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Abstract 
 
Estimation of stochastic demand in physical distribution in general and efficient transport routs management 
in particular is emerging as a crucial factor in urban planning domain. It is particularly important in some 
municipalities such as Tehran where a sound demand management calls for a realistic analysis of the routing 
system. The methodology involved critically investigating a fuzzy least-squares linear regression approach 
(FLLRs) to estimate the stochastic demands in the vehicle routing problem (VRP) bearing in mind the cus- 
tomer's preferences order. A FLLR method is proposed in solving the VRP with stochastic demands: ap- 
proximate-distance fuzzy least-squares (ADFL) estimator ADFL estimator is applied to original data taken 
from a case study. The SSR values of the ADFL estimator and real demand are obtained and then compared 
to SSR values of the nominal demand and real demand. Empirical results showed that the proposed method 
can be viable in solving problems under circumstances of having vague and imprecise performance ratings. 
The results further proved that application of the ADFL was realistic and efficient estimator to face the sto- 
chastic demand challenges in vehicle routing system management and solve relevant problems. 
 
Keywords: Fuzzy Least-Squares, Stochastic, Location, Routing Problems 

1. Introduction 
 
The problem within distribution management of sched- 
uling vehicles from one or more fixed positions (depots) 
to service a given set of locations (customers) is called 
the vehicle routing problem (VRP) [1]. Vehicle routing 
problems are important and well-known combinatorial 
optimization problems occurring in many transport logis- 
tics and distribution systems of considerable economic 
significance vehicle routing problem with stochastic de- 
mand (VRPSD) has recently received a lot of attention in 
the literature [2]. This is mainly because of the wide ap- 
plicability of stochastic demand in real-world cases. In 
the routing problem with stochastic demands (RPSD) a 
vehicle has to serve a set of customers whose exact de- 
mand is known only upon arrival at the customer’s loca- 
tion. The objective in these problems is to find a permu- 
tation of the customer's demands that the penalties for 
losing a customer are minimized [3]. The actual demand  

of each customer depends on common assumptions on 
mathematical programming where all problem data are 
known in advance. In most cases, however, decisions 
have to be made before the realizations of random vari- 
ables are known. A classical approach is to work with 
estimations of random data and to solve the stochastic 
problem similar to the deterministic cases. Moreover, it 
is often preferable to explicitly incorporate uncertainty in 
the models. Fuzzy Theory is a powerful tool, for decision 
making in fuzzy environment. Crisp methods work only 
with exact and ordinary data, so there is no place for 
fuzzy and vagueness data. Torfi et al. [4] proposed a 
Fuzzy approach to evaluate the alternative options in 
respect to the user's preference orders in a fuzzy envi- 
ronment. Human has a good ability for qualitative data 
processing, which helps him or her to make decisions in 
fuzzy environment.  In many practical cases, decisions 
are uncertain and they are reluctant or unable to make 
numerical input and output data. Torfi et al. [5] applied a 
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new fuzzy decision making model to determine the wei- 
ghts of multiple objectives in combinational optimization 
problems.  

In this paper, we apply their basic approximation op- 
erations in fuzzy least-squares estimator. This paper con- 
siders a stochastic routing problem in which a set of cus- 
tomers is given, each of which will require service after 
the a priori decision is made. Uncertainty is modeled by 
using a vector of dependent variables which are interval- 
lic and similar to the demand vector. Each of these in 
turn depends on independent variables which are also 
intervallic. However, in many practical cases, the cus- 
tomer's demands are uncertain and those who demand 
service are reluctant or unable to make a numerical per- 
mutation of the customer's demands. Fuzzy least squares 
linear regression was assumed to be a powerful tool for 
decision-making in fuzzy environment. Fuzzy regression 
analysis is a fuzzy (or possibility) type of classical re- 
gression analysis. It is applied under circumstances 
where evaluation of the functional relationship between 
the dependent and independent variables in a fuzzy en- 
vironment is necessary.  

Tanaka et al. [6] initiated a study in fuzzy linear re- 
gression analysis that considered the parameter estima- 
tion of models as linear programming problems. Based 
on the findings of Tanaka et al., further investigations 
were made, which took two approaches: the linear-pro- 
gramming-based methods [6-9] and fuzzy least-squares 
methods [10-12]. Most of these fuzzy regression models 
are analytically considered with fuzzy outputs and fuzzy 
parameters but non-fuzzy (crisp) inputs. This paper aims 
to study fuzzy linear regression model with fuzzy outputs, 
fuzzy parameters, and fuzzy inputs.  

Sakawa and Yano [9] proposed a fuzzy parameter es- 
timation model for the fuzzy linear regression (FLR) 
model as follows: 

0 1 1 ,  1,2, , .i j k jkY A A X A X j n        

Where both input data Xj1, Xj2, , Xjk and output data 
Yj are fuzzy. Three types of multi-objective program- 
ming problems were further formulated for the parameter 
estimation of FLR models along with a linear-pro- 
gramming-based approach. This multicriterial analysis of 
FLR models provided an appropriate method of parame- 
ter estimation by using the vagueness of the model via 
some indices of inclusion relations. Alternatively, a 
fuzzy least-squares approach directly uses information 
included in the input-output data set and considers the 
measure of best fitting based on distance under fuzzy 
consideration.  

Fuzzy least-squares are fuzzy extensions of ordinary 
least-squares. In this paper, one type of fuzzy least- 
squares is proposed as the parameter estimation for the 
FLR model is proposed as follows: 

0 1 1 ,  1, 2, ,i j k jkY A A X A X j n      . 

Yang and Lin [1] used two approaches to evaluate the 
functional relationship between the dependent and inde- 
pendent variables in a fuzzy environment. Their analytic- 
cal framework involved fuzzy linear regression models 
with fuzzy outputs, fuzzy inputs, and fuzzy parameters, 
but the fuzzy numbers they considered in their model 
were of LR-type. 

In this paper, attempt is made to apply an extension of 
one of their approaches with triangular fuzzy numbers. 
The proposed methodology presents the extension of 
approximate-distance fuzzy least-squares (ADFL) esti- 
mator. The proposed method is assumed to be appropri- 
ate alternative approach to estimate the stochastic de- 
mands in the routing problem. 

The remainder of this paper is outlined as follows: 
Sections 2 introduce the method used to compute the sto- 
chastic demands. Then, the routing problem with sto- 
chastic demands is presented in Section 3. Section 4 pre- 
sents the results of computational experiments to assess 
the value of the proposed approach and reports a com- 
parative performance analysis to alternate method. Fi- 
nally, in Section 5 conclusions and future researches are 
drawn. 
 
2. Fuzzy Least-Squares Linear Regression 
 
The rationale for the Fuzzy Theory is briefly reviewed 
before developing fuzzy Least-squares Linear Regression 
as follows: 
 
2.1. Fuzzy Arithmetic 
 
Definition 2.1. A Fuzzy set M in a universe of discourse 
X is characterized by a membership function  M x  
which associates with each element x in X, a real number 
in the interval [0,1]. The function value  M x  is 
termed the grade of membership of x in M [13]. The pre- 
sent study uses triangular Fuzzy numbers. A triangular 
Fuzzy number, M, can be defined by a triplet  

 , ,
T

M    . Its conceptual schema and mathematical 
form are shown by Equation (1). 

 

0

1

a

x

x
x

x
x

x

x


  

 


  
 




  


   
 











          (1) 

Definition 2.2. Let  , ,
T

M     and  , ,
T

N     
be two triangular Fuzzy numbers, then the vertex method 
is defined to calculate the distance between them, as Eq-
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uation (2): 

       2 2 22 ,T x y x y x yd X Y              (2) 

The basic operations on Fuzzy triangular numbers are 
as follows [14]: 

For approximation of multiplication [15]: 

     , , , , , ,
T T T

                   (3) 

For addition:  

     , , , , , ,
T T T

                   (4) 

Given the above-mentioned Fuzzy theory, the pro- 
posed Fuzzy Least-squares Linear Regression Approach 
is then defined as follows: 
 
2.2. Developed Version of the  

Approximate-Distance Fuzzy Least-Squares 
 
This is basically an extension of and improvement on the 
model applied by Yang and Lin [16] above which is ex- 
pressed by the FLR model as follows: 

  0 1 1: ,  1, 2, , ,i j k jkFLR Y A A X A X j n       (5) 

Where outputs  , , ,
j j jj Y Y Y

T
Y    inputs  

 , ,
ji ji jiji X X X

T
X    and parameters  

 , ,
j j jj a a a

T
A    1, 2, , ,  1,2, ,i k j n     so that 

the notion  , ,
T

M     is triangular fuzzy number.  
The difficulty in treating model (5) of fuzzy input- 

output data is that AiXji may not be of triangular fuzzy 
number. Although the product of two triangular fuzzy 
numbers may not be a triangular fuzzy number, Dubois 
and Prade [17] presented an approximation form. Based 
on this analytical framework, Yang and Ko [11] further 
developed the model presented by Dubois and Prade and 
suggested an approximation type of fuzzy least-squares. 
What follows here is the application of approximation to 
present an algorithm for parameter estimation of the FLR 
model (5).  

By assuming  , ,
T

M     and  , ,
T

N     to 
be two triangular Fuzzy numbers; therefore, by using the 
basic operations on Fuzzy triangular numbers, it will be 
possible to express an approximation of multiplication 
and addition as follows:  

 0 1 1 , ,j k jk j j j T
A A X A X          

where 
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Since 0 1 1j k jkA A X A X    is of approximate tri- 
angular fuzzy number, the distance 2

Td  is defined on 
two triangular fuzzy numbers. Thus, the following ob-
ject- tive function is considered: 
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The minimization of  0 1, , , kU A A A over Ai subject 
to 0 1,  0 1,  0 1,   0,1, 2, ,

i i ia a a i k         is 
called the developed version of the approximate-distance 
fuzzy least-squares method.  
 
2.3. Fuzzy Membership Function 
 
The existing precise values is deliberately transformed 
here to five levels ranking order of Fuzzy linguistic va-
riables: very low (VL), low (L), medium (M), high (H) 
and very high (VH). The commonly used Fuzzy numbers 
applied for the triangular fuzzy numbers are likely to be 
appropriate for the trapezoidal ones due to their simplic- 
ity in modeling interpretations. Both triangular and tra-
pezoidal fuzzy numbers are applicable to the present 
study. The triangular fuzzy number applied here can ade- 
quately present an analytical framework within seven- 
level Fuzzy linguistic variables, for the present study. 
These linguistic variables can be expressed in triangular 
numbers as Tables 1 and 2 [3]. 
 
Table 1. Linguistic variables for the importance weight of 
each criterion. 

Membership functionCriteria grade Rank 

(0.00,0.10,0.25) 1 Very low (VL) 

(0.15,0.30,0.45) 2 Low (L) 

(0.35,0.50,0.65) 3 Medium (M) 

(0.55,0.70,0.85) 4 High (H) 

(0.75,0.90,1.00) 5 Very high (VH) 

 
Table 2. Linguistic variables for the ratings. 

Membership functionCriteria grade Rank 

(0, 1, 2.5) 1 Very poor (VP) 

(1.5, 3, 4.5) 2 Poor (P) 

(3.5, 5, 6.5) 3 Medium (MP) 

(5.5, 7, 8.5) 4 Good (G) 

(7.5, 9, 10) 5 Very good (VG) 
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3. Statement of the Problem 
 
In this stochastic routing problem, capacities on the 
plants are given in terms of number of customers whom 
each plant can actually serve, and the capacity of vehi- 
cles employed to provide services are available.  

The aim of this study is to allocate customers to the 
plants in question. It is assumed that there are circum- 
stances when a plant is overloaded, (i.e., the number of 
customers on its route requesting service exceeds its ca- 
pacity), and a number of customers are left without ser- 
vice, which incur an additional costs to the plant. This 
additional cost can be interpreted as the penalty for los- 
ing a customer, or as the cost of acquiring external re- 
sources to provide the service. Here, the demand made 
by the set of customer, which the plant has to satisfy, is 
stochastic. The stochastic nature of the demand is a good 
reason to take the fuzzy approach. The demand made by 
each node is a function of factors such as the demand 
time, age of the vehicles employed, quality improvement 
of product and distance of a particular node to the plant, 
etc. 

The goal in this RPSD is to minimize the penalty for 
losing a customer, defined as the sum of the expected 
penalties incurred for the customers who did not receive 
service. The uncertainty in demand is modeled by using 
a vector of dependent variables, which in turn the linear 
combination of the dependent variables generates inde- 
pendent variables. However, in many practical cases, the 
customer’s demands are uncertain and they are reluctant 
or unable to make a numerical permutation of the cus- 
tomer's demands. Fuzzy least squares liner regression is 
a powerful tool for decision making in fuzzy environ- 
ments. Fuzzy regression analysis is a fuzzy (or possibil- 
ity) type of classical regression analysis. It is used in eva- 
luating the functional relationship between the dependent 
and independent variables in a fuzzy environ- ment.  

This paper uses estimation method along with a fuzzy 
least-squares approach, which can be effectively used to 
estimate the customer demand. The outcomes of the me-
thod are compared for problem solution. A fuzzy regre- 
ssion model is used in evaluating the functional rela- 
tionship between the dependent and independent vari- 
ables in a fuzzy environment. Most fuzzy regression mo- 
dels are considered fuzzy outputs and parameters but 
non-fuzzy (crisp) inputs. In general, there are two appr- 
oaches in the analysis of fuzzy regression models: lin- 
ear-programming based on fuzzy least-square methods. 
Sakawa and Yano [9] considered fuzzy linear regression 
models with fuzzy outputs, fuzzy parameters and fuzzy 
inputs. They formulated multi-objective programming 
methods for the model estimation along with a linear- 
programming-based approach.  

4. Procedure Experiment 
 
In Sections 2, a fuzzy least-squares method has been 
constructed for the estimation of a routing problem with 
stochastic demands and fuzzy input-output data.  

Given the above-mentioned approach, the procedure 
experiment is then defined as follows: 

Step 1. The first step for constructing the linear regres- 
sion model involved collection of available data about 
the problems to be solved. For the purpose of this study, 
the most important and effective factors, which are per- 
ceived by the experts to influence the demand made by a 
particular node, will be determined. 

Since the influencing factors in this study were merely 
the perceptions of the stakeholders involved, and as such, 
are considered as qualitative data (i.e., conditions of qua- 
lity improvement of product). This renders the data sub-
jective, as different experts view the world reality from 
their own perspective. This in turn depends on their ex-
perience and professional qualifications. Four of the 
most effective factors for estimating the demand made 
by a specific node can be seen in Table 3. 

Step 2. The second step involved measuring the real 
demand for the 90 nodes in a single period of one year. 
The following factors were taken into consideration: 

These factors, as independent variables, are used in the 
model to estimate the demand made by each node. For 
example, X2 is the variable for quality improvement of 
product, which consists of four evaluative categories like 
in line with the Likkert scale model, which comprises 
good, average, rather poor and poor. Very high VH, av- 
erage H, rather poor M and poor L, symbolize the good 
emulative category. These are also used for other inde- 
pendent variables and the results are shown in Table 4. 

Step 3. Functional objectives and the constraints asso- 
ciated with the model used in this study are calculated 
from the method provided in 2.2, which make mathe- 
matical programming problem and model parameters, 
which are triangular fuzzy numbers, are the answer to 
these problems. Numerical results of the problem under 
investigation using the Mathematica and Lingo8 soft- 
ware, which include coefficients of variables of the  

 
Table 3. Effective factors for estimating the demand. 

STATUS CRITERIA NO

Less than 5, Between 5~10, 
More than 10 

Distance of the plant to 
particular node  

1 

Good-Average-Rather 
poor-Poor 

Quality improvement of 
product 2 

Spring-summer-autumn-winter Demand time 3 

Less than 5, Between 5~10, 
More than 10 

Age of the vehicles em- 
ployed 

4 
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Table 4. Results of real demand for the 90 nodes. 

variable 
1 2 3 4 5 

variable
1 2 3 4 5 

variable
1 2 3 4 5 

node node node 

1 L M M H VH 31 H VH M H VH 61 L VH M VH VH

2 L M M VH H 32 L M H VH VH 62 L M M VH H 

3 L VH M VH VH 33 M VH M VH VH 63 H H H VH H 

4 L M H VH M 34 M VH H H H 64 M VH H VH VH

5 M H M H H 35 VH H M VH VH 65 L M M H VH

6 L VH L M H 36 L H H M H 66 VH VH M L H 

7 M H VH H H 37 L H H H VH 67 M H M M VH

8 H H M L H 38 L L M VH H 68 VH VH M H H 

9 L H H VH VH 39 L M H H VH 69 M H H VH H 

10 L M H H H 40 L VH H H VH 70 L VH M H H 

11 M H M H H 41 L H H H H 71 L M H VH VH

12 L L H VH H 42 VL M H VH H 72 VH VH H H H 

13 L H H H VH 43 M H M M H 73 L M H VH H 

14 L H H VH VH 44 M M M H H 74 VH H M H VH

15 M H M H H 45 L H VH H H 75 M VH H H VH

16 L VH H H H 46 M H H VH VH 76 L H M H H 

17 H H H VH H 47 L VH M L VH 77 L VH H VH VH

18 M H VH H VH 48 M H VH H VH 78 L H M VH H 

19 L VH H VH VH 49 M M M VH VH 79 M VH H VH H 

20 L H M VL VH 50 H H VH VH H 80 L VH H H VH

21 VL M H VH H 51 VL VH H VH VH 81 L H M M H 

22 M H M H H 52 L H H VH H 82 L H H VH VH

23 L L H VH H 53 VL M H VH H 83 VH H M H H 

24 VL H H VH VH 54 M H M M H 84 M H M VH H 

25 L VH M VH VH 55 M M H VH H 85 VH H L H VH

26 M H M VH H 56 L H H H H 86 M VH M H VH

27 L VH M H VH 57 M H M H VH 87 L H M H H 

28 H VH H VH H 58 L VH M L VH 88 M VH M VH VH

29 M H M H VH 59 M H M H VH 89 L H M VH H 

30 M VH H VH VH 60 M M M VH VH 90 M VH M VH H 
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Table 5. Parameter estimates and SSR for model 1. 

No. 
Apprximate- distance ( Y ) Nominal demand 

( Ŷ ) 
Real demand 

( Y ) 

SSR based on Apprximate- 

distance  2 ,Td Y Y   2 ˆ,Td Y Y  
y  

y  y  

  0.00 0.10 0.25 H L 0.320156 0.692820 

2 0.00 0.10 0.25 L L 0.320156 0 

3 0.15 0.3 045 L M 0.346410 0.346410 

4 0.00 0.10 0.25 L L 0.320156 0 

5 0.00 0.10 0.25 L L 0.320156 0 

6 0.35 0.5 0.65 L M 0 0.346410 

7 0.00 0.10 0.25 L L 0.320156 0 

8 0.00 0.10 0.25 L L 0.320156 0 

9 0.35 0.5 0.65 L H 0.346410 0.692820 

10 0.15 0.3 045 L L 0 0 

11 0.00 0.10 0.25 L L 0.320156 0 

12 0.15 0.3 045 L L 0 0 

13 0.15 0.3 045 L M 0 0.346410 

14 0.00 0.10 0.25 L L 0.320156 0 

15 0.35 0.5 0.65 M H 0.346410 0.346410 

16 0.00 0.10 0.25 L L 0.320156 0 

17 0.00 0.10 0.25 M VL 0 0.665206 

18 0.00 0.10 0.25 L L 0.320156 0 

19 0.35 0.5 0.65 VH M 0 0.665206 

20 0.15 0.3 045 L L 0 0 

21 0.00 0.10 0.25 L L 0.320156 0 

22 0.15 0.3 045 L L 0 0 

23 0.35 0.5 0.65 H H 0.346410 0 

24 0.00 0.10 0.25 L L 0.320156 0 

25 0.35 0.5 0.65 VH H 0.346410 0.320156 

26 0.15 0.3 045 L L 0 0 

27 0.15 0.3 045 L L 0 0 

28 0.00 0.10 0.25 VL L 0.346410 0.665206 

29 0.00 0.10 0.25 L L 0.346410 0 

30 0.15 0.3 045 VL M 0.665206 0.665206 

31 0.35 0.5 0.65 L M 0 0.346410 

32 0.00 0.10 0.25 VL L 0.320156 0.320156 

33 0.35 0.5 0.65 M M 0 0 

34 0.00 0.10 0.25 H M 0.136667 0.346410 
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35 0.15 0.3 045 L L 0 0 

36 0.35 0.5 0.65 L H 0.346410 0.692820 

37 0.00 0.10 0.25 VL L 0.320156 0.320156 

38 0.15 0.3 045 L L 0 0 

39 0.00 0.10 0.25 L L 0.320156 0 

40 0.15 0.3 045 L L 0 0 

41 0.15 0.3 045 VL L 0 0.320156 

42 0.15 0.3 045 L L 0 0 

43 0.35 0.5 0.65 L M 0 0.346410 

44 0.35 0.5 0.65 L L 0.346410 0 

45 0.15 0.3 045 L L 0 0 

46 0.15 0.3 045 VL L 0 0.320156 

47 0.35 0.5 0.65 L H 0.346410 0.692820 

48 0.00 0.10 0.25 L L 0.320156 0 

49 0.15 0.3 045 L L 0 0 

50 0.35 0.5 0.65 VL H 0.346410 1.011187 

51 0.00 0.10 0.25 L L 0.320156 0 

52 0.35 0.5 0.65 M H 0.346410 0.346410 

53 0.75 0.9 1.00 M VH 0 0.665206 

54 0.00 0.10 0.25 L L 0.320156 0 

55 0.15 0.3 045 L L 0 0 

56 0.15 0.3 045 L L 0 0 

57 0.75 0.9 1.00 M H 0.320156 0.346410 

58 0.15 0.3 045 L L 0 0 

59 0.55 0.7 0.85 L M 0.346410 0.346410 

60  0.15 0.3 045 M L 0 0.346410 

61 0.35 0.5 0.65 H M 0 0.346410 

62 0.00 0.10 0.25 L L 0.320156 0 

63 0.15 0.3 045 L M 0.346410 0.346410 

64 0.15 0.3 045 L L 0 0 

65 0.15 0.3 045 L L 0 0 

66 0.35 0.5 0.65 M H 0.346410 0.346410 

67 0.00 0.10 0.25 L L 0.320156 0 

68 0.15 0.3 045 L L 0 0 

69 0.35 0.5 0.65 L H 0.346410 0.692820 

70 0.15 0.3 045 L L 0 0 
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71 0.15 0.3 045 L L 0 0 

72 0.15 0.3 045 L L 0 0 

73 0.15 0.3 045 L M 0.346410 0.346410 

74 0.00 0.10 0.25 L L 0.320156 0 

75 0.35 0.5 0.65 M H 0.346410 0.346410 

76 0.15 0.3 045 L L 0 0 

77 0.35 0.5 0.65 M L 0.346410 0.346410 

78 0.00 0.10 0.25 L L 0.320156 0 

79 0.35 0.5 0.65 VH M 0 0.665206 

80 0.00 0.10 0.25 L L 0.320156 0 

81 0.15 0.3 045 L L 0 0 

82 0.15 0.3 045 L L 0 0 

83 0.35 0.5 0.65 H H 0.346410 0 

84 0.00 0.10 0.25 L L 0.320156 0 

85 0.35 0.5 0.65 VH H 0.346410 0.320156 

86 0.00 0.10 0.25 L L 0.320156 0 

87 0.15 0.3 045 L L 0 0 

88 0.15 0.3 045 VL L 0 0.320156 

89 0.15 0.3 045 L L 0 0 

90 0.15 0.3 045 VL M 0 0.665206 

SUM 16.40054 17.26179 

 

 

Figure 1. SSR between actual demand and regression model, with real demand and nominal demand. 
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model based on the algorithm. Therefore the presented 
regression model calculated the demands of each node. 

Step 4. Simultaneously with the measurements of the 
real 90 nodes, the nominal demands were calculated 
from the company’s’ documents and data.  

Step 5. Calculate SSR based on Apprximate-distance 
and Real demand and SSR based on Nominal demand 
and Real demand by Equation (2) and the result of step 3 
and step 4 are shown in Tables 5. 

The results in Table 5 show that the SSRs based on the 
distance  2 ,Td Y Y  and  2 ˆ,Td Y Y . Based on this Table, 
the last step found the preference for the company’s’ 
documents and Approximate-distance approach as fol- 
lows:  

   2 2 ˆ, ,T Td Y Y d Y Y  

 
5. Computational Results 
 
The demands derived from the Approximate-distance 
method, are similar to the results obtained from real de- 
mand. The results of approximate-distance fuzzy 
least-squares also substantiated the results of real envi- 
ronment, whereas the SSRs in the Approximate-distance 

method   2 ,Td Y Y  less than SSRs in the Nominal de-  

mand   2 ˆ,Td Y Y . Results suggest that the application  

of the fuzzy systematic evaluation in the estimation prob- 
lems can reduce the risk in decision-making processes. 

Comparison regression model and the real demand, 
with real demand and nominal demand, are shown in 
Figure 1. 
 
6. Conclusions 
 
The paper aimed at a critical analysis of estimation me- 
thod to address the demand management in transport 
routing system. For this purpose the methodology in- 
volved proposing a developed version of the interval- 
istance, fuzzy least square as a realistic approach in ad- 
dressing and solving the problem. Results indicated that 
the use of the fuzzy logic proved a much closer solution 
to the real-world situation than its comparative methods. 
Results further showed that the method which was ap- 
plied here yielded better solution to the problem than was 
possible from the data on demand obtained from the 
company documents. It was further observed that under 
certain cases where the three crucial components of in- 
puts, outputs and parameters are somewhat vague and 
stochastic, the fuzzy linear regression is a more powerful 
analytical tool and as such, would be more preferable 
than others. The conclusion being that it would be more 

viable to apply trapezium fuzzy numbers as an analytical 
framework for industrial case studies. 
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