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Marc-Olivier Baradez PhD Thesis Abstract

Image Processing analysis of stem cell antigens.

Abstract

This thesis aims to investigate the automation of an image processing driven

analysis of antigen distributions in the membrane of early human Haematopoietic

StemlProgenitor Cells (HSPCs) imaged by Laser Scanning Confocal Microscopy

(LSCM). LSCM experiments generated a vast amount of images of both single

and duallabelled HSPCs. Special focus was given to the analysis of colocalised

antigen distributions, as colocalisation may involve functional relationships.

However, quantitative methods are also investigated to characterise both single

and dual labelled antigen distributions.

Firstly, novel segmentation algorithms are developed and assessed for their

performances in automatically achieving fast fluorescence signal identification.

Special attention is given to global histogram-based thresholding methods due to

their potential use in real time applications. A new approach to fluorescence

quantification is proposed and tested. Secondly, visualisation techniques are

developed in order to further assist the analysis of the antigen distributions in cell

membranes. They include 3D reconstruction of the fluorescence, newly proposed

2D Antigen Density Maps (ADMs) and new 3D graphs of the spatial distributions

(sphere models). Thirdly, original methods to quantitatively characterise the

fluorescence distributions are developed. They are applied to both single and

duallcolocalised distributions. For the latest, specific approaches are investigated

and applied to colocalised CD34/CD164 distributions and to colocalised CD34c1ass

ICD34c1ass II and CD34c1ass ICD34c1ass III epitopes distributions (two combinations of
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the three known different isoforms of the CD34 molecule, a major clinical marker

for HSPCs).

The visualisation tools revealed that HSPC membrane antigens are often clustered

within membrane domains. Three main types of clusters were identified: small

clusters, large patch-like clusters and newly identified meridian-shaped crest-like

(MSCL) clusters. Quantitative analysis of antigen distributions showed

heterogeneous distributions of the various measured features (such as polarity or

colocalisation patterns) within the HSPC populations analysed.

Finally, the proposed methodology to characterise membrane antigen distributions

is discussed, and its potential application to other biomedical studies is

commented. The potential extensions of the innovative linear diffusion-based

MultiScale Analysis (MSA) algorithm to other applications are outlined. Visual

and quantitative analyses of antigen membrane distributions are eventually used to

generate hypotheses on the potential, yet unknown roles of these early antigens

and are discussed in the context ofhaematopoietic theories.
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Aims and objectives

This thesis aims to develop new algorithms and methodologies in order to

characterise human blood stem/progenitor cell membrane antigens. Specific

membrane antigens are visualised using laser scanning confocal microscopy. Such

images are heavily contaminated by a noisy background which is predominant

over rarer fluorescence signal pixels. This results in a strong unimodal histogram

of the image grey intensities. This unimodality complicates the decision of a

threshold that would appropriately separate the relevant brighter signal regions

from the background, prior to signal processing, representation and analysis.

Furthermore, confocal microscopy generates large datasets. As a consequence,

this work aims first to the development and application of automatic segmentation

algorithms in order to reliably extract signal regions.

This work also aims to the analysis of the segmented antigen distributions. This

analysis is both qualitative (i.e. visualisation of the 3D distributions in cell

membranes, 3D reconstruction of the fluorescence) and quantitative. Different

visualisation approaches are investigated to display the fluorescence distributions.

The quantitative analysis aims to characterise the distributions according to sets of

measurements performed on the segmented and processed signal regions.

Different measurements reflecting different characteristics of the distributions are

therefore developed and applied. The collection of these measurements can be

subjected to statistical analysis in order compare different stem/progenitor cell

populations. Quantitative methods to characterise stem cell antigens are

developed. These methods allow the characterisation of single labelled (only one

target molecule of interest is fluorescently labelled in cell membranes) or dual

xix
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labelled cells (two different antigens are labelled on the same cell membrane). For

dual labelled cells, special methods to quantify the colocalisation properties of the

distributions are also developed.

Finally, this thesis aims to compare different cell populations. A statistical

analysis of the measurements is performed and commented in the context of

labelling and imaging procedures. Together with the qualitative analysis of the

membrane antigens distributions, these analyses are used in the context of

haematopoiesis to generate hypothesis on the potential roles and functions

(unknown to date) of the investigated antigens.

One of the segmentation algorithms is based on linear diffusion and analyses

intensity histograms of the images observed at different levels of observations.

This novel approach has segmentation potential for other types of images, not

necessarily with unimodal histograms. Such potential is therefore briefly

investigated at the end of the thesis.

The global methodology adopted to characterise stem cell membrane antigen

distributions by image processing approaches can be further extended to other

biomedical investigations.
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Chapter 1. General introduction

The work presented in this thesis was initiated by the collaboration of Stem Cells

scientists with Bioinformatics scientists. Amongst a large body of work, this stem

cell research involved an extensive use of Laser Scanning Confocal Microscopy

(LSCM) in order to get deeper insights on the potential role of stem cell

membrane molecules, or antigens, whose functions are unclear or unknown to

date. These antigens are thought to play important roles in the haematopoietic

(blood formation) process by regulating and modulating stem cell responses to

microenvironmental stimuli, cytokines and other molecules, involved in cell-to-

cell contact, adhesion, migration and maturation.

This thesis aims to quantitatively characterise stem cell membrane antigen

distributions in order to allow statistical comparison of different antigens and cell

populations. Stem cell membrane antigens were investigated by laser scanning

confocal microscopy (LSCM), an imaging technique allowing the three-

dimensional visualisation of specific molecules in cells and tissues. A new

methodology and novel algorithms were developed and applied to process LSCM

images in order to extract quantitative information. Such quantitative analysis is

used in turn to suggest hypothesis about the potential role(s) of the target

antigens/cell populations. While quantitative analysis of confocal fluorescence

images is widely used in biomedical research, first extracting the relevant

information, such as image fluorescent regions, is still mostly performed

subjectively or by following heuristics approaches. The independence given to the

operator at this stage may prevent reliable reproduction of the quantitative results.

This is likely to introduce some bias in the resultant analysis. The possible
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existence of such a bias in the analysis of rare samples, such as actual stem cell

populations or certain cancer biopsies, justifies the attempt for automating the

analysis process from its early stages (sample preparation, imaging) to its final

stages (analyses of results and interpretation).

The thesis is organised as follows. First, the background relevant to this study is

presented in chapter 1. It encompasses the haematological process (i.e.

mechanisms of blood formation), the microscopy techniques for cell imaging and

a review of common segmentation algorithms used to separate relevant image

regions from background. It follows a description of the biology protocols

involved in the study, from stem cell isolation and labelling with specific

fluorescent markers to antigen distribution imaging in chapter 2. In chapter 3, new

algorithms for fluorescence signal segmentation of LSCM images are developed

and described. Several approaches were investigated. Emphasis was given to

global thresholding approaches as they are fast methods, and three new global

thresholding algorithms are presented. A new region-based algorithm is also

presented to demonstrate the feasibility of spatial segmentation approaches. The

global thresholding algorithms are tested and validated in chapter 4, along with a

proposed fluorescence quantification approach. In chapter 5, an original

methodology is designed to process, represent and characterise stem cell

membrane antigen distributions in order to extract relevant and quantifiable

information. The quantitative results are presented and further detailed and

commented in chapter 6. They are finally discussed and used to generate

hypothesises specific to the algorithms, the protocols/methodologies, and the

interpretation of the results and potential applications of this research in chapter 7.
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1.1. Background

Blood is a special, liquid tissue as vital to the body as the brain or the heart. It is

distributed throughout the whole body via a complex ramified network of arteries

and veins, and reaches all organs in order, for example, to oxygenate or protect

them against infections. The blood is constituted of a nutritive and protective

liquid fraction, the plasma, which serves as a mean of transportation for the blood

cells. The plasma also transports a very wide range of diverse molecules such as

coagulation factors, glucose, antibodies, essential for the immune response, or

high and low density lipoproteins, essential for transportation of essential

molecules (e.g. cholesterol), and the metabolic products to their processing site.

Blood cells can be divided in three categories:

• the red blood cells, which function is to carry the oxygen from the lung to

all organs and tissues, and to collect the carbon dioxide from the organs

and bring it to the lungs where it is expulsed out of the body,

• the white blood cells, or leukocytes, are members of an extremely diverse

family which encompasses three main cellular types, the polynuc1eated

cells, the lymphocytes and the monocytes:

o the polynuc1eated cells, named after the piuri-lobed aspect of their

nucleus, are further sub-divided into three groups, namely the

neutrophils, eosinophils and basophils.
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o the lymphocytes are responsible for immunity as only them have

the properties of diversity, specificity, memory and self/non-self

recognition, all essential to coordinate the immune response.

o the monocytes, from which are derived the macrophages, are an

essential element of the immunity defence mechanisms as they

have the ability to track, capture and digest bacteria and foreign

bodies. They are highly motile, chemo-sensitive cells able to

respond to chemotactic gradients triggered by infected or injured

tissues.

• The platelets represent the smallest cellular elements of the blood. These

non-nucleated cells are produced by a specialised cell type, the

thrombocytogenic megacariocytes. Platelets are the result of the

fragmentation of pseudopod-like protrusions emerging from the

thrombocytogenic megacariocyte cell membrane. Their function is to act

as the primary agent of homeostasis, a process which prevents blood

leakage from altered blood vessels by forming the "blood clot". This

phenomenon is efficient when small blood vessels are involved, but the

clotting process of bigger vessels requires further complex processes.

This wide diversity of blood cells, and the complex intricate network of chemical

and cellular responses it can manage, is entirely generated from a unique,

undifferentiated pool of cells known as the Haemopoietic Stem Cells, or HSC.
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1.1.1. Haematopoiesis

Haematopoiesis, or haemopoiesis, is a highly dynamic, finely tuned process

giving rise to the production of all blood cell lineages (fig. 1.1). In this process, a

small subset of extremely immature cells, the Haemopoietic Stem Cells (HSCs), is

of particular importance. HSCs are characterised by two properties: their aptitude

to sustain self-renewal of the HSC pool, and their potential to exponentially

proliferate to produce the whole variety of blood cell lineages [Krause et ai,

2001].

Indeed, these cells have the capability to greatly proliferate and differentiate into

fully mature blood cells such as lymphocytes or red blood cells [Akashi et ai,

2000], in order to sustain normal blood function. It is experimentally estimated

that a single HSC can generate about 1015mature cells after only 50 cell divisions

[McNiece and Bridell, 2001, Brummendorf et ai, 1998]. However, in order not to

exhaust the stem cell pool, HSCs also have to self-renew themselves throughout

the lifespan of the individual [Bjernsson et ai, 2003]. The mechanisms controlling

HSC dynamics are carefully balanced via cell-to-cell contacts between HSC and

its microenvironment through adhesion molecules [Kramer et al, 1999], in

conjunction with signalling molecules such as growth factors and cytokines.

Abnormalities in the haematopoietic process may trigger important complications

such as anaemia, lymphoma or leukaemia.
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As the HSC differentiate, they become progenitor cells, then precursors, and

eventually become mature, fully differentiated and functional cells. The

experimental discrimination between stem and progenitor cells is a difficult and

uncertain task, and such cells are commonly referred to as haematopoietic

stem/progenitor cells (HSPC). As stem cells are recruited In the process of

CFU-GEEM
Mixed lineage progenitor

1

-

Haemopoietic
stem Cell Haemopoietic

Stem/Progenito r
Cell (HSPC)
compartment

BFU-MK

~
CFU-MK

+PMKB

...
MK

t

Common lymphoid progen~or..----..
B-cell progen~or T-cetl progenitor

Figure 1.1: The haematopoietic process.

Haemopoiesis is a pyramidal process. Haemopoietic StemlProgenitor cells are
found at the top of the pyramid. As they are involved in the proliferation and
differentiation process, they lose their self-renewal potential and become
progenitors. In turn, as differentiation increases, the committed progenitors give
rise to increasingly specialised and more mature cells. At the bottom of the
pyramid are fully differentiated, functional blood cell types.

proliferation and differentiation, they progressively lose their self-renewal ability,

while they show a higher cell cycling activity and proliferation [Aglietta et ai,

1998].
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Two predominant models were proposed to explain the haematopoietic process,

namely the stochastic and the determinist (or inductive) models (fig. 1.2).

In the stochastic model, it is supposed that HSC generate fully committed

progenitors, Le. as HSC become progenitors they gradually express random

combinations of various receptors to cytokines and other key growth factors as the

consequence of complex intrinsic molecular events that encode for such receptors.

Blood lineages are determined by suitable combinations of signalling molecules

secreted in the progenitor environment. The variety of possible signalling

molecule combinations is responsible for the lineage, while the absence of

suitable combination leads to apoptosis (orchestrated cell death), a critical and

essential mechanism necessary to control cell proliferation [Ogawa et al, 1983;

Koury, 1992].

In the determinist model, HSC are assumed to express a range of lineage specific

combinations of growth factor receptors. The role of the environment is therefore

to secrete the appropriate cocktail of cytokines in order to activate functionally

clustered genes that are eventually responsible for committed differentiation and

maturation. Similarly to the previous model, if appropriate cytokine cocktails are

not encountered by the progenitors, they undergo apoptosis in order to prevent

abnormal haematopoiesis.

To date, the actual nature of the haematopoietic process has not yet been

discovered. Recent studies demonstrated the reversibility of the HSC phenotype

[Sato et al, 1999; Knaan-Shanzer, 2000; Dao et ai, 2003], which allows new views

on the nature of this haematopoietic process. It seems likely that a combination of

both models takes place interactively in the body and is actually responsible for
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the flexible commitment of cell lineages given physiologically possible

combinations of cytokine cocktails.

Model1 Instructional hypothesis

Microenvironmental signals

~
HSPC Lineage specifICprogenitors

Microenvironmentalsignal determined differentiation or self-renwal

Model2 Stochastic hypothesis

HSPC

~
HSPC Lineage specifICprogenitors

ttttttttt
Microenvironmental
survival signals

Figure 1.2: Models of haematopoiesis.

In the first model - the instructional model - microenvironmental signals are
responsible for the fate of the HSPCs. Under the appropriate stimulations (via
cytokines and adhesion molecules), HSPCs are kept immature and quiescent,
or engage themselves in the differentiation process. For the second model -
the stochastic model - HSPCs have a random potential for either remaining in
an immature state or entering the differentiation process. Their fate is decided
depending on the microenvironmental signals received and their potential to
be stimulated by such signals.
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1.1.1.1. Haematopoietic microenvironment

During embryonic and foetal development, the haematopoiesis takes successively

place in different organs [Kumaravelu et al, 2002], and can be divided into three

phases.

• Mesoblastic phase: at week 3 of gestation, some mesenchymal cells evolve

into primitive endothelial cells, or angioblasts, and haematocytoblasts

Extracellular matrix

Macroph

Fibroblasts

___ Adhesion molecules

e( Ligand

Growth factors (cytoklnes)

Growth factors receptors

Figure 1.3: The haematopoietic microenvironment.

The fate of HSPCs is regulated by finely tuned molecular pathways.
interaction of growth factors and adhesion molecules with their cognate
ligands and growth factor receptors triggers signalling cascades which
modulate these pathways. These molecules are secreted or expressed by a
wide variety of other cells (macrophages, adipocytes, fibroblasts, endothelial
cells) and some are components of the extracellular matrix, all present in the
haemopoietic microenvironment.
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(primitive erythroid-like, granulocytic-like, and non-platelet producing

megakaryocytic-like haematopoietic cells).

• Hepatic phase: at week 6, the liver becomes the main haemopoietic organ,

with increased erythropoiesis and granulopoiesis. In the same time, the

spleen also supports the haemopoiesis, to a smaller extent, and contributes

to granulopoiesis, while lymphopoiesis begins in the foetal thymus and

lymphoid tissue until birth.

• The myeloid phase: at week 22, the bone marrow starts to increasingly

support the haematopoietic process and becomes the major site for life-

long haematopoesis.

1.1.1.2. The bone marrow as an haemopoietic organ

The bone marrow is typically located in the medullary cavities in spongy parts of

long bones and diploe of flat bones. This particular organ is structured as a

complex three-dimensional network formed by the extra-cellular matrix (ECM).

stromal cells and accessory cells, which altogether is referred as the haemopoietic

inductive microenvironment (HIM) [Mayani et al, 1992] (fig. 1.3). HSC self-

renewal. differentiation and maturation predominantly take place in the bone

marrow. It constitutes an ideal environment where the finely tuned balance of

intrinsic retro-active molecular pathways can effectively control the fate of HSC

[Taichman and Emerson, 1998]. These regulation pathways are constituted by

positive and negative signals triggered by the release of soluble cytokines and

growth factors by the surrounding cells in conjunction with the pathways activated
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by cell-adhesion molecules (CAM) at the adhesion sites of HSC with the

haemopoietic inductive microenvironment.

1.1.1.3. Control of haematopoiesis

The haemopoiesis is controlled by successions of complex and complementary

intrinsic and extrinsic stimuli [Alexander et al, 1996; Phillips et ai, 2000]. Ex-vivo

expansion studies stressed the importance of external stimuli through particular

interactions taking place at the interface of the HSC with the environment, i.e. the

cell membrane [Christensen et ai, 2004; Batard et ai, 2000] (fig. 1.4). Indeed it is

Fibronectin

Outside-in
signalling

Mitogenic/Survival
signal

Figure 1.4: Some antigen expressed in HSPC membrane and their potential

role in regulating signalling pathways.

These antigens are part of larger families of membrane antigens potentially
involved in regulating signalling pathways. CD43 has a portion of its
associated signalling pathway shared with a HSPC marker, the sialomucin
CD34. CD164 is another sialomucin recently identified in early HSPC
populations.
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known that extrinsic stimuli are mediated inside the cell via a diverse range of

membrane molecules such as CAM, which allow cells to exchange information at

the site of cell-to-cell contact or at the adhesion site of the cells with the ECM

[Bhatia et al, 2002]. Also critical to mediate external stimuli are the receptors for

cytokines and other growth factors. The activation of the membrane receptors

generate intra-cellular cascade of molecular events leading to the generation and

modulation of the intrinsic regulatory stimuli with production of appropriate

transcription factors [Tenen et al, 1997; Shivadsani and Orkin 1996; Behringer et

al, 1997]. Some membrane antigens have found important clinical application

[Elghetany, 1998; Rafii et al, 2002; Michova et al, 2003; Brugger et al, 1999;

Piacibello et al, 1997 ; Thomas, 1999].
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1.1.2. Investigating Haemopoietic Stem Cells

After the early experiments demonstrating the existence of HSC [Mitchinson,

1956; Nowell et al, 1956], the description of the first clonal haemopoietic stem

cell assay used to characterise the colony-forming-unit-spleen (CFU-S) by [Till

and McCulloch, 1961] was opening the way of a rigorous experimental

framework to investigate quantitatively the dynamics of blood cell lineages

formation. Further studies confirmed the status of progeny cells and demonstrated

that they originated from a single clonogenic progenitor [reviewed in Weissman et

al, 2001; Nilsson and Quesenberry, 1998]. The therapeutic interest of HSC was

demonstrated by [Goodman and Hodgson, 1962] who showed the definite

Immunoglobulin
superfamily

Figure 1.5: Example of membrane molecules used to characterise and

investigate HSPCs.

This example shows that a wide diversity of molecules are present in HSPC
membranes, many of these potentially interacting in order to sustain an
appropriate regulation of survival signals. The membrane molecules are
classified into families and superfamilies depending on their molecular
structures and properties.
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evidence that circulating stem cells were able to restore irradiation-myeloablated

haemopoiesis in mice.

With such a therapeutic potential, the need for better characterising HSC led to the

development of

• in vitro clonal progenitor and stromal-based assays [Pluznik and Sachs,

1965; Bradley and Metcalf, 1966; Dexter et al, 1977], which allow to

investigate the formation of monoclonal colonies derived from progenitor

cells,

• specific monoclonal antibodies with affinity for haemopoietic cell surface

antigens, which found a critical application in high speed HSPC isolation

[Muller-Sieburg et al, 1986],

• human recombined cytokines enabling studies of external pathway

stimulating specific lineage differentiation and/or stem cell maintenance

[Metcalf,1993],

• in vivo animal models where competitive engraftment assays, in

myeloablated and immuno-compromised animal hosts, between one HSPC

population competing with another, which enables the cinetics and

kinematics analysis of early or long-term bone marrow repopulation'

[Harrisson et al, 1988].

Recently, the attention of researchers has focused on some specific membrane

antigens [Greenberg et al, 2000; Gazitt, 2000]. Indeed, some of these antigens are

only expressed (by blood cells) at the very early stages of haematopoiesis and are

14
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therefore used as markers to identify immature cells. HSPC mostly express CAM

which belong to the immunoglobulin, the integrin and the sialomucin

superfamilies [Simmons et aI, 1997; Verfaillie, 1998; Chan and Watt, 2001; Jiang

et aI, 2000] (fig. 1.5), with the exception ofL-selectin (involved in HSPC homing)

and CD44 (which mediates high affinity cell adhesion to bone marrow stroma and

ECM components such as hyalunoric acid and flbronectin) [Denning-Kendall et

al, 2003]. Such antigens are the CD34, CD133, CD164 molecules. The functions

of these antigens is not well known or not known at all, and trying to understand

their functions provides with a challenge for biomedical scientists.

1.1.3. The sialomucin family

Sialomucins (or mucine-like molecules) are a family of glycoproteins which share

common structural features. Typically, the extracellular domain of these proteins

has numerous serine and threonine rich residues which confer them a variety of 0-

glycosilation sites. As a consequence, the O-linked carbohydrate array forms a

dense globular thread-like structure. Such structure provides a convenient

platform for displaying multiple sugar combinations [Chan and Watt, 2001;

Simmons et aI, 1999; Baumheter et al, 1993]. The function of the sialomucins is

not yet well established. Increasingly, recent investigations suggest a role in

mediating outside-in signalling, which appear to have powerful negative regulator

ability on the haematopoiesis. This negatively regulates the expansion of HSPC

stimulated by cytokines. It is also hypothesised that sialomucins can trigger

positive regulatory stimuli once binding to their cognate, yet unknown ligands

[Park et al, 1991; Simmons et aI, 1999; Fackler et al, 1995; Zannettino et al,
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1998]. Therefore investigating sialomucins can provide information on their

functions, and understanding how the work could optimise ex-vivo expansion

strategies, so critical to generate large pools of HSCP prior to transplantation.

1.1.3.1. The CD34 antigen

CD34 (fig. 1.6) is a type I, 353 amino acids long (105-120kDa) transmembrane

glycoprotein of the sialomucin family. The first part of the extracellular domain is

estimated to be 130 amino acid long and typically exhibits multiple sites for 0-

linked and N-linked glycosylations, which makes this domain to be heavily

glycosylated. Further away from this region is another extra cellular section

Figure 1.6: Molecular structure of the CD34 antigen.

The intracellular domain present sites for protein kinase C (dashed
intracellular body) and tyrosine phosphorylation, the proximal extracellular
present immunoglobulin-like domains while the distal part is heavily
glycosylated due to the presence of multiple sites for O-linked and N-linked
glycosylations along the peptide chain, conferring to the CD34 antigen a
global thread-like configuration.
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encompassing an estimated 100 amino acid long segment which displays several

immunoglobulin-like structures. The cytoplasmic domain is much shorter than the

extracellular counterpart, and it presents two sites for protein kinase C

phosphorylation and one for tyrosine phosphorylation [Fackler et al, 1990;

Simmons, et aI1992].

The precise function of the CD34 antigen and counter receptor/cognate ligand still

remains unknown after twenty years of investigation. Several studies have shown

a possible role in cytoadhesion to BM stroma and! or endothelium [Madjic et aI,

1994; Healy et ai, 1995] and binding of CD34 with specific antibodies have been

shown in vitro to have an effect on HSPC migration across various substrates,

such as L-selectins [Baumheter et ai, 1993; de Boers et ai, 2002].

CD34 was found to be expressed on a small, discrete cell subset of the bone

marrow which encompassed HSCP [Civin et al, 1984; Sutherland et ai, 1989].

Indeed, CD34+ cells accounts for about 3% of nucleated cells in the bone marrow,

0.01-0.05% in steady state normal peripheral blood, and around 1% in umbilical

cord blood [Barnett et ai, 1999; de Wynter et al, 1998; McGuckin et ai, 2003].

Fluorescence activated cell sorting (FACS) studies showed that the CD34+ cells

are a heterogeneous population of primitive haemopoietic cells able of initiating

early and long term cell culture (LTC-IC). They were further characterised as

committed progenitors, with the critical ability of in vivo reconstitution of the

myelo-Iymphopoietic system in myeloablated hosts [Krause, et ai, 1996]. The

lineage-committed CD34 expression is gradually down-regulated as HSPC

progress in the differentiation process [Sutherland et al, 1992; Krause et al, 1994;

McGuckin et al, 2003]. However other tissues in the body can express this
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sialomucin, as detected in fine vessels endothelium and some fibroblasts of the

bone marrow [Steen et ai, 1996]. Moreover, it is thought that CD34 may have a

function in cell trans-differentiation [Jankowski et ai, 2002], as observed with its

consequences on the regeneration capacity of myogenic progenitor cells. It is also

known that some CD34Neg cell subsets are precursors for blood progenitors [Huss,

1998]. CD34 is a very important and widely used clinical marker of progenitor

cells [Vogel et al, 2000] and a large body of work on HSPC deals with the

manipulation ofCD34+ cells (e.g. [Wu et aI, 2001]).

1.1.3.2 The CD164 antigen

The CD164 antigen (fig. 1.7) is a heavily glycosylated type I transmembrane

sialomucin protein estimated to be a 368 amino acid long (160-180 kDa)

Figure 1.7: Molecular structure of the CD164 antigen.

This molecule has been observed in monomeric and dimeric forms,
possibly tetrameric as well. Protein dimerisation is observed for some
membrane receptors, suggesting such a function for CD164. The internal
portion of the molecule is very short while the longer external portion
present heavily glycosylated domains separated by more poorly
glycosylated domains.
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homodimer (so each protein core is 184 amino acids long). It shares thread-like

structural similarities with CD34. Its extracellular domain also bears multiple 0-

and N- glycosylation sites. However CD164 does not possess any globular

structure on its inner extracellular segment [Zannettino et aI, 1998; Watt et al,

1998]. The expression of this antigen is not restricted to HSCP, but is also found

in many tissues throughout the body. It is found in the HSPC membrane and also

on bone marrow stromal cells, developing erythroid cells, monocytes and pre-B

cells [Watt et al, 2000; Watt and Chan, 2000]. It is estimated that, on average, 63-

82% of bone marrow and 55-93% of umbilical cord blood CD34+ cells are

positive for CDl64 [Watt et al, 1998]. The ligand to CD164 remains unknown

[Chan et al, 2001]. However antibody ligation studies revealed an interactive

relationship between CD34 and CD164 responsible for regulating HSPC

proliferation and adhesion to the bone marrow stroma [Zannettino et al, 1998].
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Figure 1.8: Molecular structure of the CD133 antigen.

The CDl33 molecule (early known as AC133) is unusually predicted to have 5
transmembrane domains. Its actual 3D structure and function are unknown to
date.

1.1.4 The CDt33 antigen

CD133 (early referred to as AC133, see fig. 1.8) is a highly hydrophobic 865

amino acid (120kDa) glycoprotein. It is predicted to have five transmembrane

domains and possesses 8 N-linked glycosylation sites. CD133 is the human

equivalent, or ortholog, of the murine molecule prominin 1 [Fargeas et al, 2003;

Yin et al, 1997;Miraglia et al, 1997; Corbeil et ai, 1998].

The CD133 expression is predominantly restricted to a small HSPC subset of

CD34+ cells [Gallacher et al, 2000; Corbeil et al, 2000]. It is also found on
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primitive endothelial cells and several non haemopoietic tissues including the

foetal brain, pancreas and kidney [Corbeil et aI, 1999; Miraglia et aI, 1997;

Uchida et aI, 2000]. In the very early stages of the haematopoiesis, recent

investigations showed that CD133 expression on CD34+ HSPC precedes that of

CD34 [McGuckin et aI, 2003b; Bhatia, 2001].

A very small fraction of blood cells are CDI33+. About 0.52% of the bone

marrow nucleated cells are CD133+, and 0.16% of the umbilical cord blood cells

[de Wynter et al, 1998]. The function of this antigen remains unknown to date. Its

structure and composition, with the presence of a leucine-zipper motif on the

second extracellular loop, tend to suggest a possible dimerisation capability. Also

considering its selective membrane location onto plasma pseudopod-like

protrusions, CD133 could be involved in mediating signalling used for cell-to-cell

communication [Corbeil et aI, 2000; McGuckin et al, 1999].

CD133+ cells were found to have a higher proliferation potential than CD34+

cells and also to contain long term culture initiating cells (LTC-IC) at a higher

frequency than CD34+ cells [de Wynter et al, 1998, Pasino et al, 2000;

Matsumoto et al, 2000]. CD133+ cells were recently shown to potentially undergo

trans-differentiation [Quirici et aI, 2001]. This antigen is also an important clinical

marker for the identification of certain cancers [Horn et aI, 1999].
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1.2. Microscopy techniques for cell imaging

Imaging techniques can be used to quantify features on the investigated object, in

order to correlate these features with the object intrinsic properties. Cells are

visualised using microscopy techniques [Stephens and Allan, 2003]. These

microscopy techniques exploit particular properties of light.

Wide field microscopy is the most basic form of microscopy. The sample is

placed underneath the objective lens and is illuminated from below. The light goes

through the sample and is collected by the objective. The magnifying system

projects the magnified image through the ocular piece, where it is visually

observed by the experimenter. Digital cameras are increasingly used to capture the

image, which allows to store it digitally in a computer drive, making it available

for further use and/or analysis. The optical properties of the sample, such as the

absorption coefficients of its constituents, affect the amount of light allowed to

travel through it. Therefore, optically denser regions produce darker areas in the

output image, which generally allows discriminating between the cells and their

environment. The environment is often a more uniform background, and when it

is not it can usually be characterised by its texture or other properties. This

technique has major limitations when applied on biological samples. Indeed, the

main abundant constituent of cells is water, which transmits light very well and

does not produce a sufficient contrast to visualise the cells. For this reason,

histological techniques use dyes that specifically bind to classes of molecules

(proteins, DNA, lipids, etc.) which have a much higher absorption coefficient,

therefore providing more contrast on the magnified image.
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Several techniques based on the interference properties of light have been used to

further improve the contrast provided by wide field microscopy. Condensers and

filters can be used to selectively allow light rays of specific wavelength and phase

to pass through the sample. The optical characteristics of the sample deviate or

slow down the photons which are consequently shifted in phase and/or trajectory.

This results in producing interferences on the final image. These interferences

emphasise the contrast of the optical properties of the different regions of the

sample and allow to visualise smaller details of the subcellular structures. Such

approaches are commonly implemented in differential interference microscopy

(DIC) or phase contrast microscopy [Parthasarathy, 2001].

Scientists may only be interested in visualising the distribution of a small set of

molecules. As mentioned above, some dyes can be used to specifically visualise

intracellular components such as lipids or proteins. However, for accurate

identification of unique molecules, such dies reveal themselves not to be specific

enough, and other markers have to be used. Monoclonal antibodies have

increasingly become the markers of choice to bind specifically to the target of

interest. Indeed, these molecules produced in animal hosts (mice, rabbits) have a

very specific affinity to bind to molecular domains of the target molecule. Such

affinity property allows to locate particular molecules, or even different isoforms

and epitopes of given molecules. Monoclonal antibodies (moAbs) need to be

conjugated with a marker, either a dye with high optical density (for wide field

microscopy investigation) or a fluorochrome.

Fluorescence microscopy makes an extensive use of fluorochromes. The atoms of

a fluorochrome reach an excited state when photons of appropriate wavelength
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collide with them. Some of the energy carried by the photons is emitted back as a

photons of lower energy/different wavelength. This constitutes the fluorescence

emission, which is captured by a digital camera and therefore used to locate the

molecule of interest.

1.2.1. Laser-scanning confocal microscopy

Laser scanning confocal microscopy (LSCM) currently represents one of the
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Figure 1.9: Principles of Laser Scanning Confocal Microscopy (LSCM).

A laser beam at specific wavelength is focused on a labelled specimen. The
focal point of the focused light is scanned at constant Z elevation (the focal
plane). The light emitted in the focal plane as a result of laser excitation travels
backward towards a photomultiplier. Filters are used to separate different
wavelength, and the pinhole aperture ensures that only the light coming from
the focal point is detected. The LSCM images are stored in a computer and
available for processing and analysis on a worksation.
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state-of-the-art light microscopy techniques [Stelzer, 1998] (fig. 1.9). Samples are

incubated with fluorochrome-conjugated moAbs which bind to the target

molecules. The so-labelled samples are placed under the microscope objective and

are illuminated by a laser of appropriate frequency in order to excite the

fluorochrome. A thin circular aperture is placed between the sample and the

objective, thus only the light coming from a small localised region in space (in the

three-dimensional referential of the sample) is captured, amplified through

photomultiplier tubes and digitally recorded (fig. 1.9). The focal point is scanned

over the surface in order to capture an optical section of the specimen. The focal

plane is then moved along the Z axis in order to image the complete 3D

fluorescent structure under investigation (fig. 1.10). The capability of LSCM to

physically remove out-of-focus light and to scan the specimen in 3D with high

definition make this microscopy technique being increasingly used in biomedical

studies to investigate particular structures and molecules of interest [Boutet de

Monvel et al, 2001; Guo et ai, 2001; Liu et ai, 1997; Swedlow et aI, 2002].
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Figure 1.10: LSCM Z-series.

Confocal Z-series are produced by imaging optical Z-sections at equally
spaced intervals along the vertical axis, or Z-axis. Lnthis example, a Z-section
through a cell labelled for CD34 is shown (bottom). The fluorescence emitted
by the fluorochrome-conjugated specific monoclonal antibodies bound to the
CD34 antigens in the cell membrane. In this example, CD34 is distributed
randomly around the cell as dense or weak clusters and a diffuse halo. The
image is affected by a strong noise component.

In this study, images were acquired with a Zeiss LSM.440 LSCM equipped with

Argon Ion laser providing to excitation laser lines of 488 and 543nm respectively.

Fluorescence and DIe images were acquired via photomultiplier tubes employing
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a 63 x oil objective lens. Attached xl 0 condensation lens and computerised

"false" magnification (up to x8) provided further means for image enhancement.

The 488nm laser line was used to excite the FITC fluorescence signal which

emission (max .520nm) was collected using a 510nm dichroic mirror and a band

pass 515-540nm filter. The 543nm laser line was used to excite the TRlTC

fluorescence signal which emission (max .576nm) was collected using a 560nm

A)

Differential Interference Contrast (DIC)
image taken through the middle of the
cell body (adherent stem/progenitor
cell).

B)
LSCM optical sections (z-scans), taken
2 micrometers apart along the z-axls

Figure 1.11 : Images obtained by LSCM.

Top - DIC image taken in the middle of the cell body. DIC images are useful to
assess the morphology of the cells. This cell is very spherical but displays
membrane protrusions, a sign of membrane activity. Bottom - Z-series of the
cell displayed on the top. The Z-sections still reflect the spherical shape of the
cell along the Z axis. In the middle region, corresponding to the Z level where
the Ole is taken, the positions of fluorescent antigen clusters are spatially
correlated with membrane protrusions.
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dichroic mirror and a long pass 6IOnm filter.

The specimens were manually scanned at low power in order to target cells of

interest. Enhanced fluorescence and DIC images (fig. 1.I1-A) of the cells middle

focal plane were acquired and stored on the computer system. For each

fluorescent signal (Le. each labelled antigen) 1urn equidistant series of z-section

were acquired from the bottom to the top of the cell (fig. 1.II-B).

The digitation of LSCM images further allows the development of computer

image processing algorithms which are widely used nowadays to extract

information from such images (and now generally provided in user-friendly

packages with confocal microscopes). For most digital image analysis

applications, the first step of the process is to identify and/or extract the object of

interest in the image (e.g. cells, organelles, tissues), a process called

"segmentation". For high magnification LSCM images, objects to be segmented

are the image regions were fluorescence signal is present [Xavier et al, 2001,

Wahlby et al, 2002]. Various approaches have been described to perform image

segmentation, depending on the nature of the objects to be segmented. In section

1.3, some common approaches are reviewed and commented.

1.2.2. LSCM image noise filtering

LSCM images are usually heavily contaminated by speckle noise. This occurs in

the image acquisition process, during which a small amount of light collected at

each pixel position and amplified through photomultiplier tubes. It is assumed that

this noise is signal dependent (i.e. it is not additive). The distribution of such noise
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is generally modelled with Poisson statistics, which are particularly well adapted

to the description of rare discrete events (such as photon counts per pixel during

LSCM image acquisition) [Rooms et al, 2004]. Also, as the number of event

increases, Poisson distributions approach Gaussian distributions, which are

commonly used as approximation of actual noise distributions prior to data

processing.
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Figure 1.12: Effects of filtering on background regions histograms.

Top - Histogram of original noisy background. The shape approaches a Poisson
distribution. There is only one main peak close to the mean image intensity. The
long tail spans over a wide range of intensities, a large proportion of which also
belong to signal pixels in the whole image. Middle - Histogram of the same
background region after filtering with a 10xlO Gaussian filter. The shape now
approaches a Gaussian distribution. Bottom - Histogram of the same region
filtered with a 10xl0 moving averaging filter. The distribution is still Gaussian,
but its standard deviation is smaller than after Gaussian filtering.

Common ways of reducing the noise consist in filtering the images with low pass

filters, mostly Gaussian and averaging kernels, or empirically using rank filters
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such as median filters. Figure 1.12 shows an actual measured noise distribution

which has characteristics of Poisson noise. The filtering of the LSCM image used

to obtain this figure with a gaussian kernel (IOxlO pixels, cr=2)reduces this noise

to a more Gaussian-like distribution spanning over a smaller range of intensities.

However, the simple use of a IOxlO averaging filter also generates a Gaussian-

like distribution spanning over a smaller range of intensities. For this reason and

others described later in the text (section 3.1), IOxlO averaging filters were

applied consistently prior to applying segmentation algorithms.

1.2.3. Analysis of fluorescence in LSCM images

Fluorescence images are used to locate the distribution of fluorochrome-

conjugated molecular markers in biological samples [Spear et al, 1999]. Such

spatial distribution can be used to get insights on the molecular patterns of the

molecule under investigation, at various levels of observations. Some applications

may consider the analysis of tissues (Le. masses comprising large number of

spatially organised cells). Other applications may focus on the analysis of some

individual cells in cell populations (such as HSPC in the blood), which is done at

the "cellular level of observation", while other studies may concentrate on the

analysis of structures at the "subcellular level of observation" (Le. structures

inside cells themselves, such as particular organelles or clusters of receptor

molecules in cell membranes).
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Figure 1.13: Antigen quantification using total fluorescence area or mean

fluorescence intensity.

Left - Three LSCM images taken at decreasing Z positions. Middle - Binary
masks of signal regions. As the Z position decreases, the surface covered by the
signal increases, so quantify the size of signal regions would give increasing
values. These regions were obtained by manual thresholding. Right - Mean
fluorescence intensity in signal regions (arbitrary units). As the Z position
decreases, the mean signal intensity decreases. Antigen quantification using
these two common approaches provides with contradictory results.

In biomedical research, it is often relevant to perform measurements on the

fluorescence signal [Andrews et ai, 2002; Danckaert et al, 2002]. Such

measurements are generally used to quantify the degree of expression of the

molecule of interest [Matsuoka et al, 2001; Nishio et al, 1996]. This can be

relevant since the expression level of some markers is directly related to
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biological features [Ita et aI, 2000; McCloskey et aI, 2001]. For instance, the

expression level of the antigen Ki-67 in the membrane of cancerous lymphoma

cells directly reflects the position, or grade, of the tumour in the classification

scale used to characterise the likely outcome of the disease [Matkowskyj et aI,

2004].

Stem cell research employs membrane antigens to assess the degree of

differentiation of the HSPCs. One way to perform quantitative measurements is

by calculating the size of the area where the fluorescence is expressed (fig. 1.13,

middle column). In this process, an appropriate threshold has to be selected either

automatically or by the user. This latter option may introduce a subjective, human

bias which could affect the quantitative analysis. It will be shown in this thesis

that measuring the area of interest in fluorescence images is a very unstable

criterion. Other groups express the fluorescence degree by measuring the intensity

of the fluorescence in the area of interest (fig. 1.13, right column). Here again, an

appropriate threshold has to be selected either automatically or by the user. The

intensity of the signal is calculated by summing or averaging the fluorescence

value from each pixel in the segmented region.

Fluorescence microscopy is also used to investigate the distribution of several

markers at the same time, on the same sample. A particular technique looks at

marker colocalisation. Indeed, colocalisation studies are employed to investigate

the molecular and potentially functional relationships of colocalised antigens.
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1.2.3.1. Colocalisation analysis methods

Colocalisation analysis and quantification is mostly performed through two

approaches, the first takes into account the sizes of the areas shared by both

markers, relative to the area occupied by one or the other marker (the AND/OR

ratio performed by the free NIH software, http://rsb.info.nih.gov/nih-imagei)

[Leitinger and Hogg, 2002], while the second takes into account the relative

contributions of the intensity of each fluorescent signal to the total intensity in

colocalised regions [Matkowskuj et al, 2004].

Prior to colocalisation analysis, dual LSCM images must be perfectly aligned.

Indeed, because the different fluorochromes have different excitation and

emission wavelengths, fluorescence light beams respond differently to their

passage through the medium used in the experimental set up and through the glass

of the coverslip and the optical parts of the microscope. It results in shifted

images, which cannot be analysed under the assumption of pixel correspondence

as this introduces a bias in the measurements. Therefore, methods to correct the

shift have to be employed. We will present a method based on correlation

measurements which performs this task robustly.

1.2.3.1.1. Quantitative colocalisation analysis: the area method

This method involves the correct identification of signal (fluorescence) areas.

Such areas are thresholded either manually (which happens in most cases, as

biomedical scientists prefer to have control on this step in order to prevent under

or over segmentation) or using various algorithms. The simplest segmentation
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approach is global thresholding which consists in thresholding the image based on

the properties of its grey histogram (reviewed in section 1.3.1). Other methods

usually used in biomedical image analysis designed for specific applications may

make use of active contour models (e.g. snakes) to delimitate the boundaries of

compact fluorescent regions (e.g. nucleus in Fluorescent In Situ Hybridation -

FISH - studies). Such spatial approaches are also reviewed and commented in

section 1.3.3.

Fluorescence area segmentation using global image thresholding was preferred in

this work due to its computational efficiency. Also, conversely to many region-

based segmentation techniques, the number of parameters used to achieve

appropriate segmentation could be reduced to a minimum and prevent the use of

empirically set up parameters (which may affect the segmentation of images with

various intensity distributions).

The manual selection of an appropriate threshold can reveal to be a very

subjective task, and, as demonstrated in the present work, can lead to non-robust,

unstable quantification of fluorescence areas. After signal segmentation,

fluorescence quantification is performed by measuring the surface area of the total

segmented region [Leitinger and Hogg, 2002; Zaho et al, 2002]. Colocalisation is

then achieved by comparing the sizes of the areas shared by both markers

relatively to the area occupied by one or the other marker (AND/OR ratio).
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1.2.3.1.2. Quantitative colocalisation analysis: relative fluorescence method

This technique aims to express the contribution of each marker fluorescence in a

colocalisation region to the total fluorescence in this region [Ortiz de Solorzano et

ai, 2002; Zaho et ai, 2002; Ameen et ai, 1999; Silver and Stryker, 2000]. Such an

approach is more accurate than the area method, as it considers the various

intensity levels present in a region instead of simply calculating the size of the

region, but it requires an accurate calibration of each marker fluorescence. A

drawback of the method is that intensity calibration is not necessarily achieved by

biomedical scientists. Instead, the observed intensity in commonly adjusted

mostly using brightness and contrast adjustments whose functions are commonly

provided with imaging software. Generally, the parameters subjectively used for

such intensity mappings are not known.

1.2.3.1.3. Quantitative colocalisation analysis: 2D intensity histogram and

Pearson's correlation coefficient

Another method makes use of the computation of an alternative to the

cooccurence matrix used to analyse textures in individual images. Two LSCM

images taken at the same position are analysed. For each pixel position in the pair

of images, the element of a matrix whose rows correspond to the intensity value

for the first image while the columns correspond to the intensity values are

incremented by one each time such intensity pair is encountered in the dual

images. The resultant matrix is a 2D histogram of the dual images. Strictly

colocalised fluorescence distributions would produce a 2D histogram with values
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of higher magnitude closely distributed along the main diagonal of the matrix,

while poorly or non-colocalised distribution tend to display 2D histograms with

high magnitude values away from or scattered around the main diagonal [Enderle

et al, 1997; Guild et al, 2001; Malide et al, 2001]. In addition to the analysis of

the 2D histogram matrix, the Pearson's correlation coefficient R is calculated

between the images of the pair and can be used to help quantifying the degree of

colocalisation of the fluorescence distributions [Heilbronn et al, 2003; Kreft et al,

2004; Phee et al, 2001].

These methods to characterise colocalisation properties of dual labelled antigen

distributions are generally performed on 2D optical sections taken at the middle of

cell (equatorial Z section) where the best contrast is usually achieved. A careful

visual analysis of highly colocalised CD34/CD 164 distributions further showed

that two types of colocalisation patterns are observed (figure 1.14). Indeed, in

some membrane regions, the expression of one molecule is linearly related to the

expression of the other antigen. Such colocalisation patterns are referred to as

linear colocalisation. In other regions, despite both antigens also being expressed

at identical locations, the linear relation is not observed and one antigen may be

expressed in an apparently unrelated manner in comparison to the other one. Such

a situation is consequently referred to as differential colocalisation. Various

degrees of linear and differential colocalisation can be observed in cell

membranes. Approaches for quantitatively characterising such patterns are

investigated in this thesis.
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Figure 1.14: Antigen colocalisation.

Top - LSCM micrographs taken at the equatorial focal plane, for CD 164 and
CD34 antigens. They are very similar (demonstrating antigen colocalisation).
The arrows point at fluorescent structures found only in the CD 164 image
proving that the observed colocalisation is not an experimental artefact. The
insets represent magnified portions of the cell membrane. The dashed line
indicates the position of a path along which the fluorescence for both antigens
was measured. Both fluorescence curves are plotted on the graph below. Top
graph - It can be observed that some parts of the curves follow similar
behaviours, as if the fluorescence of one channel was linearly related to the
fluorescence from the other channel. In some other parts of the curves, their
evolution seems unrelated to each other, despite true fluorescence expression.
Bottom graph -Intensity difference between both paths. Perfect colocalisation
would be reflected by small fluctuations around zero. However it can be
observed that some parts of the curve strongly fluctuate far from zero, a
consequence of the predominance of one antigen over the other one (despite
both being expressed at the same location). Such case is referred to as
differential colocalisation in the thesis. 10 some other regions (marked with
green segments and red dashed lines) the expression of one antigen is more
linearly related to the expression of the other one, and the term linear
colocalisation is used.
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1.2.3.2. Visualisation: 3D representation of fluorescence distribution

A usual way of getting insights on the antigen distribution in its natural three-

dimensional space is by computing the projection of the fluorescence intensity

along a particular direction [Constans, 2004; Sarti et ai, 2000; Daly et ai, 2002].

Such projection is two-dimensional by definition. Therefore it does not represent

an actual 3D reconstruction of the distribution. For this purpose, techniques

borrowed from the field of computer graphics may be used.

1.2.3.2.1. Isosurfaces

Isosurfaces (fig. 1.15, middle and right) are surfaces which link regions of a

defined constant intensity through the whole z-stack of LSCM images. This

process uses intensity interpolation to estimate the intensities values between the

optical sections [Sarti et ai, 2000; Daly et ai, 2002, Constans, 2004]. The selection

of only one intensity level to locate the position of the isosurface acts as a

thresholding procedure [Gerlich et ai, 2001]. As a consequence, this approach

does not allow the visualisation of the 3D structures with intensity values above

the threshold, which are enclosed by the isosurface. Furthermore, the lower

intensities are not visualised either, and low, weaker signals are not represented in

the artificial 3D space. Several layers of isosurfaces set up at various intensity

levels and with various degrees of transparency may be used to increase the level

of observable details. However, this solution requires a large number of

calculations, which slows the display down. The presence of noise also affects the

3D rendering as it makes the surface look rough and highly irregular. Smoothing
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procedures are likely to improve the final rendering of the isosurface, but it may

be at the cost of losing some of the original resolution.

1.2.3.2.2. Isocontours

Isocontours methods consist in drawing contours at N constant, but different,

intensity values, usually separated by a constant incremental value. The contours

are calculated in the 2D plane of the LSCM image, and are displayed at their

respective z positions along the z-axis of the artificial 3D space (fig. 1.15, left).

--J

"'

Figure 1.15: Common 3D representations of antigen distribution from LSCM

data.

Left - Isocontours method. Lines of iso-intensities are represented in a 3D
referential. This methods allows to see various antigen concentrations in the same
figure. Middle and left - Isosurface method. Isosurfaces envelop 3D regions
containing pixels with intensities equal or lower than a fixed threshold. Due to the
unimodal nature of the intensity distribution in LSCM images, a small variation
of the threshold value generates large variations of the volume enclosed by the
isosurface. The three reconstructions are from the same LSCM dataset and the
view angle is identical. The middle and right distributions are obtained by using
close thresholds to illustrate the qualitatively different reconstructions,
consequence of histogram unimodality. The distribution on the right shows the
clusters with high antigen content while the middle one also include lower
intensity halo regions.
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Consequently, the computation of the isocontours at a particular z level does not

affect the computation of the isocontours in the adjacent z sections. The continuity

of 3D fluorescent structures is visualised by selecting manually the best view

points, and the user makes a subjective interpretation of the resultant figure.

Because there are several isocontours used in each LSCM image, it is possible to

visualise structures of various sizes and intensities at the same z position,

therefore compensating for the thresholding effect of the isosurface method.

Isocontours are faster to implement than isosurfaces, as no interpolation between

z-scans is used [McGuckin et ai, 2003].

1.2.3.2.3. Clouds of points

Point clouds are an interesting alternative to isosurfaces and isocontours for 3D

rendering of spatial antigen distributions. The principle is to display more points

in the spatial regions with higher intensity values (i.e. regions of higher densities),

while lesser points are used in low density regions, and no points at all in

background regions [Constans et ai, 2004]. The number of points to be displayed

at every location can be calculated using some mapping functions, not necessarily

linear. Interpolation between z-scans can also be used to display points between

the optical sections, but can affect the rendering by surcharging the artificial 3D

space. Colours of the points can be chosen according to the local densities in small

neighbourhoods. Because the whole spatial antigen distribution is represented by

a cloud of points, if the densities of points are locally well chosen, this approach

allows to visualise at the same time all the structures in the cell membrane, for all

intensity levels. Therefore, both weak and high signal regions are represented,
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which also compensates for the thresholding effect of the isosurface method.

Possibly, for these three 3D visualisation methods, transparency could be included

in order to improve the clarity of the rendering.
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1.3. Image segmentation methods

Fluorescence LSCM image analysis involves the prior segmentation of the

fluorescent signal. Image segmentation describes a process in which regions or

objects sharing similar characteristics are identified. It is often used to distinguish

foreground objects from the surrounding background [Davies, 1990; Gonzales and

Woods, 2002]. In these sections, some common approaches to segment grey scale

images are described. Various approaches may be employed, some being global (a

threshold is applied to the whole image simultaneously) and some others being

region-based (thresholds are chosen locally, in sub-regions of the original image).

1.3.1. Global thresholding

In order to segment signal from background values, a single threshold may be

applied simultaneously to all pixels in an image. This is global thresholding. The

threshold is commonly selected after analysis of the image intensity histogram.

[Tsai, 1995] describes a method for segmenting either plurimodal or unimodal

histograms into N classes, based on their shape, under the assumption that classes

(homogeneous regions in the spatial domain) are represented by peaks in the

histogram. The histogram peaks have to be separated by local minima. In the case

of unimodal histogram, it is assumed that two peaks (corresponding to two classes

with poor between-class contrast) are too close to each other, but their boundary

can be found by locating a between-class curve discontinuity, also assumed to be

the maximum curvature, in the histogram.
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The number of classes N is chosen by the user. The small fluctuations in the

original histogram are iteratively smoothed using convolution with a Gaussian

kernel. Similar histogram smoothing is also used by [Draghici, 1997]. After each

iteration, the number of maxima and minima is determined. The process ends

when the desired number of peaks is obtained. The minima locations between the

peaks indicate the thresholds. When the number of classes found is lower than the

expected number N, is it hypothesised that two neighbouring peaks were merged

during the blurring process. In this instance, the smoothed histogram may be

discontinuous at the intersection point of the two overlapping distributions. This

point is detected using a local maximum curvature method which does not explore

points in the neighbourhood of the peak. This non-parametric approach is shown

to be computationally more efficient than the well known between-class variance

([Otsu, 1979] described below) or the entropy methods, which do not work well if

the object classes are too small, or the contrast between objects too low.

[Otsu, 1979] proposed a method based on discriminant analysis which maximises

a measure of class separability. The criterion function to maximise is given by the

following formula (h(z) represents the PDF measured from the image for any

intensity z, and Tthe threshold which is moved along the histogram)

JOT (T) = ~ (T)P2 (T)[m) (T) - m2(T)]2
~ (T)u)2 (T) + P2(T)u 2

2 (T)

where .

T

~(T) = Pr{C)}= Lh(z)
z-o
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L-I

P2 (T) = Pr{C2} = Lh(z) = 1-~ (T)
z=T+1

TIT
ml(T)= LzPr{zICI}=--Lzh(z)

z=O ~ (T) z",O

L-I 1 L-I

m2(T)= L zPr{zIC2}=-- Lzh(z)
z-T+l P2 (T) z=T+1

Otsu's method has become one of the most popular optimal, global thresholding

technique from grey intensity histograms. [Cheriet et al, 1998] also extended this

algorithm through a recursive technique for multimodal histogram segmentation.

These authors initially pre-process their images using a 3x3 averaging filter, in

order to get better, smoother histogram for further analysis. The algorithm has

been reported to work well when both classes are well separated, which involves

that the class means are as well separated as possible, and their variances as small

as possible. However, the stronger the histogram unimodality, the poorer the

segmentation using Otsu's method, as two distinguishable, Normally distributed

classes are not easily detectable in the histogram [Petrou, 1999].

Similar discriminant analysis has been investigated by other authors. [Kittler et al,

1986] proposed a minimum error thresholding method. Their criterion function is

defined as
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L-I T L-I

JKI = :Lh(z)cKI(z,T) = :Lh(z)cKI(I)(z,T)+ Lh(z)CKI(2) (z,T)
z=O z=O z=T+I

where cKI (I) and CKI (2)are considered to be two parts of a cost function cKI• This

cost function is derived based on Bayes' rule. Under the assumption that both

classes to be segmented have Gaussian distributions, the criterion function

becomes

JKI (T) = 1+ 2[~ (T)In u) (T) + P2(T)lnu2 (T)] - 2[~ (T)ln~ (T) + P2(T)In P2(T)].

The optimal threshold is given by maximising this function, i.e.

TKI· = arg min JKI(T)

OSTS L-l

[Huang et al, 1995] proposed to select a threshold based on fuzzy membership

functions and entropy measurements. The image is seen as an array of fuzzy

singletons (the pixels), each having a membership value associated with a certain

feature of the pixel. An image I is represented as

1= {(f(x,y),,ul (f(x,y»)}

where ,u1efex,y» is the membership function which defines the grade of pixels

belonging either to the background or foreground class. The criterion function is

1 M-IN-I

JHW (T) =E(l) = - :L:LS,(,uJ (f(x,y»
. MNln2 x-O y=o

where
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Se (p) = -pin p - (1- p) In(1- p) 0 :S P :S 1

used as a cost function, represents Shannon's entropy. The optimal threshold is

given by the value T that minimises JHW (T) . This approach classifies the pixels

in two classes, as close as possible to their class mean intensity. Like Otsu's

algorithm, the class means need to be well separated and their variances as small

as possible.

[Yan, 1996] showed that [Otsu, 1979], [Huang et al., 1995] and [Kittler et al.,

1986] share similar formalism despite their different approaches.

[Liao et al, 2001] proposed a faster, recursive extension of Otsu's method to

segment plurimodal histograms. A global optimisation method which seeks to

maximise the between-N-classes variance is described. Otsu's between-class

variance criterion is modified so its computation is faster. Its actual measurement

is computed from zero- and first-order moments of classes defined over known

ranges of grey intensities. These quantities are calculated from the histogram as

the thresholds are moved along the grey scale, and stored in two look-up tables.

The modified between-class variance criterion is computed from both look-up

table and is a function of the N-l thresholds. The optimal combination of

thresholds is the one that maximises the between-class variance criterion.

[Rosin, 2001] specifically addresses the problem of unimodal histogram

thresholding via an empirical approach, similar to [Tsai, 1995]. It is hypothesised

that the unimodality of the histogram is due to a dominant class, with lower

intensities, which prevents to discern a second, smaller peak at higher intensities

(the signal). The point of maximum curvature is identified using the standard
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recursive subdivision technique for determining the polynomial approximation of

a curve, the point of maximum histogram curvature between the bin with highest

value and the first empty bin following the last filled bin. This method works on

the basis of histogram shape assumption, and therefore the approach works

robustly to detect the maximum curvature point of various curves. However there

is no theoretical justification of its validity, since no physical or mathematical

explanation is provided regarding the relevance of such a point having

fundamental properties of discriminating the object from the background, and

therefore can only work on certain type of images. Similar approach is adopted in

[Snidaro and Foresti, 2003; Hervas et al, 2003].

The author notes that current thresholding methods from grey level histograms

require critical parameters to specify the amount of preliminary smoothing applied

to the histogram in order to remove spurious, insignificant extrema and the size of

the region of support over which the histogram curvature is calculated. This

implies that such parameters have to be found empirically, which does not make

the algorithms fully automated.

[Antoine et aI, 2001] also describe a method based on the shape analysis of

weakly bimodal or unimodal histogram curves, where critical inflexion points are

found using the shape properties of the histogram and its first derivative. This

approach requires preliminary smoothing of the curve using a 4th order

Butterworth filter in order to remove high frequency components. Landmark

points such as beginning, end, and highest points of the curve are detected. The

histogram is differentiated and smoothed using a running averaging operator with

supporting region of size 21 bins. Using this derivative, several conditions are
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then tested to determine if either a local minimum is present between two

histogram peaks, or an inflexion point if both peaks are not well separated. It is

noted that when the histogram is very much unimodal in shape, the effect of the

initial smoothing procedure is too strong and the shoulder should be looked for on

the non-smoothed curve, which may introduce some error on the threshold

decision due to noise considerations. Strong unimodal histograms are detected and

the algorithm cannot threshold these.

[Li and Tam, 1998] propose an iterative algorithm to speed up the threshold

evaluation from the minimum cross-entropy method calculated from a histogram

h. The optimal threshold is found at the value t that minimises the criterion

function

17(t) = -mla (t) log(,ua (t» - mlb(t) log(,ub (t», t E [1,L]

where

,-1
Lh(i)

jl (t) = mlo (t) = -,-;=_1 _

Q moo (t) f ih(i)
i-I

L

Lh(i)
and Pb (t) = mlb (t) = ~' .

mOb (t) L ih(i)
i-'

i representing the intensity value and h the PDF. By definition, the thresholding

algorithm looks for t that gives minimum value to 17(t). The derivative of 17(t) is

calculated and simplified when equalling zeros (which indicates the minimum of

17(t». Looking for non trivial solutions and expressing in terms of t, we get

t = Pb(t) - PaCt)
10g(Pb (t» -log(jlQ (t»
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Applying the one point iteration method to this formula leads to

The convergence is achieved when In+l=ln. It is shown to take approximately five

to nine iterations to converge to the desired threshold, instead of having to

calculate all the values of TJ(/). Therefore the iterative method is faster than the

conventional exhaustive search, but the author notes that it does not always lead to

the correct threshold. Tests and performances are measured on artificial

histograms, and only one microscope image of stained nuclei is used as a potential

application for the proposed method.

1.3.2. Comments on global, histogram-based thresholding methods

Global thresholding is the fastest approach to segment fluorescence in LSCM

images. However, most histogram-based algorithms found in the literature address

bi- or multimodal histograms thresholding. As described above, high

magnification LSCM micrographs of HSPC have a strongly unimodal histogram,

due to the strength of the speckle noise in the predominant background areas.

Therefore, most of the reviewed thresholding algorithm cannot be applied

successfully to extract the fluorescence in the datasets analysed in the present

study. The approach described in [Rosin, 2001] aims to threshold unimodal

histograms, but the method is heuristic in nature and does not provide a theoretical

background. Consequently, there is no way of ensuring that this algorithm is
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reliable and that it can be blindly applied to segment our datasets. Thus, new and

theoretically sound algorithms need to be developed in order to perform such task.

1.3.3. Region-based segmentation methods (spatial methods)

Region-based segmentation techniques rely upon feature similarities of image

areas, Le. image areas sharing same properties (e.g. texture, intensity) are

assimilated to a common region. Several criteria can be used to further improve

the definition of a region, such as connectivity or fuzzy membership [Gavrielides

et ai, 2001]. Below are described some common approaches. They are further

commented.

1.3.3.1. Watershed segmentation

In this thesis, watershed segmentation is used in two sections. The first

appearance of the algorithm is in section 3.5, where watersheds are used to

describe and demonstrate the possibility of segmenting LSCM images using a

region-based approach. However, this is done only for demonstration purpose and

since the method is computationally more expensive than global thresholding

approaches, it is not used to process the whole LSCM datasets. The second

appearance of the watershed algorithm is in section 5.2.3.2, where it is used to

segment fluorescent antigen clusters in dual labelled equatorial Z section prior to

colocalisation analysis. This colocalisation analysis is then compared with an
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alternative analysis performed on Antigen Density Maps (sections 5.2.3.3 and

6.4.6).

The concept of watershed segmentation involves interpreting the (grey level)

image as a three-dimensional landscape, where two dimensions, the

"geographical" coordinates, describe the spatial coordinates of the pixels, and the

third dimension, the "altitude", is given by the grey value. This method was

initially proposed by [Digabel and Lantuejoul, 1978] and was further extended to

a more general framework by [Lantuejoul and Beucher, 1981]. In its common

version, the three-dimensional image-landscape is fictionally submerged in

"water". The water continuously fills the landscape, successively flooding it at the

local minima positions. As the water level increases, the frontiers of these

catchment basins, or watersheds, eventually reach a state where they merge. This

frontier is labelled as a boundary between the watersheds. Generally, each time a

watershed is about to merge with another, the location of the boundary between

them is stored in memory until no further merging is possible (when the rising

water has reached the highest - maximal- grey intensity value in the landscape).

The final set of boundaries corresponds to the watershed lines, which delimitate

the different objects in the image. Pixels belonging to a same catchment basin are

attributed a same label value, so each segmented object, consequently delimitated

by a continuous boundary, has a distinct and unique label [Haris et ai, 1998;

Murphy et al, 2001]. This approach has the advantage, under certain conditions, to

segment clustered objects, and have been extensively used in cell image

segmentation. However, pre-processing of the original images is often required, as

noise or local irregularities rapidly lead to over-segmentation if not filtered or

removed [Wahlby et ai, 2002].
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This version of the watershed algorithm works well when the objects can be

described as mounds and mountains within the 3D framework established above.

However this case is not necessarily met, and a useful transformation of the image

may be used to properly segment the regions of interest. Indeed, the watershed

lines are located at local image maxima. When the objects cannot be described as

mounds, mountains or peaks, it can be useful to apply this technique to the

gradient image, where high gradient values are displayed with high intensities. In

such a case, the high gradient regions are likely to represent the image object

boundaries. Therefore, applying the watershed algorithm to gradient, or edge

images can help to approximate the actual boundaries of clustered objects.

Practically, the watershed algorithm is commonly implemented by using fast

mathematical morphology operators.

In a pre-processing stage, over segmentation, a classical practical problem, can

also be overcome by using sets of connected components, or markers (somewhat

similar to the seeds used in the region growing algorithm). Indeed, using

additional knowledge via markers may help to discriminate between the regions of

potential interest versus the background [Haris et al, 1998]. Markers locating the

objects are referred to as internal markers while those locating the background are

referred to as external markers. Furthermore, the number of internal markers sets

the number of watershed boundaries to a limited amount, which consequently

helps preventing, or at least reducing, over-segmentation, while the external

markers make the segmentation more robust.
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1.3.3.2. Edge-based methods

This thesis does not make use of edge-based segmentation methods. However,

they are briefly described in order to be commented, and also to describe the

gradient of an image, its mathematical formulation and approximation using

operators. Indeed, if the gradient is not used for segmentation purposes, it is used

(section 5.2.4.2) to characterise the distribution of antigen clusters in the cell

membrane, what will be referred to as "distribution energy".

The region-based methods described above are usmg some criteria of

homogeneity to identify and segment image regions. Edge-based methods rely

upon the detection of the boundaries between homogeneous areas to identify

regions [Xavier et al, 2001]. A well-known algorithm making use of these

techniques is the Canny edge detector [Canny, 1986].

Edges in images are regions where the intensity changes quickly, conversely to

homogeneous regions where it is assumed that no significant change of intensity

occurs quickly. Seeking the image as a three-dimensional landscape, edges are the

areas with high slope value, the steepest the slope, the stronger (or sharper) the

edge. Consequently, it is natural to use the gradient of an image to detect edges.

Gradients are computed from the image function behaviour in a given

neighbourhood, and are characterised by their magnitude and their direction.

Edges are perpendicular to the direction of the gradient. Given a (presumably

continuous) image I(x,y), its gradient magnitude IgradI(x,y)1 and gradient

direction 'If are calculated as
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(8/)2 (8/J2Igrad l(x,y)1 = ax + ay

where arg(x,y) is the angle, in radians, from the x axis to the point (x,y).

A variety of applications need only to consider the edge magnitude without regard

to their orientation. A very popular linear differential operator, the Laplacian, can

be used as it has same properties in all directions (it is rotation invariant), and is

defined as

021( ) = 821(x,y) 821(x,y)
v x,y 2 + 2'ax ax

Because digital images are discrete in nature, gradients can be approximated by

differences along given directions. The interval over which is computed the

difference is usually small (e.g. one pixel only). Operators estimating gradients in

small neighbourhoods can be expressed as convolution masks. One of the oldest

operators of this type is the Roberts operator [Roberts, 1965] which works on a

2x2 neighbourhood:

hI = [
1

0] and h2 = [ 0 1] ,o -I -I 0

and therefore the edge magnitude is given by

Il(i,j) - l(i + I,j + 1)1+ Il(i,j + I)- l(i + l,j)l.
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The main drawback of this operator, due to the small size of the supporting region

over which it is computed, is its high sensitivity to noise.

Another popular operator for approximating the second derivative (Le. gradient

magnitude only) is the Laplacian, which can take several forms:

and sometimes the significance of the central pixel may be emphasised:

=: ~1] h=[~1~4~1].
-1 2 -1 2 -1

Such kernels can have the disadvantage to respond doubly to some edges.

Depending on the application and the strength of the expected response to the

application of such operators, users may adjust the size of the kernels or the size

of the images in order to get practically useful results.

1.3.3.3. Multiscale analysis and scale-spaces

Scale-spaces and image pyramids [Rezaee et al, 2000] are related forms of

multiscale analysis. The mathematical formulation of ID scale space analysis was

first described by [Witkin, 1983] who showed how to analyse a one dimensional

signal at different resolution by continuously smoothing the original input with a

Gaussian kernel. This was further investigated in 2D spaces by [Koenderink,
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1984]. In this approach, any image is shown to be embedded in a one parameter

family of images derived from the original image, with resolution as the

parameter. In its original formulation, the transformation of an original image I(x)

into its associated scale image I(x, a) can be described as the convolution of the

image with a Gaussian kernel G of standard deviation a

I(x, a) = I(x) eG(x,u) 1.1

where ® is the convolution operator and G is

Xl
1 -G(X, e) = ---e 20'2 •

..J2;,cr 1.2

The higher the value of u, the highest the degree of blurring. The parameter a

represents the scale at which the original image is observed [Kuijper and Florack,

2001]. The scale space is therefore constructed by smoothing the original image

with Gaussian kernels of increasing standard deviation, which blurs I(x)

increasingly, reducing its resolution.

This transformation respects the constraint that no spurious artefact is generated

when decreasing the resolution, a condition known as the causality principle. This

causality principle is a very important requirement for scale space theories. It

states that every feature obtained at a coarser scale must have a cause at a finer

scale. As an extreme example, a local maximum at coarse scale cannot occur if

the initial image is totally flat. New image structures should not be introduced as

scale is increased.
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The dynamic behaviour of the intensity values in this scale space, for an infinite

domain, has been described as a diffusion process [Koenderink, 1984]. The

general form of the diffusion equation is given as

01
at =DM(x,t) 1.3

where the parameter D controls the blurring of the image at each scale t. When D

is constant, the process is called linear diffusion, but diffusion can also be

anisotropic [Venegas-Martinez et ai, 2002; Black et al, 1998]. Gaussian scale

spaces are a solution of the diffusion equation 1.3. The diffusion process can be

interpreted as a flow of intensity values from pixels towards the mean image

intensity in scale space. Eventually, the diffusion process reaches a state of

equilibrium (t~oo) where all intensities have converged to the mean intensity of

the image.

Scale space image generation using equation 1.1 is computationally expensive for

large sets of data, even when performed in the Fourier domain. In practice,

generating scale space images can be approximated by reducing the size of the

original image using intensity interpolation. This idea is the principle behind

image pyramid formation, where the pyramids usually represent a discrete scale

space image. Constructing and using image pyramids consists of successively

down sampling the original image, possibly using (e.g. mean, bilinear) intensity

interpolation, prior to further sampling it up and comparing the transformed image

to the image at the same resolution. An homogeneity criterion can be used to

identify regions having similar properties between these images. Therefore image

pyramids are often used to identify and segment regions which bear homogeneous
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properties over decreasing resolution levels [Rezaee et aI, 2000; Venegas-

Martinez et aI, 2002]. Such an approach was recently adapted to segment uniform

areas in images [Rezaee et al, 2000; Kuijper and Florack, 2001; Tabbone and

Wendling, 2003; Rooms and Philips, 2002].

It was mentioned that for scale space generation using equation 1.1, when the

original image is iterated an infinity of times, the theoretical output of this

transformation is an uniform image having the mean intensity of the original

image at any location. Similar dynamics also occur with discrete image pyramids

when the image is successively resized to a constant fraction of its size from scale

to scale using intensity interpolation. If mean intensity interpolation is used to

calculate the pixel intensities over the scales, in discrete space, the process

eventually leads to the creation of a single pixel at the top of the pyramid. Its

intensity is the average intensity of the original image. This is an important

remark which will be used in section 3.2 to produce a computationally efficient

method for approximating a rescaling process used for segmentation purposes.

Algorithms using scale spaces for image segmentation rely on the analysis of the

original image observed at different scales. Usually, features are located at coarser

scales, and they are back-tracked at the finest scales or possibly in the original

image [Rezaee et al, 2000; Venegas-Martinez et al, 2002; Kuijper and Florack,

2001; Tabbone and Wendling, 2003; Rooms and Philips, 2002].

There are other ways of defining scale spaces, briefly described here. The

morphological scale space is defined using mathematical morphology. In such

spaces, erosion and dilation are the primary operation used to construct opening

and closing operators. The scale is defined by the size of the structural element
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used in these operations (often a disk). Succession of opening and closing steps

act as sieves which extract regions of particular size (which are scale-related)

[Jalba et al., 2004]. Reaction-diffusion scale spaces combine both linear and

morphological scale spaces. On grey scale images, morphological operators

extract regions at different scales and smoothing is region size dependent (also

consequently scale-dependent), being therefore inhomogeneous [Salembier and

Serra, 1995].

1.3.3.4. Region growing

In its simplest form, region growing is initiated at a starting point of the image, or

seed. The set of features describing the region to be segmented must be

established prior to running the algorithm. Pixels or areas around the seed are then

analysed, and if they share identical features with the description of the expected

region they are clustered to the seed as belonging to the expected region. The

process is iterated at the growing region border until no further pixels can be

clustered and attributed to this region according to their feature description. This

method has the advantage of segmenting homogeneous, consistent regions, due to

the connectivity property of the growing process. This cannot necessarily be

achieved through global thresholding. Limitations can be found when regions

have complex descriptors or geometry. Considerations about the stopping rule,

which is often based on local information, and therefore does not take into

account the history of the region growth or its shape, may also affect the

segmentation [Jin et al, 2003; Choi et al, 2001]. This problem is overcome by

specifying and embedding these a priori criteria into the growing process
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[Precioso et al, 2003; Yang and Jiang, 2001]. Another consideration is about the

seed selection. This procedure obviously depends on the nature of the image and

regions to be segmented. Such an approach was found to be valuable for image

with multimodal histograms, usually under the assumption that the modes in the

histogram are generated by homogenous grey regions in the image [Jin et al,

2003; Wirth and Stapinski, 2003].

1.3.3.5. Splitting and merging

As stated for the region growing method, the features - or predicate - describing

the targeted region have to be known prior to running the split and merge

algorithm. Here again, the predicate can be a vector for which elements represent

quantities attributed to the target region, e.g. texture, intensity, or combinations of

these. However, conversely to starting from seed points, the whole image is

divided into several arbitrary, usually large disjointed regions [Bonton et al,

2002]. If one or more regions have properties close enough to the predicate, these

regions are no further divided. Otherwise, they are subsequently divided into

smaller regions in the next iteration and the process is repeated until a fixed

resolution, or region size, is achieved. In order to avoid having separate adjacent

regions with similar features, merging is simultaneously introduced [Haris et al,

1998; Choi et al, 2001], which allows to allocate and fuse such touching regions

into a bigger, still uniform (according to the predicate) region.
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1.3.4. General comments on segmentation approaches

All image segmentation algorithms reviewed above have specific drawbacks

which prevent their application in automatically segmenting the LSCM images

dealt with in this thesis.

1.3.4.1. Spatial methods

The spatial methods are computationally expensive. This is a main limitation to

their application for segmenting large numbers of 1024xl024 LSCM images.

Furthermore, they include several parameters which need to be estimated prior

processing the image, or which may be set up subjectively. Despite the

computational efficiency of histogram-based approaches, published algorithms are

also subjected to drawbacks, described below.

Spatial methods (region-based methods) are likely to perform the fluorescence

segmentation task successfully. However, their automation would require the

careful set up of various parameters contained in the algorithm. For example,

snakes require parameters to stop the growing process after the energy of the

snake reaches stability. These parameters are evaluated subjectively [Santos et al,

2001], with the inherent risk that bias from human decision may be introduced in

the process. Furthermore, spatial methods are computationally much more

expensive than histogram-based methods. Taking these drawbacks into account, it

seems preferable to investigate and develop automated histogram-based algorithm

to perform the task of segmenting fluorescence in the LSCM micrograph datasets.
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1.3.4.2. Texture measurements

Texture measurements are useful to discriminate between regions with different

statistics or patterns [Malpica et aI, 2003], and they are often used in various

region-based segmentation algorithms (e.g. region growing, split-and-merge)

[Basset et aI, 2000]. However, the unimodal nature of the LSCM images prevents

their use for segmentation purpose. Indeed, performing texture measurements on

such images generates measures which follow themselves a unimodal distribution.

There is a direct bijection between the intensities of smaller sub-regions and

texture measures performed in these regions. The existence of such a bijective

correspondence between intensity and texture measures makes the application of

texture measures useless for segmenting LSCM images. Working directly on the

intensities remains therefore the most likely computationally efficient approach

for this task.

1.3.4.3. Scale spaces

Scale spaces (in the spatial domain) are attractive techniques as they analyse the

images at various resolution levels, taking into account details easily observable at

specific scales and describe the structures of an image in a tree-like hierarchy

naturally well adapted for segmentation purposes. These algorithms have

particularly low numbers of parameters, an important criterion for designing

popular methods (Ockam's razor). However, the processing of large datasets is

computationally expensive. Furthermore, their exploitation for segmentation
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purposes requires the definition of some criteria, such as region homogeneity or

texture, which are also subjectively defined, with the risk that human error or bias

may be introduced in the process and add to the computational load.

1.3.4.4. Histogram-based methods

These techniques are computationally efficient and consequently are further

investigated in the present work. The main drawback is that current algorithms do

not perform well on images with unimodal histograms or have an empirical basis

[Rosin, 2001; Wilts chi et aI, 2000]. Defining a good threshold from histogram is

not a straightforward task in most cases [Bonnet et al, 2002].Therefore new

algorithms are developed and tested to address this problem.
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Chapter 2. HSPC collection, labelling and imaging

The process from HSPC isolation to laser scanning confocal imaging is described

in this chapter, followed by a preliminary analysis of LSCM images.

2.1. HSPC isolation and labelling for confocal image acquisition

2.1.1. Haemopoietic stem/progenitor cell isolation

Most investigators rely on the antigen profile of haemopoietic stem/progenitor

cells (HSPC) to either positively or negatively select HSPC from heterogeneous

blood samples. Positive selection depends on monoclonal antibodies (conjugated

to various compounds) raised specifically against markers expressed on primitive

HSPC. These markers include the CD34 antigen and more recently the CD133

antigen, which are usually targeted for the selection of HSPC away from

developing and differentiated cells.

2.1.2. Umbilical cord blood and bone marrow collection and

mononucleated cell isolation

Umbilical cord blood (DCB) specimens were collected from full-term third stage

of labour deliveries after elective caesarean sections. Bone marrow (BM) samples

were obtained from informed haematologically normal volunteers. CB and BM

specimens were collected following St George's Hospital Medical School ethical

regulations.

Blood samples were mixed with acid citrate dextrose formula-A acid anti-

coagulant (ACD-A, 0.6% final concentration, Baxter) immediately after collection
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in a ratio 1:5. Four volumes of (blood + buffer) solution was carefully overlaid

onto one volume of research grade Ficoll-Paque solution (d: 1.077g/cm3,

Pharmacia Biotech, Uppsala, Sweden) prior to centrifugation (400g, 30 minutes,

22°C). The mononucleated cell (MNC) layer, at the interface of the ficoll and the

lower density (plasma + buffer) solution, was collected with a sterile Pasteur

pipette, washed twice in ACD-A buffer, and pelleted (400g, 10 minutes) before

resuspension in ACD-A buffer. Cell aliquots taken for cell viability / enumeration

using trypan blue (0.2S% in PBS, Sigma-Aldrich).

2.1.3. CD133+ cell immunomagnetic positive selection

CDl33+/neg cells were obtained from MNC after immunomagnetic separation

using the CD133 mini-MACS selection kit (Miltenyi Biotec, Bergish Gladbach,

Germany) following the manufacturer's instructions. The labelling volume was

S00).1Ul08 MNC in ACD-A buffer supplemented with Fe receptor-blocking

reagent (100).11,Smin incubation, 4°C) before adding colloidal super-paramagnetic

MACS MicroBeads conjugated to monoclonal mouse anti-human AC133/1

antibody (100).11IgGI isotype, 2Smin incubation, 4°C). Cells were then washed

(Sml ACD-A buffer, 400g, 10min, 4°C) and resuspended in SOOIlIACD-A buffer.

Labelled MNC fraction was applied to a chilled MACS positive selection column

(MS+IRS+) attached to a cold magnet. The so-applied high gradient magnetic

field permitted the CD133+ cells to be magnetically retained onto the column (fig.

2.1). The column was simultaneously rinsed with cool ACD-A buffer (4x500).11)

eluting the CDl33-negative (CD133Neg) cell population. After magnet removal

CD133+ cells were eluted With a plunger in lrnl of cold ACD-A buffer. The
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CD133negative cells CD133positive cells

CD133 negative MNC

CD133 positive MNC

*l Fc receptors

Human gammaglobulin

- CD133 antigen

>-0 anti-CD133 monoclonal
antibody conjugated with
colloidal super paramagnetic
MACS microbead

Figure 2.1: CD133+ cell immunomagnetic positive selection using the mini-

MACSkit.

1 - The MNC fraction is labelled with human gammaglobulins solution to block
non specific cell surface Fe receptors prior to incubation with magnetic bead-
conjugated monoclonal mouse anti-human AC133/1 antibody, which directly
labels CD133+ cells. 2 - Labelled cells are passed through a positive selection
column submitted to a magnetic field. This magnetic field attracts the magnetic
bead-conjugated antibodies and thus retained CD133+ cells onto the column
whilst eluting CD133Neg MNC. 3 - Upon magnet removal and buffer washes,
CD133+ cells are recovered. To enhance CD133+ purity, steps 2 and 3 were
repeated using a new column.

CD133+ cell fraction was reapplied to a fresh positive selection column and eluted

as described above, prior to cell enumeration and viability assays.

In early experiments, CD34+ cells were mini-MACS selected directly on the

CD34 antigen using anti-CD34 MoAbs. This procedure forced the CD34
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molecules to be artificially and predominantly concentrated on one side of the cell

membrane, a case of artificial polarisation. Since the corresponding LSCM

datasets could not be reliably used for investigating normal HSPCs in

physiological conditions, the mini-MACS selection on CD34 LSCM datasets were

used to measure polarity (defined in sections 5.2.2.1 and 5.2.2.2) on these

artificially polarised cells in order to be compared with polarity measured under

more physiological conditions for all other LSCM datasets.

2.1.4. Immunofluorescent labelling of CD34 and CD164 antigen on cord

blood and bone marrow HSPC

In the studies reported in this thesis LSCM imaging was used for analysis of

antigen distribution on haemopoietic stem and progenitor cell (HSPC) membrane.

CB or BM MNC were adhered at room temperature on gold positive slides (BDH,

UK) before incubation at 4°C with human gamma globulins (2%, Sigma-Aldrich)

to block Fe receptors.

Adhered cells were then indirectly labelled, firstly using primary mouse anti-

human CD164 (IgG3, 103B2/9EIO labelling class II epitope reported to be

ubiquitously distributed on most primitive HSPC subset [Watt et ai, 2000]) and/or

CD34 (IgGl, HPCA-II labeling class III epitope, reported to be expressed on

more primitive HSPC subset than class 1111 counterparts [Krause et al, 1996; Steen

et ai, 1996] antibodies (BD-Pharmingen). Cells were also labelled against isotype-

matched monoclonal antibody controls: mouse IgGl pure & mouse IgG3 pure

respectively (BD-Pharmingen).
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After five washes in excess volume of staining buffer, cells were secondarily

labelled (30min, 4°C) with FITC-conjugated goat anti-mouse IgG3 specific,

F(ab')2 fragments (Southern Biotechnology, USA) or tetramethyl rhodamine

isothiocyanate (TRITC)-conjugated rabbit anti-mouse IgG F(ab')2 fragments

(DAKO, Sweden) against IgG1 primary antibodies. After five washes in staining

buffer, labelled cells were fixed in a 3.5% paraformaldehyde solution (BDH) and

carefully mounted in 25J.lIVector-Shield anti-bleaching solution.

CD34 class I, II and III epitopes were labelled following similar protocol.

Adhered cells were indirectly labelled for CD34, Epitope III, using mouse anti-

CD34 (IgGJ. HPCA-II, PerCP) (Becton Dickinson Immunocytometry Systems.

California. USA) Epitope II (IgGJ. QBEND-I0), or Epitope I, (IgGh Myl0).

Irrelevant matched isotype antibody controls were also undertaken (IgGJ). The

secondary fluorescent conjugated antibody used was Alexa fluor 488 (Molecular

Probes). Antibody incubations were carried out at 4°C for 30 minutes with slides

washed in excess PBS, sodium azide 0.1% between incubations. Dual

immunolabelling was carried out sequentially for expression of CD34 epitopes;

Epitope III and 1 or Epitope II and I. The epitope proximal to the cell membrane

was labelled first to minimise blocking of distal epitopes to the subsequent

antibodies.

Coverslips were sealed onto the slide with acrylic varnish Mounted slides were

then stored at 4°C prior to images acquisition with a Zeiss LSM.440 LSCM

(previously described in section 1.2.1).
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2.2. Preliminary analysis of LSCM images

The LSCM images analysed in the studies presented in this thesis are l024xl024

pixels, which is the highest size and resolution available on the Zeiss LSM.440

confocal microscope used. Single or clustered Haemopoietic StemIProgenitor

Cells (HSPCs) were imaged. They were either single or dual labelled for diverse

A)

LSCM micrograph taken in
the middle region of the cell
(negative image).

B) 2.5,10'

Histogram of A. 2

~C 1.5
GI
::Ier
2! 1-

0.5

9J 50 100 150 200

intensities
250

C)

Mean intensity of representative
background areas in function of
the focal plane position along the
Z-axis.

Different symbols indicate different
cells

5 10
distance from contact point

15

Figure 2.2: Preliminary analysis of LSCM images.

A - A typical LSCM image. B - Histogram of A. The strong unimodality of the
curve is obvious. C - Mean intensity of representative background areas vs. Z
position, for 5 different cells. This i1Iustrates that the mean background value
fluctuates unpredictably with the z position. Consequently, a constant threshold to
segment signal regions from background cannot be applied systematically to the
whole Z-series, but must be evaluated separately for each LSCM image.
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membrane antigens, or different forms (or epitopes) of the same molecule. The

images are commonly contaminated by a strong noise component (fig. 2.2-A).

Due to the nature of the distributions imaged, signal pixels are rarer than

noiselbackground pixels. Furthermore, it was consistently observed that the

average background values fluctuate unpredictably with the Z position (fig. 2.2-

C), making the use of a constant threshold to segment the signal from the

background impossible. Such fluctuations are mostly due to laser instability over

time [Swedlow et ai, 2002].

LSCM images are quite similar to images generated by the speckle fringe

interferometry technique [Murukeshan, 2003; Anand 2003], which is used to

produce interference patterns in order to measure the relative displacement of

objects. Such images are also strongly contaminated by speckle noise and the

signal occurrence is commonly rarer than background/noise pixels. As for such

images, preliminary smoothing of the original images greatly facilitates and

improves the segmentation results [Murukeshan et al, 2003b], and is consistently

applied in this work prior to segmentation.

2.2.1. Image histogram

As observed in figure 2.2-B, the image histogram is extremely unimodal, i.e. one

main dominant peak is observable, and the peak does not have a Gaussian shape

but looks rather like a skewed Poisson distribution. This may be explained by the

Poisson process involved during signal generation and brightness/contrast

adjustments made during the set-up of the confocal microscope. This peak is

located on the left of the histogram, at the lowest intensities, since it is due to the

predominance of background noisy pixels in comparison to the number of
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fluorescent pixels [Antoine et al, 2001]. It appears that this strong unimodal

distribution prevents the use of popular segmentation algorithms based on

histogram shape [Ammouche et al, 2001]. Indeed, these approaches make use of

assumptions which are not suitable in the unimodal situation. The algorithm by

[Rosin, 2001] addresses and proposes a solution to this histogram-based

segmentation problem, but unfortunately the algorithm is heuristic in nature and

consequently does not have any theoretical justifications.

2.2.2. Background and signal statistics

A preliminary analysis of the original LSCM images indicated that such images

Stardard deviatiooVS I'kan
irtenii)'
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S 16
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Figure 2.3:Background and signal intensity preliminary statistics.

The mean intensities measured in background and signal regions are
plotted versus the respective standard deviation (SD) of the intensities in
these regions, for all Z-scans of a LSCM Z-series. The mean intensities
and SD are higher for signal regions than background. They also vary
over a wider range of intensity than for background areas.
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have a strong unimodal histogram. Figure 2.3 shows a dot plot of measurements

taken from a confocal Z-series. Each image was manually thresholded to separate

the background from the signal. However, because of the speckle noise affecting

the images, the original micrographs were initially smoothed with a IOxlO

averaging filter in order to reduce the speckle noise and make signal regions more

homogeneous. The smoothed images were then manually thresholded using a

global threshold. The threshold was stet up by the operator at a value subjectively

thought to separate correctly the signal from the background. The so obtained

binary masks were used to extract the actual background and signal areas in the

original, non smoothed micrographs. The x-axis of figure 2.3 represents the mean

intensity of both the segmented background and signal areas. The y-axis

represents the standard deviation of the intensities in these areas. The points are

globally aligned along a trend line. However, it can be observed that the points of

lower values are clustered in the lower left corner of the graph. This cluster is

constituted by the measurements obtained from the background areas. The set of

points on the right of this cluster are the measurements obtained from the signal

areas. Although they are aligned with the background cluster, they extend over a

much wider range of values. This is due to the fact that signal intensities spread

themselves over a broad range of intensities. As a consequence, the standard

deviations in signal areas are also higher than in background areas. This

observation will be the basis for an assumption used to develop the Between Class

Variance Maximisation algorithm presented in section 3.4.

2.2.3. Comments on actual cell shapes
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Figure 2.4: HSPC morphology assessed by DIC images.

A - At low magnification (x630), cord blood MNCs appear to have a spherical
shape for the whole population. B -Identified cord blood HSPCs have similar
spherical morphology, as confirmed at higher magnification (x630x6).
However, some membrane protrusions are also clearly visible. C,D - Bone
marrow progenitor cells also have a blast morphology, but they show
increased membrane activity, as outlined by the yellow contours, in
comparison to cord blood HSPCs. This may reflect their physiological
interacting status in the bone marrow when compared to normally circulating
cord blood progenitor cells. Bars are 10 11mlong.

The actual cell shape will influence the way the antigen distributions will be

analysed. However, none of the LSCM datasets used fluorescent dyes for staining

the cell membrane (e.g. PKH26), and consequently the actual cell shape is not

known. DIC images taken in the middle region of the cell (in the middle of the z-

series, where it provides the neater image) helps to estimate the morphology and

average diameter of the cell. On one hand, the visual examination of such DIC

images (fig. 2.4) reveals that HSC have a typical blast morphology, i.e. small

(approximately 10 urn in diameter) rounded, quasi-spherical cells when observed
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in cross-section. On the other hand, DIC images do not provide information on the

three-dimensional structure of the cells. 3D sectioning using DIC images has been

attempted, but reconstructing the 3D shape of the cell using them was revealed

impossible so far due to the strong blurring effects occurring in the images taken

further away from the middle z-sections. From the LSCM image datasets used in

this work, the fluorescence signal from the cell membranes was used to get some

preliminary information on the actual cell shape (algorithm in Appendix C).

Basically, the fluorescent clusters and halos are used to estimate the mean radius

of the cell at each z-level. It appears that HSPC are either rather spherical or more

cylinder-like shaped (figure 2.5). A flat basis is often observed at the contact point

of the cell with the slide, probably a consequence of gravity and an increased

adhesion area triggered by the cell. As a result of this observation, a general

geometry for describing the HSPCs has been adopted and used all the way

through the present thesis. This geometrical system is presented in figure 2.6

along with the terminology used throughout the thesis.
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Figure 2.5: HSPC morpbology assessed by LSCM images.

Top left - Cell diameter (versus Z position) of three cells estimated using the
fluorescence of the membrane antigen. In all cases, the cell diameters are
reasonably circular. The diameter is automatically estimated as the median
distance of the fluorescent pixels from the cell centroid (program given in
appendix). The cells used were chosen to have a rather uniform membrane
antigen distribution. The profiles of the cells can be visualised and clearly
indicate that the cells are not truly spherical. Top right - Subjective
interpretation of the actual cell profiles by interpolation of the previous
measurements. The interpolation is particularly important at the top of the cells,
whose position is estimated as the Z-position where no fluorescence is
recorded. Bottom - Artist view of cell shapes. The cells are pictured as
flattened sphere, which is more in agreement with the actual measurements
than with a perfect theoretical sphere.
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(centred on the centroid ofthe cell)
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. t
HOrizontal plane of
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(gold coated glass)

Figure 2.6: Theoretical geometry of the system and terminology.

Idealised representation of a theoretical cell and some of the terminology
used throughout this thesis. The cell is assumed to be a perfect 3D sphere
adhering to the microscope slide at its contact point. It is divided in two
hemispheres, northern and southern, by the equatorial plane. The cell is
centred to the vertical axis, so it is possible to express any location in the
membrane using either Cartesian or polar coordinates.
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Chapter 3. Algorithms for automated fluorescence signal segmentation in

LSCM images

In the following sections, three new automated global thresholding algorithms

are presented. The first one is based on a multiscale analysis of scale image

histograms, the second is based on histogram comparison of a rescaled image

with a background area, and the third one is based on the maximisation of a

between-class criterion. A fourth region-based segmentation algorithm is also

presented in order to demonstrate the feasibility of such an approach. Due to its

innovative nature and the potentially wider range of applications of the first

global thresholding algorithm, the MultiScale Approach (MSA), the phenomena

investigated and used for its design are described and commented in detail first,

prior to the description of the MSA algorithm itself, followed by the shorter

descriptions of the other algorithms. All algorithms presented in this thesis were

implemented using Matlab 6.1 (the MathWorks Inc., Natick, Massachusetts,

USA) and were not compiled.

3.1. Preliminary qualitative analysis of scale image histograms

Generating scale images in order to perform segmentation is computationally

expensive. For instance, in a Gaussian scale-space, the scale is represented by

the standard deviation (J of the Gaussian filter used to blur the original image.

There is a continuum of values for (J, from extremely small to extremely high. In

computational applications, such continuum of values can be approximated with

discrete values. Once the (linear or discrete) scale image is constructed,

segmentation approaches make use of the analysis of the paths of critical points

(such as saddle points) through the scales, or regions bearing certain properties
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(e.g. high gradient for edges, homogeneity for smooth surfaces), and then back

tracking (through scale space) such features up to the original scale where

segmentation is performed. These steps greatly add to the computational load of

the segmentation process. These make scale spaces, despite being attractive and

theoretically powerful methods, expensive to implement in practice, especially

for large images. They are rarely used in real applications.

How could segmentation be performed on LSCM images using classical scale

spaces (Le. region-based approaches)? Since the features to be segmented are

fluorescent clusters, or "blobs", it could be imagined to back track the blobs

from coarse to fine scales by identifying local maxima in the scale image.

Similar back tracking procedure is common for segmenting image regions using

scale spaces. Theoretically, the paths of such maxima would have a tree-like

nature, the stem being located at the coarser scale while the number of branches

would increase at finer scales. At the finest scales, a problem would emerge:

there would be as many branches as the number of local maxima, those from

fluorescent blobs and those from local background fluctuations. Due to the

unimodal nature of the image histogram, deciding which intensity threshold

separates fluorescent from background blobs is not straightforward (this is

actually a problem similar to defining a threshold from a unimodal intensity

histogram, the problem addressed in this thesis). Consequently using scale image

for LSCM image segmentation does not appear to be a computationally efficient

approach which can be easily and robustly automated.
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It is herein investigated the intensity histograms of scale images instead, for

reasons partially described in this section and further detailed with the

description of the actual algorithm in section 3.21•

As a first introductory graphical example, a 1024xl 024 artificial test image was

produced which consists of two disks of different radii and intensities

contaminated with 80% random noise smoothed with a SxS Gaussian filter

(figure 3.1). A portion of the scale image is constructed by convolving this

original image with an llxll Gaussian kernel with 0=2 applied iteratively over

800 iterations. It can be noticed that the disks still appear distinctly despite being

blurred after 800 iterations. At each iteration, the intensity histogram is

computed and stored. The histograms along scales (iterations) are presented

colour-coded in figure 3.1. Three main lines (i.e. the histogram peaks

corresponding to both disks and the background) are observed. The middle line

corresponds to the smaller disk, while the left line is from the background and

the right line from the largest disk.

The positions of both the left and right lines do not vary much along the scales.

However, the middle one slightly (but clearly) deviates progressively towards

the left, lower intensities. This is a consequence of the diffusion process of the

small disk's intensities towards background intensities as the degree of blurring

is increased. It can also be observed that the spaces between the three lines

contain no or very small values (sky blue colour) at low scales, but become

progressively more filled with (in order of both appearance and increasing

magnitude) cyan, green and yellow colours. This phenomenon is particularly

t The reason for splitting the explanations is that the qualitative analysis carried out in the present
section is used to justify the design of the MSA algorithm described later, but some of these
preliminary explanations make use of objects computed with the MSA algorithm (i.e. the matrix
R from equation 3.10).
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distinct between the left and middle lines. For both these lines, the interpretation

is that, as blurring increases, more pixels from the smallest disk and the

background are "mixed" together and their intensities weighted according to the

local convolution product with the iteratively applied Gaussian kernel.

Therefore, as scales increase (Le. more iterations are performed), more pixels are

involved in this process at the boundaries of the disk and its surrounding

background, leading to the diffusion process observed on the histogram along

the scales.
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Figure 3.1: Intensity diffusion in scale space. Qualitative analysis of

histograms.

Top - Original test image used to produce this figure and its smoothed versions
after iterative convolution with an llxl1 gaussian filter (cr=2). Middle -
Histograms along scales. Three main lines/peaks are observed which
correspond to both disks and the background in the original and scale images.
Bottom - Histogram isolines (left) and graphical interpretation of the
convergence patterns observed with the isolines (right). As diffusion increases
with the scale, the relative frequencies of the intensities in the histograms are
modified and convergence patterns are observed. It can be noticed that some
intensities converge faster (i.e. over less scales) than others. Convergence rates
are affected by the initial relative frequencies and the spatial organisation of the
pixels.

Such diffusion manifests itself as an increased frequency of pixels with

intensities close to those of the disks. As blurring increases, diffusion increases:
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there is a transfer of intensities between main histogram peaks. This transfer

works both ways, from one peak to the other and vice-versa. In order to further

emphasise this process, lines of iso-intensities were computed (figure 3.1) from

the histogram along scales. This figure illustrates the complex patterns of

intensity transfer/diffusion along the scales. Using these isolines, a schematic of

the dynamical patterns was drawn. It is observed that isolines converge with

different "speeds", or rates, at various scales, depending on the relative

magnitudes of the different peaks and the spatial relationships of the pixels in the

image, prior to reaching a slower, more uniform progress along the scales. The

frequency of particular intensities at and close to the main peaks is also depicted

(figure 3.2, A, B, C, D). Generally, it is observed that the frequency increases

markedly over the first scales prior to decreasing at various rates. Eventually the

frequencies increase again steadily with much lower rates. The graph E shows

the frequencies measured half-way between both peaks, which globally increase

over scales with different rates. Such increase is not steady over small local scale

ranges (it fluctuates), a consequence of the complex dynamics occurring during

the diffusion process. These figures illustrate the effects on the image histogram

of the diffusion process as scales are decreased.

It is worth noticing that generating such figures from an initial1024xl024 image

is very computationally expensive. In definitive, after 800 iterations, little seems

exploitable from these histograms.
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Figure 3.2: Frequency vs. scales for particular intensities of the scale image

histograms.

In all cases, the black lines indicate values measured at the original peak
locations, the blue lines at one intensity unit from the peaks, red lines at two
intensity units from peaks, and green lines at three intensity units from peaks.
A - Frequencies measured at and on the right of the first histogram peak. B -
Frequencies measured at and on the left of the second histogram peak. C -
Frequencies measured on the right of the second histogram peak. D -
Frequencies measured at and on the left of the third histogram peak. These
graphs (A - D) reflect different evolutions of the frequencies around the
histogram peaks which are due to the diffusion process taking place down the
scales of the scale image.E - Frequencies measured half way between the first
and second histogram peak (top curve) and between second and third peak
(bottom curve). See text for comments.
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Figure 3.3 shows another example of the effect of diffusion on histograms.

Instead of using a 2D image, an arbitrary 1D signal was used for speeding up the

diffusion process. Both histograms B and C were produced as described above,

using iterative convolution with a Gaussian filter of fixed standard deviation.

Again, convergence of the intensities through diffusion is reflected in the

histograms by having convergence and merging of peaks. Smaller peaks

converge faster while it takes relatively much longer for the biggest ones. Global

convergence of all peaks happens within less scales if the standard deviation is

increased, but at the cost oflosing the resolution of convergence process at finest

scales. Alternatively, increasing o at each iteration allows to visualise the

convergence details at all scales and to speed up the process at high scales. The

choice of how o should be modified through the iterations is rather subjective,

depending on the performance of the processor used and the level of details

needed.
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Figure 3.3: Frequency vs. scales using different scale parameters.

A - Original histogram of the 1D signal used to compute these histograms in
scale spaces. B, C - Histogram of scale signal generated by iterative convolution
with Gaussian filter of fixed SD (indicated on the left of the figures). A higher
SD speeds the intensity diffusion, as reflected by faster convergence of the
histogram peaks, but at the cost of losing details observed at finer scales. D -
Histograms obtained by varying the SD as a function of the iteration number i.
Details are observable at both fine and coarse scales.
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3.1.1. Convergence rate of histogram frequencies along scales

It was previously mentioned that the rate of convergence of peaks along the

scales depends on the relative sizes of these peaks and spatial pixel distributions,

and they carry some information about the intensity distribution of the image

pixels. In the MultiScale Analysis (MSA algorithm) described below, a measure

of the diffusion rates of the pixel intensities is performed (detailed in section 3.2)

from the histograms. Such measure has high values when, for a given intensity,

the frequency changes significantly between two consecutive scales, and low in

the opposite case. When there is no frequency change between scales (the

frequency is either zero or a positive constant), the diffusion rate is zero.

Figure 3.5 shows both histograms and corresponding diffusion rates for different

images with strongly unimodal histograms (original LSCM image - fig. 3.4-top,

smoothed LSCM image - not shown - , pure smoothed fluorescent signal - fig.

3.4-bottom, pure original background - fig. 3.4-middle -- and smoothed

background - not shown). Histograms and diffusion rates were computed from

approximated scale image until complete diffusion was achieved (which

theoretically takes infinity steps with Gaussian scale spaces). The schematics on

the right column symbolise the features of interest observed on the diffusion rate

figures. Lines are similar to the arrows used in figure 3.1, indicating the

dominant diffusion patterns, or "diffusion lines", applied this time to the

diffusion rates instead of the histograms. The red points indicate the locations

where main diffusion rates disappear. The green areas show the regions were the

positive histogram frequencies vary little or not over scales, and the

corresponding diffusion rates consequently equal zero. The vertical dashed lines

indicate the mean image intensity.
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Original LSCM image

Pure noisy background

Pure smoothed signal

Figure 3.4: Images used for qualitative multiscale analysis of

histograms.

Top - Original LSCM image (noisy background + noisy signal). Middle -
Pure (negative) noisy background with same PDF as original noise
background in LSCM images. Bottom - Pure fluorescence signal smoothed
with a IOxlO moving averaging filter.

3.1.2. Diffusion applied to LSCM image noise background

For an image containing only background noise (distributed as in an original

LSCM image) (fig. 3.4-middle), half way along the scales, the diffusion rates

disappear as diffusion has reached an equilibrium (fig. 3.5-second row). Two
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"tails" (black lines) indicate the rate paths, one on each side of, and converging

to, the average intensity. Smoothing LSCM images, or similar type of images

(e.g. interferometry images) is known to improve segmentation. The effect of an

initial averaging filtering (lOxlO kernel) is depicted in figure 3.5-third row. Two

tails are present on the diffusion rates, but (importantly) they are located on the

left side on the average intensity, which corresponds to background-only

intensities in LSCM images. Moreover, they are separated by a green area of

diffusion dynamics at equilibrium, scales over which no important changes

happened during the diffusion process. The tail at finest scales (top tail) has rates

of higher magnitudes than the second tail. Overall, smoothing did reduce the

magnitude of the rates associated with background intensity diffusion.

3.1.3. Diffusion applied to LSCM image signal

Similar experiments were repeated on pure fluorescence signal (similarly

smoothed) segmented manually to remove background areas (so the noise does

not interfere with the process) (fig. 3.4-bottom). A more complex pattern of rate

paths emerged (fig. 3.5-top row). Again, an equilibrium phase is achieved along

some scales which extends over approximately 5 scales. Leaving this

equilibrium phase, diffusion rates took positive values again, with two main tails

situated on both sides of the average intensity. The longest tail is situated on the

right side of the average intensity, which corresponds to the region of signal

pixels in LSCM images. Most tails (black lines) are actually located to the right

of the average image intensity. The rate's magnitudes are higher at coarser scales

(Le. after the equilibrium phase) than finest ones, the opposite of what was

observed with the pure smoothed background image.
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Histograms Diffusion rates Interpretations

Figure 3.5: Qualitative analysis of histograms and diffusion rates along

scales.

Scale space versions of the LSCM image components displayed in figure 3.4
were generated and their histograms computed along scales (left column, similar
to figure 3.1). These histograms were further processed to measure the diffusion
rates between consecutive scales (middle column), and a qualitative
interpretation of both histogram and rate matrices are given (right column).
Refer to text for details.

92



Marc-Olivier Baradez PhD Thesis Chapter 3. Segmentation algorithms

Therefore it appears that diffusion rates of signal and background images have

qualitatively different behaviours over scales. Tails for background images are

located on the left of the average image intensity while those from signals are on

the right. Higher rate magnitudes are located at finest scales for background

images while they are observed at the coarsest scales for signal images.

3.1.4. Diffusion applied to LSCM images (background noise + fluorescent

signal)

Similar experiments were performed on original LSCM images and smoothed

images. In both cases (figure 3.5, fourth and fifth rows), complex patterns of rate

paths are observed. The tails of highest magnitudes are still those generated by

the presence of the signal component, in coarser scale regions and have quite

similar patterns for both smoothed and unsmoothed images.

However, for an unsmoothed image (fig. 3.4-fourth row), the equilibrium phase

takes place mostly on the right of the average image intensity, were signal pixel

intensities are expected. For a smoothed image (fig. 3.4-fifth row), it also takes

place on the left of the average intensity, corresponding to background

intensities. In comparison to tails on the right of the average intensity, the left

tails extend over less scales. The consequence is that smoothing reduces the

magnitude of diffusion rates along scales for background intensities and the

number of scales over which diffusion is greater than zero. Furthermore, highest

rate magnitudes corresponding to noise diffusion are observed closer to the

average intensity in smoothed images than in unsmoothed images. Also, while
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these rates have lower magnitudes in background regions of the figure, they are

more present on the right side of the average intensity. Smoothing increased the

effect of the "interactions" between signal and noise pixels through diffusion by

shifting the diffusion rates more to the right of the average intensity (the tails).

From these observations, it appears that analysing diffusion rates instead of the

histograms provides with more information about the dynamics of these

histograms along scales. They reveal patterns which are not obvious from the

histogram figures. Rates also identify regions of the histograms where

background and signal can be characterised for developing a segmentation

approach. Such an approach is provided below, where details on how the

histogram and rate matrices were constructed are described. In addition, this

preliminary analysis showed the importance of smoothing the LSCM images

prior to applying the diffusion process and its influence on the behaviour of the

rates along scales.

3.2. MultiScale Approach (MSA)

Unimodal histograms observed on LSCM images are the consequence of the

noisy background which predominates over small but significant signal areas

with lower occurrence of signal pixels. Furthermore, the pixels in original signal

areas share a wide range of intensities with background pixels, which

complicates the selection of an appropriate global threshold which would well

separate noise and signal. This new algorithm makes use of a property of scale

space images or image pyramids, Le. the convergence to the mean image

intensity as scale increases. However, an important and novel aspect is that it
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works from the information contained in respective "scale histograms", thus it

remains a histogram based approach.

It is hypothesised that the intensity of signal pixels would converge to the mean

image intensity in a different way than background pixels, due to the unbalanced

relative frequencies of both these populations. It is expected that, as scale

increases, the intensity of the highest value pixels (signal) would diffuse quicker

towards the average image intensity than background pixels, due to the relative

rarity of such signal pixels. As a consequence, it is expected that the frequency

stored in the bins corresponding to signal pixels in the scale histograms would

decrease quickly and converge to zeros while the signal disappears. Thus, the

analysis of the diffusion rate of each histogram bin along the scales should

behave differently (i.e. have different dynamics) along the scale, somehow

revealing the intensity values respectively corresponding to background and

signal regions, and the decision of an appropriate threshold would be derived

from this analysis.i

Such a histogram-based approach can be computationally very efficient, as the

important convergence rates are solely calculated from first order statistics, if the

image rescaling process is computed efficiently. In order to speed up the

convergence process to reach the average image intensity, the re-scaling process

of the original image was implemented so that the total number of pixels was

reduced by half at each scale. The original l024xl024 LSCM image was first

2 The term "diffusion rate" is preferred to retain the idea of the diffusion process despite the fact
that the term "convergence" is used to describe the process by which the frequency per
histogram bin, over scales, approaches - converge to - the value zero. In addition during this
process, the original histogram peaks convergent hierarchically and merge as the scale decreases,
eventually converging to the mean image histogram (figure 3.5).
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smoothed with a IOxIO averaging filter (the benefit of this operation were

qualitatively outlined in section 3.1), and vectorised as a vector Cl so

Cl = {C(I),C(2), ...,C(n)} n = 10242
• 3.1

The first 1024 elements of this vector are constituted by the first column of the

image, the next 1024 elements are from the second column, and so on. A

normalised histogram of this vector Cl was computed as

with
2SS

LH~(i) = 1.
i"O

3.2

which corresponds to the histogram of the original image after the initial

smoothing step. The re-scaling of vector C was implemented by re-organising

the 1x 10242 elements of C into a 2x[ (10242)/2] matrix C', so

C' = [C(l) C(3) C(n -1)]
. 1 C(2) C(4) C(n)

3.3

and averaging down the columns to produce a new vector C2 containing Ix(nI2)

elements. By definition, this new vector contains half the number of original

pixels, and intensity interpolation (averaging) is used to calculate the values of

the new elements.

As for the original vector image, the normalised histogram of C2 was computed

as

2SS

with LH~(i) = 1.
i-O

3.4

This process is iterated, so C2 is reorganised according to equation 3.3, then

averaged along the nl4 columns, H~ is computed, and so on.
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This averaging process is related to mean intensity interpolation used in some

pyramid images. It can be seen that, despite vectorisation of the initial image, the

values in C2 are mean intensity interpolations of spatially adjacent pixels

grouped in pairs. The spatial relationship of pixels holds during the rescaling

process, as it does for scale space images or pyramids, except that it is not based

on a similar local basis (Le. the averaging is not performed in nxn

neighbourhoods). Indeed, the elements of C2 are the average values of the pixel

pairs

C2 ={(1,2) (3,4) ... (n-l,n)} 3.5

where the brackets contain the indices of the elements from Cl used for the

averaging. Iterating the process leads to

C3 ={(1,2,3,4) (5,6,7,8) ... (n-3,n-2,n-l,n)},

C4 = {(I,2,...,8) (9,10, ...,16) (n-7,n-6, ...,n)},

3.6

3.7

Cs ={(1,2, ...,16) (17,18, ...,32) ... (n-15,n-14, ...,n)} 3.8

and so on. After log(1024)/log(2)=IO steps, CIO contains the 1024 average

intensities calculated down each of the 1024 columns of the initial smoothed

square LSCM image. Following the same construction, CII contains the average

intensities of 1024/2=512 pairs of columns from the square LSCM image

grouped such as the first element is the average of the first two columns of the

image, the second element the average of the next two columns, and so on.

This dynamics explains the structures observed in figure 3.5 depicting the

histograms H~ computed along the scales i. The whole matrix containing these

histograms is referred to as H. At the finest scales (first iterations of the rescaling
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process), the intensities of the rarer signal pixels are diffused rapidly into the

background. This is because average intensities stored in the Cj are computed

from non-overlapping image segments (aligned in the 2D image from top to

bottom and left to right) of exponentially increasing sizes. It explains the initial

fast convergence in the direction of the average intensity value observed in H, on

the right of the average intensity. As scales decrease, exponentially more aligned

adjacent pixels are involved in the averaging locally computed in the columns of

the square image as shown by the equations 3.6, 3.7 and 3.8 above, so the impact

of signal pixels whose intensities have already diffused significantly have an

exponentially lower impact on the averages. A similar effect would have been

observed if the averaging had been performed directly on the 2D image in spatial

sub-regions of exponentially increasing sizes. This explains why an equilibrium

state is achieved in H after a few scales (typically 5). Indeed, during these 10

first scales, convergence to a mean intensity per segments of the 2D image is

achieved quickly (5 steps), so the histograms computed from these mean

intensities are rapidly found to vary little over scales.' This is the equilibrium.

This also explains why the equilibrium lasts until the io" or 11th scale, since the

10th scale corresponds to the scale where each single column of the 2D image

has been fully averaged. At the 11th and above scales, the columns in the 2D

images start to be averaged by pairs, generating new histogram dynamics as new

averages of now stable averages are computed. Again, in this process, the

column averaging involves an exponentially increasing number of columns. This

leads to the forced convergence of mean intensities to the global image average

value at the last scale.
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Through the whole process, only adjacent pixels are involved, i.e. no pixels from

separate image regions are simultaneously averaged. This is important as it

means that the features measured here and computed at one scale, the averages,

are directly related to those computed at the previous and finer scales, while

spatial pixel relationships are maintained. This property meets the requirement

stated by the causality principle of scale space theories, which makes the

proposed method a scale space approach (section 1.3.3.3).

The re-scaling of the lxM vector initially obtained from the MxM smoothed

original image takes

k = 210g(M)
log(2)

3.9

steps. This approach· is computationally very efficient as it works in

O(210g(M)/log(2)). Applied to 1024xl024 LSCM images, the whole re-scaling

process takes k = 20 steps, each one being twice faster than the previous one,

after which the image is reduced to a single pixel whose intensity equals the

average original image intensity (similarly to the single pixel at the top of an

image pyramid constructed using mean intensity interpolation). Therefore the

requirement of designing a fast scale space histogram-based method is met.

At the end of this procedure, H is a 20x256 elements matrix. H contains the

normalised histogram information (horizontally) of the original image observed

at decreasing scales (vertically), eventually converging to the mean intensity

(fig. 3.6-A). The first row contains the values of the original normalised image

histogram, and the last row contains only zero-valued elements, except for one

element which represents the intensity value at equilibrium of the diffusion

process.
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As qualitatively investigated in section 3.1, the rate of diffusion is influenced by

the relative occurrence of pixel intensities and by the local density in their

neighbourhood. For instance, if there is initially a very low proportion (a small

population) of pixels with intensity j in the image, more pixels with different

intensities are present in their neighbourhoods. Consequently, through averaging

along scales, the intensity of this population quickly diffuses into the intensity of

the surrounding pixels, which makes Hij quickly converge to 0 as i increases (i

andj respectively being the index of the row - scale - and the column - intensity

- in matrix H). Conversely, ifHij has an initial high frequency, the diffusion to

o is slower.

The diffusion rates were calculated from the histograms in H by computing a

rate function R such as

RI-I =( l+H~ -1J2
1+H1-1. c

3.10

ie{2, 3, ..., k}
..•

where H~ and H~-I represent the normalised histograms at scales i and i-I

respectively. Consequently, if H;J= 0 and H;+lJ= 0, then R1•j= 0 accordingly to

equation 3.10. A diffusion rate of zero indicates no further diffusion at a

particular intensity value j, at a particular scale i. As uniform areas generate

increasingly predominant peaks in the vectors ordered along the y-axis of R, the

apparition of only one major peak (close to the mean grey intensity level in the

smoothed image) is expected as a consequence of the histogram unimodality

(fig. 3.6-B). This peak is generated due to the dominance of the uniform noisy
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background in LSCM images and its position in R is affected by the presence of

signal pixels (section 3.1).

The next step consists of using the information stored in R to define the

appropriate threshold used to binarise the smoothed original image. It is

convenient to reduce the 2-dimensionality of R to a one dimensional curve from

which the threshold would be selected. As the one dimension to be retained in

the process is the intensity axis, the x-axis of R, the scales, the reduction has to

be performed down the columns of R.

In section 3.1, the properties of diffusion rates were described. In summary,

most of the matrix R contains zero-valued elements, except in regions of

dynamical activity along scales. Regions of R corresponding to background

intensities (on the left of the mean intensity value) display tail-like structures

which have lower magnitudes and lesser extent over the finest scales in

comparison to those observed in signal regions. For these background intensity

regions, rates are situated closer to the mean image intensity. Most rates are

found in regions around the average intensity and on its right, which

predominantly corresponds to signal regions. Therefore most activity is observed

at the intensities separating background and signal, where an appropriate

threshold should be set up. It is proposed to use the information in R by

calculating the median values along the columns to produce the 1x256 vector

Rmed =median(R) 3.11

which allows the identification of the predominant diffusion rate for each

particular grey value of the histogram in the scale space (down the columns).

However, other measurements may also be used. This rank filter is commonly
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used to identify the predominant value of a series, which is what is aimed to be

done here down the columns of R as more diffusion rates are observed for the

intensities separating background and signal pixels.

The curve Rmed has specific properties due to the unimodal nature of the

original image histogram (fig. 3.6-C). The relative rarity of bright significant

signal pixels causes these pixels to initially diffuse quickly to lower intensities.

Therefore, after a relatively short number of re-scaling steps, the rows of R

corresponding to most signal intensities contain predominantly zero-valued

elements. Thus, Rmed = 0 for these intensities. After these first re-scaling steps,

the scale image contains values closer to the mean intensity and the histograms

reach an equilibrium dynamics, for which Rmed = O. The initial smoothing

process makes the lower intensities from the background to quickly diffuse

towards the mean image intensity and the equilibrium state is reached earlier in

these regions than for the signal, and it lasts as long as for the signal. Moreover,

at these first scales, the presence of signal pixels "forces" the diffusion rates to

be shifted towards signal regions of the matrix R, for intensities higher than the

mean image value.
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Figure 3.6: Threshold calculation using the MSA algorithm.

A - Typical histogram matrix obtained after the 20 rescaling steps of a
smoothed LSCM image as involved in the MSA algorithm. B -
Corresponding diffusion rate matrix. C - Median rates calculated down
the columns of B. The inlets represent magnified portions of the figures.
The landmark points a and b are indicated as well as the threshold set up
half way between these points.
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The curve properties are used to identify landmarks along Rmed from which the

threshold value is set up. As a result of these properties, Rmed presents a distinct

peak located at, or very close to, the mean image intensities. This peak is due to

the predominance of positive diffusion rates over zero-values down the scales in

R, and has highest magnitude at the average image intensity. Thresholding at the

mean intensity (as is heuristically performed sometimes) does not provide a

good segmentation for images with unimodal histograms. Indeed, the image

appears over-segmented and a many patchy background regions are included in

signal regions. So the intensities on the left of the peak belong to background

pixels and those from the signal somewhere on its right. The rarity of signal

pixels making their intensities to diffuse quickly over the first scales, the bin for

which Rmed first equals zero above the right of the peak indicates where most

rates along scales equal zero, which is expected to belong to signal pixels. The

position of this point and the peak are used as landmarks along Rmed. They are

detected as

a = arg max(Rmed). 3.12

as well as the coordinate that first realises

b = arg [Rmed (i) = 0]

ie[a; 255].

3.13

The thresholds T that separates background and signal areas belongs to the

interval la; b[. Since we are dealing with strong unimodal distributions, the
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interval [a; b] is generally small (typically between 7-8 up to 15-20 intensity

units, from the range 0-255), as indicated in figure 3.6 (magnified window). All

values of Rmed in [a; b[ are positive, and all values in [b; 255] equal O. Due to

the relatively small distance separating a and b, the intensity T used to threshold

the original smoothed image is calculated as the average of a and b:

T=a+b
2

3.14

but more elaborated procedures to calculate T could also be implemented

according to the shape information of Rmed in the interval [a; b]. This threshold

was found to provide segmentation in very close agreement with human

operators (see section 4.2). The output of this algorithm is a binary mask

obtained from the smoothed image thresholded at T, used to separate the signal

from the background in the original LSCM image. Both the signal and the

background are then available for further analysis.

3.3. BackgroundlImage Histogram Comparison (BIHC)

The principle behind this algorithm is to compare the histogram of the original

image resized to a much lower scale (obtained using mean intensity

interpolation) with the histogram of a typical background area, as illustrated on

figure 3.7. This allows the identification of an intensity range distinguishing

background from foreground values where a potential threshold could be set (as

the landmark points on Rmed which were used for the same purpose).
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Figure 3.7: Principle of the Bme algorithm.

Steps involved in the BIHC algorithm. Figure 3.8 shows the threshold
calculation using histogram comparison.

The original 1024 x 1024 LSCM image was reduced to a 100 x 100 image B

using mean interpolation. Since the reduced image contained mainly non-integer

elements, we computed the histogram of B in the range [0; 255] with a bin size

of 0.1 (for a better precision), which results in the 1 x 2551 vector Hs

Hs = histogram ofB. 3.15

In the next step, a histogram representing a background distribution was

calculated. To represent a background region, an area C (110 x 110) was

selected from the upper left comer of the original LSCM image. This was a

reasonable assumption as single cells were generally positioned in the middle of

the images. The area C was smoothed using a moving averaging filter (1Oxl0),

which generated a 1OOx100 matrix D while excluding the border values.
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As for B, D contained mainly non-integer elements and had the same size as B.

Its histogram was calculated with a bin size of 0.1 (for a better precision), which

resulted in the 1 x 2551 vector HD

HD = histogram ofD.

The difference histogram between HB and HD was computed as

3.16

3.17

As observed on figure 3.8, HB extended over a wider scale of intensities (due to

the presence of signal) than HD. Therefore, the maximum of HB was generally

slightly shifted to the right compared to the maximum of HD, and the peak of HD

was higher than the peak of HB. Due to the unimodal shape histogram HB, the

mean image intensity is located on the right of the peak. As discussed in section

3.1, the intensities on the left of the peak belong to background pixels while

those from the signal are somewhere on its right. In order to find automatically

an appropriate threshold, a potential range of values had to be identified. The

maximum J of d was first detected such as (see figure 3.8)

3.18

The upper limit Tmax of the range of potential threshold values was identified as

the first intensity that satisfied the condition

HD(i) = 0, with i e [J,255] . 3.19
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Figure 3.8: Threshold calculation using the BllIC algorithm.

Background and rescaled image histograms are compared by
calculating the difference histogram. The three curves are used to
identify landmark points (J, Tmill' Tmax) and the threshold is set up half
way between Tmill and T max.

This indicated that there was no more contribution of background pixels in the

histogram of the reduced original image. By comparing the difference histogram

d with the background histogram BD, it was possible to define the range of

intensities where most pixels would statistically belong to the background. The

lower limit Tmin of the range of potential threshold values was identified as the

first intensity that satisfied the condition

d(i) > BD (i), with i E [J;255] . 3.20

Statistically, all intensities above Tmin were predominantly found in signal pixels

while all intensities below Tmin were predominantly found in background pixels.

As a consequence of the histogram unimodality, the interval [Tmin; Tmax] was
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generally very small, and a threshold that separated well the background from

the signal was calculated as

3.21

As for the MSA described in 3.2, the output of the BIHC algorithm was a binary

mask obtained from a smoothed original image thresholded at T.

3.4. Between-class variance maximisation (BCVM)

This algorithm was developed following an observation on the original LSCM

images that the variance of a background area was significantly lower than the

variance of an area containing signal pixels (figure 2.3). Signal areas comprise

pixels with background intensities and also pixels with brighter signal

intensities. The range of intensities covered in signal areas is consequently wider

than in the background, explaining the higher variance in such areas (see section

2.2). Due to the unimodality of the histogram and the nature of the signal,

foreground signal pixels are represented somewhere on the negative slope of the

histogram. The proposed algorithm works on the hypothesis that the difference

in variance between background and signal intensities is also reflected in the

histogram. Thus, a threshold could be found by maximising the between-class

variance from the histogram itself, which can be seen as a simplification of

Otsu's approach.

The original LSCM image was smoothed with a lOx 10 averaging kernel and its

normalised histogram computed as
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255

H, so 'LH(i) = 1
;=0

3.22

A threshold T was moved along H that separates H in two classes HO~T and

HT+I~25S' The variances of both classes were computed such as

aCT) = var(HO~T)

beT) = var(H T+I~25S)

with T E [0,255]

and their absolute difference was calculated as

D(T) = laCT) - bCT)1
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Figure 3.9: Typical response curve of the BCVM algorithm.

Absolute difference of classes' standard deviations as the threshold is moved
along the X axis. The algorithm sets the binarisation threshold at the position
of the peak, indicating the intensity for which this between class variance
criterion is maximised.
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and was shown in figure 3.9. The appropriate threshold Twas set up as

T= arg max (D) 3.26

and was used to generate the binary mask as previously described.

3.5. Spatial method: a watershed based algorithm

In this section, a spatial segmentation method is described using the watershed

algorithm (described in section 1.3.3.1), as a demonstration of the feasibility of

the approach. However this region-based approach does not match the

computational efficiency of the global segmentation algorithms previously

described and was not subsequently used. In LSCM images, the signal is

naturally brighter than the background and consists of several well-defined or

loose clusters embedded in a weaker halo. It should be possible to segment such

images using a region-based approach.

Watershed methods work best when the signal is distinctly observable as regions

superimposed to the background. This is not the case with LSCM images, where

the boundaries between the fluorescent clusters, the halo in the cell membrane,

and the background are hard to define, either visually or using algorithms.

However, the signal being brighter than the background, the first region

segmented using watershed segmentation necessarily contains the signal region

which contains the highest intensity values. This region is labelled 1 in the

corresponding label matrix. The second watershed is also likely to encompass a

signal region, it is labelled 2 in the label matrix, and so on for the first

watersheds. The hierarchical nature of watershed segmentation is responsible for

segmenting signal regions first, and the background later, due to the properties
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of LSCM images. The rationale behind the new proposed algorithm is to

describe a method which would allow to estimate which of the region label

separates well signal and background watersheds, simply taking into account the

labels and size of these watershed regions.

The watershed algorithm is well known to be sensitive to noise. Hence, in this

study, a 10xlO median filter was first applied to attenuate the effect of the

speckle noise. Then, the watershed algorithm was applied to the filtered LSCM

image. A label matrix L was computed which contained the segmented regions

whose elements are labelled with the order number in which they were

segmented, separated by boundaries consisting of zero-valued pixels. This label

matrix L is further used to discriminate between signal and background. The

histogram HL of L is then computed in the range [1; Lmax], where Lmaxrepresents

the label value of the last region segmented by the watershed algorithm. It is

hypothesized that the sizes of the watersheds in signal regions, and the order in

which they are detected, will present different and distinct

behaviours/distributions along the histogram of L. Such a histogram is displayed

in figure 3.10-A. It can be noticed that approximately the first third of the

histogram seem to contain lower values in comparison to the remaining two

thirds of the curve. This tendency is made even more obvious after two

convolutions of the histogram with an averaging filter of length 5 (figure 3.10-

B). After this smoothing operation, the baseline of the first third of L is

noticeably lower than the baseline of the remaining two thirds of the curve. This

observation can be further demonstrated by computing the histogram of the

histogram of HL, between the minimum and maximum values of HL. This

histogram is displayed in figure 3.1O-C. Two peaks, each corresponding to the
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different behaviours of HL, are visible. They are separated around the value 50.

These observations tend to confirm that watershed segmentation can indeed be

used to segment the fluorescence signal in LSCM images.
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A) Watershed size vs.
Watershed number

C) Histogram of B
computed along the
vertical axis
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B) result of filtering A with
a moving averaging
window of size 10

>-uc
Cl)

=er
E
IL

Watershed size
.00

Figure 3.10: Using watershed segmentation to produce bimodal data from

unimodal LSCM images.

A - Watershed size plotted against the watershed index (Le. the order in which
each watershed was detected). The first watershed basins detected belong to
the signal regions, in principle, while the last ones belong to background
regions. It seems that above the index 2500, the watersheds are significantly
bigger than below this index, indicating a potential threshold for
discriminating signal from background. This is more obvious after smoothing
- B - the original curve. After this operation, the baseline of the curve is much
lower below index 2500 than above. C - The histogram of curve B computed
along the vertical axis eventually demonstrates that this data is bimodal in
nature, the first peak being representative of the signal regions while the
second peak is mainly due to background regions.
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In order to identify the index of HL which discriminates between signal and

background watersheds, further processing of HL is used. The cumulative sum of

HL is calculated as

I

CHL (i) = 2:HL (n)
n-I

3.27

with ie[l;maxLll.

Computing CHL allows to better visualise the transition between the regions of

different behaviours. Indeed, CHL is presented in fig 3.11-fop, and it tends to

steadily and regularly increase initially, then a clear shoulder marks the

transition between both classes, and the slope of CHL after the shoulder is

notably increased. This shoulder is an obvious landmark point and its position

should be detected. To facilitate this detection, CHL is further transformed as

[
c (maxL) - C (1) ]C~ (i)=CH - HL HL i+CH (i)

L L maxL L
3.28

where the terms in the square brackets represent the equation of the straight line

which joins the first and last point of CHL' Therefore, C~L is the difference

between CHL and the straight line which joins the first and last point of CHL •

Such transformation makes the detection of the shoulder in CHL much easier.

Indeed, the maximum distance point is located at the position Sof the extrema of

C~L without considering the sign of this extrema. This point indicates the

transition from one type of regime (or behaviour) to another for the sizes of the

segmented watershed basins. The curve C~L is displayed in figure 3.11 and it
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Figure 3.11: Locating a threshold from watershed data.

Top - Cumulative sum of the first curve presented in figure 3.1O-A.In this
case, three main linear segments are visually identified, each with a different
slope. The dashed line joins the first and last points of this curve. Bottom -
Result of subtracting the dashed line to the cumulative curve. This procedure
emphasises the transition between the linear segments. The location of the
minimum point is located as a landmark point: watersheds with indexes
higher than this point belong to background. For simplicity, the indexes of
the watersheds belonging to signal regions are those between 1 and half the
value of the landmark curve minimum position.

can be observed that the extrema corresponds to the minimum of C~L'which is

located around the watershed number S=2600. Using the transformation

described in equation 3.28, the steady regime observed of the left of the shoulder

is also made clear and appears as a rather straight line with negative slope (with

a small peak located at the first watershed regions). The more erratic nature of
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the watershed segmentation process in background areas is reflected by the

rougher evolution of C~L after the position of the shoulder.

From experimental observations, the threshold T is set up half way between 1

and the position of the shoulder, i.e.

ST=-.
2

3.29

In order to obtain the binary mask (fig. 3.12) of the signal in the LSCM image,

the first T watersheds and their boundaries are labelled 1 (for signal regions),

while the rest of them are labelled 0 (for background regions). Therefore, this

thresholding procedure is not a global thresholding approach. It is region-based

and has the effect of local thresholding (Le. different thresholds are chosen

locally as a consequence of the watershed procedure).
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Negative original LSCM image Result of filtering the LSCM
micrograph with a 10x10 averaging
filter

Watershed segmentation result. Segmentation of the watershed
The darkest areas indicate the output ,
earliest segmented watershed

Figure 3.12: Example of image segmented using the watershed algorithm

proposed in this thesis.

The top left image is the original LSCM image, and the bottom right image is the
binary mask obtained from the proposed watershed algorithm This watershed
algorithm provides good segmentation result in images with a reasonable contrast,
but was observed to loose its consistency with poorer contrast images.
Furthermore, it is much more time consuming than the global thresholding
approaches developed inthis work.
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Chapter 4. Validation of fluorescence segmentation and quantification

Segmentation performances of these algorithms were assessed by comparing

their outputs. The MSA algorithm was potentially more interesting to use due to

theoretical considerations and it was subsequently used to segment all datasets

prior to their analysis. Since this analysis relies on the accurate identification and

quantification of the signal in LSCM images, artificial LSCM images were

generated to test the reliability of the segmentation performed by the MSA

algorithm. The first section of this chapter (section 4.1) describes the

construction of such artificial images. In the second section (section 4.2), the

segmentation algorithms are compared and fluorescence quantification using the

MSA algorithm is validated.

4.1. LSCM image synthesis for segmentation validation

4.1.1. Laser scanning confocal image synthesis

Theoretically, several ways are possible to generate artificial LSCM images.

LSCM is commonly used to obtain 2D images through an optically transparent

sample, or in 3D in order to capture the three-dimensional structure of this

sample. Thus, for some test applications, the artificial/phantom data can be

generated from a two dimensional model which aims to describe the signal

generation in particular optical planes. Some other applications may consider the

influence of the 3D structure of the sample on the generation of artificial images,

and therefore a 3D model may be constructed to generate artificial z-sections

series (not covered in this thesis).
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For both approaches, preliminary measurements can reveal useful information to

estimate the parameters of the models. Such parameters include the probability

density function (PDF) of the noise, the size and shape of the cells, possibly the

point spread function of the system, etc. In order to make artificial data as

similar as possible to real data, these preliminary measurements may be

performed on small sets of original LSCM images.

In the first step of the process, the noisy background of the image is generated

from a measured PDF from real images. The second step simulates the

generation of the fluorescence signal according to different assumptions on the

nature of its spatial distribution.

4.1.2. Background noise generation

Various noise models are commonly used in image synthesis. Well-known

models include uniform, Gaussian, Rayleigh, gamma, exponential and impulse

noise. The PDF of some of these distributions are given below, and can be used

to generate spatially non-correlated background noise in artificial LSCM images:

Gaussian PDF:

Rayleigh PDF:
{

2 (:_0)1

p(z) = b~z-a)e b for z e a
for c e
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Gamma PDF: for z z O

for z c O

Exponential PDF: {
ae-az

p(z) = 0
for z ~ 0
for z < 0

where z is a random variable. The quantities a and b are positive constants which

are used to define the mean and variance of these PDF.

The noise in microscope images is theoretically assumed to have a Poisson

distribution, or a mixture of Poisson distributions. In some real datasets, the

experimenter may have adjusted the brightness and contrast of the image so that

the noise histogram is stretched and shifted to the left of the graph. This results

in an observed exponential PDF. Therefore, an estimate of the noise actual PDF

is valuable to generate realistic artificial images, and the noise in the proposed

synthetic images was modelled from PDF measured on real datasets. Indeed,

simplistic assumptions may reveal not to be accurate enough or may generate

wrong and biased results when the algorithms are tested on them. The PDF

Pmeasured(i) of a manually selected background region (supporting 8-bits encoded

intensity values) is obtained by dividing each value of its histogram h(i), where i

is the intensity index, by the total number of pixels used to compute it, so

255
LPDF= LPmeasured(i)=1.

;=0

4.1

The generation of the artificial nOlSYbackground is achieved by directly

calculating the number of pixels of intensity i multiplied by the total number of

pixels in the finalN xN image, i.e

122



Marc-Olivier Baradez PhD Chapter 4. Validation

number of pixels with intensity i =NP(i) =N2
X Pmeasured (i) . 4.2

Random variability is introduced in NP(i} to avoid the synthesis of background

with exactly similar histograms, with a condition ensuring that the final number

of pixels produced equals N2
• For any intensity i, NP(i) non-overlapping pixels

are randomly selected in the N x N image which are consequently attributed the

intensity value i. The histogram of such an artificial background synthesised

from a real background PDF is shown in figure 4.1. It does compare well with

the actual noise histogram. This method allows to generate artificial,

uncorrelated noisy backgrounds given any arbitrary PDF. Such process can

therefore model any type of noise PDF from actual data.

A B ," ," C ,"
VVhole image Background area SyntheSised

() 10' ,,' ,,' background
c:
Q)
:::J

10'2" ,"
'-
U.

'lJoo '''.
Intensity

r-----------------,
I I

~_I~~~~gr~_u_n_<!!lr~~__j

Figure 4.1: Background noise generation for artificial LSCM synthesis.

A - Negative optical section (HSPC labelled for CD164). The dashed square
encloses a fluorescence-free area, used to estimate the probability density function
of the noisy background. B - Left. Histogram of the whole image A (the frequency
is displayed on a logarithmic scale). Right. Histogram of the background area in A
(log-scale). Such histogram does not look like any common noise distribution, but
more like a combination of several distributions, possibly of exponential and/or
Poisson nature. The probability density function of the background noise is
estimated by dividing this histogram by the number of pixels contained in the
selected background area. C - Histogram of an artificial background generated
using the probability density function estimated from the background histogram.
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4.1.3. Fluorescence signal modelling

As stated earlier, both 2D and 3D models of the fluorescence signal produced by

fluorochrome-labelled antigens in the stem cell membrane can be used to

generate synthetic confocal images. In LSCM, the PSF in the horizontal (x-y)

plane is commonly assumed to have a Gaussian form [Boutet de Monvel et al,

2001]. In this study, we considered that the PSF is normally distributed both in a

2D or a 3D referential. For simplicity, we show in this section how a 2D optical

section is synthesised.

4.1.4. Two-dimensional model

For simplification, the model assumes that the PSF function of the system is

Gaussian. Therefore the observed fluorescence distribution is built by the

circular superposition of 2D Gaussian functions, each centred on the locations of

the fluorochrome/antigen complexes in the circular cell membrane, plus the

noise component. These are reasonable assumptions when compared with real

LSCM images. However the existence of a weaker fluorescent signal was also

noticed inside the cell as a much more diffuse internal halo, (probably due to the

internalisation of the fluorochrome during the time-consuming labelling steps,

heavily blurred by the transfer function of the system). We integrated this

observation in the model by adding extra smaller rings of Gaussians with

variances increasing proportionally to an inverse function of the radius.

The parameters of the model are the number of rings, or layers, the shape

parameters of the rings, the number of Gaussians per ring, their variances, their
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distribution along the rings, and the PDF of the noise. The radius r of the

external ring is expressed in polar coordinates a as a sum of K cosine functions

with decreasing amplitudes and increasing frequencies

K

rCa) = :~:>ncosCAna+Bn)
n=1

4.3

where r,; An' and B; respectively represent the amplitude, the frequency and

the phase of the nth ring. Constraints are imposed on the range of values which

can be taken by these variables, in order to ensure roughly circular shapes of the

cell membrane as observed in real LSCM images. The internal rings are scaled

versions of the external one. In this study, we used different uniform random

distributions to select the locations of the fluorescent clusters on the different

rings.

The artificial fluorescence is generated by averaging the different rings, which

represent different layers of fluorescence clusters blurred at various degrees. The

noise is added to the image according to the procedure described in section

4.1.2. Figure 4.2 shows an artificial LSCM image generated according to this

method and using only three layers. Arbitrary shapes can be obtained by

carefully choosing the values of the parameters of rCa).
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+ +

Figure 4.2: Artificial LSCM synthesis.

Artificial LSCM image generated by averaging three layers. The first layer
represents the actual fluorescence signal. The second and third layers are blurred
versions of the signal. Each layer is generated by successively decreasing the
radius of the cell and by increasing the variance of the Gaussian functions used
to model the fluorescence signal. The same noise background was added to all
layers, so averaging the layers does not affect the actual background noise
distribution.
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4.2. Performance analysis of the proposed segmentation algorithms

In this section, the performance of the three (MSA, BIHC and BCVM) proposed

global thresholding algorithms was compared. They were applied to 198 distinct

LSCM images of umbilical cord blood HSPCs from 10 individual datasets.

These cells were labelled for the CD34 and CD164 membrane antigens. The

comparison was firstly performed by visually comparing the binary masks

obtained from the 198 LSCM images, secondly by comparing the thresholds

calculated to obtain these binary masks, thirdly by comparing the mean intensity

of the signal within the masks, and finally by comparing the binary masks'

signal areas. The last two comparisons were performed to assess the feasibility

of automated signal quantification. Indeed, signal quantification in fluorescence

imaging is often performed by either comparing the signal intensities or the

areas expressing the signal after thresholding.

Only images thresholded using the three global thresholding algorithms (MSA,

BIHC and BCVM) were compared to allow consistency: the watershed-based

algorithm, despite performing the desired task, does not provide a unique global

threshold to be compared with the others. Furthermore, this approach was

implemented to demonstrate the principle of thresholding bimodal histogram

obtained through processing of unimodal data, and is shown to be much slower

than the global approaches.

The following analysis demonstrated that antigen quantification is far more

reliable if fluorescence intensities are used rather than only the extent of the

mask covering signal regions (sections 4.2.3 and 4.2.4). The effect of the new

quantification formula proposed in section 5.1.1 is also assessed using a slightly
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modified version of the graphical Bland-Altman approach used to assess the

agreement between different (here quantification) methods.

4.2.1. Visual assessment of binary masks

Figure 4.3 displays the binary masks obtained with the MSA, BIHC and BCVM

algorithms for three representative LSCM images taken at different z-positions.

The first one was taken at the free pole of the cell where, in this case, almost no

signal is distinguishable, even on the negative image which emphasises low
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Figure 4.3: Visual assessment of fluorescence masks.

First column - Inverted original LSCM images respectively taken at the free pole
of the cell, the equator and the contact point with the microscope slide. Second
column - Binary signal masks obtained with the MSA algorithm. Third column -
Binary masks obtained with the BIHC algorithm. Fourth column - Binary masks
obtained with the BCVM algorithm.
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intensities. The second image was taken at the middle of the cell, where

generally the best contrast in the z-stack is obtained. The last image was taken

close to the contact point of the cell with the microscope slide where stained

debris are visible.

From this initial, subjective assessment, the MSA algorithm showed good

results, and appeared to be less sensitive to very weak signal areas in images

with good signal contrast (figA.3-b2, 4.3-c2). However, in poorly contrasted

images, very weak signals were identified with a high sensitivity (figA.3-a2).

The BCVM and the BIHC algorithm showed good performances at detecting

extremely low intensity signals, regardless of the image contrast.

4.2.2. Threshold comparison

In this analysis, the threshold values obtained from the same 198 LSCM images

with the three global thresholding approaches were compared. Table 4.1 shows

the mean threshold value for each algorithm and their standard deviation. A

small variability is observed between the methods.

The wide range of threshold values across z-scans in the 198 LSCM images is

Table 4.1. Threshold comparison.

Algorithms

BCVMMSA

Mean threshold
Standard deviation

21.98
6.68

21.76
6.01

20.76
6.29
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responsible for the high standard deviations. However, the mean threshold

values and their standard deviations are in good agreement for all three methods.

For a more detailed comparison, each of the algorithms was compared with the

others using regression analysis. Figure 4.4 shows the 198 thresholds obtained

by each algorithm plotted versus those obtained from the other algorithms.

Homogeneous data sets (i.e. z-scans performed on the same microscope slide)

are responsible for the dot clusters on the graphs. Indeed, several z-scans were

performed on different slides, generating different background values, which

results in the clusters observed on the graphs.

The first graph in figure 4.4 presents the thresholds from BIHC vs. MSA. The

thresholds vary between 10 to 40, reflecting a wide range of intensities. It is

observed that a good linear relationship (R ~ 0.92) exists between these

thresholds. The slope of the best fitted line is equal to 1.018, indicating that the

MSA method calculates, on average, thresholds slightly higher than the BIHC

method. This was also confirmed by the visual examination of the binary masks.

The high correlation coefficient and the slope of the best fitting line indicate that

both methods, while different in principle, produced similar results.

The second graph in figure 4.4 presents the thresholds from the BIHC vs.

BCVM. Once again, the linear relationship is very well verified, with a

correlation coefficient R ~ 0.96. The slope of the best fitting line is 1.008,

indicating that both the BIHC and the BCVM algorithms are in good agreement.

The last graph presents the thresholds from the MSA vs. BCVM. Again, a good

linear relationship (R ~ 0.96) can be observed. The slope of the best fitting line
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is equal to 0.903, indicating that most thresholds obtained with MSA are slightly

higher than those obtained with BCVM.

This analysis allows the following general classification

TMSA > T BIHC > T BCVM

where T indicates the mean threshold given by each indexed algorithm.
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Figure 4.4: Inter-algorithm threshold comparison.

A - MSA vs. BIRe. B - BeVM vs. BIRe. C - BeVM vs. MSA. The equations
of the best fitted lines, obtained by linear regression, and the Pearson's
correlation coefficient, are also indicated for each plot.
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4.2.3. Mean signal comparison

A common approach for quantifying fluorescence is by measuring the mean

intensity in the ROt In this section, the mean intensities of the segmented signal

areas were compared in order to demonstrate the feasibility of automatic signal

quantification using these algorithms. Furthermore, comparing mean intensities

provides with smaller variability between measurements obtained from different

methods in contrast to comparing signal areas (see section 4.2.4). In this section,

the results obtained from direct simple mean intensity measurement in the ROI

are compared using regression analysis. A detailed comparison of the usual

fluorescence quantification approach (background subtraction) with the

proposed quantification formula (fluorescence relative to mean background

intensity, detailed in section 5.1.1) and its effects are graphically analysed using

regression analysis and a modified Bland-Altman analysis in section 4.2.7.

Figure 4.5 shows the 198 mean signal intensities obtained by each algorithm

plotted versus those obtained from the other algorithms. Itwas observed that the

mean intensities from all algorithms vary from about 10 to about 70, therefore

covering a wide range of intensities (from the potential range [0; 255]). Weak

mean signal values are generated at the free pole of the cell, or at its contact

point with the microscope slide. Indeed, the shape of a cell can be approximated

as a spherical object (see figures 2.5 and 2.6), so imaging both poles takes into

account smaller areas than imaging the middle portions of the cell. It was

observed that the signal was generally more intense in the middle sections,

where the best resolution was obtained, explaining the high mean values

observed on the graph.
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Regression analysis showed a good linear relationship between the results from

the three algorithms (R ~ 0.91, 0.94 and 0.94). The slope for the best fitted line

is 1.245 for the mean intensities provided by MSA vs. BIRC, 0.983 for BIRC vs.

BCVM and 0.716 for BCVM vs. MSA. Overall, the mean intensities calculated

from MSA are, on average, higher than those obtained from BIRC and BCVM.

This is due to the fact that the MSA thresholds are, on average, slightly higher

than the thresholds from the other algorithms. As a consequence, the weakest

signal intensities are lost in the MSA algorithm and thus the mean signal

intensity is higher. The best agreement was obtained for BIRC vs. BCVM, with

R ~ 0.94, and the slope of the best fitted line equals to 0.983, indicating the close

similarity between the mean signal values obtained from both algorithms.
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Figure 4.5: Mean signal intensity comparison.

Top - MSA vs. BIHC. Middle - BCVM vs. BIHC. Bottom - BCVM vs.
MSA. The equations of the best fitted lines, obtained by linear regression, and
the Pearson's correlation coefficient, are also indicated for each plot.
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4.2.4. Binary mask area comparison

As mentioned earlier, a common approach to quantify fluorescence consists in

measuring the area of a ROI where the fluorescence above a certain threshold is

present. The threshold is often chosen manually by an experimented operator.

This decision is highly subjective, and different results are likely to be obtained

by different experimenters. In this section, the binary masks obtained using the

MSA, BIHC and BCVM algorithms were compared using regression analysis,

assuming that the area where the fluorescence is expressed may be a relevant

criterion to quantify fluorescence.

The areas from one algorithm were plotted versus the areas from another

algorithm (i.e. three graphs are needed to compare the three possible

combinations, figure 4.6). It can be observed that the good linear relationships

previously obtained when comparing thresholds and mean signal intensities is

lost when comparing the areas of the binary masks. This is the consequence of

the histogram unimodality, where small variations of the threshold values

generate large variations of the segmented areas as thresholds are set up where

the histogram slopes have high negative values. This is an important observation

with consequences for signal quantification as detailed in the discussion.

Table 4.2 shows the relative comparison between signal areas obtained from all

three algorithms. The highest areas were obtained with BCVM (due to the high

sensitivity of this algorithm in detecting very low signals). MSA generated the

smallest areas. Interestingly, it was found that 11.61% of the areas obtained with

MSA were exactly identical as those obtained through BCVM. Also 3.03% of

the areas obtained through BIHC were exactly identical as those obtained
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through BCVM, and 2.02% of the areas obtained through MSA were exactly

identical as those obtained through BIHC. On one occasion, all three algorithms

provided exactly the same binary mask.

In our investigation, all masks did not exceed 30% the size of the image. The

BCVM and the BIHC masks covered a wider range of areas than the MSA

masks. Most of the areas segmented by MSA and BIHC were found to be around

10% the size of the image, while BCVM predominantly generated areas around

15% the size of the original image.
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Figure 4.6: Area comparison.

Top - MSA vs. BIHC. Middle - BCVM vs. BIHC. Bottom - BCVM vs. MSA.
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Table 4.2. Binary masks area comparison.

Area comparison

BCVM>MSA
BCVM >.BlHC
MSA > .BIHC
BCVM=MSA
BCVM::::BIlIC
MSA=BlHC

89.40%
87.38%
34.85%
11.61%
3.03%
2.02%

4.2.5. Validation of the MSA LSCM image segmentation using artificially

generated LSCM test images

It was proposed in section 4.1 to generate realistic artificial LSCM images in

order to assess the segmentation performance of the MSA algorithm, the most

interesting of the proposed segmentation approaches. In that purpose, over 100

artificial test images were automatically generated and segmented using this

algorithm.

The position of the true signal was known. This position was the area

encompassed by the mixture of Gaussian kernels used to produce the first image

layer in figure 4.2. (without taking into account the noise component which is

added separately for realistic rendering). The mean signal intensity was therefore

also known.

In order to assess the performance of the MSA segmentation, two quantities

were measured from the actual binary mask A'rue of the true signal and from the

binary mask Aobs provided by the MSA method. The first quantity is an area

ratio
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Ratioarca = A,rue n Aohs =AND/OR ratio. 4.4
A'rue u Aobs

This quantity takes into account true colocalised/overlapping areas (the

nominator) and the total areas covered by either masks (the denominator). For

perfect segmentation, the AND/OR area ratio would be equal to 1, or 100%. In

any case of non perfect segmentation, this ratio would drop. It was subjectively

assumed that a reasonable segmentation should produce a ratio equal or higher

than 70%, so colocalised binary masks should cover at least 70% of the true

signal location. It is noticed that most of the true signal location contains pixels

with intensities very close to background values, due to the Gaussian nature of

the signal, and therefore only a small proportion of the true signal area contains

significantly bright signal pixels. Consequently, by segmenting at least 70% of

the true signal area, it is very likely to also correctly segment the most relevant

signal pixels.

The second quantity used to assess MSA segmentation is an intensity ratio

I
Rati0intensity = A".",vAobI = OR! AND ratio,

IA".",f'I~

4.5

where IA ....v~ and IA_f'l~ are the mean intensities in the OR and AND areas

defined above. Because the mean intensity of the AND area is higher than the

mean intensity of the OR area (which encompasses larger areas of weaker

intensities), the ratio OR!AND was used to provide values below 1, or 100%. In

case of exact segmentation, this ratio would be equal to 100%. In case of over-

segmentation, the ratio would drop dramatically as a consequence of the image
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histogram unimodality, and for under-segmentation it would be higher than

100%. Preliminary testing showed that an OR!AND ratio between 80% and

100% would reflect acceptable segmentation performances.

The results of area and intensity ratio measurements are presented in figure 4.7.

The mean area ratio is 80.36% ± 5.10, and the mean intensity ratio is 90.84% ±

Validation of segmentation algorithm
MSA

· _._.':J..~....... ."",..--"-•Clz
~ 85
0

~ 80
~
UJ
c:
Cl)-.~

area ratio ANDIOR

Area ratio = 60.36% :t 5.10
Intensity ratio = 90.64% :t 1.11
Numberofcells = 102
Cell radius =123.94 :t26.76 pixels

Figure 4.7: Validation of the MSA segmentation performances.

Ratios of areas and intensities calculated over more than 100 artificial LSCM
images of cell cross-sections. The images were generated using the method
described in section 4.1. The area ratio is calculated from the areas of the binary
masks obtained from the MSA algorithm (applied to the artificial LSCM
images) and from the (known by definition) area containing the artificial
fluorescence signal. In average, 80% of the signal area segmented using the
MSA covers the true position of the signal. This confirms that the MSA
algorithm segments real LSCM images properly.
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1.11. These values are well inside the intervals considered to indicate good

segmentation. They also confirm that MSA does not under- or over-segment

LSCM images non-reasonably. Thus segmenting real LSCM images using MSA

is reliable and can be used for quantification purposes.

4.2.6. Bland-Altman analysis of quantification approacbes

Measurements provided by two different methods are commonly compared in

the literature by using Linear Regression Analysis and calculation of correlation

coefficients, classically the Pearson's correlation coefficient R being used. Such

statistical methods were initially designed to assess the degree of linear

relationship between measures. They do not necessarily reflect the agreement, or

the lack of it, between measurements obtained from different methods. This

situation has been well described and explored by [Bland and Altman, 1986].

Indeed, if the methods aim to measure the same quantity, it is likely that they

will give similar results in the first place. As a consequence, these measures are

likely to be well correlated. The authors report that correlation coefficients

around 0.9 (which indicates strong correlation) are commonly encountered in the

literature. In such cases, measuring correlation is not enough to assess the degree

of agreement between two methods. They propose an alternative, yet simple

graphical approach to assess this degree of similarity between measurements,

obtained from two different apparatus in their study. By extension, the method is

directly applicable to measures obtained from different algorithms. Furthermore,

the method was initially described for small samples, which are often

encountered in biomedical research.
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The first step of the analysis consists in plotting the measurements from the first

method versus those obtained from the second method. This is done to confirm

the expected linear relationship between both methods. Then, the differences

between pairs of measurements are plotted against the average value of the pair.

This allows to assess the relation between the difference and the mean. Indeed, it

is expected that most of the differences would lie between d - 2s and d +2s , or

more precisely between d -1.96s and d +1.96s ,which is the 95% confidence

interval, if the differences are Normally distributed (where d and s represent

the mean difference and the standard deviation of the differences). This interval

d ± 2s is referred to as the limit of agreement. A large interval, relatively to the

actual measures, reflects a lack of agreement between methods, despite a high

correlation coefficient.

This method was applied to paired mean intensity measurements from the MSA,

BIHC and BCVM algorithms, which consist in three different combinations

(MSNBIHC, MSNBCVM, and BIHCIBCVM). The outputs of such graphical

analysis were compared for the results from the usual quantification approach

(the background subtraction method) and from the new formula (equation 5.2)

proposed in this thesis (quantification relative to mean background value), in

order to get an insight on the modifications introduced by this procedure.

Prior to the Altman-Bland analysis method, for the first step of the fluorescence

signal quantification analysis, signal intensities quantified from each of the three

pairs are plotted versus each others. This results in three graphs, whose linear

relationship between pairs are assessed by calculating the correlation

coefficients. This is done to confirm the expected linear relationship between the
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results provided by each pair of algorithm, as they are subjectively designed to

provide close signal quantification results.

The Altman-Bland procedure does assume that the differences between paired

measurements are Normally distributed around their mean. In their paper, they

stress that such a situation may not occur when dealing with real datasets. Thus,

the mean difference (bias) may not be independent from the mean intensity and

may vary as the mean intensity varies.

4.2.7. Modified Bland-Altman analysis of fluorescence quantification

approaches

In order to analyse the behaviour of the bias (the mean difference in a given

interval of mean intensities) as a function of the mean intensity, first the usual

Bland-Altman plot was computed, with the mean difference and the 95%

confidence agreement boundaries (as described in section 4.2.6). It is therefore

expected that 95% of the points will be inside this interval. The proportion of

points outside this interval was calculated for both the results obtained from the

usual quantification method (mean background intensity subtracted to mean

intensity in ROI) and the proposed quantification method (mean signal intensity

normalised in respect to the mean background intensity). Then, the whole range

of mean intensities was divided into smaller intervals, each containing 15 points

(i.e. the intervals do not necessarily have same width). This is done to reduce

locally the effect of the bias by assuming that a smaller set of points is be more

likely to be Normally distributed around their mean, on a local basis. Such an
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approach allows to graphically visualise the evolution of the bias over the range

of mean intensities, and to assess its behaviour in respect to the estimated 95%

agreement interval calculated over the whole population of measurements.

A close visual inspection of the regression graphs obtained using the usual

quantification method (background subtraction, figure 4.8, left column) tends to

indicate that, despite good general linear relationship between measures, the plot

does not follow an exact straight line. This is particularly observable in the

region of low mean intensities. This consequently suggests that the bias is not

independent from the mean intensity.

The same analysis is applied to a new fluorescence quantification approach

further described in section 5.1.1. It is presented here in order to be compared

with the usual background subtraction method and in order to validate this new

approach. Similar analysis of the regression graphs obtained with the proposed

quantification method (relative to mean background value, figure 4.8, right

column) indicates generally improved correlation coefficients between

quantitative measures from segmentation performed by pairs of independent

methods.

Figure 4.9 shows the Bland-Altman plot for comparing the fluorescence

measures obtained from three global thresholding algorithms, using both the

usual and proposed quantification methods. On the graphs, the actual percentage

of points falling outside the 95% confidence interval are indicated (one expects

5% or less points to be outside this interval). On the left hand side are the plots

obtained from the classical quantification method. It is noted that more than 5%

of the points fall outside the 95% confidence interval, for all three combinations
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of methods. On the right hand side are the plots obtained from the proposed

quantification method. Except for the BIHC/MSA comparison, where 8.08% of

the points fall outside the 95% confidence interval, the other graphs indicate that

less than 5% of the points now fall inside the confidence interval. This reflects

an improved agreement of the fluorescence measurements provided by the

BIHCIBCVM and MSAlBCVM.

The second step of the analysis is to look at the behaviour of the bias in respect

to the mean intensity. The presence of a bias independent from the mean

intensity would be indicated by the points being mostly distributed horizontally

either above or below the intensity difference zero. The presence of a bias

dependent on the mean intensity would be indicated by the points not being

distributed in parallel to the horizontal zero axis (Le. a trend would appear).

For the usual quantification method, all three plots indicate the presence of

biases. This is not surprising as the existence of biases was already noted from

the regression analysis presented in figure 4.5. Nevertheless, it appears here that

the biases are not independent from the mean intensity. Indeed, for low mean

intensities, the points are globally tightly clustered around the value zero for

each combination of method. For the BIHCIBCVM Bland-Altman plot, the

means of the sub-intervals defined along the horizontal axis keep close to zeros,

with slightly higher deviations to a positive bias in the mean intensity range of

[7, 12]. However, for the BIHC/MSA and MSAlBCVM Bland-Altman plots,

the points at higher x values (10 and above) clearly show a tendency to have

higher differences (they "move" towards the upper limit of the 95% Cl). For

these two combinations of algorithms, the estimated 95% Cl of the sub-intervals
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increase at higher mean intensities, while this phenomenon occurs around a

mean intensity range of [5, 10] for the BIHCIBCVM combination.

For the proposed quantification method, the dependence of the biases to the

mean intensity has been reduced. Overall, the points are more clustered around

the zero value, and the general aspect of the plots is quite similar. Still remains

the tendency of the points to be more dispersed for higher mean intensities, but

this tendency now has a similar aspect for all three algorithm combinations.

Indeed, the 95% Cl of the sub-intervals at lower mean intensities are clearly

smaller than those at higher mean intensities (above 0.4). It is worth noting that

most of the fluorescence measurements belong in the lower mean intensity range

(approximately the range [0, 7] for the usual quantification method, and [0, 0.35]

for the proposed method). Therefore the proposed quantification formula seems

to transform the fluorescence measurements in such a way that their distributions

are more similar to each other. Also taking into account that most points found

in the regions of lower mean intensities have smaller dispersion around zero, this

explains why the correlation coefficients are improved using the proposed

method.
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Figure 4.8: Correlation analysis of quantification approaches for the three
proposed global thresholding algorithms. (See next page for legend).
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Figure 4.8: Correlation analysis of quantification approaches for the three

proposed global thresholding algorithms.

Inter-algorithm comparison using 198 LSCM micrographs. The mean signal
intensities (per Z-scan) provided by one algorithm are compared to those
provided by the other algorithm. The straight line is the regression line
(equation on the graphs) and the correlation coefficients are provided. Left-
Fluorescence quantification using the usual, background subtraction approach.
Right - Fluorescence quantification using the proposed method, equation 5.2.
The slopes of the regression lines are more similar with the proposed method
than with the classical approaches, showing that it reduces the risk of a bias in
the measurements when using different segmentation approaches. See text for
detailed comments.
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Figure 4.9: Bland-Altman analysis of plots displayed in fig. 4.8.

The dashed line indicates the position of the mean difference (bias). The solid lines
indicate the limit of agreement, i.e. mean ± 1.96 SD. Refer to text for detailed
comments.

150



Chapter 5

Fluorescence processing, representation and analysis

1~1



Marc-Olivier Baradez PhD Thesis Chapter 5. Processing, representation, analysis

Chapter 5. Fluorescence processing, representation and analysis

5.1. Fluorescence signal processing and representation

Once the fluorescence signal is segmented from the LSCM image background, the

measured intensities are used to characterise the antigen distribution. Such

characterisation is both qualitative and quantitative. The quantitative analysis of

the CD164 and CD34 epitopes distributions is described in chapter 6 and makes

use of the Antigen Density Maps, or ADMs, developed in this chapter. Prior to the

computation of the ADM, the measured signal has to be processed to compensate

from the presence of the background which affects the quantification. Background

subtraction is a common procedure used to remove the contribution of background

intensities for a measured signal, which is also widely applied for LSCM

measurements and is herein described and commented in the context of LSCM

images. This approach assumes the noise to have an additive origin. It cannot be

guaranteed that such an assumption is appropriate for LSCM images since the

process that generates them is thought to follow signal-dependent Poisson

statistics [Rooms et aI, 2004]. Thus this approach is described in the following

section, and another quantification formula is described which does not consider

the noise to be additive but multiplicative. The consistency of the results obtained

using both formulas on the measured signal segmented using the MSA, BIHC and

BCVM algorithms and processed using either the usual background subtraction

method or the new proposed method was assessed in section 4.2.7 using linear

regression and Bland-Altman analysis. The background-corrected signal

intensities obtained using the proposed quantification formula (equation 5.2,

further detailed in next section) is used for quantitative analysis using the ADMs

(chapter 6), and also for visualisation purposes by employing, along with the
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ADMs, 3D reconstructions and 3D spherical graph models also described in this

chapter.

5.1.1. Fluorescence signal quantification

Despite fluorescence measurements being now commonly published in

quantitative or semi-quantitative studies, achieving a correct quantification is still

a huge challenge. Indeed, there are many factors which can drastically impair such

measurements. Actually, over 30 parameters to be controlled were reported, all of

which potentially having "biasing" effects. These encompass the chemical

properties of the medium used in the experiment, which may be responsible for

different spectral responses of the same fluorochrome subjected to various pH and

molecular environment. Fluorescence bleaching after repeated application of the

laser at the same location also introduces a well known bias in fluorescence

measurements, and corrective image processing methods are available to correct

this effect [Boutet de Monvel et ai, 2001; Umesh Adiga and Chaudhuri, 2001].

This problem was overcome by imaging each cell or group of cells only once for a

particular wavelength, so the bleaching of the fluorochrome was minimal and

similar for each cell imaged. The thickness of the sample through which the light

has to travel is also a common problem, as light finds harder to penetrate deep in

the sample. In the experiments analysed in this thesis, the depth imaged was only

12 to 18 um maximum, which is very thin in confocal microscopy in comparison

to the commonly achieved 100 urn or above. Furthermore, the cells were not

imaged in dense cellular clusters or when cells were overlapping. Physical

considerations can significantly affect fluorescence quantification. Indeed, LSCM
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experiments can easily span over several hours, and some users have reported

important fluctuations of the laser power over the course of the experiments

[Swedlow et al, 2002]. As the measured fluorescence intensity is directly related

to the laser power, laser instability is a real, hard to control problem. Other

parameters related to the preparation of the sample, the imaging parameters such

as brightness and contrast adjustments altogether contribute to make signal

quantification a difficult task.

Having control over all these parameters is impossible in practice. Therefore,

scientists use calibration curves to relate the measured fluorescence to known

concentrations of the fluorochrome [Gaigalas et al, 2001]. Usually, fluorochrome-

coated micro-beads are used to construct such curves. They are supplied by

manufacturers with various sizes and surface fluorochrome concentrations. It is

assumed that fluorochromes give the same spectral responses with coated micro-

beads or real samples, which may not be true. However, since such calibration

curves are not always available (as in this work), the mean fluorescence of a

control sample may be used as a baseline for quantification, and the levels of

fluorescence in investigated samples would be either expressed as a fold increase

(or decrease) of the control fluorescence, or given in arbitrary units as the

(absolute) excess of fluorescence above the control baseline. This latest method is

referred to as "background subtraction" method and is predominantly used in

published fluorescence measurements. However, it works best when large samples

containing many cells are imaged, as the inter-cell variability is compensated by

the number of cells analysed. This was not possible in our cellular imaging

experiments where unique or small number of HSPCs were imaged at a time.

Furthermore, negative controls were performed on non immuno-reactive cells (i.e.
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negative control for CD34 labelling performed on CD34Neg cells), which

expectedly produced no fluorescence at all.

When control data is not available, the simplest and widely used quantification

approach consists in measuring the mean background fluorescence, and

subtracting it from the mean signal fluorescence. This is equivalent to baseline

correction. As no calibration is available, the fluorescence measurements are

given in arbitrary units. In this process, it must be assumed that the noise has an

additive nature, while it may be multiplicative, or combinations of different

natures. The noise generated by the Poisson process taking place during LSCM

image acquisition is signal-dependent [Rooms et al, 2004], therefore not additive,

so background subtraction may not be the most appropriate approach.

In this thesis, a new method is proposed which could improve the robustness of

fluorescence quantification, when the calibration curve is not available. Instead of

using the traditional background subtraction method described by

5.1

where I FS represents the quantified fluorescence of signal intensities, Is and I B

respectively being the mean signal intensity in the segmented signal regions and

the mean background intensity. Instead, the simple following ratio was introduced

5.2

which is equivalent to

5.3
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IN represents the mean fluorescence signal after subtraction of mean background

value divided by the mean background value. It expresses the excess intensity

above the background level arising from the fluorescence as a multiple of the

mean background intensity (minus 1, so mean signal intensities close to

background levels are close to 0 according to equation 5.2). As will be

demonstrated, this simple modification of the usual approach tends to improve the

correlation between fluorescence signals quantified using independent methods,

better compensating for the unpredictable fluctuations of the background along

the z-axis. It is noticed that, because IN is a ratio of intensities, it is expressed

without units by definition.

5.1.2. Computation of the Antigen Density Maps (ADMs)

An important aspect of this thesis was to address the readability of LSCM

datasets. As mentioned, LSCM images are used both for quantification purposes

and visualisation of 3D antigen distributions. 3D visualisation techniques can use

maximum intensity projection along a specified direction, or they can involve

approaches borrowed from the field of Computer Graphics, such as isosurfaces,

isocontours and point. clouds. These later techniques aim to represent the

distributions in an artificial 3D space projected on the 2D surface of the computer

screen.

The research project of this thesis was to study the distributions of antigens in the

membrane of single cells. HSC are naturally very spherical (the so named "blast"

morphology) under physiological conditions (and also here, under carefully

adjusted experimental conditions), and their membrane antigen distributions were
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imaged at high resolution, which allowed to observe details of the distribution at

the subcellular level. As a consequence, it was decided to describe these

distributions by computing 2D maps of the antigen densities around the cells

according to a spherical model of the cell shape. This new approach can be seen

as cutting (from northern to southern pole) and unfolding the 3D cell membrane

on a 2D surface, such as a map of the world flattened on a school wall. Since no

calibration of the fluorescence is available, the expression "antigen density" is

used in throughout this thesis instead of "antigen concentration". Therefore the

proposed maps were named Antigen Density Maps, or ADMs.

The ADMs are computed from the z-series LSCM images for which the signal

was quantified according to equation 5.2 after segmentation using the MSA

algorithm. First, a projection of the fluorescence along the z-axis of the z-series is

·rr.... ....

~ri~')
class I epitope

Figure 5.1: Z projection of LSCM Z-series.

Intensity projections are used to select the region containing the fluorescence of
the cell of interest (dashed circle in this example). Here, three HSPCs are
clustered together. The blue curves centred on the cell centroids show the antigen
density in polar coordinates. The signal from the whole Z series was used for
computing these projections. However, the antigen density curves (in blue) were
calculated from the middle equatorial Z sections, and therefore do not directly
map to the most intense regions of the images.

CD34
class II e
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calculated and displayed (as shown in figure 5.1). The projected image is used to

allow the users to manually select the image regions in which they wish to

perform the analysis, Le. a region containing a cell image. This region is referred

to as the Region Of Interest, or ROI. This step is the only manual step involved in

the whole analysis. However, it was deliberately kept manual in order to provide

some freedom to the users about which cell they wish to analyse. Furthermore,

under certain conditions, ROI detection may easily be automated in the case of

single cell experiments. In order to assist the manual selection of the ROI, the DIC

image taken at the middle section of the cell can also be used to correctly identify

the position of the cell membrane. For this purpose, landmark points are manually

placed around the cell boundary to exclude possible surrounding fluorescent

debris and reduce quantification bias. The centroid of the ROI is then calculated.

The computation of the ADM is based on the equal circular segmentation of the

ROI by small angular sections, all centred on the ROI centroid. An angular

resolution of approximately 2.24° is selected since it allows the detection of

smallest clusters correctly at the magnification used in this study. Therefore, the

ROI is divided into 161 angular sections. The first section corresponds to pixels

with angular coordinate in the range [0°, 2.24°[, and the 161th one to pixels in the

range [357.76°, 360°[.

For the next step, the MultiScale Algorithm (MSA) was used for signal

segmentation due to its speed and good segmentation performances in close

agreement with human operator results. In each angular section, the pixel

intensities were processed in respect to the mean background intensity, according

to equation 5.2, and they are summed in each section. The same process is

repeated over all z-sections. These mean angular intensities are computed at each
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z-position and stored in a matrix Mz.o, where z and Bare respectively the z level of

the optical section and the angular index in the corresponding optical section. This

matrix Mz.oconstitutes the ADM (figure 5.2).
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Figure 5.2: Principles for computation of the Antigen Density Map (ADM).

Top - For each Z-scan of a series, an orthonormal set of axis is centred to the
cell's centroid in the 2D plane. The segmented fluorescence is summed in small
angular sections, anti-clockwise. Middle and bottom - These measurements are
projected in a matrix whose rows indicate the Z-Ievel (4 urn from contact point in
this example), and columns indicate the angular section. Repeated to all Z-scans,
this constructs the ADM which is stored in computer and on CD prior to further
analysis. The ADM presented here has undergone bilinear interpolation between
Z levels for visualisation purpose.
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Since the resolution in the x-y plane is much better than the resolution along the z-

axis, bilinear interpolation is used for some applications of the ADM (ADM

visualisation, sphere models described below), as it allows reasonable

extrapolation of the signal intensities between each z-slice (as illustrated in figure

5.3).

Unprocessed ADM

Bilinear interpolation of ADM

Figure 5.3: Bilinear interpolation of ADM.

Top - Original ADM. The readability of such a matrix is not very clear.
Therefore bilinear interpolation is used - bottom - between the Z levels. It
allows to link corresponding antigen structures between Z scans. Interpolated
ADM are used for ADM visualisation and sphere models.
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Figure 5.4: A sample collection ofCD34 and CXCR4 ADMs.

This figure illustrates the application of ADM for comparing membrane
antigen distributions. Since the ADMs are 2D projections of 3D
distributions, they make easier to assess distribution similarities or
differences. It can be observed that these cells can express a few big antigen
clusters (e.g. 8 and 12), many smaller clusters in a halo (e.g. 1, 19), or
combinations of each to various extents (e.g. 2, 6, 25).
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Figure 5.5: Using ADMs for visual analysis of colocalisation.

Similarly to merging 2D confocal images to show colocalised regions, ADMs
can be merged for the same purpose. This is applied here to CD34 and CDI33
antigens in the membrane of CD34+CD 133+ cells. The fourth set of ADM is
particularly interesting. Differential colocalisation of CD34 and CD133 is
observed. The elongated CD 133 cluster on the far right of the CD 133 ADM is
found to colocalise very well with a slightly shorter CD34 cluster in the north
hemisphere of the cell, but not in the south. The other clusters of this ADM
colocalise well with each other, but in a differential way.
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5.1.3. Visualisation: fast 3D reconstruction of fluorescence distributions

A fast 3D reconstruction was developed to allow the user to have a quick view of

the actual 3D structure of the antigen distribution. It works by using the

information contained in the segmented background areas in LSCM images, but

other approaches can be used to process the segmented signal in order to obtain

such 3D reconstructions.

The histogram of the original, non-smoothed background regions (segmented

using the fluorescence mask provided by the segmentation algorithm) is

computed. From this curve, the cumulative histogram is calculated and normalised

so its maximum value (in the last bin of the histogram) equals 1. Then a threshold

is arbitrarily chosen along the y-axis (the axis of normalised frequencies). The

intensity (on the x-axis) for which the cumulative histogram first goes above 0.9 is

chosen to be a binarisation threshold to be applied to the segmented fluorescence

regions, since it was observed to provide appropriate results.

This approach takes advantage of the strong noisy nature of the LSCM digital

micrographs. Binarising the original signal regions by applying a threshold

proportional to the cumulated background (noise) histogram generates 2D

fluorescence distributions similar to point clouds. The more intense the

fluorescent cluster, the denser its point cloud representation in binary form (Le.

the more points contained in the binary 2D cloud representing this particular 2D

cluster). The threshold (between 0 and 1) has to be selected subjectively according

to the visual aspect of the resultant binarised signal. The same process is applied

to all LSCM images in the Z-series, and the collection of the resultant binary

pixels are plotted in a 3D virtual space, each z-plane at the corresponding z-level.

This 3D plot represents the reconstructed antigen distribution on the cell
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membrane which can be arbitrarily rotated at any angle. In order to make such

reconstructions more visually understandable, a colour map was applied to the

clouds of points when appropriate. In this case, the colour of each point reflects

the local mean intensity, or density, in its small neighbourhood (figure 5.11).

A) CD34

C) CD34>CD133

8) CD133

D) CD133>CD34

"',

:';.;,
.c.f{~>

Figure 5.6: Example offast 3D reconstruction of LSCM datasets.

Top - 3D reconstruction of the spatial CD34 and CDB3 distributions in the cell
membrane. In practice, the reconstruction can be rotated and viewed under any
angle, facilitating its interpretation. The dashed circles indicate the contact area of
the cell with the slide (the cells are inverted for visualisation purposes). Some
similarities (due to colocalisation) and dissimilarities are noticeable. Bottom - -
Only the pixels following the relationship expressed by (C) or (D) were
reconstructed in order to better show the differences between the top
reconstructions.
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5.1.4. Visualisation: Three-dimensional graphs - sphere models

The Antigen Density Maps (ADM) are a convenient and meaningful way of

presenting the antigen distribution in the cell membrane of isolated cells.

However, it was visually difficult to assess the three-dimensional relationship of

these distributions when cells were clustered. Indeed, it is known that under

certain circumstances, (adjacent, but not necessarily) cells may reorganise the

Step 1

A spherical mesh is created in a 3D
referential.

Step 2

The 2D coordinates of the elements in the
interpolated ADM are mapped to the
coordinates of the spherical mesh. The
local elevation of the mesh is increased
proportionally to the corresponding local
intensity stored in the ADM.

Step 3

The colour -coded ADM is eventually
projected to the surface of the deformed
sphere, in order to visually emphasise the
position of the fluorescent clusters. The
colour map can be changed.

Figure 5.7: Creating sphere models.

Generation of a sphere model, which is a projection of the antigen distribution
onto a sphere assumed to simplify the actual cell shape. First a sphere is created,
then is surface is locally displaced proportionally to the antigen density stored in
the ADM at the corresponding location. Finally, the ADM is mapped onto this
spherical graph. Such sphere models are convenient to assess the spatial
distribution of membrane antigens in adjacent and clustered cells.
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spatial distribution of their membrane antigen in order to perform biological

functions. For instance, such a phenomenon occurs during cell polarisation events,

e.g. formation of the immunological synapse at the contact point between T-cells

and Antigen Presenting Cells (APCs), where some particular antigens (MHC-

peptide, ICAM-I, TCR, LFA-I) are recruited to allow the exchange of

information between cells. Cell migration also requires antigen polarisation.

Indeed, f-actin and chemosensory receptors are recruited at the leading edge of the

cell while myosin, CD43, CD44, PSGLI, ICAM-I, ICAM-2, ICAM-3 are all

recruited at the opposite side of the cell, in the uropod (or trailing edge)

[Christensen et al, 2004; de Boer et al, 2002; Dravid and Rao, 2002; Ferrero et al,

2003]. Since CD34 has been reported to have some influence on HSPC migration

capabilities, we designed a useful visualisation method of the 3D membrane

antigen distributions of clustered cells.

None of the LSCM images acquired in this thesis made use of a dye to locate the

position of the membrane, and therefore the true location of the cell membrane is

unknown. However, in order to get an estimate of the position of the membrane,

3D spheres were generated. The relative radii R of the clustered cells are

estimated manually from the DIC image. The location of the centroid of each cell

is estimated from the mask drawn manually around the cells during the ADM

computation step. Finally, the radial coordinates R(x,y,z) of the sphere are

modified according to the antigen density values stored in the ADM. Therefore,

higher values generate a high local increase of the sphere radius. Consequently,

the sphere is deformed and peaks (representing antigen clusters) appear where a

fluorescence cluster is present in the cell membrane (see figure 5.7). In this

respect, the sphere model is a 3D graph of the ADM. The local antigen densities
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are represented by the local increases of the sphere radius. Furthermore, the

modified spheres are coloured according to the height of the peaks. Various colour

maps may be employed by the user. The proposed sphere model was found to be a

reasonable, simplistic assumption of HSC cell shape, as their blast morphology is

described as compact and spherical.

Figure 5.8: Application of the sphere models.

The spherical models where applied to the visualisation of CD34 distribution in
clustered cells (DIe image on the left). The red and blue spheres at the poles
respectively indicate the contact point with the slide and the free pole of the cells.
Each cell contains one major CD34 cluster. In this example, many clusters seem
directed towards adjacent cells.
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Figure 5.9: Application of the sphere models, another example.

In this example, a different colour map of the figure was applied to sphere
models. Both cells were imaged for the CD34 antigen. Each cell contains a
collection of cluster with various sizes. However, there is a clear
concentration of CD34 in the portions of cell membrane facing each other.
This suggests that, at a distance, there may be some early signalling activity
taking place between the cells which allows CD34 to be recruited in such
areas. This is consolidated by the fact that this observation has been made
consistently over the datasets and is shown here as a representative example.
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5.2. Analysis of the segmented antigen distributions

In this chapter, new methods to quantitatively characterise membrane antigen

distributions are described. These methods were applied either to LSCM images

(section 5.2.3.2) or (for all other applications listed below) to the newly developed

Antigen Density Maps (ADMs). Quantitative characterisation of distributions was

performed using various specifically developed measurements, which were

• fluorescence quantification at various levels of observation

o cellular level

o Z-scan level

o subcellular level

• polarity analysis of the antigen distributions in cell membranes

o polarity in the XY plane

o polarity along the Z axis

• antigen colocalisation analysis of dual labelled cells

o colocalisation using equatorial LSCM Z section

o colocalisation using the ADMs

• analysis of antigen clusters

o clusters detection and proportion in southern hemisphere
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o cluster characterisation by distribution energy

Each of these measurements and their relevance are described in the following

sections and their results are summarised in section 6.3 and further detailed in

section 6.4.

5.2.1. Fluorescence quantification using ADMs and correlation of the

measurements

Antigen quantification using equation 5.2 was explored at three different levels

using the ADMs:

• the cellular level refers to the average fluorescence measured per whole

ADM. The cellular level quantification was measured to compare the

average fluorescence levels of either single or dual labelled cells. In

chapter 6, the quantity measured at this observation level is referred to as

"mean ADM intensity".

• the Z-scan level refers to the total amount of fluorescence measured on

each different Z-section within the Z-series. The Z-scan level

quantification was performed on dual labelled cells, in order to compare

the fluorescence measurements from each Z-scan of paired Z-series using

correlation analysis.

• the subcellular level refers to each single element/position of any ADM

matrix. Quantitative analysis at the subcellular level was performed using
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correlation analysis applied element by element on ADMs obtained from

dual distributions.

Fluorescence quantification at the cellular level is similar to FACS analysis,

where antigen amount per cell is quantified by measuring the average

fluorescence for each cell of a population. Comparing quantification results at

both the Z-scan and subcellular levels provides with allows to characterise the

degree of colocalisation of two antigens in the cell membrane. Indeed (section

1.2.3.1.3) the Pearson's correlation coefficient is sometimes used to quantify the

degree of colocalisation between distributions. If two antigenic distributions are

spatially colocalised, the correlation coefficient is close to 1. Commonly,

correlation is performed between paired equatorial LSCM cross sections. Since

the ADMs contain quantitative fluorescence measurements of whole Z-series,

more information is available and it is interesting to plot the correlation

coefficients obtained at the Z-level versus those obtained at the subcellular level

in order to compare different cell populations (see figure 7.3).·However, other

colocalisation analysis approaches are investigated in section 5.2.3.

The Pearson's correlation coefficient R between two vectors X and Y is defined as

L(XI-XX~ -f)
R = --;::===i========(~(x, -XY X~(y, -vy )

5.4

where here X is the vector containing the total measured fluorescence for the first

antigen per Z cross-section i, and Y is the vector containing the total measured

fluorescence per Z cross-section i for the second antigen. X and f are the
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arithmetic means of vectors X and Y. Similarly, the correlation coefficient between

two ADMs A and B is defined as

R = --;:::::===m===n===;::=======

(~~(A_ -AYX~~(B~ -BY)
5.5

where m and n are the indexes of the elements in A and B, and A and B the

means of the elements inA and B.

5.2.2. Polarisation analysis

Antigen polarisation in the cell membrane occurs when the antigen are

predominantly found concentrated on one side of the cell [Madruga et al, 1997;

van Buul et al, 2003]. As described earlier, this phenomenon is typically observed

on migrating cells, where particular molecules involved in the process are

expressed at the leading front of the cell membrane (e.g. f-actin), and other

molecules are exclusively expressed at the opposite part of the membrane (e.g.

myosin).
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Figure 5.10: Antigen polarisation in cell membrane.

Different instances of antigen polarisation encountered in HSPCs. It is
assumed that membrane antigens are initially randomly distributed around the
cell. Under appropriate stimuli, these antigens concentrate on particular sides
of the membrane. For instance, XY polarisation is observed on migrating cells
or during cell-to-cell contact events. Z polarisation can be triggered by cell
adhesion to an appropriate substrate. Combination of Z and XY polarisation
generates XYZ polarisation. The purple ellipse indicates the contact point of
the cell with the microscope slide. Z and XY polarisation in HSPC membrane
are quantified in this thesis.

The functions of the CD34 and CD164 antigens are not known. Some

experimental evidence suggests that CD34 has some involvement in cell

migration. Our group previously hypothesised that polarity could also be triggered

by the adhesion of a cell to an appropriate substrate. Indeed, it was observed that a

proportion of HSPCs display instances of antigen polarisation along the z-axis

when adhering to the gold coated surface of the microscope slide. Therefore, we
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proposed to investigate antigen polarisation both in the XY -plane, where it could

be triggered by cell migration or cell-to-cell contact events, and along the Z-axls,

where it could be triggered by active recruitment towards the contact area of the

cell with a substrate.
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XV -polarised CD34 distribution

Z-polarised CD34 distribution

Figure 5.11: Z and XY Polarised CD34 distributions.

These 3D reconstructions use a range of colours to better represent the
fluorescence intensity. Shades of red indicate higher antigen densities. DIC
images of the cells are also shown below the reconstructions. Top - Example
of XY polarised cell viewed at two opposite angles. CD34 is clearly
concentrated on one side of the cell. Bottom - Example of Z polarised CD34
distribution. Clearly, most CD34 clusters are located towards the adhesion
site. The arrow indicates a small CD34-containing pseudopod extending over
3 urn towards the slide, as would be expected if CD34 was actively involved
in cell adhesion. In both cells, a CD34 halo can be observed all around the
membrane. These datasets were collected on HSPC adhering to fibronectin,
an adhesion molecule, for 30 minutes.

5.2.2.1. Polarity in the XY -plane

The sum of antigen density Sea) was calculated down the columns of the ADMs,

which is a projection of the total amount of antigen in XY -plane, between the
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polar angles ae [0°-360°] (or ae [0-21t] radians). For any angle a a ratio R(a) was

calculated such as

5.6

where

5.7

MI.} represents the ADM matrix. The denominator (equation 5.7) is constant and

represents the sum of the antigen densities stored in MI.}' By definition, R can

only take values in the range [0; 1]. The polarity of the antigen distribution in the

x-y plane was defined as

. _ LR(a)eRIR(a)~0.5
Polaritys, - " I .L..JR(a) e RR(a) < 0.5

5.8

This ratio is higher than 1 for XY polarised distributions. In such cases, R(a) has

a shape close to one period of the cosine function, i.e. it has one maximum and

one minimum and varies monotonically between them. In this situation, the

numerator of equation 5.8 represents a compact set of R(a) (all a for R(a) ~ 0.5

are separated by one increment unit), and similar remark applies to the

denominator. When the antigen distribution is not polarised, R(a) fluctuates

several times around the value 0.5 and is not a compact set anymore. Measuring

polarity using equation 5.8 is therefore meaningless in this case, and instead the
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Polarity XV = 1.1532

Polarity XV = 1.3489

"
Polarity XV = 1.5809

210

270

Figure 5.12: Polarity graphs and quantification in the XY plane.

Left - Normalised fluorescence intensity vs. angular coordinate. The curve
fluctuating closely around the dashed line is R(a) in the text (equation 5.6),
where a is the angle. The bold line indicates where R(a) is higher than 0.5
(dashed horizontal line). This curve is used to calculate the polarity XY
according to equation 5.8. The value of the polarity is indicated. Right - Polarity
graphs in the XY plane. Such graphs are similar to the top graph in figure 5.2.

distribution was attributed a XY-polarity score of 1 (non polarised). It was

subjectively found that antigen distributions can be considered polarised in the

XY-plane (i.e. the antigens are mostly expressed on one side of the cell) when the

polarity is equal or higher than 1.5.
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5.2.2.2. Polarity along the z-axis

The sum of the antigen density is calculated per Z-scan, i.e. S(n) where n is the Z

position. The polarity of the antigen distribution along the Z-axis was defined as

N

IS(i)
Polarity = IaN 12

z N

IS(j)
)-1

5.9

where N is the total number of Z-scans. The nominator represents the sum of

antigen densities in the N/2 Z-scans closest to the contact point of the cell with the

gold-coated microscope slide. The denominator is constant and represents the sum

of the antigen densities stored in the ADM MI,). The antigen distribution is

polarised if the polarity, is higher than 0.5, which indicates that more than 50% of

the antigen densities are located in the cell hemisphere facing the adhesion site

with the slide.

5.2.3. Colocalisation analysis

The most common approaches to investigate colocalisation were described in

section 1.2.3.1. A common approach consists, using paired LSCM images, in

plotting a scatter plot for which each axis represents the intensity of each

fluorochrome. The corresponding dual images are scanned on a pixel basis. Each

point of the scatter plot represents a pair of dual pixels at a particular location in

the dual LSCM images. The proportion of points belonging to the region of

colocalisation of the graph is used to quantitatively characterise the distribution
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colocalisation of the two antigens. The Pearson's correlation coefficient can also

be used to quantify the extent of the linear relationship between both distributions.

It must be stressed that such a correlation coefficient only measures the linear

agreement between two variables. Therefore, two antigens may be spatially

colocalised while having no linear relationship between their levels of expression.

Furthermore, it is noticed that high correlation coefficients can be obtained if the

mask used to identify the relevant fluorescent regions is set up to low and

encompass lower intensity areas. Due to the unimodal nature of the image, a lower

threshold used to separate the background to the signal generates a mask which

encompasses proportionally wide insignificant areas for which low intensity pixel

pairs participate to increase significantly the correlation coefficient. It is

consequently important to make sure that the segmentation threshold is set up

properly, as previously demonstrated in the chapter 4.

In the following sections, two different approaches for performing colocalisation

analysis are described, one involving LSCM images and one involving the ADMs.

5.2.3.1. Image pair re-alignment

In most experimental datasets used in the present work, corresponding dual

LSCM images were not strictly aligned or displayed a strong shift. Accordingly to

observations from the literature, most datasets were affected by shifts in the XY-

plane while few were affected by shifts in along the Z-axis. This latest case was

observed for some datasets of the epitope experiments, due to some motion of
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cells which did not stick strongly to the coverslip. Such sets were not used for

colocalisation analysis.

A correlation method was implemented to correct the XY shift. Correlation was

considered as a good approach since the dual signals to be realigned were often

significantly colocalised. Also, the fluorescence signal was only present in the

membrane of the cells for which the shape is similar whatever the distribution of

the antigen under investigation. As observed, this shape similarity made the use of

a correlation re-alignment method robust and reliable.

The method requires the manual selection of a square region encompassing the

signal of one fluorochrome from the cell under investigation. The whole cell area

is selected each time. This area is then artificially shifted at known position along

the X- and Y-axis. For each position, the Pearson's correlation coefficient is

calculated between the shifted and the corresponding non-shifted image of the

pair. The shifts along the X- and Y- direction, respectively sx and sy, were chosen

to belong to the ranges

{sx,SY} E [-20;20] pixels. 5.10

This interval was found wide enough to correct most encountered shifts. Higher

shifts were considered as resulting from an experimental problem (Le. cells

unstuck from the coverslip), and the data sets were not used in colocalisation

analysis. The correlation coefficients were stored in a 41x41 matrix Mr. The

position of the maximum element inM,was located as

(SXOPI'SYOPI) = argmax(M, (i,j»
i,j

5.11
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Correspondingly, the appropriate image of the pair was shifted by the amount

SX opt and sy opt prior to colocalisation analysis. It was observed that using the

whole signal areas from the cell of interest made this approach very robust in

comparison to selecting only predominant clusters which may not necessarily

have an equivalent counterpart in the other LSCM image of the pair.

CD164 distribution CD34 distribution Merged distributions

~~!... ..... -• 'II .., .. •
t t , 1 .,., \

~~ "it.. .. ..
." -'"

Colormap of the merged image

Colocalisation colorbar

low high

Figure 5.13: llIustration of merging the dual fluorescence after automatic re-

alignment .

.Two Z-sections, corresponding to CD164 and CD34 in this example, are re-
aligned using the correlation method described in the text. Once the shift
corrected, they are merged. Colour map of the merged image and colocalisation
colour bar. Colocalisation is assumed to take place when the colour is close to the
dashed diagonal (in colour map image), in the area enclosed by the dashed lines.
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5.2.3.2. Colocalisation analysis using correlation method after watershed

segmentation

Visual inspection of the merged fluorescence distributions after correlation-driven

re-alignment indicated that, in many cases, the antigen clusters or the halos did not

share similar degree of colocalisation despite them sharing identical locations (see

figure 5.13). As a consequence of this observation, a way of segmenting the

different fluorescent clusters and analysing their antigen content using correlation

analysis and linear regression was investigated and described in this section.

Many approaches [Phee et al, 2001] use the middle image in the confocal z-stack

for colocalisation analysis, since it usually provides the best contrast of the

fluorescent signal. This is also true for the datasets used in this work, and the

equatorial Z-section was used for this approach of colocalisation analysis.

As previously mentioned, watershed segmentation is particularly relevant for

segmenting good quality LSCM fluorescence images (i.e. when the contrast is

strong enough to discriminate between signal and background) [Lin et al, 2003].

However it is also very sensitive to noise, and original LSCM micrographs are

naturally strongly affected by it. Consequently, one or several noise removal

filtering steps were required prior to applying watershed segmentation to the

fluorescent clusters. It was observed that various smoothing procedures using

different filter parameters produced different segmentation results. It was decided

to avoid heavy under- or over-segmentation of the fluorescence distributions.

After experimenting with several approaches, the following filtering steps were

consistently used as pre-processing steps on the investigated image pairs.
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Firstly, the original LSCM images were filtered with a l1xl1 median filter. This

rank filter removed the speckle noise components and made the lower intensity

background very uniform. Secondly, in order to smooth and attenuate the

boundaries between the fluorescent clusters, weaker filters (described below) were

applied iteratively. The number of iterations was set up to 3. At each iterative loop

i, a filter F; was designed as a l1xll matrix whose elements were initially all set

to 1, except the middle element which was empirically defined at each iteration i

as

F66 = 5 + i, i E {1,2,3}. 5.12

The filter F was then normalised as Y' by dividing each of its elements by their

total sum, Le.

F,N = Fi = Fi
I 121+5+i 126+i'

5.13

so

LF;N (x,y) = 1. 5.14
x.Y

This smoothing procedure further diffused the remaining higher frequency

components in the image after the preliminary application of the median filter.

Watershed segmentation was then applied to the smoothed images. A label matrix

the same size as the original LSCM image was created, in which same numbers

indicated pixels belonging to the same watershed. The watershed boundaries were

set up to O. Since watershed segmentation was also applied to background areas in
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the image, the application of a mask to isolate the fluorescence signal was

required. This signal mask was obtained using the Multi-Scale algorithm (MSA).

The fragmentation of the fluorescence signal according to watershed segmentation

produced patches of signal areas. The careful set up of the parameters used in the

smoothing process was chosen so that the biggest patches encompassed one or

several antigen clusters. Therefore these segmented patches were available for

further analysis. For this purpose, the focus was given to some quantities to

characterise the colocalisation of two antigens under the preliminary hypothesis

that it exists a linear relationship between their levels of expression, Le.

5.15

where [Agl] and [Ag2] represent the antigen "concentrations" (as reflected by the

fluorescence) of antigens I and 2, and a and b are constants (a is the slope of the

straight line while b is the value of this line when [Ag2 ]=0). If so, the Pearson's

correlation coefficient is a relevant quantity to compute, as a value close to 1

would indicate clear linear relationship between two antigens while a value

around 0 would indicate the lack of linear correlation (a third extreme case would

be a correlation coefficient close to -1, which would indicate that the antigen

levels are anti-correlated). In addition, the determination of the value of a can help

getting further insights on relative proportions between the expression levels of

the two antigens. Indeed, a value of a close to 1 would indicate equality between

the levels of each antigen, while lower or higher values (in association with a high

correlation coefficient) provide information on the proportionality coefficient

between both expression levels, or the value of the bias if fluorescence measures
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are not calibrated. These quantities are able to differentiate between various

degrees of colocalisation, but do not provide information on the actual

fluorescence intensity. Therefore, for each watershed basin, the mean intensity of

both antigens is also measured and stored. In this study, fluorescence calibration

was not available so no use was made of the mean fluorescence per watershed, but

this would be important information in other LSCM experiments where

calibration is known.
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Figure 5.14: Example of watershed segmentation for colocalisation analysis.

The (middle) left image shows the colour-coded correlation coefficient computed
in each single watershed basin (weighted by the mean intensity in each basin).
The right image shows the colour-coded bias calculated in each basin. It can be
noticed that in some areas, correlation and bias are very similar while in some
other areas they are very different (e.g. top of the ceil). This illustrates visually the
differential expression of CD34 and CD 164 around the cell membrane. The
composite image at the bottom is a combination of both correlation and bias
images. It is shown here to illustrate how the proposed watershed colocalisation
analysis could be used to visually emphasise the colocalisation properties of the
merged distributions. For instance, clusters with high correlation coefficients and
low biases are found predominantly on the top-right part of the distribution, while
clusters with high correlation coefficients and higher biases are found
predominantly on the bottom half of the distribution. This is by no mean obvious
by looking at the merged distribution.
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5.2.3.3. Colocalisation analysis using the ADM

For comparison, colocalisation analysis was investigated using the newly

developed ADMs. The proposed analysis also works on the assumption that a

linear relationship exists between the expression levels of the dual labelled

antigens, and aims to measure the deviation from this linear model. A high

deviation would show that, despite antigens being co-localised at the same

locations, they are differentially expressed and thus do not strictly follow a linear

model. If the antigen distributions of colocalised antigens are following a linear

model, as it would likely to be expected when labelling different epitopes of the

same molecule, on the same cell, the corresponding ADMs should be extremely

similar. However, in some situations, the contrast and brightness parameters of the

image acquisition system may have affected the range of intensities available in

the ADMs. Under the condition that such experimental adjustments of the image

quality are applied reasonably to the original LSCM images by the operator (as it

is recommended in good confocal microscopy practice, e.g. refer to the guidelines

of the free NIH image processing and analysis software), their effect should result

in a modification of the ADM histogram shape. Theoretically, the histogram of

one ADM which could look like a Gaussian curve would also have similar shape

when computed from the other ADM. However, the position of the peak may be

different (due to brightness adjustment) and the standard deviation may not be the

same either (a narrower peak would be expected if the contrast of the LSMC

images used to generate this ADM was stronger than for the other micrographs

used to generate the first ADM). The following procedure was applied to

compensate this problem and perform colocalisation analysis on paired ADM.

188



Marc-Olivier Baradez PhD Thesis Chapter 5. Processing, representation, analysis

CD34 ADM CD164 ADM

ADM thresholded in three classes: halo, low and dense clusters

• halo

IIlow density clusters

hiqh density clusters

Classes lntensity range

Halo mean ADM intensity - SD to mean ADM intensity
Low density clusters mean ADM intensity to mean ADM intensity + SD
High density clusters mean ADM intensity + SD and above

Figure 5.15: Colocalisation analysis using the ADM.

Top - Two CD34 and CD164 ADM to be analysed for colocalisation. Middle -
Thresholded ADMs in order to locate three different classes, namely the halo,
low density clusters and high density clusters. Classes are identified below.
Despite the original ADMs having different intensity distribution, thresholding
according to the procedure described in the text leads to very similar classes
well colocalised. The red rectangles show a meridian-shape crest-like (MSCL)
structure extending from one pole of the cell to the other. It can be observed that
antigen density varies along the MSCL structure, but both CD34 and CD 164 are
found colocalised in this structure. Bottom - Table providing the intensity
ranges used to define each class.

In this procedure, dual ADMs were thresholded using N equally spaced thresholds

(N=80 in this work) chosen to cover the range of intensities corresponding to halo,
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low and high density antigen clusters. For each threshold, dual binary ADMs were

generated in which positive values indicated regions with intensities equal or

higher than the threshold. Colocalisation analysis was performed by measuring

the degree of overlap between binary ADMs and the proportion of overlapping

regions for each of the antigens, for every threshold. The method is further

detailed below.

Firstly, the ADM were resized to a 100xl61 matrix using bilinear interpolation.

Bilinear interpolation was used in this case to increase the number of grey levels

in the ADM. Secondly, each ADM was successively thresholded in the range

[~ - 0';m +0' ], where m and a are the mean and standard deviation of the ADM

(which are not changed after bilinear re-sampling). From this interval (different

for each ADM), 80 equally spaced thresholds were selected to binarise the ADM.

(This procedure has exactly the same effect as standardising the ADM by

subtracting the average ADM value to each elements and dividing them by the

ADM standard deviation, then thresholding the ADM in the range [-1; 1] using 80

equally spaced thresholds). The range [m -O';m +u] was chosen to prevent the

analysis of the extreme (low and high) fluorescence intensities, which may have

been affected by a non-linear response due to possible, unknown brightness-

contrast adjustment from the operator. The lower intensity values in this range are

found in the ADM regions of the halo, while high intensities are found in the

antigen cluster regions.

Let A~D34 and A~DI64 be the binary images of the CD34 and CD164 ADMs

thresholded at T,· T E {m ± u}. For each T, the ADM regions where both CD34
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and CD164 were co-expressed, Le, where both binary ADMs shared white-

positive areas, was defined as

5.16

The "rv" symbol is equivalent to the logical "AND" operation, The respective

proportions pfD34 and PZv164 of each antigen found colocalised with the other

antigen were calculated as

pT A~
CD34 =-;r-

CD34

and PT A~
CDI64 = T •ACD164

5.17

By definition, both P[D34 and pfD164 have values in the range [0; 1], where a value

o indicates that the antigen in question, e.g. CD34, is not colocalised with the

other antigen, e.g. CD164, while a value 1 indicates that CD34 is entirely

colocalised with CD164 (but a proportion of CD164 may not be colocalised with

CD34).

It is stressed that this is measured for antigen intensities, or densities, above the

threshold T.Moving the threshold may produce other values for pfD34 and P[D164'

Nevertheless, if the hypothetical existence of linear relationship expressed by

equation 5.15 is true, P[D34 and pfD164 should be both equal to 1 for any T.

Therefore it arises that these quantities are appropriate to quantitatively

characterise the degree of colocalisation of each antigen, in respect to the other.

However, in this state, they do not provide an overall quantitative measurement

which could describe the degree of colocalisation of the merged antigen

distribution. Consequently, another quantity is defined as
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CIT A~
o CD34/CDl64 = AT AT '

CD34U CDI64

5.18

where A~D34 U A~D164 is the union of the sets A~D34 and A~D164' i.e. the collection

of any elements belonging to both A~D34 and A~D164' Again, if the linear

relationship expressed by equation 5.15 is true, Co/~D34,cDI64 should he equal to 1

for any value of T. Therefore, Co/~D34IcDI64 is also an appropriate measure to

quantitatively characterise the degree of colocalisation between two antigens, here

applied on the ADMs, and particularly to observe (see figure 6.2) the likely

deviations from the linear hypothesis of equation 5.15.

5.2.4. Investigating the potential role of CD34 by analysing CD34 antigen

clusters distribution using the ADM

Our group and others (refer to chapters 1 and 7) previously made assumptions on

the potential biological functions of the antigens investigated in the present thesis.

It has been reported that CD34 may have a role in cell migration and HSC homing

under physiological conditions. Such conditions imply that circulating CD34+

HSPC migrate from blood vessels, through the vessel endothelium, to HSPC

niches (particularly the bone marrow in adults) by sensing the appropriate

chemotactic gradient in the local micro-environment. HSPCs may consequently

react to a chemotactic gradient by migrating along that gradient (theoretically by

moving towards the source of the highest chemoattractant concentrations).

Nevertheless, such hypothesis arose from migration experiments [Phee et al,

2001], mostly using the well known and used trans-well designs (despite
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criticisms about their reliability and repeatability properties). In such experiments,

a well is divided into two chambers using a horizontal membrane (that membrane

has pores of known sizes). The lowest chamber contains the chemoattractant

while the upper chamber contains the HSC incubated in the culture medium. A

chemotactic gradient is theoretically established between the lower and upper

chamber, which potentially triggers CD34+ HSPC migration through the

membrane. The migration activity is quantified by measuring the ratio of cells

migrated to the lower chamber in respect to the cell number in the upper chamber

(commented in [Jeon et al, 2002]).

Under this experimental set up, non-direct evidence that CD34 is involved in

trans-well migration is provided by blocking experiments, where anti-CD34

monoclonal antibodies (moAbs) are added to the medium in order to bind

specifically to the membrane CD34 antigens. This presumably inhibits the CD34

function. It was observed that lower migration rates of migrating CD34+ cells

were obtained under these conditions, but it could be argued that other molecular

phenomena are taking place (e.g. anti CD34 moAbs may artificially activate

CD34 which in turn lowers the migrating potential of the cells, or the moAbs

make the cells to stick more strongly to the membrane, preventing cell migration).

CD34 may also be involved in participating to cell-to-cell contact. Indeed, LSCM

image analysis and 3D reconstructions of CD34 spatial distributions tend to

suggest that, despite strong colocalisation of the whole CD34 membrane pool,

antigen clusters may often been found at the contact areas between adjacent cells.

CD34 clusters may also been found preferentially distributed towards the contact

pole of the cell with the microscope slide. Why clusters form and are sometimes
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found in a polarised manner is not understood. Under the light of some time-lapse

experiments [Francis et al, 1998] and electron microscopy data (data not shown),

human HSPC seem not to deform their shape in order to communicate to each

other. Instead, they produce thin filaments (tenupodia, pseudopodia) of various

lengths to reach each other, get closer, or maybe exchange biochemical signals. In

this perspective, CD34 clusters could be a mean of concentrating CD34 molecules

in the membrane region where a filament is to be produced, consequently coating

the filament, during its growth, with CD34, and bringing the molecule in contact

to other cells in order to perform the desired function.

Antigen polarisation may involve the whole antigen pool, or mostly the halo, or

the clusters, or a combination of both. In order to further investigate the potential

function of CD34, the spatial distribution of the CD34 antigen clusters in the HSC

membrane was analysed. Two ADM-based approaches are further detailed below,

one consisting in the direct detection of clusters and the other taking account of

the gradient of the ADM with the assumption that clusters generate higher

gradient than halo regions. For both methods, a ratio similar to the Z-polarity is

calculated to express the polarisation of the clusters in the southern cell

hemisphere.

5.2.4.1. Antigen cluster detection

The first approach aimed to detect antigen clusters from the ADMs. The definition

of clusters is not as straightforward as it may seem. There are small dense clusters,

small loose clusters, big clusters of various densities, and regions containing
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mixtures of different types of overlapping clusters. This explains why clusters are

difficult to define and locate using the intuitively simple natural terms of

morphology. Regarding the ADMs, clusters were defined as local maxima (points

where surrounding values in a defined neighbourhood are lower than the middle

one). In order to retain the most significant clusters, only the maxima whose

intensities were higher than the mean ADM intensity were considered.

The ADMs were first filtered to eliminate the random intensity fluctuations

caused by noise. The smoothing procedure made use of morphological operators,

erosion and dilation, applied to each row of the ADMs. The morphological

operation of the dilation, noted E9, of the set A by the set B is mathematically

defined [Gonzales and Woods, 2002] as

A E9B = ~ I (B )z n A ~ 0} 5.19

where z is a point of Cartesian coordinates (Zb Z2) and (B)z is the translation to

the point Z of the reflection of B. The translation is defined as

(Bt = {cIc = a + z, for a EA} 5.20

and the reflection is defined as

B = {w Iw = -b, for b E B}. 5.21

Other definitions of the dilation may be found in literature. The erosion operation

is defined as

5.22
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In grey scale images, the dilation operator assigns the maximum intensity value

found in the 1x5 region covered by the filter to the middle element of the visited

region. Then the filter was displaced by one bin in the horizontal direction and the

process was repeated, until the filter reached the end of the row. The erosion

operator works conversely, assigning the minimum intensity value found in the

lxS region covered by the filter to the middle element of this region.

Firstly each row of the ADM was twice dilated using a lxS dilating operator, and

then twice eroded using a lxS erosion filter. These operations were performed on

rows, not columns, since the antigen clusters were located on a z-scan basis (one

row = one z-scan ) and were defined as local maxima (see below). The size of

these morphological filters was manually selected to remove noisy areas while

globally preserving the predominant, most significant clusters.

Secondly, the local maxima in the ADM were identified as indicating clusters.

Two maxima were merged if they were too close to each other (typically closer

than five distance units), which indicated that they belonged to the same cluster

while the smoothing step was not strong enough to merge them despite the

presence of the noise. This minimum allowed distance was chosen subjectively

according to the size of the smallest but clearly identifiable clusters.

Once identified, the proportion of clusters located in the "southern" hemisphere

was calculated for each ADM and stored for further analysis. A proportion higher

than O.S (more than 50% of the clusters located towards the contact area of the

cell with the slide) suggested that the antigen clusters on this cell may have been

involved in adhesion function. It was noted that the low vertical resolution of the

ADM may affect the calculation of the proportion of "southbound" clusters
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(values of 0.49 - clusters polarised to contact pole - or 0.51 - polarity towards

free pole - may actually not reflect any particular biological tendency, and may

have been affected by increasing the vertical resolution). Furthermore, the clusters

are detected on a local maxima basis, which does not provide information on the

actual size of the clusters or their antigen content. Following these reflections, it

appeared that another means of characterising the involvement of cluster to

distribution polarity was needed (next section).

5.2.4.2. Antigen cluster characterisation using "distribution energy"

In section 5.2.2.2, the polarity along the z-axis was defined from the ADM as the

ratio of the amount of fluorescence in the southern hemisphere to the total amount

of fluorescence. This definition did not distinguish between the contribution of the

halo, loose or dense clusters to the polarity. Trying to identify them individually

in order to assess their contribution to Z polarisation, as described in the previous

section, is not a straightforward task. A similar problem is encountered in the

literature presenting algorithms to segment spots on 2D electrophoresis gel. Many

approaches use modified watershed segmentation or 2D spot modelling [Bettens

et aI, 1996]. Such techniques do not work when applied to the ADM due to the

low resolution along the z-axis. In this section, a method reflecting both the

contribution of the clusters and their antigen content to Z polarisation is presented.

First, only the absolute magnitude of the gradient Vf(x,y) of the interpolated

ADM f(x,y) is computed. Since the gradient has values proportional to local

intensity changes in the ADM., wider and more uniform halo areas have a very
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low absolute gradient in comparison to cluster regions. Secondly, the intensity of

the actual signal, which reflects the amount of antigen [Kara et ai, 2001],

especially the signal contained in the clusters, is taken into account. This is

realised by element-by-element multiplication of the re-sized ADM by its absolute

gradient map, and the product represents the distribution energy map E, i.e.

E(x,y)= (aJ~Y)r +(aJ~Y) r xJ(x,y)

= IVf(x,y)1 x f(x,y)

5.23

The "x" indicates element-by-element multiplication. The distribution energy

contained in the southern hemisphere of the cell membrane is evaluated and

referred as the energy ratio in the southern hemisphere defined, for a MxN matrix

Eas

M N

L LE(x,y)
R. x-MI2y-1
atio E = -=""=-=""=----.~~E(x,y)

5.24

% Y

The denominator is constant and represents the sum of all elements in E. As for

the polarity Z (but regarding the clusters), an energy ratio higher than 50%

indicates a preferential tendency of the cluster to be polarised towards the contact

point of the cell with the slide. This measure is more convenient to assess the

contribution of cluster to Z polarity than the simple relative count of clusters since

it does not rely on the accurate detection of clusters and also takes into account the

amount of fluorescence per cluster.

198



Marc-Olivier Baradez PhD Thesis Chapter 5. Processing. representation. analysis

Image normalised in the
range 0-255

A - Negative original
LSCM image filtered with
a 1Ox10 averaging window

•

B - Negative of the 1gradient image •
Image normalised in the
range 0-255
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C - Product of A and B

•
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Figure 5.16: Effect of calculating energy distribution rather than antigen

density.

Energy distribution is proposed to quantify the effect of the clusters in the
polarisation of the antigen distribution along the Z axis. The computation was
applied on ADM, but its effect is shown here on a single LSCM image in order
to visually benefit from the better resolution of the picture. A - The original
LSCM image is first smoothed using a IOxlO averaging filter and B - its
absolute gradient is calculated. C - The distribution energy is obtained by
multiplying A by B. Therefore the energy image is the fluorescence image (or
"density", or "mass" image) weighted by its absolute gradient. The effect of the
procedure is to emphasize the clusters while reducing the effect of the halo. The
three images are normalised in the intensity range 0-255. The strong
background and the important loose fluorescent halo have been noticeably
attenuated in the energy image while the clusters have been retained.
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Chapter 6. Quantitative analysis of the antil:en

distributions

In chapter 5, several quantities measured on the ADM were defined in order to

characterise the antigen distributions. In this section, a short review of these

quantities is given and the results of the analysis from different cell samples are

summarised.

1 - The first quantity is the mean fluorescence intensity per ADM, or

mean ADM intensity. It reflects the mean antigen concentration per

imaged cell. Comparing mean ADM intensities may potentially help

discriminating between different HSPC, or cells at various stage of

activation. Thus, cell populations or sub-populations could be identified,

Following the same principle, the current techniques of choice for cell

population analysis and comparison are Fluorescence Activated Cell

Sorting (figure 6.1) [Grabarek and Darzynkiewicz, 2002; Ramarao and

Meyer, 2001] and flow cytometry (similar to FACS, but cells are not

separated [Lore et ai, 2001; Macey et ai, 1997]), which records the mean

fluorescence intensity of each individual cell (or event) in a preparation

[Pasino et ai, 2000; ] (see figure 6.2). Therefore, comparing the

distributions of mean ADM intensities is similar to performing FACS

analysis. Moreover it is known that image processing techniques can

provide more information about cell populations [Lore et al, 2001] as

more features can be measured [Swedlow et ai, 2003]. Consequently,
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such measurements obtained on various small HSC samples are also

presented and described below.

2 - The mean number of fluorescent clusters in a cell population can be

measured from the ADM according to the method described in section

5.2.4.1, and was used to compare the cell samples. The mean

fluorescence intensity in clusters can also be measured. Because such

clusters are detected in the ADM, their spatial location was recorded as

well, which allowed to calculate the proportion of clusters located in the

south hemisphere of the cell body, i.e. half the cell portion adhering to

the microscope slide. If these antigens are involved in cell adhesion and

belong to cluster structures, then one should expect that - predominantly

- more than 50% of the clusters are located in the south hemisphere.

3 - The antigen distribution polarity along the z-axis - polarity Z - or in

the XV-plane - polarity XY - can also be quantified using the ADM

(section 5.2.2) to assess the potential involvement of the investigated

antigens in cell adhesion, cell migration or cell-to-cell communication.

4 - As the percentage of clusters located in the southern hemisphere

was observed not to be a very robust criterion when measured in ADM

computed from low intensity / poorly contrasted LSCM images, the

distribution energy was introduced and defined (section 5.2.4.2). It was

used to quantify the proportion of high density structures in the cell

membrane (clusters) in the cell hemisphere.
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In summary, the quantities measured from the ADM and for any antigen

distribution (from either single or dual labelled cells) are

- mean ADM intensity (or mean antigen density)

- mean number of clusters per ADM

mean intensity in clusters

- % of clusters in southern hemisphere

- polarity z

- polarity xy

- distribution energy.
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cell mixture in liquid

laser
~l'

computer
new drop
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electrical wire

Figure 6.1: Principles of Fluorescence Activated Cell Sorting (FACS).

A mixture of cell is labelled with (generally) two fluorescent dies (bound to
specific monoclonal antibodies targeting particular antigens) are passed through
a very narrow tube in which individual cells are excited by a laser. Depending
on the excited fluorochrome, cells acquire a positive or negative charge, or
remain neutral (if the cell carries none of the target antigens). The emitted
fluorescence is recorded in a photomultiplier tube and stored in a computer for
further analysis. Each detection is referred to as one event. Individual droplets
(either containing one cell or none) are deflected between two electrically
charged plates according to their polarity. The different, sorted cell fractions are
then collected. FACS analysis quantifies the average fluorescence measured per
cell/drop.
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Figure 6.2: Flow cytometric distribution analysis of CD34 and CD164 on

CBandBM.

Left panels are representative examples of the CD34 and CD 164 antigenic
profile on CB and BM MNC. The smaller rectangles (left panels) highlight
CD34+CD 164+ discrete cell subset in each source. Each point represents a
single event, the average fluorescence count for an individual cell. Right
panels represent CD133 co distribution on CD34+CDI64+ cells. Results are
expressed as mean ± SEM of percentage expression (CB, n=l1; BM, n=4).
FACS analysis identifies a very immature HSPC population but does not
provide the possibility to further characterise the different antigen
distributions in cell membranes and the spatial relationships between co-
expressed antigens.
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6.1. Features measured for colocalisation analysis of dual labelled cells

As mentioned in section 5.2.3, usual colocalisation analysis methods compare

area ratios where two fluorochromes are colocalised, i.e. area comparison of

(mostly subjectively) thresholded LSCM images, or the mean intensity ratios in

ROIs. These approaches were referred to as the area and intensity methods. As

previously demonstrated, the area method has major drawbacks (subjectivity, lack

of robustness), the features measured for colocalisation analysis were obtained

from intensity measurements (either from the ADM or the LSCM images).

A common measure for comparing two sets of measurements is the Pearson's

correlation coefficient (equation 5.4 and 5.5). This correlation coefficient was

therefore measured for paired (or dual) antigen distribution, from the ADM and

from LSCM images. It was hypothesised that dual antigen distributions may be

spatially colocalised (section 1.2.3.1), and the measured intensities may have a

linear relationship expressed by equation 5.15. If this assumption is true, the

correlation coefficient would be high. However, the correlation coefficient does

not inform on the bias ("a" in equation 5.15). Therefore, further to measuring

correlation, the bias itself was also measured and stored for comparison between

different sample. Both the correlation coefficient and bias were measured at two

different levels on the ADM (section 5.2.1). Furthermore, they were measured for

any of the measurements summarized above.
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6.2. Statistical analysis

For paired measurements, a two-tailed Student's test was performed on the

measurements, and P values were stored (see table 6.3). For independent measure

comparisons, a Levene's test for variance equality was applied since this test is

less sensitive to deviation from Normality (indeed, the populations of

measurements analysed were very small, about 9-13 elements each time, so they

were likely not to be Normally distributed), and an independent t-test was used to

test mean equality. Examples of such tests are provided in Appendix E.

Using the proposed features (chapter 5) obtained from the CD34 epitope datasets,

the measurements were further processed to compensate for the bias ("a" in

equation 5.15) using the equation of the regression line that best fits the data. A t-

test was then re-applied to this transformed data, and the P values were stored

(table 6.3).
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6.3. Detailed analysis and comparison of CD164+CD34c1ass III+,CD34c1ass 1+,

CD34c1ass 11+and CD34c1ass III+HSPC populations

Most of the ADM measurements were performed on all the available and

documented LSCM datasets, which were:

CD34 class III epitope / CD 164 class II epitope

CD34 class I epitope I CD34 class II epitope, sample 1

CD34 class I epitope I CD34 class II epitope, sample 2

CD34 class I epitope I CD34 class III epitope, sample 3.

These measurements were:

- mean ADM intensity (or mean antigen density)

- mean number of clusters per ADM

- mean intensity in clusters

- percentage of clusters in southern hemisphere

- polarity Z

- polarity XY

- percentage of distribution energy in southern hemisphere

Colocalisation analysis involved the measurements of other features measured

either on the LSCM images themselves of the ADMs.
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All series of measurements are presented in different tables, depending on the

type of analysis carried out, and are described and commented in the following

sections. Results are expressed as mean ± standard deviation (SD) for each

distribution. For each type of analysis, the statistical test used is indicated and,

when relevant, the P values are provided. P values lower than 0.05 were

considered significant.

These sections are organised as follow:

• first, most of the above features are presented and compared between the

various HSPC populations investigated.

• Then special emphasis is given to the analysis of the CD34 epitopes

datasets since they were the most abundant data available for the present

study.

• It is followed by a description of the correlation analysis performed on the

CD34 class III epitope / CD164 class II epitope cell population (Le.

CDI64+CD34+cells).

• A whole section is then devoted to the polarity analysis.

• The remaining sections are dedicated to colocalisation analysis of dual

labelled populations,

o firstly using correlation analysis between measurements obtained

at the Z and subcellular levels of observation,
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o secondly using results from watershed segmentation of equatorial

Z-section, and thirdly using the results obtained from

colocalisation analysis developed from the ADMs.

6.3.1. Comparison of HSPC populations

For each of the antigens/epitopes combinations, most of the above features are

presented in table 6.1. For comparison, the percentage of clusters in south

hemisphere and the polarity z are shown on the right side of the table. The bold

numbers in these two last columns indicate the mean values above 0.5, which

Table 6.1: Measurements from ADMs. Comparison ofHSPC populations.

measurements from ADM

antigen combinations antibodlel I
moan ADM mean nurmer of mean nlenslly In % cluslel$ In I
nllnsly clusler. cluslers south hlnisphtrl % pOlarlyZ

<D34
IgGI + 1-f'CA·1I 1.43,.,0.21 21.20±S.S9 2.55"'0.56 4S:I: 27 50.31 :I: 3.88

CD34· CDlI4
class II Iplopl

CD164
IgG3+ 1038219El 0 1.30 "'0.16 19.50'" 6.06 2.04"'0.35 39:1: 22 49.85,., 1.96

class I Iplopl

"'flO
3.07 ±D.59 19.62:1:3.97 7.07 :1:4.02 55:1: 22 50.95 U.98

COO4epltopes I • II class lopltope

lample 1 08E1'010
class I oplopo 3.S5:1:0.95 IS.9H2.87 7.87%2.95 47:1: 23 53.00 :ta.l0

"'flO
2.56'" 1.41 9.92'" 3.17 7.52,., 3.20 49:t20 49.75:t 13.77

CD34 epltopel I • II class lopitope

sample 2 08E1'010
class I .plop. 2.55,., 1.0S 10.6H2.79 8.36:t 3.74 42:1:22 47.00'" 10.50

"'flO
2.tS'" 1.19 IS.4S,., 5.S1 7.12:1: 1.46 40:1:24 47.389:1: 7.S5

COO4epltopes 1·11 class I.pllope

lample 3 H'CA·I
class Iloplopl 2.S8:t 1.13 18.27:t 5.S1 7.04:1: 2.88 39:1: 17 51.28 to. 03

indicate (by definition) some degree of polarisation. Furthermore, the antibodies

used in these dual labelling experiments are also presented in the table.
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6.3.1.1. Mean ADM intensity

6.3.1.1.1. CD34 - CD164 comparison

For the CD34/CD164 dual labelling experiments, the mean ADM intensities

appear similar for both antigens, but a two-tailed paired t-test provides a value of

P = 0.010, which indicates that these mean antigen densities are significantly

different. From the measurements, it appears that less CD 164 fluorescence is

consistently measured in this cell sample. It is also noted that these mean values

are significantly lower than any other mean antigen density from the epitope

analysis, so it appears from this investigation that CD 164 is expressed at the

lowest antigen density levels in comparison to CD34 epitopes.

6.3.1.1.2. CD34 class III epitope comparison

In comparison to the only other data on CD34 class III epitope (sample 3), the

measured fluorescence of CD34 from CD34+CD164+ cells is significantly lower

than the measured fluorescence from CD34 class I +CD34 class III + (P = 0.030 from

independent Hest for mean equality, after variances were shown not to be

significantly different - P=0.143 from Levene's test for variance equality).

6.3.1.1.3. CD34 class II epitope comparison

CD34 class II epitope positive cells were imaged from two different CB samples

and delivery dates (sample 1 and sample 2). A Levene's test and a Hest reveals
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that both variances are similar (P=0.830) and the means are significantly different

(P=0.003), sample 2 being lower than sample 1 by the antigen density 1.304

(background normalised units). This means that CD34 class II epitope is

expressed in an excess of over 50% in sample 1 in comparison to the mean

fluorescence measured in sample 2. However, because no fluorescence calibration

was available, the possibility that this difference may be due to experimental

considerations (despite the fact that the same protocol was applied throughout the

whole investigation) has to be considered.

6.3.1.1.4. CD34 class I epitope comparison

The three samples (sample 1, 2, and 3 in the first column of the table) were all

analysed for CD34 class I epitope. Levene's test and independent t-test indicated

that samples 1 and 2 have different variances (P=O.OOl) while their means are

similar (P=0.248). Samples 2 and 3 are distributed similarly, having similar

variances and means (P=0.231 and P=0.456 respectively). Samples 1 and 3 have

significantly different variances and means (P=0.085 and P=0.035 respectively),

so an excess ofO.92 fluorescence (in background normalised units) was measured

for CD34 class I epitope in sample 1 in comparison to sample 3.

Therefore CD34 class I epitope was measured to be expressed in lower amount

between one of the two CD34 class I +CD34 class II + samples (sample 1) in

comparison to the CD34 class I +CD34 class III + sample (sample 3). The mean

fluorescence intensities measured for CD34 class I +CD34 class II + (sample 2) and

CD34 class I +CD34 class III + (sample 3) are not statistically different. It is
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consequently difficult to assess whether or not the observed differences reflect

some fundamental biological facts are an experimental artefact.

6.3.1.2. Mean number of clusters

6.3.1.2.1. CD34 - CD164 comparison

The mean number of clusters for CD34 and CD 164 on dual labelled

CD34+CD 164+ cells were not statistically different.

6.3.1.2.2. CD34 class III epitope comparison

Again, the CD34 class III epitope distributions from CD34+CDI64+ cells were

compared with CD34 class 1+CD34 class III+cells (sample 3). They were not found to

be different (P = 0.356 from independent t-test for mean equality, after variances

were also shown to be similar - P=0.939 from Levene's test for variance

equality).

6.3.1.2.3. CD34 class II epitope comparison

The CD34 class II epitope distributions from samples 1 and 2 were compared, and

the average number of clusters in each sample were found to be significantly

different (P=0.796 from Levene's test for variance equality, so the variances are

similar, and P<O.OOI from t-test for mean equality, so the means are different).

The t-test indicates that the CD34 class II epitope from sample 1 contains, in
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average, 8.3 more clusters than CD34 class II epitope from sample 2. This almost

double (80% increase) the mean number of clusters measured in sample 2.

6.3.1.2.4. CD34 class I epitope comparison

The comparison of the three samples of CD34 class I epitope further revealed that

two out of the three possible sample combinations have significantly different

average number of antigen clusters per cell. Indeed, twice more CD34 class I

epitope clusters were measured in sample 1, in comparison with sample 2

(P=0.0.780 from Levene's test, so the variances are similar, and P<O.OOI from t-

test, so the means are different). Similarly, almost twice more CD34 class I

epitope clusters were measured in sample 3, in comparison with sample 2

(P=O.O.083 from Levene's test, so the variances are different, and P<O.OOIfrom t-

test, so the means are also different). However, the sample 1 / sample 3

combination was statistically identical.

6.3.1.3. Mean intensity in clusters

6.3.1.3.1. CD34 - CD164 comparison

The mean fluorescence intensities in the clusters of both dual labelled

distributions were not statistically different.
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6.3.1.3.2. CD34 class III epitope comparison

No significant difference was measured for the mean intensity in the clusters of

the CD34+CD164+ cells when compared with CD34 class I + CD34 class 111+cells

(sample 3). The average number of clusters for these samples was reported to be

statistically similar.

6.3.1.3.3. CD34 class II epitope comparison

The mean fluorescence intensity in the clusters of the two samples compared (1

and 2) is identical amongst the samples. Despite the fact that a much lower

number of clusters was measured on sample 2, the mean fluorescence measured in

the clusters of sample 1 is statistically comparable to sample 2.

6.3.1.3.4. CD34 class I epitope comparison

Again, all of the three possible combinations for comparing the CD34 class I

epitope samples showed that the mean fluorescence intensity in the clusters is

identical amongst the samples. Therefore, despite the fact that some samples may

display a lower number of antigen clusters, the mean fluorescence measured in

these clusters is statistically comparable to the other samples, richer in clusters.

Interestingly, it results from this analysis that the mean intensity in the clusters is

comparable for any of the imaged antigen distributions.
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6.3.1.4. Percentage of clusters in southern hemisphere

6.3.1.4.1. CD34 - CD164 comparison

No significant difference is observed, and both percentage of clusters polarised in

the southern hemisphere of the cells were below 0.5, indicating that the antigen

clusters were not preferentially polarised towards the contact points of the cells

with the microscope slide.

6.3.1.4.2. CD34 class III epitope comparison

Once more, no difference is observed, and again both percentage of clusters

polarised in the south hemisphere of the cells were below 0.5, so the CD34 class

III antigen clusters were not preferentially polarised towards the contact points of

the cells with the microscope slide for these samples.

6.3.1.4.3. CD34 class II epitope comparison

Yet again, no difference was measured between the cluster polarisation on CD34

class II epitope distribution, and still both percentage of clusters polarised in the

south hemisphere of the cells were below 0.5.

6.3.1.4.4. CD34 class I epitope comparison

216



Marc-Olivier Baradez PhD Thesis Chapter 6. Quantitative analysis

Even though the measures seem to be different, the differences were not

significant.

6.3.1.5. Polarity Z

The polarity Z values were provided in this table 6.1 to allow the comparison with

the percentage of cluster located in the cell's southern hemisphere. Similarly to

the results obtained from the analysis of the percentage of cluster located in the

cell southern hemisphere, no significant differences were measured when

comparing the sample combinations. For some combinations, the difference of the

mean seems important, but the corresponding standard deviations are high, which

makes both distributions significantly overlap. Hence the similarities between

measurements when compared at the population level.

It is important to notice that within the cell population themselves, some cells are

found highly polarised. This may indicate that some HSPCs can still actively

polarise their antigen distributions when specifically stimulated at their contact

point with the microscope slide, the actual nature of the stimulus having to be

elucidated. The gold of the slide coating is unlikely to be a strong promoter of

polarisation. Biologically sound molecules classically used in adhesion

experiments, such as fibronectin or collagen, could be used to repeat the LSCM

investigation. Then, a significant difference in cell polarisation may be measured.

Preliminary experiments carried out using fibronectin-coated slides revealed cells

with a very strong antigen polarisation, which seemed to have been triggered by

the cell adhesion to fibronectin (figure 5.10). If the gold substrate used in this

thesis was not a polarisation stimulant, then the higher polarity observed in some
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samples (bold numbers in far right column, indicating polarity Z> 0.5, or 50%)

may reflect a non-specific tendency of these cells to polarise, suggesting indeed

that a proper substrate would activate an actual polarisation of the antigen towards

the cell contact point with the slide.

6.3.1.6. Comparison of the percentage of southbound clusters and polarity Z

In order to assess if the antigen clusters are particularly involved in the

polarisation of the antigen distribution, the percentage of southbound clusters and

the polarity Z were compared to each other, for each sample of the antigen

combinations.

Despite the fact that all standard deviations of the compared measurements were

significantly different, most differences of their means were not significant

(P>O.l). The only polarised distribution of clusters in the southern hemisphere

was observed for the class I epitope of sample 1 (percentage of southbound

clusters = 0.55 ± 0.22). Similarly, the corresponding polarity Z is found slightly

polarised as well (percentage of polarity Z = 50.95 ± 3.98). Therefore, in this

case, the clusters are involved in the antigen distribution polarisation. However,

whenever the polarity Z is over 50% for other samples (CD34 in CD34+CD164+

cells, CD34 class II epitope in sample 1, and CD34 class III epitope in sample 3),

the percentage of southbound clusters is lower than 50%, indicating that the

clusters are predominantly located in the northern hemisphere of the cell, and do

not contribute to the polarisation of the antigen distribution. Therefore, in such

instances, the polarisation is due to the predominance of the halo or very low

density clusters in the southern pole. This is particularly observed for the CD34
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class III epitope distribution (sample 3), for which the clusters are clearly

polarised towards the free (north) pole of the cells (percentage of southbound

clusters = 0.39 ± 0.17) while the whole antigen distribution is slightly polarised

towards the contact point (percentage polarity Z = 51.28 ± 9.03).

This analysis therefore reveals that the antigen clusters do not participate actively

to the polarisation of the antigen distribution in the membrane of the HSC. This

also further strengthens the observations made in the previous section (6.3.1.5),

that gold coating does not trigger specific polarisation.

6.3.2. General descriptive statistics for the CD34 class I, II and III epitope

distributions

In this section, the results obtained for each of the epitope (Le. class I, II and III)

are summarised and commented.

Table 6.2 presents, for each epitope class, the mean ± standard deviation for each

type of measurement. For all classes, the differences observed were not

significant (P>0.05). As expected, the cluster antigen densities are (over twice)

higher than the total antigen density (which actually represents the mean ADM

intensity). The high standard deviations are due to the high variances observed in

the various cell populations used in the study. These standard deviations are

comparable to the detailed results (for each epitope class, for each sample)

presented in table 6.1.
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FACS analyses reported in the literature [Lanza et al, 1999; Maynadie et 01, 2002]

show little, if any, differences between the mean fluorescence intensities

measured for each epitope class, in normal and cancer cell populations. Generally,

a slightly weaker fluorescence is measured by FACS analysis for the class II

CD34 epitope, in comparison to the other classes. In our data, the opposite

tendency is observed, i.e. class II CD34 epitope displayed an increased

Table 6.2. General descriptive statistics for the CD34 class I, II and III
epitope distributions.

Classes I, II and III CD34 epitope expression and membrane distribution features measured on
populations of CD133 selected cells.

Features CD34MaAb Comments

class I class II class III
My10 QBEND10 HPCA-II

Totai Antigen Density 2.62 ± 1.14 3.20 ± 1.20 2.68 ± 1.13 classes I, ii, '" similar results

Cluster Antigen Density 7.24±3.07 8.11 ± 3.11 7.04±2.88

Number of clusters 15.86± 6.10 14.n±5.06 18.27 ± 5.60

% southbound clusters 0.48±0.22 0.44±0.22 0.39 ± 0.16

Zpolarity 0.S2±0.15 0.49±0.09 0.53± 0.10

XV polarity 1.91 ± 1.09 1.90±1.40 1.82±0.77

Data expressed as mean x standard deviation

classes I, ii, '" similar results

classes I, II, similar results, class III
Significantly higher

classes I, II, '" similar results, class III less
variable

classes I, II, '" similar results

classes I, II, '" similar results, class III less
variable

fluorescence, both reflected by the mean antigen densities and the cluster antigen

densities. As for FACS results, this difference is not significant.

The number of antigen clusters is also similar, but CD34 class III epitope

distributions showed a higher number, despite no statistical difference with the

other classes.

The percentage of southbound clusters is consistent for each class. However, they

are all below 0.5, which indicates no polarisation of the clusters towards the
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contact point of the cells with the slide. This is comparable to the detailed results

from table 6.1.

The axial polarity Z is also again found consistently distributed around 0.5 for all

epitope classes, indicating no particular tendency of the CD34 antigen to polarise

towards the adhesion sites.

The polarity XY measurements are all higher 1.5, which indicates that these cells

all had a tendency to concentrate the CD34 antigen preferential on one side of the

cell. This type of polarisation is found on migrating cells and in cell-to-cell

contact events. Therefore, these high XY polarity values may suggest that CD34

has a role to play in either migration and/or cell-to-cell contact events. This

further strengthens the reports made in the literature about the potential role of

CD34.

6.3.2.1. Bias correction of paired measurements

Table 6.3 shows the Pearson's correlation coefficients obtained when comparing

the dual measurements for the class I and II, and class I and III CD34 epitopes. As

previously mentioned, this indicates the degree of linear agreement between two

sets of measurements, but it does not inform on the potential bias which may

affect the datasets. Therefore, the similarity of the dual datasets was assessed

using a paired t-test (P-values given in table 6.3, second and fifth columns),

directly measured from the raw measurements. It was expected to obtain very

similar results for the features measures on the ADM for the CD34 epitope data, a

high correlation should be observed, and (theoretically) the paired measurements
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should not be biased. However, due to experimental considerations (problems

with experiment repeatability), measurement similarity may not be observed.

Therefore, we further made the hypothesis that a bias was present in our data, and

that such bias could be corrected. The bias correction between two sets of

measures XI and YI involved computing the slope of the best fitting straight line

using linear regression method. This slope a is given by the equation

(55)

A new set of paired measures was then generated for which the slope of the best

fitting line was equal to 1. This new set represents the (theoretically) unbiased

measures. For any y, the corresponding unbiased measure y' is calculated as

y-b
y'=--,

a
(56)

where

b =y+ax . (57)

The P-value of this unbiased set was calculated in order to check that unbiased

paired measurements were distributed similarly. P-values close to 1 were

therefore expected.
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Table 6.3. Bias correction of paired measurements.

Classes I-II and I-III CD34 epltope dual expression and membrane distribution features measured on
dual labelled CD133 selected cells.

Features CD34 MoAbs

Class I, II Class I, III
(My10, QSEND10) (My10, HPCA-II)

n·27 n -11
R value Pvalue' Pvalue b Rvalue Pvalue' Pveiue"

Total Antigen Density 0.72 0.034 0.999 0.27 0.243

Cluster Antigen Density 0.01 0.400 1 0.16 0.932

Number of Clusters 0.98 1 0.58 0.909 1

% southbound clusters 0.65 0.050 0.896 0.06 0.936 0.999

Z polarity 0.83 0.165 0.998 -0.07 0.845 0

XY polarity 0.95 0.999 0.999 0.20 0.599

R = Pearson's correlation coefficient
P from paired t-test
, before bias correction
b after bias correction

6.3.2.2. Comments on R values

The correlation for class I and II CD34 epitopes is much higher for the features

assessed than for class I and III, for which the features seem totally uncorrelated.

The fact that class I and III CD34 epitopes are uncorrelated was suspected at the

visual examination of the LSCM images.

For class I and II CD34 epitopes, the cluster antigen densities are found to be

uncorrelated. This is due to the fact that the clusters express the epitopes

differentially, particularly in the high antigen density clusters (see sections 6.3.6

and 6.3.7), while the expected linear relationship described by equation 5.15 is

more verified in lower intensity membrane domains, such as weaker clusters and

halos .•The proportion of southbound clusters also have a low correlation (R=

0.65). This reflects the fact that CD34 epitope clusters are distributed differently

for different epitopes, thus showing that the CD34 clusters are not similar to each

other in the cell membrane. It was indeed visually observed from the LSCM
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images that some CD34 clusters express only one class of epitope instead of

expressing the expected three classes. This suggests that different forms of the

CD34 molecule may have different biological roles or functions.

The uncorrelated features measured for dually labelled CD34 class I and III

epitopes further underlines the difference in antigenic distributions for different

epitopes. Class III epitopes are part of the CD34 molecule the closest to the cell

membrane, while class I is located the further away from the membrane. The lack

of correlation seems to indicate that there is no functional relationship between

class I and III epitopes.

6.3.2.3. Comments on P values

The P values of the original (potentially biased) measures do not indicate

significant differences between the measurements (P>0.05) except for the

percentage of southbound clusters of class I and II CD34 epitopes. A great

variability of these values is observed, particularly for the comparison of class I

and II CD34 epitopes. As stated above, because different forms of the same

molecules were targeted, similar measurements should be obtained. The unbiased

correlation analysis indicated that this is not the case. However, if it was the case,

correcting the bias as described earlier should make paired measurements to be

similarly distributed, which is confirmed by the P values after bias correction.

Indeed, they all are close to 1 (minimax range = 0.896 - 1) except for the Z

polarity of class I and III CD34 epitopes, for which the resultant p value is 0

(indicating no distribution similarity, even after bias correction).
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The bias correction procedure applied to the epitope data shows that dual labelling

experiments of antigens known to colocalise could be analysed using the methods

presented in this thesis. Indeed, even the presence of an experimental bias (e.g.

one channel recording twice more fluorescence than the other channel due to a

faulty set up), could be compensated. Consequently, the distribution of features

measured on the ADM could still be compared at the cell population level.
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6.3.3. Correlation analysis of the CD34/CD164 distributions

Table 6.4 shows the correlation coefficients obtained from comparing the features

measured from the ADM. The number of clusters and the polarity in the XY·

plane are not correlated between CD34 and CD 164. Regarding the uncorrelated

number of clusters, the low R value is due to the nature of the CD34/CD 164

LSCM original dataset. Indeed, the fluorescent distributions imaged expressed the

presence of a strong halo in the membrane of all HSC imaged which was due to

the presence of non-clustered CD34 and CD 164 antigens. This was rarely the case

for the CD34 epitopes data and can be verified by expressing the mean ADM

intensity from table 6.1 as a percentage of the mean intensity of the clusters. For

the epitope data, this percentage is found to be approximately 37% (minimax

range = 30 - 49), while it is equal to 60% for the CD34/CD 164 data (respectively

56% for CD34 and 64% for CDI64). The higher value obtained for CD34/CD164

is the direct consequence of the presence of a stronger antigenic halo in HSC

Table 6.4. Correlation analysis ofCD34/CD164 distributions.

Pearson's correlation
Features measured from coefficient between dual

ADNI CD34/CD164 membrane
dis tributions

rrean ADM intensity 0.98

nurrner of clusters 0.43

mean intensity in clusters 0.83

% southbound clusters 0.74

polarity Z 0.98

polarity XV 0.35
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membrane than for the CD34 class I, II or III distributions. This strong halo rose

the thresholds used to define relevant antigen clusters, as described in section

6.4.2.1. Consequently, the number of clusters detected was subject to more

variability, explaining the lack of correlation observed for this feature.

The polarity XY is also uncorrelated. This is no artefact from the analysis, and it

really indicates a biological difference in the way the investigated cells spatially

organise their CD34 and CD164 (see table 6.5 also) surface antigen content.

Both the mean ADM intensity and the mean intensity in the clusters are well

correlated (R = 0.98 and 0.83 respectively), but a two-tailed paired t-test revealed

that there was significant differences between the distributions of these measures

(P = 0.010 and 0.026 respectively). This is an illustration of the potential presence

of a bias between the paired measurements, as previously described (section

6.3.2.1): despite good correlation, the distributions differ. A way of possibly

answering this question, calibration of the fluorescence should be performed

using the LSCM microscope and calibrated microbeads. This procedure in itself

can be difficult and may lead to pitfalls. This is beyond the scope of this thesis.

However, if the measurements were biased, the bias correction procedure

previously mentioned could be applied and the data further analysed reliably.

The percentage of southbound clusters is also found to be correlated (R = 0.74),

but the lower value of R is due to the higher variability in cluster detection for

CD34/CD 164 data than for the CD34 epitope data. The measurements are

distributed similarly in the population (P > 0.05).
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The polarity Z is also found to be well correlated (R = 0.98) and the

measurements are distributed similarly in the population (P > 0.05).

6.3.4. Polarity analysis

Table 6.5 displays the statistics (mean ± SD) for all cell populations analysed. The

first row contains the measurements performed on a population of CD34+ cells

selected using anti-CD34 moAbs (section 2.3.1). Due to the strong magnetic field

of the selection column, the CD34 antigen was predominantly moved on one side

of the cells, generating an artificial XY polarisation. This dataset was used to

compare the polarity measures with the other sets. The third row of the table

Table 6.5. Polarity analysis.

polarity
sample antigen

Z polarity XYpolarity

rrinifIMCS CD34- CD34 53.92:t 14.90 1.70:t 0.47
selected CD34+ cells

CD34 50.31 :t 3.88 1.21 :to.16
CD34+ CD164+

CD164 49.85 :t 1.96 1.36 ± 0.09

CD34Neg CD164+ CD164 53.52 :t 1.33 1.51 :1:0.20

CD34ep.1 50.95 :t 3.98 2.03:t 0.63
1

CD34 ep. R 53.00:t 8.10 1.73 :1:0.49

CD34ep.1 49.75:t 13.77 1.99:t 1.67
2

CD34 ep.1 47.00:t 10.50 2.07:t 1.95

C034ep.1 47.389 ± 7.65 1.68:t 0.62
3 "M" -....-

CD34 ep.m 51.28 :t 9. 03 1.82:t 0.77
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displays the results obtained on a sample ofCD34negCD164+ cells. The rest of the

table contains the results for the cell populations previously described and

analysed. Bold numbers indicate polarity ratios considered to represent

polarisation (Le. polarity Z > 50% and polarity XV> 1.5).

6.3.4.1. MiniMACS CD34-selected CD34+ cells

The miniMACS CD34-selected CD34+ cells have both polarity Z and XY higher

than the thresholds used to indicate preferential polarisation. Amongst all polarity

Z values contained in the table, this cell population has the highest Z polarity ratio

(and also the highest corresponding SD). Furthermore, the polarity XY is higher

than 1.5, which indicates that most cells are predominantly polarised in the XY

plane. These two values numerically confirm the visual examination of the LSCM

images from which the artificial polarity was initially suspected. They also

provide, at the cell population level, an estimate of the magnitude of the ratios in

polarised populations (bearing in mind that some cells would have much higher or

lower ratios than others).

6.3.4.2. CD34+CD164+cells

The CD34+CD164+ cell population has the CD34 distributions slightly polarised

(polarity Z = 50.31) while CD164 is slightly less polarised (polarity Z = 49.85).

So the Z polarity is not very significant for these cells. Their XY polarity is low

(both antigen distributions have a polarity XY<1.5). Both these polarity values are
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the lowest measured on all cell samples. They also are the only one of the

collection not to indicate significant polarisation. Therefore, it appears from this

sample that cells with the CD34+CD164+phenotype do not significantly polarise,

either in the XY plane or along the Z axis, under these experimental conditions.

6.3.4.3. CD34NegCD164+ cell

In contrast, the CD164 distributions from CD34NegCDI64+ cells (from the same

sample, same experimental preparation, same microscope slide) showed a

significant polarisation along the Z axis (polarity Z = 53.52 ± 1.33, with variance

much lower than for the miniMACS CD34-selected CD34+ cells. Significant

polarisation in the XY plane was also measured (polarity XY = 1.51). Therefore it

appears that completely different polarisation patterns are observed between

CD34+CDI64+ and CD34NegCDI64+ cells. The difference of polarity Z measured

for the CD164 antigen from both CD34+CD164+and CD34NegCD 164+cells was

statistically significant (p<O.OOl), while the polarity XY measured was not

(P>0.05).

6.3.4.4. Class I, II and III epitopes from CD34+ cells

The three samples of the epitope datasets display various polarisation patterns. All

XY polarity values are of the same magnitude or higher than the value measured

on miniMACS CD34-selected CD34+ cells (Le. around 1.7 and above), which
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indicates clear, strong tendency of these CD34 epitopes to polarise preferentially

in one direction of the plane.

Sample 1 was measured to be polarised both in the XY plane and along the Z axis

for both class I and II epitope distributions, class II having a stronger Z polarity

while class I having a higher XY polarity. Sample 2 is not particularly polarised

along the Z axis. Sample three shows that class III epitopes are polarised towards

the contact point with the slide while class I is not (so in that instance, class I

behaved similarly to class I from sample 2).

Finally, the XY polarity was compared with t-tests as applied in section 6.3.1 for

the comparison of the features measured from the ADM. No significant

differences were observed, so the XY polarity values were distributed similarly

amongst the cell populations.

6.3.4.5. Comparison of Z polarity with percentage energy ratio

In order to assess the involvement of the antigen clusters in the polarity towards

the contact point of the cell with the slide, the polarity Z ratios (or "mass" ratios)

were compared to the percentage of the distribution energy polarised towards the

contact point (detailed graphs can be found in Appendix D). The distribution

energy was defined in section 5.2.4.2. An energy ratio higher than 50% indicates

that the antigen clusters are more concentrated in the southern hemisphere than in

the northern, therefore possibly having a biological involvement in cell adhesion.

In order to test this hypothesis, the class I, II and III epitope data were used to

compare the polarity Z and the energy ratio. The results are presented in table 6.6
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Table 6.6. Comparison ofZ polarity with percentage energy ratio.

samples antigens %mass ratio % energy ratio
(In south hemisphere) (In south hemisphere)

epttope I 50.95:i: 3.98 51.52:i: 14.18
sample 1

epitope I 53.00:i: 8.10 52.42 :t:9.71

epttope I 49.75:i: 13.77 52.42:i: 15.10
sample 2

epitope I 47.00:t 10.50 48.86:i: 13.51

epitope I 47.389 :i:7.65 39.28:i: 12.48
sample 3

epitope DJ 51.28:i: 9.03 42.59:i: 12.72

(mean ± standard deviation). The polarity Z results were already compared in

section 6.3.4.

The comparison of polarity Z measurements with energy ratios revealed that there

is no difference between the distributions of class I and II CD34 epitopes on

CD34class I+CD34class 11+cells (sample 1 and 2). However, the Z polarity was higher

than the energy ratio for class I and III CD34 epitopes from CD34c1ass I+CD34class

III+cells in sample 3 (P=O.003 and P=O.OOS for class I and III respectively).

Furthermore, the energy ratios clearly indicate no polarisation of the cluster in the

cell south hemisphere. Therefore, the slight polarisation observed for the class III

epitope is mostly due to the halo than the clusters. For the class I epitope, the Z

polarity does nor reflect polarisation along the Z axis, and the energy ratio further

confirms it, indicating that the antigen clusters are located mainly in the northern

pole.

In the next section, the energy ratios are compared for class I and II between the

different samples, as described in section 6.3.1.
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6.3.4.5.1. Class I CD34 epitope

Class I CD34 epitope was not found to have significant energy ratio difference

between sample 1 and 2. However, a significant difference was measured for this

epitope class in sample 3 in comparison to samples 1 and 2 (P=0.037 and P=0.035

respectively). For samples 1 and 2 (which are both CD34c1ass I+CD34c1ass 11+) the

energy ratio are around 50%, therefore not clearly indicating polarisation towards

the contact point. For sample 3 (for which cells are both CD34c1ass I+CD34c1ass III+)

the energy ratio are around 40%, indicating that the class I CD34 clusters are

predominantly located in the northern hemisphere. For this sample, the clusters do

not contribute highly to cell adhesion.

6.3.4.5.2. Class II CD34 epitope

No significant difference was observed between samples 1 and 2. The energy

ratios indicate a contribution of the clusters to the polarisation for sample 1 (52.42

± 9.71) while they indicate the opposite for sample 2 (48.86 ± 13.51). These

results tend to confirm that CD34 polarisation is not specific in these experiments.
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6.3.5. Colocalisation analysis using correlation of quantitative measurements

performed at the z- and subcellular level

This section presents the results obtained from the correlation analysis described

in section 5.2.1 based on the ADMs. Firstly, the total fluorescence per z-scan

level was calculated for one antigen distribution of the pair, and is compared to

the similar measures obtained from the other ADM. The correlation coefficient

was calculated and stored for each ADM pair analysed. Secondly, the slope of the

Table 6.7. Correlation analysis using correlation of quantitative measurements
performed at the Z- and sub-cellular levels.

Z-scan level ADM level (subcellular level)
Antigen

combinations Pearson's correlation
Bias coefficient a

Pearson's correlation
Bias coefficient a

coefficient R coefficient R

C034-CD164 0.94 :1:0.06 0.61:1: 0.07 0.84 :1:0.07 0.5H 0.11

C034ep.1-1i
0.32 :1:0.47 0.35:1: 0.63 0.55:1:0.22 0.57:1:0.22

(sarrple 1)
...... __ N__ •____ ••_.·

.-------. .._------_ .. ._---_ ..__ ........ ._-_..__ ._....._ ..__ ..
C034ep.1-1i O.47± 0.48 0.71 ± 0.88 0.68 ± 0.14 0.65 ±0.14
(sarrple 2)

C034ep.I-IR
0.5H 1.17 0.54 ±0.19 0.53±0.14 0.55:t 0.18

(sarrple 3)

regression line was also calculated as it may indicate the presence of a bias

between both ADMs. Results are presented in table 6.7. The slope of the

regression line is named "bias coefficient a". Similar procedure was applied for

the intensity correlation at the subcellular level.
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6.3.5.1. CD34+CDI64+ antigen distributions

The correlation measured between CD34 and CD164 from the CD34+CDI64+ cell

sample at the z-scan level is the highest in the whole table (0.94). At this level of

observation, high values indicate that both antigen distributions are colocalised

and follow the hypothetical linear relationship described by equation 5.15, or, that

if the linear relationship is not observed, the antigen clusters are small in size and

high in number, so their spatial distribution is random. In this case, measuring the

total intensity per z-level would be correlated between both ADM (because these

values would vary with changes of cell shape mostly) but it would not reflect any

colocalisation. Consequently, it is relevant to further perform correlation

measures at the subcellular level. At the subcellular level, the correlation is still

very high (0.84), which confirms that true CD34/CDI64 colocalisation is taking

place in the HSC membrane. This second value is lower than the one obtained at

the z-level, due the differential expression of the antigen densities, particularly in

high intensity regions (see section 6.3.7).

The bias coefficients indicate that CD164 fluorescence is between 55-60% of the

intensity of the CD34 fluorescence. Without calibration of the fluorescence, it is

not possible to assess if this observation has a biological significance or is due to

experimental bias.

6.3.5.2. Class I, II and III CD34 epitope distributions

In all three samples, the correlation coefficients are much lower than for the

CD34+CDI64+ cell. They vary in the range 0.32-0.52 for the Z-level. This
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indicates a lack of strong colocalisation. In contrast to CD34+CDI64+ cells, they

vary on the range 0.53-0.68 at the subcellular level of observation, therefore being

higher than for the z-level. This small improvement is due to local colocalisation

in some parts of the cell membrane, were the hypothetical linear relationship

(equation 5.15) is approximately followed. The lack of higher values can be due

to the fact that the epitopes are weakly colocalised (which is surprising since they

are meant to represent different parts of the same CD34 molecule, and should

therefore be strongly colocalised), or that the antigen are colocalised but the

hypothetical linear relationship does not take place (and therefore this is a case of

differential expression, see figure 1.14). Further investigation is required to decide

which hypothesis is true (sections 6.3.6 and 6.3.7).

The biases are all below 1, which indicates that the second epitope of the

combination is expressed as a percentage of the fluorescence of the first epitope.

6.3.5.3. General comment on the biases

Because it has been noticed that the bias values were always below 1 (so less

fluorescence was recorded each time when imaging the second antigen

distribution), it may be possible that the binding ability of the antibodies used in

the labelling of the second antigen may be affected by the presence of already

labelled cell membrane. In such a case, the biases are the consequence of the

experimental labelling protocol.
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Figure 6.3 shows graphs obtained using some the previously described

measurements in order to potentially investigate CD34 function (details on

possible interpretation in legend).
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Figure 6.3: Analysis of the CD34 antigen clusters. (legend next page)
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Figure 6.3: Analysis of the CD34 antigen dusters.

Top - Percentage of southbound clusters vs. Z polarity. This graph has been
plotted using all CD34 distributions from the CD34 epitope datasets. The graph is
divided in four quadrants. The top-left quadrant represents CD34 distributions
whose antigen clusters were predominantly polarised towards the contact point
with the slide (% southbound clusters> 0.5, or 50%) while the whole antigen
distribution (clusters + halo) was not (Z polarity < 0.5). Such distributions only
represent less than 10% of all. The top-right quadrant is important: it represents
CD34 distributions whose both antigen clusters and whole distribution were
predominantly polarised towards the contact point. About a third of the
distributions fall in this quadrant, indicating that overall 33% of the cells were
polarised towards the contact point, and that CD34 clusters were involved in this
polarisation. The bottom-right quadrant represents distributions whose antigen
clusters were not recruited towards the contact point while the whole antigen
distribution was. This does not have a great occurrence, less than 14% of total
distributions. Finally, the bottom-left quadrant represents distributions for which
both the antigen clusters and whole antigen distribution were not polarised at all,
indicating that over 44% of the cells where more polarised to their north
hemisphere than south. From this, it is calculated that 42.1% of the cells have
their CD34 clusters towards the contact point, 46.32% have their whole antigen
distribution polarised in the south hemisphere. Furthermore, for 70.45% of Z
polarised cells, clusters are involved in the polarisation. From these figures it is
concluded that CD34 distribution do not polarise significantly when the cells are
adhered on gold-coated slides.
Middle - Proportion of Z polarised cells vs. antigen density per cell. It is observed
that as the antigen density per cell increases, the fraction of cell polarised to the
contact point decreases from around 60% to less than 30%, so it undergoes over a
50% reduction. This indicates that cells with lower CD34 content use it
predominantly in polarisation activity, and as the density increases, less CD34 is
used for polarity purpose and is also distributed elsewhere around the cells. This
suggests that CD34 have a predominant role in cell polarisation, but also have
potentially other roles since it is not used for polarisation at higher density.
Extrapolating this to the XY polarisation, instances of this observation are
illustrated in figure 7.13, where the right cell (low CD34 density) is clearly
polarised (but towards the adjacent cell, not the contact point with the slide) while
the left cell (high CD34 density) uses some of its CD34 to the site of contact with
the other cell, and recruits CD34 in other structure such as the crescent and the
protrusion.
Bottom - Mean number of clusters per cell vs. Z polarity. As the Z polarity
increases, the average number of CD34 clusters per cell increases and
reaches a plateau at polarity Z = 0.5. However, such tendency is not very
strong due to the overlap of the measurements.
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6.3.6. Colocalisation analysis using the watershed segmentation of equatorial

z-seetions

The results obtained from the watershed segmentation (section 5.2.3.2) are

presented in this section and commented. The analysis has been restricted to the

CD34/CD 164 antigens from CD34+CD 164+ cells, and to class I and II CD34

epitopes from CD34class I+CD34class 11+cells. CD34class I+CD34class 111+cells were not

analysed as the watershed segmentation process did not work properly due to the

poor contrast and image quality of the LSCM images from this set.

Table 6.8 presents the results of the analysis. In each watershed basin, three

measurements were performed: the mean fluorescence intensity (after each image

was normalised in the range 0-255), the Pearson's correlation coefficient R and

the bias coefficient. For each equatorial z-section, the standard deviation of these

Table 6.8. Colocalisation analysis using the watershed segmentation of equatorial
Z sections.

Antigen combination.
Measurements from watershed basins .....----;.-:-r-;--.- ....----.

CD34·CD164
CD34 ep.1-1i CD34 Ip. I-II
(sample 1) (sample 2)

mean Intensity 31.75 21.80 8.84

Fluorescence Intensity
mean Intensity standard 16.10 14.49 9.30

deviation
standard deviSiion of mean

10.51 11.47 5.56
Intensity

meanR 0.86 0.61 0.69

Pearson'. correlation
mean R standard deviation 0.03 0.09 0.13

coefficient R

standard deviation of R 0.05 0.24 0.21

mean. 1.28 1.04 0.56

BIas coefficient. mean. standard deviation 0.11 0.26 0.13

standard deviation of • 0.46 0.63 0.26
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three features measured amongst the watershed basins is measured and averaged

at the population level (mean intensity standard deviation, mean R standard

deviation, mean a standard deviation). The standard deviation of the collection of

features measured at the population level is also measured and referred in the

table as "standard deviation of (feature)". All these measurements may be of

value for comparing bigger cell populations analysed under different experimental

set ups (e.g. different concentrations of a drug), where they could help spotting

the difference in measures and quantitatively discriminate between different

antigenic distributions. For example, in this table, the fluorescence measurements

are provided to demonstrate that such measures can be performed and analysed,

but are of no value in this colocalisation analysis.

6.3.6.1. Pearson's correlation coefficient

The correlation values for the CD34+CD164+cells and CD34c1ass I+CD34c1ass 11+

cells (samples 1 and 2) respectively are 0.86 ± 0.05, 0.61 ± 0.24 and 0.69 ± 0.21.

They compare remarkably well with the values obtained at the subcellular level of

observation using the ADM (section 6.3.5), where they were found to be equal (in

the same order) to 0.84 ± 0.07, 0.55 ± 0.22 and 0.68 ± 0.14. This good match

suggests that performing correlation analysis directly on the ADM is a valid

approach. Furthermore, it is probably better to do so since the watershed analysis

takes only account of the equatorial z-section (which represents around 10% of

the data in most case). Moreover, the correlation performed on watershed basins

takes almost as long as the full processing of the LSCM Z-series (including

computation of the ADM).
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Both sample 1 and 2 of the epitope data have a higher mean R standard deviation

than CD34/CD 164 distributions. This reflects a higher variability of the R values

for the epitope, per analysed Z-scan, variability which is between 3 and 4 times

the one for CD34/CD 164. Such higher variability also supports the idea that

CD34 epitopes are weakly colocalised and differentially expressed, as suspected

by the results in section 6.3.5.2.

6.3.6.2. Bias coefficients

The bias coefficients for the CD34+CDI64+ cells and CD34c1ass I+CD34c1ass 11+cells

(samples 1 and 2) respectively are 1.28 ± 0.46, 1.04 ± 0.63 and 0.56 ± 0.26. They

do not compare with the values obtained at the subcellular level of observation

using the ADM, where they were found to be equal (in the same order) to 0.54 ±

0.11, 0.55 ± 0.22 and 0.65 ± 0.14. This is due to the normalisation step which

stretches the measured range of intensities in the range 0-255. However, if class I

and IICD34 epitopes were expected to have similar membrane distributions, the

bias should be roughly similar between the samples. The fact that the bias

measured on sample 1 is twice the one measured on sample 2 further emphasises

the differences between these samples.

6.3.7. Colocalisation analysis using the ADM

Figure 6.4 presents the results of the colocalisation investigation using the

approach described in section 5.2.3.3. This approach aimed to measure the
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deviation from the linear hypothesis (equation 5.15) of the antigen distributions

on dual labelled cells. The top graphs represent the relative proportion of dual

antigens (combination indicated above the graphs) colocalised with each other.

They show the curve PJ"tigell) - pJ"tlgell2 from equation 5.17 as a function of the

threshold T. The points indicate the mean value in the cell population and the

solid lines above and below are means ± SD. In the case of perfect linear

colocalisation of both antigens, the curve should be close to zero for any T.

Deviation from 0 indicates that the hypothetical linear relationship from equation

5.15 is not respected (differential colocalisation or lack of colocalisation). Great

difference can be observed between the first two graphs, for which the same

epitope combination was used. This reflects differences in colocalisation patterns

between both cell populations. Interestingly, CD34c1ass IlI+CDI64+ distributions

display a similar pattern to the first epitope graph, but it also shows much less

variability for low density clusters.

The middle graphs show the colocalisation ratio obtained using equation 5.18

(means ± SD). Perfect linear colocalisation would involve that the curves stay

around value 1. The dashed line indicates the level where 50% of the amount of

antigen 1 and 2 are linearly colocalised with each other, while the remaining 50%

for each antigen is expressed on its own or colocalised differentially. For both

class I and IICD34 epitope samples, the colocalisation ratio falls below this limit

in the region of low density clusters. This reveals that most CD34 clusters contain

predominantly diverse proportions of each epitope (differential or no

colocalisation). For CD34c1ass III+CD164+ distributions, the colocalisation ratio

falls below the 50% threshold in the region of high density clusters, indicating

that in such clusters, still a bit less than 50% of each antigen linearly colocalised
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with the other. Overall, the graph for this antigen combination reveals that

CD34ctass III+CDI64+ have a much lower differential colocalisation than CD34

epitope combinations. This is further emphasised in the bottom graph, which

shows the mean colocalisation behaviour between low and high density clusters

for the three cell populations. A polynomial fit has been added for each curve and

the equations are shown to the right of the graph. The last term in the equations

represent the antigen colocalisation ratio in low density clusters while this ratio in

high density clusters in indicated on the far right. In denser clusters, the CD34ctass

III+CDI64+ population still had 44% of both CD34 and CD164 colocalised.

Comparison with the corresponding top-left curve revealed that CD34 (class III)

was predominantly involved in the colocalisation process. CD34ctass I+CD34ctass 11+

populations had 35% and 26% of class I and II colocalised in such clusters (i.e.

80% and 60% of the CD34ctass III+CD164+ colocalisation respectively). For one of

the two CD34c1ass I+CD34c1ass11+populations, class I was predominantly involved in

colocalisation while both epitopes were, on average, equally involved in this

process. In summary, this analysis revealed that CD34ctass I+CD34ctass 11+cells

express a higher degree of differential colocalisation pattern than CD34ctass

III+CD164+cells.
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Figure 6.4: Colocalisation analysis using the ADM. (See next page for legend)
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Figure 6.4: Colocalisation analysis using the ADM.

The top graphs represent the relative proportion of dual antigens (combination
indicated above the graphs) colocalised with each other. They show the curve
PJ,,'igenl-PJ,,'igen2 from equation 5.17, in function of the threshold T. In the
case of perfect linear colocalisation of both antigens, the curve should be close
to zero for any T.The points indicate the mean value in the cell population and
the solid curves above and below are means ± SO.
The middle graphs show the colocalisation ratio obtained using equation 5.18
(means ± SO).
The bottom graph is a magnification of the second half of each colocalisation
ratio curve. The cell populations are indicated, as well as the end value for each
one.
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6.4. Summary of the quantitative analysis of antigen distribution in IISPC

membrane

The quantitative analysis from the ADMs and watershed segmented LSCM

images showed very different patterns for the expression of the different antigens

in HSPC membranes. These differences seem to be depending on the cell

phenotype. The cell populations analysed had the following phenotypes:

CD34c1ass 111+CD164+

CD133+ CD34c1ass 1+CD34c1ass 11+

CD133+ CD34c1ass 1+CD34c1ass II1+.

The expression patterns of CD133 could not be assessed as this antigen was used

during cell selection and isolation process, in order to ensure the immaturity of the

selected population. However, some LSCM datasets for dual labelled

CD133+CD34+ cells were still available from an early experiment

(documentation not available) and could be used solely for the visualisation

applications (ADM and 3D reconstruction) with interesting results. The most

quantitatively significant results are summarised below.

6.4.1. Mean cell fluorescence

The mean intensity of CD 164 is lower than for the other antigens (p<O.O 1). Class

III CD34 epitope for this cell population (CD34c1ass III+CDI64j is also less
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expressed than in the CD34c1ass I+CD34c1ass 111+population (p<O.OI). For the class II

epitope, one of the two CD34c1ass I+CD34c1ass 11+population showed a significant

lower expression (p<0.01). However, when comparing each class to each other,

no difference in the distribution patterns were significant, as reported in literature

[Lanza et al, 1999; Maynadie et al, 2002]. This pattern was

fluorescence class I<class III<class II

(2.62<2.68<3.20).

6.4.2. Analysis of clusters

6.4.2.1. Number of clusters

On the CD34c1ass III+CDI64+ population, each antigen displayed on average the

same number of clusters per cells. Similarly, on CD34c1ass I+CD34c1ass 111+cells, the

number of clusters was not different. Nevertheless, there were significant

differences for other cell populations. Between the two CD34c1ass I+CD34c1ass 11+

populations, one sample had 80% more class II clusters than the other, i.e. an

average of 8.3 clusters (p<O.OOI). Out of the three CD34class 1+ populations, two

samples had over twice more class I clusters than the third one (p<O.OO1). One of

these two sample was CD34c1ass I+CD34c1ass 11+and the other was CD34c1ass

I+CD34c1ass 111+. No differences were observed when comparing each class to each

other (no discrimination between samples). The average pattern for this

collection was
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number of clusters class III>class I and class III>class II.

6.4.2.2. Cluster fluorescence

Within all HSPC samples, the mean fluorescence from the antigen clusters was

not significant. Therefore the mean cell fluorescence differences observed for

some samples and antigens are the consequence of weaker intensity clusters

and/or low intensity halos.

6.4.2.3. Clusters in cell south hemisphere

The proportion of clusters in the southern hemisphere of the cells (facing adhesion

site) are found to be dispersed around the 50% limit of neutrality, with a tendency

for some samples to indicates that most clusters are, to a small extend, more

concentrated in the north pole of the cell (% southbound clusters<50%), which

possibly suggests no involvement of the clusters. However, the differences are not

significant. Furthermore, when comparing the CD34 epitope classes to each other

indicated a tendency of the clusters to concentrate more on free pole of the cell

than in the south hemisphere.

6.4.3. Polarity analysis

6.4.3.1. Z polarity
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A great variability in Z polarity was observed amongst the samples. Dual labelled

distributions did not show significant differences between the corresponding

antigens. The polarised (and non polarised) populations also expressed high SD,

so overall the cells had Z polarity distributed around the 50% limit of neutrality.

The high SD reflected the heterogeneity in the polarisation ability of HSPCs,

possibly related to the fact that these populations were not homogeneous

themselves. Nevertheless the CD164 antigen on CD34c1ass III+CD164+cells was Z

polarised while it was not on CD34c1ass IIlNegCD164+cells (p<O.OOl). The patterns

observed in this study were

CD34+ MACS selected cells: polarised

CD34c1ass IIlNegCD164+ : polarised

CD34c1ass III+CD164+: both antigens non polarised

CD34c1ass I+CD34c1ass 11+:class I and II polarised for one of the two samples (class

I1>class I)

CD34c1ass I+CD34c1ass 111+: class III polarised, class I non polarised.

6.4.3.2. Z polarity and proportion of southbound clusters

Great variability amongst the samples were observed, but overall no significant

differences were found (the proportion of southbound clusters is similar to the Z

polarity). For one sample of the epitope data, both the percentage of southbound
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clusters and the Z polarity indicated a weak tendency for both to polarise towards

the contact point.

6.4.3.3. XV polarity

CD34c1ass III+CDI64+cells were not XV polarised despite the fact that CD34c1ass

JIINegCDI64+ cells were polarised. All other populations were strongly polarised

despite high variability intra- and inter-samples. Artificially polarised MACS

selected cells had an average polarity value of 1.70, which gave an indication of

the polarity magnitude to be expected in polarised populations. All polarised

samples had polarity distributed around this value. Amongst the dual labelled

samples, only one (of the two) CD34c1ass I+CD34c1ass11+population was both X and

XY polarised for both antigens, but different patterns were observed for each

antigen: class II had higher Z polarity than class I, while class I had higher XV

polarity than class I.

6.4.3.4. Comparison of Z polarity with energy ratio

Only the epitope datasets were analysed for this comparison. No differences were

observed for CD34c1ass I+CD34c1ass11+cells, where both polarity and energy ratios

were distributed around the 50% limit of neutrality. For CD34c1ass I+CD34c1ass111+

cells, for each epitope, the polarity ratios were higher than the energy ratios

(p=O.003and p=0.005 for class I and III respectively). The energy ratio for class I

epitope in this population was significantly lower (ratio = 40%) than class I in
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CD34class I+CD34c1ass 11+ cells (p<0.05), so most clusters were found in the

north pole of the cells.

6.4.4. Colocalisation analysis

6.4.4.1. Colocalisation analysis using fluorescence correlation at Z and

subcellular levels

Overall, much higher correlation values were obtained for CD34c1assIII+CD164+

cells than for CD34c1assI+CD34c1ass11+and CD34c1assI+CD34c1assI1I+cells. Linear

colocalisation was observed for CD34c1assIII+CD164+ cells as high correlation

values were observed at the Z level, and slightly lower values at the subcellular

level. For this population, analysis of the bias coefficients showed that the CD164

fluorescence is about 55-60% the fluorescence for CD34. Differential

colocalisation was observed for CD34c1assI+CD34c1ass11+and CD34c1assI+CD34class

III+cells where low values were measured at the Z level, while they slightly

increased at the subcellular level, barely reaching a significant value (R=0.68) for

one of the CD34c1assI+CD34c1ass11+population.

6.4.4.2. Colocalisation using watershed segmentation

The correlation values measured in the watershed basins segmenting clusters in

equatorial Z sections compared very well with those obtained from the ADM

analysis at the subcellular level, for both CD34c1assIII+CD164+ and CD34c1ass
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I+CD34c1ass 11+populations. And similarly, a much higher variability was observed

for the values measured on the CD34 epitope LSCM images.

6.4.4.3. Colocalisation using the ADM

The CD34c1ass III+CD164+ and both CD34c1ass I+CD34c1ass 11+populations all

expressed different relative colocalisation patterns. The percentage of linearly

colocalised antigens is close to 100% in low antigen density regions while it

decreases steadily and to different extents for the three populations, indicating

different degrees of differential colocalisation. In high density clusters, the

CD34c1ass III+CD164+ population still had 44% of both CD34 and CD164

colocalised, CD34 (class III) being mostly involved in the colocalisation process,

while CD34c1ass I+CD34c1ass 11+populations had 35% and 26% of class I and II

colocalised in such clusters (Le. 80% and 60% of the CD34c1ass I1I+CD164+

colocalisation respectively). For one of the two CD34c1ass I+CD34c1ass 11+

populations, class I was predominantly involved in colocalisation while both

epitopes were, in average, equally involved in this process. These figures revealed

that CD34c1ass I+CD34c1ass 11+cells express a higher degree of differential expression

than CD34c1ass III+CDI64+cells.
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Chapter 7. Discussion

In this section, the methodology developed for the automated analysis of LSCM

images is first commented. Some figures are also presented in order to illustrate

how the results from the application of this methodology could be used for

biomedical investigations. Great use was made of the new MSA algorithm, based

on linear diffusion, after it was shown to segment fluorescence accurately. Further

applications of this algorithm are also investigated and briefly outlined in the

second section of this chapter. The measurements and observations from the

processed HSPC LSCM datasets and their potential implications in the context of

haemopoietic theories are also discussed.

7.1 LSCM image processing methodology

New approaches were introduced to process and analyse LSCM datasets. The

application of these methods could easily be extended to the analysis of other

datasets.

LSCM images contain background and signal values overlapping over a wide

range of intensities. Other automatic techniques and global thresholding

algorithms do not provide satisfactory segmentation results on images with such a

strong unimodal histogram. The first stage therefore consisted in automating

accurate fluorescent signal segmentation in LSCM images. This step prevents

manual or heuristic subjective thresholding which otherwise may introduce early

bias, possibly altering the subsequent analysis of the fluorescence signal. Three

global thresholding algorithms were developed. Consistent results were found
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when comparing the outputs of these algorithms. The MSA algorithm based on

linear diffusion relies on a novel approach, Le. the analysis of histogram

behaviour as the image is processed through the scales, and it provides results in

close agreement with appropriate manual segmentation. Therefore the MSA

algorithm was subsequently used for the segmentation of all datasets used in this

work. It also operates much faster than the region-based watershed segmentation

algorithm.

Once the raw images were segmented and signal area correctly identified,

fluorescence quantification as performed. Two common approaches, area or

intensity measurements, were compared. The area method (used in many studies)

was demonstrated not to be robust, while the intensity method provided much

more consistent results. In laser scanning confocal microscopy, the intensity

measured per pixel reflects an average photon count per local voxel. This average

count itself reflects different concentrations of the fluorochrome, and

consequently different concentrations of the labelled antigen of interest.

Quantifying antigen concentration or density using intensity measurements was

therefore a more sound approach. Intensity measurements are subject to potential

processing in order to improve the quantification. Commonly, an improvement of

the measure is performed through baseline correction (mean background intensity

subtracted to mean fluorescence intensity). We confirmed that this method

improves the correlation coefficient between fluorescence measures from

independent methods (or users). Moreover, a new quantification formula was

proposed and compared to the usual background subtraction method. The

correlation of independent measurements was globally further improved, and the

behaviour of the inter-method bias became more comparable. This suggests that
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this new formula could further help reducing the bias between different methods,

contributing to improve the quality of the comparison of experimental results.

Segmented and quantified fluorescence distributions were stored in a compact, yet

meaningful form, the Antigen Density Maps (ADMs). The ADM were

particularly appropriate for storing and displaying the fluorescence patterns on

HSPC membranes as HSPC were naturally quite spherical. They facilitated the

visual comparison of large LSCM datasets of antigen distribution patterns in the

membrane of individual cells. Additional visualisation tools were also

implemented in order to assess the spatial relationship of antigen distributions in

HSPC clusters (3D spherical models, fast 3D point cloud reconstruction of the

actual distributions). They revealed to be particularly useful for demonstrating the

presence of different types of CD34 clusters at contact point of adjacent cells,

such as single clusters, patch-like clusters and meridian-shaped clusters.

The ADM were further used to quantitatively characterise the antigen

distributions through various measurements, such as polarity ratios, correlation

..'P -.... "~

Sparse small clusters Patch-like clusters Meridian-shaped crescent

Figure 7.1: Types of antigen clustering patterns observed on HSPCs.

Such antigen clusters are frequently observed in HSPC membranes. They express
both linear and differential colocalisation patterns. Sparse small cluster are often
found associated with membrane protrusions. Patch-like clusters are
predominantly observed at cell-to-cell junctions. Meridian-shaped crest-like
(MSCL) structures are found on both individual and clustered cells, sometimes at
cell-to-cell junctions (but not necessarily).

257



Marc-Olivier Baradez PhD Thesis Chapter 7. Discussion

coefficients, colocalisation ratios. These measurements could be used for

graphical display of the data characteristics (e.g. polarity graphs), which allowed a

quick visual inspection of feature distributions for different cell populations, and

for statistical analysis of the different cell populations (figures 7.2, 7.3, 7.4 are

examples of such applications).
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Figure 7.2: Comparison of polarity patterns between miniMACS CD34-

selected CD34+ cells and non-selected CD34+CD164+cells obtained from a CB

:MNCfraction.

This example demonstrates the great difference in polarity patterns between two
samples. Dashed lines indicate polarity thresholds. For the bottom graph, no
discrimination was made between CD34 and CD164 distributions, and the points
are used to show that most distributions are not polarised in the XY plane, in great
contrast with the top plot, where distributions are both generally polarised along
the Z axis and in the XY plane.
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Altogether, the features measured with this methodology allow a thorough

characterisation of antigenic distributions, particularly useful and relevant for the

analysis of small and rare samples, as demonstrated in this thesis with HSPCs.

Indeed, the extensive analysis of such samples is a complicated task using the

current biomedical methodologies (FACS, cytology examination by experts,

protein assays), and often only a few measurements are obtained from the analysis

of large cell populations (several thousands cells or more). The approach

described in this work proposed to increase the number of quantifiable features

per cell and to apply such measurements to smaller, but still statistically

significant, cell populations. The characterisation of biological samples may

therefore be optimised. As demonstrated, in addition to the mean cell fluorescence

measured by one of the most popular tool available to characterise cell

populations, the Fluorescence Activated Cell Sorter (FACS), six other

quantifiable and meaningful features were automatically extracted from the

LSCM image analysis (mean number of clusters per cell, mean intensity in

clusters, percentage of clusters in southern hemisphere, Z polarity, XY polarity,

distribution energy). Further to these measurements, quantitative colocalisation

analysis methods were developed, which have the capability to characterise linear

and differential colocalisation patterns.

The application of these algorithms and methods could easily be extended to the

study of other cell populations, especially cancer cells. Indeed, cancer cells are

abnormal cells which would normally be removed by the immune system.

However, there are complex, yet not understood molecular phenomena taking

place at the interface of these cells with their environment which prevent immune

responses and allow cell survival. Thus quantifying the relationships of specific
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molecules in cancer cell membranes with other molecules and cell types could

help getting a better understanding of some of the mechanisms involved in cancer

cell proliferation. Another important field in cell biology is the study of cell

migration. This happens normally for many blood cells in adults, for cells during

embryogenesis, and abnormally for metastatic cancer cells. Many molecules (e.g.

Cell Adhesion Molecules) are cooperatively involved to promote cell migration
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Figure 7.3: Correlation coefficients for colocalisation analysis. Z-Ievel vs.

subcellular level.

Correlation coefficients calculated using the ADMs (see section 5.2.l). Linearly
colocalised distributions (those following equation 5.15) have their correlation
coefficients clustered in the top right corner of the figure. More extended
scattering of the points indicates diverse degrees of differential colocalisation.
CD34/CD164 from CD34+CD164+ cells are clustered in the top right corner,
reflecting the high linear colocalisation of these distributions. Conversely, if some
of the CD34 epitope distributions are also linearly colocalised, most of them show
various degrees of differential colocalisation or even poor correlation (negative
coefficients).
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on/through appropriate biological substrates and tissues. Disorders and unpaired

antigenic expression of such molecules, to various degrees, are responsible for

medical complications. Polarity measures of the membrane antigen distributions

could further help discriminating between cell types, or could be correlated to

impaired or excessive biological responses (lack of, or stimulated migration)

[Peled et aI, 2002]. Such measures could be compared to those obtained from

migration experiments currently used (Dunn chamber systems, trans-well systems,

etc., commented in [Jeon et al, 2002]). Quantifying the response to drugs for

certain cell types could also be an application of the methodology described in this

thesis. For instance, a biopsy sample may be taken from a patient with a (rare or

not) cancer. After cancer cell separation, the isolated cancer cells could be

divided in very small aliquots (containing a few dozens of cells each), each of

which would be added combination of drugs, or drug(s) at various concentrations.

After appropriate time delay, each aliquot could be processed for confocal

microscopy and analysed as described in the present work. The measured changes

in antigenic patterns could be correlated to drug concentrations, and many

combinations would be tested from a single biopsy sample. Quantifying these

features may also help further discriminating between heterogeneous populations

which are currently considered to be homogeneous (such as the known example of

CD34+ cells, which actually encompass many sub-populations - some

discriminated on the basis of the expression of other membrane antigens - with

different proliferation and differentiation potentials). The discrimination would

not be performed on the basis on the antigenic profile but rather on the features

measured from antigen distributions, e.g. different polarity patterns may identify

different sub-populations with identical antigenic expressions.
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In summary, a new automated methodology was developed to process and analyse

LSCM images. This approach does not depend on human users, so no subjective

biases are introduced in the analytical process. Consequently, these methods

facilitate the comparison of experimental data from different users, providing that

the biological protocols were comparable. Furthermore they extend the

quantification possibilities currently performed in real biomedical situations by

increasing the number of features measured per cells, providing deeper insights on

cell biology. In the light of more powerful laser scanning confocal microscopes

available today [Gerlich et al, 2001; May, 2004], with programmable automated

scanning paths on the slide and image acquisition, a full automation of the

procedure - from image acquisition to statistical analysis - is potentially a

realistic future possibility.
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Class I
Class I

69%
83%

18%
22%

Class II
Class II

Class III
Class III

Degree of homology between
classes using all six features

Degree of homology between
classes using the Total
Antigen Density, XV and Z
polarity

Figure 7.4: Degree of homology between class I, Il and ID CD34 epitopes

distributions calculated from the features measured on the ADM.

The features used for these homology measurements are presented in table 6.2.
Overall, six features were available. The left image shows a schematic of the
molecular structure ofCD34 with the location of the different epitopes indicated. The
degree of homology between class I and II, and class I and III was calculated using
all six features computed from the ADM. It indicates that class I and II distributions
were 69% similar while class I and III distributions were only 22% similar.
Therefore there are much greater difference patterns between class I and III than
between class I and II. This is further emphasized when calculating the degree of
homology using only three of the features, i.e, the antigen density, Z and XY
polarity. Class I and II epitopes are shown to have even more similar expression
patterns (83% homology) while class I and III patterns are more dissimilar (18%
homology). If the same structural form of the CD34 molecule was to be found in the
membrane of any HSPC, the degree of homology between epitope classes should be
very high. Therefore these results indicate that the CD34 molecule is expressed under
various isoforms, with structural differences, in the HSPC membrane. It could
suggest that the presence (in the membrane of single HSPC) of different proportion
of each CD34 isoform allows the modulation of the function of CD34 and its effect
on single cells.
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7.2 Potential applications of the MSA algorithm

7.2.1 Segmentation of other types of unimodal images

The MSA algorithm presented in this work makes use of the analysis of the

diffusion rates of grey levels in scale spaces. Its implementation is

computationally efficient compared to more conventional scale space approaches.

Thus it a good candidate for real time application in the machine vision arena.

Furthermore, histograms of scale space images are analysed at different scales.

The approach adopted in this work uses the detection of an intensity range were

high activity of histogram convergence rates are observed by measuring the

median rate values down the scales. This was found to correctly segment images

with strongly unimodal histograms [Baradez et al, 2004, Baradez et al, 2003].

Consequently, it was also applied to other types of images expressing such

histograms encountered in research and industrial applications, for instance bright

field microscopy, microarrays, electrophoresis gels, scanned text documents,

speckle fringe patterns or edge images. For these images, the unimodality is due to

the predominance of the background over the relevant signal with the addition of

noise. Examples of such images are presented in figure 7.5, with the

corresponding binary masks extracted using the MSA algorithm. Despite these

images having different signal areas, different spatial organisation of these areas

and different intensity ranges, all masks obtained seem reasonably accurate.

Therefore the MSA algorithm is thus potentially interesting for segmenting a wide

range of unimodal images and could be used to get an initial "guess" on the

position of ROIs. Furthermore, the information contained in the rate matrix R
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(equation 3.10) could be exploited in different ways, a briefly described at the

end of this section.

· .• ••••••••••• ••••••••••· .• ••••••••••· .
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Figure 7.5: Binary masks of different types of unimodal images obtained with

the MSA algorithm.

A - Wide field microscope image (the high frequency image of this picture was
used to generate the mask), B - simulated microarray, C - electrophoresis gel, D-
scanned text document, E - simulated interferometry fringe pattern, F - edge
image of Lerma.

7.2.2 Iterative segmentation of natural plurimodal images

Preliminary experiments were performed to investigate the potential application of

the MSA to images with plurimodal histograms. Such an attempt iteratively

applied the algorithm to plurimodaI images. After one initial application step, a

threshold was calculated and used to separate two subsets of image regions (those

above and below the threshold). For each subsets, pixels in the black regions
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(indicating which subset was removed) were attributed an intensity equal to the

value of the threshold. The MSA was then re-applied to both subsets. The number

of iterations is chosen beforehand but it was noticed that a few iterations provide

meaningful segments. Consequently regions in plurimodal images were

segmented into different classes, and it was observed that such classes often

corresponded to semantically sound (in the visual sense of the term) objects. Such

results are presented in figures 7.6 and 7.7 where iterative MSA segmentation was

applied to natural images. It can be observed that segmentation is meaningful in

many instances. However, the method may fail when images contain fuzzy,

blurred regions of monotically varying intensities, since intensity only is no longer

a good enough criterion to discriminate regions or objects. However, from this

preliminary investigation, it appears that the MSA, associated with adequate

image pre-processing, could perform relevant plurimodal image segmentation.
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.,.

Figure 7.6 : Example of natural image segmentation by iterative

application of the MSA algorithm. (legend next page)
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Figure 7.6: Example of natural image segmentation by iterative

application of the MSA algorithm.

Left - Original images. Middle - Images segmented into three classes.
Right - Histograms of the original images. The third row is an example or
inappropriate segmentation as grey levels do not correspond to
homogeneous and distinct objects. Fourth to sixth rows are cloud images.
The fifth image is the brightness/contrast adjusted image of the one above.
Despite very different dynamic ranges, the segmentation is very similar.

Figure 7.7: Another example of natural image segmentation by

iterative application of the MSA algorithm.

7.2.3 Two other methods to calculate a threshold from the rate matrix

Finally, since other methods could be used to exploit the information from the rate

matrix, another approach (Approach 1) was briefly investigated to calculate the
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binarisation threshold of plurimodal images. First, the Shannon entropy associated

with each rate curve along the scales in R (equation 3.10) was measured and

summed for each scale to produce the curve E. It appeared that some scales

contained very little information/entropy, particularly in the corresponding

histogram regions of equilibrium dynamics. These scales typically have an

associated entropy lower than the value 0.0002. Therefore this value was used to

threshold the matrix R and to retain only elements above this threshold. Such

elements are predominantly located at the lower scales where convergence of the

histograms eventually collapses to the average image intensity, but some may be

found at higher scales, depending on the structure of the original image. The

information contained in the thresholded rate matrix was used by summing the

elements down the scales (i.e. the columns). The curve C obtained presents

characteristics similar to the one obtained by taking the median values down the

columns of the original R, notably one predominant peak located at or close to the

mean intensity. Due to the thresholding effect, this curve contains mostly zero-

value elements. Experiments showed that locating the position where two

consecutive zeros were first located along the curve C either before or after the

peak provided a visually good threshold. For natural images, it was noticed that

segmented regions were very stable under Gamma coreection within wide range

of values, in comparison to Otsu's thresholding (figure 7.8).
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Thresholds vs. Gamma
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Figure 7.8; Potential application of the MSA algorithm to plurimodal image

segmentation. (see next page for legend)
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Figure 7.8: Potential application ofthe MSA algorithm to plurimodal image
segmentation.
Top - Original natural image for which Gamma correction was applied prior to
segmentation using Otsu's algorithm and two other MSA-based approaches
(described in text). First graph - Thresholds obtained by the three approaches vs.
Gamma correction values. As a consequence of Gamma correction, the thresholds
vary over a wide range of values, but Otsu's thresholds are bounded by those
obtained from both MSA-based approaches. The dashed line indicates the average
values of both MSA-based thresholds. Second graph - Absolute difference of
MSA-based thresholds with Otsu. Third graph - Segmented area size vs. Gamma
parameter. It is noticed that the second approache provides stable segmented areas
(i.e. the same areas are segmented, whatever the magnitude of Gamma
correction). which makes this approach more robust than the popular Otsu's
method.

Since computing a threshold using this particular approach and particular

landmark on C was observed to be stable with such a common intensity

adjustment procedure, another approach (Approach 2) was also implemented to

locate another visually sound threshold and was compared to this one and Otsu's

threshold under the same conditions. The previous method involved thresholding

R using subjective observations made on the entropy curve E, so an alternative

could be implemented using the original non-thresholded rates R. The cumulative

sum of the elements down the scales/columns was calculated and normalised to its

maximum value so the resultant curve Shad a maximum of 1. The position of the

first intensity for which S rose above 0.5, Le. Le. 50% of the total sum of the

elements in R, was identified of used as image binarisation threshold. For the

various Gamma correction values tested, the thresholds and segmented area sizes

were also compared to those obtained with the previous approach and Otsu's

thresholding (figure 7.8). It could be observed that thresholds obtained from both

Approaches 1 and 2 vary over a very wide range of values (from 60 to 230).

follow a similar pattern than Otsu's thresholds over the Gamma values tested

(from 0.1 to 5) and keep very close to Otsu's threshold. It was also observed that
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thresholds from Approaches 1 and 2 envelop Otsu's threshold, and the average

threshold from these approaches is close to Otsu's thresholds. A more detailed

analysis of these measurements was carried out by calculating the absolute

distance between them and Otsu's results (figure 7.8). Approach 2 is very close to

Otsu's thresholds in the Gamma range [0.1, 1] where absolute distances gradually

increase in the range [0, 11]. Above Gamma = 1, Approach 1 is closer than

Approach 2, as the absolute distances decrease in the range [11, 1]. The stability

of these distances is more apparent for Gamma values above 1, and despite

Approach 1 being closer to Otsu than Approach 2, Approach 2 keeps a more

stable distance (varying in the range [11-8] in comparison to [11, 1] for Approach

I). It is noticed that both Approaches 1 and 2 have absolute distances varying

quickly over a higher range of values for Gamma in the range [0.1, 1] while they

evolve more monotically for Gamma> 1. However, the average absolute distance

of both approaches to Otsu varies much more monotically over all Gamma values

and remains in the range [13, 5]. Finally, the size of the segmented image regions

is plotted in percentage of the total image size in figure 7.8. It can be seen that

regions segmented using Approach 2 remain very similar despite large variations

of the Gamma correction parameter (Le. the same regions are segmented, which

represent roughly 36-37% of the image area) despite being smaller than Otsu's

segmented regions.

These potential further developments on image segmentation using the MSA

algorithm may indicate that more consideration could be given to this algorithm

since it seems to have the potential to be used to segment plurimodal images along

with unimodal images.
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7.3. Biological implications of the results

7.3.1. Antigen expression levels and colocalisatlon

The study of HSPC membrane antigens using the algorithms and methodologies

developed in this thesis indicated statistically significant differences between

different HSPC populations. While the number of antigen clusters and their

antigen content were similar between these populations, colocalisation analysis

showed different patterns between CDI64+CD34+, CD34c1assI+CD34c1ass11+and

CD34c1assI+CD34classII1+populations. Indeed, it was expected that CD34 epitopes

would present higher degrees of colocalisation in comparison with CDI64+CD34+

cells, since epitopes are simply different parts of the same molecule or variants

(obtained through RNA splicing or enzymatic processing of a bigger template) of

this molecule. Despite it was not in situ image analysis, it was reported using

FACS studies that CD34 epitope expression levels were very similar on HSPC

populations [Lanza et a/., 1999; Steen et a/., 1996], further strengthening the

hypothesis that high colocalisation should be expected. However, the present

LSCM image analysis demonstrated that CD 164 and CD34, despite being

different molecules, had a higher degree of colocalisation than CD34 epitopes.

While in all cases the colocalisation is high in halo and low antigen density

membrane regions (i.e. weak fluorescent clusters), it decreases as more antigens

are concentrated in the clusters. Such a decrease reflects a differential

colocalisation of the antigen, meaning that two antigens both located in the same

region of the cell membrane have their relative expression levels which varies

from clusters to clusters (in case of linear colocalisation, the relative proportion of

both antigens would remain rather constant for different clusters, whatever the
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expression level). Differential colocalisation was observed for all HSPC

populations analysed and are discussed here in the context of haemopoietic

theories.
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Figure 7.9: Example of automatically re-aligned optical sections for CD34c1ass

I+CD34c1ass II+, CD34c1ass I+CD34c1ass 111+and CD34+CD164+ cells. (legend next

page).
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Figure 7.9: Examples of automatically re-aligned optical sections for

CD34clalll+CD34d •• 11+cells, CD34d •• I+CD34c1·· 10+cells and CD34+CD164·

cells.

On the right of the figure are represented the 20 histograms of the merged
images. The origin is situated in the top left comer. The rows indicate the first

• • • clasl 1+ clas. 1+ clas. 11+
antigen of the combination (e.g. CD34 for CD34 C034 cells)
while the columns indicate the second antigen. Well co localised distributions
should follow the diagonal joining the top left comer to the bottom right comer
(which is the case for both C034+COl64+ cells presented here). The merged
images for the C034 epitope distributions show various degrees of
colocalisation, which are reflected in the 20 histograms. The second cns-?"
1+C034clasi 11+cell illustrates that CD34 epitopes do not necessarily colocalise
consistently. Indeed, most of the C034 distribution around the cell is due to class
II epitope while class I ~ poorly represented, except in two bright clusters (top
and left of the CD34clas• +distribution). The left cluster is very well colocalised
with a class II epitope cluster, but the top c luster contains only class I epitope.

c!lass 1+ class 11+ •
The first C034 CD34 cell seems to have almost non-colocalised
distributions, while the third cell, despite expressing more class I epitope,
colocalises well with class II epitope.
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7.3.2. Antigen clusters

The presence of antigen clusters is thought to reflect some biological functions

taking place at the interface of the cells with their environment. Cluster formation

is not well understood [Kansas, 1996] and several processes were found to be

involved. Small clusters can be formed by aggregation of halo antigens via

diffusion in the cell membrane. In this scenario, freely diffusing antigens are

clustered where some activity is taking place in particular membrane regions, or

microdomains (domains generally ~0.1 urn width), and nowhere else. Membrane

and cytoskeletal molecules attached to the inner side of the membrane are

involved in the process. Some clustering processes were reported to involve fyn

kinase, glycosylphosphatidyl inositol-anchored proteins Thy-I and F3 that

selectively co-patch with Reggie molecules after antibody cross-linking activation

[Stuermer et al, 2001]. This triggers substantial colocalisation of Reggie-l and-2

with Thy-I, GMl, T-cell receptor complex and fyn. In this example, such clusters

are thought to participate to the formation of signal transduction centres. The

merging of adjacent microdomains may be responsible for the creation of bigger

clusters. However, as the cluster size increases, other membrane molecules also

participate to cluster formation.
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Figure 7.10: Example of point cloud 3D reconstructions of CD34

distributions on clustered CD133+ cells.

White arrows point to small clusters, yellow curves enclose patch-like
clusters and red curves enclose meridian-shaped crest-like clusters. These
two latest types of clusters are located at cell-to-cell junctions.
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7.3.3. Lipid rafts

Lipid rafts are a typical example of molecules involved in big cluster formation.

These plasma membrane lipid microdomains sequester signalling proteins and are

located to the outer leaflet of the membrane lipid bilayer. They are coupled to

microdomains in the inner leaflet of the membrane, which are activated and

initiate signalling cascades when lipid raft proteins bind to their ligand. The

classification of lipid rafts according to their chemical composition is not well

established, and the composition of some of them is still unknown (particularly in

the inner leaflet). However, it is known that other molecules such as

transmembrane adaptor proteins are also involved with lipid rafts and that the

actin cytoskeleton is involved in raft migration and coalescence, despite the actual

mechanisms being unknown.

These rafts have been found to have important functions, as particularly well

observed for cells of the immune system, and noticeably as polarised distributions

[Fassett et al, 2001]. These cells do perform many tasks that stem cells perform,

such as rolling, tethering, transendothelial migration, adhesion, or cell-to-cell

communication. Amongst these functions, lipid rafts were suggested to be

important for the modulation of signal transduction [Gupta and DeFranco, 2003;

Leitinger and Hogg, 2002] and cell adhesion [Yanagisawa et ai, 2004; Wu et al,

1997], both critical functions for the HSPCs investigated in the present study.

Under the light of these comments, lipid rafts may well play a key factor in

antigen cluster formation and function in HSPC membranes.
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7.3.4. Theoretical mechanisms for antigen cluster formation in IISPC

membranes

Our group previously suggested that antigen clusters may reflect membrane

activity and be responsible for performing some unknown functions. Here is

proposed a theoretical formation mechanism which could explain the antigen

expression patterns observed in the HSPC membrane, backed up by the

quantitative measurements developed and reported in this work.

7.3.4.1. Intracellular compartment

DIC visual image analysis showed that HSPCs have a very large nucleus that

occupies most of the space inside cells. Only a tiny fraction of cytoplasm can be

visually identified, mostly found on one predominant side of the nucleus.

Therefore it could be hypothesised that protein production, which requires the

presence of rough and smooth endoplasmic reticulum in the cytoplasm, would

take place mainly on these intracellular regions where enough cytoplasm is

present. Indeed, early intra-cellular labelling of CD34 (figure 7.11) showed that

internal CD34 molecules were located in such cytoplasmic pockets, within one

compact sub-volume of internal cell compartments. The antigen produced in this

small volume must then be migrated to the cell surface where their external

structures are used for ligand recognition while their internal structures may be

involved in signal pathways.
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.......,

Figure 7.11: Internal/external CD34 distributions.

Left - HSPC DIC image overlaid with internal (red) and external
(green) CD34 fluorescence (intensities adjusted for visualisation). This
HSPC is at a very early stage as more mature cells do not express
internal C34. Right - 3D reconstruction of the corresponding Z series.
The cloud point technique applied to membrane CD34 shows quite a
faint uniform halo in the cell membrane. The isosurface encloses the
volume where internal CD34 is expressed. It is located in a single small
pocket between the nucleus and the membrane. The pocket is 2-3 urn
width and 5 f.LID height. Bar = 10 urn.

7.3.4.2 Antigen' halo and low density clusters

The antigen halos observed in the cell membranes were not experimental artefacts

due to membrane auto fluorescent molecules since they were not observed on

negative cells. In some rare instances, the halo was totally missing from some

membrane regions while expressed on some other regions. Itwas also noticed that

the bigger the clusters, the weaker the halo, and some cells labelled for CD34

epitopes displayed highly dense clusters while no halo was present. These regions

(i.e. halo, loose weak clusters) contain antigens (CD34, CD164) which are not yet

recruited to clusters.
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In the process of cluster formation, the first step for HSPCs is to express the

antigens in the cell membrane. Since the antigens are generally concentrated

internally on one side of the cell, their transport to cell surface is also likely to be

polarised. However, cell surface polarisation of antigens is only reported for very

specific functions (adhesion, migration, cell-to-cell contact events), so initial

(polarised) externalisation of HSPC antigens should lead to uniform surface

expression, potentially achieved via passive diffusion of the molecules within the

membrane since this mechanism does not involve energy consumption and

eventually leads to uniform distribution. This would be consistent with uniform

halos observed on weakly clustered cells. Moreover, this is also consistent with

the measurements which indicated that low antigen density regions of cell

membranes display linear colocalisation. Indeed, following the externalisation

process just described, all membrane regions should express the same relative

proportions of the different antigens, a signature of linear colocalisation as

observed on figure 6.4. At the first step of antigen recruitment to microdomains,

small amounts of locally present antigens would simply follow an aggregation

process, during which linear colocalisation is still to be expected (which is

observed indeed) to a certain degree.

7.3.4.3 High density and big clusters

High density clusters contain much more antigens than surrounding regions. Some

of them also have a patch-like structure covering an extensive membrane surface.
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For the smaller of these dense clusters, an aggregation process of the primary

micro domains may still be active. As aggregation increases, local differences of

antigen densities may be amplified, which would explain why such clusters start

displaying a deviation of linear colocalisation towards more differential

colocalisation patterns. The production of such dense clusters, particularly the

patch-like clusters, is likely to involve other membrane and cytoplasmic

molecules, as observed with lipid raft structures. These unknown mechanisms

would be responsible for the aggregation of smaller dense clusters, further

increasing differential colocalisation. Figure 5.14 shows a composite image of an

LSCM cross-section of a HSPC dual labelled for CD34 and CD164. Watershed

segmented clusters were analysed for colocalisation and this composite image

obtained by combining the correlation coefficients between antigen expression

levels per cluster and the biases (proportionality coefficients) between these

levels. Colour-coded, it can be observed that extended, often adjacent, domains of

the membrane share similar colours, therefore sharing similar formulations of

their antigen contents. This further supports the theoretical mechanisms for cluster

formation proposed in this discussion. This is also consistent with the measures

indicating an increased of differential colocalisation with the cluster densities.

7.3.4.4 Energy use by HSPC

The cluster formation using the suggested mechanisms described above requires

energy consumption from the cell. Once the clusters are formed, no more energy

is needed in this process, except if these structures have to be moved or further

clustered within the membrane. Experiments investigating antigen formation and
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cellular responses (in terms of functions, such as adhesion or shape remodelling)

showed that CD34+ progenitor cells can sustain these responses for about 30

minutes to one hour, but no functional responses are observed over this time limit.

It may be concluded that stem cells use little internal energy in order to survive in

a quiescent state and that they optimise their energy resources to perform short-

time responses before and after which long delay are available to regain this

energy.

Considering these remarks, since clusters are big enough to suggest energy

consumption during their creation, they well may have a functional role as the cell

energy should not be wasted, role unknown to date. The large sizes of the clusters

also suggest involvement of other types of molecules, possibly lipid rafts, kinases

and signalling molecules after comparison with structures and functions observed

of immune cells.

Our group was first to identify unusual long, thin membrane extensions

(pseudopodia) extending from some of the earliest immunologically well

characterised lineage negative HSPC populations ever identified in healthy human

adults [Forraz et al, 2004]. Such pseudopodia can extend over to 80 urn. Some

morphologically identical blood immune and cancer cells, respectively B-cells

[Gupta and DeFranco, 2003] and KGla cells, were found very recently to produce

similar membrane protrusions [Francis et al, 1998]. Electron microscopy studies

(data not shown) showed that KGla cell pseudopodia are predominantly coated

with CD34. CD34 clusters are also observed on much smaller but larger

membrane protrusions, while loose distributions of single CD34 molecules are

sparsely found in smooth domains of the cell membrane. KOla cells are primitive
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blood stem cells turned into leukaemic cancer cells at an early developmental

stage, so they retain many features associated with normal HSPCs. Their electron

microscopy study suggests that CD34 clusters are associated with membrane

protrusion. This was also supported by a time-lapse confocal study of live KG 1a

cells labelled for membrane components [Francis et al, 1998]. Long, thin

pseudopodia were produced and used to sense their environment and distant KG Ia

cells. They were produced and retracted within seconds, which involves energy

consumption and fine tuning of the molecular pathways participating to the

process [Yang et al, 2001]. Studies on CD34+CXCR4+ cell migration showed that

such cells deform their bodies during migration, which involves membrane

protrusions [Peled et al., 2002]. After one hour, migration rates decrease, possibly

due to exhaustion of the energy resources available in the cell cytoplasm.

7.3.5 Potential function of the CD34, CD164 and CD133 cluster antigens and

synthesis with haemopoetic theories

How and why HSPCs leave the bone marrow is not well understood, neither is

why only a fraction of these cells participate to the process at a time, while

evidence suggest that HSPCs have to circulate in the blood stream in order to

enter the haemopoietic process. However all circulating cells do not undergo

proliferation [Pierelli et al, 2000] followed by differentiation and remain quiescent

after homing back to the bone marrow. It is likely that molecular signals and the

balance/unbalance of chemical composition in the haemopoietic

microenvironment activate cell migration [Plett et al, 2002] and extravasation to

blood vessels [Kronenwett et al, 2000]. It is known that adhesion is an important
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process to regulate HSPC proliferation [Kroger et al, 1998]. Since the

haemopoietic microenvironment expresses such adhesion molecules [Suehiro et

al, 1999] and cytokines [Ueda et ai, 2000], and since a pool of HSPCs do not

proliferate and differentiate throughout life (so blood renewal is sustained), it may

be hypothesised that, during the phase where HSPCs undergo transmigration to

blood stream prior to bone marrow homing, the cells are not exposed anymore to

the appropriate environmental adhesion molecules and therefore are more likely to

either enter cell cycling activity or undergo apoptosis [Voermans et ai, 2000].

There are some recent experimental observations that trans endothelial migration

of CD34+ cells prevents starvation induced apoptosis [Ferrero et ai, 2003].

Consequently, it would be important for circulating HSPCs to find quickly the

appropriate adhesion molecules and microenvironment in order to remain in an

immature and quiescent state [Fruehauf et al, 1998] or reverse to such a state if

the quiescence property was lost during circulation [Huygen et al, 2002]. In turn,

the proportion of circulating HSPCs which are not regulated quickly enough via

adhesion enters proliferation and differentiation process [Puznel et al, 2003],

sustained as long as the right environment and cytokine cocktails are reached (also

in the bone marrow). In this model, HSPC circulation in the blood acts as a trigger

point for engaging a fraction ofHSPCs into the haemopoietic process.
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Figure 7.12: Representative meridian-shaped crest-like structures.

Top - Original CD34 ADM. Middle - Interpolated ADM. Several elongated high
CD34 concentration structures are observable. The longest one (in the middle of
the ADM) extends to 9 urn length, which is approximately the diameter of the
cell. Such meridian-shaped crest-like (MSCL) structures are not experimental
artefacts due to the PSF of the system (in which case MSCL structures would be
observed strictly vertically, or would all follow similar orientation). Bottom -
Sphere model of the CD34 membrane distribution. The MSCL structure A
extends from one pole of the cell to the other, hence its name. A smaller MSCL
structure B is also observed, which extends over 5 urn.

As demonstrated in this work, CD34 and CD164 are found to colocalise and to

concentrate in clusters and meridian-shaped crest-like structures (figure 7.12).
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and cytoadhesion [Madjic et ai, 1994] but its short intracellular tail does not allow

proliferation signalling [Hu and Chien, 1998], and some evidence suggests that

CD164 plays a role in negative control of cell proliferation. Furthermore,

preliminary work showed that CD34 and CD133 are also found to colocalise in

clusters, despite that colocalisation is specific to some particular rare clusters

while most clusters contain either one or the other antigen (figure 5.5). No

function is known for CD133, but its leucine-zipper motif and very unusual 5-

transmembrane domains suggest it may serve as a signalling receptor, allowing

cell-to-cell communication or environment sensing.

Given the fact that the cells analysed in this work where predominantly circulating

cells, a potential function for the observed antigen clusters and their composition

may be hypothesised. Indeed, further to adhesion, cell-to-cell

contact/communication between HSPCs takes place and is probably important for

HSPC survival. Indeed, while HSPCs are more abundant in the bone marrow, they

are extremely rare in the blood stream. This may well explain why HSPCs

produce within seconds unusually long membrane extensions in order to reach

each others. This could allow the transmission of survival message between cells,

while those who are isolated may not receive them (and consequently may

undergo apoptosis). Shorter and more abundant pseudopodia are also observed

which are involved in tight junctions between adjacent HSPCs and to sense the

environment. They are likely to participate to cell migration, as observed with

other motile blood cells (macrophages, B-cells). Electron microscopy showed that

CD34 is predominantly found on membrane extension and protrusions in KG1a

cells (data not shown), while it was consistently observed in the present analysis

of the LSCM images coupled with the visual analysis of DIC images that antigen

288



Marc-Olivier Baradez PhD Thesis Chapter 7. Discussion

clusters were also associated with short membrane protrusions, despite the fact

that all clusters are not systematically found with visually observable membrane

protrusions (still these are protrusions, as observed on KOla cells [Oh et ai, 1999;

Francis et ai, 1998]).

Antigen clusters may act as individual, functional membrane domains, containing

various relative proportions of the different CD34, CD164, CD133, and other

proteins which differ from cluster to clusters. Other molecules are likely to be

associated to these clusters (lipids, kinases [Zhang et ai, 2001], cadherins [Puch et

ai, 2001; van Buul et ai, 2002], selectins, and other adhesion molecules

[Leppanen et al, 1999; Levesque and Simmons, 1999; Nakamura et al, 2000;

Peichev et al, 2000]; Sackstein and Dimitroff, 2000]), here referred to as "cluster

associated molecules", in order to perform signal transduction and adhesion

functions [Dravid and Rao, 2002]. Different relative proportions of the various

antigens composing the clusters, i.e. differential colocalisation, may confer to the

clusters the aptitude to react specifically to particular combinations of cytokines.

Therefore, if the right combination of cytokine is encountered by a cluster with

the right proportions of antigens, signalling cascades may take place [Adam et al,

2003], be amplified by the cluster associated molecules and lead to actin

polymerisation (see figure 7.14). Consequently, only the clusters with the right

antigen formulation lead to efficient signalling cascades and fast actin

polymerisation [Levesque and Simmons, 1999]. Actin fibres therefore elongate

and protrude in the cell membrane, forming quickly the short and long

pseudopodia observed. Since most clusters do not have the appropriate antigen

formulation, most of them would generate no membrane protrusion, small ones or

slightly more elongated ones. This may explain the relative abundance of short
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protrusion in comparison to longer one. This may also explain why protrusion are

found coated with CD34 (and likely with other cluster molecules), as actin

polymerisation would occur behind and in the vicinity of the clusters with

appropriate antigen formulation.

The production of pseudopodia coated with CD34, CD164 and CDt33 may be

used in turn to mediate survival signals to the cell body. Indeed, along such long

pseudopodia, CD34 and CD164 are more likely to encounter spatial regions

coated with their specific (yet unknown) ligands. CD34 function would be to

perform adhesion (to substrate or other cells). Indeed, it has been reported that

CD34 shares structural similarities with another sialomucin, CD43, a protein

implicated in cell-cell adhesion, tyrosine kinase activation and cytoskeleton

interactions [Felschow et al., 2001; Anzai et al, 1999; Park et al, 1991]. As for

CD34, CD43 is also reported to display differential colocalisation patterns in cell

membranes by confocal analysis [Brown et al, 1996]. In addition, CD34 and

CD43 share a common signalling pathway via Syk and Lyn tyrosine kinases

[Tada et al, 1999]. Furthermore, CD34 is capable of inducing adhesion (possibly

to L-selectins, as for CD43) specifically related to class II epitope expression, and

signal transduction. Its predominant form is the full length protein (class I, II and

III altogether). CD34 class I and II epitopes (the most distal) but not class III

monoclonal antibodies induce cell-cell adhesion. CD34 does not have intrinsic

kinase activity, so signalling cascades can only be triggered through intracellular

CD34 tail association with other molecules. Indeed, an unknown 45 kd protein

was detected associating with the intracellular tail of the full length CD34

molecule immediately after CD34 engagement with antibodies [Felschow et al,

2001]. CD34 is found to differentially bind to the most abundantly expressed

290



Marc-Olivier Baradez PhD Thesis Chapter 7. Discussion

adapter protein in HSPCs, the 39 kd CrkL. Such adapter can enable membrane

receptors (such as integrins) to directly or indirectly interact with tyrosine or

serine/threonine kinases in order to transmit signals. CrkL overexpression leads to

increased adhesion to fibronectin through activation of C30. The CrkL protein

family has also been reported to be involved in a variety of signalling pathways

following T-cell stimulation, haemopoietic cytokine activation and integrin cross-

linking. Signals transmitted after CD34 engagement lead to actin polymerisation.

Moreover, there is in vitro evidence that CrkL forms complexes with other

proteins (such as C3G, c-Abl, Sos and Dock 180), strongly suggesting that other

molecules are likely to be associated with the HSPC membrane antigen clusters

(so called cluster-associated proteins). Intracellular kinases (e.g. protein kinase C)

are also known to playa role in CD34 function through phosphorylation [Fackler

et ai, 1990] and the control of its activity [Lanza et ai, 2001].

CD164, located in the same regions as CD34, would also be activated by its

ligand and subsequently generate signalling cascades. The signalling cascades

triggered by CDl64 would send negative regulatory messages to the cell body up

to the nuclear material which would prevent cell proliferation, impairing cell

engagement into the haemopoietic process [Doyonnas et al, 2000; Lee et ai,

2001]. Therefore, in this proposed mechanism, cell adhesion (via CD34 or other

molecules [Goodell, 1999; Guo et ai, 2003; Kuci et ai, 2003; Verfaillie, 1998])

prevents cell division (via CDI64), which is consistent with haemopoietic theories

(Le. adhesion prevents cell cycling). It also provides a potential explanation for

the observed membrane protrusions and pseudopodia, together with their observed

antigen coating (observed with electron microscopy), but it is stressed that antigen

clusters may not necessarily trigger podia formation (as observed with LSCM, e.g.
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fig. 7.13). In any case, adhesion using CD34 prevents cell proliferation using

CD164. The selective presence of CD133 within a few CD34 clusters and none

other may also follow this hypothesis. CD133 containing clusters may have the

right balance of antigens to perform their biological function which is to create

(short or long) membrane extension in order to reach other cells [Corbeil et al,

1999]. Therefore CD133 is directly brought to contact points between touching or

neighbouring cells, and since this antigen is potentially a signalling receptor, its

presence at cell-to-cell interface would possibly allow cell-to-cell communication.

As the haemopoietic microenvironment secretes cocktails of cytokines, a fraction

of the HSPCs activated after circulating in the blood stream engages in the

maturation process, CD34, CD164 and CD133 expression is down-regulated until

no more expression takes place, and in turn an increasing diversity of other

antigens are expressed in order to participate to the tuning of differentiation events

[Agliettaetal, 1998;Ogawaetal, 1983;Koury, 1992].

In this interpretation, clusters are small, specialised and spatially segregated

pieces of machinery with random and different antigen formulations. The relative

proportions of antigens are responsible for the specific activation and signal

amplification in particular clusters in response to appropriate cytokine cocktails,

and random antigen formulation confers a wide sensitivity range to

cytokine/adhesion molecule stimulation (fig. 7.14). Thus HSPCs are potentially

well equipped to develop fast responses to appropriate stimuli in localised and

specific microenvironments. This theory weights in favour of the non-

deterministic model of haematopoiesis: indeed, random combinations of

membrane receptors are expressed in HSPCs, particular and lineage specific
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environmental factors stimulate the appropriate antigen clusters, leading to

signalling cascade and cell engagement in the differentiation process. Non

appropriately stimulated HSPCs remain quiescent or undergo apoptosis.
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Figure 7.13 : Representative example of the three types of clusters

observed on HSPCs.
These are CD34 distributions. The circle indicates a patch-like cluster
located at the cell-to-cell contact area. The rectangle indicates a MSCL
structure and the arrow points to a small cluster. This small dense cluster is
clearly associated with a membrane protrusion (visible on the DIC image)
and predominantly contains class III CD34 epitope (green). At cell-to-cell
contact site, the left cell expresses mostly class I CD34 epitope while the
right cell expresses mostly class III CD34 epitope. Both classes are clearly
colocalised in the patch like area, as indicated by the yellow colour in the
bottom right image. Polarity graphs (top right) show that theCD34 from
the right cell is predominantly polarised towards the contact area.
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Figure 7.14: Potential function of antigen clusters in HSPC membrane.
Under either external (cytokines, adhesion molecules) or internal (genetic) stimuli,
early membrane antigens are synthesised in the cytoplasm and transported to the
membrane. As HSPC circulate the blood stream, these antigens aggregate within
cluster structures, probably with participation of cytoskeleton molecules and lipid
rafts. The resultant clusters have different relative proportions of various antigens.
Some of these molecule interact directly or indirectly with each others, modulating
the signalling pathways taking place at these sites. The relative proportions of
cluster antigens is responsible for the differential tuning of signalling activity, after
appropriate activation through ligation of corresponding ligands. It is hypothesised
that functional cluster signalling activity relies on the amplification of initial
phosphorylation cascades leading to actin polymerisation and gene activation. Such
an amplification happens only if clusters with appropriate antigen formulation
encounter the corresponding ligand/cytokine combinations from the surrounding
environment. Actin polymerisation may generate membrane protrusions and
pseudopods coated with cluster antigens.

294



Marc-Olivier Baradez PhD Thesis Chapter 7. Discussion

7.4 Conclusion

A novel methodology has been developed to qualitatively and quantitatively

characterise haematopoietic membrane antigens. This method could be extended

to the study of other cell types. More accurate membrane analysis could be

performed by adding a membrane dye to the target cells, which would allow better

3D reconstruction [Ortiz De Solorzano et al, 2001] and antigen mapping, and

possibly allow the analysis of clusters and their relations with membrane

protrusions. These methods could also be used to characterise antigen

distributions in cells subjected to various experimental conditions. For example,

they could be used to quantitatively assess the effect of drugs at various

concentrations. They could also be used to characterise time lapse series.

Importantly, several new visualisation tools and measurements were introduced:

• the Antigen Density Maps (ADMs) provide a concise way for

visualising and comparing 3D antigen distributions,

• the 3D sphere models are particularly helpful for assessing and

comparing fluorescence distribution of clustered cells, while actual 3D

reconstruction may still be subject to difficult interpretation,

• polarity measurements allow to quantitatively characterise the various

antigen distribution polarisation states encountered in cell membranes,

making this information available for statistical comparison of various

cell populations under different experimental conditions, and to

represent this information in the practical form of graphs
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• the vanous quantitative colocalisation methods herein developed

greatly extend the possibility of characterising accurately colocalised

antigen distributions, describing numerically and graphically various

degrees of colocalisation, in a much finer way than the conventional

use of Pearson's correlation measurements applied between images.

Altogether, these innovative tools allow to multiply the measurements performed

on LSCM images, therefore increasing the amount of information available for

further analysis and interpretation of the data.

The novel fluorescence quantification method adopted here has been shown to

improve the measurements obtained using different segmentation algorithms. It

could possibly be used to improve the comparison of measurements performed by

different users while reducing the subjective biases. Biases are introduced at

several points in the experiments (e.g. problems with fluorescence and microscope

calibration). They are also commonly introduced by user performing manual

segmentation. In this study, the development and application of automatic

segmentation algorithms was investigated and was shown to be robust [Baradez et

al., 2004], therefore minimising the risk of initial subjective bias.

Moreover, the MSA algorithm has many potential segmentation applications. Its

high computational efficiency suggests that it could easily be implemented for real

time applications for research and industry.
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Appendix A
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Appendix B

Buffers, solutions, cell count and viability

This appendix contains descriptions of buffers and solutions used for IISPC

preparations, and the description of cell count and viability calculation.
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Buffers, solutions, cell count and cell viability

Please note: Town and country of a given supplier are quoted in brackets only
upon first appearance in the text but not subsequently.

Buffers and solutions:

Phosphate buffer saline (PBS): 5 PBS tablets (Sigma-Aldrich, Poole, UK) were
dissolved in 1 litre of double distilled water following the manufacturer's
instructions in order to reach the following concentrations: 137 mmol Sodium
Chloride, 2.7 mmol Potassium Chloride, 10mmol phosphate, pH 7.2-7.4
ACD-A buffer: PBS (Sigma-Aldrich) supplemented with 0.6% ACD-A
(Baxter, Maurepas, France) and bovine serum albumin (0.5% fraction V,
Sigma-Aldrich, UK) equilibrated at pH 7.4. with IN NaOH.
Staining buffer: (for fluorescent immunophenotyping) PBS (Sigma-Aldrich)
supplemented with 0.1% sodium azide (Sigma-Aldrich) and 2 % foetal calf serum
(PAA laboratories, Yeoville, UK) at pH 7.4.

Cell count and viability:

Cells were enumerated and assessed for viability by diluting cell samples with a
trypan blue solution (0.25% in PBS). Cells were then counted in an Improved
Neubauer standard haemocytometer chamber (Fischer Scientific, Loughborough,
UK).
The trypan blue solution permitted discrimination between dead cells (staining
blue due to impaired membrane integrity) and viable cells (remaining
translucent).For enumeration at least three squares content were scored.

Cell number = (cell count/number of squares)x 104 x cell volume x dilution
factor

0/0 Viability = 100 x (number of viable cells I total number of cells)
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Appendix C

Algorithm for estimation of cell radius using fluorescence

images

This appendix contains the Matlab code used to estimate cell radii from

fluorescence LSCM images used in section 2.2.3.
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Algorithm for estimation of cell radius using fluorescence images

% Estimation of cell diameter using LSCM fluroescence images

% Load and display LSCM image:
[fnamel,pnamel]=uigetfile(['c:\'" .tif]),Fn=[pnamel fnamel];[H,
map ]=imread(Fn);H=double(H);
figure,colormap(gray(25 6)),image(H),axis image

% Manual positioning of cell centroid (mx,my):
r=1;n=O;
hold on
while r==1

n=n+l;
[x(n),y(n),r]=ginput(l);
plot(x(n),y(n),'r""),hold on,plot(x(n),y(n),'ro')

end
hold off
mx=y(n);
my=x(n);

% Compute fluorescence mask D using the MSA algorithm:
[D,d]=f_MSA(H);

% H is thresholded at mean+4SD to produce D2:
D2=im2bw(H/255,(mean(H(:»+4"'std(H(:»)/(255»;

% Background binary pixels are removed using the mask D:
D3=D2. "'D/255;

% Find (x,y) coordinates of signal pixels:
[x,y]=find(D3>0);

% Convert cartesian to polar coordinates, after translation of cell
% centroid to (0,0):
% t is the angle; r is the radius;
[t,r]=cart2pol(x-mx,y-my);

% Calculate a first estimate of the mean radius:
mr=mean(r);
rr=mr+onestsizettj);
[df,dff]=poI2cart( t,rr);
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% Remove pixels out of the range O.5*(mean radius) to 1.5*(mean
radius)
% This step prevents distant fluorescent debris to influence the cell
radius
% estimation:
BB=roipoly(H, 1.5*df+my, 1.5*dff+mx);
BB2=roipoly(H,O.5*df+my,O.5*dff+mx);
BX=xor(BB,BB2);
D4=D3.*BX;

% Final cell radius estimation as median radius "mr" of remaining
pixels,
% graphical outpout:
[x,y]=find(D4>O);
figure,plot(x-mean(x),y-mean(y),'.k','markersize',O.2)
h=gcf;
[t,r]=cart2pol(x-mx,y-my);
mr=median(r);
rr=mr* ones( size( t));
[df,dff]=poI2cart(t,rr);

% Superimpose circle to fluorescent pixels and display radius value:
figure(h),hold on,plot( df,dff,'.r'),axis equal
hold on,text(-40,O,num2str(mr))

Estimated diameter = 193.6759 pixels
11 pixels = 1 J-Im

Exemple of automated cell radius estimation using fluorescence
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AppendixD

Example of Polarity Z and distribution energy

comparison. Comparison of class I, II and III CD34

epitopes.

This appendix presents graphs of Z polarity vs. distribution energy ratios obtained

from three HSPC population labelled for CD34 epitopes. These graphs illustrate

the difference between both measurements, between the different epitopes, and

show how such measurements could be used for graphical displays.
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Epitope analysis of 3 cell populations
Distribution energy vs. Z polarity
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Detailed epitope analysis of 3 cell populations
Distribution energy vs. Z polarity
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Epitope analysis of 3 cell populations
Distribution energy compared to Z polarity

Class X epitope vs. Class Y epitope
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AppendixE

Example of statistical analysis performed for comparison

of series of ADM measurements.

This appendix presents paired T-tests used to assess the similarities/differences

between features measured from CD34 epitope combinations. Such statistical

tests are used to compare all series of measurements within the HSPC samples.

Between HSPC feature comparison was performed by unpaired T-test. An

example of descriptive statistics from dual CD34/CD164 distributions is also

presented along with a typical correlation analysis.
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Inter-epitope T-test analysis
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Inter-epitope T-test analysis
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Inter-epitope T-test analysis
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Inter-epitope T-test analysis

"- N (\') N N 0 (\')g c x ~ 0> (\') 10 0
N 0 <0 ..... 0

UJ II! co " 0 0> 0> 0>

:E~ oq "': r: "': tq tq- - -en
c

~
(\') (\') " <0 0>

,Q 0 ~ - 0 .....
I§ 10 0> - 0 10

" co <0 " ..... 0
> .... " 0> co <0 <0
Q) (") N (") N &ri &ri
Cl
-c
U5

C") (\') (\') (\') - -.... - .... - - -z

.... ~ ~ - 10 "C
C") C") ~ N
N ..... .... N "et! en <0 <0 0> ~ N

Q) c» c:i c» cri cri cri:E .... ..... ..... ..... .....

C") ~ 10 co ~ 10
0 0 0 N N
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0:::: 0::::0:::: 0::::0::0::

~ ~~ ~:;:;
... ... "-
'm 'm 'm
0._ o.N A.(\')

0 0 (\')
0 0 <0

,2 Cl Cl Cl
en

c" C") co
0 " C") "~ ~ ~ aq

~
0o

C") ('t) .......... ..... .....
z

~ <0 10
0 N

0 0 0
0 0 0
0 0 0
0::0::0::~~:;
aISaISaIS
C") 10 ~0 0
0 0 0
0 0 0
0 0 0
0:: 0:: 0:::
~ :; :;
..... N (\')
"- "- "-'m 'iii 'iiia. Cl. Cl.

Appendix E

NNO......... ..-

_Ne')
"- "- ...
'iii 'iii 'iiiCl.Cl.Cl.

E-V



Marc-Olivier Baradez PhD Thesis

Inter-epitope T-test analysis
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Inter-epitope T-test analysis
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CD 164/CD34 distributions
T-Test analysis
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