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ABSTRACT Physical rehabilitation aims at improving the functional ability and quality of life of patients
affected by physical impairments or disabilities. Neurological diseases represent the largest cause of
disability worldwide. For many, there is no cure and physiotherapy allows symptoms to be managed.
Physiotherapy is based on the daily execution of exercises, traditionally under the supervision of a therapist.
However, performing these exercises requires that both the patient and the physiotherapist are together so
that the physiotherapist can assist the patient while exercising. For patients with a neurological condition,
rehabilitation is a long term process, lasting months or even years. Not withstanding the personal costs,
the cost of care/physiotherapy is high and represents e27,711 per year in Spain. This is compounded
by a shortage of qualified therapists, often cited as one reason why stroke survivors do not received the
recommended amount of therapy. The challenge is even greater in low to mid-income countries where there
is a lack of trained personnel as well as under-served and remote regions. Technology can be employed to
alleviate these problems by remotely monitoring a rehabilitation session taking place at home or anywhere
in the community. This paper presents a computer vision-based system for home-use that automatically
assesses how well the patient performs the exercises and transmits the information back to the clinic. The
patient and physiotherapist do not need to be co-located. Gamification methods and techniques are used to
engage patients when carrying out the rehabilitation routines. To this end, we propose a distributed gamified
system that automatically evaluates the performance of exercises by analyzing and comparing motion curves
using the DTW (Dynamic Time Warping) algorithm.

INDEX TERMS Assistive technologies, remote physical rehabilitation, gamification, dynamic time warping
(DTW).

I. INTRODUCTION
In Europe alone, the estimated cost of physiotherapy to
healthcare systems for the 179 million European citizens that
live with a neurological condition is e798 billion to sup-
port [1]. Many require physical rehabilitation on a daily basis.
In Spain, as a way of example, the average cost of treating a
single stroke patient is estimated ate27,711 a year [2]. Stroke
patients suffer from a number of problems, including physical
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problems such as weakness and paralysis of one or more
limbs, spasticity, instability, and changes in sensation. Weak-
ness and paralysis are managed through physiotherapy. The
incidence of stroke is increasing worldwide, particularly in
low- and middle-income countries [3]. There is no doubt an
unmet clinical need to be addressed [4].

Physical rehabilitation helps regain mobility and muscle
control, improves balance and ultimately enhances the quality
of life of patients. Rehabilitation requires that the patient per-
forms prescribed exercises repeatedly. For example, a stroke
patient will be assisted initially during face-to-face sessions in
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clinic guided by a physiotherapist and instructed to continue
exercising at home. Unfortunately, patients do not always
receive the recommended amount of therapy for a variety of
reasons, including costs, availability of therapists in remote
areas, or non-adherence to the prescribed therapy due to lack
of motivation [4].

Technological solutions that support home rehabilitation
go some way in addressing these problems, but there are
important challenges relating to acceptance and adoption that
are difficult to tackle. One problem is the patient’s reluctance
to use technology. The reasons for this are varied and include
digital literacy, the perception of the intrusiveness of video
systems and the inconvenience of wearable devices and so
on. Another major challenge is to demonstrate the benefits
of using such technologies to patients thereby improving
physiotherapy compliance. This paper describes the use of
gamification to improve compliance.

This article presents a system designed to support remote
physical rehabilitation (home rehabilitation), which is capa-
ble of automatically recognizing, comparing and evaluating
the exercises in real time during a rehabilitation sessions.
Exercise recognition is achieved by comparing the limb
motion with predefined reference exercises. This compari-
son uses a variant of the DTW (Dynamic Time Warping)
algorithm [5]. In computational terms, an exercise can be
described by the motion of body parts (e.g. arm) and joints
(e.g. elbow) that can be tracked; the term skeleton tracking
is used. As such, each exercise can be described by a time
series, allowing the limb/joint motion to be compared to
either a reference motion for the purpose of exercise recog-
nition or against the patient’s previous attempts to detect
progress (or lack of).

The system is low-cost and modular. The system will oper-
ate with any limb/joints tracking device. The interface is web-
based, the user interacts via a browser. The system is scalable;
it allows the integration of new movements and the definition
of new physiotherapy routines. The system allows remote
assignment, supervision, and monitoring by the physiother-
apist. Preliminary evaluation with rehabilitation routines are
conducted with multiple users (n = 27).

The system is designed around theMicrosoft Kinect device
which provides skeleton tracking without the use mark-
ers or other wearables. The Kinect output is joint trajectory
information. Although a camera-based system, such as the
Kinect may be considered to infringe on privacy, it does
provide much richer information than a less intrusive sys-
tem based on devices such as IMUs and unlike the lat-
ter there is no worn component/sensor and therefore easier
to use.

Motivation is a key issue in adherence to rehabilitation. The
system described in this paper addresses motivation through
gamification. It motivates the patient to participate and offers
visual feedback of to the patient on their performance. The
strategy employed for maintaining or increasingmotivation is
to provide the patient with a visual indication of performance
and progress through a graphical user interface. Progress

shown is a function of the DTW comparison algorithm out-
put. It is important to reward any attempt.

The rest of the paper is structured as follows. Section II
performs a review of the main research topics relevant to this
work. Section III discusses the proposed architecture, while
section IV details the main characteristics of the module
responsible for comparing exercises, as well as the technical
details of the automatic exercise recognition module. Sub-
sequently, in section V the system is evaluated in terms of
performance, usability and ease of use. Finally, section VI
summarizes the main contributions of this work and intro-
duces possible lines of future work.

II. RELATED WORK AND BACKGROUND
There are a number of tools addressing clinical or sports
rehabilitation. This work focuses on clinical needs. Typically,
the exercise performed by a patient is monitored and assessed
employing computational methods [6] using either physical
(worn) sensors for tracking the joints [7] or computer vision
techniques [8]. In the systems in the latter group often use
the Kinect device [9]. The Kinect is a low-cost camera-
based system; its effectiveness has been shown in the field
of physical rehabilitation [10], [11].

The Kinect device originally developed for entertainment,
has received much attention and is now the most widely used
in technology-supported rehabilitation [11] as alternative.
The Kinect, has been the subject of numerous research works
in the field of rehabilitation [9]. The reliability and validity
of measurements are key. [12] investigated the accuracy of
the Kinect joint tracking thereby producing a tool to check
suitability of the Kinect for any given health application.
Along the same lines, [10] demonstrated the validity of the
Kinect for posture evaluation by comparing it to a motion
tracking systems that use markers. Several examples of using
the Kinect in clinical settings have been reported. [13] moni-
tor patients with psychomotor problems, such as body scheme
disorders and left-right confusion. The system was evalu-
ated with a group of 15 users with promising results. [14]
investigated the feasibility of using a Kinect for unsuper-
vised rehabilitation by analyzing the hand movement of a
stroke patient while moving a virtual square inside a defined
area. Similarly [15] investigate the use of the Kinect for
rehabilitation in stroke patients but focusing on balance. The
system was evaluated with 13 users who demonstrated some
improvement following the sessions.

Recent years has seen a steady increase in the use of
and types of technologies employed in rehabilitation [16].
According to [17] technology can help stroke patients regain
some function during the recovery phase. Among the most
common devices aimed at injury recovery are orthoses,
exoskeletons, and other stationary equipment [18]. The sta-
tionary equipment require attendance at a clinic. This may
impose limits on the frequency of sessions and hence recov-
ery. Aside from the Kinect other low cost entertainment
devices have been re-purposed for rehabilitation. In [19] a
study using the NintendoWiiTMis conducted with 41 patients
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lasting 14 days to demonstrate the effectiveness of the device
as a rehabilitation tool. Similarly the PlayStation MoveTM,
is used in [20] for burn rehabilitation. In [21] the Leap
MotionTMdevice is used in conjunction with a video game to
obtain information of a patient’s hand movement to monitor
the performance of the exercises.

When monitoring the patient as they perform an exercises,
the goal is to determine how well they are performing with
respect to a reference which could be the patient on a pre-
vious day. The tracking of a limb in motion, in other words,
the joint position trajectory can be expressed as time series.
Comparison of time series can be performed automatically
without having to previously define a set of rules. [22] use
the DTW algorithm to compare the joint trajectory during
the execution of the exercises against the previously recorded
reference. [23] compare joint trajectory usingHiddenMarkov
Model (HMM) [24]. Both approaches are widely used to
compare movements over time, although DTW-based imple-
mentations in general provide better results than HMM-based
analogues [25] depending on the nature and quantity of the
data to be processed [26].

Another advantage of DTW is that identifying and classi-
fying movements can be achieved automatically without the
need for explicitly training the system as described in [27].
In this work, the exercise recognition is divided into into
three stages using the DTW algorithm, the patient’s initial
and final postures are compared, together with the angular
trajectories of the extremities involved in the exercise. In [28],
a variant of the DTW algorithm is presented for comparing
incomplete time series called Open-End DTW (OE-DTW).
The technique was successfully validated through the classi-
fication of exercises used during the rehabilitation of stroke
survivors, irrespective of whether the exercise was performed
correctly or incorrectly. [29] propose an exercise classifier
based on fuzzy logic to solve the classic problem of overlap-
ping body parts. This would be an example of fuzzy pattern
recognition [30]. Other authors combine the use of fuzzy
logic, to deal with the uncertainty and vagueness of the data
obtained by the tracking system, with the DTW algorithm to
make a comparison of the exercises performed by a patient
with respect to the reference exercise [31].

III. ARCHITECTURE
A. OVERVIEW
A scalable architecture is proposed, shown in Figure 1 to
remotelymonitor patients as they perform an exercise. Patient
movement is analyzed automatically and feedback is imme-
diate following completion of exercise. The exercises are
recognized automatically during their performance. Thus,
the patients can perform any prescribed exercises without
informing system. Finally, the results obtained are sent to the
therapist for the assessment of the patients.

The comparison mechanism is achieved by applying the
DTW algorithm to the exercise motion as performed by the
patient and a reference e.g. patient on a previous day or phys-

iotherapist. The solution includes different gamification tech-
niques to enhance patient engagement andmotivation thereby
improving adherence.

Regarding the classification of exercises performed by the
patient, the system is able to automatically recognize them.
In other words, there is no need for the patient to explicitly
select which exercise will be done next. On the contrary,
the system can classify the movement made by the patient
according to the most similar exercise existing in the data
base. This feature, which may help patients with cognitive
problems that affect speech to interact with the system in
a more natural way, is currently at experimental stage and
has to be explicitly enabled by the user through the system
settings. More details about it are provided to the reader
in section IV-B.

B. ARCHITECTURAL DESIGN
The system was designed and implemented for ease of scal-
ability and modularity. To this end, a multi-layer architecture
was proposed with three modules having well-defined func-
tionality to meet the key requirements of the system.

Given the requirement for remote monitoring, the archi-
tecture has to offer full network functionality. This network
architecture implements two distinct roles, one for patient
and another for clinician roles. The system interface is web-
based so that both patient and clinician interact with the
system via a web browser. The interface shows role-specific
actions determined by role, that is, patient or clinician. The
clinician’s interface allows i) the creation of recording of
exercises, ii) assigning (prescribing) exercises to a patient and
iii) monitoring their progress (viewing patient’s assessment).
The patients’ interface, allows viewing prescribed exercises,
ii) view own results, and iii) view their progress. The patient’s
view incorporates gamification element to enhance motiva-
tion.

The implementation consists of three independent but con-
nected modules. Information flow between modules is multi-
layered and bidirectional. The implementation is described
below.

• Capture module communicates with the capture device
to retrieve RGB images and skeleton (joint tracking)
information for further analysis. Themodule also detects
voice commands sending them to the processing mod-
ule.

• Processing module processes the information received
from the capture module. Its responsibilities include
storing the information in the defined exchange format,
automatically comparing exercises using the appropriate
algorithm, classifying the exercise and executing the
detected voice commands.

• Display module supports user interaction, provides
visual feedback on the patient’s performance using gam-
ification techniques.

To share information between the different modules, net-
work sockets are used as the inter-process communication
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FIGURE 1. A snapshot of the GUI with the main features provided by the system highlighted with boxes and textual
descriptions.

(IPC) mechanism. This has an advantage when scaling the
system horizontally, where each module can run on differ-
ent working nodes, in case of low performance equipment.
The data-flow diagram is shown in Figure 2, which shows
the complete flow of information that takes place in the
system.

In addition to network sockets, the display module also
makes use of WebSockets technology to communicate with
the web application and to transmit information to connected
clients. This application provides the graphical interface and
the common user entry point to the system.

The capture module implements motion capture retrieving
color images and skeleton and joint tracking information from
the Kinect. When the capture module identifies a human
skeleton, the position and rotation of each of its joints (3-D
pose estimation) is recovered. This information is serialized
and sent to the processing module, where it is stored in the
defined exchange format.

Both clinician and patient roles can interact and use the
motion capture functionality. The clinician captures an exer-
cise using the video recording function. This exercise is inter-
preted as as a reference to demonstrate to the patient or com-
pare to the patient’s exercises. The exercise is stored in
BioVision Hierarchy (BVH) format [32], which maintains
the 3-D transformation (position and rotation) of each joint
hierarchically over time, in order to overlay the captured
joints over the recorded video.

The hierarchy of joints to be stored depends directly on the
exercise recorded. Thus, for exercises involving, for example,
upper body movements, only those joints are stored. The
selection of joints can be established by the therapist prior
to recording the reference exercise.

Along with the BVH file, a new JSON file is also gen-
erated, for the sole purpose of storing the positions of each
joint following the same sequence defined in the BVH file
in order to be used as input to the exercise comparison algo-
rithm, which will provide users with feedback on the correct
execution of the exercises. This file serves the comparison
algorithm.

IV. REMOTE REHABILITATION
A. EXERCISE COMPARISON
A variant of the DTW algorithm [5], FastDTW version [33],
which offers a linear temporal order of complexity is
employed to automatically analyze and evaluate the exercises
performed by the patient.

The algorithm provides the optimal alignment of two time
sequences by calculating a cost matrix obtained from the
difference between two data point indices in the sequences.
The algorithm removes the time dimension thus providing
results independent of the time difference between the two
sequences. Thismakes it especially useful for comparing time
series, such as speech recognition and audio synchronization.

The exercise analysis process involves comparing the exer-
cise performed by the patient, noted as r , with the reference,
noted as m.
An exercise movement consists of a set of time stamped

points, one for each of the joints involved in the movement
(see Figure 3). Each set is a temporal sequence of 3-tuples
(x, y, z) ∈ R3, which indicate the position of the joint asso-
ciated with the series at a given instant obtained from the
depth sensor camera. The values on each axis represent the
position of the joint over time on that axis and can be viewed
as a trajectory or curve. In this way the problem of movement
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FIGURE 2. Data flow diagram between the different system modules (capture, processing and displaying).

FIGURE 3. Set of joints of the human body identified by the depth sensor
device Microsoft Kinect.

comparison can be seen as a time series comparison problem.
The DTW algorithm allows two time series to be compared
bymeasuring the similarity between two temporal sequences,
which may vary in speed i.e. irrespective of the time dif-
ference between the two sequences, namely, dist numerical
results after the comparison of both series such that dist ∈
Q≥0.

Figure 4 shows two curves generated along the Y-axis for
the right elbow joint (point 10) during an exercise in which
the right arm is raised. The dashed curve corresponds to the
movement performed by the therapist (reference exercise),
while the continuous curve corresponds to that of the patient
(exercise to be compared). The alignment of both curves
obtained after the application of the DTW algorithm (dist =
5.2) is represented by the segments joining the curves. This
value indicates the distance between the two curves, so the
closer this value is to 0, the greater the similarity between the
two exercises, and the less significant differences will exist
between the two curves. This dist value is calculated by the
algorithm using as a metric the Euclidean distance between
the curves.

The comparison, at exercise level, is made by comparing
the curves in the X, Y and Z axes of the movements made

FIGURE 4. Alignment provided by the DTW algorithm (dist = 5.2) when
comparing the curves generated along the Y-axis by the right elbow joint
for a movement performed by the therapist and another by the patient.

by the patient r and the therapist movement m in each of
the points of the joint scheme (points 1 to 20) involved in
the movement, applying the DTW algorithm to each joint
independently. For each series, that is, for each movement of
a joint i in the exercise we obtain a distance that considers the
distances in the axes X, Y and Z of that joint; this distance is
noted as dDTWi .
Finally, the overall distance between the exercise per-

formed by the patient r and the reference movement of the
therapist m is calculated as the arithmetic mean of the dis-
tances obtained in each of the joints involved in the exercise

D(r,m) =

j∑
i=1

dDTWi

j

being j the total number of joints.
The algorithm does not establish an upper limit to define

a confidence interval for interpreting the results obtained.
To overcome this limitation, a calibration phase is integrated
to normalize the results. In this phase, the therapist has to
perform a calibration exercise correctly, and then perform it
incorrectly (e.g. by remaining still). In this way, a lower limit
close to 0 is obtained after performing the exercise correctly,
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and a higher one after performing it incorrectly. Once this
threshold is defined, it is divided into equal intervals and
each of them is associated with the corresponding feedback
that would be provided to the patient. Thus, if the distances
obtained by applying the DTW algorithm to the calibration
exercise are dr , exercise performed correctly, and dw, exercise
performed incorrectly, the confidence intervals would be cal-
culated by obtaining a margin of error, e, that serves to relax
the interpretation of the results obtained by the patient when
performing the exercises. From this margin of error, the lower
and upper limits of the intervals would then be calculated
from the addition between the correct and incorrect distances
divided by the number of intervals we want to define (which
in the case of this work is 3), as shown in equation (1).

dsum = dw + dr

de =
dsum
3

[0, de] ∪ (de, dsum − de) ∪ [dsum − de,∞) (1)

Thus, the first interval would indicate a correct execution of
the exercise, the second interval would indicate an acceptable
execution and the third interval would indicate an incorrect
execution. In this way, the feedback provided to patients in
those intervals is discretized, depending on how they perform
the exercises. This way of defining the intervals is flexible
enough to prevent the scores obtained by the DTW algorithm
from being misinterpreted as closer to the interval limits.
Once the calibration is complete, the intervals obtained are
sent to the patient, so she/he can proceed to perform the
assigned exercises, from which the system will provide an
appropriate evaluation based on performance.

In addition, the joint positions must be normalized to avoid
possible computational errors caused by a change of location
of the patient or therapist with respect to the camera. To do
this, these positions are recalculated with respect to one of the
joints of the individual that does not affect the movement of
the exercise, by default, the joint at the base of the neck. This
allows both calibration and reference exercises to be recorded
remotely by the therapist for the patient to repeat, making it
possible to compare the two results.

B. EXERCISE RECOGNITION
Currently, in the proposed system, the patient must select the
exercise to perform, by voice commands or the user interface.
Voice or touch interface may not be suitable for patients with
more severe physical or cognitive disability. A mechanisms
that eliminated the need for the patient to select and exercise
is required.

The standard DTW algorithm operates on finite time series
in other words on a completed exercise. The Open-End DTW
(OE-DTW) by Tormene et al. [28], a variant of DTW allows
comparison on incomplete time series. It provides the per-
centage of coincidence between two curves at every time
instant of the series. This feature can be used to allow the
comparison to begin as soon as movement is detected and
continues so that it is not necessary to manually select an

exercise. In addition, the OE-DTW algorithm can be used to
identify the exercise attempted by the patient by comparing
the incoming tie series it to all predefined reference. As the
exercise progresses, more data will be collected to establish
a more informed comparison.

In normal operation, the patient would initiate the move-
ment of the exercise he/she wishes to perform and the sys-
tem would detect the exercise being performed. To do this,
the system periodically compares the positions of the joints
with those stored for existing reference exercises. When an
optimal candidate is found, the exercise corresponding to
that candidate is marked as definitive and on completing
the exercise, the patient is informed of their performance.
An optimal candidate is considered to be the reference exer-
cise that minimizes the distance between the joint trajectory
of patient and reference as indicated by OE-DTW algorithm.

Formally, suppose the system has stored n rehabilita-
tion routines which have been performed by the therapist:
M = {m1,m2, . . . ,mn}. And that the patient performs an
exercise r . The problem is to find the model mi such that
min
i
{D(r,mk )}.

An exercise can be seen as a set of series Si, that is,

r = {Si | i ∈ {1, . . . , 20}}

where each Si is the series containing the joint trajectory i
involved in the exercise identified by the capture device (see
Figure 3). The series Si consists of

Si = {etj | j ∈ {1, . . . ,m}}

being etj each of the positions of the joint i over time, i.e.

etj = (xtj , ytj , ztj ) | xtj , ytj , ztj ∈ R

where xtj , ytj and ztj represent the position of the joint in the
X, Y and Z axes at the instant tj, respectively.
Thus, the problem is to compare the partial joint trajectory

of the incomplete exercise performed by the patient r with
those of reference (M ) up to the instant tj. The resulting OE-
DTW distance value between exercise r and a modelmi in an
instant tj is calculated as

Dtj (r,mi) =

q∑
i=1

dtjDTWi

q

where dtjDTWi calculates the distance between r and m in joint
i for the exercise accounting for the distances in axes X, Y
and Z at time instant tj.
At each time instant tj the system selects as a model for

the movement executed by the patient, the model mk that
minimizes the distance Dtj (r,mk ), that is:

min
ktj
{Dtj (r,mk )}

As an example, if we consider a use case in which the
patient has to perform repetitions of up to three different
exercises (e.g. greeting with the right arm, raising the right
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arm and advancing the right arm forward), the implementa-
tion would have to find the best candidate while the patient
performs the exercise over time. Therefore, when the user
begins to perform a repetition for the exercise in which she/he
has to wave the right arm, a comparison process is launched
using the OE-DTW algorithm to try to classify the movement
from the positions (x, y, z) of each of the joints, detected
until that time instant. Several comparisons are then made in
parallel with each of the reference exercises defined above.
The minimum distance obtained after applying the algorithm
to the three reference exercises will be the one that indicates
the exercise that has been recognized.

C. MOTIVATION AND GAMIFICATION
Patient motivation is essential for a positive outcome in reha-
bilitation in general and more so in remote rehabilitation.
Gamification has been shown to play an important role on
positive psychological effects of engagement in rehabilita-
tion [34]. In this context, elements of gamification and seri-
ous games can contribute to engage the patient, especially
when performing repetitive exercises during a long period of
time [35].

The system does not require the patients to attend the
rehabilitation center physically, so it must be capable of
motivating patient to ensure compliance to prescribed phys-
iotherapy. For this, the system provides different gamification
mechanisms to maintain the patient’s motivation as shown
in Figure 1:

• Feedback based on stars: the results of assessing the
patient performance is the DTW distance. The star feed-
back system translates this number into a meaningful
and understandable format for the patient. The number
of stars the patient receives (i.e. minimum 1 and max-
imum 3) is determined by the DTW distance obtained
from applying the algorithm when comparing the exer-
cise performed by the patient with the reference. Thus,
the number of stars is related to the three intervals
defined during the calibration process. Patients are moti-
vated by the systems in order to obtain the maximum
number of stars per exercise.

• Scores, high scores and multipliers: the scores are
directly related to the number of stars obtained per rep-
etition. The equation for the score is

score =
sbase
dDTW

× m

where sbase is a constant base score value assigned to
each interval resulting from calibration (i.e. 100, 200 and
500), dDTW is the DTW distance scaled to an interval
[0.1, 1.1] and m is a multiplier that initially takes the
value of 1 and increases to a maximum of 4 for each suc-
cessful repetition, i.e. when the distance obtained falls
over the second or third calibration interval. Although
the score is a numerical representation of the obtained
number of stars, registering high scores can motivate

patients to make an extra effort when performing the
same rehabilitation exercises day after day.

• Experience bar and level: to provide a sense of pro-
gression to the patient, the system incorporates a sys-
tem of levels that the patient can reach by filling in an
experience bar. This gamification technique is oriented
to maintain the patient’s engagement over long period
of time. This bar is filled at the end of a rehabilitation
session with the sum of the scores obtained during the
routine according to the formula

xi = xbase × tk

where xi is the total amount of experience required to
reach the i level, xbase is a constant amount of experience
(xbase = 1000), t is the target level to reach and k is a
constant (k = 1.5) used to exponentially increase the
difficulty needed to reach the next levels. The variable
xbase is only used to reach level 2; in subsequent lev-
els this variable is adjusted automatically based on the
total score obtained by the patient during their rehabil-
itation session in order to adapt the difficulty to their
needs.

The levels represent the main objective that the patient
must achieve, as their attainment implies that rehabilitation
routines are being performed. In the same way, the physio-
therapist can define achievements or rewards that the patient
will unlock when reaching certain levels. These achievements
are a useful indicator for the patient regarding progress in
rehabilitation.

V. EXPERIMENTAL RESULTS
A. ALGORITHM PERFORMANCE
The comparison of the exercises performed by the patient
with the reference exercises is implemented with the DTW
algorithm applied to (x, y, z) of the joint trajectories. Compu-
tation begins on completion of the first repetition of exercise
followed by feedback to patient. This process is repeated for
each repetition.

The duration of the computation should be as short as
possible to provide a satisfactory user experience for the
patient, and there should no interruptions between repetitions.
The system was evaluated with a series of tests based on
7 upper trunk exercises with up to 3 repetitions. The selection
of exercises for the evaluation was based on the approximate
duration of the exercise and the joint trajectories during the
exercise.

Table 1 shows the results of the repetitions at the exercise
level. The data collected were duration of the movement and
the execution times of the DTW algorithm for each repetition.

The algorithm execution times vary between a minimum
of 817ms and a maximum of 5002ms for the proposed
exercises. The relationship between execution time, dura-
tion of exercise and number of joints involved was inves-
tigated. The correlation coefficient between the duration of
the performed exercise and these execution times was to be
r = 0.9595, indicating a strong positive correlation between
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TABLE 1. Exercises data table with the results obtained after running the DTW algorithm for comparing the patient’s repetitions with the therapist’s ones
(i.e. gold standard). Numbers in parentheses denote standard deviations.

FIGURE 5. Two charts correlating the running times for the DTW algorithm with the number of involved joints (left) and
the mean performance duration (right) of the exercise.

these variables. This is explained by the number of samples
accumulated during that time (i.e. positions of each joint over
time). It was found that the execution time of the algorithm
is not impacted to the same extend by the number of joints
involved in the movement studying this correlation (r =
0.4569). Figure 5 shows a graphical representation for both
cases.

These results demonstrate that the system can successfully
compare exercises that include an arbitrary number of joints
in their movements without compromising on computation
speed. In addition, the algorithm execution times are accept-
able given a real scenario where the patient would take breaks
between repetitions.

The exercise recognition function was evaluated in two
tests. In the first test, the exercise to detect and recognize was
waving with the right arm in a set comprising 7 exercises and
in a second test, the set comprising 3 exercises. In these tests,
the running time of the OE-DTW algorithm was collected,
as well as the results of the comparison at successive time
intervals.

For the test to be successful, the exercise had to be rec-
ognized in less than 10 seconds, or in other words, in less
time than the duration in which the reference exercise was
recorded.

The charts in Figure 6 show the results obtained. In the
first test with 7 reference exercises (left), the distance values
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FIGURE 6. Two charts showing the obtained OE-DTW distances when classifying an exercise among seven (left) and
three (right) reference exercises. Code colors are used to distinguish exercises.

are quite close and the exercises are clearly distinguish-
able at beyond 6 second at which point the exercise is cor-
rectly recognized, that is, the difference between the dis-
tances obtained by the OE-DTW algorithm are significantly
lower than those obtained after comparing with the other
reference exercises. In the chart corresponding to the 3 ref-
erence exercises (right), this difference can be seen more
clearly. The execution times of the algorithm (lower horizon-
tal axis) increase as the duration of the movement increases,
as demonstrated in the previous comparison tests. An addi-
tional correlation between the algorithm execution time and
the number of existing reference exercises can also be seen in
this case. This is due to the fact that the number of compar-
isons that the algorithm performs grows linearly according
to the number of exercises assigned to the patient’s exercise
routine.

All the tests in this section were performed on a worksta-
tion equipped with an Intel Core i7-7700 and 16 GB of RAM
running a 64-bit version of Windows 10. The system makes
use of the OE-DTW algorithm available in the software
package statistical, available for the programming language
R [28].

B. PRELIMINARY CLINICAL EVALUATION
The system has been evaluated in terms of its usefulness and
ease of use by a number of participants (n = 27) selected tak-
ing into account their own experience of attending rehabilita-
tion sessions following recent of historical physical injuries.
Participants consisted of 16 men and 11 women, ranging in
age from 22 to 51. The main reasons for attending physical
rehabilitation sessions include ankle sprain, wrist injuries,
low back pain, epicondylitis, cervical pain and fiber rupture,
among others. This evaluation was conducted to examine the
potential benefits that the system can provide to patients that
require physical rehabilitation and can carry out the exercises
at home.

Participants performed a two-exercise routine. The first of
them had to be repeated 3 times and consisted of waving
with the right arm, lifting it above the head. The second
had to be repeated twice and consisted of moving the right
arm back and forth. These exercises were simple enough for
the participants to understand their execution without any
problem, thus trying to focus their attention on the system
itself rather than on the execution of the exercises. After that,
they filled in a questionnaire with questions based on the
TAM framework [36] to measure the perceived usefulness
and the perceived ease-of-use of the system. These questions
were scored on a Likert scale ranging from 1 (totally disagree)
to 5 (totally agree).

The results obtained following analysis of the question-
naires are shown in the Table 2. The mean values for the
statements are higher than 4 points in most cases, indi-
cating a positive view of the system by users. Only the
PEOU4 statement has the lowest score (3.13), with the
highest standard deviation (1.13). Even so, we can con-
clude that these results are satisfactory, since the system
is not intended to replace face-to-face rehabilitation ses-
sions with the therapist, but to complement them in order
to democratize access to physical rehabilitation for people
who cannot attend face-to-face sessions in the rehabilitation
center.

The participants also left some open comments, indicating
what they liked and disliked about the system. In the first case,
the positive comments referred to how motivating it was to
perform the rehabilitation routine thanks to the gamification
mechanisms, specifically, the scores and multipliers; to the
ease of understanding and replicating the exercises thanks to
the demonstrative videos; and to the visualization of the joints
on the video while the exercise is being performed. Regarding
the negative comments, the participants indicated that would
also wish to exercise the lower part of the human body; for
certain users, the tracking of the skeleton made by the capture
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TABLE 2. Statistical values relating the ‘‘Perceived usefulness’’ and ‘‘Perceived ease-of-use’’ dimensions to the scores provided by the participants using
the system (1: totally disagree, 5: totally agree). Numbers in parentheses denote standard deviations.

device produced incorrect positions for certain joints, mainly
those of the wrists.

VI. CONCLUSIONS AND FUTURE WORK
This paper presents a distributed gamified system to support
home-base rehabilitation, by remotely monitoring rehabil-
itation workouts as prescribed by a physiotherapist. Moti-
vational aspects have been given special consideration to
engage patients when making exercises and scalability
designed-in to extend the system functional capabilities as
required.

The system automatically compares and evaluates the exer-
cises performed by the patients to provide them with appro-
priate feedback. In addition, the system can recognize the
exercise performed by the patient, so as it is not necessary to
select the exercise to be performed at start. The gamification
system offers a motivating function that promotes compli-
ance and improves adherence to ensure a positive outcome.
In addition, the functionality of the system can be extended.
The modularity allows modules to be exchanged to improve
certain characteristics, such as, for example, the algorithm
used to analyze exercises or the module responsible for rec-
ognizing the human skeletons of the users, among others.
Moreover, the success of the evaluation testing conducting
demonstrate the potential of this type of systems in health-
care, in order to facilitate the rehabilitation of patients and to
monitor their recovery.

The system continues to be evaluated with more partic-
ipants, specifically with stroke patients from the General
Hospital Nuestra Señora del Prado1 (Talavera de la Reina,
Spain). The goal is to evaluate not only from a technological
perspective identifying possible technological and functional
improvements but from a clinical perspective in a clinical
study to determine usefulness for both patients requiring
physical rehabilitation and clinicians in the mid-term. This is
essential within this context of patients affected by neurolog-

1https://sanidad.castillalamancha.es/ciudadanos/centros/hospital-nuestra-
senora-del-prado

ical diseases, which represent the largest cause of disability
worldwide.

As future work, the exercise comparison mechanism is
intended to be evolved into a learning-based solution that
automatically weigh the joint positions based on how much
they are involved during the exercise performance, so that
evenmore accurate and faster results can be obtained. In addi-
tion, pattern recognition techniques are intended to be used in
order to infer personalized rehabilitation routines depending
on each patient’s needs and their ability to adjust to rehabili-
tation treatments.
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