evaluation methodology 

The optical flow estimator derived in the previous section is evaluated in sections 3.5 and 3.6. 

This section describes the evaluation procedure. The evaluation is performed against known 

motion (referred to as the ground-truth data) which is introduced in section 3.4.1. Evaluative 

metrics are defined in the second section 3.4.2 to compare ground-truth wit.h the estimated flow. 

3.4.1 Input and ground-truth motion 

Successive frames with available known motion vectors at each pixel are not provided. Con­

secutive frames are instead simulated by creating a frame from a reference one using a set of 

synthetically ground-truth vectors /).xg • A single ground-truth vector is applied to all pixels of 

a frame with randomly chosen orientation and with varying magnitudes in the range 0 to 10 

pixels. The reference frame, which is the current frame, is denoted It and the next frame It+l 

is created by motion compensating the reference frame with the ground-truth vect.or /).xg : 

(3.91 ) 

The motion compensation operation is performed by the bilinear interpolator developed in 

Appendix A. However, this operation introduces a slight blurring in the construction of the 

next frame. The reference is hence also blurred by a slight smoothing operation performed by 

a Gaussian smoothing operator with kernel width 0.5. Three input sequences are used in the 

evaluation of the optical flow estimator. The reference frames of each sequence are displayed 

in figures 3.2 and 3.3: the 'boy', 'lab' and the 'yos' sequence each consisting of two frames 

constructed with the ground-truth. Each frame contains 384x288 black and white 256 grey-levels 

pixels. The three sequences are chosen for their diversity: the 'boy' sequence is captured outdoor 

in the countryside, the 'lab' sequence is captured indoor in an office and the 'yos' sequence is a 3D 

view outdoor view synthetically created. The drawback associated with synthetically generated 

frames is that their content do not reflect the noisy process captured with real sequences. 
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Figure- 3.2: [{d('n'Il('(' fralll(, of til(' l(,ft: 'hoy' Hnd righl: 'I;.h· S('<IU('II(,C' 

Figure- 3.3: [{('fpre-ll("p fralll(' of 111(' 'yos' S('qll('11('C' 

3.4.2 Error definition 

B('ceI ns(' of tl](' lack of ground-trulll optical How vectors, ('valuating m, wpll as ('olllpmin/!, 11101 iOll 

e-st.illlators i:; always an isslle. GiV(,1l ground-Irulh dala, Hll!!,ulal' alld lllagnillldc' ('!Tors Ill'(' 

calculated and l'('])orte(\. A sllitable approach wOllld 1)(' for ('xHllIple to ('valllnt(' opl iml [low 0111.., 

in problplllatic areas, su('h as ,UTOSS edges wIH'r<' o('c1usioll O(TIl!" H1HI ill IIn'ItS Im'ki ll/!, gn'y h'\'('1 

spat inl variat ions. III this applical ion , all pixpls Illldngo I he SatllC' 11101 iOll [ic'leI alld H llowl 

approa('h is Ilsed to ('valuate opti('al flow: a 1)('1'('(' lIl age' of ('ol'l'<'(" lly c'sl illlnl l'eI !lows for C'H('h 

ffaIlle is feportC'cl <t.'i d('scril)('d ill t hp following. 

The' ('stilltal('d opti('al How displac('11I('1l1 (x) al a parI inriat' pix!'1 IO(,HI ion is ('olllpal'<'d 

10 the' groulld-tl'1lth displa('c'III('llt 6.xY (d('snibecl ill I he pn'\'ious I-i('('\ iOIl :1. 1.1 ) by I II(' 11Int iOll 

('rror I('rm d(x) ('XjH'C'ssC'd as 

d(x) = II6.x(x) 6. qll (:1, !l2) 

Ttl(' llle'an of tll(' motioll errors Alrl ov('[ the C'ntire' s('( of pixc' ls helol1ging to 11\(' fnlll\(' d( 'llo«><i 

:F is (,Clleutal ('d ill ('quat iOIl 3,93: 

AI" = ----
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wlwre Card(.r) is the tol.nl Iltllnlx'r of pix('ls wit hill the frnllIl' .r, ht'IlI'e it. Is 11m 101 nl 11I11IIbt'r 

of pixels in the frame. The l'S1 imnlor's Ilt'rfornlluwl' mlly nlso he IlIt'II."lIrt't.l hy I.he I>t'rc('nll\gl' of 

pixels considered I\('('umtcly ('1;1 imnled i.t. 

1 ,,{ 1 if f/(X) < 1d. 
Pd=---~ 

Cnrd(F) xEF 0 ('INt~ 
• 1 ()() (3.9·1) 

where the thrt'Shold Ttl hilS bt,('11 arhitmrily ('hoNt'1I 1\.'1 0.1 pixt'!. 

3.5 Evaluation of the least-squares optical flow cstinlator 

The exp('rillll'nts of this 8('('tion ronllillt In t'\'llluul illg til(' llt'rfurlIlIUI(,(, of thl' Itt'r"t IV(' an<lnun­

iterative ('I;lilllutor previously forlllullllt'(lln 8('('\ ion 3.3. Tlw ('vlllllllt ion pro('('t\un'S f\re dt'S('riht'<l 

in detail in !l('('lion 3.4. The first n'Suhs "how thllt the 1\('('lIrtll'y of" lIon-itt'rlllive It'IIst-Sqlllln'S 

estilllntor c\I'Pl'lIds dirt'('t Iy 011 tht' mol iOIl-dt'lwndt'nt SIIIOO\ hillg (llIt'r,,1 iOIl wlll'rt· fnuJI('S /lrt' to he 

Slllootht'd wit h 1\ GIlUlISil\1I slIloolhing 0pI'rnlor wit h kt'rllI'l widt h of \ ht, "i1.e of the "pplil'(llllutioll 

Illllgnituclc. More ac('urate n'Suhs are ohtllitlt'<l wlll'lI tIlt' itl'mlivll Sdlt'lIl1l Is lINt'd. wil huut I ht' 

nt't'd of a pre-smoothing olwr"t ion: t hl' t'St illlll\.or Is a(,(,IIr"tt' in t'Sl illl"ling mol ion up 10 a 

ft'w pix{'ls in Illagnit uclt', It ill Illso shown tllIlt hoI h tIlt' ,,11.e of t Iw nt·lJ.(hhollrhtltul USt't! 10 

cOllslraill the ('ollstallt brlghlll('SS ('(llIlIlion nlltl tllll mlllimlim flIlIlIht'r uf 1II'rIIIIOIIII rt·lJllln·tJ for 

lIlinimisllt ion to be (,Ilrt'flllly diOIlt'1I for b('l;t rt'tilllts. 

3.5.1 Estimating with non-iterative optical How: smoot.hing dep(m­

dency 

III ordt'r to ilIllsl rill e the dl'lWlltlt'lU'y of thl' 1I01l-IIt'mllw opl kill flow t'tillllllll ur 011 lilt, ""1001 hllllt 

opt'rntioll. thl' ('I;t illllltiollll nre )wrfurllll'(l wit h fill O\'('f-('Olll'il mhlt'(I"YIiI ('Ill hy IIdt'('1 illg 1\ "1I"lIr(' 

Ri1.e Ilt'ighhollrhooti of 13x 13 p\)(('IIi. Th(' "1I1t)ul hillg III pt'rfurmt'(l hy " GIIU!II\ill1l kt'r!1I'1 of wldt h 

(1 and thl' optlrnl now rt'tiult ... (In' t'vnlunlt'tl ~nillllt gnJIIlltl-trlll h cI"t Il t hnl\l~h lIlt' ('"II'lIlnl iOll uf 

the IIlt'lUl 1II0tiOll ('rmrs Mel/III dt'l'lI'rilH't111l 1I('('llnll =\.,', Tht' IIIt'nll 111011011 n'Suhll nrc' dl"pl"yt·c1111 

figure 3.4 ng/\illsl tht' flll'tor (I for tilt, 'III}" 1II'<lllt'lIt'(' ,,"t1 for ""rlollll IIppllt'(IIIIOllolI IIIl\Jtlllllldt'll, 

Tht'Sc rt'tillits ~h(lw thl\t M" III minlmufII for Il 1I11111'1t' 1'11011'(' (If t1 ('lIl1t·tI I ht' 01'1 hlllli (,,('lor 

dt'lIo\.('(1 (10: 

Figure 3.4 show thllt (10 hU'!'t'llIIt'" wilh IIIC! "pplil'(llIIlIllolI ~x', III "c1dllloll lIlt' t'r!'tlr M" rill('ll 

wit h 11I(·r(·II. .. illg (f 0' TIl(' vnhu'II of 111t'8l' (11'11111,,1 f"t'\ III'!1 "rt' c1il'ipIIlYI,(\ III tIll' 11!rIO(' 11I"1t·1'I :U, 

3.2 I\lId 3,3 for tilt' '1111,', 'hoy' "lid 'YIIII' 1I('(llIt'lIt'(' n'lll'I,(·tl\'t,ly, TIlt'S(' I "bIt'll nll«llIhtlw I hilI till' 

ht'St 0Jll.\(-Illllow t'llt illll\It's 1\1,\' giVl'Il wllt'll (I" 1\ .... nppr(lxlllllltl'ly lI(·t ('(111,,1 till hI' "l'l'lIt·tllllollolI. 

Therl'forc !lllr/ul\t'\t'r 1'1<'1('('\1011 III Iht. \lOIl-ltt'mll\'(' 1t'('hlllcl'lt' ('1\111101. t'llIiily be' 1I1I101lllllt'(l 'III II. 

dt'pl'luls Oil I he IIpplit'll mol iOIl 1II/1I(IlIIIl<lc'. 
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If optical flow wa .. '-; to bc CXP r<'. scd ill a ID casc, it m Il 1)(' eas ily show n I ha t I h(' d isplan'IIl l' 111 

would be approximatcd by D..I" = D.I / \7 I Ilsiug thl' l s i orclcr Taylor sc ries a pproxi llla l iOIl wl]('r(' 

D.I i. thc t C'mporal changc in grcy-I('V('I a lld \71 is ti l(' spa tia l dN ival ive . T his opl ical flow 

expr('ssioll is ouly valid if the intensity I l/tkcs a lillC'at" fo rm which is ouly I rt lP wlH' lI lllol iOll is 

smail rc la tive to a C<llllCra (providcd thE' hr ighillpss cous l ilIJ('.v is rcsppdecl) . Il owcV('r. lllo l iOll can 

happcll 10 be large a nd t he liucarily of thc temporal gn'y-Irvel dist ributio ll of a pixpi 11 0 long(' r 

cxists aJl(1 heuc<' motion cannot 1)(' ps tillla tcd fro lll ti l<' prcvious optical How ('xpn'ss ioll . T Il(' 

convolut ion of a smoothillg Gaussia n kprnel with sta llda rd dcvia lioll (Jo thp sizc' o f lhc Ulo lio ll 

magllilud(' garantc('s tlw rcqllircd linC'a rit y of I hp pixel intcllsil ips a;; ohservpd I hrollg llOul I hc 

rc's lli ts. T his Ganssia ll kc'rnd sIl100thcs enough t hp spa ti a l illtC'llsi ty ("Oul put aroulld a pixC'i 10 

silllula l(' tlH' tl' lllporal varia tion of thp it s g rpy- Ipvc'llIIo lion inl o a lill C'ar for lll . 

9 

8 

-. , 
7 .. 

(J) 
mOllon of 1 pixel 

06 mollon of 2 pixels 
~ • mot ion of 3 pixels 
6 5 

". mollon of 4 pixels 
0 ..... . ..~ .. .. 0 ~. ~ -- - .. - .. -- -- .- . .. . -
E 4 ".-- - .-mollon of 5 pixels 

" --c ... mollon of 6 pixels 
(IJ 

~ 3 - -,,--- :: • .- -- - - -- mOllon of8 pixels 
2 • ... 

• • ... • 
• 

0 
0 2 3 5 6 7 8 9 10 

smoothing factor 

Figurc 3.4: 1('an Illa tion ('!Tors Jl Id fo r various lIlotion lll agllit ud('s with til(' ' la b ' S<'qIH' Il('(' 

TIl(' I)('rl"(' nt ap;t' of pixels (lccllra tC'ly t's t inmt ecl (sc(' equa l iOll 3.( I) a rc plo l tcd ill fi g lll"(' 3.5 for 

variolls a ppli0d llIotions for th(' lhre(' cli~rprcnl seqll c'llC('S rompllt 'd wit It I he' approprinl (' optill ml 

SllIoOt hillg. TIl(' result s show Ill(' s t rOil/!, dr'c!"C'H."(, o f Rccuracy wit II i 11 crt'H.<;iug mot ion Illag llitllc1!'s: 

a lII inillllllll of 75o/c o f til(' motions arC' aCl"u ntt<'iy eslillla led for flI o l iOll of 2 pixels (' la b ' graph ) 

ami til(' pprcclltage drops 10 aroulld 50% ror lIIotioll o r :3 pixd s in Illngllil lidC'. Pix!']s wh os!' IllO­

t ion is al"c urately ('s t illmt('d a rc' rpp]"('s(, llt ed as hright I rHllspan '1I1 gn 'y- I!'vels 0 11 Ill(' Sllp(' rpOs('<i 

rral llcs ill figur(' 3.G and 3.7 fo r the 0XalnpIP o f I hI' 'yos' S('«II(,IIC(" wh<'l"( HS pix<'ls whir-h 11101 iOlls 

a rC' llOn-ctc(" lIrHt,!'iy C's tillla t<'d are displayed as d a rk l ra lls pHr('1I1 g rey- levels. Th('s(' liglln 's d() 

llo t displa.y a llY di rect ["Pia tion iJc' t W('C'Il lhc' illlag(' ("ollt c' lIl and lhc' nrc'as o r ("(}JT('('lly ('s tilll a l C'd 

mot iOll vpd ors. 
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1 2 3 4 5 6 7 8 

(To 0 2 3 4 5 6 7 8 

Md«(To) 0.25 0.80 1.40 2.02 2.49 3.07 3.59 4.28 

Table 3.1: Optimal smoothing factor for the 'lab' sequence 

IIIAx9 11 I 1 2 3 4 5 6 7 8 

(To 0 2 3 4 5 6 7 8 

Md«(To) 0.10 0.63 1.31 2.01 2.75 3.57 4.43 5.35 

Table 3.2: Optimal smoothing factor for the 'boy' sequence 

2 3 4 5 6 7 8 

(To 0 2 3 4 5 6 7 8 

Md«(To) 0.08 0.43 0.95 1.55 2.20 2.92 3.62 4.34 

Table 3.3: Optimal smoothing factor for the 'yos' sequence 

3.5.2 The iterative estimator and the neighbourhood size 

The non-iterative estimator is shown in the previous section 3.5.1 to be motion-dependent. 

Moreover, the estimator can only estimate accurately and efficiently (in terms of percentage of 

successful estimations) pixels undergoing motion with maximum magnitude 1 pixel. The aim of 

the following experiments is to evaluate the iterative process and investigate if it can accurately 

estimate larger motions, and avoid the dependency of motion magnitudes. 

The mean of the motion errors /lId between the estimated and the ground-truth optical flow 

(see section 3.4) over all the pixels of the 'yos' sequence are displayed in figures 3.8 and 3.9. The 

graphs in these figures are drawn with the same scale for comparisons purpose. The values of 

the mean errors are plotted for different iterations k and for different neighbourhood sizes. The 

mean error is now denoted Md(N, k) as it is evaluated against k and N. The results of these 

graphs show that Md(N, k) decreases rapidly until convergence as k increases. However, as the 

motion increases, more iterations are necessary to reach convergence and larger neighbourhood 

sizes are also necessary to reach the minimum converged errors. 

The number of iterations required for motion estimate to convergence to a final estimate, 

denoted K, increases with the applied motion magnitude. For the sake of comparison, conver­

gence is defined as the point at which the decrease in error is less than 10% of the last motion 

error value i.e. 

K _ . {Md(N, k) - AJd(N, k + 1) < lOo/c} 
- mInk Md(N, k) 0 

(3.96) 

The convergence results K are displayed in table 3.4 for different neighbourhood size N with 

the corresponding mean motion errors Md(N, K). These data show that the system needs more 



CHAPTER 3. GRADlEl T-I3A 'ED OPT[ 

.. 
'" a" 
Ii J 

8 
~" 
Iii 2 

~" 

., " 
I 2 , .. 5 I 1 • • 10 11 12 13 U 1'5 t. t7 t. til ~ 

L FLO\\ ' 

.. 

t ) , .. , • 1 • • 10 II 12 U 14 ., I' 17 I' " 10 

nunber cf IhlfOOalS 

I:' 

.. " · ..... · ... 
- ""'11 

Fig1ll'C':J. : ~I('all mot iOIl errors of the 'ym,' S<'<111('II(,(' for I('ft : 1 pix('1 ami right: 2 pix('ls 1l10t iOIl 

lllaguit llde 

.s 

. . . ............ • .! ! -!-.!-,!.!! .!..!...! - ! - .......... ~ . ~ 
1 2 , .. 5 II 1 • • 10 II 12 I) '4 15 ,. " '8 " 20 

I\Jf11bef cf Ileraoons 

· · -
· 

. s 

.. " Su ... Ii l - 8 
tpt2' " .... ! ,: .. '" 

os 

t · 
u . 
~ 

" 
\ , . 
" -' . 
~' '' ...... . 

-;- ""-
.: '"' . ... .. ... -.- . 

1 , ) .. , I 7 • • 10 II t2 I) It 1'5 'II " 'I '1. 
runbe< 111~r dnons 

· ,... ... 
- .... ,,, 

,.., . 
.... - ~DI 

Figure 3.9: [('all mot ion (' lTOl'S of t 11(' 'yos' S('(jlH'I1( '(' for I('ft : ;1 pixds Hilli right : fJ pi x (0\,.; lIIot iOIl 

Illngn i t lId C' 



CHAPTER 3. GRADIENT-BASED OPTICAL FLOW 46 

iterations i.e. K increases as the motion increases when N ~ 81 pixels. The corresponding error 

also increases with the motion and for all neighbouring sizes. The results of K in the first table 

show some stability when N ~ 81 where K take the approximate values of 4, 7, 9, 10 and 13 

iterations for motion of 1, 2, 3, 4 and 5 pixels respectively. For the remaining experiments, a 

neighbourhood size of 100 pixels is selected. 

number of iterations for convergence: K 

motion number of constrains: N 

magnitude 25 49 81 121 169 225 

1 12 15 5 4 4 4 

2 11 8 6 8 6 7 

3 8 11 10 9 9 9 

4 7 10 10 10 10 11 

5 6 10 12 12 13 14 

corresponding error: Afd(N, K) 

motion number of constrains: N 

magnitude 25 49 81 121 169 225 

1 0.06 0.008 0.006 0.006 0.006 0.006 

2 0.38 0.08 0.05 0.02 0.02 0.01 

3 1.77 0.66 0.45 0.33 0.23 0.18 

4 3.36 1.85 1.38 1.03 0.89 0.75 

5 4.89 3.16 2.36 1.90 1.64 1.38 

Table 3.4: Optimal number of iterations K and corresponding mean errors Afd(N, K) 

3.5.3 Comparing iterative and non-iterative estimators 

The percentage of optical flow vectors accurately estimated by the non-iterative and iterative 

estimator are displayed in figure 3.10 for the 'lab' sequence. This percentage is calculated 

according to equation 3.94 where a motion is accurately estimat.ed if it does not deviate more 

than 0.1 pixel from the ground-truth vector. The non-iterative results are given with the optimal 

pre-smoothing operations and the iterative results are given after 15 iterations and with square 

neighbourhood of 121 pixels. The results of this figure 3.10 show clearly how the percentage of 

accuracy Pd increaSes when the iterative process is used. The results for the three sequences, 

the 'lab', 'yos' and 'boy' sequence are displayed in figure 3.11 using the same iterative estimator 

(K=15 and N=121). The accuracy behaves similarly wit.h increasing motions. Optical flow is 

more efficiently estimated with first the 'yos', second 'boy' and last 'lab' sequence as observed 

with the non-iterative estimator. On average, the iterative estimator can estimate accurately 
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aboul 90'/( of the pix('ls lllotiollS having a magnilude 1I0t Il,reH1<'r t hall 3 pixds colllpar('d wit II I 

with the non-iterative ('stillmtor. As additiollal inforillatioll, H sparse' s('t of optical flow V('ctors 

is displayed ill figure 3. 12 for diff<'r('lIt example'S of appl ied Illotioll . III this lig IlrC , thc ' whit c' lilH'S 

n'prC'se'nt the op tical flow vC'clors alld arC' drawn 0 11 top of til (' 'boy" fnul lt' . T lt t' ngurc's silow a 

lJlajority of similar v('ctors (Setlll(' oricntal iOIl alld lIIaglli tude) which are t hc' COlTC'ct Iy ('st inmt I'd 
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100 

~ 
. ~ 

00 l.. 
~ 

.. 
~ • :J 1 b' 
U \ . 
u 60 , 
«l 

sequence 

'0 ' & '. 
\ 

Q) 

" ~ • 
c: 40 

• 'yos' 
s.quence 

Q) 
u 
lJ5 a. 

.. boy' 
sequence 

20 

• 
• 

0 

2 3 4 5 6 7 B 9 10 

motion magnitude (pixels) 

FigurC' 3.11: Pl'l'C'e'lltage of fHTuntC,Y of lhc' ill'mli\'(' c'slinralor for 11m'!' S<'<I"I'II(,( 'S 



RAPTER 3. CR.ADLE T-BA ED OPTI AL FL HI 4 

Figure 3.12: parse motion field obtain d by lh it raLiv slimator ( = 100 con tra.in and 

k= 15 iterations) for a molion of magnilud I p I [1: 1, I,op right: 2, b It. m 1ft: 2. 3 and 

bottom right: 4.24 pixels 
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3.5.4 Conclusion 

The experiments performed in the previous section 3.5.1 on the non-iterative estimator show 

that the best results are found when the smoothing factor is chosen to be equal to the unknown 

applied motion magnitude. Hence this estimator is heavily dependent on the motion magni­

tudes. Moreover, this estimator is not accurate even with optimal smoothing. Its performance 

decreases drastically with motion magnitude and motion with magnitude up to 1 pixel can only 

be accurately estimated. 

The results obtained with the iterative approach presented in section 3.5.2 show that optical 

flow estimates converges to more accurate solutions. The optical flow accuracy also decreases 

with the applied motion magnitude but with a lower rate than with the non-it.erative version. 

The parameters of the iterative technique are not dependent on prior knowledge of the motion 

magnitudes. It was shown that motions up to 4 pixels are accurately estimated with the iterative 

estimator. Its performance is also evaluated against the number of constrains and stability is 

reached when the constraining neighbourhood contain at least 100 pixels and when the system 

iterates a minimum number of 10 times. 

Iterative optical flow estimation through a gradient-based approach remains an expensive 

dense motion estimator (as observed in a later section 3.7) and is limited to estimate accurately 

motion up to about 4 pixels maximum. This motion magnitude limitation is due to the con­

strain imposed by the small motion approximation in the optical flow development in section 

3.3 but can be overcome by initialisation technique as performed in chapter 4. This chapter 

concludes in the next section 3.6 with the evaluation of approximated estimators differing in 

their implementations of the optical flow gradient or derivative term (defined in section 3.3.3). 

3.6 Evaluation of the optical flow gradient terms 

In the mathematical expression of the optical flow in section 3.3, the only term having a difficult 

interpretation and problematic implementation is the derivative term \O,.(x,ak): 

(3.97) 

Implementing this gradient term involves warping the frame I,. by a motion vector a of p 

parameters followed by the spatial derivatives of this warped image with respect to a complex 

warped coordinated system. Equation 3.97 is developed in section 3.3.3 where the derivative 

term is split into three terms. These terms can be approximated in different ways creating 

different algorithms with different performances. 

As explained in section 3.3.3, the two translational parameters of the motion model ak are 

usually the most dominant parameters compared to the other parameters reducing the number 

of potential approximations to the correct expression. As the system iterates toward the correct 

motion estimates, the gradient term is expected to take approximated forms. 
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Using the procedure described in section 3.6.1 the stimator are valuat d in section 3.6.2 

with a synthetically created frame and in section 3.6.3 with a r al captur d fTame. Th results 

show that the quickest and simplest derivative approximation and mostly used by most authors 

in the literature [68, 63, 0] is an acceptable method for an optical flow estimator. 

3 .6 .1 Evaluation criteria 

The six different approximations of the derivative term tp.,. (equaLion 3.97) of the optical flow 

equation are implemented into six motion estimators who e p rformance is evaluated according 

to the fo llowing criteria: 

Converge nce is the f{th iteration at which the difference in mean motion rrors between 

successive iterations is less than 10% than tbe last mean error. ft should be noted that the syst.em 

can reach tbis condition without actually converging where errors grows for later iterations. 

Error is the mean motion error AId after convergence. If onvergence i met after} iterations 

then the error of the system is measured at th (f{ + l) th iteration i.e. !I1a(K + 1). 

Speed is the computational cost of th algorithm per iterat.ion expres d in s conds witb a 50 

MHz Pentium III processor. 

3.6.2 Results with uniformly distributed gr adient synt h t i dat a 

Th optical flow experiments are performed on two displaced synth tical [ram 5 whi h form ih 

'sine'sequence. A frame example is di played in figure 3.13. 

Figure 3.13: Referen e fram of the' ine sequ n 

E r ror 

The mean motion errors Md defined in se tion 3.4 for th 6 estimator bui lt ar ploL(. d in 

figure 3.14 and 3.15 for four different small motion magnilud r 1 2, 3 and 4 pixel. All th 
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rslimators ('OIlV<'rg(' 10 slllall rlTors . I('[hods 0 awl 3 I)('rfol'lll Silililllrly, iI."; do 11H'lhods I alld I. 
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six opti(,Hlliow llll'thocis fot' lllHXillllllll Iliotiolllllll/!,lIitllcI('s of2 alld I pix('/s ill tlllll(' :L'i II l1d :I.Ci 

['('SI)('C'liV<'ly. Tlwse tables show Ihat all six ul('thocIs aI'(' /J('( 'lll'l1tl' HUcI ('ollVPrg(' llt for IIlOtiollS 

lip to <I pixC'ls. 



CHAPTER 3. GRADIENT-BASED OPTICAL FLOW 52 

All six techniques require only K = 2 iterations for the motion errors to converge for a 

motion of 2 pixels maximum, with only 1 iteration for method 2. As the motion increases, 

the convergence of method 0, 3 and 5 remains the same with a slight increase for method 2. 

However, convergence is met after more iterations for methods 1 and 4 for the larger motion. 

Speed 

The speed corresponding to the computational efficiency of the six methods show that methods 

4 and 5 are the quickest estimators with about 4.8 seconds per frame and per iteration. Methods 

1, 2 and 3 require more time between 11 and 12 seconds and method 0 is the most expensive 
, 

estimator with 18.6 seconds. However, as previously described, the six techniques require dif-

ferent number of iterations before convergence is met. In terms of overall speed, calculated by 

K*Speed, method 5 is the quickest with constant speed as the motion increases. The speed of 

methods 0 and 3 also remains the same unlike for methods 1, 2 and 4 which speed increases 

with motion. 

Therefore, in terms of speed, convergence and accuracy, method 5 is the best approximation 

of the derivative term of the optical flow formulation as also concluded through the experiments 

performed in the next section with a real capture frame. 

optical flow evaluation for motion of 2 pixels maximum 

method Md(K + 1) K Speed (sec) K.Speed 

0 7xlO-6 2 18.64 37.27 

1 7.6xlO-3 2 11.86 23.72 

2 5xlO-5 1 11.73 11.60 

3 7xlO-6 2 11.60 23.45 

4 7.6xlO-3 2 4.80 9.59 

5 3xlO-6 2 4.79 9.57 

Table 3.5: Systems evaluation for applied mot.ions up to 2 pixels 

3.6.3 Results with real image data 

The experiments run on the synthetical frame in the previous section 3.6.2 are run once more in 

this section but on a real captured frame from the 'lab' sequence: see figure 3.2. Six estimators 

using different approximations of the optical flow derivative t.erm (listed in the five methods 

of section 3.3.3) are evaluated in terms of mean motion errors Md defined in section 3.4. The 

previous experiments showed that methods 0, 1 and 2 have the same performances of methods 

3, 4 and 5 respectively. Hence, only these last three methods are evaluated in the remaining 

experiments of this section. 
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optical flow evaluation for motion of 4 pixels maximum 

method Md(K + 1) K Speed(sec) K*Speed 

0 2xlO-4 2 18.637 37.274 

1 5.8xlO-2 5 11.858 59.29 

2 3xlO-6 2 11.727 23.192 

3 2xlO-4 2 11.596 23.454 

4 5.8xlO-2 5 4.797 23.985 

5 3xlO-6 2 4.787 9.574 

Table 3.6: Systems evaluation for applied motions up to 4 pixels 

The mean motion errors of approximation method 3, 4 and 5 are displayed in the graphs of 

figures 3.16 and 3.17. The results given by method 4 clearly show no convergence of the errors 

when iterating, even for a motion magnitude of 1 pixel. It is also less accurate than the two 

other methods. The results given by method 3 are the most accurate and convergence is met 

for all motions. Convergence is also met for method 5 if the motion does not exceed 2 pixels 

and whose accuracy is as good as method 3's. 

The previous observations made from figure 3.16 and 3.17 are resumed in table 3.7 using the 

error criteria Md and the convergence criteria K developed in section 3.4. The speed criterion 

is not used here as it is not altered by the input sequence. In this table, X is inserted whenever 

an estimator is not converging to a final motion estimate. 

The results of table 3.7 show that motion errors given by method 3 always converge with 

motion. However, the converged errors remains accurate for motion less than 3 pixels in magni­

tude i.e. Md < 0.02 pixel but the system becomes inaccuarte for larger motion with for example 

about 1 pixel error for a motion of 4 pixels in magnitude. The accuracy of method 5 remains 

as accurate as method 3's for motion less than 3 pixels and this method does not converge for 

larger motions. As observed in the previous section, method 4 give the worst results and it only 

converges for motion less than 2 pixels in magnitude. 

The percentage of correctly estimated pixel motions (see definition of Pd in section 3.4) are 

displayed for the three techniques in figure 3.18, confirming the lack of accuracy of method 

4 and the similarity of the two other methods. As previously observed, method 4 is never 

an appropriate method to estimate optical flow. Method 3, the closest approximation to the 

correct optical flow gradient expression, performs the best with real images. However, because 

method 3 is more expensive (see speed results in previous section) than method 5, this latter is 

preferred as optical flow technique although it lacks of accuracy and becomes unst.able in term 

of convergence for pixels having a magnit.ude greater than 3 pixels. 
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motion magnitude (pixels) 

method 1 2 3 4 

K AId K AId K AId K AId 

3 3 0.06 5 0.02 7 0.2 7 0.9 

4 2 0.02 X X X X X X 

5 1 0.006 4 0.02 X X X X 

Table 3.7: Errors Md at convergence K given by method 3, 4 and 5 for small motions 

3.6.4 Conclusion 

The calculation of the optical flow expression developed in section 3.3 requires a complicated 

derivative term to be calculated. This term, once developed can be approximated by six different 

methods defined in section 3.3.3. These 6 methods mainly consist of a combination of a derivative 

term plus an inverse term. Their performances are evaluated in section 3.6.2 with a pair of 

synthetically created frames and in section 3.6.3 using a real captured frame. The results show 

that the inverse term can be neglected as it does not influence the estimation of the local motion 

field: optical flow is estimated using a small local window as neighbourhood of pixels where 

optical flow deviations at the borders of this window are expected to be negligible compared 

to the motion at the center. This side effect may be considered non-negligible in different 

applications such as in global motion estimation (see chapter 5). The derivative term of the 

approximation techniques can be successufully approximated by the commonly used term in the 

literature in the case where motions remain small i.e. they do no exceed 3 pixels in magnitude. 

This small motion limitation is addressed in the next chapter. 

3.7 Timing estimation 

Optical flow is computed at every pixel of a frame from a sum of K vectors Aak+l (with 

k = [0: K - 1]) containing p motion parameters developed (see section 3.3.2): 

Aak+l = (LL'P;(x',ak)'P1"(x',ak))-l LL'P;(x',ak)AI[(x',ak) 
~ 1" ~ 1" 

where 

'P1"(x',ak) ~ AT Vlt(x) X(x) 

IlI[(x', ak) = It(x) - 11" (x + IlT X(x)ak) 

(3.98) 

(3.99) 

(3.100) 

The terms Vlt(x), X(x) and ak are matrices of sizes 1 x 2, 2 x p and p x 1 respectively. The 

term 'P in equation 3.99 is given from section 3.6 and Ill; in equation 3.100 is the motion 

compensated grey-level difference between time t and T. According to equation 3.98, the time 

required to compute the flow Ilak+l, denoted Tt:..a, is split into two costs as defined in equation 
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3.101: the time T build to compute the four sums that build the optical flow matrices and the 

time Tinverse required to perform the matrix inversion of this summation denoted Tinverse. 

T.6.a = Tbuild + Tinverse (3.101) 

The time required to build the four sums of matrices Tbuild is decomposed into two sets of two 

sums as shown in equation 3.98. The first set involves the construction of a square matrix of 

size p x p and requires O(p2) operations. The second set involves the multiplication of a matrix 

with a scalar computed using a bilinear interpolation technique (see Appendix A) and can be 

shown to take O(p) operations. Hence the overall speed for building the matrices for N = n x m 

neighbouring pixels (where x' = [xi : x~] and T = [TI : Tm]) requires O(Np2) and can be 

modelled by equation 3.102 where aI, a2 and a3 are constants: 

Tbuild = O(Np2) 

::::: N(aIP2 + a2P + a3) 

(3.102) 

(3.103) 

Performing an inversion of the square matrix in equation 3.98 of size p x p requires generally 

O(p3) operations as estimated in [103]. The SVD (Singular Value Decomposition) is used in 

this study to invert matrices and is modelled by equation 3.104 

Tinverse = O(p3) 

::::: bIp3 + b2p2 + b3P + b4 

(3.104) 

(3.105) 

Time measurements are performed using a 850 MHz PC Pentium III with different motion 

models with p = [2,4,6,8] parameters and various number of constraining points N. The 

following parameters are estimated as 

tal, a2, a3] ::::: [5.87xlO-8 , 2.91xlO-7, 1.58xlO-6] 

rbI, ~, b3 , b4] ::::: [-3.48xlO-8 , 2.13xlO-6 , -5.69xlO-6 , 1.50xlO-5
] 

(3.106) 

(3.107) 

The terms a3 and b4 in equation 3.106 and 3.107 are zero in theory as they correspond to the time 

computations of Tbuild and Tinverse respectively with zero motion parameters and empty matrices. 

They are measured as non-zero due to extra matrix computations involved before estimation 

starts. The computational costs of nuild for different constrains sizes N are compared to the 

cost Tinverse in figure 3.19 for 4 different motion models (p = [2 : 8]). The graphs show that 

Tinverse is more expensive if N = 1 than Tbuild but becomes much less expensive than nulld 

when N >10 pixels. The experimental results obtained in this chapter (see section 3.5) show 

that a minimum number of 100 pixels in neighbourhood are necessary to constrain the optical 

flow estimation. Therefore, for such numbers, the optical flow estimation is dominated by the 

operations involved in building the matrices which takes O(N) for a given motion model. For 

example, the total optical flow computation cost of all the pixels of a 576x768 pixels frame takes 

approximately 15 minutes with a Pentium III using a planar motion model (of p=8 parameters 

- see section 3.2) and after iterating 15 times. 
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3.8 Discussion 
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likely to contain pixels undergoing difrerent IlIol iOIl fi elds. III th is C·f~(" Ih(' lIeighb()lI rhood Ill ay 
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which results in the violations of the small motion and the constant brightness assumptions. 

The next chapter 4 investigates two solutions to improve the optical flow estimator: a robust 

statistics technique to deal with noise and multiple motions and a hierarchical technique to deal 

with high pixel motions. 



Chapter 4 

Addressing limitations of optical 

flow 

An optical flow technique was described in chapter 3 to estimate motion displacements at each 

pixel between frames. The estimation of small motion is successful on low noise images using 

the least-squares regression estimator. Importantly, all pixels in each neighbourhood required 

to constrain the optical flow equation must undergo the same motion: the motion of the central 

pixel of this neighbourhood. Under such experimental conditions, the results show that motions 

with maximum magnitude 2 to 3 pixels are accurately estimated. However, low noise images 

with uniform motions are unlikely to occur in real captured datasets. This chapter concentrates 

first on developing a robust method to deal with neighbourhoods containing alternate amounts 

of noise. The second focus of this chapter is to improve the estimator in estimating larger motion 

magnitudes by the use of a hierarchical technique. 

Real-life image sequences contain various sources of noises. Change of illumination, non­

uniform reflective properties of 3D surfaces, transparencies, high-frequency noise from the optical 

system are some of the examples of sources of errors disrespecting the constant brightness 

equation (defined in section 3.3). Moreover, real-image data is likely to contain objects moving 

with different motion models and hence introduce noise (referred to as motion noise) within 

pixels neighbourhoods. These sources of noise are dealt with a technique known as robust 

statistics explained in section 4.1. The experimental results show that such techniques can 

retrieve the correct information with the presence of high levels of noise, whereas the lea.~t­

squares approach is sensitive to any level of noise. Despite the efficient discrimination of grey­

level -noise, however, robust statistics cannot discard the total influence of outlying motions at 

object boundaries where occlusion occurs. 

Gradient-based optical flow estimators have a limited range of operation in terms of motion 

amplitude. Chapter 3 shows the optical flow estimator is limited to estimate accurately only 

small motions. However, if an initialisation technique is provided, a first estimate of the motion 

59 



CHAPTER 4. ADDRESSING LIMITATIONS OF OPTICAL FLOW 60 

would make the system iterate toward the true motion. Such initialisation techniques could 

comprise of the feed-forward, block-matching and hierarchical techniques as reviewed in section 

2.8. The hierarchical method is explored in this chapter. It is based on a coarse-to-fine approach 

referred to as the Laplacian pyramid technique which estimates accurately larger motions at the 

coarsest level allowing a better estimation of motions in finer levels, as explained in section 

4.2. The results show that the maximum estimable motion relies on the size of the frame at 

the coarsest level. However, resolution decreases as frames are sub-sampled creating aliasing in 

the motion estimation process. Hence, the smallest motion estimation is limited to a resolution 

issue. The results show that for image sizes of about 300 to 400 pixels in lateral dimension, 

minimum 10 pixels motions can be accurately estimated. 

Dense fields of motion vectors are of great interest in many applications ranging from car­

tography, medical applications, structure recovery, depth assigning etc. However, optical flow 

estimators are shown in this chapter to be inaccurate at edge pixels where several motions oc­

cur, also at pixels lacking local grey-level spatial variations and at pixels undergoing too large 

motions. Therefore, a confidence annotated to each pixel would render the flow field useful for 

other applications. Section 4.3 describes a way to provide an uncertainty measurement of the 

optical flow estimates based on covariance expressions. 

4.1 Robust statistics 

The least-squares optical flow estimator implemented in chapter 3 squares all the residual terms 

of each pixel within the spatio-temporal window i. e. the neighbouring pixels: they all contribute 

equally in the minimisation process of the motion flow. When no noise is present in images and 

when the grey-levels of the neighbouring pixels correspond to the light reflected by the same 

object undergoing a unique 3D motion relative to the camera, all estimator would perform the 

same and optimally. However, these assumptions are never always true as grey-level noise is 

likely to occur as well as motion noise due to occluding objects in the scene. The least-squares 

scheme is for example an optimal estimator when images contain zero-mean white noise in their 

grey-level distributions. 

In order to better cope with such problems, a technique based on robust statistics is im­

plemented. An overview of robust statistics is given in section 4.1.1 and described in section 

4.1.2. The median robust statistical method is chosen as the estimator in this study for its 

computational speed and its accuracy and is evaluated versus the least-squares technique in sec­

tion 4.1.4. The details of the experimental procedures are given in section 4.1.3. This chapter 

concludes with 6 demonstration that robust statistical methods are able to cope with 6 high 

percentage of grey-level and/or motion noise while the least-squares accuracy greatly decreases 

with increasing levels of noise. 
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4.1.1 Review 

The least-squares estimator is the most common regression estimator used in the development 

of optical flow solutions. However, residuals given by several motion fields within the same 

neighbourhood do not belong to a single normal distribution modelled by the residuals given 

by the most dominant motion. Such outlying errors are referred to as motion outliers. Noise 

caused by the optical system or the changes in the lighting environment also produces outliers 

and are referred in general as grey-level outliers. An alternative estimator is therefore required 

to reduce the influence of outliers. Such estimators are known as robust statistical estimators 

[28, 110, 18, 114, 1361. Under suitable conditions, successive iterations of a robust estimator 

can successfully eliminate all contributions from outliers and therefore model the motion of the 

intended region only. Robust estimators can successfully deal with significantly large proportions 

of outliers as reviewed in section 2.6. The robust median estimator is used in this chapter for 

its efficiency and speed. It belongs to the family of M-estimators because it is a maximum 

likelihood-based estimator. 

4.1.2 Robust statistical estimators 

The residuals given by the constant brightness equation of each neighbouring pixel in the optical 

flow estimation (see section 3.3.2) are all equally squared in the minimisation process. A robust 

regressor instead weights the residuals according to their deviations from a normal distribution, 

as expressed in equation 4.1 where sample index i represents the location of the neighbourhood 

pixel in the spatio-temporal window used in the previous chapter. 

f(a) = L -y(ei(xi, a» ( 4.1) 
i=l,N 

where -y is the robust estimator kernel function, N is the number of samples and a is the 

unknown motion vector. The latter is estimated when the sum of errors f is minimum, or when 

its derivative with respect to a is zero: 

8f(a) 
= 0 

= 0 

= 0 

"" r( .( . » 8ei(Xi, a) 
~ e, x"a 8a = 0 

i=l,N 

where r(e) is referred to as the influence function of error e and defined as 

r(e) = 8-y(e) 
8e 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

The second term of equation 4.5, the derivative of the error term, is developed in section 4.1.2 

and the first term, the influence function, is set by the chosen robust estimator. This influence 
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function has to somehow weight each residual term so that the sum of the weighted errors 

belonging to outliers is minimal. The influence function indicates how much influence a residual 

ei has on the estimator, and dividing it by the residual itself gives the weight associated with 

the current error ei as expressed in equation 4.8. Therefore the weighting term, rather than the 

influence function, is to be calculated and the estimation problem of equation 4.5 is equivalent 

to a weighted least-squares estimation: 

~ ( « )) ( )oei(Xi,a)) .L...J wei Xi,a ei xi,a oa = 0 
,=l,N 

(4.7) 

where weights w are defined from errors e and their influence r by 

w(e) = r{e)/e (4.8) 

A robust statistical estimator is designed by choosing the desired characteristics of the influence 

function, r(ei{xi, a)). The median estimator is chosen among a variety of robust estimators for 

its simplicity of implementation, efficiency and computational speed [28, 131]. The characteris­

tics of the least-squares and robust median estimators are compared in the next two sections. 

The least-squares estimator 

Using a least-squares estimator, residuals influence the estimation process proportionally to their 

intensities. Zero residuals do not influence the estimator efficiency, however as the residual term 

increases in value, the efficiency of the estimator decreases~ Figure 4.1 shows three graphs of the 

least-squares regression technique: the kernel function on the left graph introduced in equation 

4.1, the influence function in the middle graph defined in equation 4.6 and the weighting function 

on the right graph defined in equation 4.8. This figure demonstrates that all errors are all equally 

weighted hence making the least-squares technique highly sensitive to outliers [17]. 

Kernel Function Influence Function Weight Function 

----~+L------~e ____ ~~------__ ,e 

Figure 4.1: Least-squares estimator characteristics 

The median estimator 

The median regression technique is based on a simple idea: all errors equally influence the 

regression technique. This results in small errors being largely weighted and vice versa. Figure 

4.2 displays the kernel (introduced in equation 4.1), influence (defined in equation 4.6) and 
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weight function (defined in equation 4.8) of the median estimator. Comparing graphs 4.1 and 

4.2, a single outlier can offset the optical flow estimation using a least-squares regressor whereas 

the median estimator can deal with a dataset containing outliers. 

KemelFunction Influence Function Weight Function 

______ ~-------,e ___ t-____ e 
~~ ______ +-______ ~e 

Figure 4.2: Median estimator characteristics 

In general, the experimental errors ei may be in any units of measurement; so in order to decide 

if a residual is considered large it is compared to an estimate of the error scale. This scale has to 

be robust itself so it depends only on the good data (inliers) and does not get blown up by the 

outliers. Thus, not only the regression coefficients has to be estimated in a robust way but also 

a scaling factor denoted u·. For Gaussianly distribution errors, the scale estimate is calculated 

as follows [131]: 

u· ~ 1.4826 x Mediani (lei!) (4.9) 

This preliminary scale estimate in equation 4.9 is then used to determine the weight w associated 

with each residual of the distribution: 

{ 

1. if 1 ~ < 2.81 
Wi = e, u· -

o else 
( 4.10) 

There does not exist any robust estimators capable of rejecting more than 50% of outliers within 

a distribution. For example, the median estimator can eliminate successfully outliers if they do 

not represent more than approximately 30% [131], as experimented in section 4.1.4. 

Implementation of a robust estimator 

The new functional for a robust statistical estimator to be minimised is given by equation 4.1 

and adopted in this section for an iterative estimation where the motion vector between the 

kth and k + 1 th iteration is denoted ak+l. Neighbourhood of pixels contain n pixels located at 

x' = [xl : x~J and between m surrounding frames indexed by T = [TI : TmJ, as described in the 

previous chapter 3 (section 3.3.1): 

f(ak+d = LL'Y(eT(x',ak+l» ( 4.11) 
x' T 

with motion compensated grey-level error eT{x', ak+d corresponding to the constant brightness 

equation derived in chapter 3 (equation 3.52 in section 3.3.1): 

( 4.12) 
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where 

D..J!(x, ak) 

tpT(X, ak) = 

D..I!(x,ak) - tpT(X,ak)ak 
8IT (p(x, ak) 

8ak 

64 

(4.13) 

( 4.14) 

Finding the motion vector ak+1 so the functional f is minimum is equivalent to setting its 

derivative to zero as performed in the early section 4.1.2. Repeating this procedure with the 

robust functional in equation 4.11 leads to this new minimisation process 

Or, with the simplified notations of equations 4.20 to 4.24: 

~~(we::) = 0 

~~ (w(D..J - tp a) :a (D..J - tp a») = 0 

LLw(D..J - tp a)(-tp) = 0 
x' T 

LLWD..Jtp - LLw tp atp = 0 
x' T x' T 

where 

e +-+ eT(x',ak+d 

w +-+ w (eT(x', ak+d) 

D..J +-+ D..J!(x,ak) 

tp +-+ tpT(X, ak) 

a +-+ ak+1 

Using the fact that tpatp = (tpT tpa)T, the minisation is further developed into 

LEwD..Jtp EEwtparp 
x' T x' T 

(~~>~M)T = (~~W~·~r 
LLwrpTD..J = LLw(tparp)T 
x' T x' T 

LLwrpTD..J = LLwtpTtpa 
x, T x, T 

The motion vector a can be then estimated by 

( 4.15) 

(4.16) 

( 4.17) 

(4.18) 

(4.19) 

( 4.20) 

( 4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

( 4.26) 

(4.27) 

( 4.28) 

(4.29) 

and using the original notation from equations 4.20 to 4.24, the motion estimate ak+1 is esti­

mated by 

(4.30) 
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( 4.31) 
x' .,. 

where 

(4.33) 

The expression of the optical flow vector ak+l in equation 4.32 after k + 1 iterations can also be 

expressed in terms of matrices as follows 

( 4.34) 

with 

LlJk = [LlJ!l (x~, ak),." ,Ll.J;l (x~, ak),"" LlJ!m(x~, ak)"'" LlJ!m (x~, ak)]T (4.35) 

Wk = [rp"'l(x~,ak),.·.,rp"'l(x~,ak), ... ,rp"'l(x~,ak), ... ,rp"'l(x~,ak)r (4.36) 

1lI~ = [rp~l (x~, ak), ... ,rp~l (x~, ak), ... ,rp~m (x~, ak), ... ,rp~m (x~, ak) ( (4.37) 

The optical flow expression of equation 4.34 is very similar to the least-squares estimator in 

chapter 3 (equation 3.68). The only difference being that the robust estimator weights its 

matrix III T. Robust optical flow can also be expressed between iterations, as achieved in equation 

equation 3.78: 

(4.38) 

where Lllk is a vector of motion compensated errors LlI[(x',ak) (see section 3.3.1) with 2D 

displacement Llx defined from the chosen motion model a and its associated matrix transform 

X(x) (descibed in section 3.2): 

LlI;(x,ak) = It(x)-I.,.(x+Llx;(x,ak» 

LlX;(ak) = LltX(x)ak 

Problem of the robust statistical optical flow 

( 4.40) 

(4.41 ) 

Estimating optical flow ak+l at the (k + 1 )th iteration given the known motion a k at the previous 

iteration k presents a chicken-egg problem: it requires computing weights from the unknown 

motion ak+l. Hence, optical flow is not determinable unless it is assumed that differences in 

error e between iterations are small and 

( 4.42) 

can be replaced in equation 4.33 to become 

( 4.43) 
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Conclusion 

Robust statistics introduces a kernel function to the minimisation process of the optical flow 

estimation in order to reject outliers introduced by noise or by non-unique motion field occurring 

in neighbourhood of local pixels. The weighting kernel of the least-squares scheme is compared to 

the one of the median scheme. The least-squares is proven non-tolerant to any outliers whereas 

the median can prevent a distribution of errors to be contaminated by large percentages of 

outliers. The median estimator is chosen as robust regressor and its implementation is equivalent 

to a weighted least-squares estimator, where pixels are weighted according to their motion­

compensated grey-level errors. 

4.1.3 Evaluation procedure 

Robust statistics can cope with two sources of noise: grey-level noise introduced for example 

by the optical device, scene transparencies or changes in the lighting environment and motion 

noise introduced when pixels undergo motions different than the dominant one. Detecting the 

first source of noise is rather difficult but is easily eliminated by a robust estimator as this 

noise usually does not contaminate a high percentage of pixels unlike motion noise which can 

contaminate a large percentage of pixels at edge pixels where occlusion occurs. Occlusion is 

simulated in the first section which also describes how motion estimates are evaluated against 

ground-truth data. The evaluating results are presented in section 4.1.4 for the least-squares 

and median estimators. 

Input and ground-truth motion 

Motion is estimated between two frames in a synthetical and real captured sequence called the 

'sine-sine' and 'texture-yos' sequence respectively: see figure 4.3. The 'sine-sine' sequence is 

created so all the frames contain enough texture or grey-level content for best performance of 

the estimator. The estimator will be then evaluated with textures reflecting the textures of the 

real world with the 'texture-yos' sequence. A sequence is created from a reference frame using 

ground-truth motion fields, therefore there does not exist any high frequency noise but only 

motion noise is introduced. 

A horizontal and uniform motion field is applied on the right half of a reference frame 

whereas a zero motion field is applied on the left half. The right hand side pixels are therefore 

undergoing varying translational motion fields. We aim to investigate the accuracy of the optical 

flow estimator across motion boundary which is why this latter remains fixed between pair of 

frames. The moving right hand side frames are created by manually cutting canvas from a 

bigger and same image. Therefore, as grey-level moves, new pixels arise from either the left or 

right hand side of the right-hand frames wether the motion goes in the right or left direction 

respectively. All the frames contains 384x288 black and white 256 grey-levels pixels. 
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Given a frame It , the frame It+l is created using the bilinear interpolation technique de­

scribed in Annex A.2 to motion compensate the reference frame It according to 

( 4.44) 

where t::.xg represents the 2 ground-truth motion vectors separated by a fixed motion boundary 

situated at half the width of the frame Width/2: 

t::.xg(x) = , y 
{ 

[0 t::. 9jT 

[0, of 
where It::.ygl is either 0 or > 0 pixels. 

if Y > Width/2 

else 

Figure 4.3: Frame example of the left 'sine-sine' and right: 'te>..1;ure-yo s quence 

Vertical mean motion errors 

(4.45 ) 

Each estimated optical flow vector t::.x(x) at location x is compared to the ground-truth t::.xg{x) 

defined in equation 4.45 through the motion error term d(x): 

d(x) = IIt::.x(x) - t::.x9 (x) II (4.46) 

The estimator's performance is evaluated across the fixed motion boundary by m asuring the 

mean AId of the motion errors d(x) given by all the pixels located in a parall I dir ction to th 

boundary's direction. Because the motion boundary i vertical, the errors are averaged aJong x 

for a fixed y as 

(4.4 7) 

where II is the height of the frame or the number of pixels along it. The lIId value are plott d 

for the ten columns on either side of the t rue motion boundary to investigate the accuracy at 

pixel neighbourhoods which include tills boundary. 

4.1.4 Evaluation of a robust statistical estimator 

Chapter 3 provides an iterative least-squar optical flow technique which accurately e timates 

pixels undergoing small motion magnitudes of 3 pixels maximum. For larger increasing motions 
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the efficiency of the estimator decreases rapidly in terms of percentage of accurately estimated 

flows. This least-squares estimator is compared in this section with the robust median estimator 

previously developed in section 4.1.2 for small motions. They are implemented using the follow­

ing optimal parameters: a square neighbourhood of 289 (17* 17) pixels has been chosen between 

2 frames (a minimum number of 100 pixels is necessary) and the system is iterating 15 times. 

The mean vertical motion errors Md(Y) defined in section 4.1.3 are plotted for a motion 

magnitude example of 1 pixel in figure 4.4 and for a motion of 3 pixels in figure 4.5 and using 

the 'sine-sine' input sequence. The horizontal axis is referred to as the edge axis where positive 

locations correspor:d to the right motion and the negative or zero values correspond to the left 

motion (set to zero in these examples). The motion boundary is therefore located between edge 

pixel location 0 and 1. The results of these two graphs display two different error distributions 

for the two different motion magnitudes where the motion errors increase progressively near 

the motion boundary. This is particularly evident for the large motion magnitude for both 

estimators. The maximum left motion error does not vary significantly along the edge axis: a 

maximum of 0.35 pixel for the least-squares and 0.22 pixel for the robust technique. Unlike 

the zero motion field, the right motion errors are maximum when the contamination is the 

highest (location 1 on the edge axis) and of the order of the applied motion magnitude for both 

estimators. Nevertheless, the robust motion estimates are visibly more accurate across the edge 

axis and for both motion magnitudes. 

The accuracy of the least-squares and robust median estimators are measured by a threshold­

ing operation on the mean motion errors: a motion at a pixel location Y is considered accurately 

estimated if its corresponding motion error Md(Y) is less than a threshold arbitrarily set to 10% 

of the maximum Md given by the pixels belonging to the same edge than this pixel. The range 

of pixel locations across the edge, where the least-squares and robust estimators are measured 

inaccurate are displayed in table 4.1 for 4 different right motions of the 'sine-sine' sequence. 

estimators 

motion least- robust 

(pixels) squares median 

1 [-7:8J [-3:3J 

2 [-7:8J [-3:3J 

3 [-7:8J [-2:4J 

4 [-7:8J '[-2:4J 

Table 4.1: Range of edge pixel locations where the least-squares and robust estimators are 

estimated inaccurate 

The results of table 4.1 show constancy in the range of edge pixels where the estimators are 

inaccurate. However, the robust estimator performs better than the least-squares around the 

edge, as shown by the smaller ranges. The least-squares estimation is not contaminated by a 
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the robust estimator is shown to be capable of dealing with approximately 30% contaminated 

motion. For higher levels given around edges, motion cannot be accurately estimated by a single 

robust statistical technique unless more information about the motion is provided. 

4.2 Hierarchy: addressing large motions using Laplacian 

pyramids 

As observed in chapter 3, gradient-based motion estimators generally fail to estimate motions. 

This limitation can be addressed by appropriate initialisation techniques which provide and 

initial estimate of the flow. The three main initialisation procedures used in the literature and 

introduced in section 2.8 are designed to give a quick and rough first estimate of what the 

motion is expected to be so the motion estimator can perform accurately thereafter. These 

three techniques are: the feed-forward, block-matcher and hierarchical techniques as reviewed 

in the first section 4.2.1. 

In this study, motion is analysed between pair of frames independently of the results obtained 

with previously captured frames, and a spatial hierarchical technique is used to provide initial 

motion estimates. This technique is often implemented as a Laplacian pyramid, as it will be 

described in section 4.2.2. Input sequences are presented in section 4.2.4 with evaluation metrics 

to evaluate motion estimates against ground-truth. The evaluative results of the Laplacian 

estimator are given in section 4.2.5 which show how initialisation enables large motions to be 

accurately computed. 

4.2.1 Review 

Motion initialisation techniques are classified into three main categories: a temporal-based 

technique referred to as feed-forwarding and two spatial-based techniques referred to as block­

matching and hierarchical techniques as reviewed in section 2.8. Feed-forward estimators use 

results located in previous frames to initialise the iterative estimator. Block-matching tech­

niques (also called correlation-based techniques) give a translational initial motion as a first 

estimate by searching templates of grey-levels within relatively large search areas as described 

in section 2.2. This search and match process can thus be very expensive computationally. The 

second spatial-based technique, the hierarchical approach, is generally more efficient than the 

block-matching technique [58] essentially due to the large computational time required by the 

block-matching technique compared to the gradient-based approach. It is based on a multiple 

resolutions approach building a hierarchy of different resolution frames from an input frame. 

Grey-level structures are subdivided in a space scale but the underlying motions also get refined 

in a fine-to-coarse manner. The hierarchical technique is employed in this chapter to overcome 

the large motion limitation of the robust optical flow estimator developed previously in section 

4.1 and is implemented by constructing the Laplacian pyramid [112]. 
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Laplacian pyramid-based hierarchical techniques are commonly used in the literature to pro­

vide an initial estimate of motion vectors [4]. Arguments for use of the hierarchical estimation 

techniques [29] have generally focused on is ues of computational efficiency. Simple intuition 

suggests that if large displacements can be computed using low resolution image information, 

great savings in computation will be achieved. Higher resolution information can then be used 

to improv the accuracy of displacement estimation by incrementally estimating small displace­

ments. Due to aliasing effect occurring at high spatial frequency pixels in low resolution frames, 

motion estimation can become biased and hence misleading. Aliasing is the source of false 

matches in correspondence solutions or local minima in the objective function . Therefore digital 

image resolution restricts the maximum estimable motion magnitude. 

4.2 .2 Laplacian pyramid 

A Laplacian pyramid creates a sequence of P images of varying resolutions: lip) with p = [0 : 

P - 1] from an original image as shown in figure 4.7. The left pyramid in this figure contains 4 

levels (P = 4). The bottom level contains the original and large t [Tame It(O) and the Lop level 

frame It(P-l) is the smallest frame. 

Ii \\ 1,(3) 

Lf---i--i -+---~\ \ 
I) l 1\ \ 
i /M-! --+-j-+--4\---tl.1 \ i 

j / \ i \ \ 1,(2) 

l! :/ \ 1 _\ 
i 

! t I. \ : \ 

i \ I f--f--f--+-+-1----1r-iI.lr--A 
¥/ t / J\ I \ 

i I I 

Figure 4.7: Left: structure of a Laplacian pyramid of 4 levels and right: an example 

The frame at a particular level in the pyramid has half the dimension (half width and halI height) 

of the frame situated in the above level. Hen e, the width and height of t.h frame at t.he pth 

level, denoted W (p) and H (p) respectively can be calculated from the bottom frame dim nsion 

as follow 
lV(O) H(O) 

W (p) = -- and H(p) = --
2P , 2P (4.4 ) 
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The most common way to create the sub-images of the pyramid given an image (the bottom 

level frame) is performed as follows. The grey-level average given by quadruples of neighbouring 

pixels in an image at a particular level determines the grey-level of the corresponding pixel in 

the upper level frame: 

Iip+l) (x(P+l») = ~ E lip) (x(P) + Xl) 
x'EW 

where x' is the index of the neighbouring pixels location and 

x(p) = 2 x(p+1) 

w = {x = [0: 1], y = [0: In 

( 4.49) 

(4.50) 

(4.51) 

with x(p) = [x(p) , y(p)jT the pixel location in the pth level. Each frame has for origin of their 

coordinate system their top left frame corner. In this study, the averaging of 4 grey-levels in 

the previous equation is replaced by the convolution of a Gaussian smoothing kernel of width 

(j = 0.5 preserving more local information than the averaging function. This process of averaging 

followed by sub-sampling is repeated until the lowest resolution frame is obtained. 

4.2.3 Hierarchical motion estimation 

The robust optical flow estimator developed in section 4.1 is shown to estimate accurately 

motions with small magnitudes between two successive frames It and It+l' This estimator is 

implemented in the hierarchy of the Laplacian pyramid described above. Optical flow a(p) is 

estimated at the pth level of a pyramid from an initial estimate a~) and an iteration of small 

motion updates b.a(p): 

a(p) = ~) + E b.arJl (4.52) 
k;[O:K-lj 

The motion at the top level is initialised with a zero motion field where the frame and the motion 

are the smallest. The frames in all the remaining levels are initialised with a motion updated 

from the upper frame motion results. Because the ratio between two successive levels is of 2, 

the ratio between motions is also 2: 

if p = P-l 
(4.53) 

with x(p) defined in equation 4.50. The final motion estimate a = a(O) is evaluated for different 

levels in the pyramid with different applied motions through the next sections. 

4.2.4 Experimental procedures 

The procedure developed in chapter 3 is also used here to evaluate the hierarchical optical flow 

estimator described previously in section 4.2.3. The first section presents four datasets and the 

ground-truth data. The second section describes how the estimator's performance is evaluated 

via the percentage of accurately estimated motions over the entire set of pixels within a frame. 

The evaluation results are displayed in section 4.2.5. 
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Input datasets and ground-truth motion fi Ids 

Ground-truth motion vectors t::..x9 are chosen with different. magnitud s and construct [Tam s 

from reference fram s by the use of motion compensaLion and bilinear int.erpolation r umed in 

the following equation: 

( 4.54) 

Tbe four input datasets are dispJayed in figur 4. and 4.9. They ar each compo d of 2 frames 

It and h+l where all pixels undergo the same ground-trut.h motion vector b.x9 . 

Figure 4.8: Left: 'college' and right: ' lab' input frame 

Figure 4.9: Left: 'te>.1.ur ' and right: 't.riomph' input. fram 

Percentage accuracy 

The performance of t.he motion estimator i measur d by cal ulatillg the p rccntag Pd [accu­

rately estimated optical flow vector b.x over tb entire t of pix I b longill t I h fram F, 

as follows 

1 { 1 Pd -
- Card (F) LF 0 

x /E 

if d(x;) < Tri. 

Is 
xlDD (4.55 ) 

with a thr shold 7d arbitrarily chosen to D.l and where ard(F) i th LoLal number of pix 

within the frame F and the motion rror d is d fin d as th magniLud dm rene d b t w n 
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the estimated vector Ax and the corresponding ground-truth vector Ax9: 

d(x) = IIAx(x) - Ax911 (4.56) 

4.2.5 Evaluation of the Laplacian hierarchical estimator 

The hierarchical robust motion estimator described in section 4.2.3 is evaluated in this section. 

Its performance is evaluated via the percentage Pd of pixels in the frame which are accurately 

estimated (see section 4.2.4). The percentage Pd are displayed in figures 4.10 for the 'lab' 

sequence against increasing number of iterations for an applied motion of 5 pixels estimated by 

the multi-resolution estimator containing I, 2 and 3 levels in the pyramid. This figure shows that 

when only one level is used in the pyramid, which corresponds to a non-hierarchical estimation, 

the system requires at least 15 iterations before converging to a final estimate. On another hand, 

only a few iterations are necessary for hierarchical systems containing a minimum of 2 levels in 

their pyramid to converge. Moreover, the more levels in the pyramid the higher the percentage 

accuracy. Convergence is measured as the Kth iteration at which equation 4.57 is valid. 

( 4.57) 

where Pd(k) is the percentage at the kth iteration and the threshold Tp is arbitrariJIy set to 0.01. 

The convergence K is reported in table 4.2 with the corresponding percentage accuracy Pd(K) 

for a motion of 5 pixels in magnitude. 

I levels I K Pd(K) 

1 15 52.3 

2 2 88.7 

3 1 98.8 

Table 4.2: Convergence K and respective percentage accuracy Pd(K) when the motion hIlS a 

magnitude of 5 pixels 

The same experiments are performed for various motions whos~ percentage accuracy is plot­

ted in figure 4.11 for optimal number of iterations of 15, 5 and 5 for I, 2 and 3 levels in the 

pyramid respectively. The results of this graph show that the percentage accuracy Pd is greater 

than 90% when pixel motion is less than approximately 2.5, 5 and 10.5 pixels in magnitude for 

I, 2 and 3 levels in the pyramid respectively. 

The results with 3 levels in the pyramid are displayed in figure 4.12 for the remaining se­

quences: 'college', 'lab', 'texture' and 'triomph' sequences. The performance of the optical flow 

estimator remains similar for the four different datasets and 90% of the pixel motions are ac­

curately estimated if the motion does not exceed 10, 11, 8 and 11 pixels in magnitude for the 

'college', 'lab', 'texture' and 'triomph' sequences respectively. 
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4.2.6 Conclusion 

The motion estimator developed in chapter 3 can estimate accurately more than 90% of the 

optical flows in a frame if motion magnitudes are not greater than approximately 2 to 3 pixels. 

However, since this optical flow estimator is developed around the small mot.ion assumption, its 

performance decreases greatly for larger motions unless initial estimates are provided. A multi­

resolution technique is developed in section 4.2.2 which uses the Laplacian pyramid to construct 

a hierarchy of decreasing resolution frames. This technique first estimates small motions at the 

coarsest level in the pyramid and larger motions can be then estimated in finer levels using 

the previously updated motions. The performance of the hierarchical estimator is evaluated in 

section 4.2.5 where at least 90% of the pixel motions of 4 different datasets with approximat.ely 

maximum 10 pixels in magnitude can be accurately estimated if the pyramid contains 3 levels (2 

sub-levels estimation using non-zero initial estimate). In addition, it was observed that motion 

estimation initialised with non-zero motion estimate only requires a few iterations to converge 

to a final estimate whereas the non-hierarchical estimation requires about 15 iterat.ions so that 

small motions are accurately estimated. 

In theory, greater motion magnitudes can be accurately estimated with more levels in the 

pyramid. However, as the image resolution decreases, aliasing is likely to occur in the optical flow 

estimation of low-resolution images. Moreover, optical flow requires at least 100 neighbouring 

pixels and such neighbourhoods are likely to contain several motions in such low-resolution 

images. It was shown in section 4.1 that motion outliers are not easily eliminated. Consequently 

multi-resolution tends to introduce a motion smoothing effect across motion boundaries. In the 

previous experiments, pyramids are constructed so the lowest resolution frame cont.ains at least 

50 pixels in width and height from an original size between 300 to 400 pixels in lateral dimension: 

hence a maximum of 3 or 4 levels are allowed in the pyramids. 

The robust and hierarchical estimation described in this chapter is shown to be accurate 

for a large range of motions. Unlike the multiple motion problem, white noise is successfully 

eliminated from the neighbourhoods of pixels. Motion estimation is also inaccurat.e in low­

contrasted grey-level regions where there are not enough constraints to estimate any motion. 

Many applications, involving for example depth retrieval or motion segmentation would make 

better use of optical flow if it was provided with confidence measurements. The next section 

attempts to estimate such confidence by the use of covariance expression of the available motion. 

4.3 Uncertainty of optical flow measurements 

Dense fields of motion vectors describe the image motion from one frame to another. Dense 

optical flow vectors may be used for example to perform motion detection [70]. object segmen­

tation and tracking [8, 135], or it may be used for motion-compensation applications [41, 43], 

motion study of oceanographic and atmospheric image sequences [37], stereo disparity measure-
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ment [15, 125J or depth retrieval from motion segmentation [I]. However, the gradient-based 

technique described in the previous part of chapter 4 estimates the motion fields accurat.ely 

only if neighbourhoods of pixels constraining the estimation do not contain multiple motions 

(as occurs in occlusions around object boundaries), if the dominant motion is not too large, 

and if there is sufficient grey-level texture. This section focuses on providing extra information 

about the accuracy of the motion estimates. Section 4.3.1 shows that motion estimation can 

be expressed in a linear form giving rise to a covariance expression which can be interpreted in 

terms of uncertainty. Uncertainty can be then geometrically represented by ellipses of confidence 

representing the degree of accuracy. 

4.3.1 Covariance of the motion parameters 

The motion parameter updated between iterations, ~ak+l is expressed in chapter 3 in a linear 

form (see equation 3.78), as 

( 4.58) 

where W is essentially a matrix of grey-level derivatives cP and ~I contains motion compensated 

grey-level differences ~I: 

Wk [CPrl (x~, ak), ... ,CPr, (X~, ak), ... ,CPr", (x~, ak), ... ,CPr", (x~, ak)]T (4.59) 

~Ik = [~r;' (X~, ak), ... , ~I!, (x~, ak), ... , ~I;"'(x~ ,Rk)," ., ~I;m (x~, Rk)](4.60) 

CPr (x, ak) ~ ~t'V It(x)X(x) 

~I[(x,ak) = Itx - Ir(x + ~tX(x)ak) 

( 4.61) 

(4.62) 

The terms of the previous equation are derived from the pixels within the spatio-temporal 

window of axis x' and r: the constraining neighbourhood of pixels (see section 3.3). X(x) in 

equation 4.62 is the matrix of the planar motion model (see section 3.2). Due to the linearity 

of equation 4.58, the covariance of the motion ~ak+l can be expressed as follows 

= (4.63) 

( 4.64) 

where A~Ik is the covariance of the vector of N grey-level differences after motion compensation: 

~I. Each of these are assumed to be represented by uncorrelated white noises with variance 

(Tl where i = [1 : NJ as represented in equation 4.65. In addition it is also assumed that all 

these noise sources can be modelled by a single noise of variance (Til at each of the pixels in the 

neighbourhood. Thus, the covariance of ~Ik can be approximated by equation 4.67 where I is 

the identity matrix of size NxN: 

[ 

(T:~ ... , .:0 1 
. '. 

0 ... (Th 
(4.65) 
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[ 
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0 ... 1 

Using this new equation for At::.I. in the optical flow covariance equation 4.64 gives: 

At::.a'+l ~ (J~1(1l1r1l1 k)-11l1r1l1 k(1l1r 111 k)-l 

~ (J~I(1l1r1l1k)-1 
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( 4.66) 

(4.67) 

(4.68) 

( 4.69) 

Motion displacement at a pixel is calculated from the estimated motion model by the following 

equation: 

~x = ~tX(x)a (4.70) 

Estimating the covariance of the vector ~x involves the covariance estimation of a (the sum of 

motion estimates between iterations described in equation 3.40), i.e. 

K-l 

a = an + L ~ak+l 
k=O 

(4.71 ) 

However, unlike equation 4.58, the final motion of equation 4.71 (and hence the 2D vector ~x) 

is the sum of K iterative updates, resulting in a complex covariance expression. In this study, 

it is considered that the motion uncertainty Aa is approximately K times the covariance of the 

estimated motion update ~aK at the last iteration. Using equation 4.70 with the covariance of 

the final motion update in equation 4.69 uncertainty can be approximated by 

At::.x ~ K (~TX(X)) Aa(~TX(x))T 

~ ~t20'~IX(X)(1l1k1l1 K )-1 X(x)T 

(4.72) 

(4.73) 

where 111 = III K is a vector of N row matrices 'P (see equation 4.59) which contains p derivat.ive 

terms V It. Developing equation 4.73 gives 

At::.x ~ K~t O'~IX(X) (2: 2: 'P~(X/, a)'PT(x/, a)) -1 X(xf (4.74) 
T x, 

~ Kat U),lX (X) ( ~ ~ aT' XT (x') Vli(x') '1 /,(x')X(X')) -I X(X)T (4.75) 

In addition, if optical flow is computed between only two frames with ~t normalised to 1 and a 

translational motion model is fitted to the neighbourhood of pixels (X = /) then the covariance 

simplifies to: 

(4.76) 

where 

= (4.77) 
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and 

[

LX,I;(X') Lx' Ix (x')Iy (X') ]-1 
Lx' Ix(x')Iy(x') Lx,I;(x') 

= ~ [ Lx' I~(x') -l:x' Ix(x')Iy(x') ] 

D - Lx' Ix(x')Iy(x') l:x,I;(x') 

8It (x') 
Ix (x') = ~ 

8It (x') 
Iy(x') = ---a:y-

D ~ ~ li(x') ~ I; (x') - (~I«X')I,(x'»), 
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( 4.78) 

(4.79) 

( 4.80) 

( 4.81) 

(4.82) 

Therefore, according to equation 4.76 with equation 4.79, optical flow covariance and hence it.s 

uncertainty are directly dependent on the inverse of the Hessian matrix (the spatial grey-level 

derivatives) scaled by the variance of the grey-level noise present after motion compensat.ion. 

Thus, the spatial distribution of the sum of derivatives in both vertical and horizontal directions 

influences motion estimation, and the larger the motion compensated errors the larger the 

uncertainty. Moreover, in the above equations, if the term D is very small the covariance matrix 

becomes very large, and hence the uncertainty of the motion estimate. This term D (equation 

4.82) is by definition the determinant of the Hessian matrix. Therefore if this term is zero the 

Hessian matrix is singular and the inverse matrix operation is not possible. For example, D = 0 

for regions with uniform gradients (represent.ed for example by setting Ix to aly in equation 4.82 

for all neighbouring pixels). 

Robust case 

Section 4.1 developed a robust estimation procedure for optical flow that differs only by a. 

weighting operation within the matrix W containing the derivat.ives terms cont.ribut.ed by each 

of the neighbourhood pixels: 

( 4.83) 

where W' is the weighted W (see section 4.1.2). Using the previous linear approach with equation 

4.83, it can easily be shown that the covariance of the motion vector Ax is approximat.ely 

A!:>.x ~ Ka~I (WrlJ!krllJ!~TIJ!~ ((WrWk)Tr1 ( 4.84) 

:::::: K (1~1 L (w(e1'(x', a»V I[(x)V It(x)r~ (w(eT(x', a»V IT(x)V' It(x») (4.85) 
x, 

((w(eT(x', a»V I[(x)V It (x») T) -1 ( 4.86) 

2 L 1 (T »-1 {4.87} :::::: KG!:>.I 2( (' » VIt (x)VIt(x 
x' w e1' x,a 

where w(e) is the weighted associated with the motion compensated grey-level error e and t.akes 

a maximum value of 1 for inlier errors and tends to 0 for large outliers. Comparing equation 
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.J, 7 with cquatiolJ .J,76, the' ('ovaricUl(,C of thc robust estilllator is lower thall tll(' ('ovariall( 'c' of 

thc least-squares estilllator wilell outliers an' PI'<'s('1l1 ill I he Il('ighbourhood of pix('ls, OulliC'l's 

at'(' discarded frOlIl the covariaucc e'st illlatioll Hnd h('II(,(' I he 11Il('('rl ai III y is 1101 a(('('('{('<1 hy I h('l11 

whe'n robust ('stilllation is perfol'll]('d, 

4.3.2 Repre enting covariance and onfid nc 

Thc optical flo", ('oV(uicu1('(' matrix ('xpressed in tIl(' pn'violls s('ct ion ('111\ b(' p;('olll('l rically n'pl'('­

s('nt('d as dcfin('d ill the firsl s('('tion and a way of displayill~ ('ollfielC'I1('(, of th" ('StiIlIHI('clIllOliol1 

V('('(ors is d('snibed in t.ll(' se{'ond s('dion, 

Vi ualising covarianc 

Th(, Gallssiall lIlIC' rtainty A6x ('an be' visualisl'cl by drawing an ('llips(' {'olltaining SOUl(' I)('['( '(' ut ­

age' of t 11(' disl ri bUI ion, Tht' following (' Illat ion 

wher(' x is a local ('oordillal(' sysl(,llI ('('ntr d at I II(' (,lid of the optical flow v('clor (I ,", ! box 

01 1 t11(' imag(' pleHl(') alld ('2 is a l ahnlanobis distalH'(' l)('t W('(' ll a poillt ill x alld I he' llWHlI. 'ill('" 

A6x represent.s a bi-variatc' CaUSSi<lIl dis(ribll( ion, 1\l('11 (,2 - 2,,1 represt'nls I h(' !J5o/c bOlllH\al'Y 

of a hi-sq llar('el dist ribu t ion, This diHt ribll I ion call be' gC'O lllPt ricHlly l'<'pn's('111 ('d hy for {'X,Ull pl(' 

dlips('s [3 , 23] or ['('ct angles 11,0.; displaypd ill fih'llt'(, .l.J 7, 

Figlll'C' 1.1 :3: iSIlHlisillg ('OVHl'iHII( '('S throllg,11 ('Ilipsoids 

As will b(' discussed ill s('('(ioll 1.3,:3 , the sImp!' or t Ii('s(' ('Ilips!'s (alld 1i('Il( ' (' t Ii(' sl 1'11('1111'1' of tIl(' 

covariall ('es) show a <list illct (,()t'l'd" t ion wi (h loml g,n',V- \( 'v('1 sl 1'l1('t lin's, 

isuali ing confid n 

The' gr('at(' l' til(' area of th(' ellipse' ddill!'d ill ('qlHt(ioll 1.< K whiC'h r<'pn's('llls I hI ' opliC'lll now 

covariance', lh(' gTC'al('1' tIl(' 11llc('t'taillt,V asso('ialed wit hill(' opl iCIII no\\' , Oil 1I1l0t 11<'1' halld, I h(, 
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smaller the covariance, the more confident the e timation. A confidence measur ment is defin d 

as the inverse of the ellipse area Ae. 

where det(A) is the determinant of the matrix A. It should b noted that the confidence m asur -

ment developed in this section reflects the consistency of the onstal'lL brightness assumption. 

However, motion of pixel in low textured regions which lacks grey-level structur ar likely 

to be inaccurately estimated with high confidence. Therefore, confiden e does not reflect the 

uncertainty of the estimated motion in such low-contrasted region . 

4.3.3 Investigating the uncertainty of optical flow estimators 

Random Gaussian noise is introduced into two identical in fTam s displayed in figure 4.14. 

The motion field is thus zero between th se two frames. How vel', non-zero optical flow r sulLs 

will be obtained when random noise is introdu ed. 

Figure 4.14: 'big-sin' frame example 

How does grey-level structure affect optical flow estimation? 

The angle difference between the dir ction of the m asUl' d opt.ical flow v L rand th dir ti n 

of the gradient vector will be uniformly distribut d if t.he 10 a l gr y-I v I siru t.ur d not. 

impact on the estimation of optical flow. Hi togram of the angular di~ r nc d ill 

figure 4.15 for a small noise level of 1 and a high level of 10. For low !loi e I v I , t.i1(' I1lElj rity r 
the optical flow vectors are located in th rang [-45: 45] d gr s [rom th gradi nt' dir Lion . 

However these angle differences are approximat Iy uniformly distribut d ov r (,he nUl' rang 

[-90: 90] degrees for the higher levels of noi e. Ilenc , optical now v CLors in nil ima.g Ilr 

highly correlated to the direction of the gradient and ren ct th ap rtur pr bl In intr du din 

section 3. However, when the introduced level of Doi e b am lal'g, (he opU al now b OlnC', 

uncorrelated with t.he gradient direction, 

This biasing effect has also been noted in the work of Perl11uJ1 r et al [49]. Th relaLi nship 

between the ground-truth flow D.x9 and estimated fiow D.x was hown to b giv n by 

(4. 9) 
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Figure Q.15: Histogram of angle' dift'('!'('nces bet W{'PII t h(' direction of I he' ('s t illmted opl ical flow 

vector and the clir('ctioll of tli(' gradient v('ctor 

wlwrc JI/, pr('viollsly ddi ll('d ill eqn at ioll 1.77, ('ollt ains the III spal ial derival iv('s OV('I' H sllmll 

llcighuollrhoocl wliicli pixels are located at x ' = [X'I : x ;,J It is a,'iSlllll('d nil ('qual "minll( '(' (J~I 

for th(' zero-lllcan Hoisc' in tIt(' spat iaJ d('rivatiV('s in tll<' .r alld .IJ dit'('diolls. F'[OIIi <'qllatioll 4. '9. 

the flow is llllcl('['('st illlated in lengt h and its oril' lli aliotl is hia.-i('d l owHrd~ Ihe llIajori ty of Ih(' 

gra.dients, a;; illllstratpcl by figlll'c cl.1 5, 

How do s grey-I vel structures affe t covariance of mot ion sti mat ion? 

H aving ('xplorecl tll(' bias in opl ical flow l'sl intal ('S, Ill<' ('([('d of st rnctlllT OIl 11101 iOIl 1IllCl'rt ai 1I1 'y 

is explor d . figure' 4.16 plol s 1.11<' hisl ogram of difrc r<'Jl('(~ in allgl(' 1)('lw('('1I Ihl' din'ctioll of 

til(' dlips("s millor axis (rc'lm'fi('lltillg I Ill' \lonnal to I he' ('XI><'cl eel dirl'cl iOIl or I Ill' opt kal flow) 

<llld the din'clioll of Ih(' gradi(,lIt at ('adl pix('1 ill tl1(' fnllll('. TIl(' Il'wl of illlrodl\('C'd llOis(' is 

rcpm;(,lIt c(\ uy il l(' width of til<' GaussiHll kertH'1. Figut'(, <I . I(i shows that thl' nngle dirf!'t'('II('('s 

bl'long to a SY I11I1Wt.ri C ll11iIllOdalllonmtl-lik(' dist ribllt iOIl wil It <I III1'flll of :1.('1'0 lkgr('(' nlld vnrill lll'(' 

which il1('1'( '<1SeS wil II tll C' addit ivc gn'y-I<'VI'I 1I0isl' 11,\'('1.. Tltl'r!'fol'(" wh('l1 I h('t'(, is lit t 1( ' lIois(', 

Ill<' ('xj)crtecl opLicalliow lies ill all ('lIipse arCH with lImjor dir('ctioll 1I0001I 1<d ( 0 (lie din'c,tioll of 

tht' gradi('lIt . On another ha\ld , wht'IJ t ltc' 1<'\'('1 of illt roclll(,('ci lIoise ill(TI'IISI'S, I hc ' (' lIips(' 1Ir1'a:-. 

ar c Ie'ss correlale'cI wi I h I he' d ir('elion of t Iw gn'y-[('wl grnd i(,llt. Th iH i~ d('IIIOlist rat ('d visllnlly 

in fig1lre' 4. l7 which shows optiml flow ('!Tors covar iHII(,(' for two I'XHlllples wit h 1l0iHI' I('wls or 
1 alld 5 ['('Sl)(>ctivl'ly. They arC' Hlltall<>r ill low IlOise [cwls and IllI'Y al'!' [1'1'1' (,OITI'hllcd with til<' 

Illain di['('ct iOll of t hI' gracli<' lIt Whl'll I hI' lIois(' iIlCl'C,ft.'i H. :I'('y- ](,\,(,I Ht melliI'(" t IH'rc.flJl·I" hu)o; H 
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significant ('fkct 011 t\)(' optical flow covariancc, This is I hc apert nrc p1'Ob\(,11I in [hal [h(, lea:;1 

c('rtain rlir('ction of tlw optical flow lics along a dir('clion norlllal [0 th(' gn',Y-I('v('\ gradi('lIl, <UHI 

is prollouuccd iu II ighbourhoods which lacks gn'y-l v('l stmctmc, 
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Figure c1.l6: Histogram of anglc diffcr('Uccs bctwCCll til(' dircction of lite covariance ami tIl(' 

dircction of the gradicnt vcctor from the 'sill(,' data 

Displaying confid nc m ea 'ur m ents 

Coufid('lIct' was ('xprcssecl ill 8('ctioll 4,3,2 as [he illvC'l'se of t.1lt' area of UH' ('lIips(' !'('I)l'('S(' lItillg 

the optical flow covariaJlce lIIatrix, The greal ('r the area, litc' grc'al C'l' [h(' llllcprtainly fI.';sociat('d 

with the optical flow alld yin' VC'l'sa, Figur(' cl,19 pn'sc'nts t 11(' confid('llc(' valu('s nuclllnl c'd for I hc' 

1ll0tiOll (\ timated l)('tw('('11 I he two ['('al CaplUl'('d frall)(,s showlI ill il. l H, 'ollfiden('('s H\'(' diKplay('(\ 

Oil I hc lefl of figure 4,19 for diff(' I'(' nl eslillHI,tors (wh(' re low gl'('y-I('v('ls a]'( as correspolld to low 

confid('lIc(' art'as alld vicc' versa), On thc' righl hand sid(' of figlll'(' 4, ] 9, tIll' ('OLT('spolldill/l, 2D 

('stimat('d flow vec(.ors ar(' sllJ)eriJllpos('cl on top of I h ' origiJlal illPllt [nUll(' for ('(wit of t hI' 

differcnt lllotiOIJ estilllaLors, Th!'Hc' r('slllts show thnt , ill gelleral , I h(' usc' of rohusl Hlalisti('s Illld 

hierarchy i nCTC'HS sIll(' cOllfid('n('c' of lll(' results , lot ion rt'llIai liS (,Ol'J'lIpl ('d by 111<' 1)I'(,S('ItC'(' of 

mull iplc' mot iOllH al ohj('ct boulldaries, J-) owewr, I his pro!>l! '111 is Higltflll('c1 by I il(' low COli fi<i!' l u ' (' 

obtailH'd in thes!' regions, 

4.3.4 Summary 

II has l>e(,11 HhoWIl that optical flow awl [he AssociClt('d ('o11fid('II('(, Ill'(' d('I)('IIc1('1l1 Oil I II(' lonti 

dislriblltion of the spatial gradients, 'I'll(' covariall('e IIlHlrin's (,lilt 1)(' l'('pres(' lIt(d W'ollldl'ically 

by ellip ( 'S of ('onfidC'uc(' allowing t It(' liS 'I' 10 visllalis(' I II(' fln'lIS of higll cOllfi<i(,Il( '(', Opl iml 

flow r('sults arc' shown to 1>(' accurat(' ill tpxt1\l'ed Hn'(\.>.; with hi/l,h ('onfid('IH'(' wlt('n It robw-it Hlld 

iticrardlical s('hell](, is adoptc'd but 100. ('S accuracy Hlld C'OIIIi<iC'Il(,(' whell o('clusiolls O(' ( 'U!'. 
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F'igmc 4.17: Flows ane! cllipscs bounding box('s examples of tit(' ','ine sequ<'nc(' for a noil,e 

int<'nsity of Lop: 1 and bot tom: 5 

IllCthocl for providing a ("ollficicl1('(' mCHStI1"('l1l('nl is develop('(1 ba .. '-i('d Oil how IIl\1cll I It(' opl iCHI flow 

results r sp('cL til(' conslanl brighLness assumptiou. More specifically, if lit<' pix('1 n<'ighhollrllooc\ 

gCIINales low lllotioll-l'Olllpellsatcd errors afl e1" Illoli II <'sl i llln! ion, t h<'Ll tl1<' fi lial ("ollii 1<' 11('(' is 

('xp('cted to b high and vic(' v('rsa. 

4.4 Note on computational tilTI 

NOIl-robnst lIIotion ('slilllil(ioll is dOlllinal<'d by I ht' tim(' J"('qllir('d to build optical flow Illlllric('s 

- dCllo[,p(\ Tbuild ill s('cLion 3.7. T""ild ('(111 I)(' IlIo<1dl('d as 

( I.BO) 

whcr(' N is the Illunbcl" of COllst raiuing pixds ill it lIC'ighbollrli()od , ]I i:.; t hI' 11111111)('1" of 11101 iOIl 

panUlll'tl'rS and (LI. (L2 alld (/3 arl' ti llt(' (,Ollslaliis. Th(' w('i~hling op<'rHliolis illv()IV<'c1 ill I II(' 

robllst l'stimal ion nlll bc 11I0d !I('d by 

Trullllst:::::: (/ I (Ull ) 

wl1('l"c a I is a titllc COllst anl. akulat iOIl of t 11(' weiglll s ass()cilti ('d wi t II IIH'I tlOt iOIl ('01 II I H'IISIl I ('d 

(,lTors giV('u at each lleigltbo\ll"illg I ixds is possibll' if ['\It' 1I1('dil1n of 111(' dist rillill ion of ('ITO)"S is 

known. A sorlingoJwralioll is llsllally iuvolVl'd ill calrllial ing a llH'dian bill ill Olll" illlpi<' lIll 'lltnt iOll 

is fl'plct("C'(\ by a siltlple aue! quick histogralll. Usillg H ' !)O 1111. I C PCllt illill 111. t h(' t illliul!, 
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Figure 4.1 : 'garden' frame example captured at left: t and right: t+ 1 with unique tran lational 

ground-truth motion vector applied for all pixels 

Figure 4.19: Left: onfidence map and right: flows r ti lt with on t p th non-hi rar -hieAI/1I 11-

robust resu lt, in the middle the hi rarchical/non-robust r ult.s and in th bot.t In fram s th 

hierarchical/robust results 
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parameters are estimated as 

[aI, a2, a3] ~ [5.87xlO-8 , 2.91xlO-7, 1.58xlO-6] seconds 

a4 ~ 1.95xlO-6 seconds 

87 

( 4.92) 

(4.93) 

It was estimated that the time required to compute the weights becomes greater than the time 

to build the matrices for motion model with a very large number of motion parameters compared 

to the eight parameters of the planar model. Therefore the time to compute weights is negligible 

in the overall optical flow estimation which was estimated to be a O(N} estimator per pixel in 

section 3.7. 

When the hierarchical motion estimation is deployed to overcome the large motions limita­

tion, extra computational time is necessary. If a Laplacian pyramid (described in section 4.2) 

is constructed with P levels, then P optical flow estimation on different resolution images are 

performed. If the pyramid is constructed from a frame F on its bottom level containing Card(F} 

pixels, then sub-levels frames at a level p contains Card(.1"}/4P pixels with p = [0 : P - 1]. If 

T is the time required to compute optical flow at all the pix~ls of a frame, then the overall 

computational time to compute optical flow of all pixels of an infinite number of levels in a 

pyramid is a geometric series as follows 

T (1+ t. 0)') . ( 4.94) 

= T(l+ 1Y:/4) =T+~ ( 4.95) 

Therefore hierarchical estimation increases at most 1/3 of the time involved in non-hierarchical 

estimation. 

A frame in a pyramid is built by sub-sampling the frame situated above it in the hierarchy 

smoothed by a Gaussian kernel of width 0.5. This procedure is considered quick compared to 

the estimation of optical flow and similarly to this latter, the construction of one frame in t.he 

pyramid takes four times from one level to a lower level. Hence, if the time to construct the 

first sub-frame from the original frame takes Tc then an infinite pyramid would take Tc + Tel3 

which can be considered negligible compared to the time to compute optical flow i.e. T + T/3. 

4.5 Conclusion 

This chapter addresses the three main problems associated with optical flow estimation i.e. noise 

contamination, multiple motions and large motions. Noise was addressed in the first section 

and successfully eliminated by the use of robust statistics. However, when noise level is too 

important such as the motion noise caused by multiple motions occurring at object boundaries, 

robust statistics could not successfully cope with the outliers. Large motions could be recovered 

in the second section by the use of a multi-resolution technique. The third section addresses 
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another problem associated with optical flow which is the problem of providing uncertainty 

measurements of the pixel motions. 

Robust statistics 

The least-squares regression scheme used to minimise the sum of motion compensated errors 

derived from the constant brightness equation performs well when there is little noise (see the 

results of chapter 3). The term outlier was introduced to describe any noise that does not belong 

to a normal distribution within the neighbourhood centred around the pixel for which optical 

flow motion is computed. The first component of this chapter investigates the impact of motion 

boundaries on the estimation of optical flow from pixel neighbourhoods. Results demonstrated 

that the least-squares technique is non-robust and zero-tolerant to outliers. 

Robust statistics was then introduced to address this problem. Estimators were implemented 

as weighted least-squares estimators. The median estimator was chosen for its robustness, ef­

ficiency and computational speed. Such robust techniques seek to weight strongly data point.s 

belonging to the dominant motion, and conversely de-weight pixels associated with the least 

dominant motion(s). Experimental evidence suggests that the median estimator efficiently re­

jects outliers when they represent at. most 30% of the entire distribution. Although the median 

estimator is proven to improve greatly the accuracy of the motion estimates compared to the 

least-squares, it cannot fully reject 100% of the outliers at motion boundaries. 

Large motions 

Chapter 3 clearly showed that a gradient-based optical flow estimator operates efficiently on a 

very limit.ed range of motion magnitudes of the order of a few pixels. Over-smoothing the frame 

with a Gaussian kernel whose width is matched to the motion magnitude is not a practical 

solution as it is dependent on the unknown motion. A hierarchical t.echnique was introduced 

using the well known Laplacian to build a coarse-to-fine hierarchy of sub-sampled frames. The 

top level of the pyramid contains the smallest or coarsest sub-sampled frame and the bottom 

level contains the original or finest frame. Sub-sampling addresses the problem of large motions 

as any pixel motion in the original frame also gets progressively sub-sampled up the pyramid. 

Estimation at the top level of the pyramid is initialised with zero motion estimates and each 

of the lower levels is initialised with the magnified motion field from the corresponding upper 

level. It was demonstrated that such an update and projection approach enables the hierarchical 

estimator to accurately recover larger motion magnitudes as the number of levels in the pyramid 

increases. For example, a three-level pyramid allows efficient estimation of motion approximately 

with maximum 10 pixels in magnitude. Experiments also showed that any level of the pyramid 

initialised with reasonable estimate of the motion field does not require as much iterations to 

converge. While up to 15 iterations are needed for the top level, typically 5 iterat.ions is sufficient 

for convergence in any lower level of the Laplacian pyramid. The number of allowed levels in one 
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pyramid depends on original frame size and also on the density of grey-level structure. (Some 

structures can vanish with deep sub-sampling). 

Motion uncertainty and confidence 

A confidence estimation based on the degree to which the motion estimates conforms to the 

constant brightness equation rule is derived in this chapter. More specifically, neighbourhoods 

of pixels which give low motion-compensated errors have a high confidence measurement and 

vice versa. The linear form of the optical flow estimator provides directly a covariance matrix of 

the displacement vectors in both the least-squares and robust case. The covariance matrices are 

represented visually by mean of ellipses to allow the user to visually evaluate the uncertainty 

associated with optical flow results. The confidence results showed that combining hierarchical 

estimation with robust statistics greatly improves the accuracy and the confidence of the motion 

estimates. Moreover, the results also showed that the optical flow results are highly reliable in 

textured areas whereas confidence decreases at motion boundaries or when the image lacks 

grey-level structures. 



Chapter 5 

Hyperplane global motion 

estimator 

Global motion estimation is an important task in a variety of image processing applications. 

The term global motion is commonly used to describe the motion of a background scene in 

video sequences generally induced by camera motion. Motion in a video sequence is either local 

due to object movement or global due to camera movement or zoom. The motion due to object 

movement is referred to as local motion or object motion as it only relates to the subset of pixels 

projected from an object. 

One key application of global motion estimation is to perform video annotation. Once a 

video sequence is annotated the user can make queries about motion related events in the 

video. Moreover, motion is frequently associated with semantic information making it possible 

to detect certain situations depending on the motion effects, e.g. in sports videos. Mot.ion 

estimation plays an important role in video data compression whieh exploits the high temporal 

redundancy between successive frames in a video sequence to achieve high compression efficiency 

as performed in MPEG-4 or to achieve motion classification as in MPEG-7. It can also be used 

for segmenting images into objects moving at different speeds for computer vision applications. 

The most often employed motion estimation technique in video coding, such as the st.andard­

ised MPEG-l/2, is one of block-matching, which gives estimates of the combined 10mll\IJd global 

motion. Since the global motion is generated by camera movement, it can be represented, in 

theory, by a few parameters. Hence, the separation of global and local motion ml\y lead t,o sim­

pler and more efficient motion information representation. Also, the global motion components 

contained in the motion vectors may confuse an unsophisticat.ed motion-ba..c;ed segmentl\tion 

algorithm in the identification of moving objects. When the global motion components are 

removed, the remaining local motion information can be more readily used for moving object 

identification. 

Historically, there are two main approaches to motion estimation, namely matching schemes 

90 
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and schemes based on the optical flow principle. While matching techniques, such as block­

matching, rely on the analysis of the image intensity and the minimisation of a certain cost 

function as a matching criterion, the optical flow principle is based on the analysis of the spatial 

and temporal gradients in the video signal. 

The mathematical complexity of the global motion model directly affects the possible ac­

curacy of the motion description, but also the computational complexity and stability. For 

instance the planar perspective model with eight parameters is suitable to describe the global 

motion completely if the assumption of a pin-hole camera model is satisfied and if the projective 

projection model is respected (see chapter 3.2). More sophisticated formulations include also 

lens distortion parameters. For many applications the affine model is sufficient which consists 

of a linear transformation with six parameters. 

A new technique called the hyperplane approximation technique addresses global motion· 

estimation and can be applied to computer vision applications. The hyperplane approximation, 

as studied by Jurie in [77, 76], is a method of learning the relationship between the applied 

motion parameters and the induced pixel differences between consecutive frames, also known as 

the DFD (displaced frame difference). Solving for a given motion is equivalent to solving a set 

of linear equations in a multi-dimensional space i.e. the hyperplane equations. This new tech­

nique for motion estimation was successfully applied to template matching techniques [77J and 

appears to avoid the need for extracting the grey-level gradients. Moreover gradient-based tech­

niques such as the optical flow method developed in a previous chapter, require a large number 

of constraining points and are very sensitive to large motion magnitudes. A hyperplane-based 

technique is then implemented in this chapter and evaluated against this standard optical flow 

technique for global motion estimation. 

This chapter focuses on developing a global motion estimator for surveillance applicat.ions. 

Background scenes are captured by video cameras without any foreground objects. The back­

ground frames are in general formed by distant background structure. The recent exist.ing 

techniques and their applications are reviewed in section 5.1 showing how authors provide on­

line global motion estimation followed by a segmentation process to separat.e local and global 

motions. A standard gradient-based optical flow technique and a novel hyperplane estimator 

are developed in section 5.3 and 5.2 respectively and their performances are compared in section 

5.5. 

A novel sampling technique based on randomly sampling strong edges [128] is developed in 

section 5.4 to provide a desired number of edge-based pixels that input of the motion estima­

tors. The details of implementation and the evaluation methodology are also given in section 

5.4. The results of the comparable non-iterative gradient-based and hyperplane techniques show 

that both estimators are not 100% reliable in estimating accurately the global motion in various 
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surveillance video sequences. The non-iterative gradient-bllsed estimat.or is found to ue d('pell­

dent on the unknown motion magnitude as observed in chapter 3. The hyp<'rplane cst,imat,or 

appears to avoid the need to have prior knowledge of the largest. motion mngnitudc it is expe('\,ed 

to estimate in a sequence. However, as it is computationally expensive, it g<'nernlly cannot be a 

frame-rate estimator and also lacks accuracy. 

5.1 Review 

Global motion is usually performed using eithpr pixel correlation t.pchniqu('s (block-mnl.ching­

bnsed techniques) or optical flow-baspd t.edllliquL'S. Global motion estimation is us<'d to dd('(·t 

typical camera operations assodnl.ed with particular scennrios in sport.s ('vpnts. For example, 

Kokaram and Delacourt [82] propose a gradient-based opt.ical flow approllch for estilllllting glohl\1 

motion. The algorithm works iteratively where segm!:'lltation is perform!:'d it(>rat.iv('ly b!'tw('('n 

local and global motion which then weights the foreground obj!'cts according to tlwir llIotion. 

The project recognises successfully more than 88% of crkket ev{'nts and int.!'nds t.o inr!uc!l' !!ound 

analysis for complete automated recognition and analysis of the game. 

Wei et al [137] construct an algorithm for segmenting foreground objeds from background 

objects using the combined information present in temporal and spatial dl'rivativcs of the framl's. 

The local mot.ion pixels are grouped it.erat.ively until the syst.!:,IU converges toward a fix('d nUIIl­

ber of segment.ed arens. The algorithm rcli('S on two important a.'I.'Hlmpl.ions: vidt'O St'qlwnc('ll 

have typical bac.kground-foreground structur!:'d s('eJl('S wll<'re the bnckgrollnd is domilll\nt in the 

sequences and the foreground consists of conneded rigid bodies; and bm'kground motion!! nre 

caused only by camera operations. 

Heuer and Kaup [65] avoid any high comput.ational cost.s involvt'd ill grndit·nl.b,L'lt·d mol ion 

estimntor and rather use t.he available rough est.imMes of trnnslationlLl mot ion v('('t,OI1l givt'n by 

the encoded MPEG-4 technique. These mot.ion ve('t.ors are C'St.illllltl>ti using a bIOl'k-llIntdll'r 

technique. The segmentat.ion b('tween thc locnlnnd global 11I0tion iR (wl'forllwd rohustly wilh a 

4 paramet.ers global motion model fit.t!:'d 1.0 the 11I0t ion v('('tors. Slll(lli(~ r.t al [1 HI, Uti] ('olllbhw 

a feature mat.ching technique t.o find correspon<it'nc('S follllwt'ci hy nl\ optka! flow tt'l'hniqlltl t.o 

estimat.e the global mot.ion parnll\{'t.ers. A hit'rnr('hlcal IIl.rnlt'g,y IN n£lplil·t! for till' l'IIt.illlnt.ion. 

First a translation model is fit.t.ed followed by an nflille modt'l, and finnlly lUI higlll'r-orlil·r motion 

plLramet.er model is fitted. The ('stimator is robust alld cOIllPUt.I\t.iolllllly (·fljdl'lll ill IWgllH'lltillg 

fort'grouud objects from the blLckground s('ene. Thtl dl'V(')OPI'(l IIlgol'it,hlll is "Ilowl·d to build 

mosnics of the background wit.h grent accura(,y. 

Saez et al [111] cOllst.ruet an algorithm which mnkl'S USt! of l\ fl'nllll,(, ('xtrnt'lioll tl'('hlliqlll~ 

blL'led on the genernliS<'d HOllgh trnnsfol'lIl, whkh is able to provide rot.lIl,ioll, "('IIII! alld clispllll't'­

meut paramet.ers when comparing t.wo consl'cllt.ive frnnws frolll a vilit,() S('qU('l\('I', I\nd hl'Il<'I' 

allow for the pan, tilt., swing (rot.at.ion along the z-axis) Rnd zoom l'lfl'c\s \.0 b(! 1Il1·IL'lllrt'd. In t h(l 

earlier work of Dufaux and MosdH'1l [44], mosl\kking which consists of r<'gis\t'rillg Illmgl'!! onto 
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a large single image, is performed by first estimat.ing all the locnl motions and t.hcn by npplying 

a parametric motion model to segment the global mot.ions induced by the cnmera. 

Global motion estimation algorithms can also be used to extract the 3D infornmtion of 

foreground and background object. For example Tzovaras et al [134J propose in a two-step 

algorithm for robust global 3D motion estimation. In the first step, a rough 2D glolml lIlot.ion 

estimation method is achieved using block-matching. Using random sampling on the edgl's of 

the image, features of interest are selected and their 2D motions allow for an init.ial estimat.e 

of the 3D camera motion. In the second st.ep, the camera movement is modcll('<i by an affine 

motion model in which parameters are estimat.ed by a robust method allowing for dl'pt h ret.rieval 

based on disparity measurement. The method works it.eratively in ordl'r to remove progrc'S.. .. ivdy 

the detected foreground outliers. 

Other techniques use frequency analysis to estimate optieal flow and to estimllte S('pl\ratdy 

local and global motions in video sequences, as perfornwd by Bruno nnd Pl'llt'rin 127, 2Cij. The 

hyperplane approximation estimates mot.ion successfully in templnt.e mat.ching applklltions li7J 
but the estimat.or is not of great interest in the Iit.erat.ure for gem'ral globlll motion estimllt ion 

applications. 

5.2 Hyperplane global motion optical flow 

The potential new t.echnique for estimat.ing global motion, the hyperpltUlc f'stimntor, Is dt'Vt'lopt·d 

in this section as a global motion estimntor bt>fore bt'ing appli('d to surVt'illlln('e I\pplkMions In 

the lat.er section 5.5. Hyperplane motion estimation is ba...;(·d on building a S(.t, of lillI'lIr rt'lnt ions 

between motion perturbations and DFDs (displacrd frallle dilfert'llcrs) • 1\ pro(·(os." whkh iH 

referred to fIS training the hyperplane system. Ollce the syst.em is tmhlt'tl, the glolml motion 

between any two frames of a video S<'quenee cnn be recowred from the DFD • a.~ dl'S('rilll'd in 

section 5.2.1. The training pha..~e of the hnwrplane system is perfornlt'd on ('nch frame whose 

motion is to be det.ermined - as explaillt'd in s('ct.ion 5.2.2. EHt,illlntillg mot ion with n hy(wrplllllc 

t.echnique mninly involves the inverse operat.iun of a squnre mllt.rix of tlil1 siilc of t.11(' 1I111111)('r 

of sampling points making the system comput.atiollally exp(!IlHive. Sl'dioll 5.2.3 shows t Imt. tlw 

hyperplane estimator can be used in two different modl's of 0p('mUons dl'Jll'wling on t.hl' ('allll'r!\ 

use and that in the best CRSe, the est.imat.or can op('rMo in relLl-timll bllt ollly for 1\ Iilllitl'll mn)!;(' 

of image motions. 

5.2.1 Hyperplane motion estimator: the estimation phase 

Estimating motion with t.he hyperplnne tedllliqlle !7GJ involvl'S Rrst truilling t.lw sYHh'lII hy bllild­

ing a set of linear relationships bl't.wet'n the DFDs and t.he ('()I'f('lipondillg lIIot.ion Jl(·I'\.urlml ion 

parameters. After the linear systrm is traillrd, the cst.imnt.ion or the I' unknown pnrnlllt'tC'rs (If 

the motion vector a[ bctwt'Cn frame t and frame r is simply /whil'wel fmlll fl /otfl'y-It'VI'I diffl'l't'nc('1I 



CHAPTER 5. HYPERPLANE GLOBAL MOTION ESl'lMATOll 94 

as follows 

(5.1 ) 

where Mh, the hyperplane matrix, is the pxN matrix cont.aining th~ parallw\'ers of t.he traitit'd 

system, and Air contains the n grey-level difTprcnccs described by 

Air = [Al[(Xl),'" ,Al[(xn)JT 

AI[(x) = It(x) - IT(x) 

(5.2) 

(5.3) 

By definition, if there are p parametcrs to be E'$t.imnt.ed then tlwre must be at lunst p difTt·!"(·nt 

constraints. The OFO is sampled at n point.s whose size is in general much grcl\ter than p 

which is of maximum 8 for the planar motion model defined in s('dion 3.2.2. lIence, having a 

hyperplane matrix, the motion between any two frames is eXpt'ct.pd to be com·ct.ly l'Stimnf.t'd 

by simply multiplying the hyperplane mntrix wit.h the corr('sponding OFD nl the appropril\te 

sampled locat.ions. The building phase (also call(>d the t.raining phas(') of the hYJlerplant' IIlIlt.rix 

Mh is described in section 5.2.2. 

5.2.2 The training (or perturbation) phase 

Estimating motion wit.h the hyperplane techniqlle n'qllircs t.he syst.elll t.o be t.mitwd. This is 

performed by pt'rturbing the systt'm with a St'l of motiuns whit-h nre likl'ly to coVt'r t.he range of 

mot.ions which might be eneountt'red. The p(·rturilllt.ion g(,IH'I'nt I'M gr<'y-lt'wl diffl'I'('IH'I'!l b(·tw('('n 

a frame and the perturbed frame, Using eqllntion 5,1 wit.h N h Iwrt.llriling IIlIlI ion Vl'l't.on~ n. 

(i = [1 : Nh]) giving a set of Nh grt'y-II'Ve! diffl'rt'n('c V('('t.ors AI.: 

(5.4) 

where each vector AI cont.ain the grt'y-It'vel difft'f('n('I's Ilt t.he lo('ntion of fI 1u\lllplt'S III t.llt' f!'llnll': 

Al j = IAl.(xl), ... ,AI.(x,,}]T 

AI.(x} = I,(x) - l,(x + .\'o,} 

(5.5) 

( lUi) 

with X the Illatrix of t.he mot.ioll mod!'1 11.'1 dI'H('riht'd In Ht'('tioll 3.2, l1Hing 1\ It'III'I-M<\lIllrt'/i 

regression scheme to minimise the Nh lilll'llr ('(llIlltiOIlS giVt'll hy ('(llIlllloll 5.4 glWM tilt' flillowlllg 

fundiollll.l 
N .. 

f(f.h) = 2: (a. - M" ~I.)2 = 0 (5.7) 

The hyperplnne nmtrix is fOllnd Wllt'll till' dl'rivnt ivl' uf the ('rror twit h 1'1'1'11'1'('1. tll /II" 1M ZI'N 

Il.nd Mh is estimat.ed EI.'l 

Eqllllt.iull 5.8 requires t.he comput.at.ioll of the IIlVt'I'IIl' of 1\ Irl : 1IJ 11I11lrix nnd Iwo N" IIUlllllllltlllll1l 

of two III Il.t.r i<'t·s , sin('c AI is a huge Vt·t~l,or of n \'1I111t'tI (tIm tllUnpllng MI1.(,). TIll' C'OIlIP\I\.II\.lonnl 
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tim 11 (' filial' 10 compul I he sUlIlma\ ion, r 111 AI ri (. of t'qulltioll 5. is l'XP d 'd 10 h ' rl'lllliwly 

small compar d \.0 time r qui I' 'd t compul 1 I he ill" '\ ... 111\,<.'1: 01 ('rnl i Ill> 1\1' ('01111'11\«1 1tl'1" 

b the D ( iugular ('c mp sil iOIl) I ('('ltlliqu' IIO:lj, This t' IWllSiVl' ('Olllput at iOI1 is 

necessary each Li me (h 'sl m n d t b I rain d i. , for <'nch \l '\ fl'tll1ltl. 'l'h\ lIl'xl !-tl' 'I iOIl 

di cusse thc pas ibilit.y f re-u ing Lh invcrse matrix \' . lilt b >Iw n~\p\\lI' 'd fl'llllll'S iIlS\('Ild 

of I' -' mputing this inv(,l'se op<'t'6.lion wlwn'ver nnw [ralllt' is l\plur>d. In SUltlll1l1ry, if 

th y (, m I' .quir f\ sampling siz fllllC'h gr'ttl r I hlln I h(' IlUlllb I' of 11101 ion pttrnnll'l 'r8, I hl' 

computAtional eli shared b I h slim of I ht' I wa ~ II wing (In1\' :t' : 

1. xp nsiv inv r s 1116.lri' p mt.i 1I, in 'quttlioll 5.7, of n stlUM' IIIHlri of biz ~ [1/ 11] 

(wher n is th sAmpling size') 

2. arying compu 1\\ i nfll sp '('d in 101'111 of til(' nU\11\ r f p!'rl llrbnl iOlls h for t h' Ul1st l'ur­

I,j n r I,h \11Htric s impli d by SUIIllllal j ns ill <,qual iOIl ri.7. 

5.2.3 p rati n 1 In d 

Th vid s quell 'CR II. d lIS p('rim('nl III d t s ts ill this clll plt'r I r \ r pI \1I\'d 1.' s\Il"wi\1 II Ilt'l' 

C'arn("I'/lS. Wh'l\ 11 Clun1'A is IlIO il\~, I h ,'olll ('III If)l\' rrnm ('/I pI \Iwd 11\ I illlt, I dil<l/IPIIPllrS 

progr 'ssiv >Iy in lim , and t h(" (11\\ it' \ ori~in I t'Ollll lit ('1\11 disIlPPI'IU' lit wor:;t wit hitl 1\ rl \\ frllllll's . 

Th Rl'vCl'iL ofl.h m lionwilllktnt 1\ ofth' )Iwrntiotllllllluclt's. Intllt'lll.t n!II~II(, mOlif, 

Ihe original SCC'11 pl'Ojedpd onlo the rl'fl'r'llt' fmllll' dislIPPl1II mpitll> lIS I h \'1\111 n 1III1\'1'S 

fI.S illll. I rat I in t h I.fL of figur 5.1. II 1 ' it is Ii ('( .slIr) I I • Ut'(( i\'ll,\ n 1I1[l1l11' I h 1I1lllluII 

b lw n frrun . In t.h s('('ond tlynnmir mnd , tht oriJ.dll t:-;!· 'Ill i~ prelJ! -11'd within t'lIlh fmlll\'. 

In this CA. it is possibl I IOmplltt'lhl' III 01 ion ht'lw'(n ('/wh [rnlll\' IIlId till uriV.illl\lll'i'·t'IIH'1 

fram as illl1s\.mt.ed in lh righl of !1gur Ii,l. 

H. 

@ 

Figur 1 5.1: H('~ 'I' 'lit \ (I(oft) I II Ill) IIlllli(' (righl) (II t flit 11111 ""IOcl 101 h\'II'I'PI/III\ I t h1\lIt (III 

III figure f) . I , HII I IT W 1'( pr S 'Ills t hI' Rlllhlll 11\111 iOlll'sl 1111\11 1111 pili" (!It' I nIli'd \Iv \'qlllil III " I) 
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and the circled termMh represents the expensive tmining of t.he hyperplnuc IJlI\trix (dl'scril)('d 

by equation 5.8). Thus 

• reference mode: ar = /I[h~Ir and the reference frame remains the 81\I11e fmme at time t 

for all frames and, hence, Mh is calcull\t.ed only on(,e, 

• dynamic mode: a;+l = Alh~I;+l and t.he ref('renee frallll! is diffl·rclIt. in eneh int.erval time 

T, and, hence, Mh is calculat.ed repeat.edly. 

In the dynamic mode, the hyperplane matrix must be re-t.milwd for ev('ry IWW fnunc wit.h a S(·t 

of training motions of relatively small maximum amplit.ud!'S ns will be shown in t.he experinwnt.s. 

In the reference mode, the hyperplane mat.rix is trairll'd once wit.h a spt of Illotions whoS(! ext.end 

must overlap the expect.ed range of mot.ions from t.he n.fprence. A more int('nsc trniuing is hence 

required for the reference mode of operat.ion although t.he eost involVl'd in its matrix inv('rsion 

is the same. 

Hyperplane motion estimat.ion is nssunwd to be p(,l'fol'nwd at franll'-rnte wlll'rt·/IS the hyp(·r­

plane training is likdy to be pel'formed off-line bt'cause of t.he ('omput.nt.!ollnl costs. In mllny 

situations, cameras are likely to be liSt><! within tht'ir full mnge of fUII('tionnliti('S. For eXl\llIpl(" 

in surveillance applicntiOllS, cameras often vit·w 1\ vn. .. .;t fil'ld of vi('w in ('I\r-p/U'ks, o 1n('t'S , un­

derground stations etc. Therefore the frame-rate t'Still1l\tiou phl\,<;(' in the n'f('I"('u('e oJl('rnl ioul\\ 

mode is unlikely to provide the rt'quired s('('ne (,OVl'rl\ge without the l"('lw/\\t'd dlllUgl' of the 

reference image, and h('nee the requirclIlt'lIt to n'uuild the hypt'rplnuc lIlntrix, 

5.2.4 Summary 

The hyperplane global mot.ion (>stiml\lion t('dllliqlle wOl'ks In two phnl'l('s: t.lw trnilling or Iwr­

turbation phll..'lC (defint'd in sediOIl 5,2.2) followt'(l by Iht, ('Stillll\l iOIl ph",<;(, (ddhll'd III 1o!1'('t iOIl 

5.2.1), The hYIll'rplalltl syst.em, or more !lJlI'(~ilknlly th(. hypt'I'pltu\(, 1111\1 rix 111'('(111 t.t) he tl'llhll'd 

extellsively bt'fure the sysh'rn cun ,·stiltll\t.c molioll bt'l Wl'('n I1l1il'8 (If fl'/lIIII·II. TIlt' tl'llillill~ phn,'II' 

is comput.ntiOlllLlly t'xlH'nsive dIll! t.o a (,(IHt.ly inVl'rse 11I1I1.rix 0p('rl\l ion Oil a HIjU/lI't! 111/11 rix of 

t.he size of the lIumber of sl\lllpling poillts, Thill t milling phll,<;(' III 1\1\ (Iff·lint' (or IIOI\-rl,"I-tllllt') 

opemt.ion wht'r('l\s the (·st.illlllt.ion phll.<;(' ('IUl hI' pt·rfOrlllt'(llIt. fnulII'-rnlt·. TIlt' hYP('rphuw'lI ovt'r­

all SPl't'<l of execut.ion within a vidt'O Heqm'lIl'e III clt·pt·lIe1t·lI\. (III tilt' (l1)('rllt iOllnl 1I11111t, of tht. 

CI\IIIt'ra (n..'I deseril.}('d in St'dion 5.2.3), How('vI'r, bllt th,' hypl"'plllll(' ('sl iru"lur lit Iikt·ly to b(. 

non-frame-mt.c wl\(,11 the ('allll'rl\ ill r('(llIil"(,<1 t.o IlI\nlllt· Inrgt' 11101101111. 

5.3 Gradient-based global Inotion estirnation 

As a comparisoll, 1\ gradiellt-bust'l.! ('Slillll\lor IlIftdnp\('(! to tll~) "1111111111(' ,,101111111101 iOIl 11I\rl\lIlI'" 

t(·rs.A lIoll-it.t·I'nt.ive Vl'rsilll1 of t.he grndil·III-J.,II.'I(·d (·st.illll\\.or dt'\'I'lopt'(l III ('h"I'II'r a III th'S('rilll·d 
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in this section. A non-iterative version is adopt.ed for the cOIll)lIU'ison, RS t.he hnwrphule tl'rh­

nique is also a non-iterative estimat.or. Recalling the opUenl now ('xpl'l'ssioll (kV('l(lp(~d In dll\pl<'r 

3 in equation 3.40 and 3.78: 
K-I 

a = 80 + E .Donk+1 (5.9) 
k=O 

which consists of an initial motion 80 and K small motion .Doa est.imat.('S (,I"'h ddln('d by 

.DoaHI = (E E cp;(x', nk)CPT(x', ak)) -I E E cp;(x', nk).DoI;(x', ak) (5.10) 
x, .,. x' T 

where 

CPT(X, ak) ::::: 
81T (p(x, ak)) 

(5.11 ) 
onk 

.Dol; (x', ak) = It(x) - I.,.(p(x,ad) (5.12) 

p(x,ak) = x + .DoT X(x)ak (5.13) 

There are n neighbouring pixels bet.ween Tn frl\lnes in the sPILtio-t.(·lIlporal window of ('stl­

mation where x' = [Xl : x~l and T = [TI : Tml. In this globnl Illotion CI\.'ie, t.1)('J'C are no Init.inl 

estimates available neit.her for the hyperplnne nor the grndil'nt.-bll.'it'(\ t('rhniqllc. 11t'II(,c no = 0 

in equation 5.9. Moreover, for compnri!lOn purpoS(', the optiml now h'l:hniqllc is dlO/'i('n nOIl­

iterative i.e. K = 1. The estill1nt.ion is perforlllt'<\ only belw('{'n two fmll)(,s i.e. T = t + 1. Thllll, 

the it.erative motion expression from equat.ion 5.9 h('('ollH's 

where 

!IIj = 

cP.,.(x) ::::: 

.DoIr = 
.Dol; (x') = 

(~~;(X')~'(X')) -I ~~;(x') 
DI.,.(x) 

lhlk 

[.DoI[(x;), ••• ,.Dol;(x~)lT 

I, (x) - I.,. (x) 

(5.H) 

(5.15) 

( 5. Hi) 

( 5.17) 

(5.1 ~) 

(5.19) 

The complltntioll/ll ('ost of the f,';mdi(·nt.-lll\S(·d t~1 illlnt or III .·qll"llolI 5.1·1 Is dOllllllnlt'd by t. h •• 

conlltruction of the llIat.rix Alj (rt!ft·rrt.d to In t hll dllLp\t'r IL'I Ihtl J,,('ohlnll IIml rlx) lUi It. t·ollt.nllll~ 

moslly derivative terms. Similarly to t.11(.' ('(IIINlruet lOll (If tIll' hypc'rpllllltl 111111 rlx AlII. t ht' ('(1,'11. 

of building the JlLcouinn mnt-rix /lfj Is ('olllposc'd of tl)(l 1111 III 1I11LI 1011" (If \1\/11 rlc-t'M I\l\d tIm h,Vt'I'l«' 

nmt.rix op('rnt.ioll. Ilow('ver, t.he IllvrI'SC opt'ml.iol\ Is pt'rforllll'(\ (III ,\ 1ItIIIlU't' 111111 rlx of 1111'<' l,x/' 

where p is the mlll\b(~r of mot.ioll p/lrnlllt·l.t'I'/J whirh Is 1I11LXitlllllll 8 for tIll' plllllM 1II0dc·1. It. Is 

shown in R('('t.ioll 3.7 tI1l\1. inv('rt.ing Ruch 1\ RIIII\II Illlllrix III pC'rflll'IIII'(\ wry (Illirkly lin" t 11111. tIm 

COIll(lut./lt.ionnl ('ost. of an optic-al now ('st.illlnt.ioll dC'llt'lIdll (III tilt' 1111.(' (If I h(' 1It'llthhollrholl": n. 

Tllt'rdore, the lIoll-il.('rnt.ive grndit·nt .• IHls('(1 t.1·('hlllqllC' II. Iikl'ly to hc' IwrfClrtlu'(\ ILl. frnlllt'-l'lIll' 
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unless a very large number of sampling pixels is Il(~ccs.·mry. 

Note also that the sampling pixels are usually drawn from a local nPighbourhood around 

the pixel whose mot.ion is being estimat.ed. In the case of global llIotion, how('V('r, the sampling 

pixels could be drawn from the image in an arbit.rary Illnnr\('r as dis{'us.'led in t.he n('xt s('ction. 

5.4 Evaluation procedures 

In this section, the global motion existing between pairs of franH's captured by surveilll\n{'c 

cameras is estimated by two motion estimators: the hyperpll\ne cstillll\tor int.rodu('ed in S('('tiOIl 

5.2 and the non-iterative gradient-based est.imator int.rodu{'ed in 5(·(,tion 5.3. S('ct.ion 5.4.1 

presents the four surveillance dat.asets used for comparison. They are cnpt.un.·d by {'1\1lIl'rnl, 

limited to pan and tilt operat.ions only. In ordpr t.o evnluate the perfornu\IIce of t.he ('st.illllltors, 

the motion estimat.es need to be compared with the t.rue motion paramet.l'1'S (cI\1I1,<1 t.he ground. 

truth) which are typically unavailable. In s('('tion 5.4.4, an expensive {'orrdl\tion·bl\st,<IIt·t'hlliqllc 

provides accurat.e translational vectors of the global motion which will suhst.itutc for 0111' ground. 

truth. The hyperplane and gradient.ba."ed estillll\tor are eVl\lul\t<.J in s('('tioll 5.5 agnillst t111't't' 

ml\in operational paramt'ters: 

• the smoothing factor (1 (the width of the Gaus.'lian k('rnd convulvl.J with thE' Input fmlllt'S), 

• the number of snlllplt'd point.s denot.ed n nnd, 

• the sampling st.rat.egy thnt d('dtIes how to SI·I('(·t n pix(·ls of Inten'St /WTOmi the 11I1"~I' frnllltl. 

The dilft'rent sampling stratf'gi('S are <1('Scribl'(l in 1«'('\ ion 5.4.2. 

The performance of the hnwrpli\lle t'Stilllutor <11'1)(,llIls lIot only on t lit' tllTt't~ pn'\'iollll plIo 

mnwters but also on how it is train('d. As dt's('riill·t! in s(,(·t.ion 5.4.3, tim hypl'rp!luw IIIl1trix Is 

tmincd using the two following pnmnwt ('J'S 

• training mngt", dt·not.ed Rh, which dt'StTihl'S tho Ill'rturimtitln frum t'llt'lt slllllpling poillt 

and is relat.ed to t.hc IIl1lXilllUIIl motion IIl1lgllit.u<ie th"t mlly be ('St.illlllt.t·d, I\nt! 

• tmining gnp, dennt.(·t! C" dict.llt('!l tht' dl'lIsity (If Ilt'rturlmt lonll wit hill Il" uSt'(l to p"rfol'm 

the t.mining. 

5.4.1 Data sets 

Figur('s 5.2 and 5.3 pr('s('nt t.he four dnt.ILo'lI·!!! (t.h(! '11Ih\ 'holJlt'-nllult.\ 'pllrk.rulI' IIlIt\ '('nr-pllrk' 

sl'qutln('('s) capt.ured by pHn mltl tilt Cflllll'rnS, 1\1Ie! UI«·<1 t.0 ('\'I\IIIIItl' t.11l1 hYIlt'l'plllllt' IIlId grntlit'nt­

blls('<1 ('St.illlnt.ors. Ench pnir of frnllll'l'\ III ('llt'h Nt'CIII('II('(' ulI(h'rgo t.11!) glolml 1II0t lOll lipt·dfit.tl 

Int.('r ill "('I·t.iolJ 5.4.4. Tnul(! 5.1 PI·I'S(·nt.ll t.1l(' dmm('It'rist i('s of I h(\ four 1«'<lIIt'IJ('('I'\ III It'rIIllI of 
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-
qu nc 'l~~b' 'hom '-mad·' 'pnrk-rulI' '('I\r" pf\l'k' 

r-
llumb r of fralll S 'F 30 J :\0 10 

-
nUllimul11 111 li n magnitude 3 0 J I 

:-
maximum 1110\ ion magniLud 5 I' 3.1 ) 17 

av('rag motion lUagnilud 3.39 G.a5 1..0 7.1:{ -
Tabl ' 5.1: input Sl'qu '\lcrs hflrtICt ('rist ks 

of [hI' Idt : 'In\)' \1\ I right: 'hOllW-lIlnd" c'l'qlWlll'l' 

riglll'(' 5.3: K '1\1I1plo fl'l\me of t hI' lI'n : 'PMK run ' /llId I'i~ht: '(,III'-pllrk' SI ((lIllln' 

numb r of pl\ir!! )f frUIlH'. ' ,., millilllllltl , 1111 Xitlllllli lIud 111\'1111 mut lOll 11111 lilt udl' 1I1l11l11~ t hi' 

P sUC('t'" iv pllil'!; uf f!'llmos, 

'I'lw 'h III ,-mllt!l" :; qU('II('(' i. n 1I1iwll'. ~I'qll 'lit' \ (' !t'lIll'd b) ('uti ill).\ tlllt Ill! illlll 'I' frulll 1\ 

sall1<' fmlll '. 11 II' " til giobul lIlol i III iN I mllsl/l[ iUlIlIl ns ,lit lit' pI. \,1, ulld('r~tl t hi' , 111111' 111111 lUll 

Tilt' ' IAh' nel 'pllI'k-"UII ' s'qu'lln's IU"('lIplun I b~ hi14h qllllllty \itlt'( ('/lIlII'IIIS \, Ith In\\ 11'\\'1, 

of !lois(', ' he 'C/l l' plII'k' S 'till '11f" III ('npt lin c1 b ")lom qunllt ,\II'\I'lIluIHI' ('111111'''' 1\'('111 11IJ.t 

111 I I II hlur (I II I II ' itl111W' pllllH' (lilt! IH'('CHIIJlI lIil d h~ ~llo\lllf nlllf ('(lIlt Ill'll \'HI-I lllloll. 1IlII'!!\'I'[ , 

I his cllttas'l ill rnpllll'l'd [hl'tlll .h II \ illcltl\\ whos\, (' It'[11111 Hllh' Is t 1\1'1 d wit It II, i(.4 lllfl '/l lll 1t1\1'1 

01 dUll! gl'1I 'mUllg high I ' ,Is (If dillhl'II1 I \ PI , IIr I1l1t. I' , 
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5.4.2 Locating pixels of interest: sampling procedures 

Pixels should preferably be selected from edge structures where there exists enough local grey­

level variability favourable for the gradient-based technique - chapter 3. The hyperplane tech­

nique can estimate motion given a sampled DFD (displaced frame difference) if the system is 

trained with such DFD. Therefore, the estimator is more likely t.o be performant when it is 

trained with unique DFDs likely to be present at edge structures. 

Three sampling possibilities specify how n pixels are selected across the image. The first 

technique locates pixels on a grid, regardless of the grey-level content of the frame. The second 

technique, referred to as the edge-based technique, selects pixels randomly near gradient edges 

using a uniform spatial distribution [128]. The third region-based technique randomly selects 

pixels uniformly from non-edge pixels which contain low local gradient information. 

The edge-based technique first smoothes the Sobel edge magnitude response of all the pixels. 

Second, weights are proportionally attributed between 0 and 1 where a weight of 0 corresponds 

to the lowest edge response and a weight of 1 is assigned to the strongest edge. Third, a pixel 

is selected randomly within the frame using a uniform technique and a second random number 

is generated uniformly between 0 and 1. If the weight associated with the edge response of the 

chosen pixel is greater than the second random number then this pixel is labelled as edge-based 

pixel. The same pixel cannot be generated more than once and this process is repeated until 

the required number of samples is obtained. 

The three sampling strategies that will be compared are the grid technique (referred to as the 

regular strategy), the hybrid strategy which samples 50% of the pixels from edge pixels and the 

remaining 50% from the non-edge pixels, and 100% edge-based technique referred to as simply 

the edge-based strategy. It should be noted that the regular strategy samples pixels regardless 

of the content of the image, therefore small percentages of edge pixels are likely to be sampled 

by this technique. An example of 900 points are sampled by the regular strategy in figure 5.4. 

The same number of points sampled by the hybrid and the edge-based technique are shown on 

the left and right of figures 5.5 respectively. 

A smoothing operation effectively flattens the structures wit.hin an image by smoothing local 

gradients and selected edge pixels may not lie very close to the actual gradient edges. Therefore, 

the distribut.ion of sampled pixels recovered by the hybrid and edge-based strategy will vary 

with the degree of smoothing. On the other hand, the pixels sampled by the regular strat.egy 

remain sampled on the same grid regardless of the smoothing intensity. The examples in figure 

5.5 are obtained with Gaussian smoothing operat.ion with a kernel of width 0.5. An additiollal 

example is given in figure 5.6 for a smoothing width of 2.5. 

5.4.3 Training the hyperplane matrix: the perturbation strategy 

A reference frame needs to be perturbed by a set of motion parameters before any global motion 

estimation by the hyperplane technique is possible (as described in section 5.2.1). An optimal 
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Figure 5.4: 900 regularly sampled pixels 

Figure 5.5: 900 points sampled by ihe left: 50% edg -bas d t ch niqu (hybrid strategy) and 

right: 100% dge-bas d technique ( dg -based strategy) on a frame sm oth d with (J = 0.5 

F'igur 5.6: 900 point ampl d by th I fl: 50% dg -bas d L chniqu (hybrid slm!.cgy) ancl 

right.: 100% dg based technique ( dg -based strategy) n a frall1 III otll ed with (1 - 2.5 
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training strategy would be to train the parameters of the planar motion model (which best. 

describes 3D scene motion) using a large s ts of perturbed data. IIowev r, to limit the int.eo­

sity of the training phase, the system is only trained with translational motions with different 

magnitudes around each sampled pixels. 

Th set of translational perturbing motion vectors ar defin d according 1.0 two training 

parameters: the training range, denoted Rh which is th maximum disianc of pert.urbation and 

the training gap Gh which set the density with which th perturbations ar p rformed . The 

number of perturbations h is given by Rh and Gh as 

(5.20) 

Figure 5.7: Window of 9 p l'turbat.ions (shown in gr y ampl d pixels 

wb re floor(x) is the large t integer not great r than x. Figur 5.7 shows an example r Nh = 9 

perturbations for a range Rh = 2 and for a gap of Gh = 2 pixel.. Th maximum motion 

magnitude pre cnt in the 4 xp rimcntal datas t. i c timat d Lo be 17 pix I . Tim a rallge 

Rh of 20 pixels is appli d for the training of all t.he input.s. Th training dellsity Vh with whi h 

training is performed wit.hin Rh is given in p rccnt.ag s and is <.l t nnin d in equation 5.2] via. 

the training gap, denot.ed Gh , t.hat s parat s oa h p rtul'baLi n: a gap of G m '/\l1S til t. the 

perturbation is done ror translation in r m nt f G pixel b th h rizonLal1y and v rt i ally i .. 

(5.21) 

Figure 5.7 shows an xample of h = 9 p rtul'b~\tions wit.h ad n. ily of DII =2 % ( .1 b Gh 2 

and Rh = 3). 

5.4.4 Generating ground-truth 

The performance or the hyperplane and gradi nt-b d Limat. r can b cOlllper d only if t h ir 

results are evaluated against th true valu of the motion parsllI t rs. n~ rtunnl Iy th t' d 

not exist any way of providing the tru motion param t I'S (~\I I'e~ rr d H.'! to gl·Olllld- l.l'lIt.h) 

describing the global moLion bet.we n any pair f im g f Lh data s t, . Th('1' 'fol' , in or IeI' 

to compar the Lwo esLimaLor , 8n xp n iv bJock-matching I.e hniqu i d vel p d which (' n 
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only provide the translational ground-truth components of the global motion between pairs of 

frames in the datasets. 

A block-matching technique provides the ground-truth of the translating optical flow of the 

camera and works by finding the minimal cost function of a large template window (see section 

2.2). The cost function implemented here is simply the mean squared of the grey-level difference 

between a large template window from one frame and the entire area of another frame as search 

area. The datasets do not contain any local motions caused by foreground scene objects except 

for the 'park-run' sequence which contain a low percentage of local motions. Thus no robust 

version is necessary and the least-squares block-matching is sufficient to provide accurately the 

ground-truth data for all the sequences. 

5.4.5 Evaluation criteria 

The evaluation of the performance of the gradient-based and hyperplane global motion estimator 

is performed using an error term measurement called the motion error similar to the one used 

in section 3.4.2. This motion error term is defined as the magnitude of the vector difference 

between the estimated and ground-truth global motion vector. The evaluation of both estimator 

is performed for two optimal parameters: the Gaussian smoothing factor (1', and the number of 

sampling points n and the motion error is, therefore, denoted dt ((1', n), and calculated by 

(5.22) 

where ilxf is the ground-truth optical flow (between frame time t and the next captured frame 

t + 1) and ilxt((1', n) is the corresponding estimated flow for a particular smoothing factor (1' and 

sampling size n. The performance of one motion estimator (for fixed parameters (1' and n) is 

measured by the mean motion errors from the N F pairs of frames in a sequence as follows 

(5.23) 

The performance of the hyperplane estimat.or is evaluated against two additional parameters: 

the training range Rh and density Dh as described in section 5.4.3. Hence, the above evaluative 

terms are expressed with these two extra terms as follows: motion ilxt((1', n, Rh, Dh), motion 

error dt(u, n, Rh, Dh) and mean motion error Md(U, n, Rh, Dh). 

5.5 Experimental results 

The performance of the non-iterative gradient-based estimator and the hyperplane estimator 

described in the previous sections are first evaluated in section 5.5.1 below using the regular 

sampling strategy explained in section 5.4. These estimators are compared with two other 

sampling techniques, the hybrid and edge-based strategies, in section 5.5.3. The hyperplane 

estimator relies on two extra parameters compared to the gradient-based estimator which are 
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the training range and the training density. The optimal training strategy is evaluated in section 

5.5.2. A discussion on the operational speed of the two estimators is found in section 5.5.4 and 

conclusions are drawn in the last section. 

5.5.1 What is the best smoothing factor? 

In the following two sections, experiments are run on the non-iterative gradient-based estimator 

and the hyperplane estimator using the regular sampling strategy. The data are plotted against 

the two main parameters: the smoothing factor u and the number of sampling points n. The 

four datasets presented in the previous section 5.4 are used in this experimental section. 

The gradient-based optical flow 

In the following experiments the regular sampling procedure is used to locate training points 

across the image. The mean global motion errors AId (see section 5.4.5) are plotted against 

various smoothing factors u and various numbers of sampled points n in figure 5.8. 

A minimum number of 20 samples is necessary before the results starts being stable in the 

example of the 'car-park' sequence shown in figure 5.8. Also, it can be seen that mean errors are 

at a minimum for smoothing factors u in the range of [6-10J pixels (assuming n > 20 samples). 

The same behaviour for the motion errors is observed for the 3 other datasets wit.h minimum 

errors found for smoothing factors in the ranges [1:5J, [3:7] and [0.5-3J for the 'lab', 'home-made', 

and the 'park-run' sequences respectively. 

A closer look of the optimal range of smoothing factors is found in figure 5.9 for the 'car-park' 

sequence. This figure displays the smoothing factor which gives the minimum motion errors for 

different sampling sizes. The graph shows that beyond 100 pixels a converged smoothing factor 

of 7 or 7.5 gives the best results irrespective of the sampling size. Similar results from the other 

sequences give optimal smoothing factors of [3-4J, [4.5-5J and [1-3] pixels for the 'lab', 'home­

made' and 'park-run' sequence respectively (again provided at least 100 samples are selected t.o 

ensure stability). 

For the 'lab' sequence, the mean motion errors are plotted in figure 5.10 for optimal u=7.5 

against various sampling size. The graph drops rapidly t.o a minimum motion error of about 3.5 

pixels. Repeating the same experiment on the other sequences produces the result.s displayed 

in table 5.2. The table displays for each sequence the mean mot.ion mngnitude, the opt.imfLI 

u, and the mean motion error Md. Note that the optimal u is roughly equal to the motion 

magnitude. The mean errors are plotted against the mean motion magnitude in figure 5.11, and 

rises significantly as the motion grows. 

The hyperplane optical flow· 

Similar experiments are performed on the hyperplane estimator i.e. against smoot.hing factor 

u and the number of sampling points n (sampled by the regular technique). The hyperplane 
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sequcnc 'park-run ' ' lab ' 'hoUl('-mad(' , 'car-park" 

mean motion magnitude 1.90 3.3 5.35 7.13 

optimal (T 2 3 5.5 7 

mean motion error AId 0.41 0.59 1.70 3.34 

Tabl(' 5.2: Gradient-baS0d resllits for an optimi ('d smoothing factor (J and 100 sampling pixds 

05 

o +-~--~--~~ __ ~ __ ~~~ 
a 2 J 5 6 

mean mooon magr1Ib.Jde (po.lIs) 

Figurc 5.11: M an Illotion errors of tlw gradient-based estimat.or against IllN Ul glohAl lI101 ion 

magnitudes 

techll.ique is train('d over a range of 20 pixels (th(' maximum motion IlIHgnitlldt' pr('s('nt in the 

thr('(' srqucucc ' is 17 pixels) at. a 100o/c dusity. 

Th hyperplalle> motion errors ar(' plott(' I ill fi gure 5.12 for tIl(' ' I ~\b ' sequ(,I1(,('. TIl(' graph 

displays delll nstmtes that th(' IWrfol"lllanC ' of lhe> hYPNplall(' estimalor bt'collH'S um;t~\hk and 

very inaccurate when t.he syst,('1ll is OV('J'-!-mmpl('d and oV(,I"-smoot.Jwcl. 

For differ nt sampling siz s, ttl(' optimal S IlI( olhing f!lctor (1 is ploU('(1 in fi gure' 5. 13. TIH' 

rC'snlts show I hat t,hc optimal (1 ('onvC'rgC's loa valnC' \ ('tW('{'1I 0 and I whC'1l tlwrC' lin' 11101'(' t.han 

100 sampling pixds. The mean motion ('IT r is p\olte>d againsl s!llllpling siz(' in fignre' 5. 1<1 for 

thrC'C' differmt smoothing factors i.p. (J =0, 0.5 and I. T\ws(' plol s III(' all silldl!1l' ill Ihnt Ill(' 

rnC'an motion C'lTOI" cOllverge's to lC'ss I han 1 pixd for slllllplillg size's grenl ('I' I hun I DO pi. ('\s . 

Th('sC' C'xperin1C'nLs aI"<' ["('penL('d, as bC'forC', on 1\1(' thrC' 01 1Ie>l' s('qm' Il(,( 'S Hlld Si lllihll' \)('llIwiol\l"s 

arC' observ('c\. TIl(' b('sl Illotion l"('sults arc oblfliued ill 1\1(' following n\llgC's of (1: [1 -2], [0.5-2]1111<1 

[0.5-2] for I he 'home-lllade ', ' park-run ' and 'car-park' H 'qlt<'IJ('I'S J"('spC'C'i i vdy W\WII tlH'ir iIllH!!,('S 

are samplC'd with a lIIinimum of about I, 1,[4 nlld 141 points rt'sp(clivt'ly. As tll('s{' nlll!!,C's of 

smoothing param trl" an' , illlilar in (,OV('["llg('. It (,OllllllOIl smool bing fHclor of (T I is ('\1()SC' ll BS 

th(' optimal (1 for thC' hyperplaJl(' esti\\\ator. 1\\ l'('ov('r, 111(' llH'H II 1I10t iOIl ('ITOI' ('1111 b(' Hl'ISlllllC'd 

to have ('ollv('rg('d to a minimum for 1I= 15() HH mple's. 

The l1I('aJl motion ('lTor is displayed ill I able 5.3 for I his sHllIpling sizc' of 150 pix('\s IlllCl 

a smoothillg fador of 1 for all dal.asrts. Thl' 1I1("W Illot.ion ('rror iIlIT('II.'il'H wil h I h" ,l ppli('d 

motion magnil ud('. This motion ('fror is p\ottC'<1 ill figure' 5. 1 ~ for hot h I Ill' Ilyp<'rplUtI(, find 
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Figure 5.12: Hyperplcu1C're ult for the ' lab' seCl UPIIC(' at diffr r ('nt scales 

II,-------------------------------------~ 
10 

50 100 150 100 250 300 350 400 

scrnphng Sizes (pixels) 

F igllrr 5. 13: Optimal (J" of til ' hYlw rplHlH' rsLil1mtor ror t.11 ' Inb' Hrqll(' I1 t"<' 
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F igurr 5. 14: Optimal 11 of the hyperplcw (' estimator ror lhl' ' lal> ' S('<lII( ' I1("(' 
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til(' gradient-based c'st illlators as a fUJlctioll of lIlot ion. The graphs show t lutt hot II est illlHtors 

PNfoT'm silllilarly whell tilC' lllagnitudC' of the motion is le'ss thelll "bout 5.5 pixels. UOW('V<'l' , the' 

graclie'nt-haspc\ P. tirnator's accura(,y is bet Le'r than the hyp<'rplml("s for larger mot.ions. Beyolld 

motioll of foUl' pixels in l1Iagni tude', bOlh ('stilllatOl'S e'st inlat e' llIot iOll wi t Ii H n avcrage' (,ITO[, 

greater than 1 pixel frum the ground-trut II JllOtioll. 

seqlJe'J1ce 'park-run ' lab' . homC'oo ma<lC" 'car-park' 

mean motion llla.gnitude 1.90 3.3 5.35 7.1:3 

Jllean <'ITOI' AId 0.5 1 O. 5 1.6 ·U)() 

Table 5.3: HyperplallP results for a smoothing fador of 1 and 150 saJllples 

Ul 
~ 5 
,9, 
~ 4 t"typerplare 
0 results t: • 
~ 3 
0 

'" !1adlent-
~ 2 based 
c resu~s 
SSt 
E 

mean rro~on magnitude (pixels) 

Fig1ll'c 5.15: 1\ le<111 IIlotioll ('lTOrS against Jllean global JlIot iOIl magllit wles for I he hyp( 'rpIHlI<' 

ami gradiC'ut -ba.'ied est illlat Ol'S 

5.5.2 What is the b t hyp rpJa n tra ining tra t gy? 

In til(' prc'vious experiments. the t milli ng Pl'()('css of the' hYPNpIHlH' ('st illlator iH pNfoJ'l1wd \lsi Ilg 

tite [,egular s,ullpling stmte'gy frolll a range' of 20 pixds and with H tmining d('nsity of lOOt;{. 1'11(' 

['esults of section 5.5.1 show thnt n lI1illilllll lll 1lI1l11lwr of 150 points is s1lftici(,1It ('or 1111 optiIlInl 

HlIloolhillg faelor of about I pixd. Tn this S('C'tiOll, the' hyp('!'plall(, ('StiIllHtor's ll<'rf'OI'lIlHII( '(' is 

('valtlat('d for alt!'J'Jlativ(' tmining rallge's RII and d('nsili('s DII . First, tlU' ('stinHlto!' is ('Vn lwll<'d 

for ciir]'('['(' l1t trainillg rallge's bllt \ illl it 100% lraillin!!, d('lIsity. S(,(,(llId. tlu' Imillillg d( 'nsily is 

being vari<'d [ot' fix(,d t raillillg range's. 

Varying t h e training ra n g 

[II this first experillleut, til(' traillillg mllg<' RII is VHI'i('d wllil( ' the tl'llillillg(\(' lIsity is fixed Ht lOOt;{ 

wilh tll(' [oUowillg optimal pal'alll('te'rs: a SlllOothillg f,t('\oJ' of (T I nlld 1/ 150 :-;I\Jllpl('s. Fill' 

1110['e' rigorouH analysis. t\)(' I'('al motioJl ('xistilll!,\)('\W('('ll pairs of fl'lllll('S of H S<'qll('II('(' is r('pl!l('('(1 

by a s('t of 30 synt \)<'tieally gell<'rat <,d IIlO! iOlls wit h varyillg IIlHgnit 11<1(' I. ( ' . ;10 ".Vllt hd in" I,\' 
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gC'llC'ratC'c1 fralllPs a rC' Illotioll COlllpC'llsateci from eacb fraIllc of the S('qllC'Il(·('. The ('orn'spolHling 

motion C'ITors Mel (dpfiJlC'ci ill SE'ctioll 5.4.5) cUC' displnyC'd ill fig\ll'e 5.l6 for dirrel'('111 Imining 

rang<'s Rit for thl' 'l!olllC'-lllade' dataset. 

Each llIotion pr1'Or plot (co['['espolldiug 10 LlI<' following training rallges nil = 5, 10. l5 alld 20 

pixels) l'('lllains sta.ble whclI til(' magnitllCk of tlw appli('d lllotioll is low('r I han I h<' !'('slwdiv(' flit . 

BC'YOlld this valu<" thC' Illotion C'ITor dralllal.ically illCTl'fl.S(,S with t 11(' II10tioll I IICtgni I lICk. Then'­

[orc'. th(' hyp<'rplam"s stability is lllotioll-dqwnciC'llt and it ('ell! only psi ill lal (' lIIotion llJaguit\lcil's 

IC'ss than th(' training range Rh . It call also bC' oi>s('rv('d that, ov('!' Ihe stablC' !'ang(' « R,,) . Ih(' 

hypC'!'plculC' accuracy dC'('l'('a~('s as til(' training 1'an(l;(' RII inc[,C'<ls('s. Thc' 1I1e'<lll 11101 ion e1'l'01' OVC'!' 

this st.able' rangc' i .. tabulat('d against Ril ill tabl(' 5.4. Tlwl'(,[orC'. not only t 11(' sl ability hut also 

thE' e'stilllatol"s accuracy is mol iOll-dt'I)('l1(knt amI thc' optimal I milling l'ang(' is oi>taillc'd if il 

s('t to the motion magnitud 'i.e. R'l = II~xgli. 

10 
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Figure' 0.16: l\1('an lIlotiOJJ (,!TOI'S [or dirrerC'nl I railling nlllp;('S IIgaillst ill('J'('asillg Illol iOIl IlIaglli-

tllcit's for th(' 'hoIll('-lIladc' S('<lII(,11('(' 

nil dal asds 

(pixe'ls) , J)(U'k-rllll , '\rI b' ' hOIlI('- IlU1( Ie" '(,H I'- park ' 

5 0.32 0.0 n, 1:3 0.21 

10 n.G6 (U!) O.!)[ O.!)7 

15 O. 5 D. 7 J 2.();~ \.5 ' 

20 1.22 1.20 :1.02 2.:W 
-

Tabl(' [;.4: fo-I('an of til(' sl able' 11101 iOIl ('I'l'OI'S n'sllils 
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Varying the training den ity 

ThC' following C'XP('l"ill](,llt ('valllatC's the hypC'rpIHll("S p('rfOrIlHlIH'(' wh(,11 tIl(' c\('lIsity wit h which 

it is traillC'c\ is alterC'd . This tmilling densily wa." pn'viollsly s<'l to a ltIaXillllll1l of D" lOOt;{ alld 

til(' Illation errors AId are \]('re' plottC'd for low('l" P{'IT(' lItages. Fignre 5. 17 plots t Il('s(' lllot iOIl ('ITors 

for thrC'E' ciifferC'ut traillillg rangC's R" for the' ' la\) ' s('qllel1c(' (,XHll lple' (wi th oplillJaI slllool llillg 

factor (J = 1 and with 11 = 150 saJllplC's). The' {'stimator's p('rfortllallce' is lIIa .. xi llllllll for t rai ll ing 

dpllsities grC'at('l" than 30% for 111(' tlm'C' diffe!"('nt t mi ll ing rallg('s. J:.-'or (\(,lIsit ie's I('ss thall 10% 

the accuracy drops sigtlificalltly. 

7r---------------------------------~ 

6 

10- . _ . _ . _ •• _ . _ . _ •• _ . _ ._ .- .- - - - .. 
• . --

~------- ~ ---------- . ~ 

O +-----~----~------T_----~----~ 
o 20 40 60 00 100 

training denSity In % 

training 
range of 
6 

• training 
range of 
10 

- . - training 
range of 
20 

Figure' 5.17: Pe'rfOrlUHUC(' of t h(' h.vpf'rplcuH' ('st illlHtor for difr('I"('lIt t milling st rat ('gi('s wit h I he' 

' Iab' Se'qll(,IIC'{' 

ThE' first ('xpNilll{' lIl. ill se'd iOll 5.5.] , show('d that tIl(' IlYJl('rplall(' ('st ilnat or 1"('lIlaillS st abl(' 

and rdatively ,tC(, lIraU' for a ('('[" tain rallg(' of sllloothing factors a and sa mplillg si;,,('S /I - S('(' 

figure 5. l 2. The stabilit y is plotl ('d in figure r: . l ~ as It b01llldary l)('tw(,(, 11 stabilit y and illstHbility 

rC'!?;ions for thre(' t rai lling (\l'lIsi t if'S 0" for t h!' 'lab' H<'qll('II( '(' ('xatllpl<,. T It(, t milli llg rallg(' is s('( 

to 15 pixels (i .e. larg('J" t hall I II{' larg<'st l1lot iO\l I\lagllillld(' ill 111(' S('<tIl(,I1('('). Th(' HI nil I!' r<'gioll 

is located for the slIlall{'sl pairs of (J and 11 alld "in' Vl' rSIt for I II(' IIlIsIIII>I(' n 'gioll . 

TIl{' an'a r<,pn's('llti llg lh(' range of optilllal paralll<'t('rS a alld /I wlt('f(' tlt(' S, st('1 11 1)( '1 rOrlllS 

["('laliv('ly a("cmatdy shrillks n." llt{' lmilling <\C'llsit ,\' d('en'fls('s. oIl' tlwt ror 11 SIIII\II d('llsity of 

1:3%, stabi lity is lllC't for SrU tlplillg si;,,(' jllst 1)(' low tit !' opti lllHI si;,,!' pr(,viously sd to 150 pi x(' ls. 

Tltprpfol"(" the hyperplaJl(' ought 10 b(' traillC'd wil h /l 1I1inillllllll 1)('I"("( 'nt llg(' of :IOt;{ IIlld II fllily 

t railll'd SYSte'1ll wit h D" = 100% gi V('S t \1(' opl i utal rH IIg(' of Ol)('rnt iOlls. 

5.5.3 What i th b t ampling trat g ? 

TIl(' pr('viOlls (>Xp<,riUI('llt" an' perfortll(,(\ wit II I h(' regular sH lllpling st m t('IW des('rib('d iu S('( 't iOIl 

5.4 which locat('s pix!']s on a grid across all itnng(' n'ganl\('ss of loml (,Oll t ('Ill. TIt(, grndi(' IlI -
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Figure 5.18: Hyperplane stability for vario11s ))('rturbation dellsitieH 

III 

based and hyperplane estimators are here evaluated using the hybrid allci edg<'-hH.B<'d sHllIpjjng 

strategic (also described in section 5.4). The hyp('rplau(' estimator is pflnlmeterised wit h t.ll(' 

prcviou 'ly estillmtcd opt imal parameters: a sampling si7.C of '/I = 150 pixels, a smoothing factor 

of (J = 1 and a traiuing range of R h =20 pixels with 100% density. T he gradicut-hlls('d est iumtol' 

is also parameterised wit.h 150 samples but t,he opt imal (J is sci. to the motion lllaglIit IIde for 

each pair of frames. 

The mean motion errol' AId is displayed in tabl(' 5.5 for Lll(' gradic' llt-based ('stilJla t01' a lld 

ill table 5.6 for the hypc'rpi<tlle ('st-illlator WIH'll 1 hc regnlill' , hybrid Fmel pdge-based s<1lllplillg 

strategies are llsed. 

Both techniqllrs (" timate reiaLively accma.tely I.he gJOllHl IllOLiollS of I hc' ' Iah' alld ' pmk-l'II u ' 

seqncnce with a lIlrctJI error below 011(' pixel. These I wo daLHS('\S cont Hill I he slllHllc'st IIlc'a ll 

motion magllituc\rs wilh 3.3 pixt'ls for the ' lab' seq U('lIce Hlld UlO pixels for 11H' ' J><Irk- rull' 

sequence. 

For bigger lI1ean Illotioll lIIagni I ueIc: (i. 1'. 5.:~5 pixc'ls for I he . iIOIllI -llUl! 1(" lind 7. 1:\ pix(']s 

for tIl<' 'car-park' SC'<]lH' UC-<' ) hot.h cst illlat.ors give lllot.ioll ('ITorS gn'H.t.Pl' thHIl l pixd . 1'1)(' ('ITOt' 

reacilC's a maxilllum va lu r of 3.34 pixels for lh<' gradi(, III - lmsed t.('('hlliqu(' usillg I hc' rt'glllnl' 

samplillg strategy and a vahl(' of 5.18 pixels [or t.Iw hYl)(,l'pIHlH' ('slillmto[' wit.h t/I(' ('tIg('- i>ns('d 

techniquc. 

The avcragr of thr four mean C!Tors of tlH' fom c];\lmwls for ('aeh SUll1pli llg sl ml<'/.w ill tllb/('s 

5. ~ and 5.6 arc L "0, l.15 a lld 1.16 pixels for (.he gnuliCIl I- hH.st'cl cas(' and I.DD , I. !) Il lld 2.0 1 

pixels for Ihc hyperplallc rast' when the regular, hyhrid alld ('<Ig('- hH,'l('d SH11lp1i1l 1!, ('c/Illiqll('s IU'(' 

used rcspectiV('ly. Till' hybrid mr l.hod givc's s lightly better ['('snlts for bolll lIlol iOIl ('sl illmlors 

which ar> ploned in fig\ll'C' 5. 19. Both ('stillll-tLors lH'rfo rIl1 n'lntiv('ly IH,(,III·ftl<'ly wi l h H 1I11 'flll 
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gradient-based mean motion errors 

sampling strategy 

dataset regular hybrid edge-based 

'lab' 0.59 0.47 0.44 

'park-run' 0.41 0.40 0.40 

'home-made' 1.68 1.81 1.80 

'car-park' 3.34 1.92 2.00 

Table 5.5: Gradient-based results for -different sampling strategies (with n=100 points and q 

tuned to the mean velocity) 

hyperplane mean motion errors 

dataset sampling strategy 

regular hybrid edge-based 

'lab' 0.85 0.41 0.46 

'park-run' 0.51 0.57 0.84 

'home-made' 1.70 1.66 1.63 

'car-park' 4.90 4.92 5.18 

Table 5.6: Hyperplane results for different sampling strategies (with q=l, Dh=100% and Rh 

tuned to the maximum velocity) 

motion error of 1 pixel for sequences having a mean motion magnitude less than about 4 to 5 

pixels. A motion error below half a pixel is obtained with both estimat.ors if the motion to be 

estimated has a magnitude below 3 pixels. 

5.5.4 Time analysis 

It was previously shown that gradient-based and hyperplane techniques can estimate motion 

relatively accurately if motion magnitude does not exceed ~3 pixels. For such small motion 

magnitudes, an optimised gradient-based estimator and a previously t.rained hyperplane tech­

nique can estimate motion at frame-rate. However, if the hyperplane technique requires to be 

trained for every captured frame, the training operation would render the estimat.ion very com­

putationally demanding. Training an hyperplane requires the inversion of a square matrix wit.h 

lateral size n - the sampling size - which represents an O(n3 ) operation. The gradient-bn.<;ed 

technique, on another hand, is a linear operation with the sampling size i.e. O(n). 

The computational time required to estimate a 10 pixel mot.ion by a hyperplane and a 

gradient-based estimator is plotted in figure 5.20 for varying sampling size. The ffl.pid cubic 

time increase of the hyperplane training is observed in contrast. to the slow lincar growt.h of 

gradient-based estimator around one frame per second. 
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For this large motion magnitude example, which is not accurately estimated by both estima­

tors, the hyperplane's cost remains below the gradient-based's cost when there are less than 

approximately 120 samples. A optimal size of 150 samples was previously chosen. Therefore for 

large motion, the hyperplane estimation becomes very expensive and cannot be performed at 

frame-rate. 

5.5.5 Discussion: which is the best motion estimator? 

The non-iterative gradient-based estimator gives the best motion estimates if, before the esti­

mation process starts, the grey-levels of the sampled pixels are pre-smoothed with a Gaussian 

kernel whose size is set to the unknown motion magnitude (as observed in chapter 3). The 

optimal number of sampling pixels is found to be approximately 150 pixels when sampled by 

the hybrid technique (described in section 5.4.2). The results showed that the gradient-based 

technique can only estimate, with relative accuracy, global motion with magnitude up to a few 

pixels - of about 3 pixels maximum with corresponding maximum mean motion error of half a 

pixel. 

The hyperplane estimator performs similarly to the gradient-based estimator. However, it 

requires to be trained with a distance, or training range Rh, at least equal to the maximum 

expected motion magnitude in the dataset and with a training density of minimum 30%. The 

estimation was shown to become unstable for intense smoothing operations, i.e. large (1, and for 

large numbers of samples n. However, the errors on the motion estimates are minimum when 

150 pixels are sampled from the image and when these pixels are weakly smoothed with a low 

smoothing factor of (j = l. 
Since both the gradient-based and hyperplane techniques estimate relatively accurately 

global motion with small magnitude, they can perform at frame-rate. If larger 1Il0tions are 

to be estimated, and if training is necessary whenever a frame is captured (i.e. the dynamic 

mode - see section 5.2.3) then the inverse matrix operation required to train the hyperplane 

technique makes it very computationally expensive. 

Therefore, the main limitation of the two global motion estimators evaluat.ed in this chapter 

is the small motion magnitude limitation. Both estimators accuracy depends on this motion 

magnitude. Since straightforward techniques exist for the gradient-based estimator to address 

this problem, such as the multi-resolution approaeh developed in the previous chapt.er, the 

hyperplane is not adopted as global motion estimator in the remainder of this thesis. 

5.6 Discussion 

Estimating motion with the gradient-based estimator, developed in section 5.3, requires an 

inverse operation on a matrix with lateral size the number of parameters of the planar motion 

model i. e. 8 parameters. The alternative hyperplane method, developed in section 5.2, also 
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requires an inverse matrix operation during the training phase before motion estimation is 

achieved. However, unlike for the gradient-based case, this inverse operation is performed on 

a square matrix with varying lateral size given by the sampling size i.e. the number of pixels 

sampled across an image. If the global motion induced by the moving background scene relative 

to a pan and tilt camera is not too large, the motion estimation can be performed at frame rate 

using the reference operational mode described in section 5.2.3 where the syst.em can estimat.e 

several motion from a unique trained system. 

The results showed that the accuracy of both the gradient-based and hyperplane estimat.ors 

are limited to small motion magnitude of a few pixels. When larger motions are to be estimated, 

accuracy decreases and is obtained when the pixels are smoothed with a kernel of the size of 

the motion magnitude for the gradient-based case and when the training amplitude is to be at 

least the size of this magnitude for the hyperplane case. 

Since the hyperplane estimator can only recover small motion accurately, training with only 

small ranges are required meaning that this training can be performed at frame-rate and the 

dynamic model can also be performed at frame-rate. Therefore both estimators can use the 

dynamic mode with similar speed. The gradient-based estimator can address the small motion 

magnitude limitation using the multi-resolution approach developed in the previous chapter, 

as studied in the next chapter. Moreover, the gradient-based estimation can be implement.ed 

iteratively to improve its accuracy. The hyperplane, however, cannot be implemented easily in 

an iterative and multi-resolution framework and is not further investigated. 



Chapter 6 

Estimating motion of moving 

PTZ cameras 

The two approaches previously implemented in chapter 5 - the hyperplane estimator and a 

gradient-based technique - recover motion with accuracies dependent on the unknown motion 

magnitude. For small motions, both estimators perform with relatively good accuracy and 

relatively high speed. Unlike the gradient-based estimator, the hyperplane cannot be easily 

implemented in an iterative and multi-resolution framework. The iterative and hierarchical 

gradient-based motion estimator developed in chapter 4 is adapted for global motion estimation 

in the first section 6.1. The gradient-based technique is successfully applied in this chapter to two 

applications. First, the motion of background scenes captured by moving pan and tilt cameras 

are estimated using the planar motion model described in section 6.2. While accuracy estimation 

is achieved to less than 1 pixel error, such accuracy is not sufficient for image registration 

applications such as background scene mosaicking. Second, in section 6.3, this estimator is then 

applied to a zooming application where the intersection between optical axis and image centre 

is estimated from the optical flow estimates. 

6.1 Gradient-based global motion estimation 

The dense robust and hierarchical estimator developed in chapter 4 is revisit.ed in the first 

section. It is adapted for global motion estimation by using an edge-bl\Sed sampling procedure 

described in the second section. 

6.1.1 Hierarchical and robust approach 

The small motion limitation of the gradient-based technique is addressed by the use of the hier­

archical Laplacian pyramid technique described in chapter 4. The other major limitation of the 

gradient-based technique is caused by the prescnce of noise or motion outlicrs contaminating 
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neighbourhoods of pixels. Noisy outliers are usually introduced by the optical and electronic sys­

tem of the camera and are easily eliminated by the robust statistical approach, also implemented 

in chapter 4. Motion outliers are mainly caused by occlusions which inject pixels undergoing 

different motions from the dominant motion of the majority of the pixels in a neighbourhood. 

Motion outliers cannot be totally eliminated by the robust technique. 

In the two applications of this chapter, as the entire viewable 3D scene is assumed to undergo 

the same global motion, all pixels within the frame can be used in the estimation process. 

However, it was shown in chapter 3 that accurate optical flow only requires a minimum of pixels 

of the order of 100, and using all pixels in a frame would render the estimation computationally 

expensive. Moreover, optical flow estimation is dependent on the amount of grey-level structure 

present in the estimation. An edge-based sampling technique is therefore explored in the next 

section to select a desired percentage of the most contrasted pixels. 

6.1.2 Edge-based sampling of the global neighbouring pixels 

A sampling technique, referred to as the edge-based sampling technique, is here built to select 

the required number of pixels among the edges of a background scene for optimal optical flow 

estimation. This edge-based sampling technique is an alternative and slightly quicker version of 

the edge-based technique described in section 5.4.2 in the previous chapter which uses a random 

sampling approach. In the new version, edge pixels are found by local and oriented search of 

maximum edge response given by a Sobel gradient kernel. The image is divided by a grid and 

the search for a maximum gradient is performed along the thresholded edge pixels within the 

squares of the grid. 

In most scenarios, datasets contain enough edges to distribute the minimum required number 

of pixels among them. For example,' the frame on the left of figure 6.1 contains 28,500 edges 

represented as dark grey-levels on the right of the figure. The experiments in this chapter do 

not use more than 15,000 pixels. Figure 6.2 show an example of 1000 and 5000 sampled edge 

pixels of the input frame in figure 6.1. 

6.2 Application to pan and tilt cameras 

The motion estimates given by the global motion estimator described in section 6.1 are evaluated 

against two different sets of ground-truth vectors. The first set comprises of a large number of 

synthetically created translational vectors from which sequences are construded. The socond 

set comprises of the real motion existing between pairs of frames. The motion estimator is then 

evaluated against these two sets of motions in the two following sections. 
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Figure 6.1: Left: input fram and right: its edg s 

Figure 6.2: Left: 1000 and right.: 5000 amp] d cdg am IIg Lhe dg's f rigUT' 6.1 
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6.2.1 Experiments with synthetical motions 

An intense evaluation of the accuracy of the mot ion e timator developed in ection 6.1 is p r­

formed in this section, using five input datasets. A motion rror metric is d fiu d for t.h 

evaluation of the performance of the estimator against varying motions. 

Dataset s and ground-truth 

Five datasets are used to evaluate the gradient-based global motion estimator. xampl frames 

are displayed in figure 6.3 for the 'lab', 'park-run' and 'car-park ' sequen e and in figure 6.4 for 

the 'lab2' and 'lab3 sequences, which contain 36 , 251 , 40, 200 and 200 frame respectively. 

All frames are composed of black and white 256 grey-levels. The lab ' fram s ar constituted of 

512x3 4 frames, the 'park-run' and 'car-park' frames are constituted of 3 4x2 pixels and the 

' lab2' and ' lab3' frames are const ituted of 3 4x256 pixels. The 5 s qu I1Ces exc pt (.h 'park-run' 

sequences are potential scenes for surveillance applications: 3 indoor c ne tak n in diffi r nt 

laboratories and 1 car park c ne. 

Figure 6.3: Frame example oftb left: 'lab', midd l park-run' and right: ("t\r-park' cqllcnc 

Figure 6.4: Frame example of the I fl,: 'Jab2' and right: ' lflb3':; qucnc' 

In order to test the maximum motion magnitud th t can b ccuraL ly e timat d, an in­

tense evaluation is performed by g nerating ts of. ynth ti ally gen rated fr8m' 1I. ing kn wn 

translational motions. For ea h frame in a h da( t, a ri of m (.ion c mp ·nsat d fram('s is 

generated for 25 known translational v ct.ors of increasing magnitud . Th . tw nly fiv' known 
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translational vectors are drawn from the magnitude range [1 : 25]. The direction of this motion 

is unique to each of the five datasets. In total, 26,475 motion estimations are performed. Note 

that these synthetical motions are translational only. 

Metrics 

The translational component AXt of the estimated planar model at (see section 3.2) is compared 

to the synthetical translational global motion Ax9 created for Ns pairs of frames via the following 

metric d1 (Ax9) computed for each dataset: 

(6.1) 

where 25 sequences are generated for each of the 25 different motion magnitudes applied to all 

frames in a dataset. 

It was demonstrated through experiment in section 4.2.5 that the motion estimator recovers 

accurately a wide range of motion magnitudes below a magnitude cut-off related to the number 

of layers in the hierarchical pyramid. At the top of a pyramid containing L levels, the maximum 

motion magnitude that can be accurately estimated is Vmaz ~2 to 3 pixels. Therefore, the 

maximum motion which can be handled at the base (original image) is Vmaz x 2L i.e. for a 3 

levels pyramid, motion of ~ 8 to 12 pixels can be reliably recovered. This cut-off threshold will 

be evaluated and will allow the computation of the metric D1 , the mean of mean motion errors 

that the estimator can recover accurately, for each dataset: 

(6.2) 

Evaluation 

The mean motion errors d1 (AX9) between the estimated global motion vector and the various 

ground-truth motions Ax9 are plotted in figure 6.5 for different ground-truth motion magnitude 

for each of the five datasets. 

Similarly to the experiments performed in chapter 3, the global estimator W!l.'! evaluated for 

different sampling sizes. The results showed that a minimum number of 100 pixels approximat.ely 

is necessary before the motion estimates starts converging toward a final est.imat.e as the number 

of samples increases. Between 500 and 1,000 pixels were necessary before the estimated motion 

magnitude is less than 10% from the converged motion magnitude, estimated to occur from 5000 

pixels. A choice of 2,500 pixels is arbitrarily chosen as sampling size in the following experiments. 

All the motion estimates in figure 6.5 are very accurate provided the magnitude is below the 

maximum threshold cut-off magnitude. 

However, the range of motion magnitudes over which reliable motion estimates can be esti­

mated is typically larger than V maxx2L. These individual ranges can be estimated by visually 
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illSI)('ct ing thC' plots of figurC' 6.5 to id('ntify the 1.:71('(' point wll('r(' a('('uracy dramat ically wors­

en . ThE'sC' arC' t abulat,C'd in table 6.1 for each dataset wit n' it call bl' S('('11 that largl' lllotioll 

magnitudes can be estimated with very small Illeatl lIIotion errors D\ . 

D ataset I cut-off I D\ 

' lab' 19 0.004 

'park-run' 14 0.027 

'car-park' 0.033 

'lab2' 13 0.0 I () 

'lab:3' J2 0.022 

Table 6.1: lean of errors of the fH"("urakly es tillIaI ('ci global 11101 iOIl 

6.2.2 E xp erim nt with r al aptur d mot ion 

Th(' Illotion ('stilllnt,or, prC'viously ('vaillal ('(I ngni llst larg<' s('(.s of sYlltlH'1 in11 t 1"I1 1181n I iOllnl mot iOIl . 

is vaiuatC'd in this s('ct ioll against ["('Ill captlll"('d motioJls. Tilt' SHIl\(' datm;(' t s nrc' us('d f()]· this 

('valuation. TIl(' groulld- trut II of tIl<' global nJ()tiOll is Ilot availnblp alld fill <'xlH'lIsiv(' corn' lllt iOIl 

t dllliqu(' is illst C'ad <iev<'iol)('d to pstilllatC' thl' trallslati HlIlI ('olll(loll('l1l of thp n 'lIl Illotioll as 

de'scribl'd bdow. T IH' \\lotioll es timates ar(' fillall y ('Y<thmt('d IIgai1ls! 111('8(' 1"(,,,1 Illot i01ls Iising n 

llIotion error metric. 

Da ta ets and ground-truth 

The' i:mmc fi Ve' data .. 'let:l pre'viously used to (,VB lllat (' t Ii (' llIot i01l ('st illml or i\l S('ct iOIl (j .2. 1 n 1"(' IIsed 

in the' ('vaillat ion against t 11(' real motioll o("clIl"rillg bet W('('II rl"fllll('~. R('al glolml 1I\0t iOIl~ illduc('d 
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by camera motion are modelled by a planar model. As there does not exist any straightforward 

technique to provide the ground-truth global motion, an expensive block-matching technique 

(the same used in section 5.4.4) is deployed to provide the translational global motion between 

each pairs of the sequences. The block-matching technique can only provide quantised estimation 

of the real translational motion. However this quantisation error can be neglected when averaging 

motion errors over a set of frames. 

Metric 

Global motion between frames captured between time t and t + 1 are modelled by a planar 

motion model at. From the estimated planar models at, the corresponding translational global 

motion ~Xt (as explained in detail in section 3.2) is compared against the ground-truth motions. 

A frame sequence is denoted S and contains N s pair of frames and the evaluation is performed 

according to the motion error metrics explained below. The translational component of the 

estimated planar motion model is compared to the ground-truth translational component ~xg 

of the real motion via the motion error metric d2 defined by equation 6.3 for a sequence containing 

N s pairs of frames. 

(6.3) 

Evaluation 

The mean motion errors d2 defined in the previous section calculates the mean errors between 

the estimated global motion vector modelled from the real captured global motion and the 

ground-truth data are displayed in table 6.2 for the 5 datasets used previously. The results are 

also shown for a minimum of 2500 pixel samples recovered from the edge structures wit.hin each 

frame. 

Dataset d2 

'lab' 0.29 

'park-run' 0.40 

'car-park' 0.35 

'lab2' 0.28 

'lab3' 0.29 

Table 6.2: Accuracy of the gradient-based global mot.ion est.imator 

The maximum motion magnitudes present in each sequence are 5, 3.16, 9, 2 and 3 pixels 

for the 'lab', 'park-run', 'car-park', 'lab2' and 'lab3' sequences respectively. Each is less t.han 

the knee point tabulated in table 6.1. In table 6.2, the minimum deviation is between 0.28 and 

0.29 pixel for the sequences taken in the same laboratory from different observation location i.e. 

'lab', 'lab2' and 'lab3' sequences. The maximum deviations are given by the 'park-run' sequence 
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with DAD pixel in average from the ground-truth. In general, the deviations are always less than 

half a pixel from the ground-truth for the different datasets. 

6.2.3 Conclusion 

The gradient-based estimator evaluated through the previous experiments is shown to be an 

accurate global motion estimator for a large range of motion magnitudes up to between 10 and 

20 pixels for different datasets. The local optical flow estimator developed in chapter 4 required 

a minimum number of 100 samples in its neighbourhoods of pixels whereas the global estimator 

of this chapter requires at least 2,500 pixels located on the edges for best performance. Despite 

this large number of samples, the estimator can still operate at frame-rate. 

The global motion estimates are produced with an accurate mean error of less than 0.5 pixel. 

However these motion estimates are still not accurate enough for integrated image registration 

applications such as mosaicking. If image superposition is to be performed, this 0.5 pixel mean 

error would propagate and the mosaics fail to remain registered after a few frames. 

6.3 Application to zooming cameras on static scenes 

In this second global motion application, 3D static scenes are captured by non-moving cameras 

which are only changing their focal length i.e. zooming is performed on these scenes. This 

particular 3D motion relative to the camera is described in chapter 3 by the zoom motion model 

which allows the determination of the location of the centre of expansion (COE) which defines 

the intersection of the optical axis with the image plane. The gradient-based estimator described 

in section 6.1 estimates the parameters of the zoom motion model for three dataset.s prescnted 

with their respective ground-truth motion vectors in the second section. The results, displayed 

in the third section, show that the position of the estimated COE varies with the focal length 

i.e. the lens position is varying during the zooming operation. 

6.3.1 Zoom motion model and the centre of expansion 

Generally, cameras are manufactured such that the image centre roughly coincides wit.h the 

middle point of the CCD array. The intersection of the optical axis with the image format.ion 

plane is commonly referred to as the image cent.re. This means that ideally, under zooming 

operations, the image centre should remain at the same location. However, changcs of focal 

length results in changes in the camera parameters including the position of the image centre. 

The varying point of intersection between the optical axis and image plane is here referred to as 

the centre of expansion while the image centre remains fixed at all time at half the widt.h and 

half the height of the image plane. 

Although the scene in the field of view remains static, the change of focal length results in 

each pixel undergoing a relative motion depending on their locat.ion relat.ive to the COE located 
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at io = [io,jo]T (in physical unit from the image centre) and the amount of variation in the 

focal length. The zoom model developed in chapter 3 gives the following relationship between 

the image velocity :it (also expressed in physical units) and its corresponding image location x 

measured from the COE 
. j 
x= -x 

f 
(6.4) 

where j is the amount of focal length f change per unit of time. The position x can be 

alternatively measured from the image centre io and becomes position i = Ii, j]T: x = io + i. 
This position can be converted into pixel unit as expressed in equation 6.5 where a and f3 are 

the constant factors introduced to convert distances from pixel unit to physical unit: 

x = [~ ;] (10+ II (6.5) 

Replacing equation 6.5 in the image velocity equation 6.4 gives 

x = j (. .) j. j. 7a to + t = 7ato + 7at (6.6) 

if = j (. .) j. j. 7a Jo + J = 7aJo + 7a) (6.7) 

or, in matrix notation 

[ : 1 0 ~lc x= 
0 j 

(6.8) 

where 

c = [co, Cl, C2, C3]T (6.9) 

= [~a, j. i f3 
lato, I ' . r ~f3jo (6.10) 

The COE located at io can be estimated from equation 6.9 without the knowledge of the cali­

bration factors a and f3 as follows 

. _ [Ct C3]T 
10 - -, -

Co C2 
(6.11) 

The global motion estimator developed in section 6.1 estimates the motion model vector c which 

allow the computation of the COE of equation 6.11 in the next two sections. 

6.3.2 Experimental procedures 

The global motion estimator described in section 6.1 is evaluated for static cameras performing 

zooming operations on 3D static scenes. Three zooming sequences are presented below wit.h 

their ground-truth motions. The evaluation is performed by the use of a metric also developed 

below. 
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Datasets and ground-truth motion 

The three datasets captured by zooming cameras are used for the evaluation where frame ex­

amples are displayed in figures 6.6 and 6.7. These equences are the 'desk', 'vigilant' and 'paint' 

sequences, containing 90, 20 and 50 frames. 

Figure 6.6: Frame example of the left: 'desk' and right: 'vigilant.' equenc 

Figure 6.7: Frame example of the 'paint' qu nee 

The ground-truth parameters c9 of the zoom motion model arc g n rat d by eho sing ran­

domly six parameters. These are the location of the centr of xpansion io = rio. jolT wh t' 

image velocity is zero, and the maximum velocity xm = [Xm, YmF' thaI. app ar at. a pix I c1 . . lo 

the edge of the frame at im = lim, jmV. Using tb motion model equation 6. at pix I I a.li 11, 

io and im gives 

cgio + c.f = 0 

qJo + c~ = 0 

cgim +cf = xm 
qjm + t!a = Ym 

( .12) 
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6.3.3 Evaluation of th e ntre of x pan ion 
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The COE is ObSNVC'cl to movC' toward ' the image' (,(,lltn'. HowC'wl' , this traj<'ctory seellls to 

oscillatE' ill both thC' vNtical and horizontal dirC'ct ions. This oscitlal iOIl is t Iiought to arise 

from lIIE'chauical ru ymlll('triE's d ming the' zoom oprrat iOI!. As soou aH 111(' zoollliJlg op('rat ion 

tt'nnillatps. thC' C'stilllation of the OE becolll s unstable' for fn'lIlI('s 54-7!:i. This is explaillcd 
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iIll possi ble. 

10r-------------------------~"'"nr~~~ 

8 

-10 .L----------__ -l..I.o.LJ-IUl..Il.!-I.J.lI-.J.!J 

frame Index 

vertical 
dls~acemerts 

nonzontal 
dl s~acemerts 

Figun.' 6.9: Vertical and horizontal diHpla,(' mrllts of til(' COE for t hc 'desk' S('ctl1('I1('(' 

6.3.4 Conclusion 

TIl(' Illotion of 3D 8(,(,I1CS capturC'd by a (,(UlI<'I"a ])(' rfo['\lIillg zOOllling op<'mtiolls HI'(' mod('lled by 

t 11(' zoom llIotion model in sC'ction G.3,1 which provides the forlllulation of t 11<' lo('atioJl of t 1)(' 

('('ntl'(' of ('xpcUlsion (COE) i,e , the illtC'l'scction of th(' optical aJds with tl1<' illlage platH'. Thc 

gradiellt-bas('d global Illotion ('st imat or rc('ov('rs ZOO1l1 luoel(' ls I)('t W('('II pair or [ralllPs ill t itree 

c1ataH('ts ill se('tion 6.3.3 llsing H. large nlllnl)('l' of 10,000 ('cige-baspc1 pixpk Th(' r('snits fronl 

synthC'ti('ally (TC'ated dataset.s show that tIl(' OE iH ('stilllat!'d to within ;t rC'w pixds deviation 

from its feal positioll. and that ill H'al s('('lIarioH, til(' COE's locat ion doc's lIot rPlllHill fix<'d /t'; 

the zoollling ol)('ration changes i, p. the' focal lellgth challg('s. 

6.4 Discussion 

The global J1l0tiOll of 3D surfac('s ill distallt H('('lIPS (,Hptlll'!'c1 hy PTZ (,Hlll('rH,~ is l'Ht i llIut cd ill this 

chapter by a gradient-based tedl1liqll(, (s('d iOIl G.I) Cllld ('wlillflt('d ill a PHil Hnd 1 ilt Hppli('nt iOIl 

in sectioll 6.2 and in a zooIllillg appJicat iOIl in s('ct iOIl (U. TIt<, gradi('lIt-bH.';('d v,lo\)nl IIUlt iOIl 

C'Htilllator c1rv('[oped ill t 1)(' pr('violls chapt pr adoptH tlt(' h i(' rardlical Hlld I'ohust it pra t iv(' approlwlt 

c1ev('[oped in ('hal>tp1' <1 to adclr(,Hs thc' probl(,1lI of noise' and (,OIl{fUllillati()1l by 1Il1lltiple Illotion . 
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In the first application, 3D scenes are captured by moving pan and tilt camera whose visual 

motion is modelled by a single planar motion model. Motion magnitudes with maximum magni­

tude between 10 and 20 pixels could be accurately estimated in datasets containing frames with 

about 300 to 400 pixels in width and height. Motion estimates are produced with an accuracy of 

less than 0.5 pixel deviation from the actual motions. However they are not accurate enough for 

integrated image registration such as background mosaicking applications. If image superposi­

tion is to be performed, this 0.5 pixel maximum error would propagate and background mosaics 

can not be constructed from the single estimated planar model. 

Grabbing frames with a static camera performing zooming operations on a 3D static scene 

make the image velocity at every pixels undergo a single zoom motion model. Cameras are 

manufactured so that the intersection of the optical axis with the image plane, referred to as the 

centre of expansion, COE, is as close as possible to the image plane centre. It is demonstrated 

in section 6.3.1 that this COE is directly available from zoom model parameters. The gradient­

based global motion estimator estimates these zoom models between pair of frames in three 

datasets in the second application using a large number of edge-based pixels, compared to the 

number of samples required in the pan and tilt application. The results with synthetically 

created datasets showed that the COE is estimated to within a few pixels deviation from its real 

position and that in real scenarios, the COE's location varies as the zooming operatio~ changes' 

the focal length, i. e. the mechanical operation performing zoom alters the position of the lens 

relative to the image plane. 



Chapter 7 

'!racking objects in surveillance 

appli~ations 

Visual tracking of objects has been extensively studied for many years. Nevertheless, the prob­

lems associated with tracking remain unsolved since there are many sources of ambiguities like 

shadows, illumination changes, over-segmentation of moving objects and object mis-detections. 

In addition, the high variability often present in the projected images of an object over time 

makes its tracking difficult. This variability arises from three principle sources: variation in the 

objects pose, variation in illumination, and partial or full occlusion of the target. When ignored, 

any of these sources of variability are enough to cause a tracking algorithm to lose its target or to 

mistrack with others. The traditional tracking approaches are reviewed in the first section 7.1. 

Tracking is mainly studied for surveillance applications using stationary cameras as studied in 

this chapter. The traditional approaches construct a background model of the captured frames 

of the static background scene over time. Foreground pixels are then extracted from the back­

ground model and groups of pixels are then formed. This object detection strategy is adopted in 

this study and described in section 7.2. The results show that tracking is successfully performed 

by simple data association rules but a different approach is necessary to track objects when their 

projected images are overlaping. This scenario caused by the occlusion problem is the focus of 

this chapter. Two trajectory model-based trackers and three appearance model-based trackers 

are designed in section 7.3 and compared in 7.6. Although the use of the appearance models 

improve the trajectory model-based tracking, additional information of the objects is needed for 

complete successful tracking during occlusion. 

7.1 Review 

The traditional way to track foreground objects is to segment moving objects which do not 

belong to a constructed model of the background scene as presented in the first section 7.1.l. The 

129 



CHAPTER 7. TRACKING OBJECTS IN SURVEILLANCE APPLICATIONS 130 

background scene is built statistically over time and pixels which do not belong to the statistical 

models of the background are classified as foreground pixels which are then grouped spatially 

together to form the foreground objects also referred to as blobs. Establishing correspondence 

between the previously analysed objects with the newly detected blobs is the main difficulty in 

tracking efficiently these objects. In order to do so, trajectory models and appearance models of 

each objects are updated in time from the new observations. Traditional tracking is described 

in section 7.1.2 and section 7.1.3 focuses on the main contributions in the literature to improve 

tracking during occlusion. 

7.1.1 Object detection 

Traditional change detection algorithms segment foreground pixels from a constructed over 

time background of the stationary scene. Background models are usually construct.ed from 

either a mixture of Gaussian distributions of the intensities received at each pixel or from 

a Kalman filtering approach to model the background pixels. Other techniques are able to 

build models of the shadows caused by the foreground objects which are otherwise detected as 

foreground objects. The use of a Bayesian-based classifier (see Appendix C) can also allow for 

the segmentation of the foreground objects based on probability thresholding [60, 109]. 

Background modelling 

Most of the tracking methods that perform change detection employ either a mixture of Gaussian 

models or a Kalman filtering method to model the background scene. Stauffer and Grimson 

[30, 122] have introduced the widely used concept of multi-Gaussian mixture model [46, 93, 106]. 

In this method, the grey-levels of the background reference image are modelled as a mixture 

of Gaussians and an on-line approximation is used to update the model whenever a npw frame 

is captured. The Gaussian distributions of the adaptive mixture model are then evaluated to 

determine which models are the most likely to result from the background process. Each pixel 

is classified based on whether the Gaussian distribution which represents it most effectively 

is considered part of the background model. This mixture of Gaussians represents one the 

major contribution in adaptive background estimation. An improvement, presented in [78], hilS 

been added to the mixture of Gaussians technique. The method of Grimson et al [30] sutTers 

from slow learning when the algorithm starts, especially in busy environments. In addition, it 

cannot distinguish between moving shadows and moving objects. The new approaeh improves 

the classical method by using a method based on EM (Expectation Maximisation) where the 

optimisation scheme used to fit a Gaussian mixture model is done by the EM algorithm. 

The other major technique used to model the background image is based on a Kalman fil­

tering approach [84, 85]. As performed with the mixture model method technique, the Kalman 

filtering technique also adapts to the changing illumination occurring in the background. Other 

approaches, such as [108], are acquiring statistics of image pixels (essentially mean and covari-
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ance) in 3D colour space in order to build a confidence background map to guide the segmen­

tation of the foreground objects. An interesting alternative way to estimate the background is 

presented in [109] where robust statistical filters model the background pixels using L-filters (Le. 

a linear combination of the ordered grey-level samples of the image sequence). 

Shadow suppression 

Statistical-based methods are not only used to detect foreground pixels but they can also be 

used to overcome the problems caused by shadow [54, 78, 107, 109]. However, shadows often 

have the same characteristics as illumination changes of background surfaces and hence shadows 

can be modelled as semi-transparent regions for instance. To tolerate for the shadow, which are 

detected as foreground objects, frameworks raise a dedicated threshold. This threshold should 

be low if the variance of the estimated background values over time is low and vice versa. 

Motion detection 

The simplest way to separate the foreground pixels from the background pixels is to apply 

thresholds on the differences between the grey-levels of the background reference frame and the 

new ones of the captured frame i.e. the current frame. However, these empirical thresholds 

are often estimates of a probabilistic classifier which aims to calculate the highest probability 

that a pixel difference in absolute value belongs to a foreground, background or shadow pixel. 

The probability estimation is calculated using the Bayesian'S rule i.e. a Bayesian classification. 

Using Gaussian distribution of the background noise, the threshold becomes easy to estimate 

by the use of a Bayesian classifier provided a reasonable estimation for the prior probabilities of 

background and foreground pixels are provided - Appendix C. 

7.1.2 Object tracking 

Typical tracking methodologies use a hypothesise, validate and update framework as illustrated 

in figure 7.1. The history of the information of each tracked object (posit.ion, velocity, blob 

dimension, colour-chromatic models etc) projects a prediction of this information ont.o the new 

incoming frame: the hypothesise phase. Each predicted object is compared with all new seg­

mented foreground blobs from which a best match criterion validates the best candidate: the 

validate phase. Finally, the information of each object is updated with the new blob information: 

the update phase. 

Trajectory model 

Each active scene object has an associated trajectory model which describes the current posi­

tion, velocity and possibly the acceleration of the object in image coordinates. An alternative 

coordinate system set on the ground plane may be a more appropriate space for tracking [106J. 
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Modelling the trajectory of objects p rmits a beLler matching process between segmented ob­

jects and becomes of a great importance when everal objects occlude e ch oth r and cannot be 

separated from the s gmentation procedure. In many sc nario , the mov ment of objects can be 

predicted and a model can be approximated. For example, the direction of moving cars rarely 

change drastically from one frame to another and certain motion dir ctions can be eliminated. 

Appearance model 

In addition, each object has an associated appearance model which may be used to id ntify these 

blobs with the most similar shape and/or chromatic structure. Such appearanc models may 

simply describe the expected width and height of the obj ct's bounding box, or r cord the pixel 

grey-levels within the bounding box. Mor sophist icated models may I' cord th cont.our [116], 

binary pixel shape [73, ], or spatia-chromatic stru tm [22,31]. Mor dynamic variants of the 

appearance model may simply d cribe the rate of change of th s bounding box dimensions 

[102, 105] whi le active or stati tical appearallce model may att mpt to learn th variations in 

object appearances [72, 113]. 

D ata association 

Each active scen object, after being pr diet d onto t h current fram , is va.lidated by locating an 

appropriate corr sponding ob ervaLion - i.e. blob - from th list of candidat.e obs rvaLions: thi. 

correspondence process i also re~ rred to as data a sociation [12]. Greedy matching i a conlJnon 

local approach for stabli hing corre pond nc wher th closest ob ervation to th predi ted 

position of an object i cho en as b t COlT ponden c. In a.ddition to incorporating appearanc 

information, more sophisticat d global approachs at t mpl to enforce th uniqueness con t raint 

by conSidering all po ible object-observation pairings [J 1, 101]. nmat ch d ouservat ions Illay 

be used to hypot.hesis new obj cts app aring wilhin the sc ne. 
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Updating 

During the update phase, the position and appearance of each corresponding observation is used 

to update the trajectory and appearance model of validated scene objects. Typical update mech­

anisms include the a - f3 filter and the Kalman filter described in section 7.3. Fundamentally, 

the tracker maintains the temporal coherence of object identities. 

7.1.3 Occlusion reasoning 

The work carried out for visual surveillance contributed to improve the tracking correspondences 

when occlusions occur, also referred to as occlusion reasoning. Occlusion refers to two distinct 

processes: the static occlusion and the dynamic occlusion. Dynamic occlusion occurs when at 

least one foreground object occludes other foreground objects. Hence all these objects cannot 

be segmented into individual blobs by the traditional on-line hypothesise, validate and update 

method previously introduced. Partial occlusion is caused when a foreground object is being 

occluded by a static object belonging to the background scene. The generation of depth map 

of the background frame greatly improves tracking. For example, objects can be assumed to be 

moving on a ground plane only; enabling a depth ordering and a better estimation of the tracks 

[106]. However, the problem of correspondence is not as problematic in partial occlusion cases 

as in dynamic cases. 

All existing trackers can only cope with moderate levels of occlusion, and most of them 

cannot cope well when moving objects leave the group of merging objects in different directions 

with which they entered. The longer an object merges int.o a group, the more difficult its 

tracking. While the use of appearance models, such as shape or chromatic texture models, are 

vital to establish temporal coherence of object identity, robust real-time implementations are 

not currently available for the computing platforms used in the visual surveillance research. 

Alternative solutions to address the occlusion problem in tracking have been proposed. Ros­

ales and Sclaroff [108] use a Kalman filter, Khan and Shah [81] segment object into similar colour 

classes and Colins et al [104J use a normalised colour histogram for each objects. Anzalone and 

Machi [5] use two combined methods. The first method uses a mixed parametric and fuzzy logic 

approach to compute distances among objects in feature space and to assign to each association 

an affinity index. The second method uses Kalman filtering. Recently, Haritoaglu et al [71] im­

plemented a real-time human-tracking system and suggested a multi-camera system to analyse 

occlusions. Occlusion reasoning stages can consider the longer term history of each track to 

appropriately introduce merge and split operations and re-establish correspondence caused by 

occlusion or fragmentation [46J. 
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7.2 Detecting moving objects 

The detection of moving objects aims to generate bounding boxes, or blobs, of the moving 

foreground pixels. This detection is performed through two steps. First a statistical model of 

the background scene is constructed from all the captured frames via a multivariate Gaussian 

distributions technique and allow the segmentation of foreground pixels within a scene. This 

technique is referred to as the Stauffer and Grimson technique [30] and is decribed in the first 

section. The second step consists in grouping the foreground pixels into sets of individuals 

blobs. The technique descibed in section 7.2.2 projects iteratively the spatial distribution of 

the foreground pixels into histograms which are subsequently split into blobs. These foreground 

blobs are then associated to the corresponding objects in section 7.3. 

7.2.1 Foreground segmentation 

In most systems the first step in tracking objects is to separate the foreground from the back­

ground i. e. motion detection. This means to detect the regions of independently moving ob­

jects regardless of their speed, direction or texture. Moving objects are assumed to occlude a 

background captured from a single and stationary CCD camera with fixed focal length. This 

assumption is almost valid in most indoor scenes that are artificially lit. However, it is rec­

ommended to update the scene background actively to accommodate for variations caused by 

shadows or reflections that might yield false interpretation of events. 

The background estimation process relies on identifying the parts of the image that belong 

to the stationary background in successive video frames. Hence, updating the reference image 

with the recent grey-level patterns is necessary to insure that it represents the manner in which 

the scene background is changing. Therefore, the estimation of the scene background relies on 

the robust classification of image parts as being foreground or background regions. An initial 

method for creating an adaptive background is to average the image grey-levels over time, cre­

ating a background approximation which is similar to the current static scene except where 

motion occurs. While this is effective where the background objects are visible for 8 significant 

portion of the time, it is not robust to scenes with high concentration of moving objects. It also 

recovers slowly when the background is uncovered by moving objects or when illumination in the 

scene changes. A thresholding technique can be then applied between the averaged background 

grey-level Backt(x) and the captured frame grey-level It(x) to segment foreground pixels where 

x is a pixel location and t denotes the current time. For example, foreground pixels can be 

detected if the absolute difference between the frame and the background is greater than an 

empirical threshold: lIt (x) - Backt(x)1 > threshold. This technique can be very sensitive to 

noise for a low threshold or can perform very poorly for a too high value of the threshold. A 

threshold on the contrast grey-level changes, e.g. 11,(xJ:~~[:)(x)l, is a more suited approach to 

overcome such problems, but it is nevertheless sensitive to light changes in dark regions of the 

image. 
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The technique used in this chapter to build the background reference frame uses the Stauffer 

and Grimson technique [301 to model the grey-level values of each pixel as a mixture of Gaussians. 

Based on the persistence and the variance of each of the Gaussians of the mixture, they determine 

which Gaussians may correspond to the background grey-levels. Pixel grey-levels that do not 

fit the background distributions are considered foreground until a Gaussian includes them with 

sufficient, consistent evidence supporting it. For example, if each pixel result from a particular 

surface under particular lighting, a single Gaussian would be sufficient to model the pixel values 

while accounting for acquisition noise. If only lighting changed over time, also a single, adaptive 

Gaussian per pixel would be sufficient. In practice, multiple surfaces often appear in the view of 

a particular pixel and the lighting conditions often change. Thus, multiple, adaptive Gaussians 

are necessary (typically around 5). 

The mUltiple Gaussian system adapts to deal robustly with lighting changes, tracking through 

cluttered regions, and introducing or removing objects from the scene. Slowly moving objects 

take longer to be incorporated into the background. Repetitive variations are learned, and a 

model of the background distribution is generally maintained even if it is temporarily replaced 

by another distribution which leads to faster recovery when objects are removed. The imple­

mentation details are described in the remaining of this section. 

The Stauffer and Grimson's reference background image is updated each time a new current 

frame is captured. Each background pixel is associated with a maximum of 5 Gaussian models. 

The Gaussian density grey-level function of mean intensity J1.t and standard deviation Ut for the 

new captured grey-level It{x) at location x is formulated as 

1 (ldxl-,.c)2 

T](It(x)!J1.t)= Mri e- 2 .. : 

v 2TIUt 
(7.1) 

Every new pixel grey-level It(x) is checked against all the existing Gaussian distributions until 

a match is found. The matched model is the distribution which gives this minimum absolute 

difference IIt{x) - J1.t-ti provided that this difference is within three st.andard deviat.ion Ut-l of 

this distribution (where lies more than 99% of the data). If no matched distribution is found, the 

least probable distribution giving the least density function is replaced wit.h a new dist.ribution 

with mean value set to It(x), an initially high variance is set to 3 and a low prior weight of 0.1. 

Each distribution is associated a weight which gives the proportion of the data that is account.ed 

for each distribution. I'Ience, the more matched a distribution, the more important its weight. 

The weight of each distribution is updated at time t using the following equation 

{

{I - O)Wt-l + 0 if matched model 
Wt= 

(1 - O)Wt-l else 
(7.2) 

where 0 is the learning rate of the algorit.hm of minimum value 0 and maximum value 1. lienee 

a matching model sees its weight increases quickly with high learning rate. The mean and 
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to extract these blobs, however, an alternative technique based on histogram projection [55J and 

described in the next section 7.2.2 is used in this application to extract these blobs. 

7.2.2 Extracting moving regions: blob finding 

After all the foreground pixels are segmented from the multi Gaussians background models 

previously described, the blob finding module developed in this section processes them into a 

set of blobs. The task of separating foreground pixels into different blobs is achieved by using 

a projected histogram method [55J. This technique creates histograms by projecting iteratively 

the spatial distribution of the foreground pixels on the horizontal and vertical axis of the blob 

bounding boxes. Having an original blob, an horizontal histogram of size the blob's width and 

a vertical histogram of size the blob's height are created. Each bin of the vertical histogram 

counts the number of foreground pixels across the width of the blob and the same operation 

is performed vertically for the horizontal histogram. One of these two histograms is then split 

into regions where a region is a set of consecutive bins having count.s greater than 1. This blob 

is then split into several sub-blobs which are split according to the regions segmented from the 

second histogram. This two splitting procedures by the two histograms is iteratively repeated 

a few times until splitting is no longer possible. The examples in figures 7.3, 7.4 and 7.5 show 

that only 4 iterations is sufficient to segment the first blob chosen to represent the entire frame 

area. Blobs are segmented with a maximum of 10 iterations. Foreground pixel detection is 

often a noisy process resulting in small noisy blobs segmentation. In order to eliminat.e these 

noisy blobs, a threshold of 7 pixels minimum is performed on the width and height of each blob. 

Therefore if a blob lateral dimension is less than 7 pixels, it is eliminated from the list of valid 

foreground blobs. The results of this filtering process are shown in figure 7.5 where only 2 blobs 

remain as foreground blobs: one being the representative to the walking person and the other 

arises from foreground pixels segmentation noise. 

Examples of segmented foreground blobs from figure 7.2 are displayed in figure 7.6. In this 

example the person walking from left to right has its head segmented into a noisy blob and 

hence eliminated from the list of valid objects, the van behind is segmented into blobs due to 

the static occlusion of the lamp post and the group of persons cannot be segmented from one 

merging blob. In order to avoid these erroneous blob splitting errors, the projected histograms 

are smoothed by a simple averaging process defined in equation 7.7 where bin(i} is the number 

of foreground counts at the ith bin of the histogram and t.he smoothed bin bin' (i) becomes 

b
. '(.) bin(i - 1) + bin(i) + bin{i + 1) 
zn t = 

3 
(7.7) 

The histogram smoothing operation improves greatly the segmentat.ion results as shown in 

figure 7.7 where the left walking person and the van are fully segmented into one blob. It can 

also be observed that the smoothing operation increases slight.Jy the dimension of the foreground 

blobs. The group of persons cannot be split int.o individual blobs due to the occlusion between 
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7.3 Object tracking 

The general aim of a tracking algorithm is to establish the temporal history of an object with 

reference to the set of feature observations (i.e. blobs) extracted from the image sequence over 

time, ideally from the moment each blob appears in the scene until it disappears. The perfor­

mance of a tracking algorithm is directly dependent on the accuracy of the change detection 

between foreground and background objects. The multi Gaussian technique used to build the 

statistical background and to segment foreground pixels allows a reliable segmentation of the 

bounding boxes of the moving objects in a stationary scene. However, as explained earlier in 

this chapter, tracking objects in occlusion scenario remains a difficult task to achieve. Occlusion 

is detected when the predicted bounding boxes of at least two objects are overlapping i.e. their 

areas are intersecting, which positions are predicted from the previously captured frame. 

Two widely used estimators, the a - f3 and Kalman filter techniques, predict object positions 

using previous observations and motion model regardless of the information present inside the 

objects such as grey-level pattern, depth or shape. They usually track object blindly during 

occlusion by the use of motion model assumptions. However, objects are easily mistracked as 

soon as their movements do not fit any predicted motion models. 

The tracking algorithm, overviewed in the first section, predicts and updates object positions 

using two trajectory models described in the second section. Before trajectory models can be 

updated, correspondence between each tracked object and a new observed blob is established in 

the third section. Occluding objects are predicted in the last section. 

7.3.1 Overview of the algorithm 

The tracking algorithm is designed to be a multi-tracking algorithm for the purpose of evaluat­

ing and comparing during occlusion the two motion model-based filt.ers (the a - f3 and Kalman 

filter) and three appearance model-based estimators (the correlation, region matching and hy­

brid estimator). Figure 7.8 illustrates the tracking algorithms where object positions are first 

predicted before being associated with a new observation during the data association process. 

In the case where a tracked object is predicted to enter an occlusion process where several tracks 

are associated with one same observation, three appearance model-ba.<;ed techniques at.t.empt.s 

in the next section 7.4 to recover the lost information. 

7.3.2 Trajectory modelling 

As previously explained, tracking is performed via three steps: the prediction of the object 

position in the current frame, the correspondence between tracks and the new observed blobs 

and finally the update of the tracks trajectory models with the new observed posit.ions. The 

motion model is chosen to have in this study a zero-acceleration and is implemented into an 

a - f3 and Kalman filtering process as follows. 
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The a - {3 and Kalman estimators predict the position of the tracked objects, each denoted Bt. 

at capture time t from their previous positions in the image (at time t - 1) using the classical 

velocity v equation v = Bx/at and the acceleration a equation a = Bv/at respectively. A zero­

acceleration model is used in this study meaning that velocities remain constant and objects 

positions are predicted with no acceleration influence as defined in the next equations 

iit = 0 

Vt = Vt-l 

Xt = Xt-l + At Vt-l 

(7.8) 

(7.9) 

(7.10) 

where At is the time interval between frames assumed constant and set to 1 and ii, v and x 
are the predicted acceleration, velocity and position vectors respectively. The a - {3 filter, also 

known as a - {3 - 'Y filter updates the position, velocit.y and accelcrat.ion terms with a smoot.hing 

operation scaled by an a, {3, and 'Y coefficient respectively. Because the acceleration is set to 

zero at all times, the updated position and velocity of the tracked objects are calculated using 

the new observed blob position x; by 

(7.11 ) 

(7.12) 
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In this study a is set to 1 and f3 is set to 0.7 meaning that the position is not smoothed with 

the predicted position but is always set to be the new observed position whereas the velocity is 

smoothed with a coefficient of 0.7. 

The Kalman filter 

The Kalman filter, described in detail in Appendix B, is a statistical estimator which estimates 

object positions according to covariance built over time from the errors recorded between the 

predicted and measured positions. Similarly to the a - f3 filter, the Kalman filter is implemented 

with the same zero-acceleration model. Recalling the formula of the predicted state Pt in 

appendix B and the predicted observation vector Xt respectively from the previous state vector 

Pt-l: 

where 
1 At 0 

0 1 0 
A= 

0 0 1 

0 0 0 

Pt = Apt-l 

Xt = Hpt 

0 

0 
,and H= [: 

At 

1 

0 0 

0 1 ~ 1 

(7.13) 

(7.14) 

(7.15) 

with P = [x,u,y,vlT, the state vector, x = [x,ylT, the observation vector, and v = [u,vlT, the 

velocity vector. Given a known previous state Pt-l and a new observation of the object position 

Xt, the state vector P and covariance P are updated by 

Pt = Pt + K(xt - Hpt) 

Pt = Pt - KlIPt 

where K is the Kalman gain defined by 

and the state covariance is predicted by 

(7.16) 

(7.17) 

(7.18) 

(7.19) 

and Q and R are respectively the covariance error of the stat.e process and of the measurement 

process and are empirically set by the following equation where Wand II are respectively the 

width and height of the rectangular blob. 

0.3 0 o o 

o 0.3 0 0 

o 0 0.3 0 

o o o 0.3 

1 [II 0 1 ,and R~ (; 0 W (7.20) 
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7.3.3 Data association: blob matching 

Blob matching is performed using a simple rule where a predicted track is associated with an 

observed blob which bounding box gives the largest area of overlap with the tracked object's 

bounding box. If there is no overlap with any of the observed blob, the tracked object is 

assumed to have entered a static occlusion (the object is totally occluded by objects belonging 

to the static background). In such cases, the tracks positions are updated by the trajectory 

model until the object reappear in the scene. In the case the predicted object does not match 

the re-appearing object, a new track is instead created and the old track is eliminated after a 

time-to-live threshold. 

7.3.4 Occlusion prediction 

Segmented blobs represent groups of foreground objects that cannot be separated into individual 

objects when occlusion occurs. Occlusion is here detected when at least two predicted tracks 

bounding box overlap with each other. A track is in an occlusion scenario when it is either 

occluding one or several predicted tracks or it is being occluded by one or several predicted tracks. 

Hence, the occlusion problem causes correspondence ambiguity in establishing correspondences 

between several tracks with the same observed blob. This matched blob that merges several 

objects is here referred to as the merging blob. 

7.4 R:ecovering occluded observations using appearances 

When a tracked object is not in an occlusion scenarios (no bounding box overlapping with other 

tracks - section 7.3.4), this track's position is updated with the new observation according to 

trajectory models described in the previous section. However, when occlusion occurs, three 

appearance model-based tracker attempt to recover the information lost in the merging blob. 

These three estimators predict positions by the use of the grey-level information present in the 

merging blob and are the 

correlation technique, the 

region matching technique and the 

hybrid technique. 

The positions of the tracked objects in occlusion are then updated with one of these appearance 

model-based estimators as described in the three following sections. 

7.4.1 Correlation estimator 

For each tracked object, St denotes its predicted bounding box located at the predicted position 

Xt and B; denotes the bounding box of the corresponding observed blob in current image 
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(matched by the data association process of section 7.3.3) and observed as a merging blob 

(from occlusion prediction in section 7.3.4). The correlation estimator predicts the actual track 

position x; by the pixel position that gives the minimum least-squares match as follows 

X; = argminxEs, { car~(w) x~ (Tr(x') - It(xt + X,))2 } (7.21) 

where St is the set of pixels within the search window, W is the set of pixels within the correlation 

window of size Card(W) pixels and Tr is the template frame constructed from the grey-levels of 

the object bounding box before entering occlusion at time T. The search window St is defined 

as the set of current foreground pixels :Ft which lies within the intersection of the bounding 

boxes of the observed merging blob B; and the predicted object bounding box St of the current 

object: 

(7.22) 

where St and S; represent the set of pixels within St and B; respectively and :Ft is then the set 

of foreground pixels within B;. The set of pixels within the correlation window W is defined 

by all the foreground pixels within this window. If Mr is the set of foreground pixels in the 

frame captured before occlusion i.e. at time T and if T.,. is the set of pixels within the template 

Tr then W can be expressed by 

(7.23) 

7.4.2 Region matching estimator 

The region matching technique predicts position during occlusion using the grey-level content 

of objects. The correlation technique (described in the previous section) is a least-squares 

pixel-based technique that can be easily influenced by noise. The region matching estimator is 

developed as a weighted region-based technique so it is less sensitive to noise. When an object 

is being occluded by another, its appearance, or here the grey-level content of objects, is also 

being from partially to totally occluded. The idea of the region matcher is to improve tracking 

by attempting to match the regions of the occluded objects surviving during occlusions. The 

region matcher consists in segmenting the various grey-level distributions of an object according 

,to the range of textures held in the foreground pixels distribution as described in the first section. 

The second section describes how matching between regions of tracked objects and the regions 

of objects is achieved. The third section finally described how the tracked object position is 

predicted from a sum of weighted region velocities given the results of the previous matching 

process. 

Region segmentation 

A matched blob at time t is segmented into N' regions by a grASs-fire technique, also referred 

to as a connected-component technique [112j, and each region 'Y~, where k = [1 : N'j, consist.s 

of three features: the mean Ilk and variance f7~2 of the region's foreground grey-level and t.he 
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arra A' of Ihr [on'ground pixds distributioll. The segnwllt<ltioll algorillllll firsl COIIlPIlI('s for 

<'a("h forrground pixrl tllp local grry-I<,vpl varianc(' ill <l :!x:l IIl'ighbourllood. TIl<' firsl J"('gioll 

is (Trat('d frolll l\t(' fon'ground pixrl having til(' lowl'st variall(,l'. This rl'gion is IhplI grown by 

111(' grass-fin' tecilniqu(' wit h pixds havillg a grry-I('wl bdollging to tll(' saJll<' CHnssian Illudel 

["rspecling equatioll 7.2"1: 

(7.2 1) 

Once a rrgion is fully groWll. th<' I1rxt rrgioll is growII frolll thr lIoll-visi ted pix('1 having Ill(' 

slIIalirst varicUlc . The process is rrprated \lilt iI all pixels have brrll grollped illto l"('giOllS wil('J"(' 

('arh l"('giou·s feallln's aI"(' lIpdaleclwith t\t<, grc'y-Ipwl anel posiliolls of I hI' IlPW illl rodlJ("pd pix<'is . 

R<'giolls having an'a with widl h all(llwigiJI less thall S('V('11 pix('ls an' t'iiluilralc'd fro Il I I he lisl of 

regions as I hey are most Iikrly to rrprrsrlll Iloisy or I rivial n'giolls. Figlll"C' 7.!l displays pllipsC's 

rc'lu·eseutillg til(' S('couel-orclrr spatial mOllIPllts of I I\(' r<'giolls s<'gIlH'llted frolll lirp S)'lIt irdir fnullC' 

·t\lr P<'rf('cf (Trat('d by ullirorm grey-lrv<,l distriblll ions ane! fr01l1 tIl(' I'('al capl \lI"c'd roregrollll<l 

persoll . tlIr Rear. 

Figmr 7.9: Rpgiow; are correctly se'gllH'IlI('d for sYlll hC'licnl r<'giolls of ·tllr Per/i'cl' (Ipn). Poor 

s('glllrlllaLioll of ' tllr Heal' (1Ilicldll') is oi>lainC'd (righl). 

In Ihis figur('. tlte' pix('ls bdollging to a r<'giol1 an' displH'yc'd with all int<'lIsily ('qlllll 10 thl' IIINIII 

vallie' of Ihe eslillHll('d Gaussiall IIlodeJ. TIl(' Sl'glllC'lItHI iOIl l"('slIlls shows lhat , lIIr1ikp roJ' 't\ l r 

H('al" , t II(' body parts or 'r.. r r Pc'rfed · nre 'pNh·1 Iy' s<'glllC'lll ('d illt 0 t Iwi r corr('spolld i IIg n'giolls. 

Thr('(' (,Olls('cutive rram('s of a fon'ground lIloving vall Hnd t hl"(,(, [OI"('gro1lnd I)('rsons fll"(' shown 

ill til(' figuH's of 7. to alld 7.12 and (h('ir corr<'spoll(lillg regiolls Ill"(' displaYe'd ill I II(' fignre's 7.11 

Hlld 7.1:3 r('sl)('cl ivdy. TII(' !"('slIlls show Ilw sl'lIsil ivily of I hc ' SI'!!,IIH'1I1 al iOIl pro(·('SS wil h \"( ,,,1 

("aptm'd objC'("(s whpl"(' sllIall rC'giolls do 1I0t ]lnsisl ill t ill 1(' whc'n'm; large rq.!,iolls an' IikC'ly 10 h(' 

sc'gllwnt('d ill s('vc'ral ("ons<'('utiv(' frHllws. hadow CH~I hy fOl"('groIlIHI ohjC'('( Oil I he' Imrkl-\rolllid 

s("el1<' is also a probk1l1 <1." il call l"('pn'sc'llt it signilirll1lt 1)('r("('1IIal-\c' of II\(' lolHI ("()\('mg!' of II\(' 

rq!,iolls. Th(' shadow problC'1I1 0[('1l fus('s rpgiolls of oi>jects a~ S('C'II for ('xllIIlplp ill I It(, Illiddl(, 

fralllr of (he s<'glllC'lIted vall (figure 7.11). 
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F igure 7.10: Three consecutiv(' fra m S of th ll10ving van (S('(' figure 7.2) 

F igure 7.11 : Segmented regioJls ( , . 1 

Figm r 7. 12: T hf('(' ("ons('cul iV(' fmlll(, of 11](' group of p( rsoJls 

F igure 7. 13: ('TllH' 1I1 cd n'giolls o f Ih(' llm'(' persoJls (fig\ll"(' 7. 10) 
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Region matching 

Correspondences between the regions of a tracked object and the regions of the matched observed 

blob are achieved by the region matching process. Object regions segmented at time r (before 

occlusion occurs) are matched in each subsequent frame during occlusion at times indexed by t 

with the regions extracted from the observed merging blob. The kth region of the tracked object 

is compared to the lth region of the current blob by the mean of the similarity measurement S 

defined by 

(7.25) 

where the similarity for each feature is calculated as follows 

( fJ) 
- min( 0', fJ) 

S a, - ----':-~~ 
max(O',fJ) 

(7.26) 

and where J.L, (12 and A are the features of the tracked blob (described earlier) and J.L', (1'2 and 

A' are the features of the observed blob. The best match Mk of the kth tracked region is the 

new region giving the following maximum similarity measurement: 

(7.27) 

Object position estimation 

The position of a tracked object in an occlusion scenario is estimated from the match results Ah 

(see equation 7.27) of all the regions 'Yk with k = [1 : N). The actual position is estimated as a 

sum of weighted displacements between occlusion time t and the time preceding the occlusion 

time r: 
N 

x; = Xr + L Wk (C~k - Ck) (7.28) 
k=l 

where Xr is the object position before occlusion, Ck is the position of the kth region of that 

object, Wk is a matching weight defined in equation 7.29 and C~k is the m~h observed position 

of the region which gives the best match Mk (equation 7.27). The weighting of the regions of 

the tracked objects is calculated in equation 7.29 and the weights are then normalised so that 

their sum over all regions is equal to 1. 

TIT A1k Ak 
tYk= N N 

Li=l Mi Li=l Ai 
(7.29) 

The weighting process in equation 7.29 is performed so that large regions (large A) having a 

high similitude with their matched blob's region (high M) participate highly in the estimation 

of the object position. Small size regions or regions with weak similitude with a region of the 

observed blob are poorly weighted and contribute less to the position estimation. 

7.4.3 Hybrid estimator 

The hybrid estimator is designed to improve tracking in occlusion scenarios by combining a 

trajectory model-based tracker with the region matching traeker (previously described). The 
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trajectory model-based estimator is either the a - {3 or Kalman technique. They both blindly 

tracks objects during occlusion according to a predicted motion model. The region matching 

technique attempts to track objects during occlusion by tracking segmented regions of uniform 

textures. When the content of an object is highly occluded by another object, regions are 

likely to be poorly matched with previously segment regions and mist racks easily occur. The 

hybrid technique relies on the fact that when such mistracks occur, the trajectory model-based 

tracker intervenes to provide a better predicted position. Because of the position uncertainty 

associated with both estimators, the correlation cost function is calculated within a small regions 

of 11 x 11 pixels around these predicted positions. This small search window also ensures that 

the predicted track remains within the vicinity of their expected positions. It will be shown in 

section 7.6 that both a - (3 and Kalman techniques perform similarly and that the Kalman filter 

is chosen as default trajectory model-based estimator. The object position is predicted by the 

hybrid estimator by 

x; = argminx={ x;<') ,x;<r)} { car~(W) ~w (T.,.(x') - It (x + X,))2 } (7.30) 

where x;(k) is the position predicted by the Kalman filter (equation 7.14), x;(r) is the position 

predicted by the region matching technique (equation 7.28) and W is the set of foreground pixels 

present in the template of the tracked object expressed in equation 7.23. 

7.5 Summary of the tracking algorithm 

Traditional object tracking is performed by using a trajectory model-bASed position predictor. 

Two trajectory model-based estimators are implemented in section 7.3.2, an a - {3 and Kalman 

filtering technique. Both produce highly accurate and successful tracking for each objects. 

However, when objects enter occlusion, where their corresponding foreground pixels are non­

separable into individual blobs, motion model-based tracking is unreliable since the tracking is 

performed blindly i.e. irrespective of the object contents. 

Three appearance model-based estimators are designed in section 7.3 to tackle the occlusion 

problem by using the grey-level information held by the tracked objects. The first estimator 

predicts object position during occlusion by using the traditional cross-correlation technique 

to minimise the sum of the square differences between grey-levels of the foreground pixels. 

The second estimator is the region matching technique which estimates positions by matching 

segmented uniform grey-level regions. The third technique, called the hybrid technique, is an 

hybrid technique of a trajectory model-based estimator and the region matching technique. It 

aims to use one technique when the other fail in tracking occluded objects and vice versa. 
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7.6 Evaluating tracking with tationary am -ra 

Six obj<,cts af(' tracke \ by til{' tracking framework elesniilC'el pr!'violls\y. Their Iracks ar!' ('val­

uated ill two srC/u('IlC(\ capllll"C'C\ by two slI1"V('illall("e CHlIl('nt.'! in all ouldoor ('IlVirOIIlIl('IlI. Th(' 

two dat asC't~ arc presented in sectioll 7.6.1 with lite ground-Imlh hounding box('s of ('Hch object. 

This section also explaills how each groulld-tmth track is aSHociat(,d wil It t h(' o/)se\,v('d I rack by 

a best similarity lII('asur('IlIcnt. Two llletrics. defiucd ill sc("[ioll 7.6.2, IlH'HSU\"(' the t rackillg P('\'­

forma11("c of ea·1t obj('ct. TIl(' first 011(' ll1('al'iut"('s tlte lif('- I illl(' of t iJ(' grolllld- I mt It I racks durill l!, 

occlusion i.e. tll LimE' tracks m'(' associatt'd with the Salll(' 3D oi>j('cl, and I he s('colld llIel ric 

IlI Ca.~ Ur('S how [m' Ill(' trackH m'(' to tlt('ir grollnd- truth positions. TIl(' Inmlts pn's(,lll ed ill seel iOIl 

7.6.3 show t.hat th(' n - f"l etllel KalJIIHu fiil<'rs p!'rfol"\ll sil\lilarly ill I racking obj!'ds. AI! hOllgh 

objects an' moving cOllsistC'lltiy from fralll(, I () fralllC'. 1110s(' I wo I raj !'el ory 1I10d('i- lJas('<l I rack('rs 

oftcll fail in tracking objccls slIcc('ssfully in OCclllSiol1. The lise of I h(' Ilm'(' appearHll('C' llloC\(,I­

based trackers (d('V(' lop<,d ill section 7.4) illlproV('s 111(' I racking re~.;ults hul per[(ll"lll c\if["(,l"eutly 

depending 011 thc' occlusioll dellsity ami I Ill' objects clt a rart ('risl ics ill oCc\IlSiOIl. 

7.6. 1 D atasets and ground-truth 

n 'acks obi aillcd after thc data associal iOIl proccss desnii)('(\ ill sc('1 iOll 7.:.1 ar(' ('valttnl<'<1 f1g;ainsl 

ground-I ruth dala. TIl(' ground-trulh foreground pix!'ls arc' nol provided, however all inlC'rfac!' 

allowed til(' drawing of titc' boundiug boxes of the' groulld-Irulh I racks. Figll!"!' 7.1-1 displays all 

thc grouud-trnl h positiolls of the . PETS l' aud -PET ':..' dat (I.'.,el Oll a si lIgle fram(' wh('I"(' 01lP 

colour is assigllt'd per track. The object chclnH"leristics ;tn' displayed in lubl' 7.1. r301 It 'PET" 

seqlleu("('s coutaiu I he salll(' six objc'("\s captlll"('el ill 111(' SHUI(' ('uvirolllll('111 hul by I wo <Ii 1\"('1"('111 

("fUlleras. TablC' 7.1 gives c\!'lails aboul the IOlal lIUlul>er of li111('S ('}1·1t ohj('cl J"( ' llmills ill I It(' 

scel1C' alld I he lIulllber of I iul('s o(i) t hC'y are ill all ocC"iuHioll ",hN(' i iH I it(' oiJj('ct illt\('x ill I IIp 

array of objccts. 

Figut"(' 7.l4: Gro11lld-tmlh object posiliolls ill lit!' I(,n : 'P I ~TSI ' fllld righl: ' 1' 1';TS2 ' S('ql1< 'lI( '(' 

Each ground-tnt I h I rack is ('01l1I>a1"<'<1 wil It nil I h!' Ibs!'rV<'d 11"II("k('<I by 111(' 11S(, of n 11\(' 111-

I)('rship functioll d(,fillcd ill e<]uatioll 7.:11. This 111<'1ll1)('rsltip 1IIea.'! l\l"('l1H'1I1 al fl I ill\(' I i><'I W('('lI 
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Total number of Tot.al number of 

Object i Description appearances times occluded: No(i) 

'PETSl' 'PETS2' 'PETSl' 'PETS2' 

1 grey cloth person 544 352 39 29 

2 grey car 256 239 39 33 

3 white van 320 490 68 44 

4 dark cloth person 228 455 201 412 

5 dark cloth person 216 452 211 297 

6 white coat person 189 418 157 410 

Table 7.1: Object characteristics in the 'PETSl' and 'PETS2' sequence 

the ith ground-truth Bf(i) and the jth observed track Bt(j) is equivalent to as a similarity 

measurement in terms of position deviation t:..d~(i,j) and size difference t:..A~(i,j): 

where 

membership ,(i,j) = (1 + t:..d~(i,j))~1 + t:..~(i,j)) 

t:..d~(i,j) = Ilxl(i) - XtWI! 
y!Wf(i)2 + 1tf(i)2 

t:..At(i,j) 
max(Af (i), At (j)) 

(7.31) 

(7.32) 

(7.33) 

The distance error term t:..d' represents a normalised deviation between the observed and ground­

truth track positions Xt and xl respectively. The area error term t:..A' represents a normalised 

difference between the bounding box area of the ground-truth track A9 and the observed track 

A. Therefore large deviations in appearance or posit.ion from the ground-trut.h result in a weak 

membership value and vice versa. The maximum membership value is one and occurs when the 

two objects are totally identical. 

Each ith ground-truth track is associated with the lh observed track giving the highest 

membership result mt(i) among the Nt observed tracks as defined by 

( .) _ { argmax jEP;N.j {membership ,(i,j)} if Nt ~ 0 . _ [ . N J 
mtZ- 'It-I..,. 

NULL else 
(7.34) 

The correspondences between ground-truth and observation are then evaluated by the use of 

two metrics described in the following section. 

7.6.2 ~etrics 

The evaluation of the tracking algorithm is performed via two metrics on the set of correspon­

dences between ground-truth and observed tracked est.ablished from equation 7.34. The first 
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metric AD( i) measures in equation 7.35 the mean deviation dt (i, j) between the ith ground­

truth object position and the position of the matching lh observed object during the occlusion 

life-time denoted Fi i.e. t E Fi. 

AD( i) = O,l( i) 

t E Fi 

mt(i) =I- NULL 

(7.35) 

where mt(i) is the index of the blob giving the best match with the ith object (see equation 7.34). 

The spatial deviation Ad is defined in equation 7.36 and the term O'(i) in equation 7.37 defines 

the number of times the ith track find a match with an observed track during an occlusion. 

tl.dt(i,j) = IIxf(i) - xtWl1 

~ { 1 if mt(i) =I- NULL 
O'(i) = L..J 

tEF. 0 else 

(7.36) 

:5 O(i) (7.37) 

The second metric tl.L(i) evaluates in equation 7.39 the average time the ith ground-truth 

object survives with the same associated observed track in terms of frames number during 

occlusion. For example, if a ground-truth track always has for correspondence the same observed 

track during occlusion, then this track survives indefinitely and tl.L = 00. The minimum average 

time of survival is tl.L = 1 which means that the correspondences of the ground-truth track are 

different at every captured frames. 

tl.L(i) = 

= 

Life - time of ith ground - truth object during occlusion 
Total number of different correspondences of this object 

O(i) 

(7.38) 

(7.39) 

where tl.lt (i) takes a value of 1 if the track with which the ith track is associated with is a 

different track from the previous time: 

l>1,(i) ~ { 

7.6.3 Results 

1 if mt-l(i) =I- mt(i) 

o else 
(7.40) 

In the first experiment, the Q - (3 and Kalman trajectory model-based estimators are compared 

and the results show that they perform similarly during occlusion. The second experiment 

evaluates the three appearance models trackers (described in section 7.4) and shows that tracking 

is improved but still unsatisfactory for successful tracking. 

Kalman versus Q - f3 filtering: finding a trajectory predictor 

The two trajectory model-based trackers developed in section 7.3.2, the Q - (3 and the Kalman 

filtering trackers, are evaluated in this sectioll. Bot.h estimators track successfully all objects 

when there is no occlusion occurrences in the 'PETS' dat.asets. Table 7.1 displays the measured 
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label change rate, or tracking life-time D.L, and associated mean object deviations D.D (see 

section 7.6.2) for the six ground-truth objects presented in section 7.6.1. The first three objects, 

objects 1, 2 and 3, are considered low occluded and of relative high dimensions compared to the 

three last objects. 

a - {3 estimator Kalman estimator 

Object 'PETSl' 'PETS2' 'PETSl' 'PETS2' 

i D.D(i) D.L( i) AD(i) AL(i) AD(i) AL(i) AD(i) D.L(i) 

1 6.55 19 31.81 14.5 14.99 7.8 13.45 00 

2 8.69 19 34.96 33 12.51 39 34.37 33 

3 20.32 17 31.56 44 8.63 68 20.50 44 

4 19.90 11.2 33.35 25.8 20.32 10.1 30.64 25.8 

5 12.65 11.1 28.29 14.9 12.14 12.4 28.61 14.9 

6 20.63 14.3 30.86 25.6 21.01 11.2 27.43 22.8 

Table 7.2: Comparison results of the a- {3 and Kalman trackers during occlusion in the 'PETSl' 

and 'PETS2' sequence 

The D.D results never exceeds a relatively high valu~ of 35 pixels which mean that the 

maximum object position error is of 35 pixels during occlusion for the three first objects. The 

life-time of a track is of minimum 19 frames and maximum 00, therefore successful tracking 

rarely occurs. Generally, the first three objects are slightly better tracked by the Kalman 

filtering technique. 

The a - {3 and Kalman tracker give similar tracking performances for the three last objects 

(object 4, 5 and 6) which are considered highly occluded and of small sizes compared to the three 

first objects. If an average of the results is to be performed for the D.D and AL in table 7.2, the 

Kalman tracker would give slightly better results. Approximately, in the 'PETSI' sequence, the 

last three objects are positioned with a minimum deviation error of 12 pixels and maximum 21 

pixels with a life-time of about 11 frames. In the 'PETS2' sequence, these objects positions are 

positioned with an approximate deviation of 27-30 with life-times between 15 and 26 frames. 

Comparing the results of the Kalman estimator between the three first and three last objects, 

the low occluded objects (the three first objects) are in general better tracked than the highly 

occluded objects (the three last objects). The Kalman estimator seems to be slightly better 

suited for tracking objects than the a - {3 estimator and is compared in the next experiments 

with three appearance model-based trackers. 

Trajectory versus appearance model-based tracking 

The Kalman filter estimates position blindly when occlusion occurs whereas appearance models 

trackers use local grey-level information to att~mpt better tracking. The three appearance 
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model-based trackers described in section 7.4 i.e. the correlation, region matching and hybrid 

trackers are evaluated and compared to the Kalman tracker in table 7.3 for the 'PETSl' sequence 

and in table 7.4 for the 'PETS2' sequence. 

Estimator 

Object Kalman Correlation Region matching Hybrid 

i ll.D( i) ll.L( i) ll.D(i) ll.L( i) ll.D( i) ll.L(i) ll.D( i) ll.L( i) 

1 14.99 7.8 4.60 39 21.18 7.8 15.33 9.8 

2 12.51 39 8.48 39 16.94 5.6 15.34 39 

3 8.63 68 7.44 68 21.27 22.7 14.26 22.7 

4 20.32 10.1 26.24 10.1 22.39 10.1 21.66 9.6 

5 12.14 12.4 17.60 8.1 11.16 14.1 10.74 11.7 

6 21.01 11.2 24.07 8.3 21.79 12.1 18.19 13.1 

Table 7.3: Evaluation results during occlusion for the 'PETSl' sequence 

Estimator 

Object Kalman Correlation Region matching Hybrid 

i ll.D(i) I1L(i) I1D(i) I1L(i) ll.D( i) ll.L(i) ll.D( i) ll.L(i) 

1 13.45 00 27.09 00 35.80 29 27.24 00 

2 34.37 33 18.62 33 27.52 33 25.37 33 

3 20.50 44 25.90 44 23.00 44 22.29 44 

4 30.64 25.8 24.41 27.5 33.23 21.7 31.28 27.5 

5 28.61 14.9 22.73 14.9 35.38 14.1 29.07 15.6 

6 27.43 22.8 33.01 21.6 29.97 24.1 29.05 27.3 

Table 7.4: Evaluation" results during occlusion for the 'PETS2' sequence 

The correlation estimator is the most accurate technique for tracking the first three objects, 

object 1, 2 and 3, in the 'PETSl' sequence whieh are categorised as low occluded objects 

with significant dimensions. For the 'PETS2' results, only the first and the third objects are 

best tracked by the Kalman technique. Hence, the correlation technique St~{'ms an appropriate 

technique for tracking these relatively large and low occluded objects. 

The last three objects, object 4, 5 and 6, are categorised as highly occluded with poor 

contrasted grey-level content in small object dimensions. Because the results of position error 

I1D and life-times I1L are relatively similar for the four different trackers, their performances 

are ranked in function of their life-times results only in table 7.5. A technique is ranked first 

if its corresponding ll.L is the highest compared to the other techniques for a given sequence 

and vice versa. In this table, the Kalman, correlation, region-matching and hybrid tracker are 

represented by Klm, Carr, Rm and Jlyb respectively. 
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Rank of performance 

Object 'PETSl'sequence 'PETS2' sequence 

pt 2nd 3d 4th 1"t 2nd 3d 4th 

4 Klm Rm Corr Hyb Corr Hyb Kim Rm 

5 Rm Klm Hyb Corr Hyb Corr Kim Rm 

6 Hyb Rm Klm Corr Hyb Rm Kim Carr 

Table 7.5: Evaluation results during occlusion of the 'PETS' sequences 

Table 7.5 shows that the estimators have varying ranks with the different objects and se­

quences. The region-matching techniques has a good ranking with the 'PETS1' sequence but 

it has a worse ranking in the second sequence whereas the opposite is observed for the hybrid 

technique. An average of the life-times in the first two tables gives the following ranking: the 

region-matching is 1st, the hybrid is 2nd, the Kalman filter is 3rd and the correlation is last 

for the 'PETS1' sequence. The hybrid is 1st, the correlation is 2nd, the Kalman filter is once 

again 3rd and the region-matching is last for the 'PETS2' sequence. The hybrid technique is 

ranked 1st and 2nd in both sequences and seems to be a slight.er bet.ter tracker than the others 

for these three highly occluded objects whereas correlation gave the best tracking results for the 

low occluded objects. 

The first three objects displaying larger dimensions with more contrasted grey-level content 

and less occluded than the last three objects are better tracked than these latter objects. The 

correlation tracker gave the best results for the low occlusion case whereas the hybrid tracker 

gave the best results for the higher occluded case. However, all of these six objects are mistracked 

during occlusion, therefore additional information is necessary for complete tracking. 

7.6.4 Discussion 

The performances of the two trajectory model-based trackers, the Q - {3 and the Kalman tech­

nique, are very similar. Although they successfully track objects, they fail to track objects 

during occlusion scenarios where information about object positions is lost, or more precisely 

hidden. The Kalman filter technique has a slight disadvantage o~er the Q - {3 filt.er since it 

requires several frames before tracking accurately fast accelerating objects when they appear for 

the first time in the scene. However, this disadvant.age does not prevent t.he Kalman est.imator 

to perform slightly better than the Q - {3 technique. 

The Kalman tracker is then compared to three appearance model-b!l.<;ed trackers i.e. the 

correlation, region matching and hybrid estimat.or which attempt to recover the hidden object 

positions during tracking by using the grey-level cont.ent of these objects. The comparison result.s 

showed that the trackers performances vary with the nature of the objects, more specifically, 

their occlusion densities, their dimensions and their pixel grey-level cont.ents. When objects are 
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low occluded, the correlation technique was the most perform ant technique. However, when 

occlusion density of small and poorly contrasted objects increases, all the trackers gave similar 

and poor performances with slightly better results with the hybrid technique. 

The occlusion problem remains a sensitive issue in tracking objects but can be properly 

addressed when additional cues are integrated in the appearance models. Cues such as colour 

information, shape models and depth of objects would for example improve greatly the tracking 

results. 

7.7 Conclusion 

A multiple tracking framework is developed in this chapter to attempt to address the problem 

of occlusion which cause most tracking algorithms of the literature to fail to track objects 

successfully. This problem occurs when 3D foreground objects in a static scene interact in a 

way that their projected images overlap on the 2D plane of the camera. Before being tracked, 

foreground objects are segmented from the background scene from the two steps procedure 

described in section 7.2. First, a statistical background reference frame is built over time by the 

Stauffer and Grimson's multi Gaussian technique. The foreground segmentation is performed 

by the multi-variate technique was shown noisy but accurate enough to allow in the second step 

the grouping of the foreground pixels into individual clusters, referred to as blobs, by a projected 

histogram technique. 

The occlusion problem causes the foreground object segmentation technique to fail to sepa­

rate the groups of merging foreground pixels into individual blobs during occlusion. Recovering 

the objects positions lost during occlusion is the aim of the data a...-,sociation module described 

in section 7.3. Two trajectory model-based trackers, a zero-acceleration a - /3 and Kalman tech­

nique, successfully track objects when there is no occlusion. However, when occlusion occurs, 

they easily mistrack objects as they blindly track them according only to motion models. 

The Kalman tracker is shown to give slightly better results than the a - /3 tracker and is 

then compared to three appearance model-based tracker which attempts to recover the lost 

information of the objects during occlusion. The first technique is the correlation tracker which 

uses a least-squares approach to minimise grey-level similitude between objects to predict the 

best position. This estimator is sensitive to noise and performs relatively well only for low­

occluded objects with significant and distinctive grey-level distributions. The second technique is 

the region-matching tracker which is designed to match segment.ed grey-level distributions. It is 

design to overcome the noise problem of the correlation technique when objects are significantly 

occluded by other objects. This technique is not performant in segment.ing accurately the 

different regions of small captured objects and, in general, it does not give better tracking 

results than the correlation technique. The third technique is the hybrid tracker, designed to 

switch between the Kalman position estimates and the region-mat.ching estimates. These three 

techniques gave similar performance and all fail to accurat.ely estimat.es alt.hough a slightly 



CHAPTER 7. TRACKING OBJECTS IN SURVEILLANCE APPLICATIONS 156 

better performance was obtained with the correlation tracker for low-occluded objects and by 

the hybrid tracker for highly-occluded objects. Nevertheless, although the amount of evaluation 

data is too poor, similar observations and results are expected to occur with more intensive 

evaluation and additional information such as colour, shape and 3D object positions is required 

for successful tracking. 



Chapter 8 

Detecting objects with pan and 

tilt cameras 

Detecting foreground pixels when PTZ cameras are moving cannot be performed as reliably as 

when cameras are stationary as demonstrated in the previous chapter where a reliable modelling 

of the background is possible by a multi-variate technique. In the first application descri~ed in 

this chapter, cameras are allowed to move in any direction and only the focal length remains 

fixed. The first section reviews the main techniques developed in the literature to perform motion 

estimation in order to compensate for global motion induced by the camera's motions. Motion 

compensated background allows the segmentation of the foreground motions, also referred to as 

the local motions. 

An overview of the foreground objects detection algorithm is given in the second section 

which describes how moving objects are detected in section 8.4 using thresholding between the 

captured frame and a motion compensated background reference frame. The results, displayed 

for three sequences in section 8.6, show a relatively accurate segmentation of the moving objects 

but with high associated noise. A foreground edge-based segmentat.ion is also developed in 

section 8.4 which allows a significant filtering of the noisy moving objects in the frame. Before 

the entire segmentation process is repeated, the background reference frame is updat.ed using 

an averaging grey-level approach described in section 8.5. 

8.1 Review 

Foreground objects captured by surveillance moving PTZ cameras are mostly detected when the 

global motion associated with the static object of the background scenes is estimated. Global 

motion estimation is an image registration technique which aims to find a general relationship 

or transformation between images. The techniques and applications of image registration are 

reviewed in the first section and the second section concentrates on reviewing the techniques 

157 
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used to segment and track objects captured by moving PTZ cameras. 

8.1.1 Image registration 

Image registration is an important problem in computer vision [24J, from remote sensing ap­

plications [2, 142J to medical image analysis applications [7, 50, 51J. The key step of image 

registration, also known as spatial normalisation (SPM), is to find the spatial transformations 

of objects such that features between two or more images taken at different times, from different 

sensors or from different viewpoints, give maximum similarities. 

The relationship between images may correspond to a single global transformation, as in the 

case of different views of a static planar surface for example, or to a spatially varying transfor­

mation field, possibly including discontinuities, as in the case of a non-static scene. In either 

case, the registration problem is a difficult one and often complicated by such things as occlu­

sions, ambiguous matches and the presence of observation noise and distortion. The task Gan be 

eased by using knowledge of the imaging process to constrain the class of transformation field 

being estimated. The simplest example is to assume that the motion field is translational. This 

assumption is sometimes a reasonable assumption in remote sensing areas that basically involve 

the identification of many control points in the images. The increased volume of satellite images 

has reinforced the need for automatic image registration methods. A more general approach is 

to assume that the images are related by a six parameter affine transformation, corresponding 

to dilation, rotation, shear and translation. A wide variety of registration techniques have been 

developed for different applications as the ones previously mentioned. These techniques may be 

classified into: 

• correlation methods 

• gradient-based methods 

• Fourier methods 

• landmark mapping and, 

• elastic model-based matching 

The correlation methods are generally limited to registration problems [142J in which images 

are misaligned by only a small rigid transformation. In addition, the peak of the correlation may 

not be clearly discernible in the presence of noise. Fourier methods [53, 66, 86J are the frequency 

domain equivalent of the correlation methods. Fourier methods make use of the translational 

property of the Fourier transform and search for the optimal spectral match between two images. 

However, Fourier matching methods are also limited to registration problems wit.h small rigid 

transformations. If there exists spatially local variation, then both the correlation methods and 

the Fourier methods would fail. Gradient-based met.hods use the grey-level changes in the spatio­

temporal domain to measure motion (see chapter 6). Moreover, such gradient-based techniques 
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allow for the implementation of a motion model which account for the small rigid deformation 

problem previously mentioned and a better matching is usually obtained. Because computing 

optical flow is an expensive process, it is only computed at sparse feature points as achieved by 

Fusiello et at [56] which then reject feature outliers by using robust statistics. 

For cases of unknown misalignment type, landmark mapping and elastic model-based match­

ing techniques [2, 50, 51) may be used to tackle the registration problem. Landmark mapping 

techniques extract feature points from a reference image and a target image, respectively, and 

then apply a piecewise interpolation to compute a transformation for mapping the feature point 

sets from the reference image to the target image. When such transformations are not appli­

cable to the selected features between a set of frames, the alternative method of greedy search 

is deployed. The widely used RAN SAC technique is a robust technique that matches the best 

features and iteratively rejects outliers as used by Matas et al [90) and Clarke et al [35]. 

Elastic model-based matching techniques are similar to feature-based techniques. Altinalev 

et al [2J detect object contours as features and are registered with cross correlation matching 

to compute scale and translation. Ferrant et at [50, 51) generates a bie-medical model for the 

cortical surface of MR (Magnetic Resonance) images as elastic bodies. When small strains occur 

on the surfaces, they can be modelled as linear elastics and are represented as tetrahedral mesh. 

Surveillance image registration focuses on registering pair of successive images captured as 

the camera moves. The motion associated with the dominant background scene is generally 

modelled by affine transformations. The registration of such motion is equivalent to motion 

detection and the foreground objects are detected via. motion compensation defined below. 

Motion compensation 

Registering the complex motion associated with the stationary objects captured by a moving 

camera is achieved by a motion compensation technique. The motion due to object movement is 

referred to as local motion or object motion, and the motion due to camera motion or operation 

is referred to as global motion, as it represents the majority of the entire motion present in the 

scene. Motion compensation is achieved by a technique known as global motion estimation or 

CME (see chapter 5), and the process of motion compensation is referred to as global motion 

compensation or CMe. These techniques consist mainly in rejecting the local motions which 

contaminate the GMC. 

GMC is an important tool for a variety of video processing applications, including for instance 

segmentation and coding. The basic idea is that a part of the visible 2D motion within video 

sequences is caused by camera operations. A common approach is to model this global motion 

by a parametric 2D model which allows the subsequent segmentation of the local motions caused 

by foreground objects. Tom and Katsaggelos [130] for example use the additional information 

provided by motion compensation to improve a multiple input algorithm [79J in order to enhance 

image resolution. 
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Mosaicking 

Global motion compensation allows the updating of the background reference frame by reg­

istering several background frames. This is performed either on the part of the background 

covered by the camera's view as it moves or on a large mosaic of the background, also known as 

sprite. Mosaicking is the automatic alignment of multiple images into larger aggregates onto a 

common reference plane, [126, 143], and is often applied to video coding applications such as in 

the MPEG4 technique [100]. Babu [9], on another hand, uses the motion vector provided by the 

MPEG compression technique to generate the sprite. Farin et al in [48] improve the resolution 

of the sprite by coding the background as several separate sprites improve the reduction of data 

held in the background sprite. 

8.1.2 Tracking in PTZ imagery 

Object tracking algorithms are typically based on the detection of a particular cue, most com­

monly colours, edges, shapes, textures or feature templates. The application of object tracking 

in video-surveillance has a large range of purposes, from traffic monitoring [83] to human activity 

understanding [42]. 

Koller et al [83] use parameterised 3D models to model the shape of vehicles and an associated 

motion model to track vehicles in stationary scenes. Edge segments are detected within the scene 

and are matched to represent the best fitting vehicle model. Similar work [127] track objects 

using multi-cues features such as colour, edge and texture. Araki et al [6] track object contours 

in moving cameras after motion compensation of the background. The contours are represented 

by active parameterised contour models referred to as snakes. The background affine motion 

model is estimated via the motion estimates of object features given by a block-matcher. The 

LMedS (Least Median of Squares) robust statistical technique separates the foreground features 

from the background features. 

In human activity understanding, colour has been greatly used in machine-based vision 

systems for tasks such as segmentation and recognition. Colour cues have been shown to offer 

several significant advantages over geometric information for certain tasks in visual perception, 

such as robustness under partial occlusion, rotation in depth, scale changes and resolution 

changes. Furthermore, colour processing can often utilise efficient algorithms yielding to real­

time performance on standard hardware. McKenna et al [91] adopt.s a statistical approach 

in which colour distributions are modelled over time by the mean of adaptive colour mixture 

models. These dynamic models estimate an object's colour distribution on-line and adapt to 

accomodate changes in the viewing conditions. They track objects robustly and in real-time 

under variations in illumination, viewing geometry and under varying camera parameters. 

Foresti and Micheloni [52] deploy the Tomasi-Kanade technique to detect and track Shi and 

Tomasi-based features [115]. The best detected features are registered using a robust rejection 

rule and allow for a translational motion to be estimated. Foreground pixels are det.ected by 
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thresholding change detection and are grouped together for object analysis. Optical flow motion 

vectors are estimated at the location of sparse Shi and Tomasi-based features in the work of 

Fusiello et al [56]. 

Multi-cue integration has been exploited extensively in feature-based tracking applications 

[47], such as in people tracking [40, 120]. Other authors integrate several cameras for better 

reasoning occlusion of multiple walking persons [42]. Darrell et al [40] use a stereo algorithm to 

compute the different depth of the objects in a face tracker. The face is detected and tracked 

by the use of skin colour segmentation and a trained neural network for the detection of face 

patterns. Murray and Basu [94] also use a gradient-based optical flow technique. They aim 

to compensate the global motion of the background objects on a sparse set of points located 

on the image edges. Moving pixels are segmented by an adaptive filter on the pixel differences 

between the motion compensated captured frame and the previously captured frame. The use 

of morphological filters on the edge map filters out the moving regions into the right moving 

foreground objects of the new frame. 

8.2 Overview of the moving objects detection algorithm 

Foreground objects are detected in this chapter by a three step algorithm, as shown in figure 

8.1. First, the global motion of the background scene captured between two different times is 

estimated in section 161. Second, the three modules of the moving segmentation step segment 

and filter in section 8.4 the moving clusters of pixels, also referred to as blobs, corresponding to 

the foreground objects. In the first module of the segmentation process, module 1 in figure 8.1, 

the reference background frame is predicted at capture time for comparison with t.he captured 

frame. Moving objects are detected into blobs using a threshold on a contrast measurement. 

However, the blob segmentation technique is noisy at highly contrasted pixels and low grey­

level pixels. A moving edge segmentation technique is then implemented in the second module, 

module 2 in figure 8.1, to segment moving edge blobs. The third module, module 3 in figure 

8.1, combines the information of the two sets of blobs to filter out the noisy blobs while keeping 

the same segmentation accuracy. Finally, an update of local background pixels is performed in 

the third step before the next captured objects can be segmented, as described in section 8.5. 

8.3 Global motion estimation 

The robust and hierarchical optical flow technique developed in chapter 6 models the background 

scene as a 3D surface in which relative motion of the camera is modelled by a single planar 

motion model. This gradient-based technique is constrained by a large number of approximat.ely 

2,500 edge-based pixels as neighbouring pixels of the background scene. The results of chapter 

6 showed that global motion is estimated with relatively high accuracy when there are no 

occluding foreground objects. The robust statistical approach first lIsed wit.h the local optical 
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8.4.2 Module 2 - Moving edge detection 

The foreground blob detection technique described in the first section produces noisy blobs in 

low grey-level regions and at high contrast pixels of the background frame. The robust statistical 

regressor used in chapter 4, i.e. the median regressor, is here used to eliminate edge-based outliers 

that do not belong to the background scene. The foreground edges are also referred to as the 

moving edges. It is assumed the total number of foreground edges represent a small percentage 

of the total number of edges in a capture frame It at time t. A pixel at location x is segmented 

as moving edge EHx) = 1 if it is segmented as foreground edge i.e. x E £: 
, ( ) _ { 1 if x E £: Etx -

o else 
(8.7) 

where £: is the set of edge pixels segmented robustly as foreground: 

(8.8) 

The term £t, defined in equation 8.9, represents the set of all the edge pixels segmented by the 

technique described in section 8.3, and u* is the median robust scale applied on the edge pixels 

as defined in equation 8.10. 

£t = {x,E(x)=l} 

u* :::::; 1.4826 x MedianxeE. (IIt(x) - It-1(x - ~x)l) 

(8.9) 

(8.10) 

where E is the edge map of the same size of the original frame and a pixel located at location 

x is an edge if E(x) = 1 and is not an edge if E(x) = O. The optical flow vect.or ~x is 

calculated from the previously estimated global motion model vector a in equation 8.1. The 

connected-component technique groups the moving edge pixels into a set 8' of N' blobs B: with 

i = [1: N'l: 

8' = {B;,i = [1: N'l} (8.11 ) 

and the entire moving edge detection process is illustrat.ed in figure 8.4. 

In this figure 8.4, the 'Warp' operation is the motion compensation of the term 11- 1 in equation 

8.8. The 'Diff' operation is the difference between It and It - 1 in the same equation. The 'robust 

scale' is the calculation of u* named 'Threshold' (equation 8.8) and the conlled.cd-componcllt 

operation is represented by the 'Blob segmentation' module. The segmented blobs of t.he moving 

edges are then used to filter the moving edges previously segmented and this is described below. 

8.4.3 Module 3 - Moving objects filtering 

The technique described by the first module of the moving objects det.ector extracts reJativcJy 

accurately N moving objects Bi charact.erised by bounding boxes but the detection is noisy and 

unwanted noisy objects appear in dark regions and at the edges. In order to eliminat.e these 

noisy blobs, a simple filtering rule is applied with the use of t.he moving edges extracted by t.he 
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B = {Bi' i = [1: ]} ( .12) 

where 

Bi = (B, n B;) U (Bi n B~) U ... u (B, n B' . ) ( .13) 

An exampl of d t.e t d moving obj ts and mo ing dg nr shown in the left Hnd righl 

figure of .5 r spe'tively. Tn this xampl ,a ingl obj ct (' 1'1' sp Hding 1.0 a wtllking p r ' 11 

is moving in th scene. This obj cL i w 11 eglll nLd illt Lit dark grey-level 1'l'('l.tL1lgl' wit.h 

smaller noisy blob drawn in white gr y-I v I. h J110ving dg d 1('('1 iOll t hn iquc docs 11 )t 

segment the walking p !'Son as w II a wit h t.h III ing obj'to(. d I('cl i n t hniqu > but. I Sf; 

noise is obtained. 1oreov r, th n i y bl b of bOI h Ie Itniqu s d not. aPi> ttr ~tl I h > Stl1l1 ' 

location (they do not ov rlap) th re~ I'C th n Ly 111 ving obj cl. ar diminM d during the 

filtering pro ess. The blob of th walking per n int 1'8 d. with diITcl' lit. blobs r th edge'S of 

this obje t which is ther for cons rv d as di played in figul' 
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Figllf .6: Filler d m iug obj I 
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8.5 Updating the reference background frame 

In this application, no mosaic of the background is constructed but instead a local and reliable 

background is updated at every captured frame. The background frame needs to be updated with 

the content of the captured frame before being predicted and compared with the next capt.ured 

frame by the moving objects detection technique described in section 8.4.1. A temporal averaging 

approach is developed in this section to update the grey-levels of the background according to 

the segmented and filtered moving objects (see section 8.4.3). 

Each background pixel is associated an occurrence counter Aft which tells how many times 

a pixel represented a background object from the first time of capture until current time t. The 

counter Mt(x) at location x is either decreased by one (provided it never goes negative) if it is 

detected as foreground i.e. Foret{x) = 1 (see equation 8.4) or it is increased by 1 if it belongs 

to the background i.e. Foret{x) = 0 provided that the counter never exceeds a threshold set 

empirically to 100: 

( ) 
_ { min(Mt{x) + 1, 100) Mt x - _ 

max{Mt{x) - 1, 0) 

if Foret(x) = 0 

else 

where the predicted counter M t is calculated similarly to equation 8.3: 

Mt{x) = Mt - 1 (x - Ax) 

(8.14) 

(8.15) 

The grey-levels of the background are updated according to their positions respective to the 

moving blobs bounding boxes as explained in the following two sections. 

Foreground pixels 

The grey-level of every background pixel corresponding to a pixel detected as foreground and 

located inside a moving object blob, i.e. x E B (defined in equation 8.12), is not updat.ed. A 

background pixel occluded by a foreground pixel is simply updated by the background grey-level 

B-;;;;kt(x) predicted in equation 8.3 from the previous time of capture t - 1: 

(8.16) 

Background pixels 

All background pixels non-occluded by a foreground object and which do not belong to any 

moving objects have their grey-levels updated with the new captured grey-level. The foreground 

detection is shown noisy and any background pixel inside a foreground objPct bounding box is 

likely to be foreground and update errors are shown to propagate as the Same object.s are 

being captured. Therefore, if a background pixel is located within olle of the moving blobs 

bounding box, its grey-level is not only updated with the new grey-level but also with the 
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previous predicted background gr y-level. The update are xpre cd in th ~ \lowing qUfl.ti 11 

Backt(x) = 
{ 

Back; (x) if x E B 

It (x) 01 
( .17) 

where 

( . I ) 

A background frame example is displayed in the right figur of .7 Md Lh corr p nding 

captured frame in the left figure. A walking per Oil walks within the sc n and is bing I mck('d by 

a moving camera. It can be n in the background window of Lhe moving obje t th blurring 

effect introduced by equations .16 and .17. Ground-truth daLa are provid d in th r ull 

section .6 and allow the evaluation of Lbe foreground obj t segmentation I chnique PI' viou ly 

described in section .4 for various surv illanc daLas LS. 

Figur .7: Left: input frame with walking p rson and right: th c I'r ,p nding backgr und 

frame without th person 

B.6 Evaluating foreground obj ct gm nt ti n 

This section pres nts the valuation re ult.s r I.h moving obj ct gll1('nl d by I he' olgol'il hill 

described in oction .4. Thre sUl'veilian dat cl arc U' d for Ih valu tiollllnd ar' PI' 8I.'IlI('d 

ill the fir t ction with their obj ct ground-trul h bounding box ,Th ('un c'y of the d t 'cted 

blobs are evaluated again t the ground-truth data b th us f lim' III t rk" d fined in til(' 

s cond section. 

The segmentation accuracy i dir ct.ly d p('ndent n the ftc'curacy of the globnl l!lotion ('s­

timation that allow image r gi traLion of pair of im g S in ~\ s qu IICC, II': dC's rib d in section 

.3, and on the ac uracy with whi h th local ba kgr ulld i. updat d ill s('(' t iOIl .5. Till' I' '­

suits bow that accuraLe but noisy gm ntati n f th moving ~ r gr lind obj ('\' if! obtain 'd. 

Th filtering proc of the moving blobs, whi 'h II III ving dg il1~ rll1l\tion, is significlll1ll.v 

improved but r mains noi y dep nding on th n tur r the s qu ne .. g. t h ' 1>1\ kgl' lind nltd 

for ground obj cL content or t.h d namic of the captul' d, n s. 
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8.6.1 Datasets and ground-truth 

Three daLaseLs are used for Lhe evaluation of Lhe thr motion d I, tor of e Lion 5.'1.1 i. e. 

Lhe moving obj cLS detector, Lhe moving dges and th fill, r d m ving obj cts d te tor. An 

example frame of these daLasets are displayed in figur . which ar call('d the 'dit" " 'ptz t ' 

and the 'lab' sequence. 

Pan and tilt cameras are u ed to captur th qu nc s and do not perform any zooming 

operations, hence t.he fo cal length r mains fixed at. all lim s. Th ' lab ' and 'dirc' sequ nce 

contain 400 and 950 fram respectively and are captured indoors with the am urv('illanc 

camera using two different. focal lengths. Th e t.wo quenc s capt.ur a ingl for gr und ob­

ject: a walking person. The third s qu nce, the 'ptz ts' s quenc ,contain 1000 rt ificially 

captured frames created by selecting sub-images from larg input image capt.ur d by A RtaUon­

ary camera. The global motion between ea h pair of fram i.' therefor transl ti nal , unlike th 

two other sequences. The original sequence from whi h the 'ptz ts qu I1C is cr atcd i th 

'PETSI' sequence used to evaluate multiple object tracking algorithm in cIlflptr 7. >rolllld­

truth bounding boxes of the moving objects in the thr e qu I1C fl.r provided by a drAwing 

interface a lgorithm against which the d tected obj cL ar as Are compar d \ ilh th us of thr 

metrics defined in the next section. 

Figure . Frame exam pi of th lE'ft : 'dirc' , middle: ' pLz ts' And right: ' lab' s qu HC 

.6.2 Metrics 

The thr m tries d fined below comp r th gill nt 'd ~ r .ground blob. I3t wh 're i = [I : 

with resp dive bounding box ar a. AI against th 9 gr und-t rllth blob. B; wh r j [ I : 9J 

with respe Liv area AJ. The first In tric, d no! dEe, valuatc'S in (pmt.i n .19 th syst, m 

accuracy in term of a mean p rcntag t1l1d-t l'\I! h obj ('\ an'os ~ r tl givc n S<'qllC'I1(, • 

compo ed of F pair of fram ind xed by l = [1: pj: 

= ( .1 U) 

Th cond In kic d not dEn. valll{t\C's in ('<luH!ion .20 th noise l 'v('1 in thc' R HtC'1ll l>y 

cal ulating Lhe mean ob rv d HI' f 11 J1-cov'ri1lg \'h grolllld-t rut.h hju'[ fir HS .('. t,ll(' !lOis), 
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areas. The noise level calculation is performed relative to the total number of pixels in each 

frame, denoted Card(F) where F is the set of pixels within each frame. 

En = 

= 

{
detected blobs areas non - intersecting withground - truth 

mean 
total frame area 

_1_ L wi=l .wj=l i n j N" ("'N ",N9 A A9) 
NF t=1 Card (F) 

area} 

(8.20) 

where A is the entire frame area without the area covered by A. Finally, the third metric, 

denoted AN, evaluates in equation 8.21 the number of noisy objects obtained by the motion 

detectors which is calculated by the mean of the absolute difference between the number of 

observed and ground-truth blobs: 

1 N" 
AN = N E (IN9 - NI) 

F t=1 

(8.21) 

Therefore, according to these three previous metrics, an ideal change detection algorithm would 

produce results with such characteristics: Ee=lDO%, En=O% and AN=O blob. The metrics 

results are displayed in the next section for the three different sequences presented above. 

8.6.3 Results 

The foreground objects of the 'dirc', 'lab' and 'ptzets' sequences segmented by the moving 

object detector, with and without noise filtering (see section 8.4), are evaluated in the following 

experiments. The system accuracy is evaluated via the Ee metric, the noise level is evaluated 

via the En metric and the number of noisy blobs is calculated via metric AN all defined in the 

previous section. The results of these three metrics are displayed in table 8.1, 8.2 and 8.3 for 

the moving objects, moving edges and the filtered moving object detectors respectively. 

Table 8.1 shows that the foreground objects are well segmented with an accuracy of Ee = 
90% for the two sequences captured with the same camera and in the same environment i.e. 

the 'dire' and 'lab' sequences. The results obtained with the 'ptzets' St~quence give a Ee rate of 

about only 76%. The noise results given show that important levels of noise occur in the 'lab' 

sequence with En ::::: 5% of the frame areas covered by noisy blobs and wit.h a corresponding of 

AN ~ 8 noisy blobs. AN remains below one noisy blob per 'dire' frame with 2.41% of their 

surfaces covered by noise and approximately 2 noisy blobs occur in the 'ptzets' frames covering 

1.27% of the frame surfaces. 

The same table is constructed with exclusively the foreground blobs segment.ed by the moving 

edge detector in table 8.2. Comparing this table with the previous one shows that the moving 

edge detector is not as accurate as the moving object detector in terms of object area coverage 

(Ee). It can be observed that the lowest Ee results are given wit.h the 'ptzet.s' sequence. Table 

8.2 also shows that similar noise level of En is obtained for the three sequences and lower than 

the En results in table 8.1. However, the number of noisy edges blobs are in gem'ral higher 

than the number of noisy objects blobs, except for the 'lab' sequence. Noisy blobs segment.ed by 
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'dirc' 'lab' 'ptzets' 

Ee(%) 90.01 89.99 76.44 

En (%) 2.41 5.05 1.27 

~N(blob8) 0.97 8.26 1.95 

Table 8.1: Results of the moving object detection 

'dirc' 'lab' 'ptzets' 

Ee (%) 80.45 87.12 62.25 

En (%) 0.59 0.45 0.54 

~N (blobs) 5.07 5.19 4.85 

Table 8.2: Results of the moving edge detection 

'dirc' 'lab' 'ptzets' 

Ee (%) 90.79 90.12 73.64 

En (%) 0.96 0.74 0.82 

~N (blobs) 0.26 0.55 0.65 

Table 8.3: Results of the filtered moving object detection 

the moving edge detector are generally thinner than the moving object detector due to the fact 

that edges in dark regions are partially segmented creating thin, elongated blobs compared to 

objects foreground patches. This also explains why there are generally more noisy blobs when 

edges are segmented. 

The results of the filtering process of the moving objects with the moving edges in table 8.3 

show that the accuracy obtained in the first table is conserved with lower noise level and lower 

noisy blobs. The high accuracies obtained with the 'dire' and 'lELb' sequences are slightly im­

proved and remains around 90% whereas the 76.4% accuracy obtained with the 'pt.zets' sequence 

drops to 74.6%. The noise level is decreased to below 1% of the frame surfaces for the three 

sequences with less than 1 noisy blob. Therefore, alt.hough the accuracies are not significantly 

improved, the noise is greatly decreased when moving blobs are filt.ered with the segment.ed 

moving edges. 

The moving edge detector segments mainly the edges and hence objects are not as fully 

segmented as with the moving object detector (as shown in figure 8.6). Moreover, the moving 

edge detector segments objects into several small edge objects making the average number of 

noisy blobs ~N much greater than with the moving object detector. The only advantage the 

moving edge detector has is that it does not produce noisy foreground pixels in the sensit.ive 

dark regions, as reflected by the value of En. 

Table 8.3 show that the moving objects results are improved when cOl1lbined with the moving 
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edges information in the filtering process described in section 8.4.3. The Ec keeps approximately 

the same accuracy after filtering while the noise is greatly reduced in terms of covered areas En 

and in terms of number of blobs AN. 

8.6.4 Discussion 

The experimental results of the moving object detection algorithm described in section 8.4 show 

that 90% of the moving object areas are successfully detected for the two sequences captured in 

an indoor environment. Only about 74% of several foreground objects areas of an outdoor scene 

captured by a surveillance camera are segmented. However, although filtering is performed on 

the dimension of the segmented blobs, noisy measurements are observed with a maximum of 5% 

of the total frame area and about 8 noisy small blobs appearing essentially at dark regions of 

the images. 

In order to filter out the noisy detection, moving edge are segmented and alt.hough their 

detection is also noisy, the combination of moving objects and edges allow a better reduction 

of these noisy moving objects. The results show that less than 1% of the total frame area is 

detected as noise with less than one noisy blob occurring per frame for the three used sequences. 

The gradient-based global motion estimator described in section 8.3 hence allows a frame-rate 

and accurate image registration and a foreground object detection but wit.h significant noise that 

could only be reduced by filtering out small objects and by using moving edges informat.ion. 

8.7 Conclusion 

The robust and global motion estimator developed in chapter 6 and reviewed in section 8.3 can 

reliably estimate the motion of a background scene modelled by a single planar motion model 

when small portions of the background are occluded by moving foreground objects. Using motion 

compensation and a temporal averaging technique to construct a background reference frame, 

moving objects are successfully segmented from this background and noise is then reduced by 

using a moving edge detection algorithm. 

The segmentation results show that the blobs bounding boxes of the moving fort'ground 

objects are relatively accurately segmented with percentages of area coverage bet.ween 73 and 

90% and which should be evaluated further with additional different seqllenees. lIowpver, the 

segmentation results are considerably noisy at the darker regions in the image's but are great.ly 

improved if small objects are eliminated and if they are combined wit.h the blobs of the lIIoving 

edges. The small objects filtering and the filtering by the moving edg<,s showed thl\t 1(,8s tImn 

1 % of the whole frame area is covered by noisy blobs and an average less than one small noisy 

blob occurs per frame. 



Chapter 9 

Final discussion 

The general aim of this thesis is to analyse motion via optical flow techniques and is centred 

around three main themes. The first theme addresses the problem of cont.amination caused by 

noise and the existence of multiple motions occurring in the estimation neighbourhoods. The 

noise process is caused by electrical and optical imperfections of cameras and multiple motions -

typically caused by occlusion. The second theme of this study addresses the estimation of large 

motions. Gradient-based optical flow techniques are derived from a Taylor series expansion of 

the constant brightness equation around the small motion assumption. Therefore, t.hey can only 

estimate accurately pixel motions of small magnitude. 

Unless information about the content of a frame is given, motion analysis between frames is 

best performed if the motion is available at each pixel. Such dense motion informRt.ion CRn be 

computed relatively accurately but is computationally expensive. The third theme of this thesis 

addresses this time limitation problem by investigating the optical flow technique in the appli­

cation of global motion estimation in order to detect foreground objects occluding background 

scenes captured in indoor and outdoor environments. These three themes are investigated in this 

study and the obtained results are summarised below. This ehapt.er condudps with a discussion 

on future work which analyses the important work that would render the invest.igllt.ion more 

complete and that would improve the results for direct.ed fut.ure researeh. 

9.1 Summary of the research 

A summary of the results obtained throughout this st,udy is out.lilws ill the six following sub­

sections. The first four sections analyse the gradient.-bused opt.kal flow estimlLt.or dev(·loped in 

chapter 3 which provide dense pixel motion estimation. The est.imnt.or is ELn/\lyspd from a mat.h­

ematical point of view, its limitations are addressed and a confid('JI('e IllPIlSlIn'lIIpnt is provided 

in the fourth section. The fifth section analyses two on-line global motion est.imat.ors: the hy­

perplane and the gradient-based est.imat.ors, while the sixt.h anlllys('s t.he rl'suIt.s of t.he est.inlHt.('d 

motions induced by static background scenes, capt.ured by moving pan Rnd t.i1t. cml1l!rIls. The 

174 
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global motion of a zooming camera is also reviewed in this section. Finally, we describe how 

foreground moving objects can be detected from static background scenes viewed by stationary 

cameras and moving pan and tilt cameras. 

Dense gradient-based optical flow estimation 

Optical flow estimation relies on the constant brightness equation (CBE) which stat.es that 

brightness at any location in space does not change over small time intervals. An optical flow 

estimator based on this constraint is developed in section 3.3 around the small motion mag­

nitude assumption. Because of the aperture problem, additional constraints are necessary and 

are provided by fitting a planar motion model to the motion field occurring across local neigh­

bourhoods of pixels. A least-squares regression technique is then applied to minimise the error 

function associated with the CBE. 

Non-iterative and iterative motion estimators are implemented. The iterative estimation ap­

proach is shown to be more accurate than the non-iterative approach since it converges to better 

motion estimates. In section 3.6, a study of the gradient term of the optical flow equation shows 

that it can be approximated by the widely used and simplest grey-level derivative. Although this 

approximation improves greatly the speed of the algorithm, the optical flow estimator remains 

a very expensive technique in providing dense optical flow fields. The estimator remains limited 

to small motion magnitudes. Also multiple motions within the same neighbourhood - typically 

occurring at object boundaries - cannot be modelled by a single planar motion model. 

Robust statistical approach 

Noisy images and multiple motions within neighbourhoods of pixels are likely to occur in real 

captured datasets. Real-life image sequences contain various sources of noise sueh as change of 

illumination, non-uniform reflective properties of 3D surfaces, transparcncies and high-frequency 

noise from the optical system. Such noise disturbs the least-squares minimisation process of the 

optical flow estimator since the constant brightness assumption is no longer rcspected. M ultiplll 

motions, occurring essentially at object boundaries, do not belong to the sallie motion fil'ld 

and therefore cannot be all modelled by the same planar motion model and result.s in Illotion 

contamination. 

A robust statistical approach was introduced to address these cont.l\llIinat.iou problems. It 

was shown that such techniques can deal successfully with high levels of noise. Although the 

motion estimation is improved at object bOllndaries, t.he multiple motion problem could not be 

entirely eliminated and smoothed fields were estimat.ed across these Illotion bouncl!\ri(~s. 

Hierarchical framework: multi-resolution estimation 

Gradient-based optical flow estimators have a limited range of opl'mtiolls in t.!'rllls of motioll 

magnitude unless an initialisation technique provides init.ial ('stilllat.('s of t.he mot.iolls. Such 
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initialisation techniques are the feed-forward, block-matching and hierarchical techniques. A 

multi-resolution technique, also referred to as a coarse-ta-fine technique, is used in this study 

to recover large motions. This hierarchical technique constructs a Laplacian pyramid of sub­

sampled frames. Sub-sampling addresses the problem of large motions since any pixel motion 

in a frame also gets progressively sub-sampled up the pyramid. Estimation at the top level of 

the pyramid is initialised with zero motion estimates and requires a large number of iterations 

whereas each of the lower levels in the pyramid are initialised with the magnified motion field 

from the corresponding upper level and a few iterations are sufficient t.o estimate larger motions. 

Optical flow uncertainty 

Dense fields of motion vectors are of great interest in many computer vision applications but oft.en 

lack accuracy. A method for providing a confidence measurement was developed in chapter 4 

which provides covariance ellipses and confidence. High confidence was obtained at low-textured 

pixels and at textured areas undergoing a single dominant motion field whereas low confidence 

was obtained across object boundaries where multiple motions occur and where the constant 

brightness constancy does not hold. 

Investigating the hyperplane approach to calculating optical flow 

A recent innovation to the estimation of motion is the hyperplane estimator [49]. A comparison 

with the gradient-based optical flow estimator was carried out. The hyperplane estimator, 

generally used for template matching applications, was implemented in chapter 5. The approach 

learns the relationship between applied motion fields and the respective grey-level differences, 

also called DFDs (displaced frame differences). Solving for one specific mot.ion is equivalent 

to solving a set of linear equations in a multi-dimensional space referred to as the hyperplane 

equations. 

The Hyperplane estimator is non-iterative and is compared in chapter 5 to the non-it.erative 

gradient-based estimator adapted for global motion estimation. The result.s showed that bot.h 

estimators can accurately estimate motion with small magnitudes. The hyperplnne accurncy is 

highly dependent on a computationally expensive learning process and it can only est.irnnte a 

limited range of motion magnitudes departing from a reference locntion. Therefore the estima­

tor's usefulness is limited in terms of camera use. Because of this rest.riction, t.he gradient.-bn.'I('d 

estimator is preferred as a global motion est.imator since it can est.inu\t.e motioll Letwe(~n pair of 

successive frames and the small motion magnitude limitation can be addrt'Ssed by the use of t.he 

multi-resolution approach implemented in chapter 4. More important.ly, it can be hnplmlll'nl.ed 

using the robust statistics, iterative and mult.i-resolution approRehes explored in dmptcr 3 and 

4. 
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Global motion estimation for foreground object detection 

Global motion is commonly used to describe the motion of a background scene relative to a. 

camera. The motion due to object movement is referred to as local motion. Global motion is 

used in various applications such as in video coding (MPEG-l/2) or video annotations. 

As the hyperplane global motion estimator implemented in chapter 5 was shown to be unre­

liable, a robust and hierarchical gradient-based version of the estimator developed in chapter 4 

was chosen for global motion estimation. This gradient-based technique is performed by fitting a 

single planar motion model to samples from the entire viewed background scene. This technique 

can be performed quickly when a small number of edge-based pixels are chosen. 

This global motion estimator was evaluated in chapter 6 for two different applications. First, 

the motion of background scenes captured by moving pan and tilt cameras were estimat.ed and 

great accuracy was obtained with less than 1 pixel error. However such accuracy is not sufficient 

for accurate image registrations such as background scene mosaicking which can be obtained 

with dense optical flow techniques as the one developed in chapter 3 or feat.ures tracker such as 

a block-matcher tracking corner point.s. 

The gradient-based estimator is then used in a zooming application where a zoom motion 

model is fitted to a static background scene viewed by a fixed camera performing zooming 

operations. The optical flow estimation allows for the calculation of the centre of expansion 

i.e. the intersection between the optical axis and the image centre. The result.s show that the 

location of the centre of expansion varies as the focal length changes during zooming operations. 

Tracking with surveillance cameras 

The problems associated with tracking remain unsolved since there are many occurring sources of 

ambiguities caused for example by shadows, illumination changes, over-segment.at.ion of moving 

objects and object mis-detection. In addition, the high variability often present in the projected 

images of an object over time makes its tracking difficult. This variltbility arises from three 

principle sources: variation in the objects pose, variation in illumination, and pmtial or full 

occlusion of the target. When ignored, any of these sources of varinbilit.y are enough t.o cause a 

tracking algorithm to lose its target or t.o mist.rack wit.h others. 

Tracking is generally applied for surveillance applicat.ions where st.ationnry Call1erfiS capt.ure 

static background scenes as applied in chapter 7. Background models of t.he st.at.ic lmckground 

scene are constructed over time which allows the det.eetion of foreground pix!'ls and sllbst~qllent1y 

foreground objects. However, when several of these objects oce\uded each other, t.heir for<'grollnd 

pixels cannot be separated into individual objects and t.racking them becomes probl(,lI1nt.ic. 

An appearance-model based approach consisting of modelling regions of objpd.s was explored 

in chapter 7 in order to recover and track the non-occluded grey-level inforll1/1t.ion during oc­

clusion. Although this technique improved the t.raditionnl t.raj('rtorY-llIodei Knlnmn t.ra('killg 

technique which blindly predict.s object position during orclusion, t.rnckillg still is not SUc('(~SS-
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ful. Additional information of the objects, such as knowledge of their 3D positions or colour 

and shape modelling, is needed for coherent object tracking during occlusion. 

Detecting objects in pan and tilt applications 

Detecting foreground pixels when cameras are moving (pan and tilt cameras) cannot be per­

formed as reliably as when cameras are stationary, as demonstrated in chapt.er 8. Motion of 

background scenes relative to a camera can be well detected by the global motion detector de­

veloped in chapter 6 but it is not accurate enough to allow an accurate image registration and 

to construct accurate models of the background as performed with stationary cameras. 

Moving foreground objects are detected using a thresholding operation between captured 

frames and a motion compensated reference frame, updated using an average process. :Moving 

objects were relatively well segmented but with high associat.ed noise represented by small noisy 

clusters of foreground pixels across the frame referred to as blobs. These noisy blobs were first 

eliminated by a simple threshold on their dimensions. A second filtering was performed on the 

noisy blobs by using an overlapping procedure between the blobs corresponding to the moving 

objects and the blobs detected from a moving edge segmentation technique. 

9.2 Contributions 

The following sections describe the work contributed by the mot.ion analysis perforrm'd in each 

chapter of the investigation. 

Ground-truth generations and evaluation procedures 

Evaluating optical flow has never been easy since accurat.e and dense ground-t.ruth optical flow 

is rarely available. Producing such information requires 6 precise knowledge of the 3D sccne 

geometry as well as the internal parameters of the camera capt.uring this SC('Ile. Because this 

information was not available, synthetical ground-truth motion v('ct.ors w('re creat,('d. Addi­

tionally, the ground-truth of the translational component of the glolml motioll induc('d by pRn 

and tilt cameras capturing a background scene was estimated by an exp<'nHive blork-lTll\t.ching 

technique - chapter 5 and 6. 

The frames displaced by ground-truth vectors were constructed Ilsing t.he bililwl\r int.erpoll\­

tion technique developed in Appendix A. 111 this Appendix, the bilinear technique was l~Olllpl\red 

to the nearest-neighbour, the quadratic and cubic techniques and W/\S Hhown to be the best in­

terpolation technique to use for motion cOlllpensRting frallles. 

The percentage metric of accurately estimat.ed flows was devdoped to provide 1\ IllI'IlSIII'ellll'nt 

of the motion estimator's performance. Convergence inlllotion IIlILgnitlldl' t>rrol's WIL.'l 1\\.'10 d!'filll'd 

to evaluate the final accuracy of measurements and Sl)('(~d of est.imators. 
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True optical flow gradient term and approximations 

All optical flow estimators in the literature use several approximations to formulate motion 

in the image plane including the gradient term. The true expression of this gradient term 

was derived in chapter 3 showing the complexity of its formulation. It was implement.ed and 

discussed. Five approximations were created including the major ones used in the lit.erature 

and were compared in an evaluation process. The conclusions showed that the widely used 

approximation of the gradient term in the lit.erature is the quickest and whose accuracy is as 

good as the mathematically rigorous expression, as far as the motion magnitude to be estimat.ed 

is within a few pixels. 

Confidence expression of optical flow in a multi-resolution and robust 

framework 

A novel expression of the covariance of the opt.ical flow expression was derived in chapt.er 4 

which allow to provide the user with confidence measurement of the est.imated optical flow. 

This covariance could be displayed in terms of areas of confidence by ellipses of uncertainty. 

And confidence measurements could prove the gain of accuracy when the multi-resolut.ion and 

robust framework is used. The confidence measurements were geometrically interpret.ed through 

the use of ellipses, or rectangles framing these ellipses, which represent the domain of uncertaint.y 

around optical flow vectors. 

Edge-based sampling technique for accurate global motion estimation 

Estimating motion of background scenes captured by moving pan an tilt (~allleras using the 

gradient-based estimator is very computationally expensive if the entire set of pixels rcpres('ut.ing 

the background scene is chosen as the neighbourhood of constraining pixels. The number of 

pixels was instead restrained t.o be located onto a spare set of edges belonging to the background 

scene. 

A novel technique was then developed to aut.omat.ically sl\mplc pixels from the background 

pixels with the highest gradient information (strongest edges). An exp£'nsive l·dge-bfl.,';(·d salll­

pling technique was designed in chapter 5 to evaluat.e the hyp(!rpl!mc Rnd gradient.-bused glohnl 

motion estimator. A quicker and similar edge-based technique was t.hen d('signed in chnpt.l'r 8 

for the gradient-based moving object detector. 

Determination of the centre of expansion of a zooming camera 

The gradient-based global motion estimntor was also used t.o (!stilllnt.e t.lw zooming Illot.iol\ 

parameters in a zooming applicRtion which could nllow the determinat.ion of t.he vllrying posit.iolls 

of the centre of expansion (intersection of t.he opt.ical axis wit.h the image plmw). The (·st.illlated 
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centred of expansions were shown to vary with the focal length of a fixed camera when zooming 

operations are performed. 

Segmentation of moving object in pan and tilt applications 

The gradient-based global motion estimator was used in chapter 8 to segment foreground moving 

objects occluding background scenes captured by moving pan and tilt cameras. The amount of 

foreground pixels is small enough so that the robust statistical approach developed in chapter 

4 could reject them from the optical flow estimation. The results were shown to be relatively 

accurate and moving objects were successfully segmented (but with considerable noise). A simple 

local background reference frame was built over time using a grey-level averaging approach and 

foreground edge-based pixels were segmented to filter out the noisy detection. The accuracy 

remained unchanged after the filtering process while noise was greatly reduced. This strategic 

on-line foreground segmentation can allow for example future tracking possibilities. 

Hybrid object tracking with stationary cameras 

Traditional trajectory-based trackers are shown to often loose tracks of objects when they in­

teract with each other when their foreground pixels cannot be separated easily into individual 

clusters of foreground pixels i.e. blobs. An appearance-model tracker was then dl'Signed to 

track segmented grey-level regions of objects during occlusion. This tracker was implemented 

in a hybrid scheme with a trajectory-based tracker for better tracking results but were shown 

insufficient for successful tracking. 

9.3 Future work 

Future work can be grouped into three main components. First the accuracy of the dense optical 

flow estimator can be improved as well as its speed. Second, global motion of moving pltn 

and tilt cameras is accurate enough for foreground object detection but inefficient for accumt.e 

background frame registration. This limit.ation can be addressed if a motion segmentation 

technique is achieved. Finally, tracking objects in st.atic background sccnes during occlusions 

could be performed more reliably, if, for example, shape and colollr models arc used and 3D 

location are known. Such 3D positions could be obt.ainable if, for example, stCfl'O systellls arc 

used. These ideas are discussed in more detail below. 

Use of confidence for accuracy and speed increase 

The presence of multiple motions within a local neighbourhood of pixels is the major problplII 

that causes optical flow algorithms to fail to estimat.e motion across object boundarius !Lerumtely. 

Robust statistics was introduced in chapter 4 to address t.his problem but could not dilllillfit.e 

successfully outlying motions from contaminating the estimat.ion of the dOlllilmnt. motion field. 
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Since gradient-based algorithms are built upon the constancy of brightness, obtaining a lack 

of accuracy in the motion estimates does not automatically mean that the constant brightness 

constancy is violated on a single pixel basis. However, when such grey-level errors are consid­

ered for an entire neighbourhood of pixels, lack of accuracy is easily detected by the confidence 

measurement developed in section 4.3. Combin~ng confidence with the information about edge 

location could allow a refinement of pixel motion results. 

The dense optical flow estimator was developed to provide a motion vector to each pixel in 

an image using the pixel neighbourhood. This means that neighbourhoods overlap by a large 

amount in the motion estimation from one pixel to a neighbouring pixel. A planar motion model 

is fitted to each pixel, therefore all pixel motions within a neighbourhood are known. A semi­

dense, and hence a faster, scheme could be then implemented by avoiding the re-calculation of 

the motion of pixels present in neighbourhoods when high confidence is obtained. More dense 

estimation would be required at low confidence regions such as across object boundaries where 

mUltiple motions occur. In addition, the neighbourhood size and its shape could be adjusted in 

such a way that it contains a minimum required number of pixels and that its shape is adjusted 

according to the shape of motion boundaries. For instance, the fixed square shape could be 

replaced by a varying elliptical shape so its circumference fits to the local object boundary and 

motion contamination is thus minimum. 

Computational speed is easily improved with special hardware design. For example, a DSP 

card was designed for the PRISMATICA 1 project which allowed real-time computation of sparse 

optical flow vectors at every BxB pixels on sub-sampled images. Using the semi-dense technique 

previously described, optical flow could be obtained at approximately every maximum 10 x 10 

pixels according to the results of chapter 3. 

Most typical optical flow techniques presume brightness constancy, which is often violated by 

time-dependent physical processes. For example, grey-level changes of non-moving pixels can be 

interpreted as pixel motion when the orientation of the illuminant changes with respect to the 

object surface orientation or when the illuminant radiations are altered by physical processes. 

Additional model of image brightness variation are often used with success [64, 141, 63] and 

could be implemented in our algorithm to address this problem. 

Global motion accuracy 

Using a sparse set of edge-based pixels as pixels neighbourhood, global motion of moving pan 

and tilt cameras could be accurately estimat.ed by the gradient-based technique described in 

chapter G. However, although the results allowed consistent foreground object det.ection, the 

estimator's accuracy was not high enough to construct an accurat.e background as achieved wit.h 

1 http://www.prismatica.com/ 
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stationary camera applications. This is mainly due to the fact that a single planar motion model 

was fitted to the background scene assumed to be modelled as a single 3D surface. However, 

backgrounds generally consist of multiple objects and better global motion estimation could 

be obtained if these objects were segmented into individual 3D surfaces. An iterative process 

could be then implemented to gain higher accuracy and mosaics of the background could be 

constructed. 

Tracking occluded objects 

The tracking algorithm developed in chapter 7 could not track successfully objects in occlusion 

scenarios. A shadow detection and removal algorithm would improve the results [39, 75J but 

additional information about the objects is required for successful tracking. For example, the 

grey-level segmented regions in chapter 7 could be segmented in a colour space and their shape 

could be modelled. More importantly, the 3D location of the tracked objects would improve the 

results greatly. The optical flow developed in this study can be used to calculate the disparity of 

certain feature points as shown in the frame example2 of figure 9.1. The disparity measurements 

are calculated at some Harris corner pixels [62J. The corner strength of a pixel is represented by 

a square area centred on that pixel in the figure where large areas mean strong corner responses. 

This stereo information could also be used to process 3D information of static and moving objects 

where Harris corners strength can be replaced by the optical flow confidence measurements. 

2http://vasc.rLcmu.edu//idb/html/motion/hotel/index.html 
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Figur 9.1: Top: s!. r pair wi!.h boLt.om: spar di parity me ur menl wil,h as ria!. d C Ilfi­

d nee 



Appendix A 

Interpolation 

In many areas ranging from cartography, digital imaging and modelling, and engineering ap­

plications, data collected from the field are usually discrete. Interpolation techniques aim to 

reconstruct data using local information for re-sampling purposes such as resizing an image to 

desired scale. The process of estimating the values in between sampled data points is called 

interpolation; whereas the process of estimating the outcomes beyond the range covered by the 

existing data is called extrapolation. Optical flow computation often requires motion compen­

sating frames to compare the grey-levels of two frames displaced by estimated optical flow. The 

accuracy of optical flow algorithms is directly dependent on the accuracy of the reconstructed 

frame. Four interpolating techniques are compared in this appendix in motion compensation 

experiments. These techniques are known as the nearest-neighbour, bilinear, quadratic and cubic 

techniques and are described in the four following sections. 

A.I Nearest-neighbour interpolation 

The simplest interpolation scheme is the so-called zero-order or nearest-neighbour interpolat.ion. 

In this method, the grey-level of an output pixel is taken to be that of the input pixel nearest 

the location to which the output pixel maps. Using the image grid notation in figure A.I, the 

nearest-neighbour interpolated grey-level I(x}, at location x, is expressed as 

I(x} ::::::: I(X/} (A.I) 

where 

x' = argminx 'EN(x)lIx' - xII (A.2) 

N(x} = {o(x}, d(x}, v(x}, h(x}} (A.3) 

and 

o(x} = [floor(x}, floor(y}f 
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v(x) = [e il(x),Jloor(y)]T 

h(x) [Jloor(x) , eeil(y){ 

d(x) = [ceil(x) , eeil(y)f 

floor(x) = greater integer not gr at. r than 

eeil(x) = floor( x) + 1 (A.4) 

, ,(x) 

Figure A.I: eigbbourhood of the nearest-neighbour and bilinear in terpolators 

The nearest-neighbour interpolation technique is comput.ationally simple and can produce ac­

ceptable results. However, it introduces artefacts in image contain ing fine siru tUl'es wll re he 

grey- level is likely to change significantly from one pixel to ihe next. 

A.2 Bilinear interpolation 

Bilinear interpolation produces more desirable results than the previously described zer - rder 

interpolation technique with a relatively small increase in programming compl xiiy and ex cu­

tion Lime. The bilinear function f(x) is d fin d such that a non-planar gr y-Icv I surfa(' pass s 

through the four n ighbouring points o(x) , h (x), v(x) and d(x) d fin d in qualion A.t1 and 

interpreted in figure A.I. The surfac f(x, y) is fitted to the four p ini by th foil wing linar 

equation 

f( x,y) = ax-+ by cxy+d (A .5) 

Any grey-level locaL d aL x b tween four th n ighbouring pix Is can b intcrpolat d f1. ltcl'I1f1-

tively by calculating 

T(x) (1 - tox) (J - /::'y) J (o(x)) 

+ (1 - tox) toy 1 (h (x)) 

+ tox (1 - toy) I (v(x)) 

+ tox /::'y I (d (x)) (A.B) 

wher 

tox = [tox, toy]T == x - o(x) (A.7) 
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A.3 Higher-order techniques: quadratic and cubic inter­

polation 

The smoothing effect of bilinear grey-level interpolation may degrade fine details in the image. 

Extra computational efforts of higher order interpolation techniques, such as the quadratic and 

cubic interpolator, better preserve fine details by enlarging the interpolating grid. The quadratic 

and cubic fitting of a function f(x) are described by 

f(x) = X(x) a (A.8) 

where a is the unknown vector of unknown parameters to be estimated. For the quadratic 

interpolator 

X(x) [x2,xy,y2,x,y, l] 

aT = [ao ... a5] (A.9) 

and for the cubic interpolator 

X(x) [x3,x2y,y2x ,y3,x2,xy,y2,x,y,1] 

aT = [ao ... ag] (A.lO) 

The interpolation vector a contains n = 6 parameters for the quadratic method and n = 10 

for the cubic method, therefore a minimum number of 6 and 10 input pixels (respectively) are 

necessary for a to be estimated. The n equations can be re-written in terms of matrices as 

F=Pa (A.ll) 

where 

F = [ f(~d 1 ' and P = [ X(~d 1 
f(xn ) X(xn ) 

(A.12) 

From equation A.11, the interpolating vector can be estimated by a = p-l F for the quadartic 

case and by 

(A.13) 

for the cubic case as the P matrix is not a square matrix in this latter case. The 6 pixels required 

for the estimation of the quadratic vector a are situated around x according to the left figure 

of A.2. In this figure, the central pixel X3 is first located as the closest pixel to x, Xl,2,4and5 are 

then located as a cross around X3 and the last pixel X6 is the closest pixel to x non-overlapping 

with any other neighbours. The cubic interpolation technique is an extension of the quadratic 

technique with cubic terms. The number of points required to solve the set of equations is ten 

and the system is chosen to be over-constrained by adding two extra input pixels. The twelve 

pixel locations are displayed so they represent a cross around x as displayed in figure A.2. 
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X2"~----"~----" 

Figure A.2: Neighbourhood of Lhe left: quadra.ti and right: cubi inL rpolator 

A.4 Interpolation exp eriments 

The accuracy of the four int rpolating techniques drib d in th previoll ections fir valuated 

in the following motion compen aLion experiment. Two-dim nsional sine gr - I · vel paU rns 

are cr ated from a horizonLa.1 and vertical sine ignal with differ nt period . The sine fram s 

are then displaced by a known arbit.rary mot.ion v t.or and re onstrucL d by t.b int rp lating 

techniques. The mean grey-level error betwe n Lb frames and the reconstruct d fram 's are 

recorded and plotted in figure AA. 

The periods of boLh horizontal and v rtical sine signal are chosen qual . Fram x mpl s 

are shown in figures A.3 wiLh a period of 5, 10 15, 20, 25, 30, 35 find 40 pix I · from the t.op 

Lo bottom and left to right figures rcspect.iv Iy. ignal wit.h a v ry large period mean that tit 

frame contains few text.ure , low gradi nt. content wher as maller p riod fram contain high l' 

gradient. pixel. 

igul' A.3: in [ram 
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Th motion compensation result in figur A.4 show that t h<' u<'cu·('st.-m'ighbour t ('cilniqll 

cloe not converge to a minimum error value for p<'riocis les8 than 40 pixC'ls. ThC' IlH'(ln gn'y-Ievd 

errors femain high with a value of 2 for 40 pixC'ls period franH'8. The titrC'e Otll('f tccillliqlH'S, t,Il<' 

bilinear. quadratic and cubic techniques all [,CCOllstruCt.S <tcc'nratdy frallles wil h ('L'rorH I(,Hs t hall 

half a grey-10veluuit for all frames with period gr0atcr or equal thall 1 r. pixds for LhciJilinC'<u' 

technique and 10 pix('ls for the quadratic and cllbic t('cl1niqu('s, The two latter t('cilJliqllt's are 

the most accurate techniques for all frequencies frame's. Howcv('r. whil(' tlIl' ('ubic ledllliqu<, 

is slightly more perforrnant than the quadratic Ill<'thod t he quadratic illt ('['point or is bet t ('[' for 

frames having small periods less than 10 pixels apPl'oxilllatC'ly. This diffl'r(,I)('(' of m'('mac), for 

high gradients pixels is mainly due to the fact that til(' size of the l1eighbo\ll'hoocl of Ute' ('ubic 

illLerpolator (maximulll 4 pixels aCTOSS, see righL figur(' A.2) can be too large' to ['('(,OIH.;tl'lIC'i 

some parts of the sinc signals and the cubic l1lodd C<Illllot be fitte I (lc('uraLely to tlH' Higna!. 

Hellce, reconstruction errors re ult for small period signals as tllC interpolation IIlodd getH 1I10re 

sophisticated. 
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Figure A.4: J\1Patl Error of fOlll' inLc']'!> )laLing I.t'cllIliqll('s 

To conclude t.ItI' exp('rilllcnts, the computational LillI(' I'c<]lIil'{'cl t.o I't'('()llStl'llri II J'l'II II 1(' or 
GOO x 600 pixds, so 360,000 pixels, by the fom diffc'rellt, illll'l 'jlo\nt.ioJl iH lIl('I1S\ll'('<I IIlld diHplll,ved 

ill table A,I. It shall be noted that the illv('rsl' 11Itltrix operatioll illvolv('d ill lh(' qllHdl'lltil' 

and cubic intE'rpolatioll I'equil'(,s to b performed ouly 011(,(' as mat rix I' rClltHillH till' HilllI( ' Ht 

all times (see equation of Illatrix P ill A,12). U(,ll('C" til(' tillH' ITquiJ'ed to p<'l'fol'll) I' I ror 
the quadratic case and (pT P) - J pT is omit,t,pel ill the' data o[ Labl(' "I. TIt(, l'<'slt\ls of Lliis 
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figure show how expensive the quadratic and cubic techniques are when motion compensating 

a frame of standard size. The simplest technique, the nearest-neighbour method is the quickest 

technique but lacks accuracy. Therefore, the bilinear technique which has a similar complexity as 

the nearest-neighbour performs as accurately as higher order techniques is the most appropriate 

technique to use for reconstructing pixel patterns in computer vision. Despite the small lack of 

accuracy for gradients of small periods, it is an acceptable technique for most kind of frames 

content. 

Interpolation technique 

cubic quadratic bilinear nearest-neighbour 

time in seconds 11.27 5.3 0.85 0.81 

Table A.I: Expenses of different interpolation techniques for a 360,000 pixels frame 

A.5 Conclusion 

Four interpolating technique are implemented in this annex and compared in a motion compen­

sation experiments. These interpolation techniques are from the lowest to highest order model 

the nearest-neighbour, bilinear, quadratic and cubic techniques. The nearest-neighbour int.er­

polates by taking the grey-level of the closest pixel, the bilinear fits a non-planar surface into a 

neighbourhood of 4 pixels, the quadratic and cubic technique involve quadratic and cubic terms 

in the fitting of the grey-level pattern of 6 and 12 pixels respectively. Experiments are run for 

synthetical frames constructed from sine signals with varying frequencies to simulate varying 

gradients information of real images. 

The results show that the nearest-neighbour is the quickest but is too inaeeurate in the 

reconstruction of motion compensated frames. The most accurate technique, the cubic interpo­

lator, requires a significant number of input points for the estimation to be possible and this 

causes erroneous reconstructionof local grey-level patterns in high frequency textured images. 

The quadratic technique interpolation technique has similar high accuracy as the cubic tech­

nique and does not have the same restrietion in reconstruetillg high gradients pixels. However, 

the complexity of this technique rendres this technique non-appropriate for real-time mot.ion 

compensation application. The remaining technique, the bilinear interpolation, is the quickest 

technique after the nearest-neighbour and performs in real-time and hIlS the best performance 

for all frequencies occurring in image data as the cubic technique with a slight drop of accuracy 

in high gradients pixels. Therefore the bilinear interpolation technique is the most suit.able 

technique for motion compensation applications. 



Appendix B 

Kalman filtering for trajectory 

prediction 

Tracking objects is often performed by the use of the Kalman filtering technique. A Kalman filter 

can predicts objects positions according to covariance matrices built from the measurements of 

errors between predicted and observed positions [25, 121, 139]. Section B.1 describes the two 

steps involved in the Kalman filtering process: the prediction and the update step. The second 

section B.2 implements a simple Kalman filtering for tracking 2D objects based only on position 

measurement. 

B.l The underlying equations 

Kalman filters are recursive linear minimum mean square filt.ers, meaning that under the as­

sumption that the noise measurement and the noise system are Gallssianly distributed, recursive 

filters are the optimal estimators in the sense of minimum variance. For a given sequence of 

observations it is the task of a Kalman filter to estimate the system state at the current time of 

observation t. 

Kalman filtering methods rely on two main equations, the dynamic eqlLation relating the 

state vector p between two successive measurement times: t - 1 and t, and the observation 

equation relating the measurement vector x to the state vector. The goal is to estimate a 

process assumed random. Once estimated, the state parameters are up(h~ted for the est.imation 

at the next observation time. The random process to be estimat.ed is modelled by the dynamic 

equation B.1: 

Pt = Apt-l + Wt (B.l) 

where A is the state transition matrix and Wt is the white noise associat.ed with the dynamic 

process. The observations are expressed linearly in terms of the stat.e vector as follows 

(B.2) 
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where Xt is the dimensional noisy and distorted observation vector at time t, If is the observation 

matrix and Zt is the measurement noise vector. The random variables Wt and Zt represent the 

process and measurement noise respectively. They are assumed to be independent of each 

other, white and with normal probability distributions with zero mean N(O, Q) and N(O, R). 

The process noise covariance Q and measurement noise covariance R matrices are calculated by 

Q = E{wtwi} 

R = E{Ztzi} 

In parctice, Q and R change over time, however they are assumed constant. 

B.1.l The prediction step 

(B.3) 

(BA) 

In the prediction step of a Kalman filter, the predicted state vector Pt and the predicted state 

covariance matrix Pt at time t are estimated from the previous at time t - 1 by 

Pt = Apt-l 

Pt = APt_1AT + Q 

(B.5) 

(B.6) 

The Q matrix, defined in equation B.3, is often an boosted covariance matrix to make the 

Kalman filter a better tracker and more tolerant to the variability in measured object positions. 

B.1.2 The update step 

The state process Pt and its covariance Pt are updated from an estimated process Pt with 

covariance Pt (equations B.5 and B.6 respectively) according to the Kalman gain K 

Pt = Pt + K(Xt - Hpt} 

Pt = Pt - KIIPt 

(B.7) 

(B.8) 

where Pt is given by equation B.5 and Pt by equation B.6. The Kalman gain is derived by 

minimising the state error covariance Pt 

(B.9) 

and after minimisation 

(B.lO) 

where R is the measurement error covariance matrix defined in equation BA. The Kalman gain 

is defined so it increases with the error between the predicted and actualmeasul'emcllts. lienee 

as the measurement error covariance increases, the Kalman gain decreRses and the st.at.e process 

is principally updated with the predicted state and vice versa. 
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B.2 Kalman filter implementation for object tracking 

The Kalman filter used to track objects in chapter 7 is implemented by a prediction and update 

algorithm described in the section B.l. The computational time required to perform a Kalman 

filtering is mainly dependent on the time required to perform the matrix inversion involved in the 

calculation of the Kalman gain K in equation B.1O. Matrix inversion operations are performed 

in this study by an SVD (Singular Value Decomposition [103]) algorithm which computational 

expensiveness increases cubic1y with the lateral size of the square covariance matrix. However, 

tracking objects involves relatively expensive operations such as noise removal by a smoothing 

operation, background reference frame construction involving large memory handlings and many 

arithmetic operations to detect and segment foreground objects. Thus, in order to limit the 

overall computational speed of the tracking algorithm, the state vector x and measurement 

vector s are chosen to be of the simplest form where x contains only the object positions and p 

involves only the position and velocity of these objects: 

Xt = [Xt Yt] T 

Pt = [Xt Ut Yt Vt] T 

(B.ll) 

(8.12) 

where the object velocity is Vt = [ut, vtlT • A constant velocity trajectory model is chosen which 

is equivalent to a zero-acceleration model: 

Vt-l 

= Xt-l + DotVt-l 

(8.13) 

(8.14) 

(8.15) 

The expression of the transform matrix A and observation matrix If are obtained from equations 

B.1 and 8.2: 

Pt = Apt-l 

Xt = lfpt 

According to equation B.ll and B.12, matrix A and 1I take the following form: 

A = 

1 6.t 0 0 

o 1 

o 0 

o 0 

o 0 

1 6.t 

o 1 

1I= [1000] 
o 0 1 0 

(B.16) 

(8.17) 

(B.18) 

(8.19) 

Given a known state process at time t-l, the prediction and update equations can be calculated 

if the error covariance matrices Q and R defined in equations B.6 and B.IO respect.ively are 
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known. They are here empirically estimated for best tracking as constant matrices as 

0.3 0 0 0 

0 0.3 0 0 
Q ~ (B.20) 

0 0 0.3 0 

0 0 0 0.3 

R ~ ~ [H 0 1 
6 0 W 

(B.21) 

where Wand H are the width and height of the object respectively. 



Appendix C 

Foreground and background 

Bayesian classifier 

Let's consider a surveillance camera capturing at time t a frame with intensity distribution It 

and a background frame of the non-foreground objects Back. It is possible to segment pixels 

located at x either as background or foreground according to the Bayesian classifier [60) of 

equation C.l: 

>'. (x) = argmax'x(x)E{F.B}P(>'(X)/ ~I(x)) (C.l) 

where 

(C.2) 

and>.· is the estimated class the pixel belongs to depending on the grey-level difference with the 

background: ~l(x). In this example >.(x) is either the foreground class >.(x) = F or background 

class >.(x) = B. The shadow class which represent the pixels covered by objects shadow is often 

introduced in many techniques. The term p(>'(x)/~l(x)) represents the probability that pixel 

at x belongs to the class >.(x), given the grey-level difference ~I(x). This posterior probability 

is estimated accoding to the Bayes rule: 

p(>'(x)/~l(x)) = p(~l(x)/>'(x)) ;~i~l~) (C.3) 

where p(b-l(x)/>.(x)) is the conditional probability which can be estimated via the joint prob­

ability pCb-lex), A(X)): 

(C.4) 

The term P(>.(x» represents the prior knowledge of the c1a..<;s where for example in certain 

surveillance applications the probability of a pixel to be a foreground pixel can be fixed to be of 

about 10% a.nd because there are only two classes the probability of this pixel t.o belong to the 

background is therefore 90%: see equation C.5 and C.6. These priors can be set dynamically 

by setting P(F) to be the ratio of the total number of foreground pixels previously men .. "lured if 
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available to the total number of pixels, and P(B) = 1 - P(F). 

P(F) = 0.1 

P(B) = 0.9 

(C.5) 

(C.6) 

The conditional probability of having a grey-level difference given the knowledge that the 

pixel is a foreground pixel can be estimated in the simplest way by assuming the content of 

the image to be a random distribution of pixels. Hence the probability density function is 

approximated to be uniform and every pixel has an equal probability of 1/256 (images are 

quantised to 256 levels) of having a grey-level difference from the background. This assumption 

is not true but close to reality and can be approximated by equation C.7. This can be verified 

by a simple experiment which consists in creating the probability density function pdf (a grey­

level histogram) of many random captured images and the result would show that real captured 

images display a pdf rather uniform with less probabilities in the low and high differences (toward 

the 0 and 256 intensities respectively) than elsewhere where maximum probabilities are obtained 

around differences of 127 grey-levels. 

C = p(t::.I(x)/F) = 1/256 (C.7) 

If a pixel is known to be background and the background frame is statistically constructed by 

a Gaussian modelling technique such as the Stauffer and Crimson technique (see description 

ion section 7.2.1), the conditional probability of having a grey-level difference t::.l with the 

background is then modelled by a Gaussian distribution of mean p,(x) = Backt (x) and standard 

deviation u(x) in equation C.9: 

where 

p(t::.l(x)/ B) = 
AI~x)2 = K(x).e - 2" (xl 

K(x) _ --==-1_ 
- v'2ITu(x) 

(C.S) 

(C.9) 

(C.lO) 

Using equations C.5, C.6, C.7 and C.9 the maximisation of the Bayesian classifier of equation 

C.l can be developed as follows 

).*(x) = argmax'\(x)E{F,B} (P(t::.l(X)/>') P(~~~~») 

{ 
P(F) P(B) } 

= max p(t::.l(x)/F) P(t::.l(x»,P(t::.l(x)/B) P(t::.l(x» 

= max {p(t::.I(x)/ F)P(F),p(t::.I(x)/ B)P(B)} 

= max C.P(F), K(x).e - 2 .. (xl P(B) { ~} 

= max log(C.P(F», log(K(x).e - 2 .. (xl P(B» { ~ } 
= max {109C + logP(F),logK(x) _ ~ ( ~~~~») 2 + logP(B) } 
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max {109C + 10gP(F) -logK(x) -logP(B), _~ (~~~~») 2} 
= min { -2(logC + 10gP(F) _ 10gK(x) _ 10gP(B», (~~~~») 2} 

= min { 2(logK(x) + 10gP(B) -logC -logP(F», ( ~~~~») 2} 
= min { V(2)(logK(x) + logP(B) -logC _10gP(F»1/2, ~~~~)} 

= . {(21 (K(X).P(B»))1/2 LlI(X)} (C.II) 
mIll og C.P(F) , IT(X) 

According to equation C.11, pixel at x is a foreground pixel if the following equation is true: 

where 

>. .(x) = { F if ~~~») > Threshold 

B else 

( (
K(X).P(B»))1/2 

Threshold = 2log C.P(F) 

(C.12) 

(C.13) 



Appendix D 

3D velocity with small rotation 

angles 

An 3D object point X = [X, Y, zjT moving from time t to time t + At where At is small can be 

described by a rotation followed by a translation as follows 

X(t + At) = RX(t) + T (D.1) 

where T = [Tx,Ty,Tz]T is the translation vector where Tx, Tx and Tz are the translational 

components along the X, Y and Z directions. The 3D rotation in equation D.l is represented 

by the R matrix expressed by 

R = RxRyRz (D.2) 

[ 

ceyceZ -ceyseZ 

R = sexs8yc8z+c9xsez -sexs8ysez+cexc8z 

-cexs8ycez + sexs8z cex s8y s8z + s8x c8z 

Sey 1 
-seXcey (D.3) 

CeXCey 

where c8 = case and se = sine and Rx , Ry and Rz are the matrices for rot.ations about the 

X, Y, and Z axis respectively are expressed below 

Rx(ex) = (D.4) 

Ry(8y ) = (D.5) 

Rz(ez) = (D.G) 
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For small angles of rotation: sinS ~ Sand cose ~ 1 - e2 /2 ~ 1, where Theta represents the 

three angles ex, Sy and Sz, and the 3D rotation R in equation D.3 becomes approximated to 

(D.7) 

The 3D velocity at time t of the point X is calculated during small time interval At: 

X(t) lim~t_O 
X(t + At) - X(t) 

(D.8) 
At 

= lim~t ..... o 
RX(t) + T - X(t) 

(D.9) 
At 

= lim~t ..... o 
(RX(t) - I)X(t) + T 

(D.lO) 
At 

= r CRX(t) - J)X() T) Jm~t ..... O At t + At (D.ll) 

= OX(t) +K (D.12) 

where K = [Kx,Ky,Kz]T is the translational velocity vector with Kx = 'ix, Ky = Ty and 

Kz = Tz the translational veloctity along the X, Y and Z axis respectively. Matrix 0 is the 

3D angular velocity matrix defined by 

o = lim~t ..... o 
(RX(t) - J) 

(D.13) 
At 

0 -Sz 
ey 1 = limA'-O ~t [ e z 0 -:x 

(D.14) 

-Sy ex 

0 -Oz 
Oy 1 = [ Oz 0 
-:x 

(D.l5) 

-fly flx 

where Ox = S·x, fly = S·y and Oz = ez are the rotational velocit.ies about the X, Y and Z 

axis respectively. To simplify the notation, the time dependency is omitted and the 3D velocity 

is formulated as 

(D.l6) 



Appendix E 

Personal publications 

Journal papers 

• E. Corvee, S.A. Velastin and G.A. Jones. "Occlusion Tolerant Tracking using Hybrid 

Prediction Schemes". In Acta Automatica Sinica, Special Issue on Visual Surveillance of 

Dynamic Sc, 23(3), pages 356-369, 2003 

• A. Toniappa, S. A. Barman, E. Corvee, M. J. Moseley, K. Cocker and A.R. Fielder. 

"Image quality assessment in retinal images of premature infants taken with the RetCam 

120 digital fundus camera" in The Imaging Science Journal, 53(1), pages 51-59, March 

2005 

Conference paper 

• S.A. Barman, A. Toniappa, E. Corvee and C. Sinthanayothin. "Classification of haemor­

rhage pathologies on digital fundus images using a combination of neural network and 

tracking algorithms" in The 2nd ECTI Annual Conference (ECTI-CON 2005), Asia­

Pattaya Beach Hotel, Thailand, May 12-132005 
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