This is a post-peer-review, pre-copyedit version of an article published in Probiotics and Antimicrobial Proteins. The final authenticated version is available online at: https://doi.org/10.1007/s12602-020-09662-7

1	The effectiveness of potential probiotics Lactobacillus rhamnosus Vahe and
2	Lactobacillus delbrueckii IAHAHI in irradiated rats depends on the nutritional stage of the
3	host
4	Astghik Z. Pepoyan ^{1,2} *• Anahit M. Manvelyan ¹ • Marine H. Balayan ¹ • Gavin McCabe ³ • Vardan
5	V. Tsaturyan ^{2,4} • Vyacheslav G. Melnikov ⁵ • Michael L. Chikindas ^{6,7} • Richard Weeks ⁶ •
6	Andrey V. Karlyshev ³
7 8	¹ Department of Food Safety and Biotechnology, Armenian National Agrarian University, Teryan
9	74, Yerevan 0009, Armenia
10	² International Association for Human and Animals Health Improvement, Azatutyan 11, Yerevan
11	0037, Armenia
12	³ Department of Biomolecular Sciences, School of Life Sciences, Pharmacy and Chemistry,
13	Kingston University, Penrhyn Road, Kingston upon Thames, KT1 2EE, United Kingdom
14	⁴ Yerevan State Medical University, Yerevan 0009, Armenia
15	⁵ Gabrichevsky Moscow Scientific Research Institute of Epidemiology and Microbiology,
16	125212, Moscow, Russia
17	⁶ Health Promoting Naturals Laboratory, Rutgers State University, New Brunswick, NJ, USA
18	⁷ Don State Technical University, Rostov-on-Don, Russia
19	*Corresponding author: apepoyan@gmail.com; +37491 432493; ORCID ID: 0000-0002-1935-
20	5341
21	
22	Running head title: The effectiveness of probiotics depends on the nutritional stage

23 Abstract

Several species of eukaryotic organisms living in the high mountain areas of Armenia with 24 naturally-occurring levels of radiation have high adaptive responses to radiation. We speculate 25 on the role of the gastrointestinal microbiota in this protection against radiation. Therefore, 26 seventeen microorganisms with high antagonistic activities against several multi-drug resistant 27 28 pathogens were isolated from the human and animal gut microbiota, as well as from traditional Armenian fermented products. These strains were tested *in vivo* on Wistar rats to determine their 29 ability to protect the eukaryotic host against radiation damages. The efficiency of the probiotics' 30 31 application and the dependence on pre- and post-radiation nutrition of rats were described. The effects of Lactobacillus rhamnosus Vahe, isolated from a healthy breastfed infant, and 32 33 Lactobacillus delbrueckii IAHAHI, isolated from the fermented dairy product matsuni, on the 34 survival of irradiated rats, and their blood leucocyte and glucose levels, were considered to be the most promising, based on this study's results. 35

36

Key words: X-ray irradiation; probiotic; blood glucose level; radiation damages; vitamins; preand post-radiation effects.

39 Introduction

40 There is an emerging interest in the effects of natural radiation (NR) (radioactivity in the rocks and soil of the earth's crust, cosmic radiation, etc.) on the health of humans and other animals [1-41 4]. The potential risk of radiation accidents is also increasing, especially in developing or 42 politically unstable countries or those with aging nuclear infrastructure. At the same time, 43 44 exposures to doses of radiation of 1-10 Gy, defined as moderate-dose radiation, may occur during the course of radiation therapy or as the result of radiation accidents or 45 nuclear/radiological terrorism alone or in conjunction with bioterrorism. The resulting radiation 46 injuries would be due to a series of molecular, cellular, tissue, and organism-level processes [5]. 47 48 Radiation damage to bone marrow results in the loss of hematopoietic cells, followed by leukopenia and thrombocytopenia. Peripheral white blood cells (WBC) are known to be very 49 radiosensitive; they readily undergo apoptosis, with some cells being affected 24 h after 50 51 irradiation [6], while radiation damage to small bowel tissue can cause acute or chronic radiation enteritis with bloating, nausea, fecal urgency, diarrhea, and rectal bleeding [7]. A dose-52 dependent decrease in WBC counts in experimental animals, especially in mice exposed to high-53 and low-dose-rate proton and γ radiation was reported [8, 9]. Probiotics are defined as live 54 microorganisms which, when administered in adequate amounts, confer a health benefit on the 55 56 host [10]. Several clinical trials and experimental studies suggest that probiotics may be used as 57 biotherapeutic agents for the prevention and treatment of gastrointestinal diseases [11-14]. Associations between the characteristics of host blood and gut bacteria for humans [15, 16, 17], 58 59 as well as for animals [18, 19], were also reported. Previously, the effects of potential probiotics L. rhamnosus Vahe, L. delbrueckii IAHAHI, and L. plantarum ZPZ in male Wistar rats' small 60 intestine were studied using a neutral comet assay after seven days of feeding with probiotic 61 strains [20]. Other studies have reported that probiotics may be effective in the morphological 62

shortening of small intestinal mucosa damaged by radiation less than or equal to 15 Gy [21]. 63 Cell-free supernatants (CFS) of probiotics might contain vitamins, potential GI radioprotectors 64 65 [22], lactic acid, hydrogen peroxide, diacetyl, reuterin, and bacteriocins [23-25] providing immunomodulatory effects [26]. It is possible that the pre- and post-treatment effects of specific 66 CFS compounds, including vitamins [27] as well as vitamin-producing probiotics, on animals' 67 68 survival might be different. This investigation was aimed at the evaluation of seventeen putative probiotic strains, having 69 70 antagonistic potential against several human and animal pathogens, on their ability to protect 71 against 4.5 - 20 Gy radiation damages. The pre- and post-treatment effects of these strains on the survival of whole-body X-ray irradiated rats and rats' blood characteristics, such as WBC and 72 blood glucose levels (BGL), were evaluated in vivo. 73

74

75 Materials and Methods

76 Bacterial strains

Seventeen putative probiotic lactobacilli (please see the supplementary material), including L. 77 rhamnosus Vahe and L. plantarum ZPZ from breastfeeding infants, L. delbrueckii IAHAHI from 78 79 matsuni, L. acidophilus DDS®-1 (Lacto-G, a marketed symbiotic formulation) [20] and probiotic Narine (L. acidophilus INMIA 9602 Er-2 strain 317/402) [13, 14, 28] were obtained 80 81 from the culture collections of the International Association for Human and Animals Health Improvement and the Armenian National Agrarian University. Bacterial strains were cultured in 82 de Man, Rogosa, and Sharpe (MRS) broth and on MRS agar (ThermoFisher Scientific, Waltham, 83 MA, USA). When required, Oxoid[™] Endo Agar (ThermoFisher Scientific), and a VITEK® 2 84 compact ID/AST instrument (bioMérieux, Craponne, France) and conventional PCR were used 85 to identify lactobacilli, including L. casei, L. paracasei, and L. rhamnosus [29], L. plantarum 86

[30, 31], *L. delbrueckii* subsp. *bulgaricus* [32], *L. crispatus*, *L. fermentum* [33] and *L. helveticus*[34] were used to identify the bacterial cells.

89

90 Whole-genome sequencing

Lactobacilli were cultivated in MRS broth at 37°C for 24 h. Genomic DNA was extracted using
a diaGene kit (diaGene, Diaem, Moscow, Russia).

93 In order to generate draft genome sequences, the DNA was first subjected to partial enzymatic 94 hydrolysis using a NEBNext Fast DNA Fragmentation and Library Preparation Kit for Ion 95 Torrent (New England Biolabs, Ipswich, MA, USA). The randomly generated genomic DNA fragments were ligated to P2 and A1 adapters, followed by isolation of 490 bp fragments using 96 97 E-gel and PCR amplification. The generated sequencing library was then analyzed using a High Sensitivity DNA kit with BioAnalyser 2100 (Agilent, Santa Clara, CA, USA) for precise 98 99 estimation of DNA sizes and concentrations. A ssequencing template was prepared using the 100 IonTorrent One Touch system (ThermoFisher Scientific) and Ion PGM Hi-Q[™] View OT2 Kit (ThermoFisher Scientific), followed by enrichment for positive Ion Sphere Particles using One 101 Touch ES enrichment system (ThermoFisher Scientific). The sequencing reaction was conducted 102 on the IonTorrent PGM with 316v2 chip using Ion PGM Hi-QTM View Sequencing Kit with 850 103 sequencing flows, as recommended by the manufacturer for achieving the maximum read 104 105 lengths.

106

107 Genome annotation and bioinformatics analysis

108 Bacterial identification was performed via the analysis of 16S rRNA sequences, which were

109 generated via read mapping onto relevant reference 16S rRNA sequences followed by extraction

110 of consensus sequences using CLC Genomics Workbench software, ver. 7.5. The derived

sequences were run via NCBI BlastN server and the bacterial 16S rRNA sequence database. A 111 112 16S rRNA-based bacterial identification server EZBiocloud was also used [35]. The genome 113 assembly was conducted using three programs: MIRA, SPAdes (as IonTorrent Server plugins), and the CLC de novo assembly program. The results were compared using the following 114 parameters: total number of contigs, total genome sizes, and N50 values. The best assemblies 115 116 (generated by SPAdes, ver. 5.0.0.0) were used for deposition into the GenBank and further analysis. The Whole Genome Shotgun projects have been deposited at DDBJ/EMBL/GenBank 117 under the accession numbers VRTP00000000 (L. delbrueckii IAHAHI), VRTQ00000000 118 119 (L. rhamnosus Vahe), and VRTR00000000 (L. plantarum ZPZ). The versions described in this paper are VRTP01000000 (L. delbrueckii IAHAHI), VRTQ01000000 (L. rhamnosus Vahe), and 120 121 VRTR01000000 (L. plantarum ZPZ). The draft genome sequences were annotated using the NCBI GenBank annotation pipeline [36] and RAST (Rapid Annotation using Subsystem 122 123 Technology) tools [37].

124

125 **Experimental rats**

126 Four hundred healthy adult male Wistar rats in the weight range of 250-300 g were randomly

127 placed into the following groups for the investigation of *L. rhamnosus* Vahe and *L. delbrueckii*

128 IAHAHI supplementation, which are the most promising strains among studied lactobacilli for

129 protection against 4.5 - 20 Gy radiation damages:

130 1. Controls non-irradiated: control (n=8), control-placebo (n=8), control probiotic Vahe (n=8),

131 control probiotic IAHAHI (n=8).

132 2. Controls irradiated with doses: 4.5 Gy (n=8), 5.5 Gy (n=8), 12.5 Gy (n=8) and 20 Gy (n=8)
133 probiotic Vahe.

- 3. Irradiated with 5.5 Gy probiotic groups (n=272) (rats were fed with probiotics before and after
 the irradiation), sixteen rats were used for each probiotic.
- 4. Irradiated with 5.5 Gy CFS groups (rats were fed with CFS from probiotic Vahe either before,
- 137 after, or throughout the irradiation) (n=24).
- 5. Irradiated with 12.5 Gy (n=8) and 20 Gy (n=8) CFS groups (rats were fed with CFS from
 probiotic Vahe prior to irradiation).
- 140 6. Irradiated with 5.5 Gy (n=8), 12.5 Gy (n=8), and 20 Gy (n=8) probiotic IAHAHI groups (rats
- 141 were fed with probiotic IAHAHI for 7 days after the appropriate dose of irradiation (Figure 1).
- 142 During the next cycle of investigations performed for the statistical analysis, there were no
- 143 "placebo" rats because of the absence of valid differences between the research data for control144 and placebo areas areas
- 144 and placebo group rats.
- 145 The rats were housed in standard wire cages with a constant temperature of 20±2 °C, and with a
- 146 cycle of 12 h of light and 12 h of darkness. Rats were fed with standard rations of chow and
- 147 sterilized water by oral gavage. Control placebo rats received 2 mL of physiological solution
- only, while control probiotic rats were fed with standard chow and received 2 mL of overnight
- bacterial cultures in physiological solution (temperature: 20-22 °C), containing 1.0×10^8 colony-
- 150 forming units (CFU) of the probiotic, and rats from the irradiated-probiotic group were given an
- appropriate feeding cannula for seven days prior to receiving a 4.5-20 Gy irradiation. CFS was
- 152 prepared from 2 mL of overnight bacterial culture by centrifugation (8,000 X g for 5-7 min).
- 153 Following treatment and irradiation, rats were anesthetized with an intraperitoneal injection of
- 154 100 mg/kg of ketamine hydrochloride and sacrificed.
- 155

156 Irradiation

157	Whole-body X-ray irradiation was performed using a RUM-17 therapeutic X-ray machine
158	(Mosrentgen, Moscow, Russia); (technical specifications- dose levels: 4.5 Gy, 5.5 Gy, 12,5 Gy,
159	and 20 Gy, dose rate: 1.43 Gy/min, height of a X-ray tube over an object: 50 cm, current: 15 mA,
160	180 kV and exposition time: 3.1 min, 3.85 min, 8.74 min, and 13.99 min accordingly).
161	
162	BGLs
163	BGLs were measured according to the standard God-Pod colorimetric method using Stat Fax
164	3300 (Awareness Technologies, Westport, CT, USA). For the estimation of total WBCs after the
165	seventh day of irradiation, a hemocytometer (BLAUBRAND® Neubauer improved, Sigma-
166	Aldrich, St. Louis, MO, USA) was used as described previously [13].
167	
168	Statistical analysis
169	Statistical processing of data was performed using the Mann-Whitney's and Student's t-test (QI
170	Macros SPC Software for MS Excel, Southfield, MI, USA). A probability of $P < 0.05$ was
171	considered as statistically significant.
172	
173	Results
174	According to our study, seventeen putative probiotics have shown different impacts on irradiated
175	rats; furthermore, probiotic administration had different effects (positive, neutral, or negative)
176	before (Groups 3.1-3.17) and after (Groups 3.2-3.27) the rats' irradiation. Data on the effects of
177	the putative probiotic L. rhamnosus Vahe and L. delbrueckii IAHAHI as potential radio-
178	protective agents are presented below. There were no statistically significant differences between
179	the viability of the control and placebo group rats. Also, there were no statistically significant
180	differences between the 12.5 Gy (Group 2.3) and 20 Gy (Group 2.4) whole-body single-dose X-

182 between the 12.5/20 Gy and 5.5 Gy X-ray irradiated animals (Group 2.2) (87.5±4.38 vs. 100±5,

183 P < 0.05) (Figure 2). The percentages of live rats were significantly different on the third day of

184 irradiation: 75±3.8 (5.5 Gy), 62.5±3.13 (12.5 Gy) and 37.5±1.9 (20 Gy) (Figure 2).

185

186 Radio-preventive effects of potential probiotic *L. rhamnosus* Vahe on irradiated rats: dose 187 mortality relationship *in vivo*

188 The effects of strain *L. rhamnosus* Vahe on the viability of rats irradiated with 5.5 Gy X-ray are 189 presented in Figure 3. All animals were alive the first day after the irradiation. The "probiotic-fed irradiated rats" (Groups 3.1-3.17; Figure 1) and "CFS-fed irradiated rats" groups (Group 4.1) 190 191 receiving an appropriate feeding cannula for seven days prior to receiving 5.5 Gy irradiation showed similar viability during the seven days after the irradiation. The effects of the irradiation 192 193 dose on rats' survival were detectable after the first day of irradiation and increased significantly 194 over the subsequent five to six days. There was a 1.5-fold increase in viability in the presence of 195 L. rhamnosus Vahe or its CFS compared with the irradiated control group of rats (Figure 3). The group of rats that received CFS both before and after the irradiation (Group 4.3) showed high 196 197 viability on the third and fourth days in comparison with the other groups (Figure 3). However, half of these rats stayed alive after the sixth day of irradiation in comparison with 37.5 % live 198 199 rats in the irradiated group with 5.5 Gy (Figure 3). 200 The effect of *L. rhamnosus* Vahe on the viability of rats irradiated with 12.5 Gy (Group 5.1)

and 20 Gy X-ray (Group 5.2) is presented in Figure 4. There was no statistically significant

- 202 difference in viabilities one day after irradiation between the control groups of rats (Groups 2.3
- and 2.4) and those which received CFS before irradiation (Groups 2.3 vs. 5.1 and Groups 2.4 vs.
- 5.2) (Figure 4). Half of the 20 Gy X-ray irradiated rats died after 2.5 days, and after the fifth day,

205 there were no live rats in this group (Group 2.4) (Figure 4). Except for the 20 Gy X-ray irradiated rats, the viabilities of other research groups were similar; half of the animals from each of these 206 groups died on the fourth day of irradiation. The number of mortalities was different in the 207 groups of irradiated rats after the fourth day of irradiation. The number of live rats on the sixth 208 day after irradiation was significantly lower in the 12.5 Gy irradiated group than that in the 12.5 209 210 Gy CFS group (12.5±0.62 vs. 50±2.5, P<0.05). Approximately 16.7 % of the 20 Gy irradiated CFS-fed rats (Group 5.2) were alive after the fifth day of irradiation (Figure 4). 211 Thus, compared with the control irradiated rats, the viabilities of the rats in the CFS-fed rats 212 213 groups was increased: 66.7±1.3 vs. 37, P<0.05 (5.5 Gy) (Figure 3), 50±2.5 vs 12.5±0.62, P<0.05 (12.5 Gy) and $16.7 \pm 0.67 \text{ vs } 0$, P<0.05 (20 Gy) after the sixth day of irradiation (Figure 4). 214 215 Radio-preventive effects of *L. rhamnosus* Vahe on irradiated rats: WBC counts and BGLs. 216 In vivo observations revealed a significant decrease in total WBC after the seventh day of 217 irradiation with 4.5 Gy in comparison with the untreated control and placebo group rats 218 219 $((0.80\pm0.07) \times 10^9 \text{ CFU}/\text{L vs.} (7.12\pm0.39) \times 10^9 \text{ CFU/L} (untreated control group) and (6.84\pm0.77)$ $x10^9$ CFU/L (placebo group); P< 0.05). The administration of probiotic increased the WBC 220 counts ((2.00 ± 0.04) x10⁹ CFU/L). 221 The WBC count decreased significantly in live rats irradiated with 5.5 Gy ((0.57 ± 0.03) x10⁹ 222 CFU/L vs. (0.80 ± 0.07) x10⁹ CFU/L; P< 0.05) and remained unchanged in live rats irradiated 223 with 12.5 Gy ((0.57 ± 0.03) x10⁹ CFU/L vs. (0.59 ± 0.01) x10⁹ CFU/L; P>0.05) (Table 1). 224 The investigations on the impact of the probiotic on 4.5 Gy irradiated rats' BGLs did not reveal 225 any changes in this criterion for rats given the placebo (Group 1.2) as compared with the control 226 untreated group (Group 1.1) ((6.73±0.33) mM/L vs. (7.26±0.19) mM/L; P>0.05) (Table 2). In 227

10

addition, the 4.5 Gy irradiation dose didn't change the BGL on the seventh day after irradiation

229	((6.735±0.3) mM/L vs. (7.26±0.19) mM/L; P>0.05). Probiotic administration did not
230	significantly increase the BGL level on the seventh day of irradiation (the level still was in a
231	physiologically-normal range) (8.119 \pm 0.2 mM/L vs. 7.26 \pm 0.19 mM/L; P < 0.05), the rats fed the
232	probiotic prior to 4.5 Gy irradiation were not different from the untreated controls by their BGL
233	$((7.707\pm0.16) \text{ mM/L vs.} (7.26\pm0.19) \text{ mM/L}; P>0.05)$ after the seventh day of irradiation (Table
234	2).
235	An increase in irradiation dose from 4.5 to 12.5 Gy did not have an effect on rats' BGL.
236	Moreover, the results of investigations show that the probiotic and its CFS did not significantly
237	decrease the BGL of rats (the level still was in the normal range).
238	
239	Radio-protective effects of a potential probiotic L. delbrueckii IAHAHI on irradiated rats:
240	in vivo dose-mortality relationship
241	The irradiation dose-viability effects on Wistar rats are presented in Figure 5. According to the
242	investigations, administration of the probiotic after irradiation significantly increased the
243	viability of 5.5 Gy to 20 Gy irradiated rats, while there were no significant effects when the rats
244	were fed this probiotic prior to irradiation. On the seventh day after irradiation, the number of
245	irradiated rats in the probiotic group was higher by approximately 22-24% (5.5 Gy), 25-26%
246	(12.5 Gy), and 18-19% (20 Gy) compared with the untreated group (Figure 5).
247	
248	Radio-protective effects of probiotic L. delbrueckii IAHAHI on irradiated rats: WBC and
249	BGL
250	Table 3 presents the results of L. delbrueckii IAHAHI administration on 4.5 Gy X-ray irradiated
251	rats' BGLs. In comparison with the untreated control rats, BGLs decreased in the probiotic group
252	((6.594 \pm 0.2) mM/L vs. 7.26 \pm 0.19 mM/L, P<0.05). Administration of the probiotic after 4.5 Gy

- 253 X-ray irradiation of rats didn't affect BGL ((7.62±0.54) mM/L vs. 7.26±0.19 mM/L, P>0.05).
- 254 Parallel to this, this group of rats was also characterized by a statistically significant increase in

255 WBC in comparison with the irradiated controls (Figure 6).

256

257 Whole-genome sequencing of lactobacilli

The data given in Table 4 show that the genome sizes and GC contents of all three strains are in agreement with the values of relevant completely sequenced genomes.

260 Vitamin production

261 The number of genes involved in the production of vitamins and cofactors in strains *L*.

262 *rhamnosus* Vahe and *L. delbrueckii* IAHAHI is only about a half of the number found in strain *L.*

263 plantarum ZPZ (61 and 52 vs. 117, respectively, Figure 7). All three strains appear to have the

ability to produce riboflavin (vitamin B₂), biotin (vitamin B₈ or vitamin B_H), folate (folic

acid, folacin, and vitamin B_9), and pyridoxine (vitamin B_6), in some cases. Additionally, *L*.

266 *delbrueckii* IAHAHI and *L. plantarum* ZPZ both contain genes involved in the production of

thiamin (vitamin B₁). L. rhamnosus Vahe and L. plantarum ZPZ also contain genes required for

the production of 5-formyltetrahydrofolate cyclo-ligase-like protein (5-FCL like protein) and

- those involved in heme and siroheme biosynthesis (Figure 7). L. plantarum ZPZ is also a
- potential producer of a molybdenum cofactor, which is essential for human development [38]
- 271 (Figure 7).
- 272

273 Discussion

The possible effects of the potential probiotics *L. rhamnosus* Vahe and *L. delbrueckii* IAHAHI on the characteristics of blood and the small intestine of irradiated rats have been discussed

previously [39]. While there is a decrease in the viability of *L. rhamnosus* Vahe cells by 15-57%

when exposed to 50-150 Gy electron beam irradiation, it does not significantly change the
strain's activity against *K. pneumoniae*, and the viability of the commercial strain from Lacto-G
(a marketed synbiotic formulation), *Lactobacillus acidophilus* DDS®-1, dropped by up to 5%.
Further investigations indicated that 50-150 Gy electron beam irradiation may increase the
biofilm formation ability *L. rhamnosus* Vahe without changing cell surface hydrophobicity levels
[40].

Current investigations revealed the different impacts of seventeen probiotic lactobacilli strains on 283 284 irradiated rats' mortality and blood characteristics (data are not provided). In particular, L. 285 rhamnosus Vahe and L. delbrueckii IAHAHI positively affected these characteristics of irradiated rats *in vivo*. We found no differences between the effects of L. *rhamnosus* Vahe and its 286 CFS on the survival and blood characteristics of irradiated animals. This, most likely, indicates 287 the role of CFS in the radio-preventive activities of the probiotic. The feeding of rats with L. 288 rhamnosus Vahe or CFS before irradiation positively affected the rats' survival and blood WBC 289 290 count, while there were no statistically significant differences in these physiological parameters for probiotic/CFS feeding after the rats' irradiation. Interestingly, the potential probiotic L. 291 delbrueckii IAHAHI showed positive effects when the rats were fed after the irradiation, while 292 293 there were no detectable positive effects of probiotic supplementation for the rats fed before the irradiation. 294

X-ray and similar forms of irradiation (such as electron beam radiation) are commonly used
during radiotherapy to treat disease. The body may release extra sugar immediately after
radiotherapy to help cells survive the treatment resulting in an increase in the host's BGL.
Normal glucose levels in blood differ between rodents and humans. Fasting glucose levels
between 100 and 199 mg/dL are common among mouse strains, even after treatment with a highfat diet. This range is not typically associated with diabetic symptoms such as polyuria and

301 polydipsia. Diabetes in rodents is defined as a fasting glucose level >250 mg/dL [41]. The

302 feeding cannula for seven days by the putative probiotic *L. rhamnosus* Vahe (as well as by its

303 CFS) prior to irradiation with 4.5-20 Gy X-ray significantly increased the viability of rats

304 without any side effects on experimental animals' BGL. But, the feeding of rats by *L. rhamnosus*

305 strain Vahe after irradiation had no significant effect (the results are not given). At the same

306 time, the results on the impact of L. delbrueckii IAHAHI on rats' BGLs indicates the possibility

307 for the use of this probiotic strain by patients with type 2 diabetes.

308 The beneficial activities of probiotics most likely result from complex interactions of the bacteria

309 with the intestinal microflora and the host gut epithelium [42]. Among several proposed

310 mechanisms by which probiotics mediate their effects is modulation of the innate immune

response, which may be anti-inflammatory [43, 44] or pro-inflammatory in nature [15].

312 Furthermore, probiotic bacteria have been shown to enhance the adaptive immune response and

antibody formation [45, 46]. Inhibition of the adherence of attaching and effacing organisms

[47], modulation of mucosal barrier function [48], or inhibition of neutrophil migration [49] may

also be important mechanisms whereby probiotics might impact intestinal diseases [50]. There is

also strong evidence that the signaling molecules or determinants are preserved in probiotic

317 strains [51], and certain probiotic strains are able to enhance immune function, especially in

subjects with less than adequate immune function [52]. Potential radioprotectors might include

the vitamins produced by probiotics [22], which may also exert immunomodulatory effects as

well [26]. Interestingly, vitamins might also have different pre- and post-treatment effects [27].

321 Current investigations show that *L. rhamnosus* Vahe and *L. delbrueckii* IAHAHI, as well as the

322 probiotic strain *L. plantarum* ZPZ with neutral radio-protective activities, are potential producers

323 of water-soluble riboflavin, biotin, folate, and pyridoxine; with different numbers of genes that

324 might be engaged in vitamin production between these bacteria.

325 It is known that riboflavin, necessary for cellular respiration, also participates in tryptophan -326 niacin conversation, while biotin supports the metabolism of fats, proteins, and carbohydrates 327 from food [53]. Folic acid, an active participant in protein metabolism and in the promotion of red blood cell formation [54], is able to fight against oxidative stress in the rat colon [55] and 328 may prevent elevated DNA damage rates and altered methylation of DNA, which are important 329 330 risk factors in cancer [56, 57]. Besides the participation in protein metabolism and promotion of 331 red blood cell formation, pyridoxine, another vitamin, also participates in the production of insulin, the protection against oxidative stress in human erythrocytes [58, 59], and from ionizing 332 333 radiation-induced apoptosis in the intestinal epithelium [60]. It is possible that the production of vitamins mentioned in this study (Figure 7) plays a role in determining the "radio-protective" 334 characteristics of L. delbrueckii IAHAHI and L. rhamnosus Vahe. For example, according to 335 current whole-genome sequencing, L. delbrueckii IAHAHI is a potential producer of thiamine, 336 vital for a functioning nervous system, and might participate in the "recovery of post-radiation 337 338 physiology" of irradiated rats through thiamine's action [61]. In addition, pyridoxine, the production of which by L. delbrueckii IAHAHI is likely more pronounced than in the other two 339 strains: L. plantarum ZPZ and L. rhamnosus Vahe, could have an effect on the "lowering" of 340 341 rats' BGLs. On the other hand, L. rhamnosus Vahe and L. plantarum ZPZ are able to produce 5-FCL like protein, a participant of the one-carbon pool by folate [62]; It is possible that this and 342 343 the strains' heme biosynthesis ability, which might lead to heme exerting damaging effects after 344 the rats' radiation [63], might limit the potential "radio-protective" role of probiotics in the postradiation period. 345 Previously the effects of these three investigated lactobacilli strains on DNA damages in the 346

347 small intestine of Wistar rats *in vivo* were discussed [20]. Lactobacilli genes involved in

riboflavin, FMN, and FAD metabolism and the production of flavodoxin (Figure 7) might

participate in the alleviation of DNA damages in the small intestine of rats, thereby providing 349 350 resistance to irradiation in these animals. At the same time, the effects of probiotics on irradiated 351 rats might be explained by the possible neutralization of the destructive influence of irradiation on rats, mostly affecting activated free radical processes in the intestines and in the organism as a 352 whole. Interestingly, experiments have shown that the investigated lactobacilli strains were 353 354 different in their hydrogen peroxidase and catalase activity. According to full genome analysis, L. delbrueckii IAHAHI carries a hydrogen peroxide-inducible gene activator that is not present 355 356 in the other investigated strains. Hydrogen peroxidase and catalase activities of these lactobacilli 357 were investigated experimentally; the data confirmed the results of the full genome analysis. However, all discussion related to the vitamins' potential effects are hypothetical and need 358 359 experimental confirmation; future investigations on these probiotics` metabolites will further 360 promote the understanding of the mechanisms underlying their radio-protective effects. 361

362 Conclusion

In this study, we determined the potential of these probiotic strains for radio-preventive and
radio-protective purposes and found the effect to be dependent on differences in the hosts'
physiologic state before and after the irradiation, affecting the probiotic's potential impact. These
findings are also of significance for *L. rhamnosus* Vahe/its CFS and *L. delbrueckii* IAHAHI and
their potential application as starters for the production of functional food with radio-protective
activities.

369

Ethics Statement

371 This study was performed in accordance with institutional ethical guidelines and was approved372 by the Ethics Committee at the Ministry of Education and Science of Armenia.

Author Contributions
All authors have made an extensive, direct, and intellectual contribution to the work and have
approved it for publication. AP, VM and MLC conceived and designed the experiments; AM,
MB, and VT performed the experiments; AP analyzed the data and wrote the paper; AVK
conceived and designed genome sequencing experiments, performed genomic data analysis
together with GMC, and was involved in writing the paper, together with RW.
Conflict of Interest Statement
The authors declare that the research was conducted in the absence of any commercial or
financial relationships that could be construed as a potential conflict of interest.
Funding
The work was supported by the International Science and Technology Center (Project A-2134),
by the State Committee of Science of Armenia (project 10-15/I-5) MLC was supported by the
Ministry of Science and Higher Education of the Russian Federation (Project Number 075-15-
2019-1880).

References

392	1.	Ghiassi-Nejad M, Mortazavi S, Cameron J, Niroomand-Rad A, Karam P (2002) Very
393		high background radiation areas of Ramsar, Iran: preliminary biological studies. Health
394		Phys 82:87-93. doi: 10.1097/00004032-200201000-00011
395	2.	Soile T, Jacob V (2007) Radioadaptive response revisited. Rad Environ Biophys 46:1-12.
396		doi: 10.1007/s00411-006-0078-8
397	3.	Dublineau I, Souidi M, Gueguen Y, Lestaevel P, et al. (2014) Unexpected lack of
398		deleterious effects of uranium on physiological systems following a chronic oral intake in
399		adult rat. BioMed Res Int 1:181989. doi: 10.1155 / 2014/181989
400	4.	Hendry J, Simon S, Wojcik A, Sohrabi M, et al. (2009) Human exposure to high natural
401		background radiation: what can it teach us about radiation risks? J Radiol Prot 29:A29-
402		42. doi: 10.1088/0952-4746/29/2A/S03
403	5.	Coleman C, Blakely W, Fike J, MacVittie T, et al. (2003) Molecular and cellular biology
404		of moderate-dose $(1 - 10 \text{ Gy})$ radiation and potential mechanisms of radiation protection:
405		Report of a workshop at Bethesda, Maryland, December 17-18, 2001. Radiat
406		Res 159:812–834. doi: 10.1667/RR3021
407	6.	Wang Y, Chang X, Li Qing D, Cao J, et al. (2013) Evaluation of the comet assay for
408		assessing the dose-response relationship of DNA damage induced by ionizing radiation.
409		Int J Mol Sci 14:22449-22461. doi: 10.3390/ijms141122449
410	7.	Rhodri S, Green J (2018) Radiation-induced small bowel disease: latest developments
411		and clinical guidance. Ther Adv Chronic Dis 5:15–29. doi: 10.1177/2040622313510730
412	8.	Maks C, Wan X, Ware J, et al. (2011) Analysis of white blood cell counts in mice after
413		gamma- or proton-radiation exposure. Radiat Res 176:170-176. doi:10.1667/RR2413.1

414	9.	El-Shanshoury H, El-Shanshoury G, Abaza A (2016) Evaluation of low dose ionizing
415		radiation effect on some blood components in animal model. J Rad Res Appl Sci 9:282-
416		293. doi: 10.1016/j.jrras.2016.01.001
417	10	. Hill C, Guarner F, Reid G, et al. (2014) Expert consensus document: The international
418		scientific association for probiotics and prebiotics consensus statement on the scope and
419		appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11:506-514. doi:
420		10.1038/nrgastro.2014.66
421	11	. Balayan M, Manvelyan A, Marutyan S, et al. (2015) Impact of Lactobacillus
422		acidophilus INMIA 9602 Er-2 and Escherichia coli M-17 on some clinical blood
423		characteristics of familial Mediterranean fever disease patients from the Armenian
424		cohort. Int J Probiotics Prebiotics 10:91–95.
425	12	. Bagherpour G, Ghasemi H, Zand B, et al. (2018) Oral administration of
426		recombinant Saccharomyces boulardii expressing ovalbumin-CPE fusion protein induces
427		antibody response in mice. Front Microbiol 9:723. doi: 10.3389/fmicb.2018.00723
428	13	. Pepoyan A, Balayan M, Manvelyan A, et al. (2017) Lactobacillus acidophilus INMIA
429		9602 Er-2 strain 317/402 probiotic regulates growth of commensal Escherichia coli in
430		gut microbiota of familial Mediterranean fever disease subjects. Lett Appl
431		Microbiol 64:254–260. doi:10.1111/lam.12722
432	14	. Pepoyan A, Balayan M, Manvelyan A, et al. (2018) Probiotic Lactobacillus
433		acidophilus strain INMIA 9602 Er 317/402 administration reduces the numbers
434		of Candida albicans and abundance of enterobacteria in the gut microbiota of familial
435		Mediterranean fever patients. Front Immunol 9:1426. doi: 10.3389/fimmu.2018.01426

436	15. Pepoian A, Harutunian N, Grigorian A, Balaian M, et al. (2015) Some clinical blood
437	characteristics of patients with familial Mediterranean fever disease from an Armenian
438	cohort. Klin Lab Diagn 60:46-47
439	16. Mäkivuokko H, Lahtinen S, Wacklin P, Tuovinen E, et al. (2012) Association between
440	the ABO blood group and the human intestinal microbiota composition. BMC Microbiol
441	12:94. doi: 10.1186/1471-2180-12-94
442	17. Ussar S, Fujisaka S, Kahn C (2016) Interactions between host genetics and gut
443	microbiome in diabetes and metabolic syndrome. Mol Metab 5:795-803. doi:
444	10.1016/j.molmet.2016.07.004
445	18. Pluznick J (2014) Gut microbes and host physiology: What happens when you host
446	billions of guests? Front Endocrinol (Lausanne) 5:91. doi: 10.3389/fendo.2014.00091
447	19. Pepoyan A, Balayan M, Manvelyan A, Pepoyan S (2018) Cell surface hydrophobicity
448	and biofilm formation potential of gut commensal Escherichia coli and lactobacilli from
449	Mazekh and Balbas sheep. Bulletin of Armenian National Agrarian University 1:51-54
450	20. Pepoyan A, Balayan M, Malkasyan L, Manvelyan A et al. (2019) Effects of probiotic
451	Lactobacillus acidophilus strain INMIA 9602 Er 317/402 and putative probiotic
452	lactobacilli on DNA damages in small intestine of Wistar rats in vivo. Probiotics
453	Antimicrob Proteins 11:905-909. doi: 10.1007/s12602-018-9491-y
454	21. Ki Y, Kim W, Cho H, Ahn K, Choi Y, Kim D (2014) The effect of probiotics for
455	preventing radiation-induced morphological changes in intestinal mucosa of rats. J
456	Korean Med Sci 29:1372-1378. doi: 10.3346/jkms.2014.29.10.1372
457	22. Paul P, Unnikrishnan M, Nagappa A (2011) Phytochemicals as radioprotective agents-A
458	Review. Indian J Nat Prod Resour 2:137-150

459	23. Mariam SH, Zegeye N, Tariku T, Andargie E, et al. (2014). Potential of cell-free
460	supernatants from cultures of selected lactic acid bacteria and yeast obtained from local
461	fermented foods as inhibitors of Listeria monocytogenes, Salmonella spp. and
462	Staphylococcus aureus. BMC Res Notes 7:606. doi: 10.1186/1756-0500-7-606
463	24. Linares D, Gómez C, Renes E, Fresno J, et al. (2017) Lactic acid bacteria and
464	bifidobacteria with potential to design natural biofunctional health-promoting dairy
465	foods. Front Microbiol 8:846. doi: 10.3389/fmicb.2017.00846
466	25. Lukic J, Chen V, Strahinic I, Begovic J, et al. (2018) Probiotics or pro-healers: The role
467	of beneficial bacteria in tissue repair. Wound Repair Regen 25:912–922. doi:
468	10.1111/wrr.12607
469	26. Piqué N, Berlanga M, Minana-Galbis D (2019) Health benefits of heat-killed
470	(tyndallized) probiotics: an overview. Int J Mol Sci 20:2534. doi:10.3390/ijms20102534
471	27. Yamamoto T and Kinoshita M (2017) Radioprotective effect of vitamin C as an
472	antioxidant. Vitamin C. IntechOpen doi: 10.5772/intechopen.68988
473	28. Pepoyan A, Tsaturyan V, Badalyan M, Weeks R, et al. (2020) Blood protein
474	polymorphisms and the gut bacteria: impact of probiotic Lactobacillus acidophilus
475	Narine on Salmonella carriage in sheep. Benef Microbes 11:183-189. doi:
476	10.3920/BM2019.0138
477	29. Huang C, Chang M, Huang L (2014) Use of highly variable gene (yycH) as DNA marker
478	to resolve interspecific relationships within the Lactobacillus casei group and a target for
479	developing novel species-specific PCR primers. Eur Food Res Technol 239:719–724.
480	doi: 10.1007/s00217-014-2278-9

481	30.	Galanis A, Kourkoutas Y, Tassou C, Chorianopoulos N (2015) Detection and
482		identification of probiotic Lactobacillus plantarum strains by multiplex PCR using
483		RAPD-derived primers. Int J Mol Sci 16:25141-25153. doi:10.3390/ijms161025141
484	31.	Seddik H, Bendali F, Gancel F et al. (2017). Lactobacillus plantarum and its probiotic
485		and food potentialities. Probiotics Antimicrob Proteins 9:111-122. doi: 10.1007/s12602-
486		017-9264-z
487	32.	Torriani S, Zapparoli G, Dellaglio F (1999) Use of PCR-based methods for rapid
488		differentiation of Lactobacillus delbrueckii subsp. bulgaricus and L. delbrueckii subsp.
489		lactis. Appl Environ Microbiol 65(10):4351-4356
490	33.	Walter J, Tannock G, Tilsala-Timisjarvi A, Rodtong S, et al. (2000) Detection and
491		identification of gastrointestinal Lactobacillus species by using denaturing gradient gel
492		electrophoresis and species-specific PCR primers. Appl Environ Microbiol 66(1):297-
493		303. doi: 10.1128/aem.66.1.297-303.2000
494	34.	Koirala R, Ricci G, Taverniti V, Ferrario, et al. (2014) Isolation and molecular
495		characterization of lactobacilli from traditional fermented Dahi produced at different
496		altitudes in Nepal. Dairy Sci & Technol 94(4):397-408. doi: 10.1007/s13594-014-0167-4
497	35.	Yoon S, Ha S, Kwon S, Lim J, et al. (2017). Introducing EzBioCloud: A taxonomically
498		united database of 16S rRNA and whole genome assemblies. Int J Syst Evol Microbiol
499		67:1613-1617. doi: 10.1099/ijsem.0.001755
500	36.	Altschul S, Gish W, Miller W, Myers E, Lipman D (1990) Basic local alignment search
501		tool. J Mol Biol 215:403-410. doi: 10.1016/S0022-2836(05)80360-2
502	37.	Aziz R, Bartels D, Best AA, DeJongh M, et al. (2008) The RAST server: rapid
503		annotations using subsystems technology. BMC Genomics 9:75. doi: 10.1186/1471-
504		2164-9-75

505	38.	Warnhoff K, Ruvkun G (2019) Molybdenum cofactor transfer from bacteria to nematode
506		mediates sulfite detoxification. Nat Chem Biol 15:480-488. doi: 10.1038/s41589-019-
507		0249-у
508	39.	Pepoyan A, Balayan M, Manvelyan A, Pepoyan S, et al. (2018) Radioprotective effects
509		of lactobacilli with antagonistic activities against human pathogens. Biophys J 114:665a.
510		doi: 10.1016/j.bpj.2017.11.3586
511	40.	Pepoyan A, Manvelyan A, Balayan M, Galstyan S, et al. (2019) Low dose electron beam
512		irradiation for the improvement of biofilm formation by probiotic lactobacilli. Probiotics
513		Antimicrob Proteins. doi: 10.1007/s12602-019-09566-1. [Epub ahead of print]
514	41.	Fajardo R, Karim L, Calley V, Bouxsein M (2014) A review of rodent models of Type 2
515		diabetic skeletal fragility. J Bone Miner Res 29:1025–1040. doi:10.1002/jbmr.2210
516	42.	Marteau P, de Vrese M, Cellier C and Schrezenmeir J (2001) Protection from
517		gastrointestinal diseases with the use of probiotics. Am J Clin Nutr 73(2 Suppl):430S-
518		436S. doi: 10.1093/ajcn/73.2.430s
519	43.	Imaoka A, Shima T, Kato K, Mizuno S, et al. (2008) Anti-inflammatory activity of
520		probiotic Bifidobacterium: enhancement of IL-10 production in peripheral blood
521		mononuclear cells from ulcerative colitis patients and inhibition of IL-8 secretion in HT-
522		29 cells. World J Gastroenterol 14:2511-2516. doi: 10.3748/wjg.14.2511
523	44.	Deirdre A, Devine D, Gardy J, Chikatamar A, et al. (2008) The commensal Streptococcus
524		salivarius K12 downregulates the innate immune responses of human epithelial cells and
525		promotes host-microbe homeostasis. Infect Immunity 76:4163-4175. doi:
526		10.1128/IAI.00188-08

527	45.	Cross M (2002) Microbes versus microbes: immune signals generated by probiotic
528		lactobacilli and their role in protection against microbial pathogens. FEMS Immunol Med
529		Microbiol 34:245-253. doi: 10.1111/j.1574-695X.2002.tb00632.
530	46.	Vaarala O (2003) Immunological effects of probiotics with special reference to
531		lactobacilli. Clin Exp Allergy 33:1634-1640. doi: 10.1111/j.1365-2222.2003.01835.x
532	47.	Mack D, Michail S, Wei S, McDougall L, Hollingsworth M (1999) Probiotics inhibit
533		enteropathogenic E. coli adherence in vitro by inducing intestinal mucin gene expression.
534		Am J Physiol 276:941-950. doi: 10.1152/ajpgi.1999.276.4.G941
535	48.	Mack D, Ahrne S, Hyde L, Wei S, Hollingsworth M (2003) Extracellular MUC3 mucin
536		secretion follows adherence of Lactobacillus strains to intestinal epithelial cells in vitro.
537		Gut 52:827-833. doi: 10.1136/gut.52.6.827
538	49.	Michail S and Abernathy F (2003) Lactobacillus plantarum inhibits the intestinal
539		epithelial migration of neutrophils induced by enteropathogenic Escherichia coli. J Ped
540		Gastroenterol Nutr 36:385-391. doi: 10.1097/00005176-200303000-00017
541	50.	Pepoyan A and Trchounian A (2009) Biophysics, molecular and cellular biology of
542		probiotic activity of bacteria. In: A Trchounian (ed) Bacterial Membranes, Kerala, Inia,
543		pp 275-287.
544	51.	Bu H, Wang X, Zhu Y, Williams R, et al. (2006) Lysozyme-modified probiotic
545		components protect rats against polymicrobial sepsis: Role of macrophages and
546		cathelicidin-related innate immunity. J Immunol 177:8767-8776.
547		doi: 10.4049/jimmunol.177.12.8767
548	52.	Gill H, Rutherfurd K, Cross M, Gopal P (2001) Enhancement of immunity in the elderly
549		by dietary supplementation with the probiotic Bifidobacterium lactis HN019. Am J Clin
550		Nutr 74:833-839. doi: 10.1093/ajcn/74.6.833

551	53.	Zempleni J, Hassan Y, Wijeratne S (2008) Biotin and biotinidase deficiency. Expert Rev
552		Endocrinol Metab 3:715-724. doi: 10.1586/17446651.3.6.715
553	54.	Eto I and Krumdieck C (1986) Role of vitamin B12 and folate deficiencies in
554		carcinogenesis. L Poirier, P Newberne, M Patiza (eds), Essential nutrients in
555		carcinogenesis, Plenum Press, pp 313-331.
556	55.	Al-Numair K, Waly M, Ali A, Essa M, et al. (2011) Dietary folate protects against
557		azoxymethane-induced aberrant crypt foci development and oxidative stress in rat colon.
558		Exp Biol Med (Maywood) 236:1005–1011. doi: 10.1258/ebm.2011.011010
559	56.	Zingg J and Jones P (1997) Genetic and epigenetic aspects of DNA methylation on
560		genome expression, evolution, mutation and carcinogenesis. Carcinogen 18:869-882. doi:
561		10.1093/carcin/18.5.869
562	57.	Padmanabhan S, Waly M, Taranikanti V, Guizani N, et al. (2018) Folate/vitamin B12
563		supplementation combats oxidative stress-associated carcinogenesis in a rat model of
564		colon cancer. Nutr Cancer 1:1-11. doi: 10.1080/01635581.2018.1513047
565	58.	Taş S, Sarandöl E, Dirican M (2014) Vitamin B6 supplementation improves oxidative
566		stress and enhances serum paraoxonase/arylesterase activities in streptozotocin-induced
567		diabetic rats. Sci World J 2014:351598. doi:10.1155/2014/351598
568	59	Kim M. Basharat A. Santosh R. Mehdi S. et al. (2018) Reuniting overnutrition and
569		undernutrition, macronutrients, and micronutrients. Diabetes Metabol Res Rev 35:e3072
570		doi: 10 1002/dmrr 3072
571	60	Thotala D Chetyrkin S Hudson B Hallahan D et al. (2009) Pyridoyamine protects
571	00.	Thotala D, Chetyrkin S, Hudson D, Hananan D, et al. (2007) I yridoxanine protects
572		intestinal epithelium from ionizing radiation-induced apoptosis. Free Radic Bio Med
573		47:779–785. doi: 10.1016/j.freeradbiomed.2009.06.020

574	61. Luong K, Nguyen L (2013) The role of thiamine in cancer: possible genetic and cellular
575	signaling mechanisms. Cancer Genom Proteom 10:169-186
576	62. Stover PJ (2009) One-carbon metabolism-genome interactions in folate-associated
577	pathologies. J Nutr 139:2402–2405. doi: 10.3945/jn.109.113670
578	63. Kumar S, Bandyopadhyay U (2005) Free heme toxicity and its detoxification systems in
579	human. Toxicol Lett 157:175-188. doi: 10.1016/j.toxlet.2005.03.004

- 583 **Table 1.** White blood cells' numbers and mortality of rats after the 7 days of irradiation*: the
- 584 impact of probiotic *L. rhamnosus* Vahe.

	Control	Probiotic x10 ⁹ /L		
Irradiation dose	x10 ⁹ /L, *			
0 Gy (placebo)	6.84±0.77	7.12±0.39		
0 Gy (place00)	(100%)	(100%)		
	0.80+0.07	2.00±0.04		
4.5 Gv	(75%)	(100%)		
	$P_{1} < 0.05$ 0.57 ± 0.03 (37.5%)	P ₁ <0.05		
		P ₂ <0.05		
		1.73±0.05		
5.5 Gy		(66.7%)		
2	P ₁ <0.05	P ₁ <0.05		
		P ₂ <0.05		
	0.59±0.01	1.82±0.04		
12.5 Gy	(12.5%)	(50%)		
	P ₁ <0.05	P ₁ <0.05		

Note:

* In blankets - percentage of the number of alive rats after the seventh day of irradiation.

 P_1 - comparison with the untreated rats.

P₂ - comparison with the control rats (Group 1; Figure 1).

586

- **Table 2.** Rats' blood glucose levels (mM/L) after 7 day of 4.5 Gy irradiation: the impact of
- 589 probiotic *L. rhamnosus* Vahe.

	Control Placebo Irradiated control-								
	untreated rats, rats, rats, probiotic, probiotic*,								
	N = 8	N = 8	N = 8	N = 8	N = 8				
Blood 7.26 ± 0.19 6.73 ± 0.33 6.735 ± 0.29 8.119 ± 0.2 7.707 ± 0.16									
glucose		P>0.05	P>0.05	P<0.05	P>0.05				
Note:									
* These rats were fed during 7 days by probiotic Vahe prior to irradiation.									

Table 3. Rats' blood glucose levels (mM/L) after 7 days of 4.5 Gy irradiation: impact of L.

	Control	Placebo	Irradiated	control-	Prevention-		
	untreated	rats,	rats,	probiotic,	probiotic*,		
	rats,	N = 8	N = 8	N = 8	N = 8		
	N = 8						
Blood glucose	7.26 ± 0.19	6.73 ± 0.33	6.735 ± 0.29	6.594±0.2	7.62 ± 0.54		
		P>0.05	P>0.05	P<0.05	P>0.05		
Note:							
* These rats were fed during 7 days by probiotic IAHAHI after the irradiation.							

Table 4. Genome characteristics of lactobacilli.

Strain	Number	Assembly	Largest	Genome	Typical	GC	Typical GC
	of	coverage	contig,	assembly	genome	content,	content ^{**}
	contigs		bases	size, bases**	size, Mb	%	
L. delbrueckii	43	32.7x	413,896	1,766,423	1.73-2.26	49.8	49.1-50.1
IAHAHI							
L. rhamnosus	34	56.5x	722,392	2,834,560	2.59-3.11	46.7	46.6-46.8
Vahe							
L. plantarum	70	91.7x	365,046	3,311,088	3.04-3.64	44.4	44.3-44.8
ZPZ*							

⁶⁰² *This strain did not protect against 4.5 - 20 GY radiation.

⁶⁰³ **Values for genome sequences of other strains of the respective species.

Figure 2. Dose-viability relationship for *in vivo* experiments on male Wistar rats. Whole body
X-ray irradiation was performed using RUM-17 therapeutic X-ray unit, Russia (technical
specifications- dose levels: 5.5 Gy, 12.5 Gy and 20 Gy, dose rate: 1.43 Gy/min, height of a X-ray
tube over an object: 50 cm, current: 15 mA, 180 kV and exposition time: 3.85 min, 8.74 min
and 13.99 min accordingly.

- 616 levels: dose rate: 1.43 Gy/min, height of a X-ray tube over an object: 50 cm, current: 15 mA,
- 617 180 kV and exposition time: 3.85 min. The mortality of rats was provided for the following
- 618 seven days after the irradiation.
- 619 CFS cell free supernatant.

Figure 4. Effects of cell free supernatant (CFS) of the probiotic Lactobacillus rhamnosus Vahe 621 on viability of whole body 12.5 Gy and 20 Gy single-dose X-ray irradiated Wistar rats. Whole 622 body X-ray irradiation was performed using RUM-17 therapeutic X-ray unit, Russia (technical 623 624 specifications- dose levels: 12.5 Gy and 20 Gy, dose rate: 1.43 Gy/min, height of a X-ray tube over an object: 50 cm, current: 15 mA, 180 kV and exposition time: 8.74 min and 13.99 min 625 accordingly. The rats were fed by the cell free supernatant during the seven days prior to 626 627 irradiation, and the mortality of rats were provided for the following seven days after the irradiation. 628

630

Dose of irradiation

636 irradiation. Whole body X-ray irradiation was performed using RUM-17 therapeutic X-ray unit,

Russia (technical specifications- dose levels: 5.5 Gy, 12.5 Gy and 20 Gy, dose rate: 1.43 Gy/min,

height of a X-ray tube over an object: 50 cm, current: 15 mA, 180 kV and exposition time: 3.85

min, 8.74 min and 13.99 min accordingly. The rats were fed by the probiotic *L. delbrueckii*

640 IAHAHI during the following seven days after the irradiation.

⁶³⁴

Figure 5. Dose-viability effects of 5.5 Gy - 20 Gy irradiation in seventh day after the X-ray

- **Figure 6.** The rats' in seventh day of 4.5 Gy irradiation: impact of *L. delbrueckii* IAHAHI. The
- rats were fed by the probiotic *L. delbrueckii* IAHAHI during the following seven days after the
- 647 irradiation.
- 648 white blood cells.

- 654 rhamnosus Vahe, Lactobacillus delbrueckii IAHAHI and Lactobacillus plantarum ZPZ:
- 655 vitamins and cofactors.

Table. Characteristics of lactobacilli.

	Species	Sources	Probiotic's effects on white blood cells' counts*	
			Probiotic's administratio n: before the rats' irradiation	Probiotic's administratio n: after the rats' irradiation
1	L. delbrueckii IAHAHI	fermented food product matsuni	Ab	+++
2	Lactobacillus delbrueckii subsp. bulgaricus	sheep gut microbiota	Ab	Ab
3	L. casei	fermented food product matsuni	_	Ab
4	L. casei	sheep's milk	-	Ab
5	L. fermentum	fermented food product matsuni	-	Ab
6	L. fermentum	sheep's milk	Ab	-
7	L. paracasei	fermented food product matsuni	Ab	Ab
8	L. paracasei	sheep's milk	-	Ab
9	L. plantarum	sheep's milk	-	Ab
10	L. plantarum ZPZ^{V}	breastfeedi ng girl	Ab	Ab

11	L. rhamnosus Vahe	breastfeedi ng boy	Ab	+++
12	L. rhamnosus	sheep gut microbiota	Ab	+
13	L. crispatus	breastfeedi ng boy		Ab
14	L. helveticus	breastfeedi ng boy	-	Ab
15	L. helveticus	sheep gut microbiota	Ab	Ab
16	L. acidophilus DDS®-1	human origin	Ab	-
17	probiotic Narine	human origin	-	Ab

*Comparison with the control 4.5 Gy irradiated rats (Group 2.1; Picture 1)

Ab- Absence of valid differences between the research data for probiotic's and control group rats. +++ Maximal positive effect

+ low effect

---Maximal negative effect

-low negative effect

^{*V*-} This strain was used as a "control" to compare full genomic analysis on vitamins of the strains with radio-preventive/-protective due to its neutral radio-protective/-preventive activities. Also, *L. plantarum* ZPZ is one of the probiotic strains having high antagonistic activities against nosocomial pathogens from the Yerevan hospitals.