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Abstract—The three most important components in the cognitive
architecture for cognitive robotics is memory representation, memory
recall, and action-selection performed by the executive. In this paper,
action selection, performed by the executive, is defined as a memory
quantification and optimization process. The methodology describes
the real-time construction of episodic memory through semantic
memory optimization. The optimization is performed by set-based
particle swarm optimization, using an adaptive entropy memory
quantification approach for fitness evaluation. The performance of
the approach is experimentally evaluated by simulation, where a
UAV is tasked with the collection and delivery of a medical package.
The experiments show that the UAV dynamically uses the episodic
memory to autonomously control its velocity, while successfully
completing its mission.

Keywords—Cognitive robotics, semantic memory, episodic
memory, maximum entropy principle, particle swarm optimization.

I. INTRODUCTION

OGNITIVE robotics is described as the study of robots

with cognitive functions, such as perception, attention,
anticipation, planning, memory, learning, and reasoning,
inspired by human cognition. Human cognition is not trivial
and to study and understand it, various computational models
and architectures have been devised. For example, statistical
models for cognition [1], and cognitive architectures, such as
Adaptive control of thought (ACT) [2], State operator and
result (SOAR) [3] and Neural Engineering Objects (Nengo)
[4]. These architectures show the complexity in the interaction
between neuro-cognitive processes which, inevitably, apply to
robo-cognitive processes as well. Arguably, the most
important cognitive function is the working memory, which is
a collection of neuro-cognitive processes: memory
representation, memory recall, action selection and execution.
Memory representation can be further described in terms of
episodic (short-term) and semantic (long-term) memory.

In many robo-cognitive architectures today, control models
are learned through methods, such as artificial neural networks
(ANNSs), to simulate memory representation, memory recall
and the executive functions of the brain. The models represent
memory through synaptic weight assignment, which is
adjusted during a learning process. When presented with an
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input stimulus, the model “recall” learned facts by applying
the synaptic weight and input stimulus to an activation
function. Unfortunately, for many real-world cognitive robotic
applications, the approach of a priori learning of behavioral
models is not always effective. Robots deployed in remote,
unknown and dynamic locations, cannot risk catastrophic
failure. They do not have the time to learn new complex
solutions from the start, every time the environment changes.

The robo-cognitive architecture of a remotely deployed
robot must provide an efficient and simple means of updating
the semantic and episodic memory. Action selection and
execution, based on these memories must automatically adapt
according to the new memories. Moreover, when the memory
items are complex structures with multiple characteristics
(such as the logically conditioned state-transitions used in this
study), optimal memory recall becomes extremely complex
and computationally expensive.

This study examines real-time episodic construction using a
set-based particle swarm optimization (SPSO) algorithm,
which evaluates the fitness of semantic memory items using
an adaptive entropy-based memory quantification (AEMQ)
algorithm. The algorithm uses real-time environmental stimuli
and cues to statistically quantify and evaluate the semantic
memory. The AEMQ algorithm employs the maximum
entropy principle (MEP) [5] to provide a probability
distribution over all the characteristics of the semantic
memory item, for fitness evaluation. The result of the SPSO is
an optimal set of memory items, i.e. the episodic memory
from which the executive uses the probability distribution of
each item to select the best memory item and execute a
suitable action.

The performance of the SPSO and AEMQ algorithms are
experimentally evaluated with an unmanned aerial vehicle
(UAV) benchmark mission: collecting and delivering a
package, before returning to a charging station.

II. WORKING MEMORY IN COGNITIVE ARCHITECTURE

A. Common Cogpnitive Architectures

Although there are still many unanswered questions
regarding the functions of the human brain, there seems to be
a common understanding about the basic architectures of
human cognition.

Computational architectures, which mimic cognitive
processes in the human brain, have been developed to examine
and understand human cognition. These include the Adaptive
control of thought-rational (ACT-R) architecture [7], the
Semantic pointer architecture unified network (SPAUN) [4]
and the SOAR architecture [3].
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The central executive is responsible for the cognitive
processes of memory classification, memory representation,
recall, action selection and action execution. Collectively,
these processes constitute the working memory.

B. Working Memory Models

A number of working memory models have been defined
over the years. Baars and Nicole [6] presents a functional
framework for human cognition, where working memory is
composed of the central executive and working storage. The
working storage is created from sensory memory (verbal and
visuospatial) and long-term, (stored) memory. The working
memory is used in the action selection and execution process.
Long-term memory will be referred to as sematic memory

Tulving [8] classifies memory as non-declarative, semantic
and episodic.

Arguably, the most widely used model is Baddeley’s model
of working memory [9]. In Baddeley’s model, the central
executive processes visuospatial, phonological and long-term
semantic memory, and creates the episodic buffer. The
episodic buffer performs the same role as the working storage
memory in [6].

A different approach is presented in Cowan’s attentional
focus theory [9] model. In Cowan’s model, instead of types of
memory being classified separately and distributed according
to the cognitive functionality, all memory is stored as long-
term memory. When memory receives attention, it becomes
salient and closely stored memory is activated at the same
time. Activated memory is of interest, as it is potentially
relevant to the context and may become attentional. The
central executive uses the memory with attentional focus for

action selection and execution.

For remotely-deployed exploratory robots, Cowan’s model
provides a simpler architecture, with fewer possible points-of-
failure. This study proposes a robo-cognitive architecture,
which combines some features from both Baddeley and
Cowan’s models, particularly the episodic buffer. However,
for computational practicality, memory representation is
abstracted from the central executive.

C.Real-Time Episodic Memory Construction

In this study, a robo-cognitive architecture is proposed for
the real-time construction of episodic memory. An UAV is
used for illustration.

In this study, long-term memory will be referred to as
sematic memory and short-term memory will refer to sensory
and episodic memory.

Semantic memory is the long-term memory provided by a
domain expert. The domain expert also provides cues (or
missions) which defines the objectives of the robot. The
central executive recalls, quantifies and optimizes semantic
memory, in real-time, subject to the cues and stimuli. Since
the process is dynamic and real-time, the optimal memory
constructed by the central executive is episodic, and used for
selecting and executing the optimal action.

Memory optimization is done using a particle swarm
optimization (PSO) approach. The standard PSO (StdPSO)
[10] algorithm is mostly used for the optimization of real
problems. For discrete set-based optimization problems, the
StdPSO operators were modified and the SPSO algorithm was
created [11], [12].
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Fig. 1 Real-time episodic memory optimization

Since semantic memory in this study is defined as a set of
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discrete memory items and the SBPSO is used for the memory
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optimization process, the SPSO uses the AEMQ algorithm
(discussed in detail in Section III) to evaluate the fitness of
each semantic memory item. The optimal set of semantic
memory items forms the episodic memory, from which the
optimal episodic memory item is selected. Finally, the action
corresponding to the selected episodic memory item is
executed.

III. METHODOLOGY

The AEMQ algorithm is described in terms of a UAV,
executing a mission. The AEMQ uses sensory stimuli,
received from the UAV, along with a set of cues and semantic
memory, provided by a domain expert, to quantify a semantic
memory item. Assume that the semantic memory of UAV is
defined as the set of all valid state-transitions, then it is the
task of the executive to construct the optimal episodic memory
from which it is to select and pass the optimal control
command to the UAV flight controller.

Note that, since the episodic memory generated is temporal
and will become obsolete when either the sensory stimuli or
cues change, the approach is more similar to Cowan’s
attentional focus theory model.

A. Sensory Stimuli
Input stimuli is defined as:

@" = {9}, ¢}, .. Oh,} (M

where @], i = 1,..,n,r is the evidence parameter representing
the evidence received from the environment.
B. Cues

The cues are defined are defined as:

o™ = {pl" 0%, .. iy} 2

where " € [Ib™,ub™], defines a

constrained to specified lower and upper boundaries.

j=1,..,nem cue,

C.Semantic Memory
The semantic memory (SM) is defined as the set of state-

transitions which governs the behavior of the UAV:

SM = {‘L’l, Ty, wee) ‘L'nLTM} 3)

where 7, € SM, k = (1, ..., |[SM|) is a memory item, representing
a state-transition in the SM. The state-transition is a tuple,

T = (v.1,84, 85, A, F) 4)
where v+ ={0,1} indicates whether the transition is valid,
n € Z* is an objective identifier assigned to the transition, S,
and § p are the start and end states of the state-transition,
respectively, A ={ay,..,a,,} is a set of actions and F =
{P1. D2, ... Dy, } is the trigger formula for the transition and
consisting of a set of simple logic propositions.

Each proposition p; € F,l = (1,..,ng) is defined by a
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domain expert and is a tuple,

®)

p. = (@ , logical_operator,]" )

where the sensory stimuli and cues are related by a
logical_operator, from the set {>,<,=}, to form simple
propositions of the form:
(oF > o), (of < o]*) and (o] = o) (6)
Any non-numeric argument is discretized to a numeric
value, prior to quantification of F.
The indicator ¢, the objective identifier n, the actions A

and all the propositions p; are defined and maintained by the
domain expert.

D.Memory Quantification Preparation

In order to perform the quantification of a state-transition
Tx, a problem-specific model is constructed before it is
presented to the MEP equation for quantification. Given a
state-transition T, € SM the model is formally defined as a
tuple,

M, = (V,X,F,A) (7)

The set of variables are represented by V= {{v‘@} V]
,{vf’, vy, ...U-B:P} U {v{“, ve, ... vﬁA}} where v@ is the query
variable, vg’ ,p =1, ..., np is a predictor variable, representing
a proposition in the trigger formula and v{*, [ = 1, ...,n,4 is an
association variable. Note that, since the propositions are
independent, they will not have any effect on the query
variable, unless relevant associations are defined between the
query variable and appropriate predictor variables. The
associations are problem-specific and are defined by the user.

Let m,, = |[(vQu{vf, v}, ..o }|, and n;, = 2", then a
mq, X ng, constraint matrix, X is the state space of the trigger
formula and defines all the joint statements of {v@}u
{vF, v, ..v} }. A binary constraint function, F(X = x;;), i € n,,
and j € m,, assigns a boolean constraint to each variable in the
state space. Let ny =(1+np+ny), then vector F=
((F1),(F2), ..., (F,,)), np = ny are constraint averages for each
of the variables in V . The vector A = (44,2, ... 4y, ), g = Ny,
represents the Lagrange multipliers, calculated for each
variable in V, using (17).

E. Representing Real-Time Stimulus and Cue Relationship

The degree of belief in a memory item being recalled is
influenced by current stimuli and current cue. Therefore, the
quantification of the memory item must consider in both. Each
constraint average (F,.) € F in (7) represents the degree of
belief in a proposition, given the real-time stimuli (evidence)
received from the environment. In this study, the constraint
average is calculated by interpreting a proposition as a degree
of believe, (probability), derived from a distance calculation.
Fig. 2 illustrates two example state-transitions with their
corresponding transition rules (propositions). A constraint
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average for the proposition is calculated by measuring the
progress of the current sensory stimulus @], relative to the
operational bounds of the mission task. The result is a
probability assigned to the proposition.

The constraint averages, F are calculated as follows: Firstly,
given the proposition p;, calculate the total operation distance
dj", using the upper and lower bounds of the mission
argument:

®)

d" = ub/" — b}
Calculate the current distance d] of the sensory stimulus,

¢} with respect to the upper and lower bounds of the cue, ¢,

according to the logical operation of the proposition:

of =" 5 if pr= (9] > @)
gro Jur el ifp= (oF <o)
! s if o= (9f # o)
1 s if o= (9f = o)

©

Use (8) and (9) to calculate a real valued distance, in the
range [0,1], for the proposition:

4 (10)

Pr(p) = ar
where Pr(p;) represent the relative remaining distance of ¢,
within the boundaries [b/" and ub" as a probability. Once the
distances for each proposition have been calculated, the
distances for each of the joint statements can be calculated. To
illustrate, let v@ = p,, v¥ = p; and v¥ = p,, then the state space
consists of 23 = 8 joint statements. The joint distances, for the
predictor variables are calculated as follows:

@

Hovering

l3l ;®
1

Fis =( P p,)
P = ((/’|r < (DT) (Stimulus UAV position is less than cue position)
Pi— = ((/),r > (DT) (Stimulus UAV energy level is above cue limit)
where, (p}n eDme,ub;"} and objective is Ubjm

Flying

Il ub"
i ((0|r<|b, ) ((p,r>|bj ) r (go,r<ubJ ) (golr > ubj ) 3
- - 9 g g
Outside bounds Operational range Outside bounds
| dP =ub" —IbP §
i Pr(pp_;)=(ub] ¢ )/d]
] Pr(py)=(gf ~Ib])/d] |
Fig. 2 Interpreting stimuli of two state transitions as probabilities
dy,p, = dp, +dp, (11) With all the joint distances of the joint statements available,
the respective constraint averages can now be calculated.
dp 57 = dp, + (1 —d,,) (12)  Firstly, the constraint average (F,) of the query variable p, is
set to 1.0. The constraint averages for the predictor and
dpp, = (1 —dp,) +dp, (13)  association variables are then set as follows:
dpp; = (1—dp,) +(1—dp,) (14) F=
(d (dli1pz+dp1ﬁ) (dP1F2+dIT1PZ) (dp1pz+dp1ﬁ) (dp1p2+dﬁpz) dpﬂz)
Po’ ds ’ ds ’ a5 ’ ds dp

The overall distance df, represented by the probability
distribution over all the propositions of the trigger formula, is
calculated by:

df = (dp1p2 + dp1ﬁ + dﬁpz + dm) (15)
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(16)

Next, the Lagrange multipliers are determined. The duality
between the Lagrange multipliers and the user-defined
constraint averages, allows the Legendre transform to be used
to derive the Lagrange multipliers:
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mtk

Lerans = A =ming, (InZQy, Ay . 2) = ik A4E)) - (17)

The multipliers are derived by varying the values of A,
while keeping the constraint average, (F;) fixed, until Lyqns
reaches a minimum.

F. Memory Quantification

Jaynes’s seminal paper on the MEP [13] utilizes the
principles of information theory, based on Shannon’s work on
communication theory [14]. Jaynes’s MEP is particularly
useful for inference, where information is incomplete.

Given the model M, , the probability distribution, Q =

Tk
(ql,qz, an), nq = ng,over the variables (propositions) of the
trigger formula can now be calculated. Given the m;, X n,,
constraint matrix and let i €n, and j€m,, the MEP is

formally defined as:

__ 1 - Tk A4 (x=x)
(Qilml’k)_me j=1 i

(18)
where, Z(A3, 2, .. 4) = X, D=t MFIX=ED 7 i the partition
function which ensures the probabilities are assigned between
0 and 1. The Lagrange multipliers are represented by 4;,
j=1,..,k and F;(X = x;) assigns a real-world, domain-specific
constraint, to the state i of variable j.

The memory can now be evaluated, using the probability
distribution Q. For example, a memory item with two
characteristics (rules) rules, t; and t,, will result in a
probability distribution of Q = (q4,92,93,94), Where, ¢, =
pr(71,72), 4z = pr(1,72), 43 = pr(71,72), 4a = pr(71, 7).

In this study, the quantification II;, of the memory item
Ty € SM is defined as:

I, =v X pXx qq (19)
where, v = 1 indicates a valid state-transition and v =0
indicate an invalid state-transition. A reward p is applied as:

_ 0 lf (Tka * S“curren[)

- {1 s if (t0, = 5

where, Ty is the start state of the state-transition currently
being evaluated and S,
current
selected by the executive.
Note that the quantification is user-defined and problem
specific. It is left to the reader to define problem-specific
quantifications using the probability distribution, Q.

is the current state, previously

G.Executive Action-Selection and Execution

The SPSO uses the memory quantification (19) to evaluate
the fitness of the memory item (i.e. state-transition in this
study). Ultimately, the optimal set of memory items represent
the episodic memory which is used by the executive to select
the optimal action to take next.

EM = {1],73, ..., The } (20)
where, 75, € EM, k = (1, ..., |[EM|) is an optimal memory item
which represents a state-transition in the SM.

From the episodic memory EM, the executive can now
select the optimal memory item (state-transition) and pass the
associated action a,, € A, defined in (4), for execution.

Note that it is possible that |[EM| > 1. This is because the
memory quantification is performed statistically and may be
equal for some memory items. Again, it is left to the reader to
define (19) as appropriate for the problem at hand. In this
study, only valid state-transitions evaluate to non-zero.

IV. EXPERIMENT

A. Experiment Design

The methodology is experimentally evaluated by
simulation, where a UAV autonomously executes a “medical
delivery” mission. The mission is defined as a list of cues
(tasks) and is described as follows:

| 11 11 v
Home Collection Delivery Charging
Point Point Point
[ ] >@ > >@
A

T I

e

a

UAV,

l

4—
—

A 4

VAV,

UAV,
ma
8

Fig. 3 UAV Mission design

From the Home (I) location, arm the motors, ascend to a
specified operational height and fly to the Collection point
(II). Descend and collect the cargo, then ascend to the
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specified operational height and fly to the Delivery point (III).
Descend at the delivery point and deliver the cargo. Ascend to
a new operational height and fly to the Charging point (IV) for
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recharging. Descend on the charging point and disarm the
motors. The mission is illustrated graphically in Fig. 3. Table I
lists the UAV states.

TABLE 1
UAV STATES
S1 —Motors Off S2 — Motors On S3 - Ascending
S4 - Hovering S5 - Flying S6 - Descending

S7 - Rotating S8 — Acquiring Cargo S9 — Releasing Cargo

TABLEII
UAYV STATE-TRANSITIONS

sl s2 s3 s4 s5 s6 s7 s8 s9

sl t; ty t3 ty t tg t, tg ty
s2 tio ty tiz t tig tis t ty7 tig
s3 tio tao tz1 tar t23 tog tzs t2e ta7
s4 tzg tzo t3o t3; t3; t33 3, 35 36
s5 t37 tsg 39 tyo ty ty2 ty3 Lo tys
s6 tsg ty7 tag tyg tso tsy tsa tss tse
s7 tss tse ts7 tsg tso teo te1 tez tes
s8 toa tes tes te7 tes teo t70 t71 t72
s9 t73 74 75 76 t77 t7g t79 tgo g1

Table II shows the SM, representing all the state-transitions
of the UAV and is defined by the domain expert. Complex
(logic-based) state-transitions are shown in shaded/italic/bold.

B. Experiment Setup

The mission was simulated using the AirSim/Unity
simulator, with flight-control routines developed in C++. The
robo-cognitive architecture was implemented using .NET/C#

code and integrated with the simulator via the Redis in-
memory data cache.

C.Results

Figs. 4-6 show the behavior of the UAV in the simulation.
Fig. 4 shows the successful collection of the medical package.
As the UAV approaches its waypoint, it must adjust its
velocity in order to avoid overshooting. Fig. 5 shows the
autonomous velocity adjustment, as the UAV approaches the
delivery point.

As the UAV approaches its target, the fitness reduces from
0.35 to 0.28 and the velocity of the UAV (indicated in the
window left) is automatically adjusted accordingly from
8.00 m/s to 2.24 m/s. Fig. 6 shows the successful delivery of
the medical package as per the “delivery” cue in the mission.

A video of the full mission can be viewed at [15].

V. DISCUSSION

A. Autonomous Velocity Control

Fig. 7 shows the various velocity adjustments, related to the
fitness (calculated using (19)), for the whole mission. The
graph shows velocity/fitness reductions at the points of
“collection”, “deliver” and “charging”.

B. Resulting State-Flow

Fig. 8 shows the state flow generated for the mission, where
each state transition corresponds to an optimal action selected
and executed.

< Unity 20182171 Personal (64bit) - DroneDema.unity - UnityDemo - PC, Mac & Linux Standalone <DX11> =

| W HelloDrone i

1.03034)

]
Altitude

[21:50:02] SETTING P
UMrEmm DebugilogiObject)
[21:50:02] Collision Count: 0 VehiclemSimpleFlight
| O B Encie BabuniLostabiect
| (i) [21:50:02] Vihicke cannot be dinarmed bacause t i nat in Active, A
mmmm ammm;mm
() [=ea antrol was successful 30 VehicleSimpleFight
E‘wﬂt ﬂd‘nl!i-wlohnﬂ
[21:50:02, d 30 VehiclemSimpleris
(O3 et e
@ [u:an 02] Collsion Count: 0 Vehicle = SimplePlight
UnityEngine.DebugtLog(Object)
1:50,02] Vehicle cannot be disarmed because it s net in Active, Ar
UnityEngine, CebugiLog{abject)
iestApiContral mas successful 30 Vehicle=SimpleFight
(OBjest)
ehicle is already armed 30 Vahicle=SimpleFlight
Eml DebugileglObjest)
1:50:02] Did Hit
mmwnr.nﬂumlomd
(D SETTING PARENT DRONE
mmaqm. Debugilog(Object]
[21:50:02. ]Cnﬁbn Count: 0 Vehicle=SimpleFlight
(object)

{21:50:02) VM innot be disarmed because it is not in Active, Ar
e
150:02] requestApiCentral ‘successful 30 Vehicle=SimpleFlight
(¥ o et i s
() 2501021 vahice i iready armed 30 Vehice=Simpiefiaht
R'!npmb DebugiLoglObject]
@ 02] Colision Count: O Vehicle=SimaleFlight
Unmr!mm DMUM(O‘M
@ [21:50102] Vehicle cannot be disarmed because it is not in Active, Ar
UnityEngine.Debug:Logl Object]
[21:50:02] requestapiContral successful 30 Vehicle =Simpleflight
(L) GnlsEngine.bebunlag(obiech
Q [21:50:02] Vehicle is already armed 30 Vehicle=SimpleFlight 1
UnityEngine.Debug Log{Object) I

UAVControl_v1_0

Fig. 4 Successful collection of the medical package
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Fig. 8 Resulting action selections

Each cue (task) is repeatedly executed (see “Fly” state in
Fig. 8), until the task objective was reached. Due to some
lagging between the AirSim simulator and Unity games
engine, it was observed that, at high velocity, the UAV would
overshoot its target destination in the Unity games engine, but
the target position in AirSim would be correct, causing the
UAV to miss its objective. However, with the autonomous and
dynamic velocity control, the UAV would autonomously

International Scholarly and Scientific Research & Innovation 14(1) 2020

correct its positioning, by repeating the task, while constantly
reducing its velocity according to the fitness of the task. At
low velocity, the positioning of the UAV was more accurate
and it could achieve its objectives. With the autonomous
velocity control, the UAV was able to successfully collect and
deliver the medical package in the simulated mission.
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VI. CONCLUSION

In real-world scenarios, semi-autonomous systems, such as
exploratory robots, operate in environments which may
constantly change. Therefore, it must be simple and
computationally inexpensive to alter a robot’s SM and/or cues
in real-time. This is especially important for remotely
deployed robotic systems, such as extra-terrestrial exploration
robots, where communication time and bandwidth are at a
premium.

Future study could include the application of metamemory
[9], to further optimize memory recall, through real-time
clustering of the episodic memory items. This could extend
the approach in this study to include the generation of episodic
memory for multiple, concurrent tasks.
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