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ABSTRACT Objectively assessing the perceptual quality of an ocular fundus image is essential for
the reliable diagnosis of various ocular diseases. A fair amount of work has been done in this field to
date. However, the generalizability of the current work is limited, as the existing quality models were
developed and evaluated with data-sets built with limited subjective inputs. This paper aims at addressing
this limitation with the following two contributions. First, a new fundus image quality assessment (FIQuA)
data-set is presented, containing 1500 fundus images with three classes of quality: Good, Fair, and Poor.
Also, for each image, subjective scores (in the range [0-10]) were collected for six quality parameters,
including structural and generic properties of the fundus images. Second, a newmultivariate regression based
convolutional neural network (CNN) model is proposed to predict the fundus image quality. The proposed
model consists of two individually trained blocks. The first block consists of four pre-trained models, trained
against the subjective scores for the six quality parameters, and aims at deriving the optimized features
for classification. Next, the optimized features from each of the four models are ensembled together and
transferred to the second block for final classification. The proposed model achieves a strong correlation
with the subjective scores, with the values 0.941, 0.954, 0.853, and 0.401 obtained for SROCC, LCC, KCC,
and RMSE respectively. Its classification accuracy is 95.66% over the FIQuA data-set, and 98.96% and
88.43% respectively over the two publicly available data-sets DRIMDB and EyeQ.

INDEX TERMS Fundus image quality assessment, diabetic retinopathy, multivariate regression, convolu-
tional neural network.

I. INTRODUCTION
In the field of Ophthalmology, digital fundus photography
is used for the diagnosis of various ocular disorders like
Cataract [1], Diabetic Retinopathy (DR) [2], Glaucoma [3],
Age-related macular degeneration (AMD) [4]. Among all,
DR is one of the primary causes of vision loss world-
wide. For effective medical assistance to a huge number
of patients, the current number of eye specialists is inade-
quate [5]. To address the lack of the required ophthalmolo-
gists, telemedicine [6], and computer-aided diagnosis (CAD)
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systems [7] are the potential solutions. Also, today we are
heading towards mobile application based diagnosis systems
[8] for ocular diseases. However, for a reliable diagnosis,
the quality of a fundus image must be ensured. Therefore,
fundus image quality assessment (IQA) becomes an essential
process, especially in the case of automated diagnosis sys-
tems. There are two types of methods available for assessing
the quality of fundus images: (i) Subjective, and (ii) Objec-
tive. Subjective evaluation is carried out by the ophthalmol-
ogists who grade the fundus images into different quality
classes, based on their previous experience (e.g. the expe-
rience ophthalmologists have gained from their ophthalmic
diagnostic training). Subjective quality evaluation is assumed
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FIGURE 1. Pie chart summarizing the analysis of the fundus IQA
algorithms in the literature.

to be the most reliable method, since ophthalmologists are the
ultimate users of fundus images. However, it is an expensive
method in terms of time, effort, andmoney. In contrast, objec-
tive quality assessment methods are mathematical models
that classify the fundus images into categories of quality with
the intention to estimate what obtained from subjective meth-
ods. For the objective quality assessment of natural images,
much work is done, and various IQA metrics have been
proposed to date [9]. In fewworks, IQAmetrics developed for
natural images have been adopted for medical images [10].
Specific IQA algorithms have been recently been proposed
for different medical images, like magnetic resonance imag-
ing (MRI), ultrasound imaging, and also fundus images [9].
The next subsection contains an overview of the previous
fundus IQA works with theirs limitations. For further details,
the reader can refer to [11].

A. PREVIOUS WORKS
Based on the study of the literature, fundus IQA algorithms
can be classified into three categories: (i) Similarity-based,
(ii) Segmentation based, (iii) Machine and Deep Learning
based. Fig. 1 shows the percentage of the research works that
adopted each type of methodology.

1) SIMILARITY BASED METHODS
These compare the features of the target fundus image with
those of a set of good quality fundus images. Lee and
Wang [12] proposed the first work on fundus IQA in 1999.
A similarity measure was calculated between the intensity
histogram of the reference template and the target image.
The fundus images were graded into two classes of qual-
ity: good and poor. A set of good quality fundus images
was used to form the reference template. Later, in 2001,
Lalonde et al. [13] presented a work that uses the distribution
of local intensity and edge magnitudes to derive the similarity
between reference and input fundus image. The major limi-
tation of the methods under this category is the assumption
of a universal reference template of a good quality fundus
image. Also, these methods are vulnerable to different types
of distortions.

2) SEGMENTATION BASED METHODS
These involve the analysis of segmented objects from fundus
images, like the optic disc, or blood vessels. Usher et al. [14]

proposed a method that performs blood vessel segmenta-
tion and calculates the vessel density as a quality indicator.
Kohler et al. [15] analyzed blur by segmenting the blood
vessels and counting the pixels in the segmented area with the
inclusion of generic image features. Inspired with a similar
idea, the authors in [16] used the contrast property of the area
corresponding to the blood vessels as a quality parameter. The
methods under this category perform well over distortions
like blur and uneven illumination. The limitations of segmen-
tation based methods are the fix assumptions in terms of field
of view, shape, and location of the structures visible in the
image. These assumptions lead to low performance accuracy
over cross data-set evaluation.

3) MACHINE AND DEEP LEARNING BASED METHODS
These classify the fundus images into two classes of quality,
i.e., Good or Poor, by extracting some meaningful features
from the image. Most of the works published for fundus
IQA are based on this category of methods. We mention
here a few recent works. Wang et al. [17] presented a fun-
dus IQA algorithm that uses human visual system (HVS)
based feature extraction methods. It is one of the few works
where the authors have used a data-set of fundus images
with subjective quality scores. It is important to mention
here that subjective ratings were collected for three generic
quality parameters on a scale of two (i.e., 0 or 1): (i) uneven
illumination, (ii) blur, and (iii) contrast. All three parameters
were extracted using multichannel sensation, just noticeable
blur (JNB), and contrast sensitivity function (CSF) meth-
ods, respectively. Finally, the extracted features were used to
divide the fundus images into the two categories of quality.
Next, with a similar idea to [17], Shao et al. [18] pre-
sented a retinal IQA method. Illumination, naturalness, and
structural parameters were quantified to classify the fundus
images into two classes with a reported accuracy of 94.5%.
Dias et al. [19] presented a fundus IQAmethod that uses four
generic properties of an image: illumination, color, focus, and
contrast, to classify the fundus images using a feed forward
neural network. Recently, Abdel-Hamid et al. [20] analyzed
five fundus image properties related to content and clarity:
sharpness, illumination, homogeneity, field definition, and
content. These quality indicators are derived using a wavelet-
based feature extraction method.

Recently deep learning methods have achieved a stand
out performance accuracy in IQA problems [21]–[23]. Using
the advantages of CNNs, Yu et al. [24] presented a deep
learning-based architecture that fuses the features extracted
from convolution neural networks (CNN) and saliency map
to classify the fundus images into two categories of quality.
Similarly, Tennakoon et al. [25] also presented a shallow
CNN network with four convolution and two fully connected
layers for two-class retinal quality classification. Recently,
Zago et al. [26] and Chalakkal et al. [27] have used the virtues
of pretrained model architectures (GoogLeNet [28], AlexNet
[29], and ResNet [30]) to classify fundus images into two
categories.
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B. LIMITATIONS
A careful study of the literature leads to the conclusion that
the following limitations exist in the state-of-the-art of fundus
IQA research.

1) FEW SUBJECTIVE INPUTS
According to a study [19] held at the University ofWisconsin-
Madison, the quality of a fundus image can be assessed using
the following quality parameters: focus and clarity, field def-
inition, visibility of the structures (i.e., macula, optical disc,
and blood vessels). However, there exist only a few fundus
IQA works that included a subjective opinion of a medical
doctor about these quality parameters. As mentioned above,
in [17] the authors have included the subjective evaluation
of the fundus images using three generic quality parame-
ters. However, the assessment of structural properties is not
included and generic parameters give global quality infor-
mation. To get the information about the local quality of
an image, the evaluation of structural parameters is essen-
tial. Also, the ratings were collected on a scale of only two
numbers (0 and 1), which is too small to identify the erro-
neous subjective inputs. Further, only three medical doctors
participated in the subjective assessment, which also limits
the generalizability of the data-set. In order to get a better
understanding of the perceptual quality of a fundus image,
it is essential to collect subjective opinions for both generic
and structural quality parameters.

2) CATEGORIES OF QUALITY AND SCOPE OF
ENHANCEMENT
In the case of medical images, the IQA process aims to find
out their diagnostic usefulness. Hence, fundus IQA methods
are used to classify the images into different categories of
quality. As shown in Fig.1, most of the fundus IQA algo-
rithms are developed using machine learning-based classi-
fication algorithms, with the aim to classify them into two
categories of quality: Good and Poor. However, in real-time
imaging scenarios, there also exists a type of fundus images
that neither fall into good nor in the poor category. For
example, the fundus images shown in Fig. 2 do contain visible
artifacts, but still can be used for the diagnosis by the medical
doctors. Hence, it cannot be put into ‘‘Poor’’ category of
quality. At the same time, these images might lead to wrong
diagnostic results from an automated diagnosis system; hence
also should not be labeled as ‘‘Good’’.

Recently many methods aiming at enhancing the visual
quality of fundus images [31]–[38] were published. A fully
automated diagnosis system requires an effective fundus
IQA algorithm that can also determine the requirement of
enhancement. A binary classification based IQAmethod may
not be able to provide such information. Hence, there must
exist one more category of quality indicating an ‘‘average’’
or ‘‘fair’’ quality fundus image.

In order to address the above mentioned limitations, our
contributions in this paper are as follows:

FIGURE 2. Examples of average quality fundus images: (a) Blur, (b) Dark,
(c) Uneven Illumination, and (d) Bright.

• A Fundus Image Quality Assessment (FIQuA) data-
set of 1500 macula centered fundus images has been
created, with three categories of quality: Good, Fair,
and Poor. To get a clearer understanding of the ophthal-
mologists’ perception, for each image in the data-set,
subjective ratings in range of [0, 10] have been collected
for six quality parameters, both structural and generic.
To increase the generalizability of the data-set, subjec-
tive assessment is carried out by fifteen accomplished
ophthalmologists.

• A multivariate linear regression-based convolutional
neural network (CNN) model is proposed for the objec-
tive quality assessment of fundus images. The proposed
model, trained with the help of the six subjective inputs,
leads to achieving high classification accuracy.

To the best of our knowledge, the two contributions stated
above have never been proposed earlier. The structure of the
rest of the paper is as follows. Section II contains the detailed
introduction of the proposed FIQuA data-set, including an
analysis of the collected data. Section III explains in detail
the proposed CNN model for fundus IQA. Section IV con-
tains a detailed analysis of the experimental results. Finally,
Section V discusses the conclusions and future work.

II. THE FUNDUS IMAGE QUALITY ASSESSMENT (FIQuA)
DATA-SET
A. DESCRIPTION AND PECULIARITIES OF THE
PROPOSED FIQuA DATA-SET
A total of 1500 fundus images were taken from the data-
set provided by EyePACS at Kaggle.com [39] for the DR
detection challenge. Ophthalmologists were asked to grade
all the pictures into one of the following three categories:
Good, Fair, and Poor. The definitions for the overall quality
classes are given below:
• Good: The quality of the given fundus image satisfies all
the necessary expectations based on quality parameters,
and the image is deemed reliable for the diagnosis.
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TABLE 1. Classification of the six quality parameters for the subjective
quality assessment.

• Fair: The quality of the given fundus images does not
satisfy all the necessary expectations, but at the same
time the image may support a diagnosis in some con-
texts.

• Poor: The quality of the given fundus images is not at
all satisfying the necessary expectations and surely not
reliable for the diagnosis.

It is to mention that there is an equal number of images
in each category of quality, i.e., 500 images per category.
As mentioned earlier in Section I-B, the quality indicators
for fundus images are: focus and clarity, field definition,
visibility of the macula, optical disc and blood vessels. These
include both structural and generic fundus image properties.
Also, a careful study of the previous work leads us to con-
clude that two types of quality parameters are used by the
researchers are: (i) Structural, and (ii) Generic. Therefore,
the identified six quality parameters are classified under two
categories: (i) Structural, and (ii) Generic. Table 1 provides
the classification of the quality parameters under the two cate-
gories. Throughout the paper F1-F6, as mentioned in Table 1,
will be used to represent the respective quality parameter. The
ophthalmologists were asked to provide ratings for these six
different quality parameters of fundus images on the scale of 0
to 10, where a higher number indicates better quality. A total
of fifteen ophthalmologists have participated in the subjective
quality assessment (SQA) process. The ophthalmologists are
from prestigious medical institutes in India with more than
5 years of experience. The two participating hospitals are All
India Institute of Medical Sciences (AIIMS), Jodhpur and
Mathura Das Mathur (MDM) hospital Jodhpur, India. Here,
AIIMS is an institute of national importance. The number
of experts was selected according to the recommendations
of the International Telecommunication Union (ITU) for the
subjective evaluation of images given in ITU-R Rec. BT.500
[40]. We sought the services of medical doctors across the
spectrum of expertise and experience to provide inputs on
the quality of the images. A maximum of 40 images has
been used for subjective quality evaluations at a time to get
the required data from the ophthalmologists. For illustration
purposes, through Fig. 3 and Table 2 the output of the SQA
process is presented. Fig. 3 contains samples of the fundus
images from the FIQuA dataset and Table 2 the respective
subjective ratings.

B. ANALYSIS OF SUBJECTIVE QUALITY
ASSESSMENT
The details of the subjective study are reported below,
together with an analysis of the results. The study aims at:

FIGURE 3. Samples of the fundus images from FIQuA dataset.

TABLE 2. Sample of the subjective scores and corresponding quality
class graded by the ophthalmologists for the respective images
shown in Fig. 3.

• validating the collected data inputs;
• providing a better understanding of ophthalmologist’s
visual perception, by analyzing the relationship between
the physical changes in quality parameters and the cor-
responding changes in visual perception.

Due to human errors and variability across subjects, dis-
similarities across the opinion scores still exist. The outliers
were detected and removed using the Median Absolute Devi-
ation (MAD), given in the equation below:

MADN = c median(|Xi − median(X )|) (1)

where c = 1.483 and Xi is the score provided by the medical
expert i, with i = 1, 2, . . . ,N where N is the number
of medical experts (i.e., the median is calculated over the
opinion scores of the different subjects on the considered
image/feature). After outlier removal, the final subjective
score value for a particular feature is derived by averaging the
remaining values. The MADmethod considers an element as
an outlier if it is more than three times the MAD from the
median value. The MAD method is preferred over the mean
plus-minus three standard deviation method because it does
not pre-assume the distribution of the data and is efficient for
a small sample size [41]. The ground truth for the overall
image quality class was selected by choosing the median
value from the inputs provided by all the medical doctors.
Fig. 4 illustrates the range of subjective values obtained for
the features for each class. We can observe that the majority
of the subjective values for each feature are in the range of
10 ≥ SV > 7, 7 ≥ SV ≥ 5, and 5 > SV ≥ 1 for the
good, fair, and poor classes, respectively. Here, SV represents
subjective scores. The values of F1-F6 have been used to
train various classifiers to classify the fundus image into the
Good, Fair, and Poor category. The data was split into an
80-20% ratio for training and testing, i.e., 1200 for training
and 300 for testing. The results in Table 3 show that the
feature set made using the subjective score values gives high
classification accuracy. It is important to mention here that
all the cases of wrong classification occurred between the
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FIGURE 4. Graph showing the range of Opinion Score values for all the six features for the three classes of quality: (a) Good, (b) Fair,
and (c) Poor.

FIGURE 5. Confusion Matrices for the each of the four classification results shown in Table 3.

Good & Fair and Fair & Poor classes. The confusion matrices
for all the four classification algorithms mentioned in Table 3
is shown in Fig.5. It validates that there is no single sample
with wrong classification between Good and Poor classes.
The obtained results are important because the objective was
to reduce the number of the wrong classification between
Good and Poor classes and simultaneously determine the
need for enhancement in the fundus images. Furthermore,
the contribution of each quality parameter towards the per-
ceptual quality is investigated. The coefficient values derived
for each quality parameter using the classification algo-
rithms have been applied for the analysis mentioned above.
In Table 3 it can be observed that one of the highest clas-
sification accuracy is achieved by the SVM algorithm. The
coefficient values obtained using the SVMmethod are shown
in Table 4. The obtained coefficient values indicate that ‘‘Vis-
ibility ofMacula (F2) and Color (F4)’’ are the two parameters
that mostly affect the perceptual quality of the fundus images.
Also, the least importance is given by the ophthalmologists
to ‘‘Visibility of Optical Disc (F3) and Visibility of Blood
Vessels (F1)’’.

III. FUNDUS IQA MODEL
The proposed fundus IQA model is a two-step process:
Block-1: Multivariate linear regression-based CNN model
that extracts optimized features against training for the sub-
jective scores of F1-F6, and Block-2: Fusion of the optimized
features obtained from step Block-1 for the classification. The

TABLE 3. Comparison table of accuracy (in %) of various classifiers for
individual classes and overall. SVM: Support Vector Machine (Polynomial
Kernel); NB: Naive Bayesian; RF: Random Forest; SF: SoftMax.

TABLE 4. Coefficient values obtained for F1-F6 from SVM (Polynomial
Kernel) classification method.

comparison between the previous fundus IQA work and the
proposed model is illustrated in Fig. 6. CNNs have proved to
give extraordinary results not only in case of image classifi-
cation [28], [29] and object detection tasks [42]–[44] but also
for quality assessment [45]–[48]. The motivation for using
CNNs is the reported performance of CNNbased IQAmodels
[21]–[23] for natural images. These reported works proved
that CNN models are very effective for IQA and outperform
the state-of-the-art methods. The architecture of the proposed
fundus IQA model is shown in Fig. 7. The next subsections
provide the description of the aforementioned steps.

A. MODEL DESCRIPTION
The proposed model is built leveraging on two popular con-
cepts of learning based algorithms: (i) Transfer learning [49],
and (ii) Ensemble learning [50]. As anticipated above and
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FIGURE 6. Comparison Flow Chart of the state of the art fundus IQA
methods and the proposed method.

illustrated in Fig. 7, the model is divided into two blocks.
A detailed description of each block is given below:
Block-1: The objective of this block is to derive the opti-

mized features for the final classification. Transfer learning
has been used to achieve the objective. Transfer learning is
a popular machine learning strategy where weights obtained
from popular pre-trained networks on ImageNet [51] alike
large data-sets, are used as initial parameters to train another
network. These pre-trained CNN models, like AlexNet [29],
GoogLeNet [28], ResNet [30], DenseNet [52], Xception [53],
etc., are used to solve other object detection and classification
problems, not only in the domain of natural images but also
for other image domains. The reason for adopting the transfer
learningmethodology is the limited number of fundus images
available for the training phase. Training a network from
scratch requires a sufficiently large number of images to get
the optimal values for the network weights. Recently, transfer
learning methods are also used to address the challenges of
fundus image quality assessment [26], [27], [54].

As an initial setting for the training, we have used the
weights of the following four pre-trained models: ResNet
[30], DenseNet [52], Inception-V3 [55], and Xception [53].
ResNet is a deep residual learning based CNN architec-
ture proposed by He et al. [30]. ResNet50, ResNet101, and
ResNet152 are its variants, where 50, 101, and 152 indicate
the number of layers present in the architecture, respectively.
DenseNet{121, 169, 210} was proposed by Huang et al. [52]
in 2017. The ‘‘dense’’ term indicates that each layer of this
CNN model is connected to every layer of the architecture.
Here 121, 169, and 201 indicate the depth of the model. Next,
Inception-v3 is a successor version of GoogLeNet that also
named Inception-v1. Each inception layer is built with six
convolution layers, followed by one pooling layer. Finally,
the Xception architecture is a linear stack of depthwise sepa-
rable convolution layers with residual connections [53]. Each
model is trained individually on the subjective scores of
F1-F6, by adding five fully connected (FC) layers at the end of

the each network. The details of the FC layers are as follows:
FC1: 1024 × 1, FC2: 512 × 1, FC3: 120 × 1, FC4: 24 × 1,
FC5: 12 × 1. Here the first four FC layers are followed by
the rectified linear unit (ReLu) [56] activation function. The
mathematical representation of the ReLu is given below:

y = max(0, x). (2)

It produces the output y as x if the value of input x is positive
and 0 otherwise. The ReLu activation is used because of
its advantage over sigmoid and hyperbolic tangent activation
functions as it avoids the vanishing gradient problem. The last
FC5 layer, with the inclusion of sigmoid function, performs
multivariate regression to derive the six numerical values
corresponding to the F1-F6 quality parameters.

Fig. 7 shows that the CNN model takes the input image of
size 512× 512× 3 and in the fifth FC layer transforms it into
a feature vector of size 12× 1. In the last FC layer the model
performs the multivariate linear regression onto the desired
feature vector of size 6× 1. Let X(i)12×1 be the input feature
vector obtained at the fourth FC layer and Y(i)6×1 is the asso-
ciated score vector for the ith image. Then, the multivariate
linear regression model can be represented as:

Ŷi = WiXi + Ei (3)

where
• Ŷi = [ŷi1, ŷi2, ŷi3, ŷi4, ŷi5, ŷi6] is the 6 × 1 predicted
score vector for the ith image.

• Xi = [xi1, xi2, xi3 . . . ., xi12] is the 12 × 1 input feature
vector for ith image.

• Wi = [Wi1,Wi2,Wi3 . . . .,Wi6] is the 6 × 12 weight
matrix for the ith image.

• Wij = [wij1,wij2,wij3, . . . ,wij12] is the 1 × 12 weight
vector for jth feature. Here, j = 1, 2, 3, . . . 6.

• Finally, Ei = [ei1, ei2, ei3, ei4, ei5, ei6] is the corre-
sponding error matrix of size similar to Y.

It is important to mention that the batch normalization [57]
method is used for the regularization of the model to avoid
the over-fitting problem. Batch normalization is preferred
over the dropout [58] method as empirical results were better
than in the case of batch normalization. All four models
were trained to achieve the maximum correlation with the
subjective scores of F1-F6. Furthermore, once each of the
models was trained for the maximum correlation, the values
of FC3 layers from each model were assembled and trans-
ferred to Block-2. The accuracy of the correlation results is
discussed in Section IV.
Block-2: This block uses the concepts of both transfer

learning and ensemble learning. The objective of ensemble
learning is to collect the predictions from different models to
conclude with better prediction results [50]. The optimized
features of the FC3 (120 × 1) layer from each of the four
models of Block-1 are combined to form the FC6: 480 × 1
layer and transferred to Block-2. Block-2 consists of 5 fully
connected layers: FC6: 480× 1, FC7: 120× 1, FC8: 24× 1,
FC9: 12×1, FC10: 6×1 and finally the classification results.
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FIGURE 7. Proposed CNN Model. FC: Fully Connected Layer, FC1: 1024× 1, FC2: 512× 1, FC3: 120× 1, FC4: 24× 1, FC5: 12× 1, FC6: 480× 1, FC7: 120× 1,
FC8: 24× 1, FC9: 12× 1, FC10: 6× 1, CR: Classification Result.

It is important to mention that the training of each block
presented here is done individually. Block-1 was trained until
the optimized featureswere derived. Afterwards, Block-2was
trained to get the optimized classification results. Similar to
the previous block, the ReLu activation function follows each
FC layer in Block-2 after the FC10 layer softmax function is
applied to get the desired classification results.

B. IMPLEMENTATION DETAILS
• Pre-processing: Fundus images carry a large area of
black background that might affect the training accuracy.
Therefore, all the images were cropped to the boundary
of the fundus area in order to reduce the area of black
background. It is achieved by traversing the nearest pixel
values that are close to zero to the center co-ordinates
of the images. In addition, the fundus images provided
on Kaggle are of high resolution. Hence, each image is
further resized to the dimension of 512× 512.

• Loss Function: In Block-1, the mean square error (MSE)
function is used as the loss function, and can be repre-
sented as:

LB1 =
1
N

N∑
i=1

||(Y − Ŷ )||2 (4)

where LB1 represents the loss computed for the Block-1,
Y and Ŷ represent the actual value and predicted value
respectively, and N represents the number of samples.
Moreover, in Block-2 the categorical cross entropy loss
function is used. Its mathematical representation is as

follows:

LB2 = −
C∑
i=1

Pilog(P̂i) (5)

Here, LB2 represents the loss computed for the Block-2,
C represents the total number of classes, P and P̂ rep-
resent the actual and predicted output respectively. It is
important tomention that the softmax activation function
should be applied to the target before computing the
categorical loss.

• The back-propagation and adaptive moment estimation
(ADAM) [59] optimization methods are used for error
minimization with learning rate of 10−4. ADAM has
been performed for 1000 epochs with the mentioned
batch size of 8 images during the training process.

• Out of 1500 images, 1200 were used for the training and
300 for testing purpose. Here, 400 images were taken
from each class for training and similarly 100 images
from each category for testing.

• All the experiments were carried out on a computer
system of 2.0 GHz CPU and GTX1080 Ti GPU and the
CNN model is implemented using the Python program-
ming language with Keras library.

IV. RESULTS AND ANALYSIS
1) EVALUATION METHODOLOGY
Four commonly used standard measures recommended by
the Video Quality Experts Group [60] have been used to
evaluate the performance of Block-1. These are the Spear-
man rank-order correlation coefficient (SROCC), the Kendall
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TABLE 5. Correlation coefficients for the predicted values of F1-F6.

rank-order correlation coefficient (KCC), the Pearson Lin-
ear correlation coefficient (PLCC), and the root-mean-square
error (RMSE). For the performance measurement of an IQA
metric, SROCC and KCC evaluate the prediction mono-
tonicity. The other two, PLCC and RMSE, measure the pre-
diction accuracy. Higher values obtained in SROCC, KCC,
and PLCC for an IQA metric indicate higher performance,
whereas lower values of RMSE are associated with better
performance. Furthermore, to evaluate the performance of
Block-2 the following statistical parameters are used:

A =
T
N
∗ 100 (6)

P =
Tp

Tp + Fp
(7)

R =
Tp

Tp + Fn
(8)

Fm = 2 ∗
(

PR
P+ R

)
. (9)

Here A= Classification accuracy, P= Precision, R= Recall,
T = Total number of correct classifications, N = Total num-
ber of samples, Tp = true positive, Fp = false positives, Fn =
false negatives, and Fm = F-measure.

2) PERFORMANCE EVALUATION OF BLOCK-1
The feature-wise performance of each of the four models is
shown in Table 5, reporting the correlation values calculated
between the derived scores and the subjective score values for
each quality parameter F1-F6. In addition, Table 5 shows that
the highest results obtained for the SRCC, PLCC, and KCC
are 0.94, 0.95, and 0.85 respectively and for RMSE the lowest
result is 0.40. It validates that the proposed model achieves
a significantly high correlation between the subjective and

FIGURE 8. Feature-wise plot of the predicted scores versus actual opinion
scores.

derived scores. Furthermore, scatter plots with curve fitting
of the mean of predicted values from each of the four models
are shown in Fig. 8. These plots are obtained after performing
logistic regression between predicted values and subjective
OS values. These curves are obtained after non-linear fitting,
as suggested in [61]. It can be observed from Fig. 8 that the
consistency between the predicted and subjective values is
very high. Here, the size of the object represents the frequency
of the predicted values corresponding to the actual value,
whereas larger size objects correspond to a higher frequency.
It can also be observed that all the larger size objects lie in
the close vicinity of the curve, indicating a high correlation
between actual and predicted values. These high correlation
results validate that the features obtained in previous FC
layers are optimized. Now, the optimized features of FC-3 are
ensembled together and transferred to Block-2 for the final
classification of images.

3) PERFORMANCE EVALUATION OF BLOCK-2
Initially, the individual classification performance of different
variants of each of the four models has been analyzed. Here,
individual performance indicates that the 240 × 1 feature
vector derived from Block-1 is used only to train Block-2 for
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TABLE 6. Performance evaluation of different models for classification
results on FIQuA data-set.

FIGURE 9. Confusion matrix of the prediction results obtained on FIQuA
data-set from the proposed fundus IQA model.

final classification. Table 6 contains the performance results
of Block-2 with three variants of both ResNet and DenseNet.
It indicates that the Xception model achieves the highest
individual accuracy (93.33%). However, the performance of
the proposed ensemble model after the fusion of features got
approximately 2% jump on overall accuracy with 95.66%.
The confusionmatrix of the prediction results of the proposed
method is shown in Fig. 9. It can be observed from Fig. 5 and
Fig. 9 that the accuracy of the proposed fundus IQA model
is closely similar to the results of the classification using
subjective scores. It indicates that the inclusion of subjective
scores greatly helps to train the model to derive the optimized
features for the classification. Also, for illustration purposes,
two example images from the Fair category of the FIQuA
data-set are shown in Fig. 10. Here, (a) and (b) are the sample
images distorted with blur and uneven illumination distor-
tions, respectively. It can be observed from the Fig. 10 that all
the structural information is quite visible, yet due to the pres-
ence of a small proportion of distortions, ophthalmologists
labeled them as a fair quality image. The proposedmodel also
correctly classified these images as fair quality. It indicates
the robustness of the model as it efficiently mimics the visual
perception of ophthalmologists by detecting these distortions
in the image.

4) CROSS DATA-SET EVALUATION
The proposed fundus IQA model trained over the FIQuA
data-set was also evaluated over two publicly available data-
sets: DRIMDB [62] and EyeQ [54], specifically developed
for fundus IQA. The DRIMDB [62] data-set was presented
by U. Sevik. It contains 216 fundus images with three classes:
Good (125), Poor (69), and Outlier (22). Next, Fu, et al.made
a commendable effort and recently presented a large scale
EyeQ data-set. The EyeQ data-set consists of 28,792 fundus

FIGURE 10. Sample images with different distortions from the Fair
category of the FIQuA data-set that are correctly classified by the
proposed model. Here (a) and (b) represent the images distorted with
Blur and Uneven Illumination distortion, respectively.

TABLE 7. Performance evaluation of proposed method over DRIMDB and
Eye-Quality (EyeQ) data-set.

TABLE 8. Performance summary of recent fundus IQA works over
DRIMDB and EyeQ data-set. Here (+) indicates that the work also
includes fundus images from other proprietary data-sets.

images divided (with analogy to our approach) into three
categories: Good, Usable, and Reject. Table 7 contains the
classification results over the above mentioned data-sets.
The results indicate that the proposed fundus IQA model
achieves high classification accuracy over an unknown and
large scale data-set given it was trained on a comparatively
small data-set. Also, for comparison purposes, a performance
summary of recent fundus IQA works that are developed
and evaluated over DRIMDB and EyeQ data-set is presented
in Table 8. It can be observed from both Table 7 and 8
that the performance of the proposed model outperforms the
recent fundus IQA methods over the mentioned data-sets.
It is essential to mention that despite being trained over a
comparatively too small data-set (FIQuA), the performance
of the proposed model is very close to the model proposed
in [54]. It shows that the inclusion of adequate subjective
inputs not only increases the performance of the model but
also its generalizability over unknown image inputs. In our
future work, we are planning to use reinforcement learning
methods to achieve higher accuracy over the EyeQ data-set.

V. CONCLUSION
Ophthalmologists assess the quality of fundus images based
on two quality parameters: Structural and Generic. This
paper aims at assessing the quality of fundus images on
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similar grounds. First, a new data-set of 1500 images (FIQuA)
has been prepared with a total of seven subjective inputs from
ophthalmologists. Out of the seven inputs, the first six are
subjective scores for six quality parameters (F1-F6) and the
last one is the class of quality (good, fair, or poor). Second,
a new multivariate linear regression based CNN model for
fundus image quality assessment is presented. The peculiarity
of the model is that it derives the optimized features for
classification, using the subjective inputs provided by the
ophthalmologists. It consists of two blocks: Block-1 derives
the optimized features from four pre-trained CNN models:
Inception-V3, ResNet-151, DenseNet-121, and Xception that
are trained through transfer learning against the six subjec-
tive scores provided by the ophthalmologists. Further, these
optimized features are ensembled together and forwarded
to Block-2 to classify the fundus images into three classes:
Good, Fair, and Poor. The results show that the proposed
CNN model achieves a high correlation with subjective val-
ues. The correlation values obtained from CNN Block-1 for
SROCC, LCC, and KCC for each quality parameter (F1-F6)
are approximately 0.941, 0.954, and 0.853 respectively, and
for RMSE the result is 0.401. It indicates that for each of
the six features, the derived quality scores from the proposed
model are closely similar to the subjective quality scores
provided by the medical doctors. Further, using the derived
ensembled features, the classification accuracy achieved by
the CNN Block-2 is 95.66%. It proves that the inclusion of
the subjective scores helps achieving a high classification
accuracy. In the future, we are planning to increase the perfor-
mance accuracy of the proposed model over unknown image
inputs by applying domain adaptation techniques as a pre-
processing step to bring unknown test images into the training
image domain.
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