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Abstract

Analysing objects interacting in a 3D environment and captured by a video camera requires
knowledge of their motions. Motion estimation provides such information, and consists of re-
covering 2D image velocity, or optical flow, of the corresponding moving 3D objects. A gradient-
Jbased optical flow estimator is implemented in this thesis to produce a dense field of velocity
vectors across an image. An iterative and parameterised approach is adopted which fits pla-
nar motion models locally on the image plane. Motion is then estimated using a least-squares
minimisation approach. The possible approximations of the optical flow derivative are shown to
differ greatly when the magnitude of the motion increases. However, the widely used derivative
term remains the optimal approximation to use in the range of accuracies of the gradient-based
estimators i.e. small motion magnitudes.

Gradient-based estimators do not estimate motion robustly when noise, large motions and
multiple motions are present across object boundaries. A robust statistical and multi-resolution
estimator is developed in this study to address these limitations. Despite significant improve-
ment in performance, the multiple motion problem remains a major limitation. A confidence
measurement is designed around optical flow covariance to represent motion accuracy, and is
shown to visually represent the lack of robustness across motion boundaries.

The recent hyperplane technique is also studied as a global motion estimator but proved
unreliable compared to the gradien_t-based' approach. A computationally expensive optical flow
estimator is then designed for the purpose of detecting at frame-rate moving objects occlud-
ing background scenes which are composed of static objects captured by moving pan and tilt
cameras. This was achieved by adapting the estimator to perform global motion estimation i.e.
estimating the motion of the background scenes. Moving objects are segmented from a thresh-
olding operation on the grey-level differences between motion compensated background frames
and captured frames. Filtering operations on small object dimensions and using moving edge
information produced reliable results with small levels of noise. The issue of tracking moving

objects is studied with the specific problem of data correspondence in occlusion scenarios.
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Chapter 1

Introduction

The general motivation of this study, discussed in the first section, is the investigation of grey-
level changes in image sequences caused essentially by the motion of 3D objects projected onto
image plane of cameras for motion detection purposes in surveillance applications. The last

section introduces the organisation of the thesis and the content of the chapters.

1.1 Motivation

Rays of light reflected by a scene and captured by a camera produce grey-level patterns on
the image plane of the camera. The apparent instantaneous shift of grey-level structures in the
image plane due to relative motion between scene objects and camera is referred to as optical flow
[68]. However, modern cameras capture images of a scene with relatively small time intervals
so that the grey-level variations due to the change of scene lighting environment are neglected.
Analysing such grey-level motion is referred to as motion analysis and is mainly performed by two
approaches. The first approach estimates motion of features, or structures, and produces sparse
motion vectors across a frame. The second approach produces dense optical flow (i.e. at each
pixel in a frame) by using the constant brightness approach approach. Gradient-based motion
estimators are one family of optical flow estimator to produce such dense motion information
by analysing grey-level gradients. A gradient-based technique is developed and investigated in
this study whose estimation is parameterised by a motion model of the projected motion of 3D
object surfaces.

Knowing pixel motion between successive images is a powerful tool for computer vision
applications as described in the review in chapter 2. However, the use of dense optical flow
vectors is limited by the accuracy of the results at object boundaries where multiple motions
occur and cannot be easily segmented. In addition, producing dense motion fields is a very
computationally expensive task. The second motivation of this study is how to use optical flow
in frame-rate applications and the one chosen here concerns detecting moving objects surveyed

in indoor and outdoor scenes captured by either static or moving PTZ (pan, tilt and zoom)

13



CHAPTER 1. INTRODUCTION 14

cameras involved. Detecting moving objects in such scenarios is usually performed by pirel
differencing which consists of thresholding grey-level differences. When background scenes,
assumed to cover the majority of the frame dimensional space, are non-moving relative to a
camera (with no zooming operation involved) moving pixels are easily segmented from the
background. Grouping moving pixels into individual objects, referred to as blobs allow temporal
analysis of their motions on the image plane and they can be therefore tracked using trajectory
models. However, although such traditional procedure is efficient, tracking becomes a significant
challenge when the problem of occlusion and fragmentation occur where the objects shape and
their grey-level distribution do not match between frames. These problems are here addressed
by using appearance models of the objects features to improve tracking. Moreover, an additional
problem occurs when PTZ cameras are allowed to move where the pixels of the background scene
move with the camera motions. The dense optical flow algorithm previously introduced here
is designed to estimate the gloBal motion of the background scene before pixel differencing is
possible and to allow the subsequent tracking of moving objects in frame-rate PTZ applications.
This global motion algorithm could permit, for example, the detection of a moving object before
being tracked and recognised automatically by automatic adjustments of the pan, tilt and zoom

of a camera.

1.2 Structure

The second chapter reviews the main approaches used in the literature to estimate optical flow.
Much of this review focuses on the gradient-based approach. A gradient-based technique is
then developed in chapter 3 around the constant brightness assumption. In this chapter, a
planar motion model is fitted to local neighbourhoods of pixels representing the projected 3D
object surfaces on the image plane. Chapter 4 investigates the main limitations of the optical
flow estimator caused by the contamination of pixel neighbourhoods by noise and multiple
motions and caused by the small motion restriction problem. The problem of estimating the
global motion of background scenes captured by moving pan and tilt cameras is addressed by
a hyperplane estimator in chapter 5. This technique does not compete with the version of the
gradient-based estimator developed in chapter 3 which can estimate background motions using
- a designed edge-based sampling technique described in chapter 6. In this chapter, the gradient-
based estimator is tested in two applications, first a pan and tilt application and second a
zooming application. When background scenes are not moving relative to a camera, foreground
moving objects are accurately segmented in chapter 7. In this chapter, the problem of tracking
these objects in occlusion scenarios is addressed. This study concludes in chapter 8 with a
successful segmentation of moving objects in static background scenes captured using moving
pan and tilt cameras. Chapter 9 reviews the investigations achieved in this study on dense

motion analysis and on the results obtained with the surveillance applications.



Chapter 2

Review

Optical flow is the prominent source of temporal variations in image sequences. The relative
movement between a 3D scene and the camera induces apparent motion in image sequences
as explained, for example, by Stiller et al [123]. One of the key problems in dynamic image
analysis arises from the fact that motion is geometric in nature but manifests itself as a change
of image pixel intensity. Therefore, the core of the image motion estimation problem concerns
relating time-varying image intensity to the movement of objects in the scene. Motion anal-
ysis in computer vision is divided in two main areas of study: motion estimation and motion
segmentation.

Motion estimation aims to study the object motions that gives rise to the pixel changes, and
is based on the assumption that object structures remain relatively rigid from frame to frame.
Such analysis is usually based on a further assumption that pixel intensity generated by the 3D
scene remains relatively constant over short period of times [1, 4, 10, 15, 19, 63, 68, 97, 123, 141).

The goal of motion segmentation is to partition the image into regions that have uniform
motion characteristics or properties [21, 69, 95, 133, 117, 138]. Motion boundaries generally
coincide with pixel intensity boundaries (though the converse is not true). Therefore, intensity

boundaries can be used to hypothesise motion boundaries.

2.1 Motion estimation

Two distinct approaches have been developed for the computation of motion from image se-
quences. The first of these is based on extracting a set of relatively sparse but highly discrimi-
natory 2D features in the image plane. These features correspond to the perspective projection
of 3D object features such as edges as in the works of Bouthemy [20], corners as studied by
Jones et al [74], occluding boundaries of surfaces, boundaries demarcating changes in surface
reflectivity, ete. Such features in the image plane can be modelled as lines, texture information,
curves and other possible geometrical shapes. In order to match features from one frame tb

another in the image sequence, constraints are formulated based on many assumptions such

15
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as rigid body motion i.e. that the 3D distance between two features on a rigid body remains
the same after both object and camera motion. Matching techniques using this first approach
to compute motion from features exploit what may be called the constant structure constraint.
The result is a sparse set of motion vectors in each frame. Several techniques exist to extract
and establish feature correspondence but in general the task is difficult, mainly because of the
presence of occlusion, which may cause features to be hidden, false features to be generated and
hidden features to reappear as investigated by Girard et al {45] and Baumberg et al [14). The
second approach to motion estimation is based on computing the optical flow i.e. the visual
velocities of each pixel in the image plane [15]. Optical flow is the apparent instantaneous shift
of grey-level structures in the image plane due to relative motion between scene objects and
camera (as defined by Horn [68]). This approach to motion estimation is more appropriate
to applications which require dense motion fields i.e. every pixel in the image should have a
motion vector associated with it. In order to generate dense optical flow fields, the constant
brightness equation may be used, which states that the intensity of a pixel undergoing motion
should remain relatively constant from frame to frame. Two major matching techniques for
computing optical low are derived from the constant brightness equation: the correlation (or

block-matching) technique and gradient-based technique.

Two comprehensive papers on the subject of optical flow performance exist. Barron et al
[13] compared nine state of the art optical flow algorithms on the basis of accuracy and density.
The authors provide a clear test set of image sequences that can be used for quantitative and
qualitative comparison of the different algorithms. More recent work by Liu et al [87] has im-
proved on Barron et al study. Performing 2D motion detection involves the processing of scenes
where the sensor is moving within an environment containing both stationary and moving ob-
jects. Furthermore, visual events such as occlusion, transparent motions and non-rigid objects

increase the inherent complexity of the measurement of optical flow.

Having estimated a reliable 2D image motion, optical low may then be used to recover the
3D motion of the visual sensor (to within a scale factor) and the 3D surface structure (shape or
relative depth). This is achievable through assumptions concerning the structure of the optical
flow field and the type of motion exhibited by the sensor as studied by Adiv [1]. Optical flow may
also be used to perform motion detection [70], object segmentation and tracking (8, 135], motion-
compensation [41, 43], motion analysis of oceanographic and atmospheric image sequences [37]

or stereo disparity measurement {15, 125).

2.2 Correlation-based methods

Window-matching, block-matching or correlation-based techniques are the most intuitive and

one of the most widely applied techniques to compute optical flow from an image sequence as
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performed by Giachetti et al [59] and Sun et al [124]. These correlation-based methods analyse
the grey-level pattern around the point of interest and search the most similar pattern in the
successive image. The search of best match is performed within a chosen search window between
a certain numbers of frames, typically neighbouring pairs. The estimated image displacement
(or optical flow) is taken as the shift corresponding to the minimum of a distance metric, or
maximum of a correlation measure between the different intensity patterns of the different
frames. Motion estimation between two patterns is typically achieved by a normalised cross-
correlation function such as the sum-of-squared difference (SSD). This technique is also referred
to as a least-squares minimisation technique.

Generally, features such ascorner points are successfully matched. However, such points do
not constitute the majority of pixels within an image and denser features such as edges are easily
mismatched. Moreover, establishing the correct correspondences of reasonably unique features
such as the corner points can be problematic. Bouthemy [20] shows for example that edges that

can be modelled as 3D step edges can be successfully tracked.

Phase-based techniques are another method to estimate motion [32, 36, 57). They analyse
the image grey-level motion in the frequency space using discrete Fourier analysis and use the
property that motion in the spatial domain is equivalent to a convolution in the frequency
domain.

For region-based techniques referred to as the block-matching techniques, motion is mea-
sured by analysing displaced grey-level differences. The larger the template window, the more
efficient the match as there are more pixel comparisons. However, time computation increases
quadratically when increasing the template window which is likely to contain pixels belonging to
other objects undergoing different motion. This occurs when pixels are closed to object bound-
aries. Moreover, motions can be expected to be large in magnitude, requiring a large search
window to ensure the match is found (where there is no prior information provided on the pixel
motion). Such large search windows increase the potential for false matches particularly in the
presence of noise, blur or repeated structures. Therefore a trade-off exists in choosing the size
of the template and search window which can be estimated if information about the objects
to match are known, such as fheir sizes and their velocities. For large motions, initialisation

techniques (reviewed in section 2.8) can limit the search area.

2.3 Gradient-based methods

The image brightness of the projection of a single point is assumed to remain constant with

time. This is strictly true only in the idealised context of Lambertian! surfaces being viewed by

!Dull, matte surfaces can be modelled by Lambertian surfaces and are said to exhibit Lambertian reflection,
or diffuse reflection (Nagel [97]). The assumption is that these surfaces reflect light with equal intensity in all

directions, and hence appear equally bright from all directions. For a given surface, the brightness depends only



CHAPTER 2. REVIEW 18

a moﬁng camera. This is a reasonable approximation for a wide range of practical situations.
Let I{x,y,t) be the irradiance at time ¢ of the image point located at (z,y) in pixel unit on the
vertical and horizontal axis respectively. If (u,v) is the grey-level velocity at location (z,y) then
if no occlusion occurs the irradiance remains unchanged at this location within a small interval

of time 4¢, or from time ¢ to t + 6t:
I(z,y,t) = I(z + 6z,y + y,t + 6t) (2.1)

where
dr = u.bt, and dy = v.6t (2:2)

Equation 2.1 is known as the constant brightness equation (CBE). However, the 2 unknowns of
the optical flow displacement, (dz,dy), cannot be directly estimated by the single constraint of
equation 2.1. Using the fact that ¢ is small so that any 3D object motion induces image optical
flow with relatively small displacement allows the second term of the CBE to be expanded into

its Taylor series:

oI aI or
5 ~ Wort Loy+ & 2.3
I{z + éz,y + 0y, t + 4t) I(z,y,t)+az<$:v+ay6y+6t6t+e (2.3)
~ I(z,y,t) + 0z + L0y + I;6t + € (2.4)
where, :
oI o1 oI
I = 5;, Iy = 8_y and I; = 'gt- (25)

and € contains the remaining higher order terms in éz, 6y, and dt, and I, = 81/dz, I, = 8I/8y
and I, = 8I/dt. Using equation 2.4 in the CBE of equation 2.1 gives

I(x,y,t) + Idc + Loy + Lot +e¢ =~ I(z,y,t) (2.6)
Lz + Loy+Iot+e = O (2.7)
Lu+Iyv+I, = -—¢/ét (2.8)

The right hand side of equation 2.8 represents the remaining terms of the Taylor expansion.
This contains products of higher spatial and temporal derivatives of the brightness function as
well as higher orders of the displacements. Such derivatives are estimated from the image using
various kernel filters as evaluated by Christmas [34]. The validity of ignoring the right hand
side of equation 2.8 is dependent on the spatial frequency content of the local intensity pattern
and the magnitude of the displacement (Chin [33]). However, the remaining terms of the Taylor

expansion can in general be neglected which simplifies equation 2.8 to
Lu+lv+IL=0 (2.9)

The CBE equation 2.9 is also referred to as the optical flow constraint equation and is the

equation to be solved in gradient-based optical low methods. Unlike equation 2.1, the two

on the angle between the direction of the light source and the surface normal
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motion unknowns can be estimated if additional constraints are provided, as described in the
following sections. In practice, discretisation of the image sequence in time and space affects
the equivalence between the intensity invariance assumption and hence affects the validity of
equation 2.9. Two ways to satisfy the CBE are to shorten the temporal sampling rate or to
somehow reduce the high frequency components in the intensity function. The latter can be
achieved by pré—smoothing or intentionally blurring the images before gradients are computed as
achieved by Kearney [80] in order to diminish the second and higher order brightness gradients.
Pre-smoothing also reduces the effect of noise in the brightness measurement by providing spatial
averaging. The optical flow constraint equation holds in high temporal sampling in distant

imagery by modern cameras where the following conditions are met:
1. uniform témporal illumination of the 3D object surfaces,
2. Lambertian surface reflectance, and
3. object motion consistency through time to avoid motion discontinuity.

Equation 2.9 is a single equation in two unknowns which forms a single constraint line in
velocity space (u,v) satisfied by any velocity on this line. As this constraint is not sufficient to
compute the unknown motion, optical flow computation is ill-posed. If I is temporarily set to 0,
equation 2.9 is équivalent to as the dot product of the gradient vector [I, I,] with the velocity
vector [u,v] being 0. In other words, the previous line of solution is passing through the origin
(u=v=0) and has for normal vector the gradient vector. Therefore, optical flow is only available
in the direction of the gradient vector. This phenomenon is referred to as the aperture problem
[67] and implies that velocity can not be locally determined uniquely. Additional gradient
constraints are thus required for a unique optical flow to be computed and this is performed in

the literature by three major techniques:

e Parametric techniques, which assume that optical flow can be locally modelled by a para-
metric motion field and is usually the result of restricted motions such as a planar or affine

motion model, see section 2.5.

o Multiconstraint techniques which combines several variants of the constant brightness con-

straint, see section 2.4.

o Regularisation techniques which constrain motion by enforcing local smoothness i.e. allow

neighbouring pixels to influence the estimation of a pixel’s optical flow, see section 2.7.

2.4 Multiconstraint techniques

Multiconstraint methods obtain extra constraints necessary to solve optical flow in equation
2.9 by taking advantage of the fact that image properties other than intensity, such as colour

channels, contrast or entropy (a measure of the amount of information in the image) also satisfy
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the brightness constancy model. However such constraints are often noisy and highly correlated
and thus do not in general provide stable and accurate solutions. These approaches are explored
in the works of many authors [89, 92]. For example Haralick et al [61] and Tretiak [132] employ
constraints with noisy second-order partial derivatives. Woodham [140] uses images illuminated
with different sources of light. Liu et al [89] take images at different spectra and use one optical

flow constraint equation for each spectrum.

2.5 Parametric techniques

Motion information can be represented in different ways: 2D displacement, affine or other para-
metric transformations, 3D ego-motion etc. A common general framework has been suggested
to parameterise motion models (see Anandan [4]). The unification of motion models within
a general framework is possible because all the problems associated in estimating motion can
be viewed, at least locally, from the perspective of image registration (as viewed by Tistarelli
[129]). That is, given an image sequence, compute a representation of the motion field that best
aligns pixels in one frame of the sequence with these in the next. The various approaches in
motion parameters estimation differ only in terms of the assumptions the authors make about

the spatial structure (or model) of the motion field, and choice of estimator.

Most typical optical flow techniques presume brightness constancy, which is often violated
by time-dependent physical processes. These include changing surface orientation with respect
to a directional illuminant, motion of the illuminant, and physical models of heat transport in
infrared images. Additional models of image brightness variation are now used by many authors
(64, 141, 63]. Negahdaripour [98] for example parameterises the image brightness by using geo-
metric cues (based on the projection geometry, constraining the position of points in the scene
in terms of the coordinates of their projections onto the image plane); and radiometric cues
(which are tied to a large number of scene properties, including illumination condition, medium
properties, sensor spectral response characteristics, as well as shape, position, and reflectance

characteristics of the scene surfaces).

It has been recognised that applied motion models lead to accurate optical flow estimation es
discussed by Black [19]. For example, a number of researchers have investigated the estimation of
rigid body motion parameters without the prior estimation of optical flow (see Negahdaripour
[99]). Since all the pixels within a region can contribute to this estimation, highly accurate
results may be obtained. Although these models may be applicable under limited circumstances,
they are often good approximations for a wide range of situations. For instance, the motion
of the image of a planar surface under orthographic projection can be described as an affine
transformation. But the same model forms a good approximation to motion in images of distant

shallow surfaces under perspective projection, a situation not uncommon in many aerial image
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sequences. Similarly, the motion of the image of the planar surface under perspective projection
can be described by a eight-parameter quadratic transformation. Given the motion parameters
vector a for a given set of pixels locally located at x with the motion model matrix X(x)
(also called transform matrix) the 2D displacement vector or optical.ﬁow is calculated from the

velocity equation 2.10:
x = X(x)a (2.10)

Four motion model examples are given below with their motion matrix X: the translational,
zoom, affine and planar model which corresponding motion vector a contains 2, 4, 6 and 8

parameters respectively. More details of these motion models are given in chapter 3.

10
01

o translational model: X(x) =

¢ zoom model: X(x) = ( o
Yy

-
1 zy 000
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o affine model: X (x) =

1 0 0 0 22
e planar model: X(x) = Ty T
) 0001z y zy y

In parametric techniques, the problem of computing optical flow is reformulated to one of
parameter estimation in image neighbourhoods of pixels and, after linearisation of the model,
standard linear regression can be used to estimate the motion parameters. A neighbourhood of
pixels R consists of a group of pixels located within a square bounding box centred on the pixel
located at x = [z,y] which motion is to be determined. The least-squares regression approach,
for example, attempts to minimise the functional €(u,v), the sum of the squared errors given by
the constant brightness equation in equation 2.9 by all the pixels of the neighbourhood R:

e(u,v) = Z e(x',u,v)? (2.11)
x'€Rx
where x’ denotes the index of the neighbouring pixels. The new constant brightness equation is

written as an error function as follows
e(x,u,v) =lLu+ v+ 1 (2.12)

Minimising € is equivalent to solving a'set of quadratic equations governed by the neigh-
bouring pixel brightness gradients. The functional of equation 2.11 becomes minimal when the
optical flow measurement at each pixel gives a minimum error term. Hence in the least-squares
regression method, each pixel of a neighbourhood of pixels will contribute equally to the minimi-
sation of Ey4. In the case where all pixels of R belong to the same moving object in the image,

the least-squares regression method is the most appropriate method. Pixels situated in the
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neighbourhood are now considered to undergo different motions due to multiple motions in the
3D scene, or noise is introduced. These situations are very likely to happen in image sequences.
In this case, the least-squares regression method will attempt to satisfy the constraints brought
by all the pixels inside R simultaneously. The violations introduced by these pixels, also called
outliers give an erroneous optical flow estimate for the central pixel. Data are becoming outliers
if they do not fit any model represented by the dominant data distribution. The least-squares
method hence lacks robustness in the presence of outliers whereas robust statistical techniques,
introduced in the next section 2.6, can overcome such problems as implemented by Black [17]

and in chapter 4.

2.6 Robust statistics

The field of robust statistics (investigated by Bunke et al [28] and Rousseeuw et al [110]) has
developed methods to address the fact that the parametric models of classical statistics are
often approximations of the phenomena being modelled. In particular, the field addresses how
to handle outliers, or large errors, that do not conform to the statistical assumptions as explained
in the works of different authors [18, 114, 136]. The main goals of robust statistical methods are

to,
1. describe the structure best fitting the bulk of the data and,

2. identify deviating data points (outliers) or deviating substructures for further treatment,

if desired.

Specifically, robust estimation addresses the problem of finding the values of the parameters
that best fit a model to a set of data measurements in cases where the data differs statistically
from the model assumptions. To state the issue more concretely, robust statistics addresses
the problem of finding the values for the parameters, a that provides the best fit of the model
u(d;a) to a set of n data measurements d = [d;,...,d,]. A robust estimator is in general
defined as p and the goal in robust statistics is to find the values for the parameters a that

minimise the size of the residual errors (d; — u(d;;a)):
a* = argmin, Zp(d,- —u(d;;a),0;) (2.13)
i

where 0; is a scale parameter [17). The minimisation process of equation 2.13 can also be
referred to as a Maximum-likelihood estimation process which make this estimator a so-called
M-estimator. The choice of the function p selects the robustness of a particular estimator
which refers to its insensitivity to outliers or deviations from the assumed statistical model.
Beauchemin et al [16], for example, analyse image motion in the frequency space with respect
to motion discontinuities and surface translucence. The authors derive by means of models

of constant and linear optical flow, the frequency structure of motion discontinuities due to
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occlusion. The median technique is deployed in chapter 4 to discriminate optical flow outliers

from the dominant motion in neighbourhood of pixels.

2.7 Regularisation techniques

Most current techniques for recovering optical flow exploit two constraints on the image motion:
* data conservation and spatial coherence. The data conservation constraint is derived from the
observation that surfaces generally persist in time and hence the intensity structure of a small
region in one image remains constant over time, although its position may change. The spa-
" tial coherence constraint embodies the assumption that surfaces have spatial extent and hence
neighbouring pixels in an image are likely to belong to the same surface.

Since the motion of neighbouring points on a smooth rigid surface changes gradually, a
smoothness constraint can enforce the motion of neighbouring points in the image plane. The
smoothness constraint of Horn and Schunck used by the authors [68, 3, 96], for example, min-
imises the square of the velocity gradient over the image. Black [17] uses robust statistics to
minimise the error terms given by the differences in motion estimates. Estimates obtained at
points of non-zero intensity gradient are propagated iteratively over the image. Tretiak et al
[132] regularise motion by applying Gaussian smoothing to their motion field. Weber and Malik
[136] present a common regularisation method for computing optical flow using a robust version

of the gradient-based least-squares framework presented in section 2.5.

2.8 Initialisation techniques

The goal in motion analysis is essentially to estimate the 2D motion fields from.a given set
of two consecutive frames of a sequence of images. Unless an initial estimate is provided,
the estimator is expected to fail in certain conditions. For example, it is difficult to estimate
large motions accurately by gradient-based optical flow techniques. There exist three main
initialisation procedures, which are designed to give a quick and rough first estimate of what the
motion is expected to be so that a gradient-based optical flow technique can perform accurately

thereafter. These three initialisation procedures are:
o feed-forward
¢ block-matching

¢ hierarchical

The feed-forward technique bases its estimation on a short history of the previous motion
estimates. The simplest case would be to project the previous motion estimate. More developed
techniques might use & — 3 predictors (using weighted averages of previous estimates), Kalman

filtering predictors (described in Appendix B) or projection of the motion model parameters
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derived from the previous frame. Although this technique is quick, its reliability and efficiency
rely directly on the accuracy of the previous estimates and the motion constancy of the 3D
objects.

The second approach, the block-matching technique is a correlation-based technique which
only estimate translational vector as initial estimate as described in section 2.2. These techniques
can involve expensive search of grey-levels matches and are usually more expensive than the
feed-forward techniques.

Arguments for use of the third hierarchical (or pyramid based) estimation techniques (see
Burt [29]) have usually focused on issues of computational efficiency. A matching process that
must accommodate large displacements can be very expensive to compute. Intuition suggests
that if large displacements can be computed using a low-resolution version of the image, great
savings in computation time may be achieved. Full-resolution images can then be used to im-
prove the accuracy of displacement estimation by incrementally estimating small displacements.
However, it can also be argued that it is not only efficient to avoid the high-resolution image
when dealing with large displacements but necessary. This is because of aliasing of components
of high spatial frequency undergoing large motion. Aliasing is the source of false matches in
correspondence solutions or local minima in the objective function used for minimisation. Min-
imisation or matching in a multi-resolution framework helps to eliminate problems of this type.
Another way of expressing this is to say that many sources of non-convexity that complicate the
matching process are not stable with respect to scale. Thus the motivation for using hierarchical
processing is twofold: to eliminate false matches by using ‘large scale’ structures, and to achieve

a computationally efficient estimation.
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Gradient-based optical flow

Image motion generates pixel grey-level changes which can be measured by the optical flow tech-
nique. More specifically, the gradient-based estimator briefly reviewed in the previous chapter is
implemented. Optical flow estimation relies on the constant brightness equation (CBE) which
states that brightness at any location in space does not change over small time intervals. An
optical flow estimator based on this constraint is developed in section 3.3 around the assumption
of small motion magnitudes. This single constraint results in an ill-posed estimation problem
referred to as the aperture problem. Additional constraints are typically provided by fitting
a motion field to local neighbourhoods of pixels. Motion fields can be modelled by different
models as explored in section 3.2 (which gives four examples). The planar motion model is
implemented in the optical flow estimator developed here. A least-squares regression technique
is then applied to minimise the error function associated with the CBE.

A non-iterative and iterative optical flow estimator are evaluated in section 3.5 and 3.6
against ground-truth data provided by a motion compensation technique described in section 3.4.
The first experiments in section 3.5 show that both estimators can only estimate small motion
accurately. Large motion can be relatively well estimated if a smoothing operation is performed
with a Gaussian operator with kernel width the size of the motion magnitude. Therefore,
large motions cannot be estimated automatically without knowledge of their magnitudes. The
iterative estimator is shown to estimate a larger range of small motions (of maximum 4 pixels),
and is more accurate than the non-iterative technique. A minimum of 10 iterations with at least
100 constraining points in the neighbourhood are necessary for the flow results to converge to a
final and accurate estimate. The second set of experiments conducted in section 3.6 evaluates
several estimators differing only in their implementation of an image gradient term. The results
show that the traditional gradient approximation used in the literature is an accurate and
computationally efficient version of the true expression and shall be used as the default term
for the rest of this study. Dense optical flow algorithms are known to be computationally
expensive. For example, it takes approximately 15 minutes to compute the motion of 576x768

pixels (using a traditional Pentium III). Computational times are reported in section 3.7. In
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addition, complexity analysis demonstrates how the cost involved in computing optical flow

largely depends on the number of neighbouring pixels to which the motion model is fitted.

3.1 Review

Gradient-based optical flow techniques recover motion vectors using spatio-temporal variations
of the image intensity, as performed by numerous authors [4, 10, 17, 136]. Spatio-temporal
variations do not always occur when objects are moving, causing difficulties in estimating optical
flow (as explained for example by Horn [67]). For example, some of the variations in the scene
intensity may not be due to motion, but may be caused by variations in the lighting environment
as discussed in the work of Negahdaripour and Horn [99]. Nevertheless, the first assumption that
is often made is that the intensity of a point in the scene is conserved, and that all variations in
the image sequence are due to motion. The conservation of these assumptions gives rise to the
commonly used constant brightness equation, or CBE (introduced in section 2.3) and developed
in this chapter. The CBE is a single equation in tv\;o unknowns which forms a single constraint
line in velocity space satisfied by any velocity on this line. As this constraint is not sufficient
to compute both components of the optical flow, the computation is ill-posed. That is to say,
only the motion component in the direction of the local gradient of the image intensity function
may be estimated. This phenomenon, known as the aperture problem [67] implies that at any
pixel the velocity can not be determined uniquely. The aperture problem is addressed by three
alternate techniques: multi-constraint, parametric and regularisation techniques reviewed in
sections 2.4, 2.5 and 2.7 respectively. A parametric technique is used in this chapter to increase
the degree of constraint by combining the constant brightness equations with a planar motion

model fitted locally to neighbourhoods of pixels.

3.2 Motion models

Objects moving in 3D scenes produce image motion when captured by a camera. The produced
image motion of each individual moving object can be expressed as a 8 parameters motion
model and derived using the small motion assumption. The motion parameters are expressed in
terms of the 3D motion, the camera parameters and the depth of the 3D object at each pixel.
In this formulation, this depth dependency means that a motion model cannot be fitted to a
neighbourhood of pixels as the depth of the 3D scene is required i.e. the optical flow equation
remains under-constrained. Section 3.2.2 eliminates this depth dependency by modelling 3D
scene objects by 3D planes to allow motion fields to be locally fitted to image neighbourhoods
i.e. the planar motion model. Section 3.2.3 introduces the well-known affine motion model
approximation to the planar motion model, as well as for translational and zooming models

derived for particular 3D motions.
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where &, 9, X, Y and f are the derivatives with respect to time t of z, y, X, Y and f respectively.
Using the constraint that the 3D rotational angles are small, which is often true over short
time intervals, then the 3D velocity can be expressed by the velocity matrix € followed by a

translational velocity vector K as derived in Appendix D:

X=0X+K (3.8)
where K = [Kx, Ky, Kz]T and
0 -9z
Q=| Q; 0 -Q (3.9)
-Qy Qx O

with Qx, Qy and Qz the small angular velocities around the X, Y and Z directions respectively.
Therefore, according to equation 3.8 and the small rotations assumption in equation 3.9, the 3D

velocity becomes:

X = [X,v, 2T (3.10)
QzY +QvZ + Kx
=~ | QzX-QxZ+Ky (3.11)
-y X +QxY + Kz

and the corresponding image velocity of equation 3.7 using the perspective projection in equation

3.3 becomes

x= [, g7 (3.12)
where,
. X X X .
r = f———+f——f-252
: X f
=~ f (QZY+QYZ+Kx) f 2( QyX+QxY+Kz)
f A z
~ Qo Zytavz+kx) - Z-oyZzraxiy+ K
ff ( zfy Y x) ( Yy xfy z)
~ iT_ g8 _ % g2
~ ff sz+ny+KxZ+ny f:L‘y KzZ
Kx> f Kz Qy , Ox
~ floy+=X)+|Li-22)z-Quy+ =2 -2 3.13
f(Y 7 (f Z)z 2+ 7o (3.13)
and

¥y = f'Z+fZ—f-Z)%z

f +L(02X —0xZ 4 Ky) ~ f5(-0y X +0xY + K2)

q
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: z
~ ¥4 %(QZ—"’ - 0xZ+ Ky) - $(-0y

f f
] [ Qy
7+sz—ﬂxf+KyE+-f—zy—7y 7

~ f (—Qx + Ez’i) +Qzz+ (§ - -I%z-) y+ Q—fyxy— %{yz (3.14)

Z Z
—I'I'Q _
FrTXT

-y

y+ Kz)

~ f

The velocity vector components in equation 3.13 and 3.14 can be expressed in terms of matrices
as the product of a model matrix X and a motion model vector a defined in equation 3.16 and

the expression of the image velocity becomes

x=X(x)a (3.15)
where
[ 1T [ Kx\ |
1 0 f(Qy + Ex)
z O -ft - KZZ
y 0 -Qz
0 1 -Qx + £x
X(x) = an | F 0 Z) (3.16)
0 x Qz
0 vy -} — Xz
z? Ty %Y—
zy y? -8x

The vector of the motion model a represented by the 8 parameters in equation 3.16 describes
the relationship between a 3D moving object point regarding the camera coordinate system and
its corresponding projected image velocity. However, the description of this 3D-2D felationship
is dependent on the depth of the object point Z projected onto the image plane before motion
occurs. This means a motion field cannot be fitted to a neighbourhood of pixels without the
depth of the corresponding scene (which is usually unavailable). The next section shows that

this depth dependency can be avoided if objects are constrained to lie on 3D surfaces.

3.2.2 Depth-independent motion field: the planar constraint

One approach to eliminating the depth dependency in the relationship between 3D motion and
image motion is to use the planar constraint [1, 4]. This constraint assumes that the depth of a
neighbourhood of 3D object points can be modelled locally as a planar surface, or alternatively
a single and fixed 3D point captured by a camera at different locations is assumed to be moving
on a planar surface. If such a planar surface exists then it can be represented by the general
surface equation 3.17:

kxX +kyY +kzZ =1 (3.17)

where kx, ky and kz are the surface coefficients in the X, Y and Z respectively and represent

the 3D vector normal to the surface plane. Using the perspective projection equation 3.3 in
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which z = fX/Z and y = fY/Z, we can convert from world to image plane coordinates as
follows
1

z y
—=ky=+ky=+k 3.18
7 Xf Yf F4 ( )

where at most two of the three parameters kx, ky and kz can be zero. Replacing the above

expression into the image velocity equations 3.13 and 3.14 gives

K .
T = f(9y+—£)+(i—ﬁ)z—ﬂzy+ﬂy 2—Q—xxy

z)"\f zZ T
~ fQy+ fKx (kx-gff + K,,% + kz) + §x - Kz (kx; + K,,% + kz)
- Ry 2
Qzy+ 7 T 7 Ty
=~ f(Qy+ Kxkz)+ (§ + Kxkx —szz) z+ (Kxky —Q2)y
+-}(Qy —szx)x2+%(—ﬂx — Kzky)zy (3.19)

and in the y direction

T - _I(_Y i Kz Qy QXQ
Y = f( Qx + Z)+sz+<f Z)y+ f:cy fy

~ —fQx + Ky (kxf + K, 2 +kz) +0zz+ Ly Koy (lcxf +K,2 +kz)
fxgt g 7 7y
Qx ;

Q
+——Y-:cy—- —_

f f
F(-Qx + Kykz) + (Kykx +Qz)x + (§ + Kyky — szz) y

2

+%(QY — Kzkx)zy + '}'(—Qx - Kzky)y? (3.20)

The above image velocity % can be expressed in the same linear form of equation 3.15 i.e.

equation 3.21 but with the new motion model vector a in defined in equation 3.22:

x=X(x)a (3.21)
where i or i
1 0 [ 70y + Kxkz)
z 0 L+ Kxkx - Kzkz
y O Kxky —Qz
xe=| 0 1| an| IO Hrh) (3.22)
0 =z Kykx + 8z
0y L+ Kyky - Kzkz
2 Ty }(Qy - Kzkx)
| zy yé ] | -7 (Ox + Kzky) |

Therefore, using the planar constraint assumption, the vector of the motion model a (referred to

as the planar motion model) is expressed independently to the object depth Z. The 3D motion
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can now be estimated onto the image plane as a local motion field. Using a local coordinate
system x’ with origin x, in the global coordinate system x (with origin the centre of the image
plane), see equation 3.24, it can be easily shown that the image velocity is alternatively expressed

by also a 8-parameters model a’ as follows

x = X(x')a’ (3.23)
where
X =Xo + X' (3.24)
and
( -T B " 9 -
1 0 a1 + agx, + agYo + a7T; + A8ToYo
0 a2 +2a72, + agYo
Y 0 a3 + agT,
0 1 a4+ asTo + asYo + @ + agy?
X(x') - . a ~ 4 +05To + G6Yo 7ZoYo 8Yo (3.25)
o as +aryo
0 y' ag + ar1T, + 2a8Y,
er xlyl ar )
] rIyl ylz | ] a’S ]

where the motion parameters a = [a;, ..., ag]T are defined in equation 3.16. It can be noted that
under the planar constraint, the image motion in z2, y? and zy terms do not change i.e. a7 = a7
and af = ag. The pixels in the neighbourhood locally located by x' around x, corresponding
to the 3D surface (kx, ky,kz) therefore all contribute to the estimation of the same motion
parameters. Further simplifications of the motion model can be obtained (as detailed in the
next section) by using furhter assumptions about the dynamic of the 3D world relative to the

camera.

3.2.3 Simplified motion models

Three further simplifications of the above planar motion model are given in this section: the
affine, zoom and translational motion models. These simplified models correspond to particular

or restricted motions between the 3D world and the camera.

Affine model

The planar motion model defined in equation 3.25 involves quadratic terms (zy, % and y?). An
affine motion model is defined by 6 parameters, and is realised if the quadratic terms are zero

i.e. a7 = ag = 0 in equation 3.22 are zero if:

Qx ~Kzky (3.26)

Qv = Kzkx (3.27)
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In other words, an affine model exists if the depth change is restricted by the change in param-

eters of the 3D rotation and the surface normal vector in the X and Y directions:
Kz=—+% =32 (3.28)

It is not easy to imagine the highly restricted surface and motion configurations which satisfy
equation 3.28. However, simpler configurations which although more marginally restrictive are
easier to state. The first is given when there is no translation in Z and no 3D rotation around
the X and Y axes:

OQx=Qy=Kz=0 (3.29)

Hence the motion of the 3D object surface, relative to the camera image plane, is restricted
to rotations around the optical axis and translations parallel to the image plane. In practice,
this means angular rotations and depth changes should be small. The second configuration is
found using the same translational restriction but requiring the surface and the image plane to
be parallel to each other (or alternatively the optical axis and the surface normal vector are

parallel). Unlike the first configuration, the motion of the 3D surface in Z is allowed to vary:
Qx =Qy =kx =ky =0 (3.30)

Using orthographic projection [68], the 3D world position and the corresponding 2D image
position are equivalent i.e. z = X and y =Y, so is their velocities: £ = Xeandy= Y an affine

motion model can be also obtained from the planar constraint.

Zooming operation on static scenes

The zooming operation with a camera is often used to magnify details of a specific area of a scene.
For example surveillance cameras are often used to zoom into suspect packages in underground
stations or parking lots. In the case where only the zooming operation of a camera is used on a

static scene, only the focal length changes and the 3D motion parameters are all zero:
Qx =y =Qz=Kx=Ky=Kz=0 (3.31)
The image velocity is then described by a 1-parameter model:

*=§x (3.32)

where f is the amount of focal length change per unit of time i.e. focal velocity.

Translational model

Translational motion fields consist of pixels whose optical flow are moving in the same direction
with the same magnitude i.e. the same motion vector. Such uniform vectors are obtained if the

3D surface moves only in the X and Y directions and is parallel to the image plane. Assuming
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the focal length does not vary in time, and the rotation angles (Rx, Ry and Rz) and the depth

changes (Tz) are zero i.e.
Qx = =Qz=Kz=kx=ky=F=0 (3.33)
then a translational motion model of image velocity can be expressed as

| o | THxkz (3.34)

] fKykz

3.2.4 Summary

Relative motions between 3D object points and a camera can be modelled by a simple pin-
hole camera model. The projected image of the 3D motion into the image plane of a camera
referred to as image velocity is formulated in section 3.2.1. The small 3D rotation assumption
is usually met with distant objects. Section 3.2.2 shows that image velocity can be expressed
independently of the object depths at each pixel if 3D objects are modelled as planes. Image
velocities are then modelled by the planar motion model. Further simplifications to this model
are described in section 3.2.3 i.e. the affine, zoom and translational models which further restrict
the motion of 3D surfaces. The remaining of this chapter investigates an optical flow estimator

with a planar motion model fitted onto local neighbourhoods of pixels.

3.3 Optical flow formulations

In this section, an iterative gradient-based optical flow estimator is developed. The iterative
term simply means that optical flow estimation converges to an accurate solution iteratively.
The constant brightness equation, CBE, is expanded in the first section into a Taylor series
expansion using the assumption that the motion to be estimated is small in magnitude. Optical
flow is then formulated in the second section after a least-squares minimisation procedure and
the last section describes different possible interpretations of the gradient term of the optical

flow expression.

3.3.1 Expansion of the CBE: constant brightness equation

Let I;(x) be the image brightness or grey-level of an intensity function I at time ¢ and at location
x in the image plane. After motion, from time ¢ to 7, this grey-level moves to a different location

p(x,a) where a describes the motion. The CBE is then defined by
I(x) = I+ (p(x, a)) (3.35)

where the warping function p(x,a) defined in equation 3.36 is simply x displaced by Ax cal-
culated in equation 3.37 from a motion model a and model matrix X (described in section
3.2):

p(x,a) = x + Ax] (x,a) (3.36)
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where the displacement Ax](x, a) is defined from the velocity in the image plane (see previous

section) : .
Axj(x,a) = A7X(x) a (3.37)

Optical flow estimators aim to estimate the unknown motion vector a which allow the calculation
of the optical flow displacement Ax. For better accuracy, a is embedded into an iterative process
where the deviation Aagy; from one iteration denoted k to the next denoted k 4 1 is assumed
small:

Apyy = ag + Aagy (3.38)

where a; and ag4; are the motion estimates after k and k + 1 iterations respectively. Because
we shall embed this in a least-squares formulation, the minimisation process is guaranteed to
converge. The estimates a4 converge toward a final solution after K iterations and the final

motion vector is hence a sum of small motions:

a = Agaoo (339)

= ag (3.40)

~ ag+ Z Aajyy (3.41)
k=[0:K —1]

It will be shown in the experimental section 3.5 that the maximum number of iterations typically
required to reach convergence in motion estimation is K = 15. Convergence is here defined in
the estimation as a certain number of iterations. The initial motion is assumed unknown and set
to zero before the iteration process starts: ag = 0. Only an initialisation technique (see section
2.8) can provide such an initial estimate as demonstrated in chapter 4. Using the iterative

process of equation 3.38, the CBE of equation 3.35 can be expressed as

L(x) = I (p(x,ar+1)) (3.42)
= I (p(x,ax + Aagy)) (3.43)

First approximation

Assuming the deviation Aay,; to be small, the transformation function p(.) of equation 3.43 can

be expanded into its Taylor series around Aagy1, and neglecting terms higher than second-order:

Op(x,
p(x,ar + Aagyy) = p(x,a;) + —E%—;:—'C)Aak“ (3.44)
to give the new CBE
9p(x,
L(x)~ 1, (p(x, a) + —’—)-(é’;—:i)-Aak“) (3.45)

Second approximation

If the deviation Aay,; is assumed small then the product Q%Z‘a’hﬁlAakH can also be assumed

small compared to the deviation p(x, ax) and a second Taylor series approximation in equation
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3.45 gives a new CBE

Lx) ~ I (p(x,ak))+a’;’§{f‘;:§” a”(a’;kak’Aam (3.46)

= I, (p(x,a)) + or(x,ax)Aag4y (3.47)

where

_ aI‘r (p(xv ak)) ap(xa ak)
pr(x,ag) = o) dar (3.48)

3.3.2 Least-squares optical flow estimator.

In real captured imagery, pixel grey-level rarely keep their intensities constant and the CBE is

instead expressed as an error measurement,

er(x,ak41) = I(x) = Ir (p(x, ak)) — pr(x,ax)Aags (3.49)
AT{ (x,ak) ~ pr(x,a)Aagy (3.50)

I

and, since Aagy) = agy; — ag

er(X,ak41) = AI{(x,a;) + @ (x,a)ar — @7 (X, ak)ak+ (3.51)
= AJ{(x,ax) = ¢r(X,ak)ak+1 (3.52)
where
AL (x,a;) = I(x) = I(p(x,ax)) (3.53)
AJ] (x,a;) = AIl(x,ar) — pr(x,a;)ag (3.54)
(3.55)

In order to optimise the motion estimation at a pixel location x, a minimisation process is
performed over a sum of squared errors given by a set of n pixels neighbouring x and located at
x’ = [x] : x}]. This minimisation is referred to as the least-squares regression technique. It is
also performed over n pixels in m neighbouring frames denoted (i.e. over time) by 7 = [y : i)

and is expressed in equation 3.56 as

eart1) = D) er(x,apn) ' | (3.56)
x' T
= efe (3.57)
where
e= AJ); - \Ilkak.,.l (358)

with the following vectors e and AJ and matrix ¥ defines as

e = [eﬂ(x'l,ak),...,e,-,(x’",ak),...,e,-m(x'l,ak),...,e.,m(xi,,ak)]T (3.59)
Al = [AJ[‘(x’l,ak),...,AJ[‘(x;,ak),...,AJ[’"(x’l,ak),...,AJ;’"‘(x:,,ak)]T (3.60)

T
\I’k = [wfl(x'l’ak),“'v‘pﬂ(x’n, ak)v"'aw‘rm(x;vak)""’(p‘rm(x:vak)] (361)
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The term ¢, (x’,ak+1) is a row vector of p parameters described in the next section 3.3.3. The
optical flow ag4; is found for the minimum e(ax+,) when its derivative with respect to ag4y is

Zero:

T €(ak41) =0

%ﬂ (AJx = Uhap41)T (AT — Thagyr)) =0
(AJLAY, — AT Upagyy — af T AT, + af, U] Ukagyy) =0 (3.62)

a4
Both terms AJY Uxak41 and af, | WT AJy are scalars and since one is the transpose of the other,
equation 3.62 simplifies to
sary (AT AJL - 2830 Wparyr +af, W] Viagy,) =0

-—23a—f+—l(AJ£\I/kak+1) + %ﬂ(a&l(\lf{\llk)akﬂ) =0 (363)

Moreover, by definition

0

pa; (BT ¥ar) = AT (3.64)
and
a3
dag41 (a1 (P ¥h)akn) = afy, [(VE W) + (¥ 2)T)] (3.65)
= 2ai,) (%% Ux) ' (3.66)

Using the two previous equalities 3.64 and 3.66 in the minimisation process of equation 3.63:

2al (UT0,) = 2A3T9;
(¥To)ary = YTAY (3.67)
hence
ar = (UT0)"1eTAd, (3.68)
-1
- (zzwﬂx',ak)%(x',ak)) Y A (Ka) (369
x’ T x’ T
where
_ Ol (p(x,a)
g,(x,ak) = Do (3.70)
A‘It‘r(xvak) = AI{(x)ak)-‘pf(x’ak)ak (371)
AL (x,ak) = L(x) = I (p(x,a%)) (3.72)

Matrix ¥ contains the N (= nm) row vectors ¢ (defined in equation 3.61) and matrix AJ contains
N scalars AJ (defined in equation 3.60). The term (¥7¥)~! in equation 3.68 is often referred
to as the pseudo-inverse of matrix ¥,;. The optical flow formulation can also be expressed in

terms of Aagy:

a1 = (VI0,)1oTAT, (3.73)
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= (¥§ k)T (AL + ¥ ay) (3.74)
= ((PT0) 'OTAL) + ((UF Tk) 10T Uiay) (3.75)
= (UF0,) 10T AL + a (3.76)
= ap+Aagy (3.77)

where the motion parameters between iterations are
Aagyy = (VT 0,) 10T AL (3.78)

and similarly to the vector AJ; (equation 3.60), Al is a column vector containing the N = nm

grey-level differences given by the N neighbouring pixels (equation 3.72).

3.3.3 Interpretation of the optical flow derivatives

This section contributes to the accurate definition of the optical flow gradient term and its
comparison to the approximations used in the literature. It will be shown in the experiments
in the next section that given small motion magnitudes, the traditional implementation of the
gradient term is a quick and acceptable approximation of the correct expression.

The general optical flow expression developed in the previous section 3.3.2 (see equation 3.69)
is implemented via the calculation of two terms: AI7(x,ay) (see equation 3.72) and ¢, (x,ax)
written in equation 3.79. The AI](x,a;) term is an easily implemented grey-level difference
whereas the interpretation and implementation of the derivative term . (x, ax) is difficult. By

further development

A1+ (p(x,ax)) Op(x, a)

or(x,ax) = dp(x,ay) Oay, .19
oI, (;:9(;:, ax)) <6p(g),‘ ak))'1 3Pg;:k) (3.80)

Using the expression of the motion displacement (Ax = A7Xa in equation 3.36 and 3.37), the
third term of equation 3.80 is developed into

Op(x,ar) _ I(x+ ArX(x)ay)
6ak - 6ak

= ATX(x) (3.81)

and the derivative term ¢, (x, ax) becomes

-1
er(x,a5) = A‘raIT (13:’ a)) (Bp (;)’cak)) X(x)
= A7 VI (x,a;) X(x) (3.82)
where »
V,,I-,(x, ak) - aI‘r(pa(Z? ak)) (6/1(;),(8;;)) (383)

The new derivative term ¢, formulated in equation 3.82 does not present any implementation
problems. The implementation of the second term V,I.(x,a;) expressed in equation 3.83 is
generally approximated to a much simpler expression in the optical flow literature: approxi-

mation method 5 stated below and used by the authors Horn and Schunk {68], Haussecker et

KINGSTON UNIVERSITY LIBRARY
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al [63] and Kearney et al [80]. For example, there exists other possible approximations of
equation 3.83 where four examples are given below in methods 1 to 5 with method 0 being the

non-approximated correct expression in equation 3.82:

-1
o method 0: V,I,(x,ax) = Blr(Pa(:,ak)) (Bp(g,ak))

X

3\~
method 1: V, I, (x,a;) = a—ﬁ;,%‘l (ap(g’ak )

X

-1
method 2: V,I-(x,a;) ~ 24 (‘L‘Hp ox )

method 3: Vpr(X, ap) =~ I, (p(x,ar))

ox

method 4: V,I,(x,ax) = %ﬁ
o method 5: V,I,(x,a;) = VI (x)

where VI,(x) = a%fgl. This gradient expression ., is called for every neighbouring pixels of
equation 3.69 hence x in this section represents x' in equation 3.69. The inverse term present

in method 0, 1 and 2 is derived for a planar motion model as -

ap(xvak) _ 9 k
g = B;(x+ATX(x)a) (3.84)
3
= I+A7o- (X (xa*) (3.85)
2
= I4ar |2y 000 T vy wT (386)

10001z y ay v

az + 2a7x + agy a3 + agx

= I+Ar (3.87)

as +azy ag + a7z + 2agy
where I is the 2x2 identity matrix. The two translational parameters of the motion model are
usually the most dominant parameters, i.e. {al,a4} >> a;, Vi # {1,4}. The non-translational
components will be shown to be less then 1 in magnitude and the inverse term will be shown

negligible in the estimation process, i.e.

Op(x,ax)
2 (3.88)

Most optical flow frameworks implement ¢ by the approximation method 5 which is a good
approximation if a¥ is close to the correct motion parameters to be estimated. This implies that
the initial estimation at k = 0 is to be close to the right solution too. Provided equation 3.88 is

valid, the correct expression in method 0 is equivalent to method 5, i.e.

61-,-(/’(63: ax)) = VI,(x) (3.89)

where ay, is the true motion model, i.e. a, when the system has converged (agx = ao - see
section 3.3.1). It can be noted that when the system starts, motion estimates are usually zero

and the correct expression in method 0 is the same as method 4, provided equation 3.88 is valid:

A1 (p(x, a0))

e = VI, (x) (3.90)
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The expression ¢ can be hence expected to behave differently from one method to the other as

the system converges and as evaluated in section 3.6.

3.3.4 Summary

The general expression of an iterative optical flow estimator is previously developed in section
3.3 using the constant brightness equation stating grey-levels remain similar in small interval
of time and using the small motion assumption. An optical flow solution can be obtained if
constrains are brought to the system and are provided here by neighbourhoods of pixels to
which a motion field model (explained in section 3.2) is fitted. Optimal estimation is given from
a least-squares regression technique and the optical flow estimation is evaluated in sections 3.5

and 3.6 using the methodology developed in the next section 3.4.

3.4 Developing an evaluation methodology

The optical flow estimator derived in the previous section is evaluated in sections 3.5 and 3.6.
This section describes the evaluation procedure. The evaluation is performed against known
motion (referred to as the ground-truth data) which is introduced in section 3.4.1. Evaluative

metrics are defined in the second section 3.4.2 to compare ground-truth with the estimated flow.

3.4.1 Input and ground-truth motion

Successive frames with available known motion vectors at each pixel are not provided. Con-
secutive frames are instead simulated by creating a frame from a reference one using a set of
synthetically ground-truth vectors Ax9. A single ground-truth vector is applied to all pixels of
a frame with randomly chosen orientation and with varying magnitudes in the range 0 to 10
pixels. The reference frame, which is the current frame, is denoted I; and the next frame I;4,

is created by motion compensating the reference frame with the ground-truth vector Ax9;
Ig+1(x) = It(x <+ Axg) (3.91)

The motion compensation operation is performed by the bilinear interpolator developed in
Appendix A. However, this operation introduces a slight blurring in the construction of the
next frame. The reference is hence also blurred by a slight smoothing operation performed by
a Gaussian smoothing operator with kernel width 0.5. Three input sequences are used in the
evaluation of the optical flow estimator. The reference frames of each sequence are displayed
in figures 3.2 and 3.3: the ‘boy’, ‘lab’ and the ‘yos’ sequence each consisting of two frames
constructed with the ground-truth. Each frame contains 384x288 black and white 256 grey-levels
pixels. The three sequences are chosen for their diversity: the ‘boy’ sequence is captured outdoor
in the countryside, the ‘lab’ sequence is captured indoor in an office and the ‘yos’ sequence is a 3D
view outdoor view synthetically created. The drawback associated with synthetically generated

frames is that their content do not reflect the noisy process captured with real sequences.
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where Card(F) is the total number of pixels within the frame F, henee it is the total number
of pixels in the frame. The estimator's performance may also be measured by the percentage of

pixels considered accurately estimated d.e.

» 100 (3.94)

1 1 ifd(x)< Ty
Py= ———
47 Card(F) ez, 0 clse

where the threshold Ty has been arbitrarily chosen as 0.1 pixel.

3.5 Evaluation of the least-squares optical flow estimator

The experiments of this section consist in evaluating the performance of the iterative and non-
iterative estimator previously formulated in section 3.3. The evaluation procedures are described
in detail in section 3.4. The first results show that the accuracy of a non-iterative least-squares
estimator depends directly on the motion-dependent smoothing operation where frames are to be
smoothed with a Gaussian smoothing operator with kernel width of the size of the applied motion
magnitude. More accurate results are obtained when the iterative scheme is used, without the
need of a pre-smoothing operation: the estimator i3 accurate in estimating motion up to a
few pixels in magnitude. It i8 also shown that both the size of the neighbourhood used to
constrain the constant brightness equation and the minimum number of iterations required for

minimisation to be carefully chosen for best results,

3.5.1 Estimating with non-iterative optical flow: smoothing depen-

dency

In order to illustrate the dependency of the non-iterative optical flow estimator on the smoothing
operation, the estimations are performed with an over-constralned system by selecting a square
size neighbourhood of 13x13 pixels. The smoothing s performed by a Gaussinn kernel of width
@ and the optical flow results are evalunted against ground-truth data through the ealeulation of
the mean motion errors My as deseribed in section 3.4, The mean motion results nre displayed in
figure 3.4 against the factor ¢ for the *Iah' sequence and for various applied motion magnitudes,
These results show that Mg is minhmum for a unique cholee of @ enlled the optimal factor
denoted o,

0, = nrgming 5o {AMa(a))} (3.95)

Figure 3.4 show that g, increases with the applied motion Ax?, In addition the error My rises
with increasing ¢,. The values of these optimal factont are displayed I the three tables 3.1,
3.2 and 3.3 for the ‘laby’, ‘boy' and *yos' sequence respeetively, These tables also show that the
best optical flow estimates are given when @, are approximately set equal to the applied motlon.
Therefore parameter seleetion in the non-iterative technlque cannot easily be nutomated ascit

depends on the applicd motion magnitude,
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laxs | 1 | 2 | 3| 4|5 |6 | 7|8

0o 0 2 3 4 5 6 7 8
My{o,) | 0.25 | 0.80 | 1.40 | 2.02 | 2.49 | 3.07 | 3.59 | 4.28

Table 3.1: Optimal smoothing factor for the ‘lab’ sequence

lase| { 1| 2| 3| 4|5 |6 ]| 7|38

0o 0 2 3 4 5 6 7 8
My(oo) | 0.10 | 0.63 | 1.31 | 2.01 | 2.75 | 3.57 | 4.43 | 5.35

Table 3.2: Optimal smoothing factor for the ‘boy’ sequence

laxsff | 1 | 2 | 3 | 4 | 5| 6 | 7| 8

Oo 0 2 3 4 5 6 7 8
My(o,) | 0.08 | 0.43 | 0.95 | 1.55 | 2.20 | 2.92 | 3.62 | 4.34

Table 3.3: Optimal smoothing factor for the ‘yos’ sequence

3.5.2 The iterative estimator and the neighbourhood size

The non-iterative estimator is shown in the previous section 3.5.1 to be motion-dependent.
Moreover, the estimator can only estimate accurately and efficiently (in terms of percentage of
successful estimations) pixels undergoing motion with maximum magnitude 1 pixel. The aim of
the following experiments is to evaluate the iterative process and investigate if it can accurately
estimate larger motions, and avoid the dependency of motion magnitudes.

The mean of the motion errors My between the estimated and the ground-truth optical flow
(see section 3.4) over all the pixels of the ‘yos’ sequence are displayed in ﬁéures 3.8 and 3.9. The
graphs in these figures are drawn with the same scale for comparisons purpose. The values of
the mean errors are plottéd for different iterations k and for different neighbourhood sizes. The
mean error is now denoted My(N, k) as it is evaluated against k and N. The results of these
graphs show that My(N, k) decreases rapidly until convergence as k increases. However, as the
motion increases, more iterations are necessary to reach convergence and larger neighbourhood
sizes are also nécessary to reach the minimum converged errors.

The number of iterations required for motion estimate to convergence to a final estimate,
denoted K, increases with the applied motion magnitude. For the sake of comparison, conver-
gence is defined as the point at which the decrease in error is less than 10% of the last motion

error value i.e,

Afd(N,k)—Afd(N,k+ l) } 3.96
MGV K) < 10% (3.96)

The convergence results K are displayed in table 3.4 for different neighbourhood size N with

K=mink{

the corresponding mean motion errors My(N, K). These data show that the system needs more
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iterations i.e. K increases as the motion increases when N > 81 pixels. The corresponding error
also increases with the motion and for all neighbouring sizes. The results of K in the first table
show some stability when N > 81 where K take the approximate values of 4, 7, 9, 10 and 13
iterations for motion of 1, 2, 3, 4 and 5 pixels respectively. For the remaining experiments, a

neighbourhood size of 100 pixels is selected.

number of iterations for convergence: K

motion number of constrains: N
magnitude | 25 49 81 121 169 | 225
1 12 15 5 4 4 4
2 11 8 6 8 6 7
3 8 11 10 9 9 9
4 7 10 10 10 10 11
5 6 10 12 12 13 14

corresponding error: My(N, K)

motion number of constrains: N

magnitude | 25 49 81 121 169 225

1 0.06 | 0.008 | 0.006 | 0.006 | 0.006 | 0.006
2 0.38] 0.08 [ 0.05 | 0.02 | 0.02 | 0.01
3 1.77 | 066 | 045 | 0.33 | 0.23 | 0.18
4
5

336 | 185 | 1.38 [ 1.03 | 0.89 | 0.75
489 | 3.16 | 2.36 | 1.90 | 1.64 | 1.38

Table 3.4: Optimal number of iterations K and corresponding mean errors My(N, K)

3.5.3 Comparing iterative and non-iterative estimators

The percentage of 6ptical flow vectors accurately estimated by the non-iterative and iterative
estimator are displayed in figure 3.10 for the ‘lab’ sequence. This percentage is calculated
according to equation 3.94 where a motion is accurately estimated if it does not deviate more
than 0.1 pixel from the ground-truth vector. The non-iterative results are given with the optimal
pre-smoothing operations and the iterative results are given after 15 iterations and with square
neighbourhood of 121 pixels. The results of this figure 3.10 show clearly how the percentage of
accuracy Py increases when the iterative process is used. The results for the three sequences,
the ‘lab’, ‘yos’ and ‘boy’ sequence are displayed in figure 3.11 using the same iterative estimator
(K=15 and N=121). The accuracy behaves similarly with increasing motions. Optical flow is
more efficiently estimated with first the ‘yos’, second ‘boy’ and last ‘lab’ sequence as observed

with the non-iterative estimator. On average, the iterative estimator can estimate accurately
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3.5.4 Conclusion

The experiments performed in the previous section 3.5.1 on the non-iterative estimator show
that the best results are found when the smoothing factor is chosen to be equal to the unknown
applied motion magnitude. Hence this estimator is heavily dependent on the motion magni-
tudes. Moreover, this estimator is not accurate even with optimal smoothing. Its performance
decreases drastically with motion magnitude and motion with magnitude up to 1 pixel can only
be accurately estimated.

The results obtained with the iterative approach presented in section 3.5.2 show that optical
flow estimates converges to more accurate solutions. The optical flow accuracy also decreases
with the applied motion magnitude but with a lower rate than with the non-iterative version.
The parameters of the iterative technique are not dependent on prior knowledge of the motion
magnitudes. It was shown that motions up to 4 pixels are accurately estimated with the iterative
estimator. Its performance is also evaluated against the number of constrains and stability is
reached when the constraining neighbourhood contain at least 100 pixels and when the system
iterates a minimum number of 10 times.

Iterative optical flow estimation through a gradient-based approach remains an expensive
dense motion estimator (as observed in a later section 3.7) and is limited to estimate accurately
motion up to about 4 pixels maximum. This motion magnitude limitation is due to the con-
strain imposed by the small motion approximation in the optical flow development in section
3.3 but can be overcome by initialisation technique as performed in chapter 4. This chapter
concludes in the next section 3.6 with the evaluation of approximated estimators differing in

their implementations of the optical flow gradient or derivative term (defined in section 3.3.3).

3.6 Evaluation of the optical flow gradient terms

In the mathematical expression of the optical flow in section 3.3, the only term having a difficult

interpretation and problematic implementation is the derivative term (X, ax):

Al (p(x,ar)) 8p(x, ax)
dp(x, ar) Oay (397)

pr(x,a;) =
Implementing this gradient term involves warping the frame I, by a motion vector a of p
parameters followed by the spatial derivatives of this warped image with respect to a complex
warped coordinated system. Equation 3.97 is developed in section 3.3.3 where the derivative
term is split into three terms. These terms can be approximated in different ways creating
different algorithms with different performances.
As explained in section 3.3.3, the two translational parameters of the motion model ay are
usually the most dominant parameters compared to the other parameters reducing the number

of potential approximations to the correct expression. As the systerﬁ iterates toward the correct

motion estimates, the gradient term is expected to take approximated forms.
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All six techniques require only K = 2 iterations for the motion errors to converge for a
motion of 2 pixels maximum, with only 1 iteration for method 2. As the motion increases,
the convergence of method 0, 3 and 5 remains the same with a slight increase for method 2.

However, convergence is met after more iterations for methods 1 and 4 for the larger motion.

Speed

The speed corresponding to the computational efficiency of the six methods show that methods
4 and 5 are the quickest estimators with about 4.8 seconds per frame and per iteration. Methods
1, 2 and 3 require more time between 11 and 12 seconds and method O is the most expensive
estimator with 18.6 seconds. }fowever, as previously described, the six techniques require dif-
ferent number of iterations before convergence is met. In terms of overall speed, calculated by
K*Speed, method 5 is the quickest with constant speed as the motion increases. The speed of
methods O and 3 also remains the same unlike for methods 1, 2 and 4 which speed increases

with motion.

Therefore, in terms of speed, convergence and accuracy, method 5 is the best approximation
of the derivative term of the optical flow formulation as also concluded through the experiments

performed in the next section with a real capture frame.

optical flow || evaluation for motion of 2 pixels maximum
method My(K +1) | K | Speed(sec) | K*Speed
0 7x10~8 2 18.64 37.27
1 7.6x1073 | 2 11.86 23.72
2 5x10~58 1 11.73 11.60
3 7x107¢ | 2 11.60 23.45
4 7.6x107% | 2 4.80 9.59
5 3x10-% 2 4.79 9.57

Table 3.5: Systems evaluation for applied motions up to 2 pixels

3.6.3 Results with real image data

- The experiments run on the synthetical frame in the previous section 3.6.2 are run once more in
this section but on a real captured frame from the ‘lab’ sequence: see figure 3.2. Six estimators
using different approximations of the optical flow derivative term (listed in the five methods
of section 3.3.3) are evaluated in terms of mean motion errors My defined in section 3.4. The
previous experiments showed that methods 0, 1 and 2 have the same performances of methods
3, 4 and 5 respectively. Hence, only these last three methods are evaluated in the remaining

experiments of this section.
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optical flow || evaluation for motion of 4 pixels maximum
method My(K +1) | K | Speed(sec) | KxSpeed

0 2x10—4 2 18.637 37.274

1 5.8x102 | 5 11.858 59.29

2 3x10~® 2 11.727 23.192

3 2x10% | 2| 11596 23.454

4 5.8x10"2 | § 4.797 23.985

5 3x10-6 2 4.787 9.574

Table 3.6: Systems evaluation for applied motions up to 4 pixels

The mean motion errors of approximation method 3, 4 and 5 are displayed in the graphs of

figures 3.16 and 3.17. The results given by method 4 clearly show no convergence of the errors
when iterating, even for a motion magnitude of 1 pixel. It is also less accurate than the two
other methods. The results given by method 3 are the most accurate and convergence is met
for all motions. Convergence is also met for method 5 if the motion does not exceed 2 pixels
and whose accuracy is as good as method 3’s.
The previous observations made from figure 3.16 and 3.17 are resumed in table 3.7 using the
error criteria My and the convergence criteria K developed in section 3.4. The speed criterion
is not used here as it is not altered by the input sequence. In this table, X is inserted whenever
an estimator is not converging to a final motion estimate.

The results of table 3.7 show that motion errors given by method 3 always converge with
motion. However, the converged errors remains accurate for motion less than 3 pixels in magni-
tude i.e. My < 0.02 pixel but the system becomes inaccuarte for larger motion with for example
about 1 pixel error for a motion of 4 pixels in magnitude. The accuracy of method 5 remains
as accurate as method 3’s for motion less than 3 pixels and this method does not converge for
larger motions. As observed in the previous section, method 4 give the worst results and it only
converges for motion less than 2 pixe]s in magnitude.

The percentage of correctly estimated pixel motions (see definition of Py in section 3.4) are
displayed for the three techniques in figure 3.18, confirming the lack of accuracy of method
4 and the similarity of the two other methods. As previously observed, method 4 is never
an appropriate method to estimate optical flow. Method 3, the closest approximation to the
correct optical flow gradient expression, performs the best with real images. However, because
method 3 is more expensive (see speed results in previous section) than method 5, this latter is
preferred as optical flow technique although it lacks of accuracy and becomes unstable in term

of convergence for pixels having a magnitude greater than 3 pixels.
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motion magnitude (pixels)
method 1 2 3 4
K| Mg | K| Mg | K|Mag| K| Mg
3 3 | 0.06 51002 7102} 709
4 21002 | X]| X XX §X] X
5 110006 ) 41002 XX |[X] X

Table 3.7: Errors My at convergence K given by method 3, 4 and 5 for small motions

3.6.4 Conclusion

The calculation of the optical flow expression developed in section 3.3 requires a complicated
derivative term to be calculated. This term, once developed can be approximated by six different
methods defined in section 3.3.3. These 6 methods mainly consist of a combination of a derivative
term plus an inverse term. Their performances are evaluated in section 3.6.2 with a pair of
synthetically created frames and in section 3.6.3 using a real captured frame. The results show
that the inverse term can be neglected as it does not influence the estimation of the local motion
field: optical flow is estimated using a small local window as neighbourhood of pixels where
optical flow deviations at the borders of this window are expected to be negligible compared
to the motion at the center. This side effect may be considered non-negligible in different
applications such as in global motion estimation (see chapter 5). The derivative term of the
approximation techniques can be successufully approximated by the commonly used term in the
literature in the case where motions remain small i.e. they do no exceed 3 pixels in magnitude.

This small motion limitation is addressed in the next chapter.

3.7 Timing estimation

Optical flow is computed at every pixel of a frame from a sum of K vectors Aagy; (with

k= [0: K — 1]) containing p motion parameters developed (see section 3.3.2):

-1
Aayyy = (Z PIACH NS ak)) Y oY T (K an) AL (X', a) (3.98)

where

or(x,ar) = ATA VI(x) X(x) (3.99)
AIT (X' ar) = L(x)— I.(x+ ArX(x)a) (3.100)

The terms V1I,(x), X(x) and a;, are matrices of sizes 1 x 2, 2 x p and p x 1 respectively. The
term ¢ in equation 3.99 is given from section 3.6 and AI7 in equation 3.100 is the motion
compensated grey-level difference between time ¢ and 7. According to equation 3.98, the time

required to compute the flow Aag;, denoted Taa, is split into two costs as defined in equation
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3.101: the time Tyyig to compute the four sums that build the optical flow matrices and the

time Tinverse required to perform the matrix inversion of this summation denoted Tinverse.
Tha = Tbuild + Tinverse (3-101)

The time required to build the four sums of matrices Tyyjg is decomposed into two sets of two
sums as shown in equation 3.98. The first set involves the construction of a square matrix of
size p X p and requires O(p?) operations. The second set involves the multiplication of a matrix
with a scalar computed using a bilinear interpolation technique (see Appendix A) and can be
shown to take O(p) operations. Hence the overall speed for building the matrices for N = nxm
neighbouring pixels (where X' = [x] : x}] and 7 = [r; : 7,]) requires O(Np?) and can be

modelled by equation 3.102 where a1, a; and a3 are constants:

Touie = O(NP?) (3.102)
~ N(ap®+asp +as) (3.103)

Performing an inversion of the square matrix in equation 3.98 of size p x p requires generally
O(p®) operations as estimated in [103]. The SVD (Singular Value Decomposition) is used in

this study to invert matrices and is modelled by equation 3.104

Tinverse = 0(;03) (3. 104)

~  bip® + bep? + byp + by (3.105)

Time measurements are performed using a 850 MHz PC Pentium III with different motion
models with p = [2,4,6,8] parameters and various number of constraining points N. The

following parameters are estimated as

[a1, a2, a3) =~ [5.87x107%, 2.91x1077, 1.58x107F] (3.106)
[b1, by, b3, by =~ [-3.48x1078, 2.13x10%, —5.69x107¢, 1.50x107%]  (3.107)

The terms a3 and by in equation 3.106 and 3.107 are zero in theory as they correspond to the time
computations of Tyyiig and Tinverse respectively with zero motion parameters and empty matrices.
They are measured as non-zero due to extra matrix computations involved before estimation
starts. The computational costs of Tyyjg for different constrains sizes N are compared to the
cost Tinverse in figure 3.19 for 4 different motion models (p = [2 : 8]). The graphs show that
Tinverse is more expensive if N = 1 than Tyyjq but becomes much less expensive than Thyuig
when N >10 pixels. The experimental results obtained in this chapter (see section 3.5) show
that & minimum number of 100 pixels in neighbourhood are necessary to constrain the optical
flow estimation. Therefore, for such numbers, the optical flow estimation is dominated by the
operations involved in building the matrices which takes O(N) for a given motion model. For
example, the total optical flow computation cost of all the pixels of a 576x768 pixels frame takes
approximately 15 minutes with a Pentium III using a planar motion model (of p=8 parameters

- see section 3.2) and after iterating 15 times.
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which results in the violations of the small motion and the constant brightness assumptions.
The next chapter 4 investigates two solutions to improve the optical flow estimator: a robust
statistics technique to deal with noise and multiple motions and a hierarchical technique to deal

with high pixel motions.



Chapter 4

Addressing limitations of optical

flow

An optical flow technique was described in chapter 3 to estimate motion displacements at each
pixel between frames. The estimation of small motion is successful on iow noise images using
the least-squares regression estimator. Importantly, all pixels in each neighbourhood required
to constrain the optical flow equation must undergo the same motion: the motion of the central
pixel of this neighbourhood. Under such experimental conditions, the results show that motions
with maximum magnitude 2 to 3 pixels are accurately estimated. However, low noise images
with uniform motions are unlikely to occur in real captured datasets. This chapter concentrates
first on developing a robust method to deal with neighbourhoods containing alternate amounts
of noise. The second focus of this chapter is to improve the estimator in estimating larger motion
magnitudes by the use of a hierarchical technique.

Real-life image sequences contain various sources of noises. Change of illumination, non-
uniform reflective properties of 3D surfaces, transparencies, high-frequency noise from the optical
system are some of the examples of sources of errors disrespecting the constant brightness
equation (defined in section 3.3). Moreover, real-image data is likely to contain objects moving
with different motion models and hence introduce noise (referred to as motion noise) within
pixels neighbourhoods. These sources of noise are dealt with a technique known as robust
statistics explained in section 4.1. The experimental results show that such techniques can
retrieve the correct information‘with the presence of high levels of noise, whereas the least-
squares approach is sensitive to any level of noise. Despite the efficient discrimination of grey-
level noise, however, robust statistics cannot discard the total influence of outlying motions at
object boundaries where occlusion occurs.

Gradient-based optical flow estimators have a limited range of operation in terms of motion
amplitude. Chapter 3 shows the optical flow estimator is limited to estimate accurately only

small motions. However, if an initialisation technique is provided, a first estimate of the motion

59
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would make the system iterate toward the true motion. Such initialisation techniques could
comprise of the feed-forward, block-matching and hierarchical techniques as reviewed in section
2.8. The hierarchical method is explored in this chapter. It is based on a coarse-to-fine approach
referred to as the Laplacian pyramid technique which estimates accurately larger motions at the
coarsest level allowing a better estimation of motions in finer levels, as explained in section
4.2. The results show that the maximum estimable motion relies on the size of the frame at
the coarsest level. However, resolution decreases as frames are sub-sampled creating aliasing in
the motion estimation process. Hence, the smallest motion estimation is limited to a resolution
issue. The results show that for image sizes of about 300 to 400 pixels in lateral dimension,
minimum 10 pixels motions can be accurately estimated.

Dense fields of motion vectors are of great interest in many applications ranging from car-
tography, medical applications, structure recovery, depth assigning etc. However, optical flow
estimators are shown in this chapter to be inaccurate at edge pixels where several motions oc-
cur, also at pixels lacking local grey-level spatial variations and at pixels undergoing too large
motions. Therefore, a confidence annotated to each pixel would render the flow field useful for
other applications. Section 4.3 describes a way to provide an uncertainty measurement of the

optical flow estimates based on covariance expressions.

4.1 Robust statistics

The least-squares optical flow estimator implemented in chapter 3 squares all the residual terms
of each pixel within the spatio-temporal window i.e. the neighbouring pixels: they all contribute
equally in the minimisation process of the motion flow. When no noise is present in images and
when the grey-levels of the neighbouring pixels correspond to the light reflected by the same
object undergoing a unique 3D motion relative to the camera, all estimator would perform the
same and optimally. However, these assumptions are never always true as grey-level noise is
likely to occur as well as motion noise due to occluding objects in the scene. The least-squares
scheme is for example an optimal estimator when images contain zero-mean white noise in their
grey-level distributions.
In order to better cope with such problems, a technique based on robust statistics is im-
-plemented. An overview of robust statistics is given in section 4.1.1 and described in section
4.1.2. The median robust statistical method is chosen as the estimator in this study for its
computational speed and its accuracy and is evaluated versus the least-squares technique in sec-
tion 4.1.4. The details of the experimental procedures are given in section 4.1.3. This chapter
concludes with a demonstration that robust statistical methods are able to cope with a high
percentage of grey-level and/or motion noise while the least-squares accuracy greatly decreases

with increasing levels of noise.
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4.1.1 Review

The least-squares estimator is the most common regression estimator used in the development
of optical flow solutions. However, residuals given by several motion fields within the same
neighbourhood do not belong to a single normal distribution modelled by the residuals given
by the most dominant motion. Such outlying errors are referred to as motion outliers. Noise
caused by the optical system or the changes in the lighting environment also produces outliers
and are referred in general as grey-level outliers. An alternative estimator is therefore required
to reduce the influence of outliers. Such estimators are known as robust statistical estimators
[28, 110, 18, 114, 136]. Under suitable conditions, successive iterations of a robust estimator
can successfully eliminate all contributions from outliers and therefore model the motion of the
intended region only. Robust estimators can successfully deal with significantly large proportions
of outliers as reviewed in section 2.6. The robust median estimator is used in this chapter for
its efficiency and speed. It belongs to the family of M-estimators because it is a maximum

likelihood-based estimator.

4.1.2 Robust statistical estimators

The residuals given by the constant brightness equation of each neighbouring pixel in the optical
flow estimation (see section 3.3.2) are all equally squared in the minimisation process. A robust
regressor instead weights the residuals according to their deviations from a normal distribution,
as expressed in equation 4.1 where sample index ¢ represents the location of the neighbourhood
pixel in the spatio-temporal window used in the previous chapter.

@)= 3 yleilxia)) (41)

i=l,N

where 4 is the robust estimator kernel function, N is the number of samples and a is the
unknown motion vector. The latter is estimated when the sum of errors ¢ is minimum, or when

its derivative with respect to a is zero:

de(a)
5a = 0 (4.2)
O(ei(xi,a))
P 0 (4.3)
a’Y(et (x‘ia a)) aei (xi) a)

=N Be,-(xi,a) da =0 (44)
v I‘(ei(xi,a))%l—)' = 0 (4.5)

i=IN

where I'(e) is referred to as the influence function of error e and defined as

T(e) = ag(:) (4.6)

The second term of equation 4.5, the derivative of the error term, is developed in section 4.1.2

and the first term, the influence function, is set by the chosen robust estimator. This influence
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function has to somehow weight each residual term so that the sum of the weighted errors
belonging to outliers is minimal. The influence function indicates how much influence a residual
€; has on the estimator, and dividing it by the residual itself gives the weight associated with
the current error e; as expressed in equation 4.8. Therefore the weighting term, rather than the
influence function, is to be calculated and the estimation problem of equation 4.5 is equivalent
to a weighted least-squares estimation:

i;»} (w(e,—(xi,a))ei(xi, a)gﬁg—‘i’-?—)) =0 (4.7)

where weights w are defined from errors e and their influence I by
w(e) =T(e)/e (4.8)

A robust statistical estimator is designed by choosing the desired characteristics of the influence
function, I'(e;(x;,a)). The median estimator is chosen among a variety of robust estimators for
its simplicity of implementation, efficiency and computational speed [28, 131]. The characteris-

tics of the least-squares and robust median estimators are compared in the next two sections.

The least-squares estimator

Using a least-squares estimator, residuals influence the estimation process proportionally to their
intensities. Zero residuals do not influence the estimator efficiency, however as the residual term
increases in value, the efficiency of the estimator decreases. Figure 4.1 shows three graphs of the
least-squares regression technique: the kernel function on the left graph introduced in equation
4.1, the influence function in the middle graph defined in equation 4.6 and the weighting function
on the right graph defined in equation 4.8. This figure demonstrates that all errors are all equally

weighted hence making the least-squares technique highly sensitive to outliers [17].

Kemel Function Influence Function . Weight Function

Figure 4.1: Least-squares estimator characteristics

The median estimator

The median regression technique is based on a simple idea: all errors equally influence the
regression technique. This results in small errors being largely weighted and vice versa. Figure

4.2 displays the kernel (introduced in equation 4.1), influence (defined in equation 4.6) and
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weight function (defined in equation 4.8) of the median estimator. Comparing graphs 4.1 and
4.2, a single outlier can offset the optical flow estimation using a least-squares regressor whereas

the median estimator can deal with a dataset containing outliers.

Kemel Function Influence Function Weight Fuaction

N

[ ] ¢

Figure 4.2: Median estimator characteristics

In general, the experimental errors e; may be in any units of measurement; so in order to decide
if a residual is considered large it is compared to an estimate of the error scale. This scale has to
be robust itself so it depends only on the good data (inliers) and does not get blown up by the
outliers. Thus, not only the regression coefficients has to be estimated in a robust way but also
a scaling factor denoted o*. For Gaussianly distribution errors, the scale estimate is calculated
as follows [131]:

0* =~ 1.4826 x Median; (Je;]) (49)

This preliminary scale estimate in equation 4.9 is then used to determine the weight w associated

with each residual of the distribution:

= if | <28 (4.10)

0 else

There does not exist any robust estimators capable of rejecting more than 50% of outliers within
a distribution. For example, the median estimator can eliminate successfully outliers if they do

not represent more than approximately 30% [131], as experimented in section 4.1.4.

Implementation of a robust estimator

The new functional for a robust statistical estimator to be minimised is given by equation 4.1
and adopted in this section for an iterative estimation where the motion vector between the
kt* and k + 1*# iteration is denoted ax;. Neighbourhood of pixels contain n pixels located at
x' = [x} : x}] and between m surrounding frames indexed by 7 = [r] : 7], as described in the

previous chapter 3 (section 3.3.1):
e(ars1) =D D 7 (er(X',ak41)) (4.11)
x T

with motion compensated grey-level error e,(x/, ax+1) corresponding to the constant brightness

equation derived in chapter 3 (equation 3.52 in section 3.3.1):

er(x', arp1) = AJ] (x,ak) — or(X, ax)ak+1 (4.12)
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where
AJf(x,ax) = AI7(x,ax) — pr(x,a5)ak (4.13)
_ O (p(x,a)
prlxar) = =L (4.14)

Finding the motion vector ar4+1 so the functional e is minimum is equivalent to setting its
derivative to zero as performed in the early section 4.1.2. Repeating this procedure with the

robust functional in equation 4.11 leads to this new minimisation process

S5 (e, aernler ¢,y ZE02011) g (415)

02k

Or, with the simplified notations of equations 4.20 to 4.24:

ZZ(w egg—) = 0 (4.16)

x' T

ZZ(w(AJ—wa)%(AJ-cpa)) =0 (4.17)
o ZZw(AJ—¢a)(—¢) =0 (4.18)
ZwaATJgo—Zngpacp = 0 (4.19)
where o o
e & e (X, ap4) (4.20)
w o w(e(x,a541)) (4.21)
AJ o AJT(x,ax) (4.22)
¢ o prlx,a) (4.23)
a < agy (4.24)

Using the fact that pap = (¢7pa)7T, the minisation is further developed into

ZZwAJ<p = ZZuupago (4.25)

T T
(Z Z w<pAJ) (Z Z wcpago) (4.26)
Z Z wpT AJ Z Z w (pap)” (4.27)
Z Z wpT AJ Z Z weT pa (4.28)

The motion vector a can be then estimated by

a= (Z Z wcpTgp) E Z wpT AJ (4.29)

x’ x’

and using the original notation from equations 4.20 to 4.24, the motion estimate ayy is esti-

mated by

-1
ary = (ZZw(e,(x’,ak+1))Pr(xyak)T%(x,ak)) (4.30)
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3N wier®, are1)) or(x, a) AT (x, 1) (431)

-1
= (Z Z e (x,aK)Tor(x, ak)) Z Z Or(x,ap)TAJ] (x,a,)  (4.32)

where

or(x,ar) = w(er(x',ak41)) or(x, ax) (4.33)

The expression of the optical flow vector a4+ in equation 4.32 after k + 1 iterations can also be

expressed in terms of matrices as follows
ar1 = (UT0,) T UTAT, (4.34)
with

AT = AT, k)., AT (X, 8k), .., AJT (%), a8), - ., AT (X0, ak)] T (4.35)

U = [on(xa),. 00n (X, a5),. ., 0 (X1,8K), .., 0ny (x:,,ak)]T (4.36)

v, = [cp'n(x;,ak),...,cp;.l(x;,ak),...,(,ag.m(x’,,ak),...,gpﬁ,m(xﬁ,,ak)]T (4.37)

The optical flow expression of equation 4.34 is very similar to the least-squares estimator in
chapter 3 (equation 3.68). The only difference being that the robust estimator weights its

matrix ¥T. Robust optical flow can also be expressed between iterations, as achieved in equation

equation 3.78:
Aapyy = (VT T,) T OTAL (4.38)

where Al is a vector of motion compensated errors AI7 (x’,ax) (see section 3.3.1) with 2D

displacement Ax defined from the chosen motion mode! a and its associated matrix transform
X (x) (descibed in section 3.2):

AL, = [AID(X),88),..., AL (X, 88), .. ., AL (X}, ), .. ., AIT™ (%, 25,))(4.39)

ALl (x,a;r) = [L(x) - I.(x + Ax](x,a)) (4.40)

Ax](ag) = AtX(x)a | (4.41)

Problem of the robust statistical optical flow

Estimating optical flow a**! at the (k+1)t* iteration given the known motion a* at the previous
iteration k presents a chicken-egg problem: it requires computing weights from the unknown
motion a¥+!, Hence, optical flow is not determinable unless it is assumed that differences in

error e between iterations are small and
w(e,(x’,ak+1)) ~ w(e,(x',ax)) (4.42)
can be replaced in equation 4.33 to become

¢ (x, a5) = w(er (x', ax)) pr(x, ax) (4.43)
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Conclusion

Robust statistics introduces a kernel function to the minimisation process of the optical flow
estimation in order to reject outliers introduced by noise or by non-unique motion ﬁeld occurring
in neighbourhood of local pixels. The weighting kernel of the least-squares scheme is compared to
the one of the median scheme. The least-squares is proven non-tolerant to any outliers whereas
the median can prevent a distribution of errors to be contaminated by large percentages of
outliers. The median estimator is chosen as robust regressor and its implementation is equivalent
to a weighted least-squares estimator, where pixels are weighted according to their motion-

compensated grey-level errors.

4.1.3 Evaluation procedure

Robust statistics can cope with two sources of noise: grey-level noise introduced for example
by the optical device, scene transparencies or changes in the lighting environment and motion
noise introduced when pixels undergo motions different than the dominant one. Detecting the
first source of noise is rather difficult but is easily eliminated by a robust estimator as this
noise usually does not contaminate a high percentage of pixels unlike motion noise which can
contaminate a large percentage of pixels at edge pixels where occlusion occurs. Occlusion is
simulated in the first section which also describes how motion estimates are evaluated against
ground-truth data. The evaluating results are presented in section 4.1.4 for the least-squares

and median estimators.

Input and ground-truth motion

Motion is estimated between two frames in a synthetical and real captured sequence called the
‘sine-sine’ and ‘texture-yos’ sequence respectively: see figure 4.3. The ‘sine-sine’ sequence is
created so all the frames contain enough texture or grey-level content for best performance of
the estimator. The estimator will be then evaluated with textures reflecting the textures of the
real world with the ‘texture-yos’ sequence. A sequence is created from a reference frame using
ground-truth motion fields, therefore there does not exist any high frequency noise but only
motion noise is introduced.

A horizontal and uniform motion field is applied on the right half of a reference frame
whereas a zero motion field is applied on the left half. The right hand side pixels are therefore
undergoing varying translational motion fields. We aim to investigate the accuracy of the optical
flow estimator across motion boundary which is why this latter remains fixed between pair of
frames. The moving right hand side frames are created by manually cutting canvas from a
bigger and same image. Therefore, as grey-level moves, new pixels arise from either the left or
right hand side of the right-hand frames wether the motion goes in the right or left direction
respectively. All the frames contains 384x288 black and white 256 grey-levels pixels.
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the efficiency of the estimator decreases rapidly in terms of percentage of accurately estimated
flows. This least-squares estimator ‘is compared in this section with the robust median estimator
previously developed in section 4.1.2 for small motions. They are implemented using the follow-
ing optimal parameters: a square neighbourhood of 289 (17*17) pixels has been chosen between
2 frames (a minimum number of 100 pixels is necessary) and the system is iterating 15 times.

The mean vertical motion errors My(y) defined in section 4.1.3 are plotted for a motion
magnitude example of 1 pixel in figure 4.4 and for a motion of 3 pixels in figure 4.5 and using
the ‘sine-sine’ input sequence. The horizontal axis is referred to as the edge axis where positive
locations correspond to the right motion and the negative or zero values correspond to the left
motion (set to zero in these examples). The motion boundary is therefore located between edge
pixel location 0 and 1. The results of these two graphs display two different error distributions
for the two different motion magnitudes where the motion errors increase progressively near
the motion boundary. This is particularly evident for the large motion magnitude for both
estimators. The maximum left motion error does not vary significantly along the edge axis: a
maximum of 0.35 pixel for the least-squares and 0.22 pixel for the robust technique. Unlike
the zero motion field, the right motion errors are maximum when the contamination is the
highest (location 1 on the edge axis) and of the order of the applied motion magnitude for both
éstimators. Nevertheless, the robust motion estimates are visibly more accurate across the edge
axis and for both motion magnitudes.

The accufacy of the least-squares and robust median estimators are measured by a threshold-
ing operation on the mean motion errors: a motion at a pixel location y is considered accurately
estimated if its corresponding motion error My(y) is less than a threshold arbitrarily set to 10%
of the maximum My given by the pixels belonging to the same edge than this pixel. The range
of pixel locations across the edge, where the least-squares and robust estimators are measured

inaccurate are displayed in table 4.1 for 4 different right motions of the ‘sine-sine’ sequence.

estimators

motion least- robust

(pixels) | squares | median

1 [7:8] | [-3:3]
2 [-7:8] [-3:3]
3 [-7:8] [-2:4]
4 7:8] | {-2:4]

Table 4.1: Range of edge pixel locations where the least-squares and robust estimators are

estimated inaccurate

The results of table 4.1 show constancy in the range of edge pixels where the estimators are
inaccurate. However, the robust estimator performs better than the least-squares around the

edge, as shown by the smaller ranges. The least-squares estimation is not contaminated by a
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the robust estimator is shown to be capable of dealing with approximately 30% contaminated
motion. For higher levels given around edges, motion cannot be accurately estimated by a single

robust statistical technique unless more information about the motion is provided.

4.2 Hierarchy: addressing large motions using Laplacian
pyramids |

As observed in chapter 3, gradient-based motion estimators generally fail to estimate motions.
This limitation can be addressed by appropriate initialisation techniques which provide and
initial estimate of the flow. The three main initialisation procedures used in the literature and
introduced in section 2.8 are designed to give a quick and rough first estimate of what the
motion is expected to be so the motion estimator can perform accurately thereafter. These
three techniques are: the feed-forward, block-matcher and hierarchical techniques as reviewed
in the first section 4.2.1.

In this study, motion is analysed between pair of frames independently of the results obtained
with previously captured frames, and a spatial hierarchical technique is used to provide initial
motion estimates. This technique is often implemented as a Laplacian pyramid, as it will be
described in section 4.2.2. Input sequences are presented in section 4.2.4 with evaluation metrics
to evaluate motion estimates against ground-truth. The evaluative results of the Laplacian
estimator are given in section 4.2.5 which show how initialisation enables large motions to be

accurately computed.

4.2.1 Review

Motion initialisation techniques are classified into three main categories: a temporal-based
technique referred to as feed-forwarding and two spatial-based techniques referred to as block-
matching and hierarchical techniques as reviewed in section 2.8. Feed-forward estimators use
results located in previous frames to initialise the iterative estimator. Block-matching tech-
niques (also called correlation-based techniques) give a translational initial motion as a first
estimate by searching templates of grey-levels within relatively large search areas as described
in section 2.2. This search and match process can thus be very expensive computationally. The
second spatial-based technique, the hierarchical approach, is generally more efficient than the
block-matching technique [58] essentially due to the large computational time required by the
block-matching technique compared to the gradient-based approach. It is based on a multiple
resolutions approach building a hierarchy of different resolution frames from an input frame.
Grey-level structures are subdivided in a space scale but the underlying motions also get refined
in a fine-to-coarse manner. The hierarchical technique is employed in this chapter to overcome
the large motion limitation of the robust optical flow estimator developed previously in section

4.1 and is implemented by constructing the Laplacian pyramid [112].
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The most common way to create the sub-images of the pyramid given an image (the bottom
level frame) is performed as follows. The grey-level average given by quadruples of neighbouring
pixels in an image at a particular level determines the grey-level of the corresponding pixel in

the upper level frame:

(p+1) {, (p+1) =l () (P '
i (x ) 7 2 (x +x) (4.49)
x'€W
where x’ is the index of the neighbouring pixels location and

x®? = 2 x(F+D (4.50)

2% {e=1[0:1,y=[0:1]} (4.51)

1l

with x®) = [z y(P)]T the pixel location in the p** level. Each frame has for origin of their
coordinate system their top left frame corner. In this study, the averaging of 4 grey-levels in
the previous equation is replaced by the convolution of a Gaussian smoothing kernel of width
o = 0.5 preserving more local information than the averaging function. This process of averaging

followed by sub-sampling is repeated until the lowest resolution frame is obtained.

4.2.3 Hierarchical motion estimation

The robust optical flow estimator developed in section 4.1 is shown to estimate accurately
motions with small magnitudes between two successive frames I, and I4 . This estimator is
implemented in the hierarchy of the Laplacian pyramid described above. Optical flow a® is
estimated at the p** level of & pyramid from an initial estimate a{’ ) and an iteration of small

motion updates Aa(?:

a®=al’+ Y Aaf) (4.52)
k=[0:K~1]
The motion at the top level is initialised with a zero motion field where the frame and the motion

are the smallest. The frames in all the remaining levels are initialised with a motion updated
from the upper frame motion results. Because the ratio between two successive levels is of 2,
the ratio between motions is also 2:

0 if p= P-1

al’ (x7)) =
2 alP~D(x(P-1)) else
with x(P) defined in equation 4.50. The final motion estimate a = a(® is evaluated for different

levels in the pyramid with different applied motions through the next sections.

4.2.4 Experimental procedures

The procedure developed in chapter 3 is also used here to evaluate the hierarchical optical flow
estimator described previously in section 4.2.3. The first section presents four datasets and the
ground-truth data. The second section describes how the estimator’s performance is evaluated
via the percentage of accurately estimated motions over the entire set of pixels within a frame.

The evaluation results are displayed in section 4.2.5.
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the estimated vector Ax and the corresponding ground-truth vector Ax9:

d(x) = ||Ax(x) — AxI|| (4.56)

4.2.5 Evaluation of the Laplacian hierarchical estimator

The hierarchical robust motion estimator described in section 4.2.3 is evaluated in this section.
Its performance is evaluated via the petcentage Py of pixels in the frame which are accurately
estimated (see section 4.2.4). The percentage Py are displayed in figures 4.10 for the ‘lab’
sequence against increasing number of iterations for an applied motion of 5 pixels estimated by
the multi-resolution estimator containing 1, 2 and 3 levels in the pyramid. This figure shows that
when only one level is used in the pyramid, which corresponds to a non-hierarchical estimation,
the system requires at least 15 iterations before converging to a final estimate. On another hand,
only a few iterations are necessary for hierarchical systems containing a minimum of 2 levels in
their pyramid to converge. Moreover, the more levels in the pyramid the higher the percentage
accuracy. Convergence is measured as the K*? iteration at which equation 4.57 is valid.

Py(K +1) - Py(K)
Pa(K + 1)d <% (457)

where Py(k) is the percentage at the k** iteration and the threshold 7}, is arbitrarilly set to 0.01.
The convergence K is reported in table 4.2 with the corresponding percentage accuracy Py(K)

for a motion of 5 pixels in magnitude.

levels | K | Pis(K)

1 151 523
2 2 88.7
3 1 98.8

Table 4.2: Convergence K and respective percentage accuracy Py(K) when the motion has a

magnitude of 5 pixels

The same experiments are performed for various motions whose percentage accuracy is plot-
ted in figure 4.11 for optimal number of iterations of 15, 5 and 5 for 1, 2 and 3 levels in the
pyramid respectively. The results of this graph show that the percentage accuracy Py is greater
than 90% when pixel motion is less than approximately 2.5, 5 and 10.5 pixels in magnitude for
1, 2 and 3 levels in the pyramid respectively.

The results with 3 levels in the pyramid are displayed in figure 4.12 for the remaining se-
quences: ‘college’, ‘lab’, ‘texture’ and ‘triomph’ sequences. The performance of the optical flow
estimator remains similar for the four different datasets and 90% of the pixel motions are ac-
curately estimated if the motion does not exceed 10, 11, 8 and 11 pixels in magnitude for the

‘college’, ‘lab’, ‘texture’ and ‘friomph’ sequences respectively.
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4.2.6 Conclusion

The motion estimator developed in chapter 3 can estimate accurately more than 90% of the
optical flows in a frame if motion magnitudes are not greater than approximately 2 to 3 pixels.
However, since this optical flow estimator is developed around the small motion assumption, its
performance decreases greatly for larger motions unless initial estimates are brovided. A multi-
resolution technique is developed in section 4.2.2 which uses the Laplacian pyramid to construct
a hierarchy of decreasing resolution frames. This technique first estimates small motions at the
coarsest level in the pyramid and larger motions can be then estimated in finer levels using
the previously updated motions. The performance of the hierarchical estimator is evaluated in
section 4.2.5 where at least 90% of the pixel motions of 4 different datasets with approximately
maximum 10 pixels in magnitude can be accurately estimated if the pyramid contains 3 levels (2
sub-levels estimation using non-zero initial estimate). In addition, it was observed that motion
estimation initialised with non-zero motion estimate only requires a few iterations to converge
to a final estimate whereas the non-hierarchical estimation requires about 15 iterations so that
small motions are accurately estimated.

In theory, greater motion magnitudes can be accurately estimated with more levels in the
pyramid. However, as the image resolution decreases, aliasing is likely to occur in the optical flow
estimation of low-resolution images. Moreover, optical flow requires at least 100 neighbouring
pixels and such neighbourhoods are likely to contain several motions in such low-resolution
images. It was shown in section 4.1 that motion outliers are not easily eliminated. Consequently
multi-resolution tends to introduce a motion smoothing effect across motion boundaries. In the
previous experiments, pyramids are constructed so the lowest resolution frame contains at least
50 pixels in width and height from an original size between 300 to 400 pixels in lateral dimension:
hence a maximum of 3 or 4 levels are allowed in the pyramids.

The robust and hierarchical estimation described in this chapter is shown to be accurate
for a large range of motions. Unlike the multiple motion problem, white noise is successfully
eliminated from the neighbourhoods of pixels. Motion estimation is also inaccurate in low-
contrasted grey-level regions where there are not enough constraints to estimate any motion.
Many applications, involving for example depth retrieval or motion segmentation would make
better use of optical flow if it was provided with confidence measurements. The next section

attempts to estimate such confidence by the use of covariance expression of the available motion.

4.3 Uncertainty of optical flow measurements

Dense fields of motion vectors describe the image motion from one frame to another. Dense
optical flow vectors may be used for example to perform motion detection [70], object segmen-
tation and tracking [8, 135], or it may be used for motion-compensation applications [41, 43},

motion study of oceanographic and atmospheric image sequences [37], stereo disparity measure-
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ment [15, 125} or depth retrieval from motion segmentation [1]. However, the gradient-based -
technique described in the previous part of chapter 4 estimates the motion fields accurately
only if neighbourhoods of pixels constraining the estimation do not contain multiple motions
(as occurs in occlusions around object boundaries), if the dominant motion is not too large,
and if there is sufficient grey-level texture. This section focuses on providing extra information
about the accuracy of the motion estimates. Section 4.3.1 shows that motion estimation can
be expressed in a linear form giving rise to a covariance expression which can be interpreted in
terms of uncertainty. Uncertainty can be then geometrically represented by ellipses of confidence

representing the degree of accuracy.

4.3.1 Covariance of the motion parameters

The motion parameter updated between iterations, Aag4 is expressed in chapter 3 in a linear
form (see equation 3.78), as

Aagyy = (VT 0,)1OT AL (4.58)
where W is essentially a matrix of grey-level derivatives  and AI contains motion compensated

grey-level differences AI:

U = [on(X28) 2 @r (Xarak)y e e vy @ (X3, Ak, - - - ,go.,.m(x:,,ak)]T (4.59)

ALy = [AID(X,8k), .. AID (X, 88), oy AIT™ (K, 88), - AI™ (3, 1)){4.60)
or(x,ar) =~ AIVL(x)X(x) (4.61)
ALl (x,a;) = Iix—I.(x+ AtX(x)ax) (4.62)

The terms of the previous equation are derived from the pixels within the spatio-temporal
window of axis x’ and 7: the constraining neighbourhood of pixels (see section 3.3). X(x) in
equation 4.62 is the matrix of the planar motion model (see section 3.2). Due to the linearity

of equation 4.58, the covariance of the motion Aay,; can be expressed as follows

- T
Asapyy = ((¥T0)710T) Aay, (7 0)7107) (4.63)
= (UT0,) ' 0T Apr, Uk (8T 0y) ! (4.64)

where Aarp, is the covariance of the vector of N grey-level differences after motion compensation:
Al. Each of these are assumed to be represented by uncorrelated white noises with variance
o2 where i = [1 : N] as represented in equation 4.65. In addition it is also assumed that all
these noise sources can be modelled by a single noise of variance 02, at each of the pixels in the
neighbourhood. Thus, the covariance of Al can be approximated by equation 4.67 where I is

the identity matrix of size NxN:

Apn, = 2Tt (4.65)
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R OAr| i (4.66)
0...1
~ o4, I (4.67)

Using this new equation for Aaj, in the optical flow covariance equation 4.64 gives:

VYU A DR ATAA DS (4.68)
~ oA (UT0)7! (4.69)

Motion displacement at a pixel is calculated from the estimated motion model by the following
equation:

Ax = AtX(x)a (4.70)
Estimating the covariance of the vector Ax involves the covariance estimation of a (the sum of
motion estimates between iterations described in equation 3.40), i.e.

K-1

a=ap+ Z Aajiy (471)
k=0

However, unlike equation 4.58, the final motion of equation 4.71 (and hence the 2D vector Ax)
is the sum of K iterative updates, resulting in a complex covariance expression. In this study,
it is considered that the motion uncertainty A, is approximately K times the covariance of the
estimated motion update Aag at the last iteration. Using equation 4.70 with the covariance of

the final motion update in equation 4.69 uncertainty can be approximated by

Aax = K(ATX(x))Aa(ATX(x))T (4.72)
= At2od  X(x)(PL U)X (x)T (4.73)

where ¥ = W is a vector of N row matrices ¢ (see equation 4.59) which contains p derivative

terms VI;. Developing equation 4.73 gives

-1
Aax = KAt o X(x) (Zwa(x',awf(x',a)) X(x)T (4.74)

T

-1
~ KAtok;X(x) (ZZATQXT(x’)VItT(x')VIt(x’)X(x’)) X(x)T (4.75)

In addition, if optical flow is computed between only two frames with At normalised to 1 and a
trgnslational motion model is fitted to the neighbourhood of pixels (X = I) then the covariance
simplifies to:

Aax = Koi M1 (4.76)

where

M

-1
(Z VI,T(x’)VIt(x')) (4.77)
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-1
[ merw)  Senenw) s

Tw LX) . I(x)

_1__ Zx’ Iz(xl) - z:x’ I-’l(x,)IU(xl) (479)
- T L) T LX)

and
L(x) = 31;1) (4.80)
L(x) = Q%,l (4.81)

2
D = Y B()> 2(x)- (E I,(x')f,,(x')) (4.82)

Therefore, according to equation 4.76 with equation 4.79, optical flow covariance and hence its
uncertainty are directly dependent on the inverse of the Hessian matrix (the spatial grey-level
derivatives) scaled by the variance of the grey-level noise present after motion compensation.
Thus, the spatial distribution of the sum of derivatives in both vertical and horizontal directions
influences motion estimation, and the larger the motion compensated errors the larger the
uncertainty. Moreover, in the above equations, if the term D is very small the covariance matrix
becomes very large, and hence the uncertainty of the motion estimate. This term D (equation
4.82) is by definition the determinant of the Hessian matrix. Therefore if this term is zero the
Hessian matrix is singular and the inverse matrix operation is not possible. For example, D =0
for regions with uniform gradients (represented for example by setting I, to aly, in equation 4.82

for all neighbouring pixels).

Robust case

Section 4.1 developed a robust estimation procedure for optical flow that differs only by a
weighting operation within the matrix ¥ containing the derivatives terms contributed by each
of the neighbourhood pixels:

Aayr = (VT 0,) UT AL (4.83)
where ¥/ is the weighted ¥ (see section 4.1.2). Using the previous linear approach with equation
4.83, it can easily be shown that the covariance of the motion vector Ax is approximately

Kok, (T 0) ™ T w), (U w)T)™

~ KUMZ w(es (X, a))VIT(X)VI(x)) 7 (wler(x',a))VIT(x)VI(x)) (4.85)

(4.84)

Q

AAx

((w<er(x', a))wf(x)vn(x»T)" (4.86)

where w(e) is the weighted associated with the motion compensated grey-level error e and takes

a maximum value of 1 for inlier errors and tends to 0 for large outliers. Comparing equation
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parameters are estimated as

[a1, as, as) =~ [5.87x1078, 2.91x10~7, 1.58x107%] seconds - (4.92)

a; ~ 1.95x107° seconds (4.93)

It was estimated that the time required to compute the weights becomes greater than the time
to build the matrices for motion model with a very large number of motion parameters compared
to the eight parameters of the planar model. Therefore the time to compute weights is negligible
in the overall optical flow estimation which was estimated to be a O(N) estimator per pixel in
section 3.7.

When the hierarchical motion estimation is deployed to overcome the large motions limita-
tion, extra computational time is necessary. If a Laplacian pyramid (described in section 4.2)
is constructed with P levels, then P optical flow estimation on different resolution images are
performed. If the pyramid is constructed from a frame F on its bottom level containing Card(F)
pixels, then sub-levels frames at a level p contains Card(F)/4” pixels with p = [0: P - 1]. If
T is the time required to compute optical flow at all the pixels of a frame, then the overall
computational time to compute optical flow of all pixels of an infinite number of levels in a

pyramid is a geometric series as follows

T T T = (1)*
£,.4 1 - ! 4.94
T+y+Gtet T(1+§(4)) (4.94)
1/4 T
4 Ny 495
T(1+1_1/4> T+3 (4.95)

Therefore hierarchical estimation increases at most 1/3 of the time involved in non-hierarchical
estimation. '

A frame in a pyramid is built by sub-sampling the frame situated above it in the hierarchy
smoothed by a Gaussian kernel of width 0.5. This procedure is considered quick compared to
the estimation of optical flow and similarly to this latter, the construction of one frame in the
pyramid takes four times from one level to a lower level. Hence, if the time to construct the
first sub-frame from the original frame takes T, then an infinite pyramid would teke T, + 7,/3

which can be considered negligible compared to the time to compute optical flow i.e. T+ T/3.

4.5 Conclusion

This chapter addresses the three main problems associated with optical flow estimation i.e. noise
contamination, multiple motions and large motions. Noise was addressed in the first section
and successfully eliminated by the use of robust statistics. However, when noise level is too
importgnt such as the motion noise caused by multiple motions occurring at object boundaries,
robust statistics could not successfully cope with the outliers. Large motions could be recovered

in the second section by the use of a multi-resolution technique. The third section addresses
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another problem associated with optical flow which is the problem of providing uncertainty

measurements of the pixel motions.

Robust statistics

The least-squares regression scheme used to minimise the sum of motion compensated errors
derived from the constant brightness equation performs well when there is little noise (see the
results of chapter 3). The term outlier was introduced to describe any noise that does not belong
to a normal distribution within the neighbourhood centred around the pixel for which optical
flow motion is computed. The first component of this chapter investigates the impact of motion
boundaries on the estimation of optical flow from pixel neighbourhoods. Results demonstrated
that the least-squares technique is non-robust and zero-tolerant to outliers.

Robust statistics was then introduced to address this problem. Estimators were implemented
as weighted least-squares estimators. The median estimator was chosen for its robustness, ef-
ficiency and computational speed. Such robust techniques seek to weight strongly data points
belonging to the dominant motion, and conversely de-weight pixels associated with the least
dominant motion(s). Experimental evidence suggests that the median estimator efficiently re-
jects outliers when they represent at most 30% of the entire distribution. Although the median
estimator is proven to improve greatly the accuracy of the motion estimates compared to the

least-squares, it cannot fully reject 100% of the outliers at motion boundaries.

Large motions

Chapter 3 clearly showed that a gradient-based optical flow estimator operates efficiently on a
very limited range of motion magnitudes of the order of a few pixels. Over-smoothing the frame
with a Gaussian kernel whose width is matched to the motion magnitude is not a practical
solution as it is dependent on the unknown motion. A hierarchical technique was introduced
using the well known Laplacian to build a coarse-to-fine hierarchy of sub-sampled frames. The
top level of the pyramid contains the smallest or coarsest sub-sampled frame and the bottom
level contains the original or finest frame. Sub-sampling addresses the problem of large motions
as any pixel motion in the original frame also gets progressively sub-sampled up the pyramid.
Estimation at the top level of the pyramid is initialised with zero motion estimates and each
of the lower levels is initialised with the magnified motion field from the corresponding upper
level. It was demonstrated that such an update and projection approach enables the hierarchical
estimator to accurately recover larger motion magnitudes as the number of levels in the pyramid
increases. For example, a three-level pyramid allows efficient estimation of motion approximately
with maximum 10 pixels in magnitude. Experiments also showed that any level of the pyramid
initialised with reasonable estimate of the motion field does not require as much iterations to
converge. While up to 15 iterations are needed for the top level, typically 5 iterations is sufficient

for convergence in any lower level of the Laplacian pyramid. The number of allowed levels in one
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pyramid depends on original frame size and also on the density of grey-level structure. (Some

structures can vanish with deep sub-sampling).

Motion uncertainty and confidence

A confidence estimation based on the degree to which the motion estimates conforms to the
constant brightness equation rule is derived in this chapter. More specifically, neighbourhoods
of pixels which give low motion-compensated errors have a high confidence measurement and
vice versa. The linear form of the optical flow estimator provides directly a covariance matrix of
the displacement vectors in both the least-squares and robust case. The covariance matrices are
represented visually by mean of ellipses to allow the user to visually evaluate the uncertainty
associated with optical flow results. The confidence results showed that combining hierarchical
estimation with robust statistics greatly improves the accuracy and the confidence of the motion
estimates. Moreover, the results also showed that the optical flow results are highly reliable in
textured areas whereas confidence decreases at motion boundaries or when the image lacks

grey-level structures.



Chapter 5

Hyperplane global motion

estimator

Global motion estimation is an important task in a variety of image processing applications.
The term global motion is commonly used to describe the motion of a background scene in
video sequences generally induced by camera motion. Motion in a video sequence is either local
due to object movement or global due to camera movement or zoom. The motion due to object
movement is referred to as local motion or object motion s it only relates to the subset of pixels
projected from an object.

One key application of global motion estimation is to perform video annotation. Once a
video sequence is annotated the user can make queries about motion related events in the
video. Moreover, motion is frequently associated with semantic information making it possible
to detect certain situations depending on the motion eflects, e.g. in sports videos. Motion
estimation plays an important role in video data compression which exploits the high temporal
redundancy between successive frames in a video sequence to achieve high compression efficiency
as performed in MPEG-4 or to achieve motion classification as in MPEG-7. It can also be used
for segmenting images into objects moving at diflerent speeds for computer vision applications.

The most often employed motion estimation technique in video coding, such as the standard-
ised MPEG-1/2, is one of block-matching, which gives estimates of the combined local and global
motion. Since thé global motion is generated by camera movement, it can be represented, in
theory, by a few parameters. Hence, the separation of global and local motion may lead to sim-
pler and more efficient motion information representation. Also, the global motion components
contained in the motion vectors may confuse an unsophisticated motion-based segmentation
algorithm in the identification of moving objects. When the global motion components are
removed, the remaining local motion information can be more readily used for moving object
identification.

Historically, there are two main approaches to motion estimation, namely matching schemes

90
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and schemes based on the optical flow principle. While matching techniques, such as block-
matching, rely on the analysis of the image intensity and the minimisation of a certain cost
function as a matching criterion, the optical flow principle is based on the analysis of the spatial

and temporal gradients in the video signal.

The mathematical complexity of the global motion model directly affects the possible ac-
curacy of the motion description, but also the computational complexity and stability. For
instance the planar perspective model with eight parameters is suitable to describe the global
motion completely if the assumption of a pin-hole camera model is satisfied and if the projective
projection model is respected (see chapter 3.2). More sophisticated formulations include also
lens distortion parameters. For many applications the affine model is sufficient which consists
of a linear transformation with six parameters.

A new technique called the hyperplane approximation technique addresses global motion
estimation and can be applied to computer vision applications. The hyperplane approximation,
as studied by Jurie in [77, 76, is a method of learning the relationship between the applied
motion parameters and the induced pixel differences between consecutive frames, also known as
the DFD (displaced frame difference). Solving for a given motion is equivalent to solving a set
of linear equations in a multi-dimensional space i.e. the hyperplane equations. This new tech-
nique for motion estimation was successfully applied to template matching techniques [77] and
appears to avoid the need for extracting the grey-level gradients. Moreover gradient-based tech-
niques such as the optica] flow method developed in a previous chapter, require a large number
of constraining points and are very sensitive to large motion magnitudes. A hyperplane-based
technique is then implemented in this chapter and evaluated against this standard optical flow

technique for global motion estimation.

This chapter focuses on developing a global motion estimator for surveillance applications.
Background scenes are captured by video cameras without any foreground objects. The back-
ground frames are in general formed by distant background structure. The recent existing
techniques and their applications are reviewed in section 5.1 showing how authors provide on-
line global motion estimation followed by a segmentation process to separate local and global
motions. A standard gradient-based optical flow technique and a novel hyperplane estimator
are developed in section 5.3 and 5.2 respectively and their performances are compared in section
5.5.

A novel sampling technique based on randomly sampling strong edges [128] is developed in
section 5.4 to provide a desired number of edge-based pixels that input of the motion estima-
tors. The details of implementation and the evaluation methodology are also given in section
5.4. The results of the comparable non-iterative gradient-based and hyperplane techniques show

that both estimators are not 100% reliable in estimating accurately the global motion in various
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surveillance video sequences. The non-iterative gradient-based estimator is found to be depen-
dent on the unknown motion magnitude as observed in chapter 3. The hyperplane estimator
appears to avoid the need to have prior knowledge of the largest motion magnitude it is expected
to estimate in a sequence. However, as it is computationally expensive, it generally cannot be a

frame-rate estimator and also lacks accuracy.

5.1 Review

Global motion is usually performed using either pixel correlation techniques (block-mmatching-
based techniques) or optical flow-based techniques. Global motion estimation is used to detect
typical camera operations associated with particular scenarios in sports events. For example,
Kokaram and Delacourt [82] propose a gradient-based optical flow approach for estimating global
motion. The algorithm works iteratively where segmentation is performed iteratively between
local and global motion which then weights the foreground objects according to their motion.
The project recognises successfully more than 88% of cricket events and intends to include sound
analysis for complete automated recognition and analysis of the game.

Wei et al [137] construct an algorithm for segmenting foreground objects from background
objects using the combined information present in temporal and spatial derivatives of the frames.
The local motion pixels are grouped iteratively until the system converges toward a fixed num-
ber of segmented areas. The algorithm relies on two important assumptions: video sequences
have typical background-foreground structured scencs where the background is dominant in the
sequences and the foreground consists of connected rigid bodies; and background motions are
caused only by camera operations.

Heuer and Kaup [65] avoid any high computational costs involved in gradient-based motion
estimator and rather use the available rough estimates of translational motion vectors given by
the encoded MPEG-4 technique. These motion vectors are estimated using a block-matcher
technique. The segmentation between the local and global motion is performed robustly with a
4 parameters global motion model fitted to the motion vectors. Smolic et al {119, 118] combine
a feature matching technique to find correspondences followed by an optical flow technique to
estimate the global motion parameters. A hierarchical strategy is applied for the estimation,
First a translation model is fitted followed by an afline model, and finally an higher-order motion
parameter model is fitted. The estimator is robust and computationally eflicient in segmenting
foreground objects from the background scene. The developed algorithm is allowed to build
mosaics of the background with great accuracy.

Suez et al [111] construct an algorithm which makes use of a feature extraction technique
based on the generalised Hough transform, which is able to provide rotation, scale and displace-
ment parameters when comparing two consecutive frames from a video sequence, and hence
allow for the pan, tilt, swing (rotation along the z-axis) and zoom effects to be mensured. In the

carlicr work of Dufaux and Moschen [44], mosaicking which consists of registering images onto
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a large single image, is performed by first estimating all the local motions and then by applying
a parametric motion model to segment the global motions induced by the camera.

Global motion estimation algorithms can also be used to extract the 3D information of
foreground and background object. For example Tzovaras et al [134] propose in a two-step
algorithm for robust global 3D motion estimation. In the first step, a rough 2D global motion
estimation method is achieved using block-matching. Using random sampling on the edges of
the image, features of interest are selected and their 2D motions allow for an initial estimate
of the 3D camera motion. In the second step, the camera movement is modelled by an affine
motion model in which parameters are estimated by a robust method allowing for depth retrieval
based on disparity measurement. The method works iteratively in order to remove progressively
the detected foreground outliers.

Other techniques use frequency analysis to estimate optical flow and to estimate separately
local and global motions in video sequences, as performed by Bruno and Pellerin {27, 26]. The
hyperplane approximation estimates motion successfully in template matching applications [77]
but the estimator is not of great interest in the literature for general global motion estimation

applications.

5.2 Hyperplane global motion optical flow

The potential new technique for estimating global motion, the hyperplane estimator, is developed
in this section as a global motion estimator before being applied to surveillance applications in
the later section 5.5. Hyperplane motion estiln‘ation is based on building a set of linear relations
between motion perturbations and DFDs (displaced frame differences) - a process which is
referred to as training the hyperplane system. Once the system is trained, the global motion
between any two frames of a video sequence can be recovered from the DFD - as described in
scction 5.2.1. The training phase of the hyperplane system is performed on each frame whose
motion is to be determined - as explained in section 5.2.2. Estimating motion with a hyperplane
technique mainly involves the inverse operation of a square matrix of the size of the number
of sampling points making the system computationally expensive. Section 5.2.3 shows that the
hyperplane estimator can be used in two different modes of operations depending on the camera
use and that in the best case, the estimator can operate in real-time but only for a limited range

of image motions.

5.2.1 Hyperplane motion estimator: the estimation phase

Estimating motion with the hyperplane technique [76] involves first training the system by build-
ing a set of lincar relationships between the DFDs and the corresponding motion perturbation
parameters. After the linear system is trained, the estimation of the p unknown parameters of

the motion vector a] between frame ¢ and frame 7 is simply achieved from n grey-lovel differences
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as follows
a; = M,AI7 (5.1

where Mp, the hyperplane matriz, is the pxN matrix containing the parameters of the trained

system, and AI7 contains the n grey-level differences described by

AL [AI7(x1),..., A7 (x,)]T (5.2)
AIf(x) = I(x)=I(x) (5.3)

By definition, if there are p parameters to be estimated then there must be at least p different
constraints. The DFD is sampled at n points whose size is in general much greater than p
which is of maximum 8 for the planar motion model defined in section 3.2.2. Hence, having a
hyperplane matrix, the motion between any two frames is expected to be correctly estimated
by simply multiplying the hyperplane matrix with the corresponding DFD at the appropriate
sampled locations. The building phase (also called the training phase) of the hyperplane matrix

M, is described in section 5.2.2.

5.2.2 The training (or perturbation) phase

Estimating motion with the hyperplane technique requires the system to be trained. This is
performed by perturbing the system with a set of motions which are likely to cover the range of
motions which might be encountered. The perturbation generates grey-level differences between
a frame and the perturbed frame. Using equation 5.1 with N, perturbing motion vectors a,

(i = [1: Np]) giving a set of Ny, grey-level difference vectors Al:
a, = MyAl, (5.4)

where each vector AI contain the grey-level differences at the location of 1 snmples 1 the frame:

AL = [AL(x)),...,AL(xa))" (5.5)
AL(x) = I(x)=-IL(x+ Xa,) (5.6)

with X the matrix of the motion model as described in section 3.2, Using a least-squares
regression scheme to minimise the Ny linear equations given by equation 5.4 gives the following

functional

Na
«(Mn) =Y (a,~ My AL) =0 (5.7)

The hyperplane matrix is found when the derivative of the error ¢ with respect to My I8 zero

and My is estimated as

N Nu -1
My = (Z a,.AII) (}: Ax,._ux) (5.8)

nml nel
~ . N N .
Equation 5.8 requires the computation of the inverse of a [n : 1) matrix and two Ny summations

of two matrices, since Al is a large vector of i values (the sampling size). The computational
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and the circled term M), represents the expensive training of the hyperplane matrix (described

by equation 5.8). Thus

o reference mode: a; = A AI7 and the reference frame remains the same frame at time ¢

for all frames and, hence, M, is calculated only once,

e dynamic mode: aT*! = M, AI7*! and the reference frame is different in each interval time

7, and, hence, M, is calculated repeatedly.

In the dynamic mode, the hyperplane matrix must be re-trained for every new frame with a set
of training motions of relatively small maximum amplitudes as will be shown in the experiments.
In the reference mode, the hyperplane matrix is trained once with a set of motions whose extend
must overlap the expected range of motions from the reference. A more intense training is hence
required for the reference mode of operation although the cost involved in its matrix inversion

is the same.

Hyperplane motion estimation is assumed to be performed at frame-rate whereas the hyper-
plane training is likely to be performed off-line because of the computational costs, In many
situations, cameras are likely to be used within their full range of functionalities. For example,
in surveillance applications, cameras often view a vast ficld of view in car-parks, offices, un-
derground stations etc. Therefore the frame-rate estimation phase in the reference operational
mode is unlikely to provide the required scene coverage without the repeated change of the

reference image, and hence the requirement to rebuild the hyperplane matrix.

5.2.4 Summary

The hyperplane global motion estimation technique works in two phases: the training or per-
turbation phase (defined in section 5.2.2) followed by the estimation phase (defined in section
5.2.1). The hyperplane system, or more specifically the hyperplane matrix needs to be trained
extensively before the system can estimate motion between pairs of frames, The training phase
is computationally expensive due to a costly inverse matrix operation on a square matrix of
the size of the number of sampling points. This training phase is an off-line (or non-real-time)
operation whereas the estimation phase can be performed at frame-rate, The hyperplane's over-
all speed of execution within a video sequence is dependent on the operationsl mode of the
camera (as described in section 5.2.3). However, but the hyperplane estimator Is likely to be

non-frame-rate when the camera is required to handle large motlons,

5.3 Gradient-based global motion estimation

As & comparison, a gradient-based estimator Is adapted to also estimate global motlon paraties

ters. A non-iterative version of the gradient-based estimator developed In chapter 3 is described
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in this section. A non-iterative version is adopted for the comparison, as the hyperplane tech-
nique is also a non-iterative estimator. Recalling the optical flow expression developed in chapter

3 in equation 3.40 and 3.78:
K-1

a=ag+ ) Aagyy (5.9)
=0

which consists of an initial motion ag and K small motion Aa estimates each defined by

-1
Aayyy = (ZZ‘PI(X',M)%(X'. 8k)) YT (X anALT (X, &) (5.10)

where
prixag) ~ 2eloa) (5.11)
A7 (%' ax) = I(x) = I.(p(x,a;)) (5.12)
p(x,ar) = x4+ ArX(x)a, (5.13)

There are n neighbouring pixels between m frames in the spatio-temporal window of esti-
mation where x’ = [x; : x},] and 7 = [7; : 7). In this global motion case, there are no initial
estimates available neither for the hyperplane nor the gradient-based technique. Hence ag = 0
in equation 5.9. Moreover, for comparison purpose, the optical flow technique is chosen non-
iterative i.e. K = 1. The estimation is performed only between two frames i.e. 7=t + 1. Thus,

the iterative motion expression from equation 5.9 becomes

ll: = Aal (5.11)
= MAI] (5.15)
where
-1
My = (Zd(X')vv(X')) Y oer(x) (5.16)
er(x) ——02';:‘) (517)
ALl = [AIF(x)),..., AL (xp)] (5.18)
AF(X") = IL(x)=1I.(x) (5.19)

The computational cost of the gradient-based estimator In equation 5.14 is dominated by the
construction of the matrix M; (referred to in the chapter as the Jacobinn miatrix) as it containg
mostly derivative terms. Similarly to the construction of the hyperplane matrix Aly, the cost
of building the Jacobian matrix A is composed of the summationa of matrices and the inverse
matrix operation, However, the inverse operation is performed on a square matrix of size pxp
where p is the number of motion parameters which is maximum 8 for the planar model, 1t i
shown in section 3.7 that inverting such a small matrix is performed very quickly and that the
computational cost. of an optical flow estimation depends on the size of the neighbourhood: n.

Therefore, the non-iterative gradient-based technique s likely to be performied at frame-rate
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unless a very large number of sampling pixels is necessary.

Note also that the sampling pixels are usually drawn from a local neighbourhood around
the pixel whose motion is being estimated. In the case of global motion, however, the sampling

pixels could be drawn from the image in an arbitrary manner as discussed in the next section,

5.4 Evaluation procedures

In this section, the global motion existing between pairs of frames captured by surveillance
cameras is estimated by two motion estimators: the hyperplane estimator introduced in section
5.2 and the non-iterative gradient-based estimator introduced in section 5.3. Section 5.4.1
presents the four surveillance datasets used for comparison. They are captured by cameras
limited to pan and tilt operations only. In order to evaluate the performance of the estimators,
the motion estimates need to be compared with the true motion parameters (calied the ground-
truth) which are typically unavailable. In section 5.4.4, an expensive correlation-based technique
provides accurate translational vectors of the global motion which will substitute for our ground-
truth. The hyperplane and gradient-based estimator are evaluated in section 5.5 against three

main operational parameters:
e the smoothing factor o (the width of the Gaussian kernel convolved with the input frames),
e the number of sampled points denoted n and,

¢ the sampling strategy that decides how to select n pixels of interest across the image frame,

The different sampling strategics are described in section 5.4.2.

The performance of the hyperplane estimator depends not only on the three previous pa-
rameters but also on how it is trained. As described in section 5.4.3, the hyperplane matrix is

trained using the two following parameters

e training range, denoted Ry, which describes the perturbation from each sampling point

and is related to the maximum motion magnitude that may be estimated, and

e training gap, denoted Gy dictates the density of perturbations within Ry, used to perform

the training,

5.4.1 Data sets

Figures 5.2 and 5.3 present the four datasets (the ‘lab’, ‘home-made’, ‘park-run’ and ‘ear-park’
sequences) captured by pan and tilt cameras, and used to evaluate the hyperplane and gradient-
based estimators. Each pair of frames in each sequence undergo the global motion specified

later in section 5.4.4, Table 5.1 presents the characteristies of the four sequences in terms of
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5.4.2 Locating pixels of interest: sampling procedures

Pixels should preferably be selected from edge structures where there exists enough local grey-
level variability favourable for the gradient-based technique - chapter 3. The hyperplane tech-
nique can estimate motion given a sampled DFD (displaced frame difference) if the system is
trained with such DFD. Therefore, the estimator is more likely to be performant when it is
trained with unique DFDs likely to be present at edge structures.

Three sampling possibilities specify how n pixels are selected across the image. The first
technique locates pixels on a grid, regardless of the grey-level content of the frame. The second
technique, referred to as the edge-based technique, selects pixels randomly near gradient edges
using a uniform spatial distribution [128]. The third region-based technique randomly selects
pixels uniformly from non-edge pixels which contain low local gradient information.

The edge-based technique first smoothes the Sobel edge magnitude response of all the pixels.
Second, weights are proportionally attributed between 0 and 1 where a weight of 0 corresponds
to the lowest edge response and a weight of 1 is assigned to the strongest edge. Third, a pixel
is selected randomly within the frame using a uniform technique and a second random number
is generated uniformly between 0 and 1. If the weight associated with the edge response of the
chosen pixel is greater than the second random number then this pixel is labelled as edge-based
pixel. The same pixel cannot be generated more than once and this process is repeated until
the'required number of samples is obtained.

The three sampling strategies that will be compared are the grid technique (referred to as the
regular strategy), the hybrid strategy which samples 50% of the pixels from edge pixels and the
remaining 50% from the non-edge pixels, and 100% edge-based technique referred to as simply
the edge-based strategy. It should be noted that the regular strategy samples pixels regardless
of the content of the image, therefore small percentages of edge pixels are likely to be sampled
by this technique. An example of 900 points are sampled by the regular strategy in figure 5.4.
The same number of points sampled by the hybrid and the edge-based technique are shown on
the left and right of figures 5.5 respecﬁve]y.

A smoothing operation eflectively flattens the structures within an image by smoothing local
gradients and selected edge pixels may not lie very close to the actual gradient edges. Therefore,
the distribution of sampled pixels recovered by the hybrid and edge-based strategy will vary
with the degree of smoothing. On the other hand, the pixels sampled by the regular strategy
remain sampled on the same grid regardless of the smoothing intensity. The examples in figure
5.5 are obtained with Gaussian smoothing operation with a kernel of width 0.5. An additional

example is given in figure 5.6 for a smoothing width of 2.5.

5.4.3 Training the hyperplane matrix: the perturbation strategy

A reference frame needs to be perturbed by a set of motion parameters before any global motion

estimation by the hyperplane technique is possible (as described in section 5.2.1). An optimal
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only provide the translational ground-truth components of the global motion between pairs of
frames in the datasets.

A block-matching technique provides the ground-truth of the translating optical flow of the
camera and works by finding the minimal cost function of a large template window (see section
2.2). The cost function implemented here is simply the mean squared of the grey-level difference
between a large template window from one frame and the entire area of another frame as search
area. The datasets do not contain any local motions caused by foreground scene objects except
for the ‘park-run’ sequence which contain a low percentage of local motions. Thus no robust
version is necessary and the least-squares block-matching is sufficient to provide accurately the

ground-truth data for all the sequences.

5.4.5 Evaluation criteria

The evaluation of the performance of the gradient-based and hyperplane global motion estimator
is performed using an error term measurement called the motion error similar to the one used
in section 3.4.2. This motion error term is defined as the magnitude of the vector difference
between the estimated and ground-truth global motion vector. The evaluation of both estimator
is performed for two optimal parameters: the Gaussian smoothing factor ¢, and the number of

sampling points n and the motion error is, therefore, denoted d;(o,n), and calculated by
di(o,n) = ||Ax,(o,n) — AX]|| (5.22)

where Ax7 is the ground-truth optical flow (between frame time ¢ and the next captured frame
t+1) and Ax,(o, n) is the corresponding estimated flow for a particular smoothing factor o and
sampling size n. The performance of one motion estimator (for fixed parameters o and n) is

measured by the mean motion errors from the N pairs of frames in a sequence as follows

Np
Ma(o,n) = NLF S di(o,n) (5.23)

t=1
The performance of the hyperplane estimator is evaluated against two additional parameters:
the training range Rj and density Dy, as described in section 5.4.3. Hence, the above evaluative
terms are expressed with these two extra terms as follows: motion Ax;(e,n, Ry, Dy), motion

error dy(o, n, Ry, D) and mean motion error My(a,n, Ry, Dy).

5.5 Experimental results

The performance of the non-iterative gradient-based estimator and the hyperplane estimator
described in the previous sections are first evaluated in section 5.5.1 below using the regular
sampling strategy explained in section 5.4. These estimators are compared with two other
sampling techniques, the hybrid and edge-based strategies, in section 5.5.3. The hyperplane

estimator relies on two extra parameters compared to the gradient-based estimator which are
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the training range and the training density. The optimal training strategy is evaluated in section
5.5.2. A discussion on the operational speed of the two estimators is found in section 5.5.4 and

conclusions are drawn in the last section.

5.5.1 What is the best smoothing factor?

In the following two sections, experiments are run on the non-iterative gradient-based estimator
and the hyperplane estimator using the regular sampling strategy. The data are plotted against
the two main parameters: the smoothing factor & and the number of sampling points n. The

four datasets presented in the previous section 5.4 are used in this experimental section.

The gradient-based optical flow

In the following experiments the regular sampling procedure is used to locate training points
across the image. The mean global motion errors My (see section 5.4.5) are plotted against
various smoothing factors o and various numbers of sampled points n in figure 5.8.

A minimum number of 20 samples is necessary before the results starts being stable in the
example of the ‘car-park’ sequence shown in figure 5.8. Also, it can be seen that mean errors are
at a minimum for smoothing factors ¢ in the range of [6-10] pixels (assuming n > 20 samples).
The same behaviour for the motion errors is observed for the 3 other datasets with minimum
errors found for smoothing factors in the ranges [1:5), [3:7] and [0.5-3] for the ‘lab’, ‘home-made’,
and the ‘park-run’ sequences respectively.

A closer look of the optimal range of smoothing factors is found in figure 5.9 for the ‘car-park’
sequence. This figure displays the smoothing factor which gives the minimum motion errors for
different sampling sizes. The graph shows that beyond 100 pixels a converged smoothing factor
of 7 or 7.5 gives the best results irrespective of the sampling size. Similar results from the other
sequences give optimal smoothing factors of [3-4], [4.5-5] and [1-3] pixels for the ‘lab’, ‘home-
made’ and ‘park-run’ sequence respectively (again provided at least 100 samples are sclected to
ensure stability).

For the ‘lab’ sequence, the mean motion errors are plotted in figure 5.10 for opﬁimal o=7.5
against various sampling size. The graph drops rapidly to a minimum motion error of about 3.5
pixels. Repeating the same experiment on the other sequences produces the results displayed
in table 5.2. The table displays for each sequence the mean motion magnitude, the optimal
o, and the mean motion error M. Note that the optimal & is roughly equal to the motion
magnitude. The mean errors are plotted against the mean motion magnitude in figure 5.11, and

rises significantly as the motion grows.

The hyperplane optical flow -

Similar experiments are performed on the hyperplane estimator i.e. against smoothing factor

o and the number of sampling points n (sampled by the regular technique). The hyperplane
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gradient-based mean motion errors

sampling strategy

dataset regular | hybrid | edge-based
‘lab’ 0.59 0.47 0.44
‘park-run’ 0.41 0.40 0.40
‘home-made’ 1.68 1.81 1.80
‘car-park’ 3.34 1.92 2.00

Table 5.5: Gradient-based results for -different sampling strategiés (with n=100 points and o

tuned to the mean velocity)

hyperplane mean motion errors

dataset sampling strategy
regular | hybrid | edge-based
‘lab’ 0.85 0.41 0.46
‘park-run’ 0.51 0.57 0.84
‘home-made’ 1.70 1.66 1.63
‘car-park’ 4.90 4.92 - 5.18

Table 5.6: Hyperplane results for different sampling strategies (with o=1, Dy=100% and Ry

tuned to the maximum velocity)

motion error of 1 pixel for sequences having a mean motion magnitude less than about 4 to 5
pixels. A motion error below half a pixel is obtained with both estimators if the motion to be

estimated has a magnitude below 3 pixels.

5.5.4 Time analysis

It was previously shown that gradient-based and hyperplane techniques can estimate motion
relatively accurately if motion magnitude does not exceed ~3 pixels. For such small motion
magnitudes, an optimised gradient-based estimator and a previously trained hyperplane tech-
nique can estimate motion at frame-rate. However, if the hyperplane technique requires to be
trained for every captured frame, the training operation would render the estimation very comn-
putationally demanding. Training an hyperplane requires the inversion of a square matrix with
lateral size n - the sampling size - which re'presents an O(n3) operation. The gradient-based
technique, on another hand, is a linear operation with the sampling size i.e. O(n).

The computational time required to estimate a 10 pixel motion by a hyperplane and a
gradient-based estimator is plotted in figure 5.20 for varying sampling size. The rapid cubic
time increase of the hyperplane training is observed in contrast to the slow linear growth of

gradient-based estimator around one frame per second.
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For this large motion magnitude example, which is not accurately estimated by both estima-
tors, the hyperplane’s cost remains below the gradient-based’s cost when there are less than
approximately 120 samples. A optimal size of 150 samples was previously chosen. Therefore for
large motion, the hyperplane estimation becomes very expensive and cannot be performed at
frame-rate.

'

5.5.5 Discussion: which is the best motion estimator?

The non-iterative gradient-based estimator gives the best motion estimates if, before the esti-
mation process starts, the grey-levels of the sampled pixels are pre-smoothed with a Gaussian
kernel whose size is set to the unknown motion magnitude (as observed in chapter 3). The
optimal number of sampling pixels is found to be approximately 150 pixels when sampled by
the hybrid technique (described in section 5.4.2). The results showed that the gradient-based
technique can only estimate, with relative accuracy, global motion with magnitude up to a few
pixels - of about 3 pixels maximum with corresponding maximum mean motion error of half a
pixel.

The hyperplane estimator performs similarly to the gradient-based estimator. However, it
requires to be trained with a distance, or training range Ry, at least equal to the maximum
expected motion magnitude in the dataset and with a training density of minimum 30%. The
estimation was shown to become unstable for intense smoothing operations, i.e. large o, and for
large numbers of samples n. However, the errors on the motion estimates are minimum when
150 pixels are sampled from the image and when these pixels are weakly smoothed with a low
smoothing factor of o = 1.

Since both the gradient-based and hyperplane techniques estimate relatively accurately
global motion with small magnitude, they can perform at frame-rate. If larger motions are
to be estimated, and if training is necessary whenever a frame is captured (i.e. the dynamic
mode - see section 5.2.3) then the inverse matrix operation required to train the hyperplane
technique makes it very computationally expensive.

Therefore, the main limitaﬁon of the two global motion estimators evaluated in this chapter
is the small motion magnitude limitation. Both estimators accuracy depends on this motion
magnitude. Since straightforward techniques exist for the gradient-based estimator to address
this problem, such as the multi-resolution approach developed in the previous chapter, the

hyperplane is not adopted as global motion estimator in the remainder of this thesis.

5.6 Discussion

Estimating motion with the gradient-based estimator, developed in section 5.3, requires an
inverse operation on a matrix with lateral size the number of parameters of the planar motion

model i.e. 8 parameters. The alternative hyperplane method, developed in section 5.2, also
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requires an inverse matrix operation during the training phase before motion estimation is
achieved. However, unlike for the gradient-based case, this inverse operation is performed on
a square matrix with varying lateral size given by the sampling size i.e. the number of pixels
sampled across an image. If the global motion induced by the moving background scene relative
to a pan and tilt camera is not too large, the motion estimation can be performed at frame rate
using the reference operational mode described in section 5.2.3 where the system can estimate
several motion from a unique trained system.

The results showed that the accuracy of both the gradient-based and hyperplane estimators
are limited to small motion magnitude of a few pixels. When larger motions are to be estimated,
accuracy decreases and is obtained when the pixels are smoothed with a kernel of the size of
the motion magnitude for the gradient-based case and when the training amplitude is to be at
least the size of this magnitude for the hyperplane case.

Since the hyperplane estimator can only recover small motion accurately, training with only
small ranges are required meaning that this training can be performed at frarﬁe—rate and the
dynamic model can also be performed at frame-rate. Therefore both estimators can use the
dynamic mode with similar speed. The gradient-based estimator can address the small motion
magnitude limitation using the multi-resolution approach developed in the previous chapter,
as studied in the next chapter. Moreover, the gradient-based estimation can be implemented
iteratively to improve its accuracy. The hyperplane, however, cannot be implemented easily in

an iterative and multi-resolution framework and is not further investigated.



Chapter 6

Estimating motion of moving

PTZ cameras

The two approaches previously implemented in chapter 5 - the hyperplane estimator and a
gradient-based technique - recover motion with accuracies dependent on the unknown motion
magnitude. For small motions, both estimators perform with relatively good accuracy and
relatively high speed. Unlike the gradient-based estimator, the hyperplane cannot be easily
implemented in an iterative and multi-resolution framework. The iterative and hierarchical
gradient-based motion estimator developed in chapter 4 is adapted for global motion estimation
in the first section 6.1. The gradient-based technique is successfully applied in this chapter to two
applications. First, the motion of background scenes captured by moving pan and tilt cameras
are estimated using the planar motion model described in section 6.2. While accuracy estimation
is achieved to less than 1 pixel error, such accuracy is not sufficient for image registration
applications such as background scene mosaicking. Second, in section 6.3, this estimator is then
applied to a zooming application where the intersection between optical axis and image centre

is estimated from the optical flow estimates.

6.1 Gradient-based global motion estimation

The dense robust and hierarchical estimator developed in chapter 4 is revisited in the first
section. It is adapted for global motion estimation by using an edge-based sampling procedure

described in the second section.

6.1.1 Hierarchical and robust approach

The small motion limitation of the gradient-based technique is addressed by the use of the hicr-
archical Laplacian pyramid technique described in chapter 4. The other major limitation of the

gradient-based technique is caused by the presence of noise or motion outliers contaminating

116



CHAPTER 6. ESTIMATING MOTION OF MOVING PTZ CAMERAS 117

neighbourhoods of pixels. Noisy outliers are usually introduced by the optical and electronic sys-
tem of the camera and are easily eliminated by the robust statistical approach, also implemented
in chapter 4. Motion outliers are mainly caused by occlusions which inject pixels undergoing
different motions from the dominant motion of the majority of the pixels in a neighbourhood.
Motion outliers cannot be totally eliminated by the robust technique.

In the two applications of this chapter, as the entire viewable 3D scene is assumed to undergo
the same global motion, all pixels within the frame can be used in the estimation process.
However, it was shown in chapter 3 that accurate optical flow only requires & minimum of pixels
of the order of 100, and using all pixels in a frame would render the estimation computationally
expensive. Moreover, optical flow estimation is dependent on the amount of grey-level structure

. present in the estimation. An edge-based sampling technique is therefore explored in the next

section to select a desired percentage of the most contrasted pixels.

6.1.2 Edge-based sampling of the global neighbouring pixels

A sampling technique, referred to as the edge-based sampling technique, is here built to select
the required number of pixels among the edges of a background scene for optimal optical flow
estimation. This edge-based sampling technique is an alternative and slightly quicker version of
the edge-based technique described in section 5.4.2 in the previous chapter which uses a random
sampling approach. In the new version, edge pixels are found by local and oriented search of
maximum edge response given by a Sobel gradient kernel. The image is divided by a grid and
the search for a maximum gradient is performed along the thresholded edge pixels within the
squares of the grid.

In most scenarios, datasets contain enough edges to distribute the minimum required number
of pixels among them. For example, the frame on the left of figure 6.1 contains 28,500 edges
represented as dark grey-levels on the right of the figure. The experiments in this chapter do
not use more than 15,000 pixels. Figure 6.2 show an example of 1000 and 5000 sampled edge

pixels of the input frame in figure 6.1.

6.2 Application to pan and tilt cameras

The motion estimates given by the global motion estimator described in section 6.1 are evaluated
against two different sets of ground-truth vectors. The first set comprises of a large number of
synthetically created translational vectors from which sequences are constructed. The second
set comprises of the real motion existing between pairs of frames. The motion estimator is then

evaluated against these two sets of motions in the two following sections.









CHAPTER 6. ESTIMATING MOTION OF MOVING PTZ CAMERAS 120

translational vectors are drawn from the magnitude range [1: 25]. The direction of this motion
is unique to each of the five datasets. In total, 26,475 motion estimations are performed. Note

that these synthetical motions are translational only.

Metrics

The translational component Ax; of the estimated planar model a; (see section 3.2) is compared
to the synthetical translational global motion Ax9 created for N, pairs of frames via the following

metric di (Ax9) computed for each dataset:
1 &
d(Ax?) = == > lAx, - AxY| (6.1)
S t=1

where 25 sequences are generated for each of the 25 different motion magnitudes applied to all
frames in a dataset.

It was demonstrated through experiment in section 4.2.5 that the motion estimator recovers
accurately a wide range of motion magnitudes below a magnitude cut-off related to the number
of layers in the hierarchical pyramid. At the top of a pyramid containing L levels, the maximum
motion magnitude that can be accurately estimated is Vi,,y =2 to 3 pixels. Therefore, the
maximum motion which can be handled at the base (original image) is Vinaz X 2" i.e. for a 3
levels pyramid, motion of = 8 to 12 pixels can be reliably recovered. This cut-off threshold will
be evaluated and will allow the computation of the metric D;, the mean of mean motion errors

that the estimator can recover accurately, for each dataset:

D == Y di(Axd) (6.2)

laxs||sv

<|

Evaluation

The mean motion errors di(Ax?) between the estimated global motion vector and the various
ground-truth motions Ax? are plotted in figure 6.5 for different ground-truth motion magnitude
for each of the five datasets.

Similarly to the experiments performed in chapter 3, the global estimator was evaluated for
different sampling sizes. The results showed that a minimum number of 100 pixels approximately
is necessary before the motion estimates starts converging toward a final estimate as the number
of samples increases. Between 500 and 1,000 pixels were necessary before the estimated motion
magnitude is less than 10% from the converged motion magnitude, estimated to occur from 5000
pixels. A choice of 2,500 pixels is arbitrarily chosen as sampling size in the following experiments.
All the motion estimates in figure 6.5 are very accurate provided the magnitude is below the
maximum threshold cut-off magnitude.

However, the range of motion magnitudes over which reliable motion estimates can be esti-

mated is typically larger than Vj,q,22L. These individual ranges can be estimated by visually
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by camera motion are modelled by a planar model. As there does not exist any straightforward
technique to provide the ground-truth global motion, an expensive block-matching technique
(the same used in section 5.4.4) is deployed to provide the translational global motion between
each pairs of the sequences. The block-matching technique can only provide quantised estimation
of the real translational motion. However this quantisation error can be neglected when averaging

motion errors over a set of frames.

Metric

Global motion between frames captured between time ¢ and t + 1 are modelled by a planar
motion model a;. From the estimated planar models a,, the corresponding translational global
motion Ax; (as explained in detail in section 3.2) is compared against the ground-truth motions.

A frame sequence is denoted S and contains Ng pair of frames and the evaluation is performed
according to the motion error metrics explained below. The translational component of the
estimated planar motion model is compared to the ground-truth translational component Ax?
of the real motion via the motion error metric d; defined by equation 6.3 for a sequence containing

Ng pairs of frames.

Ng
— - 1 E g 6.3
= .
d2 N 2 ”Axg Axt “ ( )

Evaluation

The mean motion errors dy defined in the previous section calculates the mean errors between
the estimated global motion vector modelled from the real captured global motion and the
ground-truth data are displayed in table 6.2 for the 5 datasets used previously. The results are

also shown for a minimum of 2500 pixel samples recovered from the edge structures within each

frame.
Dataset da
‘lab’ 0.29
‘park-run’ | 0.40
‘car-park’ | 0.35
‘1ab2’ 0.28
lab3’ - | 0.29

Table 6.2: Accuracy of the gradient-based global motion estimator

The maximum motion magnitudes present in each sequence are 5, 3.16, 9, 2 and 3 pixels
for the ‘lab’, ‘park-run’, ‘car-park’, ‘1ab2’ and ‘lab3’ sequences respectively. Each is less than
the knee point tabulated in table 6.1. In table 6.2, the r;linin)um deviation is between 0.28 and
0.29 pixel for the sequences taken in the same laboratory from different observation location i.e.

‘lab’, ‘1ab2’ and ‘lab3’ sequences. The maximum deviations are given by the ‘park-run’ sequence
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with 0.40 pixel in average from the ground-truth. In general, the deviations are always less than

half a pixel from the ground-truth for the different datasets.

6.2.3 Conclusion

The gradient-based estimator evaluated through the previous experiments is shown to be an
accurate global motion estimator for a large range of motion magnitudes up to between 10 and
20 pixels for different datasets. The local optical flow estimator developed in chapter 4 required
a minimum number of 100 samples in its neighbourhoods of pixels whereas the global estimator
of this chapter requires at least 2,500 pixels located on the edges for best performance. Despite
this large number of samples, the estimator can still operate at frame-rate.

The global motion estimates are produced with an accurate mean error of less than 0.5 pixel.
However these motion estimates are still not accurate enough for integrated image registration
applications such as mosaicking. If image superposition is to be performed, this 0.5 pixel mean

error would propagate and the mosaics fail to remain registered after a few frames. A

6.3 Application to zooming cameras on static scenes

In this second global motion application, 3D static scenes are captured by non-moving cameras
which are only changing their focal length i.e. zooming is performed on these scenes. This
particular 3D motion relative to the camera is described in chapter 3 by the zoom motion model
which allows the determination of the location of the centre of expansion (COE) which defines
the intersection of the optical axis with the image plane. The gradient-based estimator described
in section 6.1 estimates the parameters of the zoom motion model for three datasets presented
with their respective ground-truth motion vectors in the second section. The results, displayed
in the third section, show that the position of the estimated COE varies with the focal length

i.e. the lens position is varying during the zooming operation.

6.3.1 Zoom motion model and the centre of expansion

Generally, cameras are manufactured such that the image centre roughly coincides with the
middle point of the CCD array. The intersection of the optical axis with the image formation
plane is commonly referred to as the image centre. This means that ideally, under zooming
operations, the image centre should remain at the same location. However, changes of focal
length results in changes in the camera parameters including the position of the image centre.
The varying point of intersection between the optical axis and image plane is here referred to as
the centre of expansion while the image centre remains fixed at all time at half the width and
half the height of the image plane.

Although the scene in the field of view remains static, the change of focal length results in

each pixel undergoing a relative motion depending on their location relative to the COE located
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at i, = [ip,Jo]7 (in physical unit from the image centre) and the amount of variation in the
focal length. The zoom model developed in chapter 3 gives the following relationship between
the image velocity x (also expressed in physical units) and its corresponding image location x
measured from the COE -

X = —;:x (6.4)

where f is the amount of focal length f change per unit of time. The position x can be
alternatively measured from the image centre i, and becomes position i = [i,5]7: x = i, +1.
This position can be converted into pixel unit as expressed in equation 6.5 where o and 3 are

the constant factors introduced to convert distances from pixel unit to physical unit:
a 0
X = (i, +1) (6.5)
0 B8

Replacing equation 6.5 in the image velocity equation 6.4 gives

& = %a(io+i)=§aio+-§ai - (6.6)
N SV SR SR 6.7
i = jolio+i) =0+ 5ad (6.7)

or, in matrix notation
%= 1100 c (6.8)

00 51
where
c = [COt icly Ca, C3]T (6'9)
. , . , T

[%aa ‘;;Ofio, '; ] %ﬂ]o] (610)

The COE located at i, can be estimated from equation 6.9 without the knowledge of the cali-

bration factors o and 8 as follows

T
=% &
i = [CO, cg] (6.11)

The global motion estimator developed in section 6.1 estimates the motion model vector ¢ which

allow the computation of the COE of equation 6.11 in the next two sections.

6.3.2 Experimental procedures

The global motion estimator described in section 6.1 is evaluated for static cameras performing
zooming operations on 3D static scenes. Three zooming sequences are presented below with
their ground-truth motions. The evaluation is performed by the use of a metric also developed

below.
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In the first application, 3D scenes are captured by moving pan and tilt camera whose visual
motion is modelled by a single planar motion model. Motion magnitudes with maximum magni-
tude between 10 and 20 pixels could be accurately estimated in datasets containing frames with
about 300 to 400 pixels in width and height. Motion estimates are produced with an accuracy of
less than 0.5 pixel deviation from the actual motions. However they are not accurate enough for
integrated image registration such as background mosaicking applications. If image superposi-
tion is to be performed, this 0.5 pixel maximum error would propagate and background mosaics

can not be constructed from the single estimated planar model.

Grabbing frames with a static camera performing zooming operations on a 3D static scene
make the image velocity at every pixels undergo a single zoom motion model. Cameras are
manufactured so that the intersection of the optical axis with the image plane, referred to as the
centre of expansion, COE, is as close as possible to the image plane centre. It is demonstrated
in section 6.3.1 that this COE is directly available from zoom model parameters. The gradient-
based global motion estimator estimates these zoom models between pair of frames in three
datasets in the second application using a large number of edge-based pixels, compared to the
number of samples required in the pan and tilt application. The results with synthetically
created datasets showed that the COE is estimated to within a few pixels deviation from its real
position and that in real scenarios, the COE’s location varies as the zooming operation changes’
the focal length, i.e. the mechanical operation performing zoom alters the position of the lens

relative to the image plane.



Chapter 7

Tracking objects in surveillance

applications

Visual tracking of objects has been extensively studied for many years. Nevertheless, the prob-
lems associated with tracking remain unsolved since there are many sources of ambiguities like
shadows, illumination changes, over-segmentation of moving objects and object mis-detections.
In addition, the high variability often present in the projected images of an object over time
makes its tracking difficult. This variability arises from three principle sources: variation in the
objects pose, variation in illumination, and partial or full occlusion of the target. When ignored,
any of these sources of variability are enough to cause a tracking algorithm to lose its target or to
mistrack with others. The traditional tracking approaches are reviewed in the first section 7.1.
Tracking is mainly studied for surveillance applications using stationary cameras as studied in
this chapter. The traditional approaches construct & background model of the captured frames
of the static background scene over time. Foreground pixels are then extracted from the back-
ground model and groups of pixels are then formed. This object detection strategy is adopted in
this study and described in section 7.2. The results show that tracking is successfully performed
by simple data association rules but a different aﬁproach is necessary to track objects when their
projected images are overlaping. This scenario caused by the occlusion problem is the focus of
this chapter. Two trajectory model-based trackers and three appearance model-based trackers
are designed in section 7.3 and compared in 7.6. Although the use of the appearance models
improve the trajectory model-based tracking, additional information of the objects is needed for

complete successful tracking during occlusion.

7.1 Review

The traditional way to track foreground objects is to segment moving objects which do not

belong to a constructed model of the background scene as presented in the first section 7.1.1. The
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background scene is built statistically over time and pixels which do not belong to the statistical
models of the background are classified as foreground pixels which are then grouped spatially
together to form the foreground objects also referred to as blobs. Establishing correspondence
between the previously analysed objects with the newly detected blobs is the main difficulty in
tracking efficiently these objects. In order to do so, trajectory models and appearance models of
each objects are updated in time from the new observations. Traditional tracking is described
in section 7.1.2 and section 7.1.3 focuses on the main contributions in the literature to improve

tracking during occlusion.

7.1.1 Object detection

Traditional change detection algorithms segment foreground pixels from a constructed over
time background of the stationary scene. Background models are usually constructed from
either a mixture of Gaussian distributions of the intensities received at each pixel or from
a Kalman filtering approach to mode! the background pixels. Other techniques are able to
build models of the shadows caused by the foreground objects which are otherwise detected as
foreground objects. The use of a Bayesian-based classifier (see Appendix C) can also allow for

the segmentation of the foreground objects based on probability thresholding [60, 109].

Background modelling

Most of the tracking methods that perform change detection employ either a mixture of Gaussian
models or a Kalman filtering method to model the background scene. Stauffer and Grimson
[30, 122] have introduced the widely used concept of multi-Gaussian mixture model {46, 93, 106].
In this method, the grey-levels of the background reference image are modelled as a mixture
of Gaussians and an on-line approximation is used to update the model whenever a new frame
is captured. The Gaussian distributions of the adaptive mixture model are then evaluated to
determine which models are the most likely to result from the background process. Each pixel
is classified based on whether the Gaussian distribution which represents it most effectively
is considered part of the background model. This mixture of Gaussians represents one the
major contribution in adaptive background estimation. An improvement, presented in {78], has
been added to the mixture of Gaussians technique. The method of Grimson et al [30] suffers
from slow learning when the algorithm starts, especially in busy environments. In addition, it
cannot distinguish between moving shadows and moving objects. The new approach improves
the classical method by using a method based on EM (Expectation Maximisation) where the
optimisation scheme used to fit a Gaussian mixture model is done by the EM algorithm.

The other major technique used to model the background image is based on a Kalman fil-
tering approach [84, 85]. As performed with the mixture model method technique, the Kalman
filtering technique also adapts to the changing illumination occurring in the background. Other

approaches, such as [108], are acquiring statistics of image pixels (essentially mean and covari-
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ance) in 3D colour space in order to build a confidence background map to guide the segmen-
tation of the foreground objects. An interesting alternative way to estimate the background is
presented in [109] where robust statistical filters model the background pixels using L-filters (i.e.

a linear combination of the ordered grey-level samples of the image sequence).

Shadow suppression

Statistical-based methods are not only used to detect foreground pixels but they can also be
used to overcome the problems caused by shadow [54, 78, 107, 109]. However, shadows often
have the same characteristics as illumination changes of background surfaces and hence shadows
can be modelled as semi-transparent regions for instance. To tolerate for the shadow, which are
detected as foreground objects, frameworks raise a dedicated threshold. This threshold should

be low if the variance of the estimated background values over time is low and vice versa.

Motion detection

The simplest way to separate the foreground pixels from the background pixels is to apply
thresholds on the differences between the grey-levels of the background reference frame and the
new ones of the captured frame i.e. the current frame. However, these empirical thresholds
are often estimates of a probabilistic classifier which aims to calculate the highest probability
that a pixel difference in absolute value belongs to a foreground, background or shadow pixel.
The probability estimation is calculated using the Bayesian’s rule i.e. a Bayesian classification.
Using Gaussian distribution of the background noise, the threshold becomes easy to estimate
by the use of a Bayesian classifier provided a reasonable estimation for the prior probabilities of

background and foreground pixels are provided - Appendix C.

7.1.2 Object tracking

Typical tracking methodologies use a hypothesise, validate and update framework as illustrated
in figure 7.1. The history of the information of each tracked object (position, velocity, blob
dimension, colour-chromatic models etc) projects a prediction of this information onto the new
incoming frame: the hypothesise phase. Each predicted object is compared with all new seg-
mented foreground blobs from which a best match criterion validates the best candidate: the
validate phase. Finally, the information of each object is updated with the new blob information:

the update phase.

Trajectory model

Each active scene object has an associated trajectory model which describes the current posi-
tion, velocity and possibly the acceleration of the object in image coordinates. An alternative

coordinate system set on the ground plane may be a more appropriate space for tracking [106].
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Updating

During the update phase, the position and appearance of each corresponding observation is used
to update the trajectory and appearance model of validated scene objects. Typical update mech-
anisms include the o — 8 filter and the Kalman filter described in section 7.3. Fundamentally,

the tracker maintains the temporal coherence of object identities.

7.1.3 Occlusion reasoning

The work carried out for visual surveillance contribu‘ted to improve the tracking correspondences
when occlusions occur, also referred to as occlusion reasoning. Occlusion refers to two distinct
processes: the static occlusion and the dynamic occlusion. Dynamic occlusion occurs when at
least one foreground object occludes other foreground objects. Hence all these objects cannot
be segmented into individual blobs by the traditional on-line hypothesise, validate and update
method previously introduced. Partial occlusion is caused when a foreground object is being
occluded by a static object belonging to the background scene. The generation of depth map
of the background frame greatly improves tracking. For example, objects can be assumed to be
moving on a ground plane only; enabling a depth ordering and a better estimation of the tracks
[106). However, the problem of correspondence is not as problematic in partial occlusion cases
as in dynamic cases.

All existing trackers can only cope with moderate levels of occlusion, and most of them
cannot cope well when moving objects leave the group of merging objects in different directions
with which they entered. The longer an object merges into a group, the more difficult its
tracking. While the use of appearance models, such as shape or chromatic texture models, are
vital to establish temporal coherence of object identity, robust real-time implementations are
not currently available for the computing platforms used in the visual surveillance research.

Alternative solutions to address the occlusion problem in tracking have been proposed. Ros-
ales and Sclaroff [108] use a Kalman filter, Khan and Shah [81] segment object into similar colour
classes and Colins et ol [104] use a normalised colour histogram for each objects. Anzalone and
Machi [5] use two combined methods. The first method uses a mixed parametric and fuzzy logic
approach to compute distances among objects in feature space and to assign to each association
an affinity index. The second method uses Kalman filtering. Recently, Haritoaglu et al [71] im-
plemented a real-time human-tracking system and suggested a multi-camera system to analyse
occlusions. Occlusion reasoning stages can consider the longer term history of each track to
appropriately introduce merge and split operations and re-establish correspondence caused by

occlusion or fragmentation [46].
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7.2 Detecting moving objects

The detection of moving objects aims to generate bounding boxes, or blobs, of the moving
foreground pixels. This detection is performed through two steps. First a statistical model of
the background scene is constructed from all the captured frames via a multivariate Gaussian
distributions technique and allow the segmentation of foreground pixels within a scene. This
technique is referred to as the Stauffer and Grimson technique {30] and is decribed in the first
section. The second step consists in grouping the foreground pixels into sets of individuals
blobs. The technique descibed in section 7.2.2 projects iteratively the spatial distribution of
the foreground pixels into histograms which are subsequently split into blobs. These foreground

blobs are then associated to the corresponding objects in section 7.3.

7.2.1 Foreground segmentation

In most systems the first step in tracking objects is to separate the foreground from the back-
ground i.e. motion detection. This means to detect the regions of independently moving ob-
jects regardless of their speed, direction or texture. Moving objects are assumed to occlude a
background captured from a single and stationary CCD camera with fixed focal length. This
assumption is almost valid in most indoor scenes that are artificially lit. However, it is rec-
ommended to update the scene background actively to accommodate for variations caused by
shadows or reflections that might yield false interpretation of events.

The background estimation process relies on identifying the parts of the image that belong
to the stationary background in successive video frames. Hence, updating the reference image
with the recent grey-level patterns is necessary to insure that it represents the manner in which
the scene background is changing. Therefore, the estimation of the scene background relies on
the robust classification of image parts as being foreground or background regions. An initial
method for creating an adaptive background is to average the image grey-levels over time, cre-
ating a background approximation which is similar to the current static scene except where
motion occurs. While this is effective where the background objects are visible for a significant
portion of the time, it is not robust to scenes with high concentration of moving objects. It also
recovers slowly when the background is uncovered by moving objects or when illumination in the
scene changes. A thresholding technique can be then applied between the averaged background
grey-level Back,(x) and the captured frame grey-level I;(x) to segment foreground pixels where
x is a pixel location and t denotes the current time. For example, foreground pixels can be
detected if the absolute difference between the frame and the background is greater than an
empirical threshold: |I;(x) — Back:(x)| > threshold. This technique can be very sensitive to
noise for a low threshold or can perform very poorly for a too high value of the threshold. A
threshold on the contrast grey-level changes, e.g. 1 "B;ci‘t":’ X1, is & more suited approach to
overcome such problems, but it is nevertheless sensitive to light changes in dark regions of the

image.
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The technique used in this chapter to build the background reference frame uses the Stauffer
and Grimson technique [30] to model the grey-level values of each pixel as a mixture of Gaussians.
Based on the persistence and the variance of each of the Gaussians of the mixture, they determine
which Gaussians may correspond to the background grey-levels. Pixel grey-levels that do not
fit the background distributions are considered foreground until a Gaussian includes them with
sufficient, consistent evidence supporting it. For example, if each pixel result from a paﬁicu]ar
surface under particular lighting, a single Gaussian would be sufficient to model the pixel values
while accounting for acquisition noise. If only lighting changed over time, also a single, adaptive
Gaussian per pixel would be sufficient. In practice, multiple surfaces often appear in the view of
a particular pixel and the lighting conditions often change. Thus, multiple, adaptive Gaussians
are necessary (typically around 5).

The multiple Gaussian system adapts to deal robustly with lighting changes, tracking through
cluttered regions, and introducing or removing objects from tﬁe scene. Slowly moving objects
take longer to be incorporated into the background. Repetitive variations are learned, and a
model of the background distribution is generally maintained even if it is temporarily replaced
by another distribution which leads to faster recovery when objects are removed. The imple-

mentation details are described in the remaining of this section.

The Stauffer and Grimson’s reference background image is updated each time a new current
frame is captured. Each background pixel is associated with a maximum of 5 Gaussian models.
The Gaussian density grey-level function of mean intensity j, and standard deviation g, for the
new captured grey-level I,(x) at location x is formulated as

(L (%)) = \/.2ng o (7.1)
t

Every new pixel grey-level I.(x) is checked against all the existing Gaussian distributions until

a match is found. The matched model is the distribution which gives this minimum absolute
difference |I;(x) — p1¢—1| provided that this difference is within three standard deviation o;_1 of
this distribution (where lies more than 99% of the data). If no matched distribution is found, the
least probable distribution giving the least density function is replaced with a new distribution
with mean value set to Iy(x), an initially high variance is set to 3 and a low prior weight of 0.1.
Each distribution is associated a weight which gives the proportion of the data that is accounted
for each distribution. Hence, the more matched a distribution, the more important its weight.

The weight of each distribution is updated at time ¢ using the following equation

(1 - @)we— + @ if matched model
(1 - a)we—y else

where a is the learning rate of the algorithm of minimum value 0 and maximum value 1. Hence

a matching model sees its weight increases quickly with high learning rate. The mean and
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to extract these blobs, however, an alternative technique based on histogram projection [55] and

described in the next section 7.2.2 is used in this application to extract these blobs.

7.2.2 Extracting moving regions: Blob finding

After all the foreground( pixels are segmented from the multi Gaussians background models
previously described, the blob finding module developed in this section processes them into a
set of blobs. The task of separating foreground pixels into different blobs is achieved by using
a projected histogram method [55]. This technique creates histograms by projecting iteratively
the spatial distribution of the foreground pixels on the horizontal and vertical axis of the blob
bounding boxes. Having an original blob, an horizontal histogram of size the blob’s width and
a vertical histogram of size the blob’s height are created. Each bin of the vertical histogram
counts the number of foreground pixels across the width of the blob and the same operation
is performed vertically for the horizontal histogram. One of these two histograms is then split
into regions where a region is a set of consecutive bins having counts greater than 1. This blob
is then split into several sub-blobs which are split according to the regions segmented from the
second histogram. This two splitting procedures by the two histograms is iteratively repeated
a few times until splitting is no longer possible. The examples in figures 7.3, 7.4 and 7.5 show
that only 4 iterations is sufficient to segment the first blob chosen to represent the entire frame
area. Blobs are segmented with a maximum of 10 iterations. Foreground pixel detection is
often a noisy process resulting in small noisy blobs segmentation. In order to eliminate these
noisy blobs, a threshold of 7 pixels minimum is performed on the width and height of each blob.
Therefore if a blob lateral dimension is less than 7 pixels, it is eliminated from the list of valid
foreground blobs. The results of this filtering process are shown in figure 7.5 where only 2 blobs
remain as foreground blobs: one being the representative to the walking person and the other
arises from foreground pixels segmentation noise.

Examples of segmented foreground blobs from figure 7.2 are displayed in figure 7.6. In this
example the person walking from left to right has its head segmented into a noisy blob and
hence eliminated from the list of valid objects, the van behind is segmented into blobs due to
the static occlusion of the lamp post and the group of persons cannot be segmented from one
merging blob. In order to avoid these erroneous blob splitting errors, the projected histograms
are smoothed by a simple averaging process defined in equation 7.7 where bin(¢) is the number

of foreground counts at the ith bin of the histogram and the smoothed bin bin'(i) becomes

bind (4) = bin(i — 1) + Im;(z) + bin(i + 1) (1.7)

The histogram smoothing operation improves greatly the segmentation results as shown in
figure 7.7 where the left walking person and the van are fully segmented into one blob. It can
also be observed that the smoothing operation increases slightly the dimension of the foreground

blobs. The group of persons cannot be split into individual blobs due to the occlusion between
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7.3 Object tracking

The general aim of a tracking algorithm is to establish the temporal history of an object with
reference to the set of feature observations (i.e. blobs) extracted from the image sequence over
time, ideally from the moment each blob appears in the scene until it disappears. The perfor-
mance of a tracking algorithm is directly dependent on the accuracy of the change detection
between foreground and background objects. The multi Gaussian technique used to build the
statistical baékground and to segment foreground pixels allows a reliable segmentation of the
bounding boxes of the moving objects in a stationary scene. However, as explained earlier in
this chapter, tracking objects in occlusion scenario remains a difficult task to achieve. Occlusion
is detected when the predicted bounding boxes of at least two objects are overlapping i.e. their
areas are intersecting, which positions are predicted from the previously captured frame.

Two widely used estimators, the o — 3 and Kalman filter techniques, predict object positions
using previous observations and motion model regardless of the information present inside the
objects such as grey-level pattern, depth or shape. They usually track object blindly during
occlusion by the use of motion model assumptions. However, objects are easily mistracked as
soon as their movements do not fit any predicted motion models. |

The tracking algorithm, Qverviewed in the first section, predicts and updates object positions
using two trajectory models described in the second section. Before trajectory models can be
updated, correspondence between each tracked object and a new observed blob is established in

the third section. Occluding objects are predicted in the last section.

7.3.1 Overview of the algorithm

The tracking algorithm is designed to be a multi-tracking algorithm for the purpose of evaluat-
ing and comparing during occlusion the two motion model-based filters (the & — 3 and Kalman
filter) and three appearance model-based estimators (the correlation, region matching and hy-
brid estimator). Figure 7.8 illustrates the tracking algorithms where object positions are first
predicted before being associated with a new observation during the data association process.
In the case where a tracked object is predicted to enter an occlusion process where several tracks
are associated with one same observation, three appearance model-based techniques attempts

in the next section 7.4 to recover the lost information.

7.3.2 Trajectory modelling

As previously explained, tracking is performed via three steps: the prediction of the object
position in the current frame, the correspondence between tracks and the new observed blobs
and finally the update of the tracks trajectory models with the new observed positions. The
motion model is chosen to have in this study a zero-acceleration and is implemented into an

o= B and Kalman filtering process as follows.
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Figure 7.8: Evaluation procedure of the multi-estimators tracker

The a - 3 filter

The a — 8 and Kalman estimators predict the position of the tracked objects, each denoted B,
at capture time ¢ from their previous positions in the image (at time ¢ — 1) using the classical
velocity v equation v = 9x/8t and the acceleration a equation a = dv/9t respectively. A zero-
acceleration model is used in this study meaning that velocities remain constant and objects

positions are predicted with no acceleration influence as defined in the next equations

& = 0 (7.8)
Ve = vig (7.9)
Xt = X1+ At v (7.10)

where At is the time interval between frames assumed constant and set to 1 and &, ¥ and %
are the predicted acceleration, velocity and position vectors respectively. The a — 3 filter, also
known as a— 3 -+ filter updates the position, velocity and acceleration terms with & smoothing
operation scaled by an a, 3, and 4 coefficient respectively. Because the acceleration is set to
zero at all times, the updated position and velocity of the tracked objects are calculated using

the new observed blob position x} by

X, = X+a(xg—x) (7.11)
\ ‘~’z+ﬂ_—“(X:‘Xt)' (7.12)

At
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In this study « is set to 1 and 8 is set to 0.7 meaning that the position is not smoothed with
the predicted position but is always set to be the new observed position whereas the velocity is

smoothed with a coefficient of 0.7.

The Kalman filter

The Kalman filter, described in detail in Appendix B, is a statistical estimator which estimates
object positions according to covariance built over time from the errors recorded between the
predicted and measured positions. Similarly to the a~ 3 filter, the Kalman filter is implemented
with the same zero-acceleration model. Recalling the formula of the predicted state p; in

appendix B and the predicted observation vector X; respectively from the previous state vector

Pt-1:
Pt = Ap;1 (7-13)
X: = Hp: (7.14)
where »
1 At 0 0O
0 1 0 1 000
A= yand H = (7.15)
0 0 1 At : 001020
0 0 0 1

with p = [z,u,y,]T, the state vector, x = [z,3]T, the observation vector, and v = [u,v]T, the
velocity vector. Given a known previous state p;..; and a new observation of the object position

X¢, the state vector p and covariance P are updated by

P = Py+ K(xe— Hpy) (7.16)

2 P, - KHP, (1.17)

where K is the Kalman gain defined by
K = P,HT(HB,HT + R)™} (7.18)

and the state covariance is predicted by
P,=AP1AT+Q (7.19)

and @ and R are respectively the covariance error of the state process and of the measurement
process and are empirically set by the following equation where W and H are respectively the

width and height of the rectangular blob.

(7.20)
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7.3.3 Data association: blob matching

Blob matching is performed using a simple rule where a predicted track is associated with an
observed blob which bounding box gives the largest area of overlap with the tracked object’s
bounding box. If there is no overlap with any of the observed blob, the tracked object is
assumed to have entered a static occlusion (the object is totally occluded by objects belonging
to the static background). In such cases, the tracks positions are updated by the trajectory
model until the object reappear in the scene. In the case the predicted object does not match
the re-appearing object, a new track is instead created and the old track is eliminated after a

time-to-live threshold.

7.3.4 Occlusion prediction

Segmented blobs represent groups of foreground objects that cannot be separated into individual
objects when occlusion occurs. Occlusion is here detected when at least two predicted tracks
bounding box overlap with each other. A track is in an occlusion scenario when it is either
occluding one or several predicted tracks or it is being occluded by one or several predicted tracks.
Hence, the occlusion problem causes correspondence ambiguity in establishing correspondences
between several tracks with the same observed blob. This matched blob that merges several

objects is here referred to as the merging blob.

7.4 Recovering occluded observations using appearances

When a tracked object is not in an occlusion scenarios (no bounding box overlapping with other
tracks - section 7.3.4), this track’s position is updated with the new observation according to
trajectory models described in the previous section. However, when occlusion occurs, three
appearance model-based tracker attempt to recover the information lost in the merging blob.
These three estimators predict positions by the use of the grey-level information present in the

merging blob and are the
correlation technique, the
region matching technique and the
hybrid technique.

The positions of the tracked objects in occlusion are then updated with one of these appearance

model-based estimators as described in the three following sections.

7.4.1 Correlation estimator

For each tracked object, B, denotes its predicted bounding box located at the predicted position

X; and B; denotes the bounding box of the corresponding observed blob in current image
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(matched by the data association process of section 7.3.3) and observed as a merging blob
(from occlusion prediction in section 7.3.4). The correlation estimator predicts the actual track

position x; by the pixel position that gives the minimum least-squares match as follows

x; = argminyes, {m Y (T () - L(x +x'>)’} (721)
x'EW

where S; is the set of pixels within the search window, W is the set of pixels within the correlation
window of size Card(W) pixels and T is the template frame constructed from the grey-levels of
the object bounding box before entering occlusion at time 7. The search window &; is defined
as the set of current foreground pixels F; which lies within the intersection of the bounding
boxes of the observed merging blob B} and the predicted object bounding box By of the current
object:

S =FnN (Et n B;) (7.22)

where B, and By represent the set of pixels within B, and B} respectively and F; is then the set
of foreground pixels within B;. The set of pixels within the correlation window W is defined
by all the foreground pixels within this window. If M, is the set of foreground pixels in the
frame captured before occlusion i.e. at time 7 and if 7 is the set of pixels within the template
T, then W can be expressed by .

W=M,NT, (7.23)

7.4.2 Region matching estimator

The region matching technique predicts position during occlusion using the grey-level content
of objects. The correlation technique (described in the previous section) is a least-squares
pixel-based technique that can be easily influenced by noise. The region matching estimator is
developed as a weighted region-based technique so it is less sensitive to noise. When an object
is being occluded by another, its appearance, or here the grey-level content of objects, is also
being from partially to totally occluded. The idea of the region matcher is to improve tracking
by attempting to match the regions of the occluded objects surviving during occlusions. The
region matcher consists in segmenting the various grey-level distributions of an object according
to the range of textures held in the foreground pixels distribution as described in the first section.
The second section describes how matching between regions of tracked objects and the regions
of objects is achieved. The third section finally described how the tracked object position is
predicted from a sum of weighted region velocities given the results of the previous matching

process.

Region segmentation

A matched blob at time ¢ is segmented into N’ regions by a grass-fire technique, also referred
to as a connected-component technique [112], and each region v, where k = [1 : N'], consists

of three features: the mean pf, and variance 042 of the region’s foreground grey-level and the
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Region matching

Correspondences between the regions of a tracked object and the regions of the matched observed
blob are achieved by the region matching process. Object regions segmented at time 7 (before
occlusion occurs) are matched in each subsequent frame during occlusion at times indexed by ¢
with the regions extracted from the observed merging blob. The &% region of the tracked object
is compared to the I** region of the current blob by the mean of the similarity measurement §
defined by

Sk(l) = s(ui; i) + s(0; %) + s(A}; Ak) (7.25)

where the similarity for each feature is calculated as follows

min(a, 6) |
= 7.26
@0 (e, ) (729
and where 4, 02 and A are the features of the tracked blob (described earlier) and p’, 0'® and
A’ are the features of the observed blob. The best match M} of the k*# tracked region is the

new region giving the following maximum similarity measurement:

My = max;_;1.n) {Sk()} (7.27)

Object position estimation

The position of a tracked object in an occlusion scenario is estimated from the match results M
(see equation 7.27) of all the regions 4, with k = [1 : N]. The actual position is estimated as a
sum of weighted displacements between occlusion time ¢ and the time preceding the occlusion

time 7:

N
xt‘ =X, + Z Wi (c,m;. - Ck) (7'28)
k=1

where x, is the object position before occlusion, ¢ is the position of the k*» region of that
object, Wy is a matching weight defined in equation 7.29 and cj,, is the miP observed position
of the region which gives the best match M (equation 7.27). The weighting of the regions of
the tracked objects is calculated in equation 7.29 and the weights are then normalised so that
their sum over all regions is equal to 1.

My Ak
Zil M; Zﬁ:l Ai

The weighting process in equation 7.29 is performed so that large regions (large A) having a

Wy = (7.29)

high similitude with their matched blob’s region (high M) participate highly in the estimation
of the object position. Small size regions or regions with weak similitude with a region of the

observed blob are poorly weighted and contribute less to the position estimation.

7.4.3 Hybrid estimator

The hybrid estimator is designed to improve tracking in occlusion scenarios by combining a

trajectory model-based tracker with the region matching tracker (previously described). The
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trajectory model-based estimator is either the & — 8 or Kalman technique. They both blindly
tracks objects during occlusion according to a predicted motion model. The region matching
technique attempts to track objects during occlusion by tracking segmented regions of uniform
textures. When the content of an object is highly occluded by another object, regions are
likely to be poorly matched with previously segment regions and mistracks easily occur. The
hybrid technique relies on the fact that when such mistracks occur, the trajectory model-based
tracker intervenes to provide a better predicted position. Because of the position uncertainty
associated with both estimators, the correlation cost function is calculated within a small regions
of 11x11 pixels around these predicted positions. This small search window also ensures that
the predicted track remains within the vicinity of their expected positions. It will be shown in
section 7.6 that both a — 8 and Kalman techniques perform similarly and that the Kalman filter
is chosen as default trajectory model-based estimator. The object position is predicted by the

hybrid estimator by

x; = argminxz{x:(u),x;(r)} {KT;@—V—) ,‘%v (Tr(x") — L(x + x,))z} (7.30)

where x; ) is the position predicted by the Kalman filter (equation 7.14), x:(') is the position
predicted by the region matching technique (equation 7.28) and W is the set of foreground pixels

present in the template of the tracked object expressed in equation 7.23.

7.5 Summary of the tracking algorithm

Traditional object tracking is performed by using a trajectory model-based position predictor.
Two trajectory model-based estimators are implemented in section 7.3.2, an a — 8 and Kalman
filtering technique. Both produce highly accurate and successful tracking for each objects.
However, when objects enter occlusion, where their corresponding foreground pixels are non-
separable into individual blobs, motion model-based tracking is unreliable since the tracking is
performed blindly i.e. irrespective of the object contents.

Three appearance model-based estimators are designed in section 7.3 to tackle the occlusion
problem by using the grey-level information held by the tracked objects. The first estimator
predicts object position during occlusion by using the traditional cross-correlation technique
to minimise the sum of the square differences between grey-levels of the foreground pixels.
The second estimator is the region matching technique which estimates positions by matching
segmented uniform grey-level regions. The third technique, called the hybrid technique, is an
hybrid technique of a trajectory model-based estimator and the region matching technique. It

aims to use one technique when the other fail in tracking occluded objects and vice versa.
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Total number of Total number of
Object ¢ _Description appearances times occluded: No(7)
‘PETS!’ | ‘PETS2’ | ‘PETS1' | ‘PETS2
1 grey cloth person 544 352 39 29
2 grey car 256 239 39 33
3 white van 320 490 68 44
4 dark cloth person 228 455 201 412
5 dark cloth person 216 452 211 297
6 white coat person 189 418 157 410

Table 7.1: Object characteristics in the ‘PETS1’ and ‘PETS2’ sequence

the i*h ground-truth BJ(i) and the j** observed track B:(j) is equivalent to as a similarity

measurement in terms of position deviation Adj(i, j) and size difference AA;(4,5):

1

membership o(.9) = T T RGN + AAG)) (731)
where
e I = %) o
Md(hg) = —Ee X (7.32)
AAGg) = —mlb)) (7.33)

max (A7 (i), 4:(5))
The distance error term Ad’ represents a normalised deviation between the observed and ground-
truth track positions x; and x{ respectively. The area error term A.A’ represents a normalised
difference between the bounding box area of the ground-truth track .4 and the observed track
A. Therefore large deviations in appearance or position from the ground-truth result in a weak
membership value and vice versa. The maximum membership value is one and occurs when the

two objects are totally identical.
Each i** ground-truth track is associated with the jt* observed track giving the highest
membership result m, (i) among the N; observed tracks as defined by

argmax jei.y,) {membership ,(¢,5)} if Ne >0
NULL else

my(i) = Vi=[1:Ny] (7.34)

The correspondences between ground-truth and observation are then evaluated by the use of

two metrics described in the following section.

7.6.2 Metrics

The evaluation of the tracking algorithm is performed via two metrics on the set of correspon-

dences between ground-truth and observed tracked established from equation 7.34. The first
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metric AD(i) measures in equation 7.35 the mean deviation d,(i,j) between the i** ground-
truth object position and the position of the matching j* observed object during the occlusion

life-time denoted F; i.e. t € F;.

, 1 . ) -
AD(i) = 20) > Ad(i,mq(i)) (7.35)
teF
me(i) # NULL
where m, () is the index of the blob giving the best match with the i** object (see equation 7.34).

The spatial deviation Ad is defined in equation 7.36 and the term ¢ (3) in equation 7.37 defines

the number of times the i*# track find a match with an observed track during an occlusion.

Adi(i,d) = IxI) — %) ~ (7.36)

1if my(i) # NULL
06 = Z{ if () #
ter: | Oelse

The second metric AL(i) evaluates in equation 7.39 the average time the $** ground-truth

< O(5) (7.37)

object survives with the same associated observed track in terms of frames number during
occlusion. For example, if a ground-truth track always has for correspondence the same observed
track during occlusion, then this track survives indefinitely and AL = co. The minimum average
time of survival is AL = 1 which means that the correspondences of the ground-truth track are

different at every captured frames.

AL() Life — time of i*? ground — truth object during occlusion (7.38)
Total number of different correspondences of this object ’
O()
i (7.39)
2!6}‘.‘ Alz(z)

where Aly(i) takes a value of 1 if the track with which the ith track is associated with is a

different track from the previous time:

Al (i) = { 1if my—y () # me(d) (7.40)

0 else

7.6.3 Results

In the first experiment, the & — # and Kalman trajectory model-based estimators are compared
and the results show that they perform similarly during occlusion. The second experiment
evaluates the three appearance models trackers (described in section 7.4) and shows that tracking

is improved but still unsatisfactory for successful tracking.

Kalman versus a — § filtering: finding a trajectory predictor

The two trajectory model-based trackers developed in section 7.3.2, the @ — 3 and the Kalman
filtering trackers, are evaluated in this section. Both estimators track successfully all objects

when there is no occlusion occurrences in the ‘PETS’ datasets. Table 7.1 displays the measured
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label change rate, or tracking life-time AL, and associated mean object deviations AD (see
section 7.6.2) for the six ground-truth objects presented in section 7.6.1. The first three objects,
objects 1, 2 and 3, are considered low occluded and of relative high dimensions compared to the

three last objects.

a — 3 estimator Kalman estimator
Object |  ‘PETSI’ ‘PETS2’ ‘PETS1’ ‘PETS2’

i | abG) | aLG) | apw) | aLw) || apw) | aLw) | abe) | ALG)
6.55 19 31.81 14.5 14.99 7.8 13.45 (o]
869 | 19 | 3496 | 33 || 1251 | 39 | 3437 | 33
2032 | 17 | 3156 | 44 | 863 | 68 | 2050 | 44
1990 | 112 | 3335 | 258 || 2032 | 101 | 30.64 | 2538
1265 | 111 | 2829 | 149 | 1214 | 124 | 2861 | 149
20.63 14.3 30.86 25.6 21.01 11.2 27.43 22.8

DO ITWIN |~

Table 7.2: Comparison results of the a— 3 and Kalman trackers during occlusion in the ‘PETS1’

and ‘PETS2’ sequence

The AD results never exceeds a relatively high value of 35 pixels which mean that the
maximum object position error is of 35 pixels during occlusion for the three first objects. The
life-time of a track is of minirﬁum 19 frames and maximum oo, therefore successful tracking
rarely occurs. Generally, the first three objects are slightly better tracked by the Kalman
filtering technique. _

The o — B and Kalman tracker give similar tracking performances for the three last objects
(object 4, 5 and 6) which are considered highly occluded and of small sizes compared to the three
first objects. If an average of the results is to be performed for the AD and AL in table 7.2, the
Kalman tracker would give slightly better results. Approximately, in the ‘PETSI’ sequence, the
last three objects are positioned with a minimum deviation error of 12 pixels and maximum 21
pixels with a life-time of about 11 frames. In the ‘PETS2’ sequence, these objects positions are
positioned with an approximate deviation of 27-30 with life-times between 15 and 26 frames.

Comparing the results of the Kalman estimator between the three first and three last objects,
the low occluded objects (the three first objects) are in general better tracked than the highly
occluded objects (the three last objects). The Kalman estimator seems to be slightly better
suited for tracking objects than the @ — 8 estimator and is compared in the next experiments

with three appearance model-based trackers.

Trajectory versus appearance model-based tracking

The Kalman filter estimates position blindly when occlusion occurs whereas appearance models

trackers use local grey-level information to attémpt better tracking. The three appearance
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model-based trackers described in section 7.4 i.e. the correlation, region matching and hybrid
trackers are evaluated and compared to the Kalman tracker in table 7.3 for the ‘PETS1’ sequence

and in table 7.4 for the ‘PETS2’ sequence.

Estimator

Object Kalman Correlation Region matching Hybrid

i || aDe) | AL || apG) | ALG) | ADG) | ALG) || ADG) | ALG)
14.99 7.8 4.60 39 21.18 7.8 15.33 9.8
12.51 39 8.48 39 16.94 5.6 15.34 39
8.63 68 7.44 68 21.27 22.7 14.26 22.7
20.32 | 10.1 26.24 | 10.1 22.39 10.1 21.66 9.6
12.14 | 124 17.60 8.1 11.16 14.1 10.74 { 1L7
21.01 | 11.2 24.07 8.3 21.79 12.1 18.19 | 13.1

(=220 4 S [~ BV B G

Table 7.3: Evaluation results during occlusion for the ‘PETS1' sequence

Estimator

Object Kalman Correlation Region matching Hybrid

i AD(i) | ALG) || ADG) | AL(3) || ADG) | AL() || AD() | AL(:)
13.45 00 27.09 00 35.80 29 27.24 00
34.37 33 18.62 33 27.52 33 25.37 33
20.50 44 25.90 44 23.00 44 22.29 44
30.64 | 25.8 2441 | 275 33.23 21.7 3128 | 275
28.61 14.9 22.73 | 149 35.38 14.1 29.07 | 15.6
2743 | 228 33.01 | 21.6 29.97 24.1 29.05 | 27.3

ool |lw| o]~

Table 7.4: Evaluation results during occlusion for the ‘PETS2’ scquence

The correlation estimator is the most accurate technique for tracking the first three objects,
object 1, 2 and 3, in the ‘PETSI1’ sequence which are categorised as low occluded objects
with significant dimensions. For the ‘PETS2’ results, only the first and the third objects are
best tracked by the Kalman technique. Hence, the correlation technique seems an appropriate
technique for tracking these relatively large and low occluded objects.

The last three objects, object 4, 5 and 6, are categorised as highly occluded with poor
contrasted grey-level content in small object dimensions. Because the results of position error
AD and life-times AL are relatively similar for the four different trackers, their performances
are ranked in function of their life-times results only in table 7.5. A technique is ranked first
if its corresponding AL is the highest compared to the other techniques for a given sequence
and vice. versa. In this table, the Kalman, correlation, region-matching and hybrid tracker are

represented by Kim, Corr, Rm and Hyb respectively.
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Rank of performance
Object ‘PETSY’ sequence ‘PETS2’ sequence
19t 2nd 3d 4th 1%t ond 3d 4th

4 Klm | Rm | Corr | Hyb || Corr | Hyb | Klim | Rm
5 Rm | Klim | Hyb | Corr || Hyb | Corr | Klm | Rm
6 Hyb | Rm | Kim | Corr | Hyb | Rm | Kim | Corr

Table 7.5: Evaluation results during occlusion of the ‘PETS’ sequences

Table 7.5 shows that the estimators have varying ranks with the different objects and se-
quences. The region-matching techniques has a good ranking with the ‘PETSI’ sequence but
it has a worse ranking in the second sequence whereas the opposite is observed for the hybrid
technique. An average of the life-times in the first two tables gives the following ranking: the
region-matching is 1st, the hybrid is 2nd, the Kalman filter is 3rd and the correlation is last
for the ‘PETS1’ sequence. The hybrid is 1st, the correlation is 2nd, the Kalman filter is once
again 3rd and the region-matching is last for the ‘PETS2’ sequence. The hybrid technique is
ranked 1st and 2nd in both sequences and seems to be a slighter better tracker than the others
for these three highly occluded objects whereas correlation gave the best tracking results for the
low occluded objects. l

The first three objects displaying larger dimensions with more contrasted grey-level content
and less occluded than the last three objects are better tracked than these latter objects. The
correlation tracker gave the best results for the low occlusion case whereas the hybrid tracker
gave the best results for the higher occluded case. However, all of these six objects are mistracked

during occlusion, therefore additional information is necessary for complete tracking.

7.6.4 Discussion

The performances of the two trajectory model-based trackers, the ¢ — @ and the Kalman tech-
nique, are very similar. Although they successfully track objects, they fail to track objects
during occlusion scenarios where information about object positions is lost, or more precisely
hidden. The Kalman filter technique has a slight disadvantage over the @ — A flter since it
requires several frames before tracking accurately fast accelerating objects when they appear for
the first time in the scene. However, this disadvantage does not prevent the Kalman estimator
to perform slightly better than the a — 8 technique.

The Kalman tracker is then compared to three appearance model-based trackers i.e. the
correlation, region matching and hybrid estimator which attempt to recover the hidden object
positions during tracking by using the grey-level content of these objects. The comparison results
showed that the trackers performances vary with the nature of the objects, more specifically,

their occlusion densities,. their dimensions and their pixel grey-level contents. When objects are
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low occluded, the correlation technique was the most performant technique. However, when
occlusion density of small and poorly contrasted objects increases, all the trackers gave similar
and poor performances with slightly better results with the hybrid technique.

The occlusion problem remains a sensitive issue in tracking objects but can be properly
addressed when additional cues are integrated in the appearance models. Cues such as colour
information, shape models and depth of objects would for example improve greatly the tracking

results.

7.7 Conclusion

A multiple tracking framework is developed in this chapter to attempt to address the problem
of occlusion which cause most tracking algorithms of the literature to fail to track objects
successfully. This problem occurs when 3D foreground objects in a static scene interact in a
way that their projected images overlap on the 2D plane of the camera. Before being tracked,
foreground objects are segmented from the background scene from the two steps procedure
described in section 7.2. First, a statistical background reference frame is built over time by the
Stauffer and Grimson’s multi Gaussian technique. The fpreground segmentation is performed
by the multi-variate technique was shown noisy but accurate enough to allow in the second step
the grouping of the foreground pixels into individual clusters, referred to as blobs, by a projected
histogram technique.

The occlusion problem causes the foreground object segmentation technique to fail to sepa-

_ rate the groups of merging foreground pixels into individual blobs during occlusion. Recovering
the objects pdsitions lost during occlusion is the aim of the data association module described
in section 7.3. Two trajectory model-based trackers, a zero-acceleration a — 8 and Kalman tech-
nique, successfully track objects when there is no occlusion. However, when occlusion occurs,
they easily mistrack objects as they blindly track them according only to motion models.

The Kalman tracker is shown to give slightly better results than the a — 3 tracker and is
then compared to three appearance model-based tracker which attempts to recover the lost
information of the objects during occlusion. The first technique is the correlation tracker which
uses a least-squares approach to minimise grey-level similitude between objects to predict the
best position. This estimator is sensitive to noise and performs relatively well only for low-
occluded objects with significant and distinctive grey-level distributions. The second technique is
the region-matching tracker which is designed to match segmented grey-level distributions. It is
design to overcome the noise problem of the correlation technique when objects are significantly
occluded by other objects. This technique is not performant in segmenting accurately the
different regions of small captured objects and, in general, it does not give better tracking
results than the correlation technique. The third technique is the hybrid tracker, designed to
switch between the Kalman position estimates and the region-matching estimates. These three

techniques gave similar performance and all fail to accurately estimates although a slightly
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better performance was obtained with the correlation tracker for low-occluded objects and by
the hybrid tracker for highly-occluded objects. Nevertheless, although the amount of evaluation
data is too poor, similar observations and results are expected to occur with more intensive
evaluation and additional information such as colour, shape and 3D object positions is required

for successful tracking.



Chapter 8

Detecting objects with pan and

tilt cameras

Detecting foreground pixels when PTZ cameras are moving cannot be performed as reliably as
when cameras are stationary as demonstrated in the previous chapter where a reliable modelling
of the background is possible by a multi-variate technique. In the first application described in
this chapter, cameras are allowed to move in any direction and only the focal length remains
fixed. The first section reviews the main techniques developed in the literature to perform motion
estimation in order to compensate for global motion induced by the camera’s motions. Motion
compensated background allows the segmentation of the foreground motions, also referred to as
the local motions. ‘ |

An overview of the foreground objects detection algorithm is given in the second section
which describes how moving objects are detected in section 8.4 using thresholding between the
captured frame and a motion compensated background reference frame. The results, displayed
for three sequences in section 8.6, show a relatively accurate segmentation of the moving objects
but with high associated noise. A foreground edge-based segmentation is also developed in
section 8.4 which allows a significant filtering of the noisy moving objects in the frame. Before
the entire segmentation process is repeated, the background reference frame is updated using

an averaging grey-level approach described in section 8.5,

8.1 Review

Foreground objects captured by surveillance moving PTZ cameras are mostly detected when the
global motion associated with the static object of the background scenes is estimated. Global
motion estimation is an image registration technique which aims to find a general relationship
or transformation between images. The techniques and applications of image registration are

reviewed in the first section and the second section concentrates on reviewing the techniques
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used to segment and track objects captured by moving PTZ cameras.

8.1.1 Image registration

Image registration is an important problem in computer vision [24], from remote sensing ap-
plications [2, 142] to medical image analysis applications {7, 50, 51]. The key step of image
registration, also known as spatial normalisation (SPM), is to find the spatial transformations
of objects such that features between two or more images taken at different times, from different
sensors or from different viewpoints, give maximum similarities.

The relationship between images may correspond to a single global transformation, as in the
case of different views of a static planar surface for example, or to a spatially varying transfor-
mation field, possibly including discontinuities, as in the case of a non-static scene. In either
case, the registration problem is a difficult one and often complicated by such things as occlu-
sions, ambiguous matches and the presence of observation noise and distortion. The task can be
eased by using knowledge of the imaging process to constrain the class of transformation field
being estimated. The simplest example is to assume that the motion field is translational. This
assumption is sometimes a reasonable assumption in remote sensing areas that basically involve
the identification of many control points in the irhages. The increased volume of satellite images
has reinforced the need for automatic image registration methods. A more general approach is
to assume that the images are related by a six parameter affine transformation, corresponding
to dilation, rotation, shear and translation. A wide variety of registration techniques have been
developed for different applications as the ones previously mentioned. These techniques may be

classified into:
e correlation methods
e gradient-based methods
¢ Fourier methods

e landmark mapping and,

elastic model-based matching

The correlation methods are generally limited to registration problems [142] in which images
are misaligned by only a small rigid transformation. In addition, the peak of the correlation may
not be clearly discernible in the presence of noise. Fourier methods [53, 66, 86] are the frequency
domain equivalent of the correlation methods. Fourier methods make use of the translational
property of the Fourier transform and search for the optimal spectral match between two images.
However, Fourier matching methods are also limited to registration problems with small rigid
transformations. If there exists spatially local variation, then both the correlation methods and
the Fourier methods would fail. Gradient-based methods use the grey-level changes in the spatio-

temporal domain to measure motion (see chapter 6). Moreover, such gradient-based techniques
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allow for the implementation of a motion model which account for the small rigid deformation
problem previously mentioned and a better matching is usually obtained. Because computing
optical flow is an expensive process, it is only computed at sparse feature points as achieved by
Fusiello et ol [56] which then reject feature outliers by using robust statistics.

For cases of unknown misalignment type, landmark mapping and elastic model-based match-
ing techniques [2, 50, 51] may be used to tackle the registration problem. Landmark mapping
techniques extract feature points from a reference image and a target image, respectively, and
then apply a piecewise interpolation to compute a transformation for mapping the feature point
sets from the reference image to the target image. When such transformations are not appli-
cable to the selected features between a set of frames, the alternative method of greedy search
is deployed. The widely used RANSAC technique is a robust technique that matches the best
features and iteratively rejects outliers as used by Matas et al [90] and Clarke et al [35).

Elastic model-based matching techniques are similar to feature-based techniques. Altinalev
et al [2] detect object contours as fe;atures and are registered with cross correlation matching
to compute scale and translation. Ferrant et al [50, 51] generates a bio-medical model for the
cortical surface of MR (Magnetic Resonance) images as elastic bodies. When small strains occur
on the surfaces, they can be modelled as linear elastics and are represented as tetrahedral mesh.

Surveillance image registration focuses on registering pair of successive images captured as
the camera moves. The motion associated with the dominant background scene is generally
modelled by affine transformations. The registration of such motion is equivalent to motion

detection and the foreground objects are detected via. motion compensation defined below.

Motion compensation

Registering the complex motion associated with the stationary objects captured by a moving
camera is achieved by a motion compensation technique. The motion due to object movement is
referred to as local motion or object motion, and the motion due to camera motion or operation
is referred to as global motion, as it represents the majority of the entire motion present in the
scene. Motion compensation is achieved by a technique known as global motion estimation or
GME (see chapter 5), and the process of motion compensation is referred to as global motion
compensation or GMC. These techniques consist mainly in rejecting the local motions which
contaminate the GMC.

GMC is an important tool for a variety of video processing applications, including for instance
segmentation and coding. The basic idea is that a part of the visible 2D motion within video
sequences is caused by camera operations. A common approach is to model this global motion
by a parametric 2D model which allows the subsequent segmentation of the local motions caused
by foreground objects. Tom and Katsaggelos [130] for example use the additional information
provided by motion compensation to improve a multiple input algorithm [79] in order to enhance

image resolution.
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Mosaicking

Global motion compensation allows the updating of the background reference frame by reg-
istering several background frames. This is performed either on the part of the background
covered by the camera’s view as it moves or on a large mosaic of the background, also known as
sprite. Mosaicking is the automatic alignment of multiple images into larger aggregates onto a
common reference plane, [126, 143], and is often applied to video coding applications such as in
the MPEG4 technique [100]. Babu {9], on another hand, uses the motion vector provided by the
MPEG compression technique to generate the sprite. Farin et al in [48] improve the resolution
of the sprite by coding the background as several separate sprites improve the reduction of data

held in the background sprite.

8.1.2 'Tracking in PTZ imagery

Object tracking algorithms are typically based on the detection of a particular cue, most com-
monly colours, edges, shapes, textures or feature templates. The application of object tracking
in video-surveillance has a large range of purposes, from traffic monitoring [83] to human activity
understanding [42].

Koller et a! [83] use parameterised 3D models to model the shape of vehicles and an associated
motion model to track vehicles in stationary scenes. Edge segments are detected within the scene
and are matched to represent the best fitting vehicle model. Similar work [127] track objects
using multi-cues features such as colour, edge and texture. Araki et al [6] track object contours
in moving cameras after motion compensation of the background. The contours are represented
by active parameterised contour models referred to as snakes. The background affine motion
model is estimated via the motion estimates of object features given by a block-matcher. The
LMedS (Least Median of Squares) robust statistical technique separates the foreground features
from the background features.

In human activity understanding, colour has been greatly used in machine-based vision
systems for tasks such as segmentation and recognition. Colour cues have been shown to offer
several significant advantages over geometric information for certain tasks in visual perception,
such as robustness under partial occlusion, rotation in depth, scale changes and resolution
changes. Furthermore, colour processing can often utilise efficient algorithms yielding to real-
time performance on standard hardware. McKenna et al [91] adopts a statistical approach
in which colour distributions are modelled over time by the mean of adaptive colour mixture
models. These dynamic models estimate an object’s colour distribution on-line and adapt to
accomodate changes in the viewing conditions. They track objects robustly and in real-time
under variations in illumination, viewing geometry and under varying camera parameters.

Foresti and Micheloni [52] deploy the Tomasi-Kanade technique to detect and track Shi and
Tomasi-based features [115]. The best detected features are registered using a robust rejection

rule and allow for a translational motion to be estimated. Foreground pixels are detected by
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thresholding change detection and are grouped together for object analysis. Optical flow motion
vectors are estimated at the location of sparse Shi and Tomasi-based features in the work of
Fusiello et al [56).

Multi-cue integration has been exploited extensively in feature-based tracking applications
[47], such as in people tracking [40, 120]. Other authors integrate several cameras for better
reasoning occlusion of multiple walking persons [42]. Darrell et al [40] use a stereo algorithm to
compute the different depth of the objects in a face tracker. The face is detected and tracked
by the use of skin colour segmentation and a trained neural network for the detection of face
patterns. Murray and Basu [94] also use a gradient-based optical flow technique. They aim
to compensate the global motion of the background objects on a sparse set of points located
on the image edges. Moving pixels are segmented by an adaptive filter on the pixel differences
between the motion compensated captured frame and the previously captured frame. The use
of morphological filters on the edge map filters out the moving regions into the right moving

foreground objects of the new frame.

8.2 Overview of the moving objects detection algorithm

Foreground objects are detected in this chapter by a three step algorithm, as shown in figure
8.1. First, the global motion of the background scene captured between two different times is
estimated in section 161. Second, the three modules of the moving segmentation step segment
and filter in section 8.4 the moving clusters of pixels, also referred to as blobs, corresponding to
the foreground objects. In the first module of the segmentation process, module 1 in figure 8.1,
the reference background frame is predicted at capture time for comparison with the captured
frame. Moving objects are detected into blobs using a threshold on a contrast measurement.
However, the blob segmentation technique is noisy at highly contrasted pixels and low grey-
level pixels. A moving edge segmentation technique is then implemented in the second module,
module 2 in figure 8.1, to segment moving edge blobs. The third module, module 3 in figure
8.1, combines the information of the two sets of blobs to filter out the noisy blobs while keeping
the same segmentation accuracy. Finally, an update of local background pixels is performed in

the third step before the next captured objects can be segmented, as described in section 8.5.

8.3 Global motion estimation

The robust and hierarchical optical flow technique developed in chapter 6 models the background
scene as a 3D surface in which relative motion of the camera is modelled by a single planar
motion model. This gradient-based technique is constrained by a large number of approximately
2,500 edge-based pixels as neighbouring pixels of the background scene. The results of chapter
6 showed that global motion is estimated with relatively high accuracy when there are no

occluding foreground objects. The robust statistical approach first used with the local optical
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8.4.2 Module 2 - Moving edge detection

The foreground blob detection technique described in the first section produces noisy blobs in
low grey-level regions and at high contrast pixels of the background frame. The robust statistical
regressor used in chapter 4, i.e. the median regressor, is here used to eliminate edge-based outliers
that do not belong to the background scene. The foreground edges are also referred to as the
moving edges. It is assumed the total number of foreground edges represent a small percentage
of the total number of edges in a capture frame I, at time ¢. A pixel at location x is segmented

as moving edge E;(x) = 1 if it is segmented as foreground edge i.e. x € £/

lif x e &
Ex)={ % (8.7)
0 else
where £] is the set of edge pixels segmented robustly as foreground:
& ={x;x €&, |L(x)~L_1(x—-Ax)| >3 %} (8.8)

The term &;, defined in equation 8.9, represents the set of all the edge pixels segmented by the
technique described in section 8.3, and ¢* is the median robust scale applied on the edge pixels

as defined in equation 8.10.

& = {xE(x)=1} (8.9)
o =~ 14826 x Medianyeg, (|I:(x) — It-1(x — Ax)|) (8.10)

where E is the edge map of the same size of the original frame and a pixel located at location
x is an edge if E(x) = 1 and is not an edge if E(x) = 0. The optical flow vector Ax is
calculated from the previously estimated global motion model vector a in equation 8.1. The
connected-component technique groups the moving edge pixels into a set B’ of N’ blobs B{ with
i=[l: N}

B'={Bl,i=[1:N']} (8.11)
and the entire moving edge detection process is illustrated in figure 8.4,
In this figure 8.4, the ‘Warp’ operation is the motion compensation of the term I,y in equation
8.8. The ‘Difl” operation is the difference between I, and I;—; in the same equation. The ‘robust
scale’ is the calculation of 0* named ‘Threshold’ (equation 8.8) and the connected-component
operation is represented by the ‘Blob segmentation’ module. The segmented blobs of the moving

edges are then used to filter the moving edges previously segmented and this is described below.

8.4.3 Module 3 - Moving objects filtering

The technique described by the first module of the moving objects detector extracts relatively
accurately N moving objects B; characterised by bounding boxes but the detection is noisy and
unwanted noisy objects appear in dark regions and at the edges. In order to eliminate these

noisy blobs, a simple filtering rule is applied with the use of the moving edges extracted by the
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8.5 Updating the reference background frame

In this application, no mosaic of the background is constructed but instead a local and reliable
background is updated at every captured frame. The background frame needs to be updated with
the content of the captured frame before being predicted and compared with the next captured
frame by the moving objects detection technique described in section 8.4.1. A temporal averaging
approach is developed in this section to update the grey-levels of the background according to
the segmented and filtered moving objects (see section 8.4.3).

Each background pixel is associated an occurrence counter Af; which tells how many times
a pixel represented a background object from the first time of capture until current time t. The
counter M;(x) at location x is either decreased by one (provided it never goes negative) if it is
detected as foreground i.e. Fore,(x) = 1 (see equation 8.4) or it is increased by 1 if it belongs
to the background i.e. Fore,(x) = 0 provided that the counter never exceeds a threshold set

empirically to 100:

My(x) = mm(}E{i(x) +1, 100) if Fore,(x)=0 (8.14)
max(M;(x)— 1, 0)  else
where the predicted counter M, is calculated similarly to equation 8.3:
My(x) = My_y(x — Ax) (8.15)

The grey-levels of the background are updated according to their positions respective to the

moving blobs bounding boxes as explained in the following two sections.

Foreground pixels

The grey-level of every background pixel corresponding to a pixel detected as foreground and
located inside a moving object blob, i.e. x € B (defined in equation 8.12), is not updated. A
background pixel occluded by a foreground pixel is simply updated by the background grey-level

B/t;c’kt(x) predicted in equation 8.3 from the previous time of capture t — 1:

Backy(x) = Back;(x) if x € B (8.16)

Background pixels

All background pixels non-occluded by & foreground object and which do not belong to any
moving objects have their grey-levels updated with the new captured grey-level. The foreground
detection is shown noisy and any background pixel inside a foreground object bounding box is
likely to be foreground and update errors are shown to propagate as the same objccts are
being captured. Therefore, if a background pixel is located within one of the moving blobs

bounding box, its grey-level is not only updated with the new grey-level but also with the
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areas. The noise level calculation is performed relative to the total number of pixels in each

frame, denoted Card(F) where F is the set of pixels within each frame.

En

mean detected blobs areas non — intersecting withground — truth area
total frame area

NF, NS ANAS
NLF Z (Z‘_lgiazf) ! ) (8.20)

It

t=1
where A is the entire frame area without the area covered by A. Finally, the third metric,
denoted AN, evaluates in equation 8.21 the number of noisy objects obtained by the motion
detectors which is calculated by the mean of the absolute difference between the number of
observed and ground-truth blobs:

Np
AN = ng S (V7= N)) (8.21)

t=1
Therefore, according to these three previous metrics, an ideal change detection algorithm would
produce results with such characteristics: E.=100%, E,=0% and AN=0 blob. The metrics

results are displayed in the next section for the three different sequences presented above,

8.6.3 Results

The foreground objects of the ‘dirc’, ‘lab’ and ‘ptzets’ sequences segmented by the moving
object detector, with and without noise filtering {see section 8.4), are evaluated in the following
experiments. The system accuracy is evaluated via the E. metric, the noise level is evaluated
via the Ey, metric and the number of noisy blobs is calculated via metric AN all defined in the
previous section. The results of these three metrics are displayed in table 8.1, 8.2 and 8.3 for
the moving objects, moving edges and the filtered moving object detectors respectively.

Table 8.1 shows that the foreground objects are well segmented with an accuracy of £, =
90% for the two sequences captured with the same camera and in the same environment i.e.
the ‘dirc’ and ‘lab’ sequences. The results obtained with the ‘ptzets’ sequence give a E, rate of
about only 76%. The noise results given show that important levels of noise occur in the ‘lab’
sequence with Ey, = 5% of the frame areas covered by noisy blobs and with a corresponding of
AN = 8 noisy blobs. AN remains below one noisy blob per ‘dirc’ frame with 2.41% of their
surfaces covered by noise and approximately 2 noisy blobs occur in the ‘ptzets’ frames covering
1.27% of the frame surfaces.

The same table is constructed with exclusively the foreground blobs segmented by the moving
édge detector in table 8.2. Comparing this table with the previous one shows that the moving
edge detector is not as accurate as the moving object detector in terms of object area coverage
(Ec). It can be observed that the lowest E, results are given with the ‘ptzets’ sequence. Table
8.2 also shows that similar noise level of Fy, is obtained for the three sequences and lower than
the E, results in table 8.1. However, the number of noisy edges blobs are in general higher

than the number of noisy objects blobs, except for the ‘lab’ sequence. Noisy blobs segmented by
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‘dire’ | ‘lab’ | ‘ptzets’
E. (%) 90.01 | 89.99 | 76.44
En (%) 2.41 | 5.05 1.27

AN(blobs) | 0.97 | 8.26 1.95

Table 8.1: Results of the moving object detection

‘dirc’ | ‘lab’ | ‘ptzets’
E, (%) 80.45 | 87.12 | 62.25
E, (%) 0.59 | 0.45 0.54

AN (blobs) | 5.07 | 5.19 4.85

Table 8.2: Results of the moving edge detection

‘dirc’ | ‘lab’ | ‘ptzets’
E. (%) |90.79 |90.12]| 73.64
E, (%) 096 | 0.74 0.82

AN (blobs) | 0.26 | 0.55 0.65

Table 8.3: Results of the filtered moving object detection

the moving edge detector are generally thinner than the moving object detector due to the fact
that edges in dark regions are partially segmented creating thin, elongated blobs compared to
objects foreground patches. This also explains why there are generally more noisy blobs when
edges are segmented.

The results of the filtering process of the moving objects with the moving edges in table 8.3
show that the accuracy obtained in the first table is conserved with lower noise level and lower
noisy blobs. The high accuracies obtained with the ‘dirc’ and ‘lab’ sequences are slightly im-
proved and remains around 90% whereas the 76.4% accuracy obtained with the ‘pt.iets’ sequence
drops to 74.6%. The noise level is decreased to below 1% of the frame surfaces for the three
sequences with less than 1 noisy blob. Therefore, although the accuracies are not significantly
improved, the noise is greatly decreased when moving blobs are filtered with the segmented
moving edges.

The moving edge detector segments mainly the edges and hence objects are not as fully
segmented as with the moving object detector (as shown in figure 8.6). Moreover, the moving
edge detector segments objects into several small edge objects making the average number of
noisy blobs AN much greater than with the moving object detector. The only advantage the
moving edge detector has is that it does not produce noisy foreground pixels in the sensitive
dark regions, as reflected by the value of E,.

Table 8.3 show that the moving objects results are improved when combined with the moving
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edges information in the filtering process described in section 8.4.3. The E; keeps approximately
the same accuracy after filtering while the noise is greatly reduced in terms of covered areas E,

and in terms of number of blobs AN.

8.6.4 Discussion

The experimental results of the moving object detection algorithm described in section 8.4 show
that 90% of the moving object areas are successfully detected for the two sequences captured in
an indoor environment. Only about 74% of several foreground objects areas of an outdoor scene
captured by a surveillance camera are segmented. However, although filtering is performed on
the dimension of the segmented blobs, noisy measurements are observed with a maximum of 5%
of the total frame area and about 8 noisy small blobs appearing essentially at dark regions of
the images.

In order to filter out the noisy detection, moving edge are segmented and although their
detection is also noisy, the combination of moving objects and edges allow a better reduction
of these noisy moving objects. The results show that less than 1% of the total frame area is
detected as noise with less than one noisy blob occurring per frame for the three used sequences.
The gradient-based global motion estimator described in section 8.3 hence allows a frame-rate
and accurate image registration and a foreground object detection but with significant noise that

could only be reduced by filtering out small objects and by using moving edges information.

8.7 Conclusion

The robust and global motion estimator developed in chapter 6 and reviewed in section 8.3 can
reliably estimate the motion of a background scene modelled by a single planar motion model
when small portions of the background are occluded by moving foreground objects. Using motion
compensation and a temporal averaging technique to construct a background reference frame,
moving objects are successfully segmented from this background and noise is then reduced by
using a moving edge detection algorithm.

The segmentation results show that the blobs bounding boxes of the moving foreground
objects are relatively accurately segmented with percentages of area coverage between 73 and
90% and which should be evaluated further with additional different sequences. However, the
segmentation results are considerably noisy at the darker regions in the images but are greatly
improved if small objects are eliminated and if they are combined witl the blobs of the moving
edges. The small objects filtering and the filtering by the moving edges showed that less than
1% of the whole frame area is covered by noisy blobs and an average less than one small noisy

blob occurs per frame.



Chapter 9

Final discussion

The general aim of this thesis is to analyse motion via optical flow techniques and is centred
around three main themes. The first theme addresses the problem of contamination caused by
noise and the existence of multiple motions occurring in the estimation neighbourhoods. The
noise process is caused by electrical and optical imperfections of cameras and multiple motions -
typically caused by occlusion. The second theme of this study addresses the estimation of large
motions. Gradient-based optical flow techniques are derived from a Taylor series expansion of
the constant brightness equation around the smal] motion assumption. Therefore, they can only
estimate accurately pixel motions of small magnitude.

Unless information about the content of a frame is given, motion analysis between frames is
best performed if the motion is available at each pixel. Such dense motion information can be
computed relatively accurately but is computationally expensive. The third theme of this thesis
addresses this time limitation problem by investigating the optical flow technique in the appli-
cation of global motion estimation in order to detect foreground objects occluding background
scenes captured in indoor and outdoor environments, These three themes are investigated in this
study and the obtained results are summarised below. This chapter concludes with a discussion
on future work which analyses the important work that would render the investigation more

complete and that would improve the results for directed future rescarch.

9.1 Summary of the research

A summary of the results obtained throughout this study is outlines in the six following sub-
sections. The first four sections analyse the gradient-based optical flow estimator developed in
chapter 3 which provide dense pixel motion estimation. The estimator is analysed from a math-
ematical point of view, its limitations are addressed and a confidence measurcement is provided
in the fourth section. The fifth section analyses two on-line global motion estimators: the hy-
perplane and the gradient-based estimators, while the sixth analyses the results of the estimated

motions induced by static background scenes, captured by moving pan and tilt cameras. The

174
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global motion of a zooming camera is also reviewed in this section. Finally, we describe how
foreground moving objects can be detected from static background scenes viewed by stationary

cameras and moving pan and tilt cameras.

Dense gradient-based optical flow estimation

Optical flow estimation relies on the constant brightness equation (CBE) which states that
brightness at any location in space does not change over small time intervals. An optical fow
estimator based on this constraint is developed in section 3.3 around the small motion mag-
nitude assumption. Because of the aperture problem, additional constraints are necessary and
are provided by fitting a planar motion model to the motion field occurring across local neigh-
bourhoods of pixels. A least-squares regression technique is then applied to minimise the error
function associated with the CBE.

Non-iterative and iterative motion estimators are implemented. The iterative estimation ap-
proach is shown to be more accurate than the non-iterative approach since it converges to better
motion estimates. In section 3.6, & study of the gradient term of the optical flow equation shows
that it can be approximated by the widely used and simplest grey-level derivative. Although this
approximation improves greatly the speed of the algorithm, the optical flow estimator remains
a very expensive technique in providing dense optical flow fields. The estimator remains limited
to small motion magnitudes. Also multiple motions within the same neighbourhood - typically

occurring at object boundaries - cannot be modelled by a single planar motion model.

Robust statistical approach

Noisy images and multiple motions within neighbourhoods of pixels are likely to occur in real
captured datasets. Real-life image sequences contain various sources of noise such as change of
illumination, non-uniform reflective properties of 3D surfaces, transparencies and high-frequency
noise from the optical system. Such noise disturbs the least-squares minimisation process of the
optical flow estimator since the constant brightness assumnption is no longer respected. Multiple
motions, occurring essentially at object boundaries, do not belong to the same motion ficld
and therefore cannot be all modelled by the same planar motion model and results in motion
contamination.

A robust statistical approach was introduced to address these contamination problems. It
was shown that such techniques can deal successfully with high levels of noise. Although the
motion estimation is improved at object boundaries, the multiple motion problem could not be

entirely eliminated and smoothed fields were estimated across these motion boundarics.

Hierarchical framework: multi-resolution estimation

Gradient-based optical flow estimators have a limited range of operations in terms of motion

magnitude unless an initialisation technique provides initial estimates of the motions. Such
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initialisation techniques are the feed-forward, block-matching and hierarchical techniques. A
multi-resolution technique, also referred to as a coarse-to-fine technique, is used in this study
to recover large motions. This hierarchical technique constructs a Laplacian pyramid of sub-
sampled frames. Sub-sampling addresses the problem of large motions since any pixel motion
in a frame also gets progressively sub-sampled up the pyramid. Estimation at the top level of
the pyramid is initialised with zero motion estimates and requires a large number of iterations
whereas each of the lower levels in the pyramid are initialised with the magnified motion field

from the corresponding upper level and a few iterations are sufficient to estimate larger motions.

Optical flow uncertainty

Dense fields of motion vectors are of great interest in many computer vision applications but often
lack accuracy. A method for providing a confidence measurement was developed in chapter 4
which provides covariance ellipses and confidence. High confidence was obtained at low-textured
pixels and at textured areas undergoing a single dominant motion field whereas low confidence
was obtained across object boundaries where multiple motions occur and where the constant

brightness constancy does not hold.

Investigating the hyperplane approach to calculating optical flow

A recent innovation to the estimation of motion is the hyperplane estimator [49]. A comparison
with the gradient-based optical flow estimator was carried out. The hyperplane estimator,
generally used for template matching applications, was implemented in chapter 5. The approach
learns the relationship between applied motion fields and the respective grey-level differences,
also called DFDs (displaced frame differences). Solving for one specific motion is equivalent
to solving a set of linear equations in a multi-dimensional space referred to as the hyperplane
equations.

The Hyperplane estimator is non-iterative and is compared in chapter 5 to the non-iterative
gradient-based estimator adapted for global motion estimation. The results showed that both
estimators can accurately estimate motion with sinall magnitudes. The hyperplane accuracy is
highly dependent on a computationally expensive learning process and it can only estimate a
limited range of motion magnitudes departing from a reference location. Thercfore the estima-
tor’s usefulness is limited in terms of camera use. Because of this restriction, the gradient-based
estimator is preferred as a global motion estimator since it can estimate motion between pair of
successive frames and the small motion magnitude limitation can be addressed by the use of the
multi-resolution approach implemented in chapter 4. More importantly, it can be implemented
using the robust statistics, iterative and multi-resolution approaches explored in chapter 3 and
4.
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Global motion estimation for foreground object detection

Global motion is commonly used to describe the motion of a background scene relative to a
camera. The motion due to object movement is referred to as local motion. Global motion is
used in various applications such as in video coding (MPEG-1/2) or video annotations.

As the hyperplane global motion estimator implemented in chapter 5 was shown to be unre-
liable, a robust and hierarchical gradient-based version of the estimator developed in chapter 4
was chosen for global motion estimation. This gradient-based technique is performed by fitting a
single planar motion model to samples from the entire viewed background scene. This technique
can be performed quickly when a small number of edge-based pixels are chosen.

This global motion estimator was evaluated in chapter 6 for two different applications. First,
the motion of background scenes captured by moving pan and tilt cameras were estimated and
great accuracy was obtained with less than 1 pixel error. However such accuracy is not sufficient
for accurate image registrations such as background scene mosaicking which can be obtained
with dense optical flow techniques as the one developed in chapter 3 or features tracker such as
a block-matcher tracking corner points.

The gradient-based estimator is then used in a zooming application where a zoom motion
model is fitted to a static background scene viewed by a fixed camera performing zooming
operations. The optical flow estimation allows for the calculation of the centre of expansion
i.e. the intersection between the optical axis and the image centre. The results show that the

location of the centre of expansion varies as the focal length changes during zooming operations.

Tracking with surveillance cameras

The problems associated with tracking remain unsolved since there are many occurring sources of
ambiguities caused for example by shadows, illumination changes, over-segmentation of moving
objects and object mis-detection. In addition, the high variability often present in the projected
images of an object over time makes its tracking difficult. This variability ariscs from three
principle sources: variation in the objects pose, variation in illumination, and partial or full
occlusion of the target. When ignored, any of these sources of variability are onough't.o calse a
tracking algorithm to lose its target or to mistrack with others.

Tracking is generally applied for surveillance applications where stationary cameras capture
static background scenes as applied in chapter 7. Background models of the static background
scene are constructed over time which allows the detection of foreground pixels and subsequently
foreground objects. However, when several of these objects occluded each other, their foreground
pixels cannot be separated into individual objects and tracking them becomes problematic,

An appearance-model based approach consisting of modelling regions of objects was explored
in chapter 7 in order to recover and track the non-occluded grey-level information during oc-
clusion. Although this technique improved the traditional trajectory-model Kalman tracking

technique which blindly predicts object position during occlusion, tracking still is not success-
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ful. Additional information of the objects, such as knowledge of their 3 positions or colour

and shape modelling, is needed for coherent object tracking during occlusion.

Detecting objects in pan and tilt applications

Detecting foreground pixels when cameras are moving (pan and tilt cameras) cannot be per-
formed as reliably as when cameras are stationary, as demonstrated in chapter 8. Motion of
background scenes relative to a camera can be well detected by the global motion detector de-
veloped in chapter 6 but it is not accurate enough to allow an accurate image registration and
to construct accurate models of the background as performed with stationary cameras.
Moving foreground objects are detected using a thresholding operation between captured
frames and a motion compensated reference frame, updated using an average process. Moving
objects were relatively well segmented but with high associated noise represented by small noisy
clusters of foreground pixels across the frame referred to as blobs. These noisy blobs were first
eliminated by a simple threshold on their dimensions. A second filtering was performed on the
noisy blobs by using an overlapping procedure between the blobs corresponding to the moving

objects and the blobs detected from a moving edge segmentation technique.

9.2 Contributions

The following sections describe the work contributed by the motion analysis performed in each

chapter of the investigation.

Ground-truth generations and evaluation procedures

Evaluating optical flow has never been easy since accurate and dense ground-truth optical flow
is rarely available. Producing such information requires a precise knowledge of the 3D scene
geometry as well as the internal parameters of the camera capturing this scene. Because this
information was not available, synthetical ground-truth motion vectors were created. Addi-
tionally, the ground-truth of the translational component of the global motion induced by pan
and tilt cémeras capturing a background scene was estimated by an expensive block-matching
technique - chapter 5 and 6.

The frames displaced by ground-truth vectors were constructed using the bilinear interpola-
tion technique developed in Appendix A. In this Appendix, the bilinear technique was compared
to the nearest-neighbour, the quadratic and cubic techniques and was shown to be the best in-
terpolation technique to use for motion compensating frames.

The percentage metric of accurately estimated flows was developed to provide a measurement
of the motion estimator’s performance. Convergence in motion magnitude errors was also defined

to evaluate the final accuracy of measurements and speed of estimators.
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True optical flow gradient term and approximations

All optical flow estimators in the literature use several approximations to formulate motion
in the image plane including the gradient term. The true expression of this gradient term
was derived in chapter 3 showing the complexity of its formulation. It was implemented and
discussed. Five approximations were created including the major ones used in the literature
and were compared in an evaluation process. The conclusions showed that the widely used
approximation of the gradient term in the literature is the quickest and whose accuracy is as
good as the mathematically rigorous expression, as far as the motion magnitude to be estimated

is within a few pixels.

Confidence expression of optical flow in a multi-resolution and robust

framework

A novel expression of the covariance of the optical flow expression was derived in chapter 4
which allow to provide the user with confidence measurement of the estimated optical flow.
This covariance could be displayed in terms of areas of confidence by ellipses of uncertainty.
And confidence measurements could prove the gain of accuracy when the multi-resolution and
robust framework is used. The confidence measurements were geometrically interpreted through
the use of ellipses, or rectangles framing these ellipses, which represent the domain of uncertainty

around optical flow vectors.

Edge-based sampling technique for accurate global motion estimation

Estimating motion of background scenes captured by moving pan an tilt cameras using the
gradient-based estimator is very computationally expensive if the entire set of pixels representing
the background scene is chosen as the neighbourhood of constraining pixels. The number of
pixels was instead restrained to be located onto a spare set of edges belonging to the background
scene.

A novel technique was then developed to automatically sample pixels from the background
pixels with the highest gradient information (strongest edges). An expensive edge-based sam-
pling technique was designed in chapter 5 to evaluate the hyperplane and gradient-based global
motion estimator. A quicker and similar edge-based technigue was then designed in chapter 8

for the gradient-based moving object detector.

Determination of the centre of expansion of a zooming camera

The gradient-based global motion estimator was also used to estimate the zooming motion
parameters in a zooming application which could allow the determination of the varying positions

of the centre of expansion (intersection of the optical axis with the image plane). The estimated
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centred of expansions were shown to vary with the focal length of a fixed camera when zooming

operations are performed.

Segmentation of moving object in pan and tilt applications

The gradient-based global motion estimator was used in chapter 8 to segment foreground moving
objects occluding background scenes captured by moving pan and tilt cameras. The amount of
foreground pixels is small enough so that the robust statistical approach developed in chapter
4 could reject them from the optical flow estimation. The results were shown to be relatively
accurate and moving objects were successfully segmented (but with considerable noise). A simple
local background reference frame was built over time using a grey-level averaging approach and
foreground edge-based pixels were segmented to filter out the noisy detection. The accuracy
remained unchanged after the filtering process while noise was greatly reduced. This strategic

on-line foreground segmentation can allow for example future tracking possibilities.

Hybrid object tracking with stationary cameras

Traditional trajectory-based trackers are shown to often loose tracks of objects when they in-
teract with each other when their foreground pixels cannot be separated easily into individual
clusters of foreground pixels i.e. blobs. An appearance-model tracker was then designed to
track segmented grey-level regions of objects during occlusion. This tracker was implemented
in a hybrid scheme with a trajectory-based tracker for better tracking results but were shown

insufficient for successful tracking.

9.3 Future work

Future work can be grouped into three main components. First the accuracy of the dense optical
flow estimator can be improved as well as its speed. Second, global motion of moving pan
and tilt cameras is accurate enough for foreground object detection but inefficient for accurate
background frame registration. This limitation can be addressed if a motion segmentation
technique is achieved. Finally, tracking objects in static background scenes during occlusions
could be performed more reliably, if, for example, shape and colour models are used and 3D
location are known. Such 3D positions could be obtainable if, for example, sterco systems are

used. These ideas are discussed in more detail below.

Use of confidence for accuracy and speed increase

The presence of multiple motions within a local neighbourhood of pixels is the major problem
that causes optical flow algorithms to fail to estimate motion across object boundaries accurately.
Robust statistics was introduced in chapter 4 to address this problem but could not eliminate

successfully outlying motions from contaminating the estimation of the dominant motion ficld.
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Since gradient-based algorithms are built upon the constancy of brightness, obtaining a lack
of accuracy in the motion estimates does not automatically mean that the constant brightness
constancy is violated on a single pixel basis. However, when such grey-level errors are consid-
ered for an entire neighbourhood of pixels, lack of accuracy is easily detected by the confidence
measurement developed in section 4.3. Combining confidence with the information about edge

location could allow a refinement of pixel motion results.

The dense optical flow estimator was developed to provide a motion vector to each pixel in
an image using the pixel neighbourhood. This means that neighbourhoods overlap by a large
amount in the motion estimation from one pixel to a neighbouring pixel. A planar motion model
is fitted to each pixel, therefore all pixel motions within a neighbourhood are known. A semi-
dense, and hence a faster, scheme could be then implemented by avoiding the re-calculation of
the motion of pixels present in neighbourhoods when high confidence is obtained. More dense
estimation would be required at low confidence regions such as across object boundaries where
multiple motions occur. In addition, the neighbourhood size and its shape could be adjusted in
such a way that it contains a minimum required number of pixels and that its shape is adjusted
according to the shape of motion boundaries. For instance, the fixed square shape could be
replaced by a varying elliptical shape so its circumference fits to the local object boundary and
motion contamination is thus minimum.

Computational speed is easily improved with special hardware design. For example, a DSP
card was designed for the PRISMATICA ? project which allowed real-time computation of sparse
optical flow vectors at every 8x8 pixels on sub-sampled images. Using the semi-dense technique
previously described, optical flow could be obtained at approximately every maximum 10x10

pixels according to the results of chapter 3.

Most typical optical flow techniques presume brightness constancy, which is often violated by
time-dependent physical processes. For example, grey-level changes of non-moving pixels can be
interpreted as pixel motion when the orientation of the illuminant changes with respect to the
object surface orientation or when the illuminant radiations are altered by physical processes.
Additional mode! of image brightness variation are often used with success [64, 141, 63] and

could be implemented in our algorithm to address this problem.

Global motion accuracy

Using a sparse set of edge-based pixels as pixels neighbourhood, global motion of moving pan
and tilt cameras could be accurately estimated by the gradient-based technique described in
chapter 6. However, although the results allowed consistent foreground object detection, the

estimator’s accuracy was not high enough to construct an accurate background as achieved with

Ihttp://www.prismatica.com/
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stationary camera applications. This is mainly due to the fact that a single planar motion model
was fitted to the background scene assumed to be modelled as a single 3D surface. However,
backgrounds generally consist of multiple objects and better global motion estimation could
be obtained if these objects were segmented into individual 3D surfaces. An iterative process
could be then implemented to gain higher accuracy and mosaics of the background could be

constructed.

Tracking occluded objects

The tracking algorithm developed in chapter 7 could not track successfully objects in occlusion
scenarios. A shadow detection and removal algorithm would improve the results {39, 75] but
additional information about the objects is required for successful tracking. For example, the
grey-level segmented regions in chapter 7 could be segmented in a colour space and their shape
could be modelled. More importantly, the 3D location of the tracked objects would improve the
results greatly. The optical flow developed in this study can be used to calculate the disparity of
certain feature points as shown in the frame example? of figure 9.1. The disparity measurements
are calculated at some Harris corner pixels [62]. The corner strength of a pixel is represented by
a square area centred on that pixel in the figure where large areas mean strong corner responses.
This stereo information could also be used to process 3D information of static and moving objects

where Harris corners strength can be replaced by the optical flow confidence measurements.

Zhttp://vasc.ri.cmu.edu//idb/html/motion/hotel /index.html






Appendix A

Interpolation

In many areas ranging from cartography, digital imaging and modelling, and engineering ap-
plications, data collected from the field are usually discrete. Interpolation techniques aim to
reconstruct data using local information for re-sampling purposes such as resizing an image to
desired scale. The process of estimating the values in between sampled data points is called
interpolation; whereas the process of estimating the outcomes beyond the range covered by the
existing data is called extmbolation. Optical flow computation often requires motion compen-
sating frames to compare the grey-levels of two frames displaced by estimated optical flow. The
accuracy of optical flow algorithms is directly dependent on the accuracy of the reconstructed
frame. Four interpolating techniques are compared in this appendix in motion compensation
éxperiments. These techniques are known as the nearest-neighbour, bilinear, quadratic and cubic

techniques and are described in the four following sections.

A.1 Nearest-neighbour interpolation

The simplest interpolation scheme is the so-called zero-order or nearest-neighbour interpolation.
In this method, the grey-level of an output pixel is taken to be that of the input pixel nearest
the location to which the output pixel maps. Using the image grid notation in figure A.1, the

nearest-neighbour interpolated grey-level I(x), at location x, is expressed as

I{x) = I(x') (A.1)

where
X' = argmingenelx’ - x| (A2)
N(x) = {o(x),d(x),v(x), h(x)} (A.3)

and

o(x) = [floor(z), floor(y)]”
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A.3 Higher-order techniques: quadratic and cubic inter-
polation

The smoothing effect of bilinear grey-level interpolation may degrade fine details in the image.
Extra computational efforts of higher order interpolation techniques, such as the quadratic and
cubic interpolator, better preserve fine details by enlarging the interpolating grid. The quadratic
and cubic fitting of a function f(x) are described by

F(x) = X(x) a (A8)

where a is the unknown vector of unknown parameters to be estimated. For the quadratic

interpolator
X(x) = [2%2y,9% 2,1
al = [ao...as] (A.9)
and for the cubic interpolator
X(x) = [ ay,v%e,9% 2%, 7,97, 7,0, 1
aT = [ag...a9] (A.10)

The interpolation vector a contains n = 6 parameters for the quadratic method and n = 10
for the cubic method, therefore a minimum number of 6 and 10 input pixels (respectively) are

necessary for a to be estimated. The n equations can be re-written in terms of matrices as
F=Pa (A.11)

where
f(x1) X(x1)
F= : ,and P= : (A.12)
f(xn) X (xn)
From equation A.11, the interpolating vector can be estimated by a = P~!F for the quadartic
case and by
a=(PTP)"' PTF (A.13)

for the cubic case as the P matrix is not a square matrix in this latter case. The 6 pixels required
for the estimation of the quadratic vector a are situated around x according to the left figure
of A.2. In this figure, the central pixel x3 is first located as the closest pixel to X, X; 3 4ands are
then located as a cross around x3 and the last pixel x; is the closest pixel to x non-overlapping
with any other neighbours. The cubic interpolation technique is an extension of the quadratic
technique with cubic terms. The number of points required to solve the set of equations is ten
and the system is chosen to be over-constrained by adding two extra input pixels. The twelve

pixel locations are displayed so they represent a cross around x as displayed in figure A.2.
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figure show how expensive the quadratic and cubic techniques are when motion compensating
a frame of standard size. The simplest technique, the nearest-neighbour method is the quickest
technique but lacks accuracy. Therefore, the bilinear technique which has a similar complexity as
the nearest-neighbour performs as accurately as higher order techniques is the most appropriate
technique to use for reconstructing pixel patterns in computer vision. Despite the small lack of
accuracy for gradients of small periods, it is an acceptable technique for most kind of frames

content.

Interpolation technique

cubic | quadratic | bilinear | nearest-neighbour

time in seconds | 11.27 5.3 0.85 0.81

Table A.1: Expenses of different interpolation techniques for a 360,000 pixels frame

A.5 Conclusion

Four interpolating technique are implemented in this annex and compared in a motion compen-
sation experiments. These interpolation techniques are from the lowest to highest order model
the nearest-neighbour, bilinear, quadratic and cubic techniques. The nearest-neighbour inter-
polates by taking the grey-level of the closest pixel, the bilinear fits a non-planar surface into a
neighbourhood of 4 pixels, the quadratic and cubic technique involve quadratic and cubic terms
in the fitting of the grey-level pattern of 6 and 12 pixels respectively. Experiments are run for
synthetical frames constructed from sine signals with varying frequencies to simulate varying
gradients information of real images.

The results show that the nearest-neighbour is the quickest but is too inaccurate in the
reconstruction of motion compensated frames. The most accurate technique, the cubic interpo-
lator, requires a significant number of input points for the estimation to be possible and this
causes erroneous reconstructionof local grey-level patterns in high frequency textured images.
The quadratic technique interpolation technique has similar high accuracy as the cubic tech-
nique and does not have the same restriction in reconstructing high gradients pixels. However,
the complexity of this technique rendres this technique non-appropriate for real-time motion
compensation application. The remaining technique, the bilinear interpolation, is the quickest
technique after the nearest-neighbour and performs in real-time and has the best performance
for all frequencies occurring in image data as the cubic technique with a slight drop of accuracy
in high gradients pixels. Therefore the bilinear interpolation technique is the most suitable

technique for motion compensation applications.



Appendix B

Kalman filtering for trajectory

prediction

Tracking objects is often performed by the use of the Kalman filtering technique. A Kalman filter
can predicts objects positions according to covariance matrices built from the measurements of
errors between predicted and observed positions [25, 121, 139]. Section B.1 describes the two
steps involved in the Kalman filtering process: the prediction and the update step. The second
section B.2 implements a simple Kalman filtering for tracking 2D objects based only on position

measurement.

B.1 The underlying equations

Kalman filters are recursive linear minimum mean square filters, meaning that under the as-
sumption that the noise measurement and the noise system are Gaussianly distributed, recursive
filters are the optimal estimators in the sense of minimum variance. For a given sequence of
observations it is the task of a Kalman filter to estimate the system state at the current time of
observation ¢.

Kalman filtering methods rely on two main equations, the dynamic egquation relating the
state vector p between two successive measurement times: ¢ — 1 and ¢, and the observation
equation relating the measurement vector x to the state vector. The goal is to estimate a
process assumed random. Once estimated, the state parameters are updated for the estimation
at the next observation time. The random process to be estimated is modelled by the dynamic
equation B.1:

Pt = Api-1 + Wy (B.1)

where A is the state transition matrix and w; is the white noise associated with the dynamic

process. The observations are expressed linearly in terms of the state vector as follows
x¢ = Hpy + 2 (B.2)
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where X, is the dimensional noisy and distorted observation vector at time ¢, H is the observation
matrix and z, is the measurement noise vector. The random variables w; and z; represent the
process and measurément noise respectively. They are assumed to be independent of each
other, white and with normal probability distributions with zero mean N(0,Q) and N(0, R).

The process noise covariance @ and measurement noise covariance R matrices are calculated by

Q = E{wwj} (B.3)

R E{zz]} (B.4)

In parctice, @ and R change over time, however they are assumed constant.

B.1.1 The prediction step

In the prediction step of a Kalman filter, the predicted state vector p; and the predicted state

covariance matrix P, at time ¢ are estimated from the previous at time ¢ — 1 by

Pt = Ap:i (B.5)
AP,_ AT + @ (B.6)

el
]

The Q matrix, defined in equation B.3, is often an boosted covariance matrix to make the

Kalman filter a better tracker and more tolerant to the variability in measured object positions.

B.1.2 The update step

The state process p; and its covariance P, are updated from an estimated process p; with

covariance P, (equations B.5 and B.6 respectively) according to the Kalman gain K

Pt
P

P + K(x, — Hpy) (B.7)
P,—KHP, (B.8)

where py is given by equation B.5 and P, by equation B.6. The Kalman gain is derived by

minimising the state error covariance P;

P, = E{(p: — Pt)(p: - f’t)T} (B.9)
and after minimisation

K =BHT(HPHT + R)™! (B.10)

where R is the measurement error covariance matrix defined in equation B.4. The Kalman gain
is defined so it increases with the error between the predicted and actual measurements. Hence
as the measurement error covariance increases, the Kalman gain decreases and the state process

is principally updated with the predicted state and vice versa.
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B.2 Kalman filter implementation for object tracking

The Kalman filter used to track objects in chapter 7 is implemented by a prediction and update
algorithm described in the section B.1. The computational time required to perform a Kalman
filtering is mainly dependent on the time required to perform the matrix inversion involved in the
calculation of the Kalman gain K in equation B.10. Matrix inversion operations are performed
in this study by an SVD (Singular Value Decomposition [103]) algorithm which computational
expensiveness increases cubicly with the lateral size of the square covariance matrix. However,
tracking objects involves relatively expensive operations such as noise removal by a smoothing
operation, background reference frame construction involving large memory handlings and many
arithmetic operations to detect and segment foreground objects. Thus, in order to limit the
overall computational speed of the tracking algorithm, the state vector x and measurement
vector s are chosen to be of the simplest form where x contains only the object positions and p

involves only the position and velocity of these objects:

Xy = [zt Yt ]T (B.11)

Pt = [-’Eg U Y v ]T (B.12)

where the object velocity is v; = [us, v¢]T. A constant velocity trajectory model is chosen which

is equivalent to a zero-acceleration model:

Vt = Vi1 (B.]S)
X = Xg-1+ AtV (B14)
= X1+ AtVt_l (8.15)

The expression of the transform matrix A and observation matrix H are obtained from equations

B.1 and B.2:

Apt-1 . (B.16)
X Hp, - (B.17)

7
I

%
[

According to equation B.11 and B.12, matrix A and H take the following form:

)
1 At 0 0
0 1 0

A = (B.18)
0 0 1 At
0 0 0 1
[1 00 0

H = (B.19)
0010 '

Given a known state process at time t — 1, the prediction and update equations can be calculated

if the error covariance matrices Q and R defined in equations B.6 and B.10 respectively are
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known. They are here empirically estimated for best tracking as constant matrices as

03 0 0 O

0 03 0 0
Q = (B.20)
0 0 03 0
0 0 0 03
H 0 '
R o~ X (B.21)
6l 0 w

where W and H are the width and height of the object respectively.



Appendix C

Foreground and background

Bayesian classifier

Let’s consider a surveillance camera capturing at time ¢ a frame with intensity distribution I;
and a background frame of the non-foreground objects Back. It is possible to segment pixels
located at x either as background or foreground according to the Bayesian classifier [60] of
equation C.1:

A" (x) = argmaxy e (r,8)P(A(X) /A1 (%)) (C.1)

where

AI(x) = |I(x) — Backe(x)| (C.2)

and A* is the estimated class the pixel belongs to depending on the grey-level difference with the
background: AI(x). In this example A(x) is either the foreground class A(x) = F or background
class A(x) = B. The shadow class which represent the pixels covered by objects shadow is often
introduced in many techniques. The term p(A(x)/AI(x)) represents the probability that pixel
at x belongs to the class A(x) given the grey-level difference AI(x). This posterior probability

is estimated accoding to the Bayes rule:

p(M(x)/AI(x)) = p(AI<x>/A<x>>,,—P("§,—(-(’%—) (C3)

where p(AI(x)/A(x)) is the conditional probability which can be estimated via the joint prob-
ability p(AI(x), A(x)):

HaTE/A) = 2o 20) (C4)

The term P(A(x)) represents the prior knowledge of the class where for example in certain
surveillance applications the probability of a pixel to be a foreground pixel can be fixed to be of
about 10% and because there are only two classes the probability of this pixel to belong to the
background is therefore 90%: see equation C.5 and C6 These priors can be set dynamically

by setting P(F’) to be the ratio of the total number of foreground pixels previously measured if
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available to the total number of pixels, and P(B) =1 — P(F).

01 (C.5)
0.9 (C.6)

P(F)
P(B)

I

The conditional probability of having a grey-level difference given the knowledge that the
pixel is a foreground pixel can be estimated in the simplest way by assuming the content of
the image to be a random distribution of pixels. Hence the probability density function is
approximated to be uniform and every pixel has an equal probability of 1/256 (images are
quantised to 256 levels) of having a grey-level difference from the background. This assumption
is not true but close to reality and can be approximated by equation C.7. This can be verified
by a simple experiment which consists in creating the probability density function pdf (a grey-
level histogram) of many random captured images and the result would show that real captured
images display a pdf rather uniform with less probabilities in the low and high differences (toward
the 0 and 256 intensities respectively) than elsewhere where maximum probabilities are obtained

around differences of 127 grey-levels.
C =p(AI(x)/F) =1/256 (C.7)

If a pixel is known to be background and the background frame is statistically constructed by
a Gaussian modelling technique such as the Stauffer an‘d Grimson technique (see description
jon section 7.2.1), the conditional probability of having a grey-level difference AI with the
background is then modelled by a Gaussian distribution of mean pu(x) = Back,(x) and standard

deviation ¢(x) in equation C.9:

PAI)/B) = Tgﬁ%@e“‘“’—L (©3)
= K(x)e S (C9)

where
K(x)=—\/ﬁla(-x—) (C.10)

Using equations C.5, C.6, C.7 and C.9 the maximisation of the Bayesian classifier of equation

C.1 can be developed as follows

A%(x)

argmaxy(x)e (F,B} (P(AI (x)/ A)P_(II;%-)—))

= max { AT/ F) s HALG)/ B s

= max {p(AI(x)/F)P(F),p(AI(x)/ B)P(B)}
= max {C.P(F), K(x).e“%ﬂ'ﬁ?P(B)}

= max {zog(c.P(F)),zog(K(x).e‘?—:"%P(B))}

2
= max {logC + logP(F),logK (x) ~ % (AUI(S)) + logP(B)}
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= max

%))’
logC + logP(F) ~ logK (x) — logP(B), —= ( ) }

——

= min

2
~2(logC + log P(F) — logK (x) — logP(B)) ( (’;)}

= min{ 2(logK(x) + logP(B) — logC — logP(F)), (AI(x)) }

(x)

V2)(logK (x) + logP(B) ~ logC — log P(F))*/?, ‘;I(i))}

= min { (2log (K((;,XLZE;; )))1/2 , AUES)} (C.11)

According to equation C.11, pixel at x is a foreground pixel if the following equation is true:

= min

,_A_\f__M\’_I\_\

(C.12)

e Al(x
() = { F if 818 > Threshold
B else

where

Threshold = (2109 (%{F()B)))l/z (C.13)



Appendix D

3D velocity with small rotation

angles

An 3D object point X = [X,Y, Z]7 moving from time ¢ to time t + At where At is small can be

described by a rotation followed by a translation as follows
X(t+At) = RX(t)+ T (D.1)

where T = [Tx,Ty,Tz]T is the translation vector where Tx, Tx and Tz are the translational
components along the X, Y and Z directions. The 3D rotation in equation D.1 is represented

by the R matrix expressed by

R = RxRyRz : (D.2)
cOycOz —cOysO sOy

s0x 80y Oz +Oxs0z —s5OxsOysOz+cOxcOz —-50xcOy | (D.3)

—Ox5OycOz +50x50z (OxsOysOz + sOxcOz O xcOy

R

where ¢© = c0sO and s6 = sin® and Rx, Ry and Rz are the matrices for rotations about the

X, Y, and Z axis respectively are expressed below

[1 0 o
Rx(Bx) = | 0 c®x -3s0x (D.4)
0 s8x By

[ Oy 0 sOy ]

Ry(®y) = 0 1 0 (D.5)
] —s8y 0 Oy ]
[0, -s0; 0]

Rz(©z) = | 6z ¢6z 0 (D.6)
I 0 0 1 J
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For small angles of rotation: sin® =~ © and cos® ~ 1 — ©%/2 = 1, where Theta represents the

three angles ©x, ©y and Oz, and the 3D rotation R in equation D.3 becomes approximated to

1 -6z Oy
R=~ Oz 1 -6y (D.7)
-8y ©Ox 1

The 3D velocity at time ¢ of the point X is calculated during small time interval At:

X(t + At) - X(t)

X(t) = limaso ~ (D.8)
- nmAhmRX“)ti"'x“) (D.9)
g, (X - AIt)X(t) +T .10
= limaro ((R—x%)t‘—”xu) + A%) (D.11)
= OX()+K (D.12)

where K = [Kx,Ky,Kz]7 is the translational velocity vector with Kx = Tx, Ky = Ty and
Kz = Tz the translational veloctity along the X, Y and Z axis respectively. Matrix  is the
3D angular velocity matrix defined by

. RX(t)-1
Q =lmme—%%—2 (D.13)
0 -6z 6Oy
. 1
= llmAt_.oKt Oz 0 —@x (D~14)
-0y Oy 0
0 -Qz Qv
= Qz 0 -Qx (D.15)
-y Qx 0

where Qx = Ox, Qy = Oy and Qz = 67 are the rotational velocities about the X, Y and Z
axis respectively. To simplify the notation, the time dependency is omitted and the 3D velocity
is formulated as

X=0X+K (D.16)



Appendix E

Personal publications

Journal papers

e E. Corvee, S.A. Velastin and G.A. Jones. ”Occlusion Tolerant Tracking using Hybrid
Prediction Schemes”. In Acta Automatica Sinica, Special Issue on Visual Surveillance of

Dynamic Sc, 23(3), pages 356-369, 2003

e A. Toniappa, S. A. Barman, E. Corvee, M. J. Moseley, K. Cocker and A.R. Fielder.
"Image quality assessment in retinal images of premature infants taken with the RetCam
120 digital fundus camera” in The Imaging Science Journal, 53(1), pages 51-59, March
2005

Conference paper

e S.A. Barman, A. Toniappa, E. Corvee and C. Sinthanayothin, ” Classification of haemor-
rhage pathologies on digital fundus images using a combination of neural network and
tracking algorithms” in The 2nd ECTI Annual Conference (ECTI-CON 2005), Asia-
Pattaya Beach Hotel, Thailand, May 12-13 2005
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