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Abstract

Hydrocarbon (HC) spills are a global issue, which can seriously impact

human life and the environment, therefore early identification and remedial

measures taken at an early stage are important. Thus, current research efforts

aim at remotely quantifying incipient quantities of HC mixed with soils. The

increased spectral and spatial resolution of hyperspectral sensors has opened

ground-breaking perspectives in many industries including remote inspec-

tion of large areas and the environment. The use of subpixel detection algo-

rithms, and in particular the use of the mixture models, has been identified as

a future advance that needs to be incorporated in remote sensing. However,

there are some challenging tasks since the spectral signatures of the targets

of interest may not be immediately available. Moreover, real time process-

ing and analysis is required to support fast decision-making. Progressing in

this direction, this thesis pioneers and researches novel methodologies for

HC quantification capable of exceeding the limitations of existing systems in

terms of reduced cost and processing time with improved accuracy. There-

fore the goal of this research is to develop, implement and test different meth-

ods for improving HC detection and quantification using spectral unmixing

and machine learning. An efficient hybrid switch method employing neu-

ral networks and hyperspectral is proposed and investigated. This robust

method switches between state of the art hyperspectral unmixing linear and

nonlinear models, respectively. This procedure is well suited for the quantifi-

cation of small quantities of substances within a pixel with high accuracy as

the most appropriate model is employed. Central to the proposed approach

is a novel method for extracting parameters to characterise the non-linearity

of the data. These parameters are fed into a feedforward neural network

which decides in a pixel by pixel fashion which model is more suitable. The

quantification process is fully automated by applying further classification
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techniques to the acquired hyperspectral images. A deep learning neural net-

work model is designed for the quantification of HC quantities mixed with

soils. A three-term backpropagation algorithm with dropout is proposed to

avoid overfitting and reduce the computational complexity of the model.

The above methods have been evaluated using classical repository datasets

from the literature and a laboratory controlled dataset. For that, an experi-

mental procedure has been designed to produce a labelled dataset. The data

was obtained by mixing and homogenizing different soil types with HC sub-

stances, respectively and measuring the reflectance with a hyperspectral sen-

sor.

Findings from the research study reveal that the two proposed models

have high performance, they are suitable for the detection and quantifica-

tion of HC mixed with soils, and surpass existing methods. Improvements

in sensitivity, accuracy, computational time are achieved. Thus, the proposed

approaches can be used to detect HC spills at an early stage in order to miti-

gate significant pollution from the spill areas.
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Chapter 1

Introduction

Intensive Petro-chemical activities around industrial facilities and oil produc-

tion sites have led to an increase in the contamination of soils with hydrocar-

bons causing serious concern to the environment [1]. Between 1988 and 2000,

a total of about 2, 475 spills were recorded in Toronto and the surrounding re-

gions with a total release of about 800, 000 litres of oil [2], also a total of about

5 million barrels of crude oil were recorded from spills in the Gulf of Mexico

in 2010 [3]. Other reported spills includes; Exxon Valdez oil spill in Alaska,

the Prestige oil spills in Spain and the Erika oil spills in France, etc [4]. Whilst

the economic significance of Hydrocarbons (HCs) is attributed to their pri-

mary use as fuel and versatile application in downstream industries, they

can have severe environmental consequences [5]. Oil exploration, processing

and production represents a potential environmental exposure of HCs and

because of these activities may result in accidental spillage thereby altering

the physical and chemical properties of soils, causing toxicity and limiting

soil quality. HCs are therefore environmentally harmful because they can

become mutagenic [6]. Since HC contamination raises serious concerns for

human health and the environment, there is the need for rapid identification

of affected areas in order to allow swift site characterization and prioritiza-

tion of remediation actions [7].

Measuring spills, particularly in large fields is often difficult because it

involves expensive and time consuming process such as inspection of large
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areas, surveillance of the affected area and other field measurements.

Remote sensing sensors mounted on airborne platforms has been a promis-

ing tool, which can be used to inspect large inaccessible areas in a short time.

Hyperspectral sensors measure signal at hundreds of wavelength ranging

from visible to the infrared region of the electromagnetic spectrum; which

provides a wealth of information to spectrally distinguish between materi-

als covered in a scene. Due to the rich information content covered by a

hyperspectral sensor, it is well suited to the task of oil spill detection and

monitoring.

Spectral unmixing (SU) is a source separation problem which has received

interest for over a decade [8]. SU is a key process in identifying the spectral

signature of different cover types (materials) within a pixel or group of pixels

and estimating their spatial distribution over an image. Pixels that contain

more than one cover type are called mixed pixels while pixels that have only

one cover type are referred to as pure pixels [9]. SU begins with identifying

the different cover types referred to as endmembers and a set of correspond-

ing fractions (abundances) that indicate the proportion of each endmember

present in the pixel [10]. SU is used to identify the mixing model as observed

on the dataset. This explains how the endmembers are mixed, and forms the

mixed spectrum as measured by the sensor. Once the mixing model is de-

fined, SU is used to estimates the endmembers and calculate the abundances

as measured by the sensor [11]. The two common spectral unmixing meth-

ods are the linear and nonlinear methods where the linear mixing methods

happens to be the common approach, this method assumes that each photon

(incident electromagnetic radiation) comes in contact with only one material

before reaching the sensor while the nonlinear mixing methods assumes that

interaction occurs at microscopic level, it copes with nonlinear interactions

effects that exist in an image or dataset.
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As far as we know, no work in hybridizing the linear and nonlinear ap-

proaches has been presented in the literature, and in particular the selection

of the most appropriate technique in using the two methods. The question on

whether a mixed pixel is better explained with a linear or nonlinear process

is still an open research problem in spectral analysis.

Research in the field of spectral unmixing of hyperspectral data is not

new, but the hybridization of the two methods and the choice of best method

to apply for oil spill detection has remained understudied.

Artificial intelligence such as neural networks has been successfully used

for abundance estimation with good accuracy [12], however, this method is

relatively slow, requires sufficient training data and the problem of overfit-

ting. Therefore the need to explore a more advance technique such as deep

learning approach for abundances estimation is considered, which could be

fast, avoid overfitting and predict excellent accuracy as demonstrated in [13].

To the best of my knowledge, no studies has been demonstrated to use a deep

learning approach for hydrocarbon spill detection and quantification.

The aims of this work is to study the problem of real world hydrocarbon

detection and quantification and to propose, implement and test different

methods for improving hydrocarbon detection and quantification using data.

The key questions for the project are as follows:

• Is information extracted from the data sufficient to evaluate if materials

abundances are better (in terms of accuracy and computational time)

explained with a linear or nonlinear spectral model?

• Which model is more suitable for the problem of a soil and HC mixture?

• Can a deep learning model be successfully applied to extract abun-

dances of a HC and soil mixture and thus quantify HC levels?

• Can the deep learning model generalise avoiding overfitting with lim-

ited datasets?



4 Chapter 1. Introduction

1.0.1 Hypothesis

To investigate this problem, three hypothesis are considered in this work as

follows:

• The choice of best method for spectral unmixing of hyperspectral data

can be selected through hybridization between the linear and nonlinear

methods.

• The optimum model choice can be extracted from the pixel scene infor-

mation and varies in a pixel by pixel basis.

• Spectral unmixing methods can be optimized by applying deep learn-

ing approach to extract the abundances.

1.0.2 Objectives

To investigate the above hypothesis, the following objectives are to be achieved.

• To propose a hybrid methodology to choose the optimum between lin-

ear and nonlinear spectral unmixing methods using artificial neural

networks.

• To improve the accuracy of the unmixing techniques by applying deep

learning approach to estimate the abundances in a given hyperspectral

data.

• To apply the above techniques for oil spill detection and quantification

and also identify experimentally which spectral unmixing methods are

most suitable to this application.

1.0.3 Contributions

The main contributions of this thesis are:
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1. A new hybrid spectral unmixing method for switching between linear

and non-linear spectral unmixing methods using artificial neural net-

works. It is observed that some nonlinear methods perform better in

scenes with multiple interactions and a complex mixture of features

commonly composed of different cover types, whilst the linear model

is appropriate for images that have a single cover type of material in a

pixel. The method was developed in such a way that it has the ability

to fit the measured spectra and provide an accurate estimation of the

abundances.

2. A new deep learning unmixing method is developed. The deep learn-

ing algorithm estimates the abundances in a mixed pixel. The architec-

ture of the model utilizes Sigmoid activation function, the network was

trained with a three-term back propagation algorithm in order to make

the model converge rapidly and dropout was used to avoid overfitting

and reduce the complexity of the nets computations. The advantage of

using the deep learning approach is the ability of the model to general-

ize on unseen data .

3. The application of the proposed methods to oil spill detection and the

choice of most appropriate method suitable to this application was demon-

strated. A real dataset was produced and labeled.

1.0.4 Publications

Journal Papers

1. Ahmed, A.M., Duran, O., Zweiri, Y. and Smith, M., 2019. Quantification

of hydrocarbon abundance in soils using deep learning with dropout

and hyperspectral data. Remote Sensing, 11(16), p.1938.
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2. Ahmed, A. M., Duran, O., Zweiri, Y. and Smith, M., 2017. Hybrid spec-

tral unmixing: Using artificial neural networks for linear/non-linear

switching. Remote Sensing, 9(8), p.775.

Conferences

1. Ahmed, A.M., Duran, O., Zweiri, Y. and Smith, M., 2018, November.

Quantitative analysis of petroleum hydrocarbon contaminated soils us-

ing spectroscopy, spectral unmixing and deep neural networks. In Im-

age and Signal Processing for Remote Sensing XXIV (Vol. 10789, p.

107890N). International Society for Optics and Photonics.

2. Ahmed, A.M., Duran, O., Zweiri, Y. and Smith, M., 2018, September.

Application of Hybrid Switch Method to Quantify Oil Spills. In 2018

9th Workshop on Hyperspectral Image and Signal Processing: Evolu-

tion in Remote Sensing (WHISPERS) (pp. 1-5). IEEE.

3. Ahmed A. M., Duran, O., Zweiri , Y. and Smith, M., 2017, March. Hy-

bridization between Linear and Nonlinear Spectral Unmixing Based on

Real and synthetic data: Remote Sensing and Photogrammetry Society

(RSPSoc) Annual Conference.

4. Ahmed A. M., Duran, O., Zweiri , Y. and Smith, M., 2016, December.

Comparison between Linear and Nonlinear Spectral Unmixing Meth-

ods: Geological Remote Sensing Group (GRSG) 27th Annual Confer-

ence.



Chapter 1. Introduction 7

1.0.5 Methodology

In order to test the hypotheses in section 1.0.1, a hybrid switch method in

image processing to be able to combine two spectral unmixing methods to-

gether (linear and nonlinear methods) is proposed. The goal is a set of rec-

ommendations based on the two methods for image processing strategies in

spectral unmixing based on the accuracy required to specific application. To

address the effect of spectral, spatial and temporal variability, the proposed

hybrid switch method was based on the characteristics of the mixture type

within the neighboring pixels. Values believed to represent the diversity of

the neighboring pixels to the ones in its vicinity were considered, these val-

ues are the minimum and maximum Spectral Angular Distance (SAD) [14],

covariance [15] and a nonlinearity parameter [16].

To improve on the accuracy of spectral unmixing techniques deep neural

network approach to spectrally unmix and estimate the abundance in a given

dataset is proposed. A motivation for using the deep learning approach is

due to the success of the approach in computer vision, image processing and

image classification which have seen a great increase in the last few years. Its

main advantage is having multiple hidden layers compared to the conven-

tional neural networks which consist of shallow networks with few hidden

layers. Deep learning with dropout has been demonstrated to successfully

avoid over-fitting and prove to train faster with good generalization capabil-

ities.

To validate the accuracy of the two proposed methods, they were tested

on controlled datasets for hydrocarbon spill detection.

1.0.6 Thesis Outline

This thesis is organized in six chapters summarized as follows:
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Chapter 1 introduces the origin and hypothesis of the research, highlights

the research questions, defines the objectives, summarizes the contributions

and publications and outlines the structure of the thesis.

Chapter 2 explains the background of the research, general oil spill prob-

lem, and existing methods to detect oil spills are discussed, existing spec-

tral unmixing problems are explained describing the most commonly used

methods including artificial neural networks nonlinear methods. and Deep

learning approach.

Chapter 3 describes the methodology of the research. First, the new hy-

brid spectral unmixing method for switching between linear and non-linear

spectral unmixing using artificial neural networks was discussed. A number

of parameters that are related to the pixels’ neighboring characteristics are

used, these values are considered to represent the diversity of the neighbor-

hood of the pixel under consideration to the ones in its vicinity which are the

minimum and maximum Spectral Angular Distance (SAD), covariance and

a nonlinearity parameter.

Secondly, the use of deep learning approach to extract endmembers and

estimate the abundances in a given hyperspectral dataset was discussed. The

deep learning model utilizes Sigmoid activation function [17] in all the hid-

den layers, three-term backpropagation algorithm [18] with dropout [19] was

discussed to demonstrate how the accuracy of the network was improved.

Chapter 4 describes experimentation and results for validation of the pro-

posed methods from chapter 3. The two methods were used for the identi-

fication and detection of oil spills experimentally using a controlled hyper-

spectral data. Statistical tests were derived for pixel-by-pixel application to

quantify hydrocarbon spills using the proposed methods. The proposed tests

are computationally efficient and thus are applicable in practice to quantify

oil spills.

Chapter 5 discusses the results of the experimentation from chapter 4.
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Chapter 6 provides the conclusion of the thesis, highlights the contribu-

tions and discusses possible directions for future research.
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Chapter 2

Background Theory

In this chapter, general oil spill problems are discussed, explaining the ex-

isting methods used for oil spill detection. The basic idea of spectral un-

mixing will be introduced, explaining the most commonly used spectral un-

mixing methods. Deep learning spectral unmixing methods will also be

discussed and literature will be discussed demonstrating the usefulness of

the approaches in machine learning by showing some examples of recent re-

search areas where they have been successfully applied.

2.1 General Oil Spill Problem

Hydrocarbons (HC) can be described as chemical substances formed exclu-

sively from the combination of carbon and hydrogen. Naturally occurring

HC substances occurs in three different states; solid, liquid and gas [20].

These are often a result of the decay of organic substances trapped within

sedimentary rocks converted into HCs due to high temperatures and pres-

sures. Crude oil is a natural occurring HC found in a liquid state [20]. Crude

oils consist of a complex mixture of various molecular weights; in addition,

nitrogen, sulphur and oxygen are found in small quantities [21].
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2.1.1 Existing methods to detect oil spills

Whilst the economic significance of HCs is attributed to its primary use as

fuel and then versatile application in downstream industries, they can have

detrimental environmental consequences [22, 20].

Knowledge about the concentration and nature of a spill is important in

order to track their propagation in the environment, assess their risk and

damages and propose remediation measures [23, 24]. To effectively protect

communities affected by a spill, fast and accurate determination of the area

impacted is needed, particularly if monitoring large regions affected by an

oil spill or where aging transporting facilities are involved [25] .

Traditional methods employed to track and detect oil spills and the con-

centration in soils often involve processes which are expensive and time con-

suming as they mostly require field sampling, chemical analysis and geosta-

tistical interpolation [26, 27]. One such method is the collection of a physical

soil sample, then determining the HC level by gravimetric, Fourier- Trans-

form Infrared (FTIR) spectroscopy [7].

Another includes the Gas Chromatography -Mass Spectrometer (GC-MS)

method and infrared spectroscopy [28]. Imaging spectroscopy has been rec-

ognized as an alternative method for detecting HCs in soils which has proven

to be rapid, efficient and cost effective [24]. Spectroscopy measures the dif-

fuse reflected electromagnetic energy from source material to a light source

[27]. Spectroscopy analysis includes the Visible - Near-Infrared (Vis-NIR) and

Short Wave Infrared (SWIR) spectrum, which has been demonstrated to be a

powerful tool for the measurement of HC concentration in soils [26].

More specifically, Near and Shortwave Infrared (NIR – SWIR) spectroscopy

has been a popular method for detecting, mapping, quantifying and charac-

terizing HCs in contaminated soils with reasonable accuracy [29, 24]. More-

over, NIR – SWIR spectra provide good information on soils’ organic and
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inorganic material content [29]. HCs demonstrate good absorption in spec-

tral bands between 1200 mm, 1725 nm and 2310 nm [23, 26, 30]. Therefore,

spectral information obtained in the NIR – SWIR range is excellent for both

the quantitative and qualitative analysis of detecting HCs in soils [29].

Different methods have been used to analyze reflectance spectroscopy

data to detect HCs in soils; Okparanma and Mouazen [23] used regression

analysis and spectral pre-processing to generate statistical models to iden-

tify different HC products mixed with a mineral substrate. Scafutto et al and

Webster et al [29, 30] in their analyses used Principal Component Analysis

(PCA) and Partial Least Square (PLS) regression; they used PCA to differen-

tiate the types and density of the HCs in soils and used PLS regression anal-

ysis, which is a multivariate method and includes the correlation between

spectral information and corresponding analytical data to rapidly predict the

concentration of HCs in soil.

Schwartz et al [7] used Spectral Angular Mapper (SAM) to classify oil

spills on an image and also used signature matching to distinguish oils from

other features, while Webster et al [30] reveals that Diffuse Reflectance (mid)

Infrared Fourier Transform (DRIFT) spectroscopy; a handheld spectrometer

for the prediction of total petroleum hydrocarbon and analysis with PLS re-

gression methods yield positive and accurate results with rapid predictions

of HC concentrations in soil. Other researchers show the robustness of visi-

ble and infrared spectroscopy for the rapid estimation of HC and polycyclic

aromatic hydrocarbons [31, 7].

The main point of concern is the diagnostic absorption band within the

visible and the infrared region of the spectrum where both HCs and soils can

be detected and analyzed qualitatively and quantitatively.
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2.1.2 Satellite sensors for oil spill detection

Remote sensing has proven to be a powerful tool for oil and gas exploration

by increasing the understanding of the hydrocarbon system from the sur-

face. It is useful in remote areas where little is known. Different satellite

sensors are used for oil spill detection, with systems ranging in spatial reso-

lution from 3 to 30 m depending on the sensor type and the objective of the

study with the airborne sensors having 3 m resolution with majority of the

satellite sensors within the range 30 m resolution [32]. Airborne surveillance

is limited due to the high cost and so tend to be less efficient for wide area

surveillance and their limited coverage [33]. Sensors used for HC spill de-

tection range from multispectral (1 - 10 bands) to hyperspectral (hundreds of

bands). Hydrocarbon specifically give rise to spectral manifestations around

1200 µm, 1700 µm and 2300 µm within the shortwave infrared (SWIR) por-

tion of the electromagnetic spectrum, Figures 2.1, 2.2 and 2.3 shows spectrum

of soil, water and hydrocarbon.

FIGURE 2.1: Spectral reflectance of soil
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FIGURE 2.2: Spectral reflectance of water

FIGURE 2.3: Spectral reflectance of hydrocarbon

Visible sensors

The Visible systems and aerial photography were the two commonly used

airborne sensors used in the early 1970s. Visible sensors are still widely used

for HC spill despite their limitations [34]. HC spills are often identified be-

cause the spectral reflectance of HC is higher than that of water, however HC

also absorbs some radiation in the visible region, and so these sensors are not

good for HC detection as it is often difficult to distinguish HC from the back-

ground, such as sun glint and wind sheen which create a similar impression

to an oil sheen. Also, the presence of seaweed and a darker shoreline may
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often be mistaken for HC spills. Another limitation of passive visible sensors

is that they cannot operate at night as they depend on sunlight reflectance.

The main advantage of the visible sensors is that they are inexpensive and

easy to use, therefore they are commonly used to create data in coastal areas

[35].

Microwave sensors

Microwave Radiometer (MWR) is a passive sensor commonly used for ocean

oil pollution monitoring. These sensors are often preferred to other sensors

due to their capability to capture data in all-weather and all night. In addition

to detecting oil spills, they also measure oil thickness resulting from interfer-

ence of radiation within the upper and lower boundaries of the oil film [35].

The MWR sensor works well in adverse weather condition, and also during

day and night, however biogenic materials can also produce signals which

are similar to oil and thus leads to false positives. Its major limitation is that

it requires information about the characteristics of the environment and the

properties of oil in order to detect spills [34].

Radio Detection and Ranging (Radar)

Radar is an active sensor operating within the radio wave region. The EMR

is reflected by capillary waves on the ocean and thus produces a bright im-

age for ocean water. If oil is present in the ocean, the reflectance is reduced

because oil diminishes capillary waves, thus the presence of oil can be de-

tected as a dark part in a bright ocean [36]. However, there might be some

interferences or false targets in areas where ice or fresh water flow such as

fresh water slicks, wind slicks, shallow seaweed beds, glacial floors and bio-

genic oils [37]. The main advantage of RADAR is its use in detecting areas

with large spills in water as a first assessment tool to possibly locate oil spill.
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Its major limitation is that, it can only provide accurate results for spill de-

tection in offshore areas which makes it unsuitable for detection of spills on

land surface.

Synthetic Aperture Radar (SAR) and Side - Looking Airborne Radar (SLAR)

are the two most commonly used types of radar sensors. SAR is often pre-

ferred to SLAR because it has a higher spatial resolution and range [36].

SLAR is less expensive and predominantly used for airborne remote sens-

ing, as a result SAR is commonly used for ocean detection monitoring [35].

SAR is an efficient imaging tool for oil spill detection, although it does not

recognize oil type or estimate oil thickness but it is useful for searching large

areas and observing oceans at night and during cloudy weather conditions

as demonstrated in [33]. In addition to Radar sensor, other space borne sen-

sors capable of monitoring oil spills include RADARSAT-1, Moderate reso-

lution Imaging Spectro radiometer (MODIS) [38]. RADARSAT and Landsat

Thematic Mapper (TM) have been demonstrated to detect oil spills in Gua-

nabara bay, Brazil. These two sensors provided suitable temporal coverage

while cloud, haze and its 8 days revisit schedule prevented Landsat TM from

being used systematically for oil spill monitoring [39].

Ultraviolet sensors (UV)

UV wavelengths (0.32 - 38 m m) can also be used to detect oil spills due to the

high reflectivity of thin oil layers, however; they cannot detect oil thicknesses

greater than 10 microns, and can only offer information about the relative

thickness of oil slicks [40]. Its main limitation is that biogenic material, wind

sheen, sun glint as well as sea-weed often causes false positives in the data. In

most cases, the UV images are overlayed on infrared images so as to generate

oil spill thickness maps [34].
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Laser fluorosensors

The laser fluorosensor is a useful instrument for the identification of oil spills

since it has the ability to identify oil on different surfaces such as water, soils,

weed, ice and snow. The laser fluorosensor also allows the discrimination

between different oil types [35]. Oil can be identified when the oil aromatic

compound interacts with ultraviolet lights then the light energy is absorbed

and subsequently releases extra energy as visible light [34]. Other substances

in water such as chlorophyll, fluoresce at distinct wavelengths thus, giving

oil a unique spectral signature. It is also able to discriminate between differ-

ent oil types as they exhibit distinct fluorescence emission signatures.

Infrared sensors

These sensors absorbs and emits part of its radiation as thermal energy within

the Thermal Infrared Region (TIR) (8 - 14 m). Oil often has a lower emis-

sivity than water in the TIR and this is typically used for oil spill detection

as it has distinctively different spectral signature [41]. Infrared sensors also

provide information about the relative thickness of oil slicks, however, these

sensors are unable to detect emulsions of oil in water because the emulsion

contains 70% water and the thermal properties of emulsion are similar to

the background water [35]. An example of such sensor is the Hyperspectral

(HS) sensor which collects ten to hundreds of spectral bands for spectral sig-

natures and has high potential for extraction of endmembers and estimates

their abundances. HS spectral sensors can have more than 200 wavelengths

which makes them capable of exploiting the spectral signatures of different

oil types. HS sensors have made it possible to detect oil and gas hydrocarbon

information both on land and sea surfaces. HCs have diagnostic absorption

bands in the Near and Shortwave Infra-red regions (NIR - SWIR: 700 - 3000

nm) which are derived from the combination of bands or overtones of C – H
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stretching modes [6], and mostly occur in the 1720− 1750 nm, 2310− 2350

nm wavelengths with the strongest absorption features at 2310 - 2350 nm.

These often overlap with other mineral absorption features such as calcite

but the absorption feature shape differs and does not have a corresponding

feature at 1720 - 1750 nm which tends to be weaker at these wavelengths [42].

These features can be used to detect HCs in other to obtain qualitative and

quantitative information about the HC [6]. However, the HS sensor used

in detecting HC content mixed in soil sample, or the mapping of surface

seeps and contaminated soils depends largely on the composition, density

and concentration of the HC type and also the soil properties and particle

grain size [43]. The spectral information can be used to discriminate between

light and heavy crude oils, whilst minute concentrations of crude oil can also

be detected with hyperspectral images. The most commonly used HS sensors

include the Airborne Visible/Infrared Spectrometer (AVIRIS) and Airborne

Imaging Spectrometer for Application (AISA).

The use of a hyperspectral sensor for oil spill detection has been demon-

strated in [44] where the United States West Virginia University successfully

detected oil and gas microleakage along the Californian coast, where several

oil and gas fields are found. This was achieved by delineating the distribu-

tion of the hydrocarbon leakage of mineral alteration on the surface using the

AVIRIS Airborne Hyperspectral Imager. Another example includes the GEO-

SCIENCE company in Australia where the process of surface hydrocarbon

leakage and undersea hydrocarbon microleakage reservoirs were detected

using the HYMAP airborne hyperspectral sensor [45].

2.2 Spectral Unmixing

Spectral unmixing (SU) is a method of identifying the spectral signatures of

materials in an image known as endmembers. SU is applied to estimate the
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relative abundance of the endmembers as measured by the sensor [10]. SU in-

volves the analysis of different satellite data such as hyperspectral and multi-

spectral data in various fields of application which includes remote sensing,

mineralogy, material science and also planetary science [11]. To unmix the

spectra of an image, SU often requires the definition of the mixing model

underlying the observations as presented on the data. A mixing model de-

scribes how the endmembers combine to form the mixed spectrum as mea-

sured by the sensor [11]. Having defined the mixing model, spectral unmix-

ing is used to estimate the inverse of the formation process of the data and

quantify the endmembers and abundance of interest from the collected spec-

tra [11]. This process is often achieved through a radiative transfer model

which explains the process of light scattering by the different cover types in

a scene [46].

A hyperspectral image consists of spatial and spectral dimensions of a

data corresponding to the different wavelength at which the scene is cap-

tured often in the form of reflectance. This can be described as the vector or a

spectrum of values corresponding to each pixel in a scene [47]. This spectrum

is made up of different materials in a scene such as soil, water, and vegetation

etc. These materials are otherwise known as endmembers as demonstrated

in Figure 2.4.
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FIGURE 2.4: Example of hyperspectral image concept [48]

In order to decompose the mixed pixels into different materials that are

within a given pixel, by identifying the endmembers and their correspond-

ing fractional abundances, SU is applied. This is important in hyperspec-

tral image processing and is commonly referred to unmixing problem [49].

The linear and nonlinear spectral unmixing methods are the most commonly

used techniques in decomposing mixed pixels in a hyperspectral data.

2.2.1 Unmixing Strategies

Two steps are involved in spectral unmixing analysis of a dataset, namely,

endmember extraction and abundance estimation. Usually most of the meth-

ods tackle the two steps, here different methods are described below:
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Endmember extraction

Endmember extraction is the first and the most important step in the un-

mixing analysis of an image. It is the process of extracting pure material

signatures of the different features present in an image which forms the basis

of image analysis [50]. This process is mostly based on the results of a sys-

tem involved in a linear equation [51]. In a situation where the endmembers

correspond to real pure substances, the process is challenging, however, in

a highly mixed scenes, endmembers may be difficult to identify commonly

due to low spatial resolution [52].

Different methods for endmember extraction exist [50] these are classified

into two types:

1. The first are the methods that assume the presence of pure pixels of each

endmember in an image defined by the vertices of the simplex, these

includes the Vertex Component Analysis (VCA), Robust Unconstrained

Linear Unmixing (RULU), Endmember Extraction Method (EEM), Sim-

plex Growing Algorithm (SGA), Minimum Volume Simplex Analysis

(MVSA), Pixel Purity Index (PPI), N-FINDR, Convex Cone Analysis

(CCA) etc [50]. These methods identify the purest pixels within the

dataset.

2. The second are those methods that estimate sets of smaller volumes

embedded in the data; these algorithms do not need to have pure pix-

els in an image. These include the Iterative Constrained Endmember

(ICE), Independent Component Analysis (ICA), Dependent Compo-

nent Analysis (DCA), Minimum Volume Simplex Analysis (MVSA) etc

[50].
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Abundance estimation methods

After extraction or detection of the endmembers from a spectral library or

data set, the next step is inversion; which is a procedure used to estimates the

abundance vectors of an image pixel [47]. Fully Constrained Least Square

(FCLS) inversion algorithm has been used extensively in the literature and

has gained popularity for inversion technique [53]. This algorithm has shown

excellent result in different applications. Another algorithm is the Bayesian

methods, which has also been used by several authors [11]. Other methods

in the literature include Linear Spectral Unmixing, Spectral Angle Mapper

etc.

The linear spectral unmixing method is the most common approach to

spectral unmixing analysis [11, 46], it assumes that each photon reaching the

sensor interacts with only one material in a scene as measured by the spec-

trum [11]. The linear spectral unmixing methods have recorded a number of

excellent results [10], the most commonly used methods includes; Adaptive

Spectral Mixture Analysis (ALSMA) [54], Subspace Matching Pursuit (SMP)

[55], Orthogonal Matching Pursuit (OMP) [56]. Li et al [57] proposed a ro-

bust collaborative sparse regression method to unmix a hyperspectral dataset

using linear mixture model. Thouvenin et al [58] proposed a linear mixing

model which directly detects spatial and spectral endmember variability in a

hyperspectral dataset. Foody et al [59] used linear mixture model and regres-

sion based fuzzy membership function to estimate land cover composition

whilst [60] used Vertex Component Analysis (VCA) algorithm to unmix a

hyperspectral data with relatively low computational complexity compared

to other conventional methods.

Another effect that has been considered in spectral analysis is endmember

variability, which occurs due to atmospheric and temporal conditions. Ma-

chine learning methods have worked well to account for spectral variability
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in hyperspectral image analysis.

The combination of both spectral information and spatial context may

help to improve the performance and accuracy of unmixing and classifica-

tion of a hyperspectral data [61]. Techniques such as morphological filters

[62], Markov Random Fields (MRF) [63, 64, 61, 65], Support Vector machines

(SVM) [66] and Self Organizing Maps (SOM) [67] among others have been

proposed to impose spatial information. MRF, in particular, is a power-

ful tool used to describe the neighborhood dependence between image pix-

els and has demonstrated to provide good results for image classification.

They also provide accurate results for unmixing under the Bayesian infer-

ring framework when spatial information is being incorporated [61]. MRF

is a method that combines information obtained from spatial correlation into

the posterior probability distribution of the spectral features [63]. SVM has

demonstrated to perform well with high classification accuracy when ap-

plied to dataset with a limited number of training samples [68].

2.3 Linear Spectral Unmixing Model

The linear unmixing model proposed by [69] is based on the assumption that

there are no multiple scattering between different cover types, it is assumed

that each photon interact with a single material in a scene [70] as demon-

strated in Figure 2.5.
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FIGURE 2.5: Linear mixing model [10]

The linear unmixing model is the most commonly used unmixing pro-

cess, especially in scenes where the endmembers and spectral reflectances

are known, the linear mixing model is then applied to estimate the relative

abundances of endmembers in each pixel. To obtain the abundances using

the linear unmixing, two constraints are imposed on the model; the first re-

quires the sum of abundances for fractions of materials present in an image

pixel to be one and the second constraint imposes a condition that the abun-

dance fractions should be non-negative. In practice, the first constraint is

easy to implement while the second constraint is difficult to handle because

of the irregularities that occurs and can only be solved using numerical meth-

ods [53]. However, problem often occur if the model is forced on the two

constraints, especially if models information is inaccurate: which could be in

the form of number of endmembers and their corresponding signatures. In
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the linear mixing model, it is often assumed that a set of endmembers partic-

ipates in the linear mixing problem of all the pixels in an image scene [21]. A

number of research has demonstrated the effect of using too many endmem-

bers in the unmixing process which leads to an error in the abundance esti-

mation and makes the model sensitive to errors such as instrumental noise,

atmospheric contamination and random spectral variation [71].

The linear mixture model has been widely applied by various research

to identify and quantify pure components in remotely sensed images. This

is due to its simple physical interpretation and estimation process [72]. Dif-

ferent image processing techniques can be applied to a hyperspectral image

using the linear mixture model. However, there is a significant difference

between a pure pixel and mixed pixel analysis. Pure pixel is a spatial anal-

ysis technique while the mixed pixel is often processed via spectral analysis

[53]. Mixed pixel classification is used to estimates the abundance fractions

of materials in a particular pixel and classifies them based on their estimated

abundance fractions whereas the pure pixel classification has to do with as-

signing each pixel with a standard class membership.

Linear spectral mixture analysis generally requires a known knowledge

of the material signature present in an image which in most cases is not avail-

able; therefore the selection of an appropriate set of material signatures is the

first and important step for the successful performance of a linear spectral

mixing analysis [51].

When the mixing scale formed in a scene is macroscopic, i.e. where each

photon reaching a sensor interacts with only one material in a scene, then the

measured spectrum yp ∈ RL in the pth pixel can be accurately described by

the linear mixing model (LMM) [11] which is often defined as

yp =
R

∑
r=1

ar,pmr + np (2.1)
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Where R is the number of endmembers present in the image, m is the

spectral signature of the rth endmember, ar,p is the abundance of the rth ma-

terial in the pth pixel and np is an additive noise and modeling error.

The state - of- the- art most commonly used methods for linear spectral

unmixing are discussed next.

2.3.1 Pixel Purity Index (PPI)

This algorithm is a well-known approach used for endmember extraction

and abundance estimation by different researchers in spectral analysis [73].

This algorithm aims to locate and finds spectrally pure pixels in an image.

This is achieved by repeatedly projecting the data in an n-dimensional scat-

ter plot randomly into unit vectors that holds the transformed data [50]. PPI

algorithm projects all the spectral vector in an image onto skewers, defined

as a large set of random vectors. The points corresponding to extremes for

skewer directions are stored [8]. An account is used to keep records of times

a particular pixel is found to be an extremes for skewer direction; then the

algorithm selects the extreme pixels based on high score ranking as demon-

strated in Figure 2.6.
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FIGURE 2.6: Schematic representation of the pixel purity index
algorithm [74]

2.3.2 N FINDR

The main aim of this algorithm is to find the simplex of maximum volume

that can be inscribed within a hyperspectral data using nonlinear inversion

technique [75]. Each pixel in the image is evaluated for its likelihood of either

being pure or almost pure pixel; this is obtained by calculating the volume of

each pixel and considering them as endmembers. A trial volume is calculated

for all the pixel in each endmember and replacing them, again the volume

of the endmembers are recalculated, if the calculated volume increases, the

pixels are used to replace the endmember. The process is repeated until all

the pixels are exhausted and no more replacements [50].

2.3.3 Iterative Error Analysis (IEA)

This algorithm performs some constrained unmixing analysis, this algorithm

select the pixels that minimize the remaining error in the unmixed image as
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an endmember [50]. This process starts when an initial vector is chosen, then

a linear spectral unmixing analysis is performed and the error calculated.

The vector that corresponds to the pixel with largest error is located and av-

eraged to obtain the endmember vector. This process is repeated until all the

endmembers are selected [76].

2.3.4 Vertex Component Analysis (VCA)

This algorithm, as proposes by [60] is an unsupervised method which origi-

nates on the geometry of convex sets and assumes that the endmembers are

within the vertices of a simplex. VCA is an algorithm which presumes the

presence of at least one pure pixel in a dataset and projects the data iteratively

in the direction orthogonal to the subspace traversed by the endmembers al-

ready determined. The new endmembers estimated are equivalent to the

extreme of the projection, the process is repeated until all endmembers are

used [8].

2.3.5 Fully Constrained Least Square Method (FCLS)

The FCLS algorithm as proposed by [77] is derived from an unconstrained

least square based orthogonal subspace projection, which has two constraints

imposed to the algorithm; the Abundance Non-negative Constraint (ANC)

and Abundance Sum-to-one Constraint (ASC). This algorithm considers neg-

ative values as 0 whilst the remaining abundance fractions of the materials

are normalized to 1. FCLS uses a simplex method to obtain a set of feasi-

ble solutions for spectral unmixing of material signatures while discarding

the negative abundance values of the other material signatures to unity. This

method requires full knowledge of material signatures in an image [77].
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2.3.6 Convex Cone Analysis (CCA)

This algorithm considers the fact that some physical quantities such as radi-

ance and reflectance are non-negative. The vectors formed by these physical

quantities can be described as linear combinations of non-negative compo-

nents, often found within a non-negative convex region [50]. The algorithm

is used to locate the boundary points of that region; this is achieved by find-

ing the eigen vectors corresponding to the largest eigen values, then the al-

gorithm tries to look for the boundaries of the convex cone. The linear com-

binations of these eigen vectors produce strictly non-negative vectors [50].

These convex corners identified are used to represent the endmembers as

shown in Figure 2.7 where EV1, EV2 and EV3 are the axes as defined by the

eigenvectors.

FIGURE 2.7: Schematic representation of the convex cone anal-
ysis algorithm [78]
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2.3.7 Independent Component Analysis (ICA)

This algorithm is an unsupervised source separation technique used for blind

source separation, feature extraction and unsupervised recognition with high

accuracy [52]. This algorithm looks for components that are statistically inde-

pendent rather than uncorrelated. The algorithm requires statistics of orders

higher than second order and then a linear model is used to unmix the com-

ponent of a set of unknown signal sources randomly to produce classification

or signal detection [50]. The advantage of this algorithm is its ability to detect

endmember spectra from dataset that contains no pure pixels.

2.3.8 Dependent Component Analysis (DECA)

This algorithm unmixes the spectra of a hyperspectral dataset by identifying

the endmembers of material present and estimate the abundance fractions

of each pixel in the scene [79]. It assumes that each pixel in an image has a

linear mixture of the endmember signatures weighted by the corresponding

abundance fractions, these abundances are highlighted as Dirichlet densities

mixtures, enforcing the non-negativity and sum to one constraints on the

abundance fractions. DECA does not require the presence of pure pixels in a

scene [50].

2.4 Nonlinear Unmixing Methods

Nonlinear unmixing models cope with nonlinear interaction effects as cap-

tured by a sensor which are often present in an image [11]. Due to the sim-

plicity of the linear mixing model, it has been the most popular method used

for image analysis. However, it has lately been noted to output inaccurate

results, in particular situations [8] because it fails to incorporate back scat-

ter radiation, in this case, other unmixing methods which are assumed to be
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more complex are used. Nonlinear unmixing models take into account non-

linear interactions; where they capture the effect of non-linearity in an image

[11].

The linear spectral unmixing method generally does not perform well and

provides poor accuracy when the light from the sensor is affected by multiple

interactions between different materials or endmembers otherwise known as

intimate interaction. [80, 81]. Here, the nonlinear unmixing method can be

advantageously replaced with the linear methods [72, 82] which provide an

alternative approach to SU. When interactions occur at a microscopic level,

it is said that the materials are intimately mixed. The nonlinear methods ac-

count for the intimate mixture of materials as covered by a scene in a dataset

[10, 83].

Different nonlinear spectral unmixing models exist; some are motivated

by physical arguments such as bilinear models, whilst others exploit a more

flexible nonlinear mathematical model to help improve the performance of

the unmixing method [11]. Nonlinear models can be grouped into different

classes:

2.4.1 Intimate mixtures

Intimate mixture occurs when interactions happen at microscopic level. This

can be described as a condition where different materials in a scene are inti-

mately mixed e.g. of this scene is an area that is composed of sand or mineral

mixtures as demonstrated in Figure 2.8.
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FIGURE 2.8: Nonlinear mixture with multiple reflections [10]

A model described by [46] explains the interactions that occur when light

comes in contact with a surface with different materials or particles; they

involve meaningful and interpretable quantities that have physical signifi-

cance, however, these models cannot be solved with a linear model, they re-

quire nonlinear models which are more complex and complicates the deriva-

tion of the unmixing strategies compared to the linear models [11]. Hapke

[46] derive an analytical model to express the measured reflectance as a func-

tion of parameters intrinsic to the mixtures, these include mass fraction, den-

sity size and single scattering albedo, however, the model’s limitation is its

dependency on the parameters implicit to the experiment because it need

information regarding the geometric position of the sensor against the ob-

served samples, this makes the inversion process more difficult especially

when the endmembers are not known [10].
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2.4.2 Bilinear models

Bilinear models are nonlinear models, which have gained popularity by re-

searchers due to the model’s ability to capture multiple scattering effects in

datasets. Multiple scattering occurs when light scatters from a given material

and reflects on another material or different surface before being captured by

the sensor [47]. This often occurs when the target scene contains different

materials such as vegetation cover and interaction takes place between dif-

ferent materials or components. This interaction has been described using

different models which often use the power of product of reflectance [47].

These models account for multiple photon interaction by the addition of an

interaction term to the linear model, however, these models are often applied

in a scenario where the interactions of orders greater than two are neglected.

Example of such models are: the Fan Model (FM), Nascimento Model (NM)

and Generalized Bilinear Mixing Model (GBMM) [84]. The major difference

between these models is the constraints attached to the mixing parameters.

The bilinear mixing model is defined as [11]

yp =
R

∑
r=1

αr,pmr +
R−1

∑
i=1

R

∑
j=i+1

βi,j,pmi �mj + np (2.2)

Where mi �mj is the hadamard (term by term) product of the i and j

spectra. The first model describes the linear mixture model and the double

sum models the nonlinear effect, the additional coefficient βi,j,p adjust the

nonlinearity between the components mi and mj in the pth pixel.

Nascimento bilinear mixing model

The Nascimento bilinear model considers second orders interactions between

the ith and the jth endmembers (for i, j = 1, R and i 6= J) which is defined as

[80]
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yp =
R

∑
r=1

ar,pmr +
R−1

∑
i=1

R

∑
j=i+1

βi,j,pmi �mj + np (2.3)

The parameters βi,j,p is the amplitude of the interactions term due to ith

and jth component, these parameters have to satisfy the positivity and sum

to one constraint [80].

Fan bilinear model

This model, just like the Nascimento model, assumes the interaction term

mi �mj are additional spectra, however, this model also assumes that the

amplitude of this interaction depends on the component fractions involved

in the mixture. The model assumes that βi,j,p = ai,paj,p which is defined as

[85]

yp =
R

∑
r=1

ar,pmr +
R−1

∑
i=1

R

∑
j=i+1

ai,paj,pmi �mj + n (2.4)

Generalized bilinear mixing model

The Generalized bilinear model is based on the assumption that the contri-

bution of the interaction term mi �mj is proportional to the fractions of the

components involved with an amplitude γi,jaiaj where ∈ (0, 1) which pro-

duce the following equation [47]

yp =
R

∑
r=1

ar,pmr +
R−1

∑
i=1

R

∑
j=i+1

γi,j,pai,paj,pmi �mj + np (2.5)

Where γ = [γ1,2 ..., γR−1, R] is a real vector parameter which quantifies

the interaction between different spectral components. The parameter intro-

duced makes the model to be more flexible compared to the Fan model and

the Nascimento model [86]. This model also adopts the positivity and sum

to one constraints.
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Nonlinear effect in a dataset have been tackled using different methods.

Another way of simplifying a simulation that has no known mixing method

and parameters is through the use of a training based approach [72]. Guil-

foyle et al [87] uses the radial basis function neural network for unmixing

analysis, whilst Plaza et al [88] discuss the methods for automatic selection

and labeling of training samples. In Halimi et al [86], a nonlinear unmixing

algorithm for the general bilinear mixture model based on Bayesian infer-

ences was used, however the method’s limitation is high computational cost

and is solely applicable to bilinear models.

2.4.3 Physics based nonlinear mixing model

The physics based model is often applied to unmix macroscopic and micro-

scopic mixtures by introducing a dual model comprising of two terms [11].

yp =
R

∑
r=1

ar,pmr + aR + 1,pR

(
R

∑
r=1

fr,pwr

)
+ np (2.6)

Where the first term on the right hand side describes a linear mixing

model which comes from the macroscopic mixing process, and the second

one, considered as an additional endmember with abundance aR + 1,p de-

scribes the intimate mixtures by the average single albedo which is expressed

in the reflective domain by mapping R(·) [47].

2.4.4 Detecting nonlinear mixtures

Nonlinear mixture models can be used to unmix nonlinear effect in a hyper-

spectral dataset with good and more accurate results, its major limitation is

high computational complexity compared to the linear mixture model [11].

This can be minimized by applying the linear unmixing models to detect

linearly mixed pixels, whilst the nonlinear unmixing models can be used to

detect nonlinear mixed pixels [11]. Different ways of achieving this is by
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applying techniques such as the Polynomial Post Nonlinear Mixing model

(PPNMM) and robust model free detectors.

Polynomial Post Nonlinear Mixture (PPNM)

The PPNMM model is based on the assumption that the reflectance occurring

in an image are nonlinear functions of pure spectral components, corrupted

with additive noise; these nonlinear functions are mostly approximated us-

ing polynomial function which in turns leads to a polynomial post nonlinear

mixing model [16].

The model involves two terms: the linear and quadratic functions of the

abundances. where the R-spectrum yp = [y1, ..., yR]
T of a mixed pixel is de-

scribed as a nonlinear transformation g of a linear mixture of R spectra mr

and corrupted with additive noise n.

yp = gp

(
R

∑
r=1

ar,pmr

)
+ np (2.7)

where mr is the spectrum of the rth material in the scene, ar its correspond-

ing proportion and g is an appropriate nonlinear function. PPNMM model

is also motivated by the Weierstrass approximation theorem which describes

every continuous function defined on an interval as said to be uniformly ap-

proximated by a polynomial with any desired precision [16].

Robust model-free detector

This model is applied to a situation where the given mixture type in an im-

age does not fit with any unmixing model [11]; this scenario occurs as a re-

sult of insufficient information regarding the choice of appropriate unmixing

method, this model is used to investigate if a given pixel is linearly or inti-

mately mixed [11].



38 Chapter 2. Background Theory

A comparison of the most commonly used methods are described in Table

2.1. These methods are the state-of-the earth methods extensively used as

reference in the literature.
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TABLE 2.1: Comparison of the reviewed spectral unmixing
methods

Methods Advantages Disadvantages Computational

cost

VCA [60] The algorithm is unsupervised. It as-

sumes that endmembers are the ver-

tices of a simplex and affine transfor-

mation of a simplex is also a simplex.

Works well with both projected and

un-projected data

The algorithm assumes the presence

of pure pixels in a dataset which does

not always holds.

Relatively low.

N-FINDR [75] The algorithm works directly in spec-

tral space and its independent of

spectral dimension. Convergence

property of the algorithm is simplex

with the maximum volume found.

Suffers several issues in its practi-

cal application e.g search for region

which is usually entire space.

Excessive com-

putation.

FCLS [77] Simultaneously implement the

Abundance Non-negative Constraint

(ANC) and Abundance Sum-to -one

Constraint (ASC) on a linear mixture

model. High and promising accuracy

Requires a complete prior knowledge

of material signatures present in an

image scene

Relatively low.

PPI [73] The algorithm is supervised and par-

tially interactive

High number of iterations required High computa-

tion.

PPNMM [16] Used to model different nonlineari-

ties between endmembers and obser-

vations.

Considers only scattering effects in a

given pixel. Do not consider spatial

interaction from materials present in

the neighboring pixel.

Low computa-

tion.

FAN Bilnear model

[85]

Assumes that amplitude of interac-

tions depends on the product of

fractional abundance of endmembers

present in a pixel. Adopts the sum to

one constraint.

Does not generalize the LMM which

can be a restrictive property of the

model.

Moderate to

high

GBM [47] Accounts for second order interac-

tion. Accounts for the presence of

multiple photon by addition of a bi-

linear term to the LMM

Has the same constraint as the LMM

ANC and ASC

High computa-

tion

Nascimento Bilinear

model [80]

The algorithm ca be considered a

linear model with additional virtual

endmembers. Abundance vector can

be estimated using the linear spectral

unmixing algorithm

Has the same constrain as the LMM

(ANC and ASC)

High computa-

tion
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2.4.5 Artificial neural networks based methods

Artificial Neural Networks (ANN) are another nonlinear model developed

to initially copy the complex pattern of neuron interconnections in the hu-

man brain [89, 90]. ANN often extracts features in a shallow manner, and do

not extract deep features. Similar to the human brain, ANNs comprise of 3

layers, namely; the input, hidden and output layers which provide the ap-

propriate output based on the input data. ANNs often require training of the

input data in order to influence decision making of the ANN, performed in

iterations known as epochs. The training is undertaken in the hidden layer

where the activation function and the number of hidden nodes is defined.

ANN with a single hidden node and nonlinear activation functions can ap-

proximate any function provided that it has sufficient training data. This

makes ANNs superior universal approximators with accurate and accept-

able results [91].

Presently, a lot of neural networks models have been extensively studied,

ANN have been successfully applied for many years with excellent perfor-

mance in different field of application such as fault detection and diagnosis

of mechanical systems [92], pattern recognition [93], and in particular for

spectral data [94, 95]. Self Organizing Map (SOM) unsupervised neural net-

work algorithms is one of the most widely used models successfully applied

to hyperspectral image classification [67, 96, 97] and data visualization [98].

Alternative approaches include rule base fuzzy logic [99, 92, 100] and Marko-

vian jump systems [101, 102] which could be combined with ANN.

Neural network is often used to classify input data into a set of target

classes obtained by training a network to evaluate its performance. The ap-

plication of neural networks to spectrally unmix a hyperspectral data has

been demonstrated due to their ability to recognize complex patterns in high
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dimensional images [103]. Neural network based unmixing of hyperspec-

tral imagery has proven to be a powerful tool which produced good and

acceptable results [104]. Lyu et al [105] have demonstrated the use of neu-

ral networks to unmix a hyperspectral data using both linear and nonlinear

methods simultaneously. In [106], the use of ANN was reported to detect

and count cars in Unmanned Areal Vehicle (UAV) images. Wu et al [107]

used neural networks for hyperspectral data classification, they used recur-

rent neural network to model the dependencies between different bands and

also to learn more discriminative features for classification. Wu and Prasad

[104] used a linear mixture model to unmix hyperspectral data and ANN

to predict a fraction of nonlinear mixture in the dataset; ground truth data

was used to extract the abundance as estimated by the linear model which

was used to train and validate the network. Licciardi et al [103] used neural

networks for unmixing a hyperspectral data to extract the endmembers and

estimate their abundances. Atkinson et al [108] used neural networks to un-

mix a hyperspectral data, the results obtained was compared with a linear

unmixing model using a fuzzy c-mean classifier; results showed the capabil-

ity of the neural networks against the linear unmixing method.

Feed-forward neural networks

Feed-forward neural networks are the simplest and most widely used archi-

tecture. A feed-forward neural networks consist of one input layer, several

middle layers (hidden) and one output layer. With feed-forward neural net-

works, neurons have forward connections to neurons in subsequent layers

i.e the neurons of each layer only accept output information coming from

the neuron of the forward layer [109]. This architecture has demonstrated to

produce excellent results in different application such as image processing,

pattern recognition and classification etc. Figure 2.9 shows a typical feed for-

ward neural network with a single hidden layer. Antoniades [110] noted that
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these networks require specific training before they can be applied to real

world problems.

FIGURE 2.9: A feed-forward neural network with a single hid-
den layer [111]

Supervised learning

Neural networks can be trained using supervised (with human help) or un-

supervised (self organized) algorithms. Supervised learning is the most com-

mon form of machine learning. Supervised algorithms learn with the help of

teaching signals, while unsupervised algorithms take a more independent

approach. The supervised algorithm first initializes the weights with ade-

quate values, then takes the input from the training data into the neural net-

works. The correct output is obtained and the error is calculated from the

output, finally the machine then modifies its internal adjustable parameters

(weights) to reduce the error [112]. To properly adjust the weight, the learn-

ing algorithm computes a gradient vector for each weight where a change in

error either increases or decreases, the weight vector is adjusted in the oppo-

site direction to the gradient vector. The Stochastic Gradient Descent (SGD)
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is the most commonly used procedure in practice, which consist of the in-

put vector, then compute the outputs error which then calculates the average

gradient and adjust the weights accordingly. The procedure is repeated on

many small sets of examples from the training data until the average of the

objective function stop decreasing. After training the datasets, the system’s

performance is evaluated on another set of examples unseen by the system

during training called the test set. This is often done to test the generalization

ability of the machine [107].

2.4.6 Deep neural networks

Deep neural networks often referred to as deep learning was introduced

about a decade ago, when results from the approach outperform other ma-

chine learning and neural networks techniques with impressive performance.

Deep learning can be categorized as a sub-field of machine learning, which

often learns high- level abstractions in data by utilizing hierarchical architec-

tures [113]. Deep learning can also be described as the final product of ma-

chine learning where the learning rule is considered as the algorithm which

generates the model from the training data. Typically, it involves modeling,

which hierarchically learn features of input data using ANN and have more

than three layers [114]. The main advantage of deep learning is that, these

layers of features are not designed by human engineers; they are learned

from the input data using some learning procedures [115]. Deep learning

model often contains an input layer, two or more hidden layers and an out-

put layer as described in Figure 2.10.
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FIGURE 2.10: Deep Neural Network Architecture [115].

Deep learning has been demonstrated to perform well in different appli-

cations such as vehicle detection [116, 106], applied deep learning approach

to investigate avalanche search and rescue operations using Unmanned Areal

Vehicles (UAV) and change detection [117, 105]. There are many types of

deep learning architectures whose application have been proven to yield ex-

cellent results, the most common are; Deep Believe Network (DBN), Convo-

lutional Neural Network (CNN), Deep Convolutional Generative Adversar-

ial Networks (DCGAN), Recurrent Neural Networks (RNN), Autoencoders

etc [118, 119]. Application of deep learning techniques to hyperspectral data

is relatively recent, for instance in [120] deep belief networks and a novel tex-

ture enhancement algorithm were investigated for their suitability and prac-

tical application to hyperspectral image classification. In Yongyang et al [121],

high resolution remote sensing imagery and deep learning techniques were

used to extract buildings in urban districts using guided filters. In Shaohui

et al [122], a 3D full convolutional neural network model was used for spa-

tial spectral resolution of hyperspectral images by learning end-to-end, with

full mapping between low and high spatial resolution hyperspectral images

with high accuracy. Transfer learning with a deep convolutional neural net-

work was reported in [123]; in this research, a large amount of unlabeled SAR
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scene data was transfered to SAR target recognition tasks and feedback the

construction loss to the classification pathway. Others such as [107, 124] used

a deep learning approach to classify hyperspectral images.

Here, some of the influencing deep neural network techniques will be

introduced.

Convolutional neural networks

A convolutional neural networks (CNN) is a multi-layer neural networks

inspired by the organization of neurons in the animal vision contex [125].

CNNs are feedforward networks i.e information flows take place in one di-

rection only, from its inputs to its outputs. The architecture of CNN comes

in different variations, however, the most common ones consist of convolu-

tional layers, pooling layers and a fully connected layer(s) as demonstrated

in Figure 2.11.

FIGURE 2.11: A typical convolutional neural network structure
[125]

The convolutional layers serve as feature extractors where the feature rep-

resentation of the input image is learned. The neurons in the convolutional

layers are arranged into feature maps with each neuron in the feature map

connected to a receptive field which is also connected to a neighbouring neu-

ron in the previous layer through a set of trainable weights [115]. The inputs
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convolves with the learned weight and the results are sent through a nonlin-

ear activation function.

Nonlinear activation functions allows the extraction of nonlinear features

in the input data, traditionally, the sigmoid and the hyperbolic tangent func-

tions were the most commonly used but recently, the Rectified Linear Units

(ReLU) have gained popularity due to their success in various application

[126]. The pooling layers reduce the spatial resolution of the feature maps so

as to achieve spatial invariance to input distortion and translations. The fully

connected layer interpret the feature representation and perform high level

reasoning. For classification problems, the softmax operator is commontly

used [127], this method was outsmart by Radial Basis Function (RBF) [115]

recently, [128] recorded great improvement by replacing a softmax opera-

tor with Support Vector Machine (SVM) for classification of a hyperspectral

dataset. However, these operators are dependent on the type and size of the

input data.

Recurrent Neural Networks

Recurrent Neural Networks (RNN) are a family of deep neural networks de-

signed to recognize patterns in sequences of data such as audiowaves, hand-

writting, time series data etc. This algorithm takes time and sequence into

account and have temporal dimensions [129].

RNNs are often used to model a data where the input and output classes

are of variable length. Figure 2.12 shows a typical architecture of RNN with

a connection loop which allows the network to be unfolded to handle the

variable length issue associated with the dataset.
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FIGURE 2.12: A Recurrent neural network structure showing
the loop design which allows the network to be unfolded [130]

RNNs can also be applied on images, which can be decomposed into se-

ries of patches and treated as a sequence. Its main drawback is the flexibility

of the data, which means that a fixed- length input layer cannot be utilized

directly, this problem was solved by modelling the RNNs with an internal

memory mechanism which process sequences of variable lengths.

A major challenge in training RNNs is long term dependencies which

causes the gradient to either vanish or explode [131] making the gradient

based optimization method struggle due to the effect of long term dependen-

cies. The Long Short-Term Memory Units (LSTM) [132] and Gated Recurrent

Units (GRU) [133] were developed to handle this problem.

RNNs employing either of this units have shown to perform well in tasks

with long term dependencies as demonstrated in [134, 133]. LSTM has a

memory cell which maintains history information through time, it has gates

specially designed to pass information inward and outward of the cell. The

input of the cell is narrowed by the input gate, while the target cells controls

what history should be retrained. GRU is basically an extension of LSTM but

without an output gate, which in turns writes the contents of its memory cell

into the larger net at each time step [133].
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Autoencoders

An Autoencoder (AE) is a type of deep neural networks where training is

performed layer by layer in a supervised manner such that each hidden layer

maps the input pattern to themselves. Instead of training the network to pre-

dict some target values given input. AE is trained to reconstruct its own

input, therefore, the output vector have the same dimensionality as the input

vector [113]. During the learning process, the AE is optimized by minimiz-

ing the reconstruction error thereafter the corresponding code is the learned

feature [135]. One such AE which is still extensively studied is the deep au-

toencoder which was first proposed by [136]. This type of AE is often trained

with a variant of back propagation which sometimes becomes ineffective in

the presence of errors in the first few layers. This causes the network to learn

and reconstruct the average of the training data [113]. This issue can be ad-

dressed by pre- training the network with initial weights that approximate

the final solutions [135].

2.4.7 Activation functions

The activation functions used in deep neural networks often act like a switch

which can either be turned on or off (activated or deactivated). The activa-

tion function is controlled by the input signal which is usually modelled as

a continuous nonlinear function to induce distributed representations to be

tuned. This nonlinear function allows the model to overcome some truvial

degradation. The activation functions are also known as transfer functions

which are used to determine the output of a neural network and map the

resulting values within the range (0 to 1) or (-1 to 1) etc. There are basically

two types of activation functions; the linear and nonlinear activation func-

tions. When the linear activation functions are applied, the output of the
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function does not usually confide within any range while the nonlinear ac-

tivation functions make the model to generalize with a variety of data and

differentiate between outputs as shown in Figure 2.13.

FIGURE 2.13: Linear and non-linear activation function

The linear activation function makes the model to consist of multiple

affine transformations which makes the model degrades and become linear,

this often happens when a large number of parameters fails to increase the

model’s capacity. The nonlinear function has the ability to trigger non-trivial

model and continuously differentiate direct integration into gradient based

optimization algorithm. The most commonly used activation functions used

for deep learning applications are sigmoid, hyperbolic tangent, rectified lin-

ear unit, softmax, maxout, hermite polynomial and radial basis. The next

section briefly introduces some of the commonly used functions.

Sigmoid

The sigmoid activation function also known as logic activation function is

a nonlinear function applied to feedforward neural networks [17]. The sig-

moid function is commonly used in models where the output predicts a prob-

ability, this has been successfully applied in binary classification problem,

logistic regression tasks as well as other neural network applications [137].

The sigmoid function has an "S"- shaped curve which ranges between (0 to

1) defined as;
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f (x) =
(

1
(1 + exp−x)

)
(2.8)

However, its major limitation include sharp damp gradient during back-

propagation from deeper hidden layers to the input layer, gradient satura-

tion, slow convergence and also non zero centred output which as a result

makes the gradient update propagates into different directions [17].

Hyperbolic tangent (Tanh)

The hyperbolic tangent or (Tanh) activation function is another type of non-

linear function used in deep learning application, it is a smooth, non zero

centred function and it ranges between (-1 to 1). The tanh activation function

maps negative input values as negative and the zero input values mapped

near zero which aids the backpropagation algorithm. The tanh activation

function also has an "S"- shape curve similar to the sigmoid function as shown

in Figure 2.14 and is defined as;

f (x) =
(

ex − e−x

ex + e−x

)
(2.9)

The tanh activation function is mostly preferred to the sigmoid function

because it trains neural networks with multiple layers better compared to

other activation functions.
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FIGURE 2.14: Sigmoid and Tanh activation functions

The tanh function has been successfully applied in deep neural networks

such as recurrent neural networks for speech recognition [138] and language

processing [139].

Softmax

The softmax activation function is commonly used for multi class classifi-

cation task where the target class has the highest probability, it is used to

compute probability distribution from a vector of a real number defined as

f (x) =
exp (xi)

∑j exp (xj)
(2.10)

The softmax activation function produces an output value ranging be-

tween (0 and 1) with the sum of the probability equal to 1. The main differ-

ence between the softmax and the sigmoid activation functions is their appli-

cation. Whilst the sigmoid is applicable to binary classification the softmax

is commonly used for multivariate classification [17].

Rectified Linear Units (ReLU)

The Rectified Linear Units (ReLU) activation function also known as the

ramp function performs a threshold operation on each input element where
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it converts values less than zero to zeros [140], ReLU is defined as;

f (x) = max(0, x) (2.11)

It has been the most widely used activation function in almost all CNN

and deep learning application with outstanding results, it provides good per-

formance with better generalization compared to other activation functions

such as sigmoid and tanh activation functions [141]. ReLU ranges from (0 to

infinity), The main advantage of ReLU is its ability to train faster mainly due

to the fact that it does not compute exponentials and divisions.

Maxout

The maxout activation function proposed by [142] can be categorized as a

generalized version of ReLU, here the neurons inherits the properties of ReLU

with no saturated neurons in the network’s computation. The maxout func-

tion is defined as;

f (x) = max(wT
1 x + b1, wT

2 x + b2) (2.12)

where w = weights, b = biases and T = transpose

The maxout activation function has been successfully applied in a study

conducted by [143] for phone recognition application. The major draw back

of the maxout function is that it doubles the number of parameters used in

all neurons there by making it computational expensive.

2.4.8 Learning and parameter optimization

To train a network, a training criterion needs to be defined, this criterion

yields a scalar value that measures the performance of a given model, the
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mapping of feature vector to the class for the training data. The definition of

the criterion depends on the task and the data used.

Cross entropy function is a training criterion used in classification, they

are generally known for there good performance except for inevitable cases

such as regression [112]. Having defined the training criterion, the next step

is to define methods to find the parameters that minimizes the criterion.

Deep learning models are often trained with the gradient descent algorithm.

This is a simple iterative algorithm for finding the minimum of a function, its

main function is to update rules in one iteration. In practice, the Stochastic

Gradient Descent (SGD) is mostly used especially with a large training sam-

ple. With the SGD, the objective is to evaluate a small training sample set at

each step. It calculates error for each training set and immediately adjust the

weights [112].

2.4.9 Hyperparameters

A deep learning model requires the modification and fine tuning various hy-

perparameters in order to provide good results, these largely depend on the

application, type of dataset and other hyperparameters. The initial learning

rate α is one of the most important hyperparameters; in a standard back-

propagation algorithm, α is an important parameter for training the network

where too low a learning rate makes the network learn very slowly, and too

high learning rate make the weights and cost function diverge slowly.

2.4.10 Backpropagation algorithm

Backpropagation is carried out to train multi-layer architectures to minimize

a cost function of the model. It is also used to adjust the free parameters

(weights and biases) in order to attain the desired network output. Backprop-

agation is an expression for the partial derivative of the cost function with
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respect to any weight of the network. This expression shows how the cost

changes when the weights and biases are changed [112]. Training a network

is mostly affected by overfitting, which is poor performance on the test set af-

ter the training, which in turns affects the models ability to generalize on un-

seen data. This is a common and major challenge for deep learning approach.

All the parameters are trained with the standard gradient decent algorithm.

Misclassifications are obtained from the feedforward process, which are then

utilized during backpropagation algorithm to calculate the gradient. These

gradients are then used to update the training parameters.

2.4.11 Dropout

Dropout is a powerful technique used for improving the generalization error

of large neural networks. It simply refers to randomly dropping out units

in a neural network. In other words, it means removing it from the network

together with its incoming and outgoing connections as shown in Figure 2.15.

By applying dropout to a deep neural networks, it often results in sampling

a thinned network from the model. This thinned network consist of all the

units that were not dropped out of the network [19].

FIGURE 2.15: A typical network before and after applying
dropout [19]
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Deep neural network consist of multiple nonlinear hidden layers, this

makes them to be very complicated models and as such results in overfit-

ting of the dataset.

The application of deep learning and hyperspectral data for different im-

age processing applications has been demonstrated in the literature with ex-

cellent accuracy where the majority of the application is based on hyperspec-

tral image classification [114, 144, 120]. Despite the success recorded in com-

bining the deep learning approach to hyperspectral dataset, the technique

has not been used for unmixing and estimation of hydrocarbon.

2.5 Summary

This chapter has presented background theory to the motivation for this re-

search, an overview of spectral unmixing approaches, explaining the differ-

ent types of spectral unmixing methods which are the linear and nonlinear

methods where some of the commonly used algorithms are explained, ar-

tificial neural networks nonlinear model was also explained, the architec-

ture of a feed forward network often used in ANNs with a single hidden

layer. A supervised learning algorithm for training was also explained. The

fundamentals of the deep learning approach are reviewed, the three typical

forms of deep neural networks are presented: Convolutional Neural Net-

works (CNN), Autoencoders (AE) and Recurrent Neural Networks (RNN),

explaining some activation functions and training parameters. In order to

apply this method for HC spill detection, existing methods were discussed,

explaining the different satellite sensors used for HC spills detection. The

application of this background knowledge to the development of the hybrid

switch method between linear and nonlinear spectral unmixing and deep

learning based spectral unmixing methods are covered in the following chap-

ter.
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Chapter 3

Methodology

This chapter discusses the proposed methodology of this research. On one

hand, a hybrid spectral unmixing method for switching between linear and

nonlinear spectral unmixing was proposed. This method deals with solving

the problem of weather a mixture is better explained with a linear or non-

linear model. On the other hand, a deep learning based spectral unmixing

method which accurately unmixes nonlinear mixtures was developed. The

two proposed methods were used for HC spill detection and estimation.

This chapter is organized as follows. Section 3.1 introduces the Spectral

Unmixing Method. In 3.2 the assumptions of the linear model are discussed,

Section 3.3 describes the vicinity parameters related to the characteristics of

neighboring pixels used in the proposed method. Neural network architec-

ture and other parameters employed in the research are discussed in Section

3.4. The hybrid spectral unmixing for switching between linear and non-

linear method is presented in Section 3.5. Section 3.6 introduces the Deep

learning based spectral unmixing method explaining the architecture of the

model and the three-term backpropagation algorithm with dropout used in

training the network. Section 3.7 concludes with a summary of the two pro-

posed methods.
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3.1 Introduction

Spectral unmixing analysis of different datasets has risen as a promising

method for identifying and extracting the properties of different features

such as soils, mineralogy, vegetation, oil spill etc. [10]. Spectral unmixing

method requires three factors to be successful: the choice of a good model,

the application of an appropriate inversion technique and a set of well cali-

brated reflectance dataset [145]. Different unmixing models exist in the liter-

ature, such as those based on physical assumptions [10], those that consider

secondary illumination [80], radiosity based approach [146], manifolds learn-

ing methods [147], neural networks [148], nonlinearity detection methods etc

[145].

This creates a question of which model is best suited for a given appli-

cation, or dataset although most of the models described in the literature

provide accurate inversion techniques therefore, it is difficult to answer this

question [145]. Different unmixing models have been investigated in search

of the most accurate unmixing algorithm in literature, for example, [145]

compared four different models in order to choose the most suitable method

and evaluate their ability to estimate canopy biophysical parameters. Models

are often chosen based on the application and the data itself. However, there

is no methodology to choose the most appropriate model for a given dataset.

This section presents a hybrid spectral unmixing method for selecting be-

tween linear and nonlinear models using hyperspectral data. As outlined in

chapter 2, spectral unmixing is a source separation problem which deals with

mixture analysis techniques to remote sensing data. The collected spectral

signature of materials in a scene is commonly a mixture of different materi-

als found within the spatial extent of the field of view of a sensor [10].

The linear and nonlinear spectral unmixing approaches are often used
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to unmix the spectra of the mixed pixel and estimates the fractional abun-

dances. Figure 3.1 shows a flow chart detailing the procedure of spectral

unmixing.

FIGURE 3.1: Schematic presentation of spectral unmixing [149].

The linear models assume that the observed spectra collected by a sensor

can be expressed as a linear combination of endmembers, weighted by their

corresponding abundances [150]. The main practical advantage of the linear

model is due to its simplicity in implementation and flexibility of the model

while the nonlinear models describe mixed spectra by assuming that part of

the source radiation has multiple scattering between at least two materials

before being collected by the sensor [10]. The choice between linear and non-

linear model largely depends on the nature of problem and the scale of the

endmembers.

Moreover, the extraction of endmember is an important part of spectral

unmixing problem, as discussed in the literature different endmember ex-

traction techniques exist which allows validation of extracted endmembers

with respect to the reference signatures using different distance metrics such
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as Vertex Component Analysis (VCA), Pixel Purity Index (PPI), Minimum

Volume Simplex Analysis (MVSA) [151]. These algorithms are the most com-

monly used methods due to their ease of computation and clear conceptual

meaning with good accuracy [150], therefore VCA was chosen for endmem-

ber extraction in this study.

Spectral unmixing models are applied to estimate the fractional abun-

dances from the extracted endmembers. The choice of a suitable unmixing

model is very important and comes with implications if a wrong model is

chosen. For example, if a linear model is used on a data where the abun-

dances are nonlinear, the calculated fractional abundances will have a signif-

icant amount of error which could be as much as 30% [152]. This is mainly

because of the multiple scattering of different materials collected by the sen-

sor in a nonlinear mixture which makes them unfit with a linear model [10].

Once the endmembers and their corresponding spectral signatures are

known, there is need to estimate the accuracy of the spectral mixture anal-

ysis, which is mostly based on the fit between the model and the observed

mixed spectral signals such as the error metric [153], residual term [154] or

Root Mean Square Error (RMSE) [155] and in some cases by checking the

discrepancy between the estimated and real endmember fractions such as

fractional abundances error [154] and coefficient of determination [156].

However, there is no methodology to assess the validity of a model to a

given dataset, and to predict which model is more suitable to a given dataset.

It may be assumed, however, that if the main assumptions for the linear

model are satisfied within a pixel, most likely neighboring pixels will have a

similar behavior. For instance, if multiple scattering occurs, the variability of

neighboring pixels spectra will be higher. Similarly, if endmembers spectra is

not constant for instance due to shadows, the resulting spectra of neighbor-

ing pixels might change dramatically. Nevertheless, it is known that scenes

often contain cases of both linear and nonlinear mixing on a pixel-by-pixel
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basis so, although it may be assumed that pixels within a close vicinity may

exhibit similar behavior, not all pixels within an image will follow the same

assumptions [157].

Here, an approach is proposed to close that gap and assess model suit-

ability based only on the data. Moreover, the method does not assume that

all data in an image might be better suited to a particular model type since

different parameters such as multiple reflectance, absorption, endmember

variability, etc. might be different within an image and as such results to

some dependencies within immediate pixels.

3.2 Assumptions on the linear model

In this section, different assumptions on the linear model and in particular

how this effect affects the resulting spectra of pixels are discussed. It shows

that this problem has been neglected, especially the effects of multiple scat-

tering and the resulting nonlinear mixing [158].

The linear spectral unmixing relies on some assumptions [159], namely:

• There is no significant multiple scattering between the different surface

components.

• There are no intimate interactions between the different surface com-

ponents.

• The measured radiance at a pixel is a weighted average of the radiances

of the components present at the pixel.

• Endmembers are known and are invariant within the image.
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3.2.1 Multiple scattering

The linear unmixing models are very popular and mostly used because of

their simplicity in application with good and acceptable results in different

application, especially in areas with large flat surfaces with well defined end-

members [160]. However, there are some situations which makes the linear

mixing model not to function well where the assumptions do not hold such

as scenes with large geometrical structures, e.g. building and trees; in such

scenario, shadow and mutual illumination plays a large role.

In mineral mixtures where incoming radiation interact with different min-

eral grains, the linear mixture model assumption of single interactions does

not hold due to an intimate mixture of material components as shown in Fig-

ure 3.2.

FIGURE 3.2: Multiple reflections of different materials [161]

When mixing occurs as a result of multiple reflection, it is not always

possible to determine what material are present in the pixels directly from

the measured spectral vector [161].
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3.2.2 Intimate Mixing

Intimate mixture of materials occurs when each component in a scene is ran-

domly distributed in a homogenous way, the incident radiation experience

multiple reflections on different materials and the aggregated spectrum of

reflected radiation may no longer uphold the linear proportions. Therefore,

the linear mixture model is inappropriate to describe this interaction with a

scenario containing multiple interaction.

Linear mixture model can be inappropriate for some hyperspectral im-

ages, for examples in cases where multiple reflections occur as a result of

mixed spectra of certain endmember distributions randomly distributed through

out the field of view of the sensor [162]. In that case, the collected mixed

spectra can be described by assuming part of the source radiation is multiple

scattered before being collected by the sensor [163] as demonstrated in Figure

3.3.
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FIGURE 3.3: Schematic diagram of intimate mixtures

Intimate mixing happens, especially when dealing with granular mate-

rials such as soils. Soils are often significant constituents of spectral remote

sensing scenes, thus it may be assumed that intimate mixing is very com-

mon. In such cases, a linear model is not sufficient [157]. In particular, with

mixtures of soils and oils or water and oils intimate mixtures.

To cope with both intimate mixtures and multiple scattering problems,

machine learning technologies has been proposed to train artificial neural

networks for nonlinearity or bilinear nonlinear models using the following

equation [161].

yp = ∑
i

aimi + ∑
i 6=j

aiajmi �mj (3.1)

Where the sum on the left hand term for the single scattering which is
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similar to the linear mixing model; and the sum on the right hand side ac-

counts for the double scattering where the vector mi �mj yp ∈ Rnb accounts

for the pair wise interactions.

3.2.3 Endmember variability

One important aspect that has been understudied and subsequently raised

many concerns in the literature is the effects of spectral, spatial and temporal

variability, which arises due to variable illumination, atmospheric, environ-

mental and temporal conditions in the scenes. These effects have been con-

sidered to account for the main errors in spectral unmixing. This variability

introduces a modification in the shape and the scale of the endmembers spec-

trum in each pixel as shown in Figure 3.4. This figure shows the endmember

spectra of soil and HC mixture of a normalized data.

FIGURE 3.4: Effect of endmember variability

Library spectra has been used in spectral mixture analysis to address this

issue. It shows variation in endmember spectral signatures, often caused by

spatial and temporal variability in the scene components. While differen-

tial illumination conditions are not accounted for which results in significant
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fraction estimation error [153]. Different methods have been proposed to ad-

dress endmember variability in spectral mixture analysis, such as Multiple

Endmember Spectral Mixture Analysis (MESMA) [155], Monte Carlo Spec-

tral Unmixing Model (MCSUM) [164], and endmember bundle using Princi-

ple Component Analysis (PCA) [165].

However the limitation of these techniques is that endmember signatures

are not treated as constants rather they are represented by probability den-

sity functions. Also the computational complexity of the methods is another

drawback, especially when applied to hyperspectral data [166].

Thus, in HC spill quantification problems, the main nonlinear factors re-

late to multiple scattering due to the granulous terrain and interaction of

organic/ non organic substances, and multiple reflections due to the nature

of images where trees and different canopy might be present.

The proposed method took that into consideration and proposes the hy-

brid switch methods based on the characteristics of the mixture type within

the neighboring pixels. Values that were believed to represent the diversity

of the neighboring pixels were considered which are discussed in the next

section.

3.3 Vicinity Parameters

The vicinity parameters proposed here are used to evaluate the linearity as-

sumptions in a pixel by pixel basis. These parameters depend on characteris-

tics of a Region of Interest (ROI) around the pixel being unmixed. The linear

model is expected to provide acceptable results when the following two as-

sumptions are satisfied: (1) mixing at macroscopic level which simply means

that the probability of interacting with a given endmember is proportional to

its areal abundance in the Instantaneous Field of View (IFOV) and (2) pho-

tons interact with single material before reaching the sensor. This suggest
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that each incoming light ray interacts with a single material in the IFOV be-

fore reaching the sensor. Generally this is not known a priori and changes

might occur over different parts on a given scene due to spatial resolution

and mixing phenomena in the scene. In fact, it is more likely that the position

and extent depends on the spatial, spectral and temporal complexity and also

the composition of endmembers present in a given scene [153]. Therefore, it

would be an interesting idea to design new model capable of simultaneously

exploiting the spatial correlation and nonlinearities between abundances in

a dataset to produce good and acceptable results. To address this, the hy-

brid switch method was proposed where a number of parameters related to

the pixels’ neighboring characteristics are used. These parameters are: the

minimum and maximum Spectral Angular Distance (SAD), covariance and a

nonlinearity parameter. In order to compute these parameters, a ROI W was

defined around the examined pixels of size n× n as demonstrated in Figure

3.5.

FIGURE 3.5: Hyperspectral data showing Region of Interest
(ROI) and defined window size.

It can be hypothesise that neighboring pixels in a linear scene will have
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more spectral and spatial coherent spectrum compared to those in a nonlin-

ear scene as demonstrated in [167].

3.3.1 Spectral Angular Distance (SAD)

Spectral Angular Distance (SAD) describes the angular distance between two

vectors. This method provides a way of measuring separability of different

endmembers quantitatively and objectively and can be estimated by comput-

ing the cosine of the angles between the actual and the estimated endmem-

bers [14].

The SAD between two spectra: U = (Ui, ..., UL)
T and V = (Vi, ..., VL)

T is

defined as:

SAD(U, V) = cos−1

(
∑L

i=1 UiVi

‖U‖ ‖V‖

)
(3.2)

where L is the number of bands and ‖U‖and ‖V‖ are the modulo of the

two spectra vectors.

3.3.2 Covariance Matrix

The Covariance matrix is a method used to fuse multiple spectra that are

correlated where the variance of each spectra are represented by the diago-

nal values of the covariance matrix and the non-diagonal values represent

the correlation [15]. Also, the noise corrupting individual samples are often

filtered out using an average filter during the computational process of the

covariance. The covariance matrix is defined as:

C =
1

L− 1

L

∑
i=1

(Xi − µi)(Xi − µi)
T (3.3)
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Where µi is the mean vector of pixels in the ROI in band i and Xi is the

vector containing all pixel values in band i and L is the number of bands

It is noted that the covariance may be calculated in the spatial or spec-

tral domain to describe the variability of the spectral signals with respect to

those in the ROI. In the proposed method, it is calculated in the spatial do-

main. On the other hand, it may also be used to describe the variability of

the consequent spectral bands.

3.3.3 Nonlinearity parameter

From the Polynomial Post Nonlinear Mixing Model (PPNMM) described in

section 2.4.4, nonlinearity can be calculated using the PPNMM model and

is characterized by a parameter b for each pixel in a scene. This parameter

quantifies the levels of nonlinearity in a pixel which is defined as:

b =
R

∑
i=1

R

∑
j=i+1

aiaj mi �mj + n (3.4)

Where� is the Hadamard (term by term) product operation, ai and aj are

the abundance reflectance spectra of endmembers i and j and R is the num-

ber of endmembers.

3.4 Neural Networks

The methods proposed in this work uses Neural Networks (NN) and deep

learning approach. The following sections describe the neural networks em-

ployed in the proposed methods together with the parameters that are re-

quired.
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3.4.1 Nonlinearity for feed-forward networks

Feed-forward neural networks, also known as multi-layer perceptrons are a

basic neural network architecture which is widely used in a variety of ma-

chine learning tasks [130]. Inspired by the biological neural systems which

constitute the animal brains, a feed-forward neural networks imitates signal

transmissions from a collection of artificial neurons often referred to as units.

These units are organized in a chain of layers referred to as hidden layers.

As discussed in section 2.4.5 feed-forward neural networks consist of three

layers; input, hidden and output layers.

The weighted sum of the inputs produces the activation signal which is

then passed to the activation function to obtain one output from the neuron

as shown in Figure 3.6.

FIGURE 3.6: Schematic diagram of a feed-forward neural net-
work [168].

3.4.2 Scale conjugate gradient backpropagation algorithm

Backpropagation algorithm is a supervised learning method used to train an

artificial neural networks. Training of the networks is often carried out by
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iterative updating the weights based on error signal, then the error is back

propagated to the lower layers as demonstrated in Figure 3.7.

FIGURE 3.7: Schematic diagram of backpropagation algorithm
[112].

Backpropagation algorithm is a descent algorithm which attempts to min-

imize the error rate at each iteration for a particular training pattern. Its also

the famous training algorithm for multi-layer perceptions [18]. Despite the

general success of the backpropagation algorithm, it still has some limitations

such as the existence of temporary local minima which results from satura-

tion behaviour of the activation function. It also has slow convergence rate

which makes it relatively slow to train a networks with more than one hidden

layer. The backpropagation algorithm involves two parameters in updating

the weights during training which are; the learning rate (α) and momentum

factor (β) which is given as:

∆W(k) = α(−∇E(W(k))) + β∆W(k− 1) (3.5)

Where ∇ E(W(k)) is gradient of E at W = W(k), with K = 1, 2, 3....... N

being the iteration number. ∆ W(k− 1) is a previous weight change, α and β

are the learning rate and momentum factor respectively.
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The best choice of these parameters depends on the problem which often

requires a trial an error process before a good choice is found [169]. A larger

learning rate results in the network learning with bigger steps and converge

faster, in other words, if the learning rate value is too big, oscillation and

overshooting occurs while too small a learning rate makes the algorithm to

converge slowly [170].

Scale Conjugate Gradient (SCG) is a variant of the conjugate gradient

method. It is one of the most popular second order gradient supervised pro-

cedure [171]. This method shows super-linear convergence on most prob-

lems. SCG uses a scale size scaling mechanism to avoid time consuming

line search per learning iteration, which makes the algorithm faster than

other second order algorithms [172]. This algorithm simply avoids the line

search per learning iteration by using a Levenberg – Marquardt approach

to decrease the step size. The Levenberg-Marquardt introduces scalar factor

lamda (λ) to the algorithm which regulates the indefiniteness by adjusting

the λ with a constant factor for each iteration.

3.4.3 Hyperparameters

An artificial neural network requires different hyperparameters in order to

improve results, these largely depend on the dataset used in training the net-

work. The SCG backpropagation algorithm involves three parameters in up-

dating the weights during training which are; the learning rate (α), momen-

tum factor (β) and lamda (λ). These parameters are automatically selected to

fit the network during training.
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Learning rate

The initial learning rate α is one of the most important hyperparameters. The

learning rate determines how much the parameters are changed in one up-

date; too low a learning rate makes the network learn slowly, and too large

a learning rate possibly leads to oscillation preventing the error to fall below

certain value. Several approaches have been proposed to adaptively change

the learning rate to improve the performance of the network during train-

ing. These includes; the NewBob method [173] this method adaptively deter-

mines the learning rate according to temporary system performance during

training. Decay method [174] this method reduce the learning rate gradually

after each training update. Another alternative method is associated with

individual learning rate with each parameter adjusted according to heuristic

rules [175].

Momentum

The momentum factor β is a strategy to make the learning procedure more

stable and accelerate convergence in shallow regions of the error function

which in practice does not always happens [176]. The momentum method

recursively accumulates a decaying average of past gradient and then add it

to the current update. The advantage of momentum is that the inertia on the

update direction can be maintained to reduce the risk of oscillation which

often results in a smoother decrease of the training criterion [130].

3.4.4 Three-term backpropagation algorithm

The backpropagation algorithm has been modified by different researchers

aimed at improving efficiency and convergence rate of the algorithm. One

such method is the three-term backpropagation algorithm proposed by [18].

This algorithm proposes an extra term called the Proportional Factor (PF)
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to the standard backpropagation algorithm which speeds up the weight ad-

justment process by increasing the convergence rate and decreasing learning

stalls whilst maintaining the simplicity and efficiency of the standard back-

propagation algorithm [177]. This approach outperforms the standard back-

propagation algorithm in terms of convergence rate. The three-term back-

propagation algorithm is defined as:

∆W(k) = α(−∇E(W(k))) + β∆W(k− 1) + γE(W(k)) (3.6)

Where γ is the propotional term and E(W)(k)) represents the difference

between the output and the target at each iteration.

Some backpropagation algorithm modifications require complex and costly

calculations which often results in offsetting the faster rate of convergence

obtained with the modified algorithm. Unlike other modification methods,

the three-term backpropagation algorithm maintains the simplicity of the

standard backpropgation algorithm as evidence from equation 3.6. This has

been demonstrated in [178] where the convergence speed, simplicity and ef-

ficiency of the algorithm were tested.

Proportional factor

The extra term introduced in the three-term backpropagation algorithm called

the proportional factor (γ) speeds up the weight adjustment process by in-

creasing the convergence rate and decreasing learning stalls whilst maintain-

ing the simplicity and efficiency of the algorithm compared to the standard

backpropagation algorithm.
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3.4.5 Cross validation

To evaluate the performance of a model, it needs to be evaluated as a seperate

dataset from previously seen dataset by the model. It is a common practice

to split a full dataset into training and testing sets which is a way of evaluat-

ing the generalizability of a model. The most common used cross validation

method is the k-fold cross validation. In this method, the dataset is seperated

into k-folds where the training and the testing process is repeated k times, and

one of the folds used as test set and the remaining folds used for training the

model. The accuracy of the model is assesed based on the mean performance

across the k-folds, which can be considered as a better estimate compared to

a single training - testing split of dataset [179].

The training dataset can further be divided into training and validation

sets where the validation dataset is used to assess the performance of the

model before testing on unseen data by the model. This is important be-

cause models such as deep neural networks have non-trainable hyperparam-

eters therefore, an independent validation dataset is needed to evaluate their

choices [130]. Another reason for using the validation dataset to evaluate a

deep neural network model is because they are trained iteratively therefore a

stopping criterion is needed to avoid overfitting which can be obtained from

the performance of the validation dataset after each training iteration. If the

performance keeps improving on the training data but deteriorates on the

validation set, it is a sign of overfitting and training should stop [180].



76 Chapter 3. Methodology

3.5 Hybrid Spectral Unmixing Method for Switch-

ing Between Linear and Nonlinear Models

The proposed hybrid method switches between different spectral unmixing

methods using artificial neural networks to assess if a particular pixel is bet-

ter explained with a given model. In order to do that, a supervised neural

network was used which required ground truth datasets. Although the idea

is that, the neural network should be able to generalize and assess models

validity on unseen pixels provided that sufficient dataset is used to train the

network.

The following unmixing models: VCA, FCLS, PPNMM and GBM which

have been discussed in details in Sections 2.3 and 2.4 were used here. These

methods were chosen because they are state-of-the-art methods and have

been studied extensively and used as benchmark in the literature. However,

the same methodology could be applied to other models. The advantage of

the hybrid switch method is its ability to decide the best model to use for

a particular application in a pixel-by-pixel basis. It also addresses the ques-

tion of whether a mixed pixel is better explained with a linear or nonlinear

process.

The two models, one linear and one nonlinear were selected to train the

neural network. The following pairs were used: VCA – PPNMM, VCA –

GBM, FCLS – PPNMM, and FCLS – GBM, respectively. Moreover, VCA was

always used to estimate the endmembers contained in the dataset and the

corresponding spectra. In order to provide a comparison, the four individ-

ual methods as well as the hybrid methods were used to unmix spectra of

mixtures and estimate the fractional abundances.

The key idea here is that the neural network will be able to decide whether

a pixel should be unmix with a particular given model, when it is fed with the

pixel spectra or a vector containing some of the vicinity parameters described
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in section 3.3.

The accuracy of the individual methods to the proposed hybrid methods

for switching between linear and nonlinear spectral unmixing based on the

diversity of the neighboring pixels will be compared in chapter 4. The algo-

rithms were coded according to [60, 77, 47, 16].

3.5.1 Architecture of the neural network

An Artificial Neural Network (ANN) was used to conduct and predict the

best method when switching between linear and nonlinear spectral unmix-

ing. Neural pattern recognition was used in this study, this was chosen be-

cause it solves a pattern recognition problem and classify the inputs into a set

of target categories based on the class with highest values. This method has

demonstrated to output good results with high level of accuracy in image

processing.

The ANN is a two layered feedforward network, with sigmoid activa-

tion function in its hidden neurons and softmax in its output neurons. ANN

has been proven to classify vectors arbitrarily well, having defined enough

neurons in its hidden layers and its trained with scale conjugate gradient

backpropagation algorithm.

The architecture of the ANN used to conduct the switching is described;

the networks have 3 layers namely: input, hidden and output layers. The

input layer has 12 nodes when using a 3× 3 window corresponding to the

vicinity parameters as described in 3.1.1 (min. SAD, max. SAD, c1, c2, c3.....c9,

b); the hidden layer has 10 nodes while the output layer has 1 node corre-

sponding to either linear or nonlinear model. The output layer provides the

decision between linear and non-linear unmixing models with a 0.5 thresh-

old.
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The data for the ANNs were divided into 3 categories, namely: training,

validation and testing sets. For these, ground truth data was required. The

data was unmixed with all individual methods and the best in terms of better

estimate of abundances was labeled for each pixel. Subsequently, the data

was split into 3 categories.

1. The training set is used to fit the parameters of the classifier.

2. Validation set is used to minimize over-fitting (i.e verifying the accu-

racy of the training data) over some untrained data by the networks.

3. Testing sets are used to test the final solution in order to confirm the

actual predictive power of the network [181].

3.5.2 Training

The networks were trained with scaled conjugate gradient backpropagation

algorithm. This algorithm adopts the chain rule derivative [115]. In this algo-

rithm, the gradient of the objective with respect to the input module is com-

puted backwards from the output module [115]. This algorithm was consid-

ered because of its performance when updating the weight and bias values

when using the scaled conjugate gradient; training the network stops when

number of conditions are met which includes: reaching the maximum num-

ber of epochs, maximum time exceeded, performance is minimized to the

goal and the validation performance increasing more than it records [181].

Algorithm 1 explains the training procedure. The Matlab Neural Pattern

Recognition app was used for the hybridization between the linear and non-

linear models.
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Algorithm 1: Learning method using SCG backpropagation algo-

rithm used in training the ANN
Data: linear model, nonlinear model, α , ω, δ, λ, e

NN weights ω, are randomly initialized ω11 ... ... ... ωij

for Number of epochs (k) do
initialize the learning rates α , β, ω, λ and evaluate the conjugate

direction

for image pixel = 1, 2 ..... n do

for Number of hidden layers = 1, 2 ..... f do

/* Calculate the errors and the delta, δ, of the output nodes

e = d− y

δ = φ
′
(ν) e

/* propagate the network output δ backwards, and

calculate the delta, δ

ep = WT δ

δp = φ
′

(νp) ep

/* adjust the weights according to δ

∆ ωij(k) = α δi xj + β ∆ ωij(k− 1)+ λ ei xj

ωij ← ωij + ∆ ωij

end

/* Repeat the algorithm for each pixel

end

end

/* Repeat error calculation δ updating until NN is properly trained
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3.6 Deep Learning Based Spectral Unmixing Method

This section further investigates spectral unmixing method using deep learn-

ing approach. Deep learning has been identified as a popular feature trans-

formation technique due to its ability to implement layer by layer supervised

pre-training of neural networks to discover new features formed from the

combination of the original features. The deep learning approach proposed

here has better generalization ability compared to standard neural network.

The goal of this section is to develop deep learning approach with dropout

to spectrally unmix and estimate the abundance in a given dataset without

using endmember estimation or other unmixing methods. A motivation for

using the deep learning approach is due to the success of the approach in

computer vision, image processing and image classification which have seen

a great increase in the last few years. A review of the literature shows that

deep learning approaches have been used to some extent in hyperspectral

unmixing problems [182].

3.6.1 Deep Learning

Deep learning is a kind of machine learning technique which employs a deep

neural network (DNN), different activation functions and dropout. It is sim-

ply referred to as a network of sufficient complexity in order to interpret

raw data without human derived explanatory variables [115, 183]. A DNN

contains two or more hidden layers as described in Section 2.4.6, where the

learning rule becomes the algorithm that generates the model from the train-

ing data, its main drawbacks are over-fitting and vanishing gradient [112].

The most common solutions for over-fitting and vanishing gradient involves

in co-operating dropout and best suited activation function respectively. The

dropout trains only some of the randomly selected nodes rather than the en-

tire network.
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Deep learning is now considered state-of-the-art algorithm which has won

several contests in pattern recognition and machine learning, having achieved

unprecedented accuracy on benchmark datasets [184]. The structure and

operation of a deep learning model is organized into three layers, namely;

input layer, hidden layer(s) and output layer as shown in Figure 3.8. The

input layer contains input neurons, which send information to the hidden

layers. The hidden layers send data to the output layer where every neu-

ron has weight inputs, activation function and one output. These layers are

fine-tuned using different algorithms to update the weights and biases of the

network. One commonly used method is the backpropagation algorithm.

FIGURE 3.8: Structure of a deep learning model [130].

In this section, a deep learning model to estimate the amount of Hydro-

carbon (HC) mixed with different soil samples was developed using a three-

term backpropagation algorithm (which is a modified version of the standard

backpropagation algorithm) to rapidly converge the network and dropout

was used to avoid overfitting and reduce the complexity of the nets compu-

tations.
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Different methods utilizing both linear and nonlinear models have been

demonstrated in the literature for the analysis of different hydrocarbon types.

Scafutto et al and Webster et al [29, 30] used Principal Component Analysis

(PCA) and PLS regression were used. The authors used PCA to differenti-

ate the types and density of HCs in soils while they used PLS to predict the

concentration of oils and fuels in soil samples. Schwartz et al [7] used Spec-

tral Angular Mapper (SAM) to classify oil spills on an image and also used

signature matching to distinguish oils from other features. However, most

of these methods adopt a linear model and smoothing threshold function for

feature extraction. Other approaches such as a Kernel-based transformation

[185] and manifold learning algorithm [5] were based on nonlinear models.

In [186], it was proven experimentally that HCs abundance in soils was

estimated with higher accuracy when nonlinear unmixing models were ap-

plied. Nevertheless, spectral unmixing and specifically the abundance esti-

mation of HCs such as gasoline can be challenging [187] and may require

more advanced techniques such as deep learning. An alternative method for

solving nonlinear problems deep learning network, which can be fast and ac-

curate since the model does not rely on assumptions to simplify the model.

3.6.2 Dropout

Dropout allows neurons to randomly drop out of the network during train-

ing while other neurons steps in and handle the representation required to

make predictions for the missing neurons [19]. As discussed in section 2.4.11,

it refers to randomly dropping out units in a neural network as demonstrated

in Figure 3.9. The dropout works in such a way that the network becomes

less sensitive to the original weights of neurons. This results to having a

network that is able to generalize and not likely to overfit the training data.
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FIGURE 3.9: A thinned network produced by dropout where
the crossed are dropped [130].

Since deep neural network consists of multiple nonlinear hidden layers,

this makes them very expressive models that can learn complicated relation-

ships between the input and output nodes which often results to overfitting.

The dropout function randomly sets a hidden unit to zero during training

with a certain probability range and modifies the final output of the nodes

[188]. Each training set can be viewed as providing gradient for a different

randomly sampled architecture so that the final network resembles efficiently

with good generalization capability. The function takes the output vector and

dropout ratio which then returns the new vector that is multiplied to the out-

put vector. Dropout is given as; yd = Dropout(y, ratio) where y is the output

vector and ratio is the ratio of the dropout of the output vector. Dropout

only trains randomly selected nodes at certain percentages rather than the

entire network where the selected node outputs are set to zero to deactivate

the nodes [112]. Deep neural networks with dropout have proven to perform

well in many different applications and greatly reduces computational time

[189].
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3.6.3 Deep Learning Architecture

A deep learning model requires the modification of various hyperparame-

ters in order to have acceptable results, these largely depend on the type of

dataset and other hyperparameters.

The best choice of these parameters depends on the problem which often

requires a trial an error process before a good choice is found [169]. Having

run the simulation a number of times based on trial an error, the optimum

values of the parameters were found which were then used to train the net-

work model.

All training trails for different HCs were conducted with the learning rate

α set to 0.01, β set to 0.5, γ set to 0.1 and a dropout ratio of 0.20 which allowed

convergence of the objective function. The results illustrate the effectiveness

of the developed deep learning approach based on the three-term backprop-

agation algorithm with dropout.

An exploratory approach was used in considering the size of the hidden

layer of the neural network, different sizes up to 10 layers and 100 nodes

were considered for the hidden layer. After the exploratory stage, the effec-

tive range was narrowed down to between 3 - 10 layers and between 20 - 50

nodes. All possible values within the effective hyperparameter range were

evaluated in order to obtain the best fit for the model.

Finally, given similar performance with hyperparameters that results in

lower model complexity, the deep learning model with 4 hidden layers and

30 nodes happens to be the best fit for the other hyperparameters.

Regarding sensitivity of the deep learning model to the choice of hyperpa-

rameters, a decrease in performance was observed with increase or decrease

of the parameter values such as number of hidden layers, number of nodes,

values of alpha ( α), beta ( β) and gamma ( γ). It was, however noted to be

difficult to isolate the effect of individual hyperparameter, as the value of one
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affects the optimal value of the other. For example, it was noted that there is

a close relationship between the number of nodes in each hidden layer and

the regularization weight, specifically, a network with large number of nodes

may demand higher regularization weight [179].

The deep learning model was designed using the number of bands (288)

as input to the network and 4 hidden layers each containing 30 nodes 1

output corresponding to the abundance of hydrocarbon. The network was

trained using the ground truth abundances for the different mixtures. The

network used Sigmoid activation function and a range of dropout (10% −
50%).

In the proposed deep learning approach, dropout on hidden layers and

on the visible layer are developed. Dropout on hidden layers is applied to

hidden neurons in the hidden layers and between the last hidden layer and

the output layer of the body of the deep networks’ model. Dropout on the

visible layer is applied between the input and the first hidden layer.

The algorithm was run iteratively with 20 epochs. The deep learning

model was implemented using MatLab 2018b. The experiments were carried

out on an LG desktop with Intel (R) core (TM)2 Duo CPU 3.00 GHZ proces-

sor 8.00 GB RAM. The learning process terminates when the iterations are

over a fixed number or the total squared error is less than a small threshold.

3.6.4 Training with three-term backpropagation algorithm

with dropout

The three-term backpropagation algorithm with dropout was used to train

the network in order to minimize the measured error by adjusting the weights.

To train the network, initial weights and bias must be defined as well as

the activation function. The values of the three-terms (α, β and γ) determined

using trial an error method were used.



86 Chapter 3. Methodology

Training a network is mostly affected by overfitting, which is poor per-

formance on the test set after the training, this affects the model’s ability to

generalize on unseen data which is a major challenge for the deep learning

approach. However, combining this approach with dropout can be a good

way of overcoming this challenge. Using this method, all the parameters

are trained with the standard gradient decent algorithm. misclassifications

obtained from the feedforward process are utilized during backpropagation

algorithm to calculate the gradient. These gradients are then used to update

the training parameters. The three-term backpropagation algorithm is used

to calculate the gradients error with the ground truth data and the parame-

ters of the model are adjusted to optimize the learning model.

Deep learning model with dropouts can be trained using the stochastic

gradient descent which can be similar to a standard neural networks, the

only difference here is the random dropping of units in the network’s hidden

layers. Different methods have been used to improve the standard gradient

descent algorithm such as momentum, annealed learning rates and weight

decay [19].

The three-term backpropagation algorithm with dropout was used to train

the deep learning model. The effectiveness of using this algorithm to train

the model is demonstrated, where the dropout probability for each hidden

variable is computed so as to achieve better results of fine-tuning as demon-

strated in algorithm 2.

To evaluate the generalizability of our proposed model, the results were

obtained using 20- fold cross validation. Each dataset was split into training

and testing thus obtaining a one - to - one correspondence of cross validation

folds.

With this experimental design, the overall performance of the model was

assessed and the accuracy of the model on all the experiments.
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Algorithm 2: Learning method using the three-term backpropaga-

tion with dropout used in training the DNN model
Data: α, β, γ, ω, δ, e

DNN weights ω, are randomly initialized ω11 ... ... ... ωij

for Number of epochs (k) do

initialize the learning rates α , β, γ, ω

for Number of HC estimates = 1, 2 ..... n do

for Number of hidden layers = 1, 2 ..... f do

/* Calculate the errors and the delta, δ, of the output nodes

e = d− y

δ = φ
′
(ν) e

- compute the nodes’ output yij

yij = yij ∗ Dropout (yij, ratio)

- propagate the network output yz backwards, and

calculate the delta, δ

ep = WT δ

δp = φ
′

(νp) ep

/* update and adjust the weights according to δ

∆ ωij(k) = α δi xj + β ∆ ωij(k− 1)+γ ei xj

ωij ← ωij + ∆ ωij

end

end

end
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3.7 Summary

In this chapter, the hybrid switch method for switching between linear and

nonlinear spectral unmixing of hyperspectral data based on artificial neural

networks and the deep learning based spectral unmixing method were dis-

cussed, detailing the architectures of the two proposed methods, the training

algorithms as well as validation methods of the proposed models. Validation

of the method through experimentation with simulated and real hyperspec-

tral data sets will be discussed in the next chapter. An experiment using a

controlled hyperspectral data for HC spill detection and estimation will be

validated using the two proposed methods in the next chapter.
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Chapter 4

Experimentation and results

4.1 Introduction

In this chapter, experimentation and results from the two proposed methods

as described in chapter 3 are presented. The results aim to show validation

of the proposed methods and the their performances against conventional

neural networks. Another aim is to demonstrates the effectiveness of the

proposed methods for HC spill detection using controlled datasets to vali-

date the methods. This chapter is organized as follows. Section 4.2 describes

all the datasets used for the experiments, including the materials used and

the detailed experimental protocol observed during the image capturing of

the controlled datasets. Section 4.3 explain the results obtained from the hy-

brid switch methods using different datasets. Section 4.4 describes the hy-

drocarbon abundance estimation using the hybrid switch methods and the

deep learning approach for HC spill detection. This chapter concludes with

a summary in Section 4.5.

4.2 Data Description

In order to validate the hybrid switch method, different experiments were

conducted with different datasets, including both simulated and real datasets

which are described in this section.
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4.2.1 Simulated Data

Simulated images of size 36 × 36 pixels and 224 channels were generated

with abundances computed according to a Dirichlet distribution (a method

to model random probability mass functions for finite sets [80]) defined as :

y(γ) = (Γ(β1 + β2)Γ(β1)Γ(β2))γ
β1−1(γ− 1)β2−1 (4.1)

Where Γ (·) denotes the Gamma function and parameter γ is Beta (β1 β2)

distributed.

The data was generated using the ENVI spectral library that contains 21

endmembers corresponding to mineral reflectances with 224 bands in the

500 - 2500 m range [60]. Additionally, a nonlinearity co-efficient was added

ranging between [0, 1], these parameters were tuned accordingly with dif-

ferent numbers of endmembers ranging between 3 and 9. The images were

corrupted with Random Gaussian noise with Signal to Noise Ratio (SNR) 10

dB, 30 dB and 50 dB respectively. Figure 4.1 shows the spectral reflectance of

endmembers of the simulated data.
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FIGURE 4.1: Spectral reflectance of endmembers of the sim-
ulated data plotted, Normalised reflectance[%] against wave-
length (a) Brucite; (b) Clinochlore; (c) Axinite; (d) Erionite;
(e) Ammonioalunite; (f) Clintonite; (g) Almandine; (h) Carnal-
lite; (i) Actinolite; (j) Andradite; (k) Antigorite; (l) Elbaite; (m)
Ammonio-jarosite; (n) Diaspore; (o) Halloysite; (p) Biotite; (q)
Galena; (r) Carnallite; (s) Chlorite; (t) Goethite; (u) Corundum.
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4.2.2 Samson data

The Samson data used in this research is a real hyperspectral data owned by

Oregon State University provided by WeoGeo [190]. The data is captured

with a push broom visible to near infrared sensor. The pixel responses are

captured by 156 bands in the spectral range of 401 nm – 889 nm with resolu-

tion up to 3.13 nm. The data has 952 scan lines with 952 pixels in each line

[167]. For this experiment a subset of the image covering 95× 95 pixels was

used, which comprises of three endmembers i.e soil, tree and water. Figure

4.2 shows the spectral reflectance of endmembers of the Samson dataset.

FIGURE 4.2: Spectral reflectance of endmembers of the Samson
data (a) rock (b) tree (c) water [190].
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4.2.3 Jasper Ridge

The Jasper Ridge dataset is also a real hyperspectral data cube recorded by

AVIRIS over the standard scene of the Jasper Ridge. This image covers a bio-

logical reserve in California. The dataset consist of 512× 614 pixels recorded

in 224 channels ranging from 380 nm to 2500 nm. The data has a spectral res-

olution of 9.46 nm. A subset of the image of size 100× 100 pixels was used

from the original image and 198 bands were selected after removing those

bands with atmospheric effects and dense water vapor. There are four main

endmembers in this image: road, soil, water and tree.

Both Samson and Jasper Ridge datasets and their corresponding abun-

dance ground truth are available at [190]. These datasets have been used as

benchmark to test different unmixing algorithms and classification. Figure

4.3 show the spectral reflectance of endmembers of the Jasper Ridge dataset.
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FIGURE 4.3: Spectral reflectance of endmembers of the Jasper
Ridge data (a) tree (b) water (c) soil (d) road [190].

4.2.4 Controlled dataset

A controlled laboratory experiment was designed where we analysed several

soils contaminated with various types and concentration of HC in order to

create predictive model to correctly estimate the amount of HC in each soil

mixture which could be applied worldwide for rapid remediation to both oil

exploration and environmental monitoring.

4.2.5 Materials for the controlled dataset

The hydrocarbon types used for this experiment include: Diesel, Bio-diesel,

Ethanol and Petroleum. These are the most commonly used HCs in the liter-

ature. Soil types include typical mixtures of: Clay (< 0.002mm in diameter),
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Silt (0.002− 0.05 mm in diameter) and Sand (0.05− 1 mm in diameter). In

particular, we used mixtures with different grain size ranging from medium

to coarse as follows: Clay, Clay Loam , Sand Clay Loam and Sand Loam.

Percentages of textural classes of different soil types are shown in Figure 4.4

[191].

FIGURE 4.4: Percentages of different soil samples in a basic tex-
tural classes [191] .

4.2.6 Sample Preparation

In order to achieve uniform datasets on all the different materials, the mea-

surement and scanning was conducted under constant illumination.

The preparation of the samples consisted of the following steps:

• Each soil type was air-dried for 12 hours so all samples contained sim-

ilar levels of moisture.
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• 50 g of a soil sample type was added to a petri dish (12 cm in diameter)

• The petri dish was placed on the camera’s field of view along side a

white paper (to calibrate) in order to obtain an image with the best pos-

sible contrast.

• The sample was scanned with a Hyspex SWIR 384 m camera under

constant illumination.

• In the same sample, 5 ml of the HC was added to the soil using a sy-

ringe.

• A disposable plastic spoon was used to homogenize the mixture and to

flatten its surface.

• The sample was scanned with a Hyspex SWIR 384 m camera under

constant illumination.

• In the same sample, a further 5 ml of HC was added to the mixture

• The disposable spoon was used to homogenize the mixture and another

scan was taken.

• The procedure was repeated with increments of 5 ml of HCs until the

mixture was saturated and formed a shallow local pool as shown in

Figure 4.5.

FIGURE 4.5: Sample preparation of the experiment combining
sandy - loam with diesel. Photos show the HC contaminant be-
ing increasingly added to the same soil sample until saturated.
From left; addition of 5ml , followed by 10ml, 15ml, 20ml and

25ml of the HC
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The procedure was repeated on all the soil samples contaminated with all

the different hydrocarbon types. A total of 15 combinations were produced

as shown in Table 4.1 with four mixtures each for clay - loamy, sandy - clay

- loam and sandy - loam soil types, while clay had three mixtures. The com-

plete data set used here consisted of 96 spectral images.
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TABLE 4.1: Samples created for each combination made in
the experiment and their corresponding absolute HC and soil

quantities, respectively

Sample combination HC (ml) Soil (gr) Sample combination HC (ml) Soil (gr)

Clay - Diesel 0 0 50 Clay - Bio- diesel 0 0 50

Clay - Diesel 1 5 50 Clay - Bio- diesel 1 5 50

Clay - Diesel 2 10 50 Clay - Bio- diesel 2 10 50

Clay - Diesel 3 15 50 Clay - Bio- diesel 3 15 50

Clay - Diesel 4 20 50 Clay - Bio- diesel 4 20 50

Clay - Diesel 5 25 50 Clay - Bio- diesel 5 25 50

Clay - Ethanol 0 0 50 Clay Loam - Ethanol 0 0 50

Clay - Ethanol 1 5 50 Clay Loam - Ethanol 1 5 50

Clay - Ethanol 2 10 50 Clay Loam - Ethanol 2 10 50

Clay - Ethanol 3 15 50 Clay Loam - Ethanol 3 15 50

Clay - Ethanol 4 20 50 Clay Loam - Ethanol 4 20 50

Clay - Ethanol 5 25 50 Clay Loam - Ethanol 5 25 50

Clay Loam - Diesel 0 0 50 Clay Loam - Bio- diesel 0 0 50

Clay Loam - Diesel 1 5 50 Clay Loam - Bio- diesel 1 5 50

Clay Loam - Diesel 2 10 50 Clay Loam - Bio- diesel 2 10 50

Clay Loam - Diesel 3 15 50 Clay Loam - Bio- diesel 3 15 50

Clay Loam - Diesel 4 20 50 Clay Loam - Bio- diesel 4 20 50

Clay Loam - Petrol 0 0 50 Sand Loam - Petrol 0 0 50

Clay Loam - Petrol 1 5 50 Sand Loam - Petrol 1 5 50

Clay Loam - Petrol 2 10 50 Sand Loam - Petrol 2 10 50

Clay Loam - Petrol 3 15 50 Sand Loam - Petrol 3 15 50

Clay Loam - Petrol 4 20 50 Sand Loam - Petrol 4 20 50

Clay Loam - Petrol 5 25 50 Sand Loam - Petrol 5 25 50

Clay Loam - Petrol 6 30 50 Sand Loam - Petrol 6 30 50

Clay Loam - Petrol 7 35 50 Sand Loam - Petrol 7 35 50

Clay Loam - Petrol 8 40 50 Sand Loam - Petrol 8 40 50

Clay Loam - Petrol 9 45 50 Sand Loam - Petrol 9 45 50

Sand Clay Loam - Diesel 0 0 50 Sand Clay Loam - Bio- diesel 0 0 50

Sand Clay Loam - Diesel 1 5 50 Sand Clay Loam - Bio- diesel 1 5 50

Sand Clay Loam - Diesel 2 10 50 Sand Clay Loam - Bio- diesel 2 10 50

Sand Clay Loam - Diesel 3 15 50 Sand Clay Loam - Bio- diesel 3 15 50

Sand Clay Loam - Diesel 4 20 50 Sand Clay Loam - Bio- diesel 4 20 50

Sand Clay Loam - Diesel 5 25 50 Sand Clay Loam - Bio- diesel 5 25 50

Sand Clay Loam - Ethanol 0 0 50 Sand Clay Loam - Petrol 0 0 50

Sand Clay Loam - Ethanol 1 5 50 Sand Clay Loam - Petrol 1 5 50

Sand Clay Loam - Ethanol 2 10 50 Sand Clay Loam - Petrol 2 10 50

Sand Clay Loam - Ethanol 3 15 50 Sand Clay Loam - Petrol 3 15 50

Sand Clay Loam - Ethanol 4 20 50 Sand Clay Loam - Petrol 4 20 50

Sand Clay Loam - Ethanol 5 25 50 Sand Clay Loam - Petrol 5 25 50

Sand Clay Loam - Ethanol 6 30 50 Sand Clay Loam - Petrol 6 30 50

Sand Clay Loam - Petrol 7 35 50

Sand Loam - Diesel 0 0 50 Sand Loam - Bio- diesel 0 0 50

Sand Loam - Diesel 1 5 50 Sand Loam - Bio- diesel 1 5 50

Sand Loam - Diesel 2 10 50 Sand Loam - Bio- diesel 2 10 50

Sand Loam - Diesel 3 15 50 Sand Loam - Bio- diesel 3 15 50

Sand Loam - Diesel 4 20 50 Sand Loam - Bio- diesel 4 20 50

Sand Loam - Ethanol 0 0 50

Sand Loam - Ethanol 1 5 50

Sand Loam - Ethanol 2 10 50

Sand Loam - Ethanol 3 15 50

Sand Loam - Ethanol 4 20 50
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4.2.7 Hyperspectral Imaging

The spectral data was obtained using a Norsk Electro Optikk Hyspex SWIR

384 m line-scan hyperspectral camera and is equipped with a Mercury Cad-

mium Telluride (MCT) detector array. For this experiment, a user friendly

table-top laboratory set up with a translation stage, SWIR light source and

close up lenses were used during the scanning stage to scan the sample and

build a hyperspectral data cube ( Figure 4.6). The camera simultaneously

captured a full SWIR spectrum, with a spectral sample interval of 5.45 nm

between 930 and 2500 nm, each along a line of 384 pixels for 288 bands with

a radiometric resolution of 16 bit [192]. The 384 columns of the detector array

formed one line of the hyperspectral image in the x-axis. The hyperspectral

image was obtained line by line using the so-called "pushbroom" scanning

mode, where the platform holding the sample was translated onto the y-axis

at constant speed ( Figure 4.7). The scanning speed was automatically con-

trolled by the data acquisition unit based on the selected lens option. The

images produced had a spatial resolution of 0.22 mm/pixel. Radiometric

calibration was performed using the vendor’s software package. A more de-

tailed specification of the system is given in Table 4.2.
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TABLE 4.2: Hyspex 384m main specifications

Spectral range (nm) 930 - 2500

Spatial Pixels (pixels) 384

Spectral Channels 288

Spectral Sampling (nm) 5.45

FOV (degrees) 16◦

Pixel FOV across/along (mrad) 0.73/0.73

Bit resolution (bit) 16

Noise floor (e−) 150

Dynamic range 7500

Peak SNR (at full resolution) > 1100

Max speed (at full resolution)(fps) 400

Power consumption (W) 30

Dimensions (l -w- h) (cm) 38 - 12 - 17.5

Weight (kg) 5.7

FIGURE 4.6: Scanning process of the dataset
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FIGURE 4.7: HySpex 384m line scan acquisition process. The
camera (nadir) acquires hyperspectral lines of pixels. The hy-
perspectral image is obtained by translation of the object under

constant illumination.

4.3 Results from the Hybrid Switch Method

4.3.1 Simulated data

This experiment was conducted using the simulated dataset described in

4.2.1, which allows a full control of the data. Here, the algorithms: VCA,

FCLS, PPNMM and GBM were used to unmix spectra of different mineral

mixtures in the simulated dataset. The accuracy of the individual methods

to the proposed hybrid methods for switching between linear and nonlinear

spectral unmixing methos based on the diversity of the neighboring pixels

was compared. The hybrid methods for switching were between VCA – PP-

NMM, VCA – GBM, FCLS – PPNMM, and FCLS – GBM, respectively. The

experiment was repeated with different numbers of endmembers ranging 3,
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5, 7 and 9 and different Signal to Noise Ratios (SNR) of 10 dB, 30 dB and 50

dB respectively on the simulated dataset. Monte Carlo simulations based on

100 iterations were ran on the generated images for each experiment.

To conduct the switching, the samples were randomly split into 3 sets

namely: training sets, validation sets and test sets. To train a network the

amount of training data required depends on the nature of the problem and

the structure/ architecture of the network, however, it is noted that the greater

the amount of training data, the better the accuracy of the network. As a rule

of thumb, training a network requires roughly about 10 times as many exam-

ples as there are degrees of freedom in a particular model [193].

During training, 70% of the datasets were randomly selected to train the

network, 15% were used for validating the model so as to learn the hyper-

parameters of the neural networks and 15% of the remaining samples were

used to test the accuracy of the networks.

In this experiment, a 3× 3 window was used around the pixel of interest.

A vector containing 12 values i.e SAD min, SAD max, covariance matrix (9

values) and nonlinearity were computed for each pixel as input to train the

network. Each input data consisted of 12 nodes with the number of hidden

nodes set to 10 and the output layer having 1 node which output (0 or 1) cor-

responding to either a linear or nonlinear approach with a threshold of 0.5

set for the switching. The overall accuracy of the experiment and the abun-

dance estimation error of the methods were computed and summarized in

Table 4.3. Result shows that the VCA – PPNMM hybrid method predicted

better overall accuracy of 98.8% as estimated by the confusion matrix with

neural networks in switching between linear and nonlinear spectral unmix-

ing, followed by FCLS – PPNMM with an overall accuracy of 95.6%, VCA

– GBM and FCLS – GBM both have an overall accuracy of 92% and 92.4%

respectively.
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TABLE 4.3: Abundance estimation error (3× 3 window) of the
individual and hybrid methods between linear and nonlinear
spectral unmixing with different signal to noise ratios and end-

members. The best results are shown in bold
.

SNR (dB) = 50 P = 3 P = 5 P = 7 P = 9

INDIVIDUAL METHODS

PPNMM 0.0206 0.0307 0.0371 0.0486

GBM 0.0207 0.0303 0.0346 0.0449

VCA 0.0521 0.0696 0.0777 0.0778

FCLS 0.0714 0.0916 0.0922 0.0924

HYBRID METHODS

VCA – PPNMM 0.0117 0.0201 0.0143 0.0373

VCA – GBM 0.0189 0.0201 0.0158 0.0353

FCLS – PPNMM 0.0177 0.0179 0.0177 0.0340

FCLS – GBM 0.0193 0.0196 0.0199 0.0174

SNR (dB) = 30 P = 3 P = 5 P = 7 P = 9

INDIVIDUAL METHODS

PPNMM 0.0696 0.0951 0.0914 0.0886

GBM 0.0965 0.1193 0.1405 0.1285

VCA 0.0597 0.0662 0.0886 0.0945

FCLS 0.0684 0.0747 0.0894 0.0911

HYBRID METHODS

VCA – PPNMM 0.0390 0.0317 0.0421 0.0556

VCA – GBM 0.0591 0.0412 0.0579 0.0662

FCLS – PPNMM 0.0396 0.0320 0.0539 0.0645

FCLS – GBM 0.0866 0.0926 0.0990 0.1081

SNR (dB) = 10 P = 3 P = 5 P = 7 P = 9

INDIVIDUAL METHODS

PPNMM 0.0907 0.1510 0.1640 0.1733

GBM 0.1106 0.1222 0.1334 0.1740

VCA 0.1289 0.1514 0.1257 0.1988

FCLS 0.1169 0.1702 0.1791 0.1763

HYBRID METHODS

VCA – PPNMM 0.0401 0.0421 0.0736 0.0775

VCA – GBM 0.0704 0.0911 0.0813 0.0915

FCLS – PPNMM 0.0440 0.0508 0.0813 0.0814

FCLS – GBM 0.0917 0.0959 0.1099 0.1112
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The abundance estimation error of the generated data with different Sig-

nal to Noise Ratio (SNR = 50 and SNR = 10) are shown in Figures 4.8 and 4.9.

Here the results displays the abundance estimation error of the individual as

well as the hybrid methods.

The first row shows the ground truth abundances displayed in grayscale

where a white pixel means abundance equal to one for that particular class

and a black pixel means no abundance found for that class. The other rows

shows the abundance estimation error for each class and each method, these

are also displayed in grayscale where bright pixel indicates high error.
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FIGURE 4.8: Abundance estimation errors with simulated data
with 5 endmembers (SNR = 50 dB) The first row shows the
ground truth abundances for the 5 classes from the top, then
the error in abundances as estimated by the hybrid, VCA, FCLS,

PPNMM and GBM methods, respectively.
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FIGURE 4.9: Abundance estimation errors with simulated data
with 5 endmembers (SNR = 10 dB) The first row shows the
ground truth abundances for the 5 classes from the top, then
the hybrid, VCA, FCLS, GBM and PPNMM methods, respec-

tively.

4.3.2 Vicinity parameters

Another experiment was conducted with the simulated dataset around a

3× 3 window. In this experiment, the vicinity parameters used in creating
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the input training data were excluded one at a time. This was done to eval-

uate the importance of the parameters in the vector created. The experiment

was also repeated for SNR values 10dB, 30dB, and 50dB with different end-

members of 3, 5, 7 and 9 respectively. Here it is expected that higher error

values will be recorded when each of the parameters are removed from the

vector in comparison with the results in Table 4.3 where all the parameters

are involved in the experiment. Table 4.4 shows that all parameters play an

important role in the vector for the hybrid switch methods. SAD max has

demonstrated to be the most important parameter in the vector created with

the highest error value in the experiment where it was excluded as compared

to the other parameters.
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TABLE 4.4: .

Abundance estimation error (3 × 3 window) of the individual and hybrid

methods between linear and nonlinear spectral unmixing with different

signal to noise ratios and 3 endmembers where each of the parameters is

removed one at a time The best results are shown in bold

WITHOUT SAD MIN.

SNR (dB) = 10 SNR (dB) = 30 SNR (dB) = 50

INDIVIDUAL METHODS

PPNMM 0.1503 0.0537 0.0179

GBM 0.1220 0.1274 0.0168

VCA 0.1090 0.1000 0.0952

FCLS 0.1670 0.1370 0.0997

HYBRID METHODS

VCA – PPNMM 0.0433 0.0392 0.0150

VCA – GBM 0.0854 0.0784 0.0163

FCLS – PPNMM 0.0434 0.0402 0.0143

FCLS – GBM 0.1180 0.1080 0.0161

WITHOUT SAD MAX.

SNR (dB) = 10 SNR (dB) = 30 SNR (dB) = 50

INDIVIDUAL METHODS

PPNMM 0.0969 0.0876 0.0878

GBM 0.1002 0.0920 0.0741

VCA 0.1216 0.0791 0.0451

FCLS 0.2726 0.1073 0.0560

HYBRID METHODS

VCA – PPNMM 0.0584 0.0467 0.0251

VCA – GBM 0.0885 0.0731 0.0525

FCLS – PPNMM 0.0521 0.0467 0.0251

FCLS – GBM 0.1689 0.1000 0.0772

WITHOUT COVARIANCE DISTANCE

SNR (dB) = 10 SNR (dB) = 30 SNR (dB) = 50

INDIVIDUAL METHODS

PPNMM 0.0940 0.0518 0.0173

GBM 0.1243 0.0921 0.0166

VCA 1.0488 0.0824 0.0590

FCLS 1.1673 0.0966 0.0680

HYBRID METHODS

VCA – PPNMM 0.0506 0.0340 0.0145

VCA – GBM 0.0902 0.0588 0.0163

FCLS – PPNMM 0.0506 0.0336 0.0145

FCLS – GBM 0.1231 0.0916 0.0161

WITHOUT NONLINEARITY PARAM-

ETER

SNR (dB) = 10 SNR (dB) = 30 SNR (dB) = 50

INDIVIDUAL METHODS

PPNMM 0.1447 0.0532 0.0183

GBM 0.1100 0.1039 0.0185

VCA 0.1251 0.0982 0.0865

FCLS 0.1852 0.1167 0.0927

HYBRID METHODS

VCA – PPNMM 0.0448 0.0432 0.0173

VCA – GBM 0.0856 0.0789 0.0178

FCLS – PPNMM 0.0448 0.0431 0.0171

FCLS – GBM 0.1236 0.1096 0.0137
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In order to assess the accuracy of the hybrid switch methods, the net-

work was also trained with the raw data (i.e 224 bands) as input instead of

the vicinity parameters. Here we have 224 while the rest of the parameters

remain the same. Results of 100 Monte Carlo simulations are summarized

in Table 4.5. From the results obtained, it was observed that the trend is in

the same order of magnitude as obtained when the vicinity parameters were

used to train the network as demonstrated in Table 4.3.
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TABLE 4.5: .

Abundance estimation error with the individual and hybrid methods of

the raw hyperspectral data between linear and nonlinear spectral unmixing

with different signal to noise ratios and different endmembers. The best

results are shown in bold

SNR (dB) = 50 P = 3 P = 5 P = 7 P = 9

INDIVIDUAL METHODS

PPNMM 0.0253 0.0276 0.0378 0.0418

GBM 0.0253 0.0276 0.0347 0.0383

VCA 0.0775 0.0612 0.0717 0.0719

FCLS 0.0891 0.0663 0.0877 0.0612

HYBRID METHODS

VCA – PPNMM 0.0125 0.0127 0.0230 0.0285

VCA – GBM 0.0457 0.0164 0.0269 0.0317

FCLS – PPNMM 0.0217 0.0214 0.0236 0.0316

FCLS – GBM 0.0513 0.0627 0.0850 0.0981

SNR (dB) = 30 P =3 P = 5 P = 7 P = 9

INDIVIDUAL METHODS

PPNMM 0.1520 0.1759 0.1464 0.1353

GBM 0.1568 0.1442 0.1473 0.1337

VCA 0.1007 0.1195 0.0313 0.2767

FCLS 0.1072 0.1713 0.1344 0.1819

HYBRID METHODS

VCA – PPNMM 0.0231 0.0223 0.0219 0.0268

VCA – GBM 0.0317 0.0360 0.0364 0.0370

FCLS – PPNMM 0.0308 0.0358 0.0458 0.0654

FCLS – GBM 0.0437 0.0787 0.0901 0.0956

SNR (dB) = 10 P = 3 P = 5 P = 7 P = 9

INDIVIDUAL METHODS

PPNMM 0.1809 0.1816 0.1856 0.1883

GBM 0.1517 0.1506 0.1440 0.1481

VCA 0.1196 0.0612 0.0717 0.0717

FCLS 0.1072 0.0663 0.0877 0.0612

HYBRID METHODS

VCA – PPNMM 0.0548 0.0564 0.0570 0.0584

VCA – GBM 0.0751 0.0940 0.0962 0.0961

FCLS – PPNMM 0.0714 0.0739 0.0740 0.0763

FCLS – GBM 0.0974 0.0981 0.0990 0.1170
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From the experiments conducted between the 3× 3 window and the raw

data, it can be seen that similarities exist in the results where the Signal to

Noise Ratios are set to 10 dB and 50 dB. However, a better result was ob-

served with the 3× 3 window and a Signal to Noise Ratio of 30 dB. There-

fore, it shows that the ANN does not require the whole raw data to train the

network and the reduced chosen parameters provide good and acceptable

results.

4.3.3 Jasper Ridge

This experiment was conducted with the Jasper Ridge dataset to evaluate the

accuracy of the methods involved. In this experiment, the raw data, and the

vicinity parameters computed within a 3× 3 and a 4× 4 windows respec-

tively were used to train the neural network. In this experiment, the train-

ing samples for each experiment were selected randomly, 70% of the raw

data was used for training corresponding to (7, 000 samples), 15% each were

considered for validation and testing (1, 500 samples each for validation and

testing) the neural networks. In another experiment, the number of training

samples was reduced, with 30% used for training corresponding to (3, 000

samples), 35% each was used for validation and testing which corresponds

to (3, 500 samples) each for validation and testing the neural networks. Fi-

nally, the experiment was repeated with 1, 000 and 300 training samples re-

spectively. Results of the experiment is summarized in Table 4.6
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TABLE 4.6: Average abundance estimation error of the hybrid
methods with different numbers of training samples (7000 to
300) and different window size vectors on the Jasper Ridge data
as compared with the abundance estimation error of the indi-
vidual methods which are: PPNMM = 0.2115, GBM = 0.2441,
VCA = 0.6513, and FCLS = 0.1832. The best results are shown

in bold.

Raw data 7,000 3,000 1,000 300

VCA – PPNMM 0.1417 0.1478 0.1405 0.1994

VCA – GBM 0.2079 0.2049 0.3087 0.3897

FCLS – PPNMM 0.1402 0.1402 0.1590 0.1663

FCLS – GBM 0.1399 0.1397 0.1483 0.1495

3× 3 WINDOW

VCA – PPNMM 0.1697 0.1607 0.1781 0.1763

VCA – GBM 0.2595 0.2454 0.2932 0.3350

FCLS – PPNMM 0.1765 0.1624 0.1783 0.1790

FCLS – GBM 0.2448 0.2448 0.3442 0.3642

4× 4 WINDOW

VCA – PPNMM 0.1712 0.1640 0.1736 0.1704

VCA – GBM 0.2488 0.2250 0.3117 0.3460

FCLS – PPNMM 0.1632 0.1659 0.1705 0.1722

FCLS – GBM 0.2647 0.2459 0.2488 0.2732
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Figure 4.10 shows the ground truth abundances and the abundances as

estimated by a linear (VCA), nonlinear (PPMM) and the corresponding hy-

brid methods on the Jasper Ridge data.

FIGURE 4.10: Abundance estimate of endmembers of the Jasper
Ridge data showing from left; the ground truth, linear (VCA),
nonlinear (PPMM) and the hybrid methods. From top water,

tree, soil and road.

4.3.4 Samson data

Another experiment was conducted with the Samson data, the samples were

randomly split into training, validation and testing sets. 70% for training,

15% for validation and 15% for testing respectively which corresponds to

6, 317 samples for training, 1, 353 samples each for testing and validation,

Another experiment was conducted where the number of training samples
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were reduced; 30% for training; 35% each for validation and testing equiv-

alent to 2, 707 samples for training, 3, 158 samples each for validation and

testing the network respectively. Finally, the experiment was repeated with

1, 000 and 300 training samples, respectively. Results of the experiment is

summarized in Table 4.7.

TABLE 4.7: Average abundance estimation error of the hybrid
methods with different numbers of training samples (6317 to
300) and different window size vectors on the Samson data as
compared with the abundance estimation error of the individ-
ual methods which are: PPNMM = 0.1455 , GBM = 0.1588, VCA
= 0.1254, and FCLS = 0.1577. The best results are shown in bold.

Raw data 6,317 3,158 1,000 300

VCA – PPNMM 0.0839 0.0841 0.0871 0.0979

VCA – GBM 0.0841 0.0846 0.0879 0.0939

FCLS – PPNMM 0.1229 0.1230 0.1258 0.1308

FCLS – GBM 0.1614 0.1615 0.1674 0.1696

3× 3 WINDOW

VCA – PPNMM 0.0888 0.0885 0.0902 0.0973

VCA – GBM 0.0975 0.1040 0.1079 0.1112

FCLS – PPNMM 0.1148 0.1151 0.1197 0.1292

FCLS – GBM 0.1615 0.1617 0.1657 0.1710

4× 4 WINDOW

VCA – PPNMM 0.0904 0.0905 0.0949 0.0994

VCA – GBM 0.0945 0.0945 0.1061 0.1106

FCLS – PPNMM 0.1154 0.1197 0.1216 0.1245

FCLS – GBM 0.1616 0.1616 0.1636 0.1658
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Figure 4.11 shows the corresponding ground truth abundances, and the

abundances as estimated by both the linear (VCA), nonlinear (PPMM) as well

as the hybrid methods on the Samson data.

FIGURE 4.11: Abundance estimate of endmembers of the Sam-
son data showing the groundtruth, linear (VCA), nonlinear
(PPMM) and the hybrid methods. From top water, rock and

tree.

The performance of the proposed hybrid switch method was evaluated

using the overall accuracy of the network, the abundance estimation error,

the training, validation and testing error of the network. From the results

obtained, experiments with the raw dataset, 3× 3 and 4× 4 windows pro-

duce similar overall accuracy in all the experiments. With regards to the

four hybrid switch methods, the VCA – PPNMM method outperforms the

other hybrid methods with a higher overall accuracy of 96% as compared

to FCLS – PPNMM method which has an overall accuracy of 94.5% while
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VCA – GBM and FCLS – GBM methods both returned overall accuracies of

92.8%. VCA – PPNMM also has the lowest abundance estimation error and

produced the lowest abundance error in terms of training, validation and

testing of the neural networks. However, experiments from the proposed

hybrid switch method, a similar result was obtained with the 3× 3 and 4× 4

windows used to conduct the experiment when fewer samples were used

to train the networks. Therefore, it shows that the proposed hybrid method

also does not requires all the raw data for training the networks and can be

used effectively to switch between linear and nonlinear spectral unmixing of

hyperspectral data.

The computational cost of the individual and the hybrid methods were

evaluated, the individual methods are 40% more time consuming compared

to the hybrid method which makes them computationally expensive in terms

of simulation. Tables 4.8 and 4.9 summarizes the result of the experiments

demonstrating the accuracy of the neural network based on training, testing

and validation of the networks.

TABLE 4.8: Abundance estimation error on Jasper Ridge data
showing training, validation and testing accuracy on the indi-
vidual and hybrid methods with different training samples and
different window size vectors. The best results are shown in

bold

7,000 samples 3,000 samples

Raw data VCA – PPNMM VCA – GBM FCLS –PPNMM FCLS — GBM VCA – PPNMM VCA – GBM FCLS –PPNMM FCLS — GBM

TRAIN 0.0905 0.1025 0.1184 0.1084 0.0953 0.0859 0.1085 0.1200

VALIDATION 0.0777 0.0780 0.1008 0.0980 0.0809 0.0866 0.1006 0.0995

TEST 0.0751 0.0797 0.1012 0.1000 0.0811 0.0832 0.1013 0.0906

3× 3 Window

TRAIN 0.0967 0.1054 0.0981 0.1268 0.0473 0.0533 0.0991 0.1229

VALIDATION 0.0524 0.0505 0.1274 0.1138 0.0465 0.0549 0.0923 0.1125

TEST 0.0486 0.0614 0.1276 0.1147 0.0454 0.0506 0.0914 0.1135

4× 4 Window

TRAIN 0.0906 0.1523 0.0941 0.1171 0.0393 0.1531 0.0997 0.1146

VALIDATION 0.1696 0.0704 0.0911 0.0954 0.0351 0.0530 0.0918 0.1117

TEST 0.1608 0.0382 0.0938 0.0944 0.0354 0.0445 0.0920 0.1121
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TABLE 4.9: Abundance estimation error on Samson data show-
ing training, validation and testing accuracy on the individual
and hybrid methods with different training samples and differ-

ent window size vectors. The best results are shown in bold.

6,317 Samples 3,158 Samples

Raw data VCA – PPNMM VCA – GBM FCLS –PPNMM FCLS — GBM VCA – PPNMM VCA – GBM FCLS –PPNMM FCLS — GBM

TRAIN 0.0255 0.0741 0.1058 0.1585 0.0280 0.0732 0.1182 0.1167

VALIDATION 0.0466 0.0101 0.0792 0.0098 0.0553 0.1026 0.0733 0.1311

TEST 0.0494 0.0105 0.0762 0.0098 0.0569 0.1053 0.0719 0.1311

3× 3 Window

TRAIN 0.0726 0.0842 0.1046 0.1581 0.0722 0.0897 0.1021 0.1161

VALIDATION 0.0530 0.0100 0.0748 0.0098 0.0588 0.0692 0.0703 0.1309

TEST 0.0533 0.0100 0.0740 0.0098 0.0594 0.0696 0.0706 0.1309

4× 4 Window

TRAIN 0.0836 0.0842 0.1046 0.1581 0.0822 0.0843 0.1007 0.1160

VALIDATION 0.0536 0.0100 0.0748 0.0098 0.0569 0.0654 0.0710 0.1308

TEST 0.0545 0.0100 0.0740 0.0098 0.0569 0.0640 0.0712 0.1308

4.4 Hydrocarbon Abundance Estimation

In this section, the hybrid spectral unmixig method and the deep learning

model were validated to estimate the amount of Hydrocarbon (HC) mixed

with different soil samples. Hyperspectral Imaging utilizes information ob-

tained from surface reflectance in the electromagnetic spectrum using differ-

ent sensors [32], and the resultant information is used for spectral and spa-

tial analysis. Spectral analysis involves evaluation of energy reflected and

absorbed at different wavelengths.

4.4.1 Hydrocarbon abundance estimation using the hybrid

switch method

The hybrid spectral unmixing method for switching between linear and non-

linear models described in chapter 3 was used to quantify HC spills using

the controlled dataset. The aim here is to robustly choose the most suit-

able method between the linear and nonlinear spectral unmixing methods to
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quantifies the amount of HC content in each sample. The experiments were

conducted with 70% and 30% of training samples in order to check if the

size of the training data affects the accuracy of the network. The remaining

samples were split for testing and validation. The results of the experiments

were based on the abundance estimation error of the individual and hybrid

methods as summarized in Tables 4.10 - 4.13.
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TABLE 4.10: Average abundance estimation error of the hy-
brid switch methods with different numbers of training sam-
ples (70% and 30%) as compared with the abundance estima-

tion error of the individual methods with clay mixture.

(Clay - Biodiesel) 70% SAMPLES 30% SAMPLES

PPNMM 0.0217 0.0217

GBM 0.0082 0.0082

VCA 0.0955 0.0955

FCLS 0.0083 0.0083

Hybrid methods

VCA – PPNMM 0.0073 0.0079

VCA – GBM 0.0104 0.0103

FCLS – PPNMM 0.0097 0.0097

FCLS – GBM 0.0082 0.0082

(Clay - Diesel) 70% SAMPLES 30% SAMPLES

PPNMM 0.0045 0.0045

GBM 0.3775 0.3775

VCA 0.0845 0.0845

FCLS 0.3776 0.3776

Hybrid methods

VCA – PPNMM 0.0041 0.0043

VCA – GBM 0.0634 0.0640

FCLS – PPNMM 0.0048 0.0053

FCLS – GBM 0.3770 0.3776

(Clay - Ethanol) 70% SAMPLES 30% SAMPLES

PPNMM 0.0036 0.0036

GBM 0.7046 0.7046

VCA 0.7499 0.7499

FCLS 0.7048 0.7048

Hybrid methods

VCA – PPNMM 0.0025 0.0030

VCA – GBM 0.2516 0.2513

FCLS – PPNMM 0.0047 0.0047

FCLS – GBM 0.0056 0.0060
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TABLE 4.11: Average abundance estimation error of the hy-
brid switch methods with different numbers of training sam-
ples (70% and 30%) as compared with the abundance estima-

tion error of the individual methods with clayloam mixture.

(Clay Loam- Biodiesel) 70% SAMPLES 30% SAMPLES

PPNMM 0.0084 0.0084

GBM 0.0824 0.0824

VCA 0.0766 0.0766

FCLS 0.0842 0.0842

Hybrid methods

VCA – PPNMM 0.0068 0.0065

VCA – GBM 0.0501 0.0438

FCLS – PPNMM 0.0084 0.0086

FCLS – GBM 0.0824 0.0824

(Clay Loam - Diesel) 70% SAMPLES 30% SAMPLES

PPNMM 0.0025 0.0025

GBM 0.0824 0.0824

VCA 0.0245 0.0245

FCLS 0.0828 0.0828

Hybrid methods

VCA – PPNMM 0.0020 0.0022

VCA – GBM 0.0267 0.0268

FCLS – PPNMM 0.0027 0.0027

FCLS – GBM 0.0824 0.0830

(Clay Loam - Ethanol) 70% SAMPLES 30% SAMPLES

PPNMM 0.0546 0.0546

GBM 0.0825 0.0825

VCA 0.0085 0.0085

FCLS 0.0852 0.0852

Hybrid methods

VCA – PPNMM 0.0080 0.0082

VCA – GBM 0.0085 0.0085

FCLS – PPNMM 0.0540 0.0541

FCLS – GBM 0.0825 0.0823

(Clay Loam - Petrol) 70% SAMPLES 30% SAMPLES

PPNMM 0.0084 0.0084

GBM 0.8242 0.8242

VCA 0.1560 0.1560

FCLS 0.8240 0.8240

Hybrid methods

VCA – PPNMM 0.0050 0.0051

VCA – GBM 0.1524 0.1521

FCLS – PPNMM 0.0080 0.0084

FCLS – GBM 0.0824 0.0826
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TABLE 4.12: Average abundance estimation error of the hy-
brid switch methods with different numbers of training sam-
ples (70% and 30%) as compared with the abundance estima-
tion error of the individual methods with sandyloam mixture.

(Sandy Loam - Biodiesel) 70% SAMPLES 30% SAMPLES

PPNMM 0.0025 0.0025

GBM 0.0083 0.0083

VCA 0.0205 0.0205

FCLS 0.0080 0.0080

Hybrid methods

VCA – PPNMM 0.0016 0.0012

VCA – GBM 0.0057 0.0055

FCLS – PPNMM 0.0077 0.0077

FCLS – GBM 0.0082 0.0082

(Sandy Loam - Diesel) 70% SAMPLES 30% SAMPLES

PPNMM 0.0036 0.0036

GBM 0.8244 0.8244

VCA 0.0097 0.0097

FCLS 0.0821 0.0821

Hybrid methods

VCA – PPNMM 0.0016 0.0017

VCA – GBM 0.0073 0.0073

FCLS – PPNMM 0.0031 0.0031

FCLS – GBM 0.0824 0.0824

(Sandy Loam - Ethanol) 70% SAMPLES 30% SAMPLES

PPNMM 0.3223 0.3223

GBM 0.4018 0.4018

VCA 0.1119 0.1119

FCLS 0.4067 0.4067

Hybrid methods

VCA – PPNMM 0.0921 0.0922

VCA – GBM 0.0895 0.0897

FCLS – PPNMM 0.3185 0.3188

FCLS – GBM 0.4001 0.4001

(Sandy Loam - Petrol) 70% SAMPLES 30% SAMPLES

PPNMM 0.1886 0.1886

GBM 0.3646 0.3646

VCA 0.1965 0.1965

FCLS 0.3640 0.3640

Hybrid methods

VCA – PPNMM 0.0560 0.0547

VCA – GBM 0.0722 0.0777

FCLS – PPNMM 0.1870 0.1870

FCLS – GBM 0.0363 0.0363
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TABLE 4.13: Average abundance estimation error of the hy-
brid switch methods with different numbers of training sam-
ples (70% and 30%) as compared with the abundance estima-
tion error of the individual methods with sandyclayloam mix-

ture.

(Sandy Clay Loam - Biodiesel) 70% SAMPLES 30% SAMPLES

PPNMM 0.0118 0.0118

GBM 0.0089 0.0089

VCA 0.1773 0.1773

FCLS 0.0087 0.0087

Hybrid methods

VCA – PPNMM 0.0117 0.0117

VCA – GBM 0.0080 0.0083

FCLS – PPNMM 0.0079 0.0079

FCLS – GBM 0.0080 0.0080

(Sandy Clay Loam - Diesel) 70% SAMPLES 30% SAMPLES

PPNMM 0.0054 0.0054

GBM 0.0822 0.0822

VCA 0.0178 0.0178

FCLS 0.0823 0.0823

Hybrid methods

VCA – PPNMM 0.0038 0.0030

VCA – GBM 0.0116 0.0116

FCLS – PPNMM 0.0054 0.0054

FCLS – GBM 0.0822 0.0820

(Sandy Clay Loam - Ethanol) 70% SAMPLES 30% SAMPLES

PPNMM 0.3216 0.3216

GBM 0.4978 0.4978

VCA 0.2326 0.2326

FCLS 0.4973 0.4973

Hybrid methods

VCA – PPNMM 0.1234 0.1235

VCA – GBM 0.1449 0.1449

FCLS – PPNMM 0.3219 0.3220

FCLS – GBM 0.4972 0.4973

(Sandy Clay Loam - Petrol) 70% SAMPLES 30% SAMPLES

PPNMM 0.2749 0.2749

GBM 0.4503 0.4503

VCA 0.1357 0.1357

FCLS 0.4490 0.4490

Hybrid methods

VCA – PPNMM 0.0708 0.0708

VCA – GBM 0.0803 0.0803

FCLS – PPNMM 0.2300 0.2300

FCLS – GBM 0.4470 0.4474
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4.4.2 Hydrocarbon abundance estimation using DNN

The deep learning based spectral unmixing approach was applied to estimate

the amount of HC in each mixture.

The reflectance spectra of different soil samples with 15% hydrocarbon

concentration mixture are shown in Figure 4.12 showing specific absorption

at around 1700 µm and 2300 µm, respectively



124 Chapter 4. Experimentation and results

1000 1500 2000 2500

wavelength ( m)

1

2

3

4

5

6

R
e
fl

e
c
ta

n
c
e
 (

%
)

Biodiesel

Diesel

Ethanol

(A) Clay with different hydrocarbon mixtures

1000 1500 2000 2500

wavelength ( m)

0

10

20

30

40

50

R
e
fl

e
c
ta

n
c
e
 (

%
)

Biodiesel

Diesel

Ethanol

Petrol

(B) Clay loam with different hydrocarbon mixtures

1000 1500 2000 2500

wavelength ( m)

0

5

10

15

20

R
e
fl

e
c
ta

n
c
e
 (

%
)

Biodiesel

Diesel

Ethanol

Petrol

(C) Sandy loam with different hydrocarbon mixtures

1000 1500 2000 2500

wavelength ( m)

0

5

10

15

R
e
fl

e
c
ta

n
c
e
 (

%
)

Biodiesel

Diesel

Ethanol

Petrol

(D) Sandy clay loam with different hydrocarbon mixtures

FIGURE 4.12: Spectral reflectance of different soils and 15% hy-
drocarbon concentration mixtures.
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The experiments were carried out with the purpose of obtaining opti-

mum hyperparameters so as to achieve maximum accuracy in estimating

the amount of HCs in each soil type based on the control experiment. The

ground truth or known abundances from the sample preparation were used

as class labels (targets) to train the network for the abundance estimation.

These abundances were estimated based on the ground truth of the differ-

ent HC mixtures corresponding to the different percentages of HC contents

added in every mixture as detailed in the experimental protocol section 4.2.4

in each dataset as detailed in Table 4.14.

TABLE 4.14: Ground truth abundances for the different mix-
tures

Corresponding mixtures (ml) Petrol Diesel Biodiesel Ethanol

0.05 0.068 0.080 0.080 0.073

0.10 0.128 0.148 0.149 0.136

0.15 0.181 0.206 0.208 0.191

0.20 0.227 0.258 0.260 0.240

0.25 0.269 0.303 0.305 0.283

0.30 0.340 0.342 0.345 0.321

The ground truth abundances for the different HC type were calculated

based on the density type of each hydrocarbon multiplied by the amount

of the HC in the mixture (ml) divided by the amount of soil (50g) plus the

density of the HC multiplied by the amount of HC in the mixture (ml). The

densities of the different Hcs are; 0.73g/cm3 for petroleum, 0.79g/cm3 for

ethanol, 0.88g/cm3 for biodiesel and 0.85g/cm3 for diesel.

Cross validation was used to assess the overall accuracy of the HC quan-

tification. Cross validation estimates the overall accuracy of correct classes
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by the number of instances in the datasets. Part of the data (training sam-

ples) were used to train the network and the remaining (validation samples)

were used to validate the accuracy of the network. The cross validation algo-

rithm also avoids overfitting because the training sample is independent of

the validation sample [194]. The size of the data sets depended on the soils’

absorption level during the experiment (i.e. when a local shallow pool was

formed). Only image pixels corresponding to data from inside the petri dish

were considered. Moreover, for each scanned image, 1000 pixels were ran-

domly selected. Thus the data sets ranged between 5000pixels× 288 bands

(where 5 mixture types were available) to 10000pixels× 288 bands (for sam-

ples with 10 possible mixtures). The size of the data sets and number of

mixtures used for the experiments as shown in (Table 4.1) are summarized

in Table 4.15. Subsets of the hyperspectral data were fed into the network

as follows: 80% of the data were randomly selected for training the network

and 20% were used for cross validation.
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TABLE 4.15: Size of datasets and target class

Dataset Size Number of mixtures

Clay biodiesel 6000× 288 6

Clay diesel 6000× 288 6

Clay ethanol 6000× 288 6

Clay loam biodiesel 5000× 288 5

Clay loam diesel 5000× 288 5

Clay loam ethanol 6000× 288 6

Clay loam petrol 10000× 288 10

Sandy loam biodiesel 5000× 288 5

Sandy loam diesel 5000× 288 5

Sandy loam ethanol 5000× 288 5

Sandy loam petrol 10000× 288 10

Sandy clay loam biodiesel 6000× 288 6

Sandy clay loam diesel 6000× 288 6

Sandy clay loam ethanol 7000× 288 7

Sandy clay loam petrol 8000× 288 8

To evaluate the effectiveness of the three- term backpropagation algo-

rithm with dropout in the proposed deep learning model, the experimen-

tal process was repeated with different dropout ratio on the hidden layers

of 10%, 20%, 30%, 40% and 50% respectively. The results demonstrate both

training and validation accuracy of the network. Tables 4.16 - 4.19 illustrate

the mean square error of the proposed method with the different dropout ra-

tios. It is noted that in all cases the error is 10 times lower for dropout ratio of

40% than for 50%. Then again, when the error drops significantly for dropout

ratio 20%. However, when it is further reduced to 10%, the error increases.

The 20% dropout is adopted subsequently in the rest of the experiments.



128 Chapter 4. Experimentation and results

TABLE 4.16: Mean Square Error (MSE) of the deep learning
model for clayloam datasets with different hydrocarbon types

and different Dropout (DO) ratios.

HC types DO 10% DO 20% DO 30% DO 40% DO 50%

Bio - diesel

MSE 3.5× 10−4 0.22× 10−4 0.69× 10−4 6.5× 10−4 7.2× 10−4

Diesel

MSE 0.31× 10−4 0.25× 10−4 0.52× 10−4 7.3× 10−4 5.9× 10−4

Ethanol

MSE 3.1× 10−4 0.21× 10−4 5.6× 10−4 7.4× 10−4 7.6× 10−4

Petrol

MSE 2.9× 10−4 0.22× 10−4 0.73× 10−4 6.7× 10−4 7.2× 10−4

TABLE 4.17: Mean square error of the deep learning model
for clay datasets with different hydrocarbon types and differ-

ent Dropout (DO) ratios.

HC types DO 10% DO 20% DO 30% DO 40% DO 50%

Bio - diesel

MSE 2.9× 10−4 0.25× 10−4 2.4× 10−4 4.4× 10−4 8.3× 10−4

Diesel

MSE 1.7× 10−4 0.35× 10−4 1.7× 10−4 3.2× 10−4 7.6× 10−4

Ethanol

MSE 0.20× 10−4 0.18× 10−4 0.25× 10−4 3.3× 10−4 9.9× 10−4
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TABLE 4.18: Mean square error of the deep learning model for
sandyclayloam datasets with different hydrocarbon types and

different Dropout (DO) ratios.

HC types DO 10% DO 20% DO 30% DO 40% DO 50%

Bio - diesel

MSE 2.6× 10−4 0.21× 10−4 0.63× 10−4 2.1× 10−4 6.6× 10−4

Diesel

MSE 2.1× 10−4 0.02× 10−4 4.1× 10−4 7.2× 10−4 7.3× 10−4

Ethanol

MSE 3.1× 10−4 0.26× 10−4 4.2× 10−4 6.3× 10−4 7.4× 10−4

Petrol

MSE 2.7× 10−4 0.27× 10−4 0.51× 10−4 3.6× 10−4 7.7× 10−4

TABLE 4.19: Mean square error of the deep learning model for
sandyloam datasets with different hydrocarbon types and dif-

ferent Dropout (DO) ratios.

HC types DO 10% DO 20% DO 30% DO 40% DO 50%

Bio - diesel

MSE 3.2× 10−4 0.24× 10−4 0.47× 10−4 7.6× 10−4 6.4× 10−4

Diesel

MSE 2.0× 10−4 0.23× 10−4 0.46× 10−4 4.1× 10−4 7.0× 10−4

Ethanol

MSE 2.0× 10−4 0.2× 10−4 9.5× 10−4 6.5× 10−4 9.4× 10−4

Petrol

MSE 0.35× 10−4 0.22× 10−4 0.42× 10−4 4.7× 10−4 6.4× 10−4
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To demonstrate the accuracy of the proposed method, results of the ex-

periment showing the root mean square error and the networks ability to

converge rapidly with low number of epochs are shown in Figures 4.13 - 4.16

for individual soil types contaminated with different HCs. The plots in Fig-

ures 4.17 - 4.20 shows the training and corresponding output target of the

network,
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FIGURE 4.13: Mean square error of Clayloam mixture with dif-
ferent HC concentration
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FIGURE 4.14: Mean square error of Sandyloam mixture with
different HC concentration
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FIGURE 4.15: Mean square error of Sandyclayloam mixture
with different HC concentration
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FIGURE 4.16: Mean square error of Clay mixture with different
HC concentration
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FIGURE 4.17: Training and output targets of Clayloam mixture
with different HC concentration
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FIGURE 4.19: Training and output targets of Sandyclayloam
mixture with different HC concentration
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FIGURE 4.20: Training and output targets of Clay mixture with
different HC concentration
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From the results obtained, it is noted that the proposed method trained

with three-term backpropagation algorithm with dropout was able to gener-

alize on unseen data with high prediction accuracy. We observed a similar

trend on all the datasets used for the experiment which indicates a reduction

in the error rate and high convergence rate.

To demonstrate the ability of the proposed deep learning model to gen-

eralize on unseen data, Table 4.20 displays the results obtained from the test

sets with and without dropout, respectively.

TABLE 4.20: Mean square error of the deep learning model on
unseen data with and without dropout, respectively.

Dataset Test Set with Dropout Test Set without Dropout

Clay biodiesel 7.11× 10−3 9.1× 10−3

Clay diesel 1.16× 10−3 6.9× 10−3

Clay ethanol 8.26× 10−4 6.2× 10−3

Clay loam biodiesel 7.62× 10−4 1.4× 10−3

Clay loam diesel 2.20× 10−3 3.3× 10−3

Clay loam ethanol 8.80× 10−4 7.1× 10−3

Clay loam petrol 2.50× 10−3 8.1× 10−3

Sandy loam biodiesel 8.00× 10−4 1.2× 10−3

Sandy loam diesel 1.20× 10−3 9.8× 10−3

Sandy loam ethanol 4.01× 10−3 8.4× 10−3

Sandy loam petrol 6.71× 10−3 9.3× 10−3

Sandy clay loam biodiesel 8.25× 10−4 3.5× 10−3

Sandy clay loam diesel 8.84× 10−4 9.8× 10−3

Sandy clay loam ethanol 2.10× 10−3 7.5× 10−3

Sandy clay loam petrol 5.13× 10−3 6.1× 10−3
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Soil Continuity Experiment

In this research, four different mixtures of soil were created and HC were

added in discrete steps. However, in real life situations, both HC and soil

levels of given samples are continuous rather than discrete. Therefore, in

order to simulate a more realistic scenario, several strategies were explored.

The first strategy was to create a generic model with all soils combined as

opposed to separate models for each soil as in the previous experiments. It is

noted that the soils were prepared and mixed manually and contained grains

of different size (e.g., clay and sand mixture). By feeding the DL network

with all types of soils, differences in the soil composition would appear from

pixel to pixel. DLs were created including all four different soil mixtures

(Clay, Clay–loam, Sandy loam, and Sandy clay–loam) rather than individ-

ually. Using the same architecture of the deep learning model, 80% of the

resultant data was used to train the model, 10% was used as test sample and

the remaining 10% was used for cross-validation. Table 4.21 summarizes the

results obtained for biodiesel. Average mean square error for the individual

models are shown in brackets for comparison purposes.

In order to simulate a more realistic scenario, and following a similar ap-

proach presented in the work by the authors of [195], noise was added to

the data to simulate continuous spectra values instead of discrete and also to

evaluate the noise rejection of the models. Here, the datasets were corrupted

with Random Gaussian noise with signal-to-noise ratio (SNR) ranging from

10 to 40 dB.
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TABLE 4.21: Soil continuity experiments. Mean square error of
the bio-diesel deep learning model using generic models and
individual models with added noise. Training and testing re-

sults are shown.

Dataset Training Data Test Data

Biodiesel with generic model 7.2238 ×10−4 (1.525× 10−4) 6.8× 10−3 (2.374× 10−3)

Biodiesel with added noise

SNR (dB) Training data Test data

40 8.2117× 10−4 8.9821× 10−4

30 8.2594× 10−4 8.9333× 10−4

20 9.393× 10−4 0.001

10 9.671× 10−4 0.001

Biodiesel with added noise on testing data

SNR (dB) Training data Test data

40 6.9997× 10−4 9.3811× 10−4

30 6.9997× 10−4 9.0321× 10−4

20 6.9997× 10−4 9.0657× 10−4

10 6.9997× 10−4 0.0012

4.4.3 Comparison to conventional backpropagation algorithm

To demonstrate the effectiveness of the proposed method, a deep learning

model trained with conventional backpropagation algorithm was similarly

used to quantify the HC abundances; first without dropout and then with

20% dropout to train the networks. For fair comparison, the same network

structure was used and these includes; number of layers, number of nodes

for each layer, range of initial values and learning rate. The hybrid spectral

unmixing method for switching between linear and nonlinear methods as

discussed in Chapter 3 was similarly used to estimate the amount of HC in

the datasets.

The abundance estimate for each mixture type was estimated as shown in
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Tables 4.22 and 4.23 respectively. It shows that our proposed method outper-

forms the deep learning model trained with conventional backpropagation

algorithm with the closest estimation from the reference mixture types, fol-

lowed by the hybrid methods. It can be concluded that the two methods

were able to estimate the abundance of hydrocarbon spills with minimum

error compared to the deep neural networks trained with conventional back-

propagation algorithm.
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TABLE 4.22: Estimated hydrocarbon abundance predicted by
the proposed deep learning method, compared with the hybrid
switch method, deep neural network trained with conventional
backpropagation algorithm with and without dropout (DO) for
Clay and Clay Loam (CL) mixtures. A comparative summary
showing the average estimation error in percentage is included

for each mixture type.

Mixtures Reference (%) Proposed method (%) Hybrid switch method (%) Conventionally trained NN with (DO 0.20) (%) Conventionally trained NN (%)

Clay- biodiesel 0 0.004 0.03 0.57 0.75

Clay- biodiesel 8 8.5 9.2 9.7 9.9

Clay- biodiesel 14.9 15.0 16.7 17.3 17.8

Clay- biodiesel 20.8 21.3 22.0 16.5 15.9

Clay- biodiesel 26.0 26.2 27.7 29.5 28.9

Clay- biodiesel 30.5 31.3 33.0 25.7 23.8

Average error (%) 2 10 17 20

Clay- diesel 0 0.004 0.07 1.02 1.55

Clay- diesel 8 8.3 7.2 5.8 4.9

Clay- diesel 14.8 15.3 12.1 18.4 18.9

Clay- diesel 20.6 21.1 17.3 24.0 24.7

Clay- diesel 25.8 25.6 22.3 29.4 29.9

Clay- diesel 30.3 30.6 34.2 35.4 35.6

Average error (%) 2 14 20 24

Clay- ethanol 0 0.004 0.09 1.01 2.00

Clay- ethanol 7.3 7.7 8.7 5.3 4.7

Clay- ethanol 13.6 14.0 15.2 10.1 9.6

Clay- ethanol 19.1 19.5 18.4 22.1 22.7

Clay- ethanol 24 24.8 22.5 27.3 27.7

Clay- ethanol 28.3 28.4 27.1 32.3 32.9

Average error (%) 3 9 19 23

CL- biodiesel 0 0.004 0.10 0.79 1.99

CL- biodiesel 8 8.3 7.1 9.8 10.3

CL- biodiesel 14.9 15.2 12.6 17.3 17.7

CL- biodiesel 20.8 21.3 18.2 24.1 25.4

CL- biodiesel 26.0 26.2 25.1 29.2 29.8

Average error (%) 2 11 17 21

CL- diesel 0 0.004 0.001 0.99 1.75

CL- diesel 8 8.2 10.0 11.2 11.9

CL- diesel 14.8 14.2 12.8 18.3 18.9

CL- diesel 20.6 21.3 22.6 25.7 26.8

CL- diesel 25.8 26.4 27.2 29.5 30.1

Average error (%) 3 13 26 31

CL- ethanol 0 0.004 0.07 1.57 1.92

CL- ethanol 7.3 7.3 6.3 9.3 9.9

CL- ethanol 13.6 14.2 11.0 16.1 16.9

CL- ethanol 19.1 19.3 17.4 22.0 22.7

CL- ethanol 24 24.5 25.7 27.7 27.9

CL- ethanol 28.3 28.5 29.8 31.2 31.8

Average error (%) 2 11 17 21

CL- petrol 0 0.003 0.007 0.56 1.95

CL- petrol 6.8 6.8 7.6 8.3 8.7

CL- petrol 12.8 12.6 13.3 10.1 9.3

CL- petrol 18.1 18.5 17.1 16.2 15.8

CL- petrol 22.7 23.4 24.0 19.3 18.1

CL- petrol 26.9 27.0 27.8 24.0 23.3 CL- petrol

34 34.6 35.9 29.7 29.2

CL- petrol 38.1 38.4 39.2 36.4 36.1

CL- petrol 42 42.5 44.1 38.0 37.4

CL- petrol 46.2 46.6 45.0 43.3 42.7

Average error (%) 1 5 13 16
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TABLE 4.23: Estimated hydrocarbon abundance predicted by
the proposed deep learning method, compared with the hybrid
switch method, deep neural network trained with conventional
backpropagation algorithm with and without dropout (DO) for
Sandy Loam (SL) and Sandy Clay Loam (SCL) mixtures. A
comparative summary showing the average estimation error in

percentage is included for each mixture type.

Mixtures Reference (%) Proposed method (%) Hybrid switch method (%) Conventionally trained NN with (DO 0.20) (%) Conventionally trained NN (%)

SL- biodiesel 0 0.004 0.03 1.76 2.57

SL- biodiesel 8 8.2 8.9 10.3 10.9

SL- biodiesel 14.9 15.2 13.1 12.3 11.7

SL- biodiesel 20.8 21.1 22.3 23.1 23.9

SL- biodiesel 26 26.4 25.1 24.0 23.4

SL- biodiesel 30.5 31.5 32.3 35.4 36.7

Average error (%) 2 8 16 21

SL- diesel 0 0.004 0.007 1.46 2.95

SL- diesel 8 8.2 8.8 11.9 12.2

SL- diesel 14.8 15.3 15.9 17.4 17.9

SL- diesel 20.6 20.6 21.1 22.9 23.2

SL- diesel 25.8 26.3 27.3 28.3 29.2

Average error (%) 2 6 22 25

SL- ethanol 0 0.004 0.01 1.56 2.77

SL- ethanol 7.3 7.2 7.7 9.5 10.4

SL- ethanol 13.6 13.8 15.0 20.0 20.5

SL- ethanol 19.1 19.3 21.1 23.3 23.7

SL- ethanol 24 24.4 25.8 27.4 27.8

Average error (%) 1 8 28 33

SL- petrol 0 0.003 0.009 0.95 1.83

SL- petrol 6.8 6.6 5.1 4.4 4.0

SL- petrol 12.8 12.5 10.7 9.6 9.1

SL- petrol 18.1 18.3 17.1 15.1 14.6

SL- petrol 22.7 23.1 24.0 19.2 18.6

SL- petrol 26.9 27.4 28.1 23.1 22.9

SL- petrol 34 34.4 32.2 29.9 28.3

SL- petrol 38.1 38.4 36.5 35.4 34.9

SL- petrol 42 42.2 41.2 39.5 39.0

Average error (%) 2 9 16 19

SCL- biodiesel 0 0.004 0.009 1.02 1.99

SCL- biodiesel 8 8.4 8.9 10.6 11.1

SCL- biodiesel 14.9 15.1 15.7 11.9 10.7

SCL- biodiesel 20.8 21.5 23.0 24.2 25.9

SCL- biodiesel 26 26.4 28.1 29.1 30.7

SCL- biodiesel 30.5 31.2 33.0 34.3 36.1

Average error (%) 3 9 20 27

SCL- diesel 0 0.004 0.002 0.97 2.02

SCL- diesel 8 8.4 7.2 10.2 10.9

SCL- diesel 14.4 15.1 15.9 16.8 17.1

SCL- diesel 20.6 21.2 21.9 18.2 17.3

SCL- diesel 25.8 26.4 27.6 20.0 19.6

Average error (%) 4 8 20 24

SCL- ethanol 0 0.004 0.09 2.12 3.01

SCL- ethanol 7.3 7.5 8.1 9.6 10.3

SCL- ethanol 13.6 14.5 14.9 15.8 16.2

SCL- ethanol 19.1 19.5 18.3 21.1 21.9

SCL- ethanol 24 24.3 25.0 26.6 27.8

SCL- ethanol 28.3 28.7 27.1 31.4 32.6

Average error (%) 3 7 16 21

SCL- petrol 0 0.003 0.002 0.99 1.76

SCL- petrol 6.8 6.6 5.2 4.6 3.9

SCL- petrol 12.8 12.5 13.2 9.4 9.0

SCL- petrol 18.1 18.3 17.1 15.7 14.2

SCL- petrol 22.7 23.1 20.6 19.1 18.2

SCL- petrol 26.9 27.4 24.4 23.4 22.7

SCL- petrol 34 34.4 32.1 29.9 29.1

SCL- petrol 38.1 38.4 36.8 35.5 35.0

Average error (%) 2 9 17 22
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4.5 Summary

The experimentation and results of the two proposed methods, both for vali-

dation and HC spill detection has been detailed in this chapter. Experiments

using synthetic data, real data as well as the controlled datasets demonstrates

the effectiveness and accuracy of the proposed methods for HC spill detec-

tion.

From the hybrid switch methods, the use of the vicinity parameters to

train the network has improved the accuracy of the model. Likewise with

the deep learning model, the choice of suitable hyperparameters and good

training algorithm has demonstrated to influence the resultant model for ac-

curately estimating the amount of HC in each mixture type.
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Chapter 5

Discussion

5.1 Introduction

In this chapter, results generated in the previous chapter will be discussed,

advantages and limitations of the proposed methods from chapter 3 will be

addressed.

5.2 Hybrid Spectral Unmixing Method for Switch-

ing Between Linear and Nonlinear Spectral Un-

mixing

Nonlinearity usually occurs when photons interact with different cover types

in a scene with materials before reaching the sensor. We assumed here that

the linear mixing could be associated with mixtures for which the pixel com-

ponents appear in spatially segregated patterns. More specifically the linear

models are better explained in areas that are spatially correlated.

From the experiments in the previous chapter, a controlled simulated data

was used for the first experiment. Each image consisted of a series of regions.

Each region had the same type of ground cover with added noise. Figure 4.8

showed the results for the simulated dataset with 5 classes and SNR =50 dB.

Although the average error is of the same order of magnitude for both linear
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and nonlinear approaches, the distribution of error differs. It is noted that

the linear models FCLS and VCA detected the low abundances of classes

contained in each pixel (shown in black on the ground truth figures). The er-

rors are related to quantification rather than detecting the wrong class. This

might be due to the algorithm performing poorly with high spectral vari-

ability within the classes. The nonlinear method, especially the PPNMM,

outputs an error which is more uniform and not so related to the spatial pat-

tern of the data or spectral variability as displayed in Figures 4.8 and 4.9.

The proposed approach assumptions are further validated with the real data

sets. In particular, the Jasper Ridge data set which has 3 classes; water, soil

and road. Figure 4.10 shows the abundance estimation for the individual

and hybrid switch methods. It is noted that VCA has been reported to under

perform in this dataset [65]. However, the road class is identified compared

to the nonlinear methods that failed to detect this class. On the other hand,

the linear methods failed to correctly classify the water class which is a more

spectrally variable medium. Thus, it seems that noise and endmember spec-

tral variability makes the nonlinear models outperform the linear ones while

spatially structured areas are well defined with the linear model. The vicin-

ity parameters used in the proposed method address both the spatial and

spectral diversity of the datasets used in the experiments. The test in Ta-

ble 4.4 showed that all parameters played an important role in the decision

making process. Moreover, Figures 4.8 and 4.9 also support that the chosen

features are suitable and that the switching is appropriate in achieving good

and improved results. To demonstrate the ability of the method to output ac-

curate results with different training samples sizes, the neural network was

trained using 70%, 30%, 10% and 0.3% samples. Experimentation with the

real data, 3× 3 window and 4× 4 window vectors, proved the effectiveness

of the hybrid switch methods - the results show that the size of datasets used

for training the network and the vector size does not affect the accuracy of
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the hybrid methods in switching between linear and nonlinear spectral un-

mixing, which means that the network can be trained with less sample data

without the loss of prediction accuracy.

5.2.1 Advantages and Limitations

The proposed hybrid switch method decides on the best method and pro-

vides a switch between unmixing methods for given spectral images on a

pixel by pixel basis. It cannot only provide more accurate results, as shown

in the experimental section but also reduce computational costs by select-

ing the most appropriate approach and performing computations for just the

selected approach. This research study has proven the capabilities of the pro-

posed methodology based on certain parameters. However, the supervised

ANN relies on having ground truth data for training which is not always

available. It will be interesting to test the hybrid switch method using un-

supervised approaches such as self-organizing maps which have been suc-

cessfully used in spectral data for classification and anomaly detection tasks

[196].

Although spatial and spectral features within windows were used for

learning and thus to make the decision, the switching was made at the in-

dividual pixel level.

The raw data was also used to train the network for deciding between the

linear and nonlinear models. The network was trained with fewer samples

to validate the effectiveness of the model in the decision making for the most

suitable method.

The results indicated that the hybrid methods for switching between lin-

ear and nonlinear spectral unmixing are more effective than the individual

methods, meanwhile, it can also be said that ANN pattern recognition has
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good capability in recognizing patterns. The proposed hybrid switch method

is effective even with few samples used to train the network.

5.3 Hydrocarbon Abundance Estimation Using The

Hybrid Switch Method

Results of the experiment using the hybrid switch spectral unmixing method

for HC spill detection in Section 4.4.1 suggest that the hybrid switch methods

and most importantly the nonlinear models are well suited to the task of HC

spill detection.

From the four hybrid methods, the VCA – PPNMM method outperforms

the other methods with the lowest average abundance estimation error of

about 0.0016 when mixed with sandyloam - biodiesel (Table 4.12), 0.0016

when mixed with sandyclayloam -diesel (Table 4.13) and 0.0025 when mixed

with clay- ethanol (Table 4.10).

The overall accuracy of the hybrid switch methods for HC spill also demon-

strates that the VCA – PPNMM has an overall accuracy of 98.9 %, followed by

FCLS – PPNMM with an overall accuracy of 96%. VCA – GBM has an over-

all accuracy of 95% while FCLS – GBM has an accuracy of 93%. The result is

similar to what was obtained in Section 4.3.With regards to the grain size of

the soil samples, it is expected that the nonlinear models will detect well the

endmembers with low abundance estimation error when the mixture con-

tains medium grain size (clay and clayloam) and the linear models will de-

tect well on mixtures with coarse grain size (sandyclayloam and sandyloam).

Results in Tables 4.10 and 4.11 shows that the nonlinear models detected well

the abundances of the mixture with medium grain size. Although not all the

nonlinear models detected well, for example; in Table 4.10 clay contaminated

with biodiesel mixture, GBM performs well considering the grain size of the
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mixture but the FCLS method perform better. From Tables 4.12 and 4.13, the

linear models perform well in detecting the abundance of the mixtures with

coarse grain size.

The size of the training samples did not affect the accuracy of the results

as shown from the results when the experiment was conducted with 70%

and 30% of samples to train the network. The PPNMM method produced

the best results with lower abundance estimation error on all the mixture

types in comparison to other individual methods. It could be said that the

nonlinear models are best suited for this application if a single method is

to be used, although some pixels are better fitted with a linear model. The

abundance estimation error of the network produced low error, thus it can

be concluded that the network is suitable for the prediction of HC in soils.

5.4 Deep Learning Based Spectral Unmixing Method

for Hydrocarbon Spill Quantification

From the experimentation and results chapter, controlled datasets were used

to predict and quantify the amount of HC on different soil types using hyper-

spectral data and a deep learning model. The deep learning approach was

trained using a three-term backpropagation algorithm with dropout. The

model was trained using a known output so as to produce acceptable results.

The deep learning model designed for the experiment utilizes a sigmoid ac-

tivation function and dropout of 20% in all the hidden layers of the architec-

ture in order to avoid overfitting. Another advantage of utilizing dropout is

its ability to generalize on unseen data.

Given the high disagreement across epochs between human experts [197],

1 - 2% in improvement in performance may not be considered significant.
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The proposed deep learning model has two characteristics that renders it bet-

ter than current state-of-the-art methods, first there is a significant decrease

in error for the prediction estimation of hydrocarbon in all the experiments

conducted. The proposed deep learning method estimated a small concen-

tration of spills of about 5% (Tables 4.22 and 4.23) and is the closest in match

to the reference compared to the state-of-the-art methods which mainly con-

centrate on quantifying large spills. For instance, Scafutto et al [24] reports

the estimation of 30% of HC contamination in soils.

Recently, [187] presented regression models based on HC absorption bands

in order to estimate the pollution level of different HCs. Although they were

able to observe changes in the spectral response, in some cases, for 2% of

contaminant and successfully applied their models to identify soils contami-

nated with just 3% of heavy oil and 14% of diesel they were not able to detect

gasoline in soils which is a major limitation to their model. The results show

the capabilities of the spectral data in the VNIR–SWIR interval to detect low

HC concentrations.

However, this is not the same as achieving high performance in estima-

tion using all the different hydrocarbon types with the closest match in accu-

racy of estimation to the reference target. The proposed deep learning model

is preferable to a method that achieves high performance in one hydrocarbon

type and low accuracy in others or even fail to recognise a type of hydrocar-

bon.

Secondly, the proposed deep learning model was able to achieve accept-

able results using a maximum of 20 epochs. This could be attributed to the

use of the three-term backpropagation algorithm to train the model. The

main aim of the three-term backpropagation algorithm is to train faster, re-

duce the number of training epochs and maintain the system’s stability dur-

ing training. The proposed method was able to achieve the objective of the

three-term backpropagation algorithm which could also estimate the amount
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of HCs in each dataset with high accuracy using a low number of epochs. The

network was able to achieve an average of 2.5× 10−4 mean square error on

an average of 18 epochs as shown in Tables 4.16− 4.19. Figures 4.13 - 4.16

show the mean square error of the proposed deep learning model on all the

different mixtures. Although variation was observed in the output target in

each mixture type used for the experiment, this could be attributed to the

density types of the hydrocarbons used and also the soils’ properties such as

grain size and texture which can lead to variation in the absorption level and

thus the difference in the detection of the different hydrocarbon types.

The soil continuity experiment was conducted so as to simulate a more

realistic scenario, this was conducted to validate the network’s ability to esti-

mate the amount of HC regardless of the soil type and allowing for different

soil types. The results were in the same range as for the different HC as

shown in Table 4.21. It is noted that the training mean square error was in

the same range as the individual model, although the number of epochs re-

quired increased to 178. The generalization mean square error on the training

data is higher than in the individual models. However, it is noticed that this

data is more complex as the individual models as it contains four different

soil types. In the work of the authors of [195] , an individual model per soil

type was recommended as the generic models degraded the responses. It is

believed that with further tuning of the hyperparameters, improved results

could have been achieved. However, this is out of the scope of this research.

The model shows similar performance even with low SNR, showing good

noise rejection and accurate prediction at different ranges of SNR. For SNR

lower than 20 dB, the generalization error deteriorates slightly. Initially, noise

was added to the test data, but not to the training, to simulate training with

discrete samples and testing with continuous samples. The performance de-

teriorates for SNR = 10 dB, while for higher SNR, it is very stable, showing

good adaptation of the model to continuous spectra.
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Krizhevsky et al [198] revealed that deep learning requires large amounts

of training data to achieve optimal performance and good generalization

with minimum error. It was recognised that better results could have been

achieved with a large dataset. However despite the size of the dataset used,

the training process was faster with the proposed deep learning method, at-

tributed to the use of the three-term backpropagation algorithm with dropout

for training the model. It is anticipated that including a wider range of data

such as field HC leaks, will require larger datasets and longer training to

account for the variability of the data. Nevertheless, the proposed methodol-

ogy has proven to decrease significantly both the learning time and sample

data required to achieve accurate generalization.

Learning takes an average of 28.16 seconds with our proposed deep learn-

ing model compared to the conventionally trained neural networks which

takes an average of 300.68 seconds to learn. The data processing-to-end-

product time of our proposed method is relatively more time-consuming

compared to the traditional spectral unmixing method, which is approx-

imately 35.45 seconds compared to the hybrid spectral unmixing method

which has an average of 24.64 seconds. This could be attributed to the num-

ber of parameters and training in the deep learning method compared to the

spectral unmixing method.

Srivastava et al [19] reported that large neural networks trained in the

standard way tend to overfit on small datasets. To see if dropout can im-

prove this condition, the experiment was conducted on all the datasets and

the dropout ratio varied as demonstrated in Tables 4.16 - 4.19. This shows

that the error rate is relatively low when the dropout ratio is between 10%

and 30%, with a slight increase when the ratio is set above 50%. Therefore,

it can be concluded that a dropout ratio between 10% and 30% provides an

acceptable prediction estimation and could be used in any dataset for esti-

mation analysis.
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To evaluate the network’s ability to generalize on unseen data, the train-

ing data was plotted against the corresponding output targets of the differ-

ent hydrocarbon types used in each mixture. The results reveal that the deep

learning model is a promising tool in detecting the amount of HC used in the

experiment as shown in Figures 4.17 - 4.20.

From the results obtained, it is noted that the proposed deep learning

model trained using the three-term backpropagation algorithm with dropout

was able to generalize on unseen data with high prediction accuracy. It

showed that the method was able to estimate the amount of hydrocarbon

spill with the closest match compared to the hybrid spectral unmixing method.

A similar trend was observed on all the datasets used for the experiment

which indicates a reduction in the error rate and a high convergence rate.

The effectiveness of the proposed deep learning model was proven with

a comparison of the deep learning method against the hybrid spectral un-

mixing method and a deep learning model trained with the conventional

backpropagation algorithm. Results obtained (Tables 4.22 and 4.23) shows

that the proposed deep learning model outperforms the deep learning model

trained with conventional backpropagation algorithm even when dropout

was used in training the network. The proposed methodology shows the

closest match to the reference target in all the experiments conducted with

all the different mixture types.

For instance, it is noted from the first mixture in Table 4.22 (biodiesel

mixed with clay), it is noted that for the pure clay sample (reference 0% HC),

all methods provide a close estimate. The second row presents the results

for the same mixture with 8% of biodiesel, 92% of clay. The deep learning

method estimated 8.5% of biodiesel, the hybrid switch method 9.2% while

the deep learning model trained with conventional backpropagation algo-

rithm with and without dropout estimated 9.7% and 9.9% respectively. Sim-

ilar results were obtained for all the different samples across the two tables
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(Tables 4.22 and 4.23).

To the best of our knowledge, the proposed deep learning model has

the best performance in the literature using spectral data and deep learn-

ing methods to detect and estimate the percentage of HCs in soil. There are

examples in the literature that use different methods for HC estimation [29,

6] but none could estimate with a high prediction estimation for small con-

centrations. The proposed method achieved high performance with all the

different hydrocarbon types used in the experiments.

5.5 Summary

To test the optimization of the proposed methods, firstly, the models were

validated on synthetic data to ensure a reasonable comparison on real datasets.

The efficiency of the hybrid switch spectral unmixing method between linear

and nonlinear models and the deep learning model for HC spill estimation

was tested on controlled datasets as discussed in this chapter. The results

show the efficiency of the two methods in estimating the amount of HC as

mixed in the datasets.
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Chapter 6

Conclusions and Future work

6.1 Conclusions

A review of the hypothesis proposed in chapter 1 of this study is provided

here with a summary of the findings in relation to each hypothesis.

1. The choice of best method for spectral unmixing of hyperspectral data

can be selected through hybridization between the linear and nonlinear

models.

2. The optimum model choice can be extracted from the pixel scene infor-

mation and varies in a pixel by pixel basis.

3. Spectral unmixing methods can be optimized by applying deep learn-

ing approach to extract the abundances.

6.1.1 Hypothesis 1 and 2

Hypothesis 1 and 2 were investigated as discussed in chapter 3 and validated

in chapter 4. In Chapter3, a hybrid method for switching between linear

and nonlinear spectral unmixing models using artificial neural networks was

presented. In this method, the neural networks were trained with parame-

ters within a window of the pixel under consideration. These parameters

were computed to represent the diversity of the neighboring pixels and are
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based on the Spectral Angular Distance, Covariance and a nonlinearity pa-

rameter. The endmembers were extracted using Vertex Component Analysis

(VCA) while the abundances were estimated using the method identified by

the neural networks. The methods used for the switching were the state-of-

the-art methods which have been used extensively as reference in the litera-

ture. These methods are Vertex Component Analysis (VCA), Fully Constraint

Least Square Method (FCLS), Polynomial Post Nonlinear Mixing Model (PP-

NMM) and Generalized Bilinear Model (GBM). Results show that the hybrid

switch method performs better than each of the individual techniques with

high overall accuracy and low computational cost, whilst the abundance es-

timation error is significantly lower than that obtained using the individual

methods. The hybrid switch method decides which of the individual meth-

ods is most suitable for a particular application. In this study, the PPNMM

nonlinear model proves to be best for oil spill quantification with an overall

accuracy of about 98% compared to the other individual methods.

In Chapter 4, the hybrid switch method was used for estimating the quan-

tity of HC spills in a hyperspectral data. Here the aim was to robustly choose

the most suitable method among linear and nonlinear spectral unmixing ap-

proaches to quantify different HC substances in different soils. Hypersectral

data sets have been acquired using mixtures of different HCs and soils. Then

an artificial neural network was used for switching between linear and non-

linear methods to assess the most suitable method in quantifying the amount

of HC. Results show that the hybrid methods are more suitable than the in-

dividual technique with high overall accuracy and lower abundance estima-

tion error compared to those obtained with the individual methods. Again

the VCA – PPNMM hybrid switch method proved to be the best with 98.9%

accuracy in all the experiments conducted. With regards to the individual

methods, the PPNMM nonlinear model also proves to be a good method

with lowest abundance estimation error in comparison to other individual
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methods. Therefore, it can be concluded that the nonlinear models are suited

for the task of estimating hydrocarbon spills on different soil types.

6.1.2 Hypothesis 3

Deep learning is found in the literature review in section 2.4.6 to be a complex

model that involves selection and fine-tuning of numerous hyperparameters

in order to achieve efficient results. In order to optimize the deep learning

model for spectral unmixing of a hyperspectral data, different parameters

were selected so as to achieve optimum results.

Deep learning models provide excellent results with the ability to extract

stronger features, but in turn lead to vanishing gradient, overfitting and com-

putational load. Deep learning model utilizes backpropagation algorithm to

train a network which is often done by iterative updating of weights em-

ploying the negative gradient of the mean square error function. In order to

reduce this problem, the proposed deep learning model was trained using a

three-term backpropagation algorithm with dropout. The aim is to improve

the accuracy of the model, avoid overfitting and the ability to converge faster.

The conventional backpropagation algorithm builds co-adaptation which

works well for training data, but the network does not generalize to unseen

data. Dropout neutralizes these co-adaptations by improving the network

performance, thus enabling it to generalize. The choice of dropout ratio used

in any neural networks depends on the type of dataset and application.

The three-term backpropagation algorithm improves the network’s abil-

ity to train faster and overcome local minima when compared to conven-

tional backpropagation algorithm. The effectiveness of the deep learning

model was verified when tested on dataset containing different mixture types

of HCs to estimate the amount and concentration of each HC type as mixed

in each dataset. The result of the experiments consistently shows that the
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proposed method provides high prediction accuracy with low error. There-

fore, it can be concluded that the three-term backpropagation algorithm with

dropout significantly improves the model’s operation.

Recent research in deep learning suggests that a large dataset is required

for training remote sensing data which is its major setback, however, this

was not a challenge in the proposed model because of the three-term back-

propagation algorithm used in training the network makes the model to train

faster using an average of 18 epochs to converge compared to a deep learn-

ing model trained using a conventional backpropagation algorithm where

the parameter updates are very noisy in architectures with dropout.

In summary, the deep learning model can be improved by adopting the

three-term back propagation algorithm with dropout to correctly estimate

the amount of HC spills using a hyperspectral dataset. A model is presented

in this work that incorporates such algorithm with a number of hyperparam-

eters to help fine-tune the model in order to provide acceptable results for

HC spill quantification.

6.2 Future work

The results of the work presented here provide a number of opportunities for

future research based on existing outcomes. Some of the directions are listed

as follows:

In Chapter 3, a hybrid method for switching between linear and nonlinear

spectral unmixing models for given spectral images using supervised ANN

was proposed. The capabilities of the proposed method based on certain

parameters have been proven and validated in chapter 4. The main limitation

of the supervised ANN is the requirement of ground truth data for training

which is always not available.
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Future work will expand to unsupervised approaches such as self-organizing

maps which have been successfully used in spectral data for classification

and anomaly detection tasks [196, 93].

Although the proposed hybrid switch method was made at individual

pixel level. Another area of interest for future research will base the decision

on a group of pixels, or areas using for instance Markovian Jump method for

switching between linear and nonlinear spectral unmixing.

In Chapter 3, a deep learning based unmixing method was proposed to

correctly estimate hydrocarbon spills on different soil samples measured us-

ing imaging spectroscopy. The deep learning model was trained using a

three-term backpropagation algorithm with dropout with the aim to improve

the accuracy of the model, avoid overfitting and converge faster. Compared

with a deep neural network trained with conventional backpropagation al-

gorithm, the proposed model could achieve higher accuracy using all the ex-

perimental datasets. It will be interesting to further this research to classify

and identify each type of HC based on an image based convolutional neural

network and a real world datasets.

Another aspect to consider, would be the use of airborne or space borne

data. The models would consequently need to be trained with a wider range

of soils, HC, and minerals in order to perform accurate detection. Other as-

pects such as spatial resolution would need to be assessed.

A general problem when it comes to HS image processing is the lack of

data samples with labelled ground truth within the scope of this research, a

dataset has been acquired and data provided has been labelled. However,

the samples used homogenized mixtures and assumes that spills were at the

soil surface.

Future research should also look at different penetration of spills. More-

over, it not just consider the spatial and spectral domains, but also the tempo-

ral as HC spills will certainly produce dynamic spectral images as the spills
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propagate through the soil and eventually partially dissipate into the air.
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Abstract: Terrestrial hydrocarbon spills have the potential to cause significant soil degradation across
large areas. Identification and remedial measures taken at an early stage are therefore important.
Reflectance spectroscopy is a rapid remote sensing method that has proven capable of characterizing
hydrocarbon-contaminated soils. In this paper, we develop a deep learning approach to estimate the
amount of Hydrocarbon (HC) mixed with different soil samples using a three-term backpropagation
algorithm with dropout. The dropout was used to avoid overfitting and reduce computational
complexity. A Hyspex SWIR 384 m camera measured the reflectance of the samples obtained by
mixing and homogenizing four different soil types with four different HC substances, respectively.
The datasets were fed into the proposed deep learning neural network to quantify the amount of
HCs in each dataset. Individual validation of all the dataset shows excellent prediction estimation
of the HC content with an average mean square error of ~2.2 × 10−4. The results with remote
sensed data captured by an airborne system validate the approach. This demonstrates that a deep
learning approach coupled with hyperspectral imaging techniques can be used for rapid identification
and estimation of HCs in soils, which could be useful in estimating the quantity of HC spills at
an early stage.

Keywords: spectral unmixing; deep learning; dropout; hydrocarbons; three-term backpropagation

1. Introduction

Hydrocarbons refer to chemical substances formed exclusively from carbon and hydrogen.
Naturally occurring hydrocarbon (HC) substances, depending on the length of the carbon chain,
occur in different forms; solid, liquid, and gas [1]. Liquid HCs found in nature consist of a complex
mixture of various molecular weights; in addition nitrogen, sulfur, and oxygen exist in small
quantities [2].

While the economic significance of HCs is attributed to its primary use as fuel and then versatile
application in downstream industries, they can have detrimental environmental consequences [1,3].
Oil exploration, production, and processing represent potential environmental exposure to HCs
resulting in accidental terrestrial spillage thereby altering the physical and chemical properties of
soils. HCs may therefore be environmentally harmful, causing toxicity, and limiting soil quality [4].

Knowledge about the concentration and nature of a spill is important in order to track their
propagation in the environment, assess their risk and propose remediation strategies [5,6]. To effectively
protect communities affected by a spill, fast and accurate determination of the area impacted is
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needed, particularly if monitoring large regions affected by an oil spill or where aged oil transporting
facilities are involved [7]. Traditional methods employed to track and detect oil spills and the
concentration of HCs in soils often involve processes which are expensive and time consuming as they
require field sampling, chemical analysis, and geostatistical interpolation [8,9]. Imaging spectroscopy
has been recognized as a reliable alternative method for detecting HCs in soils and is rapid and
cost-effective [6,10].

Imaging spectroscopy (hyperspectral imaging) can be described as the combination of digital
imaging and spectroscopy. A hyperspectral camera captures the light intensity for a large number of
spectral bands, providing much more information about a scene when compared to a standard camera
which only covers the visible wide bandwidth portion of the electromagnetic spectrum [6]. Due to
the rich information content in hyperspectral imagery, it is well suited to a range of applications such
as crop/vegetation classification, disaster monitoring, oil spill detection, etc. There are several uses
of imaging spectroscopy for oil spills, such as the enforcement of ship discharge laws, surveillance
and general slick detection, mapping of spills, and direction of spills [11], due to its high spectral and
spatial capabilities [12].

More specifically, Near- and Shortwave Infrared (NIR-SWIR) spectroscopes have been popular
methods for detecting, mapping, quantifying, and characterizing HCs in contaminated soils with
reasonable accuracy [6,13,14]. Moreover, NIR-SWIR spectra provide good information on soils organic
and inorganic material content [13]. HCs demonstrate good absorption in spectral bands 1200 nm,
1725 nm, and 2310 nm [5,8,15]. Therefore, spectral information obtained in the NIR-SWIR range is
excellent for both the quantitative and qualitative analysis of HCs in soils [13]. Recent works have also
successfully demonstrated the use of Longwave Infrared (LWIR) for Petroleum HC detection [16].

Different methods have been used to analyze reflectance spectroscopy data to detect HCs in soils;
the authors of [5] used regression analysis and spectral preprocessing to generate statistical models
to identify different HC products mixed with a mineral substrate. The authors of [15] used Diffuse
Reflectance Infrared Fourier-Transform (DRIFT) spectroscopy which is a hand held spectrometer for
the prediction of total petroleum hydrocarbons in contaminated soils. It uses Partial Least Square
(PLS) regression analysis, which is a multivariate method and includes correlation between spectral
information and corresponding analytical data to rapidly predict the concentration of HCs in soil.
Other researchers show the robustness of visible and infrared spectroscopy for the rapid estimation of
HCs [17,18].

However, state-of-the art methods for estimating HC concentration in soils mainly concentrate on
the quantification of large spills [19]. For instance, the authors of [6] report the estimation of 30% of
HC contamination in soils. Recently, the authors of [20] presented regression models based on HC
absorption bands in order to estimate the pollution level of different HC. They were able to observe
changes in the spectral response, in some cases, for 2% of contaminant and successfully applied
their models to identify soils contaminated with just 3% of heavy oil and 14% of diesel. However,
the spectrum of soils contaminated with gasoline showed only subtle changes for pollution levels
higher than 8%. Thus, they concluded that it would be difficult to detect soils contaminated with
gasoline by assessing the VNIR–SWIR interval.

One of the characteristics of hyperspectral remotely sensed data is that the recorded reflectance
is the result of multiple interactions of the electromagnetic radiation with the constituents of the
soil creating mixed pixels. Numerous studies address the mixing problem and propose analysis
techniques [19]. Spectral Unmixing (SU) is the process of identifying spectral signatures of materials,
often referred to as endmembers, and then estimate their relative abundance to the measured
spectra within a pixel [21]. Endmembers play an important role in exploring spectral information
of a hyperspectral image [22,23], as usually the extraction of endmembers, which is the process of
obtaining pure signatures of different features present in an image, is the first step in the unmixing
algorithms [24–26]. SU often requires the definition of the mixing model underlying the observations
as presented on the data. A mixing model describes how the endmembers combine to form the mixed
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spectrum as measured by the sensor [27]. Given the mixing model, SU then estimates the inverse of
the formation process to infer the quantity of interest, specifically the endmembers, and abundance
from the collected spectra [28–30]. This could be achieved through a radiative transfer model that
accurately describes light-scattering by the materials in the observed scene by a sensor [27,31]. The two
main approaches to spectral unmixing are linear and nonlinear models [21,22,25,26,28].

Different methods utilizing both linear and nonlinear models have been demonstrated in the
literature for the analysis of different hydrocarbon types. In a work by the authors of [13,15], Principal
Component Analysis (PCA) and PLS regression are used. The authors used PCA to differentiate the
types and density of HCs in soils while they used PLS to predict the concentration of oils and fuels
in soil samples. The authors of [18] used Spectral Angular Mapper (SAM) to classify oil spills on an
image and also used signature matching to distinguish oils from other features. However, most of
these methods adopt a linear model and smoothing threshold function for feature extraction. Other
approaches such as a Kernel-based transformation [32] and manifold learning algorithm [33] are based
on nonlinear models.

In the work by the authors of [34], we proved experimentally that HCs abundance in soils was
estimated with higher accuracy when non linear unmixing models were applied. Nevertheless, spectral
unmixing and specifically the abundance estimation of HCs such as gasoline, can be challenging [20],
and may require more advanced techniques such as deep learning. Deep learning network can be
considered a powerful technique to solve nonlinear problems, which can be fast, accurate and does
not rely on any assumptions to estimate the abundances in a given dataset. However, to the best of our
knowledge, there is no study that uses spectral data and deep learning methods to detect and estimate
the percentage of HCs in soils. While the value and application of these two techniques have been
presented in independent research activities, the techniques have not yet been combined. Therefore,
in this paper, a deep learning approach is developed to estimate the amount of HC contamination in
soil samples using SWIR imaging spectroscopy. The remainder of the paper is organized as follows.
Section 2 describes the data acquisition process including the materials used, sample preparation
and the hyperspectral sensor used. Section 3 discusses the methodology, including the parameters
used in training the network, the architecture of the deep learning approach, as well as the validation
method. Results are presented in Section 4 and discussed in Section 5. Finally, conclusions are drawn
in Section 6.

2. Data Acquisition

2.1. Materials

The hyperspectral imaging sensor used for this experiment covers the Shortwave Infrared
(SWIR) range (930–2500 nm), which has been found suitable for the detection of HCs [5,6,13,35,36],
mineral identification and mapping [36], rock mapping [37], and mapping of mafic and ultramafic
units in the Cape Smith Belt [38].

The soils and HC types selected here have been used extensively in the literature for assessments of
HC contamination in different soil types [8,13,17,18,39]. Different HC types, namely Diesel, Bio-diesel,
Ethanol, and Petroleum were used. These are the most commonly used HCs in the literature. Soil types
include typical mixtures of clay (<0.002 mm in diameter), silt (0.002–0.05 mm in diameter), and sand
(0.05–1 mm in diameter). In particular, we used mixtures with different grain size ranging from
medium to coarse as follows; Clay, Clay Loam , Sand Clay Loam, and Sand Loam [40].

2.2. Sample Preparation

The preparation of the samples consisted of the following steps.

• Each soil type was air-dried, and therefore all samples contained similar levels of moisture.
• Fifty grams of a soil sample type was added to a petri dish (12 cm in diameter)
• The sample was scanned with a Hyspex SWIR 384 m camera under constant illumination.
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• In the same sample, initially, 2 mL of the HC were added to the soil using a syringe (to clay and
clayloam), which was subsequently changed to 5 mL of the HC to the other soil types.

• A disposable plastic spoon was used to homogenize the mixture and to flatten its surface in order
to have even surfaces, except for some soil samples containing clay which tends to be sticky and
difficult to flatten due to the characteristics of the soil type, e.g., Figure 1b.

• The sample was scanned with a Hyspex SWIR 384 m camera under constant illumination.
• In the same sample, a further 5 mL of HC was added to the mixture.
• The disposable spoon was used to homogenize the mixture and another scan was taken.
• The procedure was repeated with increments of 5 mL of HCs until the mixture was saturated and

formed a shallow local pool (see Figure 1).

Figure 1. Sample preparation of the experiment combining sandy-clay-loam with diesel. Photos show
the HC contaminant being increasingly added to the same soil sample until saturated. From left;
addition of 5 mL , followed by 10 mL, 15 mL, 20 mL, and 25 mL of the HC.

The procedure was repeated on all the soil samples contaminated with all the different
hydrocarbon types.

A calibration panel was used as white reference, the acquired images were calibrated from
radiance to reflectance using HYSPEX REF software which normalizes the images to an area of known
reflectance. A total of 15 combinations (see Table 1) were produced with four mixtures each for
clay–loamy, sandy–clay–loam, and sandy–loam soil types, while clay had three mixtures. The complete
data set used here consisted of 96 spectral images.

Table 1. Samples created for each combination made in the experiment and their corresponding
absolute HC and soil quantities, respectively.

Sample Combination HC (mL) Soil (gr) Sample Combination HC (mL) Soil (gr)

Clay - Diesel 0 0 50 Clay - Bio- diesel 0 0 50
Clay - Diesel 1 2 50 Clay - Bio- diesel 1 2 50
Clay - Diesel 2 4 50 Clay - Bio- diesel 2 4 50
Clay - Diesel 3 5 50 Clay - Bio- diesel 3 5 50
Clay - Diesel 4 10 50 Clay - Bio- diesel 4 10 50
Clay - Diesel 5 15 50 Clay - Bio- diesel 5 15 50
Clay - Diesel 6 20 50 Clay - Bio- diesel 6 20 50
Clay - Diesel 7 25 50 Clay - Bio- diesel 7 25 50

Clay - Ethanol 0 0 50 Clay Loam - Ethanol 0 0 50
Clay - Ethanol 1 2 50 Clay Loam - Ethanol 1 2 50
Clay - Ethanol 2 4 50 Clay Loam - Ethanol 2 4 50
Clay - Ethanol 3 5 50 Clay Loam - Ethanol 3 5 50
Clay - Ethanol 4 10 50 Clay Loam - Ethanol 4 10 50
Clay - Ethanol 5 15 50 Clay Loam - Ethanol 5 15 50
Clay - Ethanol 6 20 50 Clay Loam - Ethanol 6 20 50
Clay - Ethanol 7 25 50 Clay Loam - Ethanol 7 25 50
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Table 1. Cont.

Sample Combination HC (mL) Soil (gr) Sample Combination HC (mL) Soil (gr)

Clay Loam - Diesel 0 0 50 Clay Loam - Bio- diesel 0 0 50
Clay Loam - Diesel 1 2 50 Clay Loam - Bio- diesel 1 2 50
Clay Loam - Diesel 2 4 50 Clay Loam - Bio- diesel 2 4 50
Clay Loam - Diesel 3 5 50 Clay Loam - Bio- diesel 3 5 50
Clay Loam - Diesel 4 10 50 Clay Loam - Bio- diesel 4 10 50
Clay Loam - Diesel 5 15 50 Clay Loam - Bio- diesel 5 15 50
Clay Loam - Diesel 6 20 50 Clay Loam - Bio- diesel 6 20 50

Clay Loam - Petrol 0 0 50
Clay Loam - Petrol 1 2 50
Clay Loam - Petrol 2 4 50 Sand Loam - Petrol 0 0 50
Clay Loam - Petrol 3 5 50 Sand Loam - Petrol 1 5 50
Clay Loam - Petrol 4 10 50 Sand Loam - Petrol 2 10 50
Clay Loam - Petrol 5 15 50 Sand Loam - Petrol 3 15 50
Clay Loam - Petrol 6 20 50 Sand Loam - Petrol 4 20 50
Clay Loam - Petrol 7 25 50 Sand Loam - Petrol 5 25 50
Clay Loam - Petrol 8 30 50 Sand Loam - Petrol 6 30 50
Clay Loam - Petrol 9 35 50 Sand Loam - Petrol 7 35 50

Clay Loam - Petrol 10 40 50 Sand Loam - Petrol 8 40 50
Clay Loam - Petrol 11 45 50 Sand Loam - Petrol 9 45 50

Sand Clay Loam - Diesel 0 0 50 Sand Clay Loam - Bio- diesel 0 0 50
Sand Clay Loam - Diesel 1 5 50 Sand Clay Loam - Bio- diesel 1 5 50
Sand Clay Loam - Diesel 2 10 50 Sand Clay Loam - Bio- diesel 2 10 50
Sand Clay Loam - Diesel 3 15 50 Sand Clay Loam - Bio- diesel 3 15 50
Sand Clay Loam - Diesel 4 20 50 Sand Clay Loam - Bio- diesel 4 20 50
Sand Clay Loam - Diesel 5 25 50 Sand Clay Loam - Bio- diesel 5 25 50

Sand Clay Loam - Ethanol 0 0 50 Sand Clay Loam - Petrol 0 0 50
Sand Clay Loam - Ethanol 1 5 50 Sand Clay Loam - Petrol 1 5 50
Sand Clay Loam - Ethanol 2 10 50 Sand Clay Loam - Petrol 2 10 50
Sand Clay Loam - Ethanol 3 15 50 Sand Clay Loam - Petrol 3 15 50
Sand Clay Loam - Ethanol 4 20 50 Sand Clay Loam - Petrol 4 20 50
Sand Clay Loam - Ethanol 5 25 50 Sand Clay Loam - Petrol 5 25 50
Sand Clay Loam - Ethanol 6 30 50 Sand Clay Loam - Petrol 6 30 50

Sand Clay Loam - Petrol 7 35 50

Sand Loam - Diesel 0 0 50 Sand Loam - Bio- diesel 0 0 50
Sand Loam - Diesel 1 5 50 Sand Loam - Bio- diesel 1 5 50
Sand Loam - Diesel 2 10 50 Sand Loam - Bio- diesel 2 10 50
Sand Loam - Diesel 3 15 50 Sand Loam - Bio- diesel 3 15 50
Sand Loam - Diesel 4 20 50 Sand Loam - Bio- diesel 4 20 50

Sand Loam - Ethanol 0 0 50
Sand Loam - Ethanol 1 5 50
Sand Loam - Ethanol 2 10 50
Sand Loam - Ethanol 3 15 50
Sand Loam - Ethanol 4 20 50

2.3. Hyperspectral Imaging

The spectral data was obtained using a Hyspex SWIR 384 m line-scan hyperspectral camera
and is equipped with a Mercury Cadmium Telluride (MCT) detector array. For this experiment,
a user friendly table-top laboratory set-up with translation stage, SWIR light source, and close-up
lenses were used during the scanning stage to scan the sample and build a hyperspectral data cube
(see Figure 2). The camera simultaneously captured a full SWIR spectrum, with a spectral sample
interval of 5.45 nm between 930 and 2500 nm, each along a line of 384 pixels for 288 bands with
a radiometric resolution of 16 bit [41]. The 384 columns of the detector array formed one line of
the hyperspectral image in the x-axis. The hyperspectral image was obtained line by line using the
so-called “pushbroom” scanning mode, where the platform holding the sample was translated onto the
y-axis at constant speed (see Figure 3). The scanning speed was automatically controlled by the data
acquisition unit based on the selected lens option. The images produced had a spatial resolution of
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0.22 mm/pixel. Radiometric calibration was performed using the vendor’s software package. A more
detailed specification of the system is given in Table 2.

Figure 2. Scanning process of the dataset.

Table 2. Hyspex 384 m main specifications.

Specification HySpex SWIR-384 m

Spectral Range (nm) 930–2500
Spatial Pixels (pixels) 384

Spectral Channels 288
Spectral Sampling (nm) 5.45

FOV (degrees) 16◦

Pixel FOV across/along (mrad) 0.73/0.73
Bit resolution (raw data)/Digitization 16

Noise floor (e·) 150
Dynamic range 7500

Peak SNR (at full resolution) >1100
Max speed (at full resolution)(fps) 400

Full Width Half Maximum ∼1 pixel
Power consumption (W) 30
Dimensions (l-w-h) (cm) 38-12-17.5

Weight (kg) 5.7

Figure 3. HySpex 384 m line scan acquisition process. The camera (nadir) acquires hyperspectral lines
of pixels. The hyperspectral image is obtained by translation of the object under constant illumination.
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The resultant reflectance spectra were used to estimate the percentages of the HCs using the
abundances calculated based on the different mixture types as shown in Table 3.

Table 3. Size of datasets and target class.

Dataset Size Number of Mixtures

Clay biodiesel 8000× 288 8
Clay diesel 8000× 288 8

Clay ethanol 8000× 288 8
Clay loam biodiesel 7000× 288 7

Clay loam diesel 7000× 288 7
Clay loam ethanol 8000× 288 8
Clay loam petrol 12, 000× 288 12

Sandy loam biodiesel 5000× 288 5
Sandy loam diesel 5000× 288 5

Sandy loam ethanol 5000× 288 5
Sandy loam petrol 10, 000× 288 10

Sandy clay loam biodiesel 6000× 288 6
Sandy clay loam diesel 6000× 288 6

Sandy clay loam ethanol 7000× 288 7
Sandy clay loam petrol 8000× 288 8

3. Methodology

3.1. Workflow

Spectral information was obtained from the controlled dataset and used with ground truth
abundances to evaluate the performance of the proposed deep learning model for estimating the
abundance of HCs in each dataset. The workflow of the study is as follows.

• Obtaining the dataset via a controlled experiment by mixing and homogenizing different
Hydrocarbon (HC) types with soil samples and scanning them with a Hyspex Shortwave Infrared
(SWIR) 384 m camera.

• Applying the Deep Learning (DL) model trained using a three-term backpropagation algorithm
with dropout for the abundance estimation of the HCs.

• Structuring the DL model with different dropout ratios to determine the most efficient DL setting.
• Testing and validating the performance of the proposed method for abundance estimation of the

different HCs by using the same network structure and hyperparameters.
• Comparing the accuracy and performance of the DL model with a hybrid spectral unmixing

method [21] and DL models trained using a standard backpropagation algorithm with and
without dropout (to prove the generalization ability of dropout), respectively.

The description and experimental results of this workflow are organized in the following sections.
Further explanation and discussion regarding abundance estimation of the HCs by the DL model as
well as the other methods can be found in the data acquisition, results, and discussion sections.

3.2. Deep Learning

Deep learning has been shown to outperform other machine learning and neural networks
techniques. Deep learning can be categorized as a subfield of machine learning, which learns high level
abstractions in data by utilizing hierarchical architectures [42]. Deep learning can also be described as
the final product of machine learning where the learning rule becomes the algorithm that generates
the model from the training data. It typically involves modeling, which hierarchically learn features
of input data using Artificial Neural Networks (ANN) and usually has more than three layers [43].
The main advantage of deep learning is that these layers of features are not designed by an operator;
they are learned from the input data using learning procedures. A deep neural network can simply be
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referred to as a network of sufficient complexity in order to interpret raw data without human derived
explanatory variables [44,45]. Deep learning models provide excellent results with the ability to extract
stronger features, but in turn lead to vanishing gradient, overfitting, and computational load [46].
These problems can be addressed and improved by employing dropout, three-term backpropagation
and a Rectified Linear Unit (ReLU) activation function which is known to transmit error better when
compared to other functions.

There are many types of deep learning architectures whose application have been proven to
yield excellent results, the most common are Deep Believe Network (DBN), Convolutional Neural
Network (CNN), Deep Convolutional Generative Adversarial Networks (DCGAN), Recurrent Neural
Networks (RNN), etc. [47,48]. The application of deep learning techniques to hyperspectral data is
relatively recent, for instance, in the work by the authors of [49], deep belief networks, and a novel
texture enhancement algorithm were investigated for their suitability and practical application to
hyperspectral image classification. The authors of [50] utilized high-resolution remote sensing imagery
and deep learning techniques to extract buildings in urban districts using guided filters. In the work
of the authors of [51], a 3D full convolutional neural network model was used for spatial-spectral
resolution of hyperspectral images by learning end-to-end, with full mapping between low and high
spatial resolution hyperspectral images at high accuracy. Transfer learning with a deep convolutional
neural network was reported in the work by the authors of [52]; in this research, a large amount
of unlabeled SAR scene data was transferred to SAR target recognition tasks with feedback of the
construction loss to the classification pathway. Others, such as the authors of [53,54], used a deep
learning approach to classify hyperspectral images. Most of the aforementioned methods used the
standard backpropagation algorithm to train the network which has been characterized as having low
convergence rates especially when used to train a network with more than one hidden layer. Thus,
in this paper, the main aim of using the three-term backpropagation algorithm with dropout to train
the network is to increase the convergence rate and the ability to generalize to unseen data with good
prediction accuracy compared to existing methods.

3.3. Dropout

Dropout allows neurons to randomly drop out of the network during training, while other neurons
can step in and handle the representation required to make predictions for the missing neurons [55].
This simply means removing neurons from the network along with all its incoming and out going
connections. By applying dropout to a deep neural network, a thinned network often results. This thinned
network consists of all the units that survive dropout [56] as shown in Figure 4. The dropout effect is that
the network becomes less sensitive to the specific weights of neurons. This in turn results in a network
that is capable of better generalization and is less likely to overfit the training data.

Figure 4. (a) A typical network before and (b) after applying dropout (adapted from the work by the
authors of [55]).
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In this paper, dropout on hidden layers and on the visible layer are developed. Dropout on hidden
layers is applied to hidden neurons in the hidden layers and between the last hidden layer and the
output layer of the body of the deep networks’ model. Dropout on the visible layer is applied between
the input and the first hidden layer. Since deep neural networks consist of multiple nonlinear hidden
layers, this makes them expressive models that can learn complex relationships between the input and
output nodes which often results in overfitting.

3.4. Backpropagation

Backpropagation is carried out to train multilayer architectures to minimize the cost function of
the model. It is also used to adjust the free parameters weights (ω) and biases in order to attain the
desired network output. Traditionally, the learning rate and momentum factors are used to control
the weight adjustments and damping oscillations. This is a popular training algorithm in many
applications, however the main limitation is its slow convergence especially when used to train a deep
neural network with multiple hidden layers. Therefore, the three-term backpropagation algorithm
with dropout tend to improve the accuracy of the trained model.

3.5. Three-Term Backpropagation

The backpropagation algorithm has been modified by different researchers to improve the
efficiency and convergence rate of the algorithm. One such method is the three-term backpropagation
algorithm proposed by the authors of [57], shown in Algorithm 1. This algorithm uses an extra term
called the Proportional Factor (PF) to the standard backpropagation algorithm. This PF speeds up the
weight adjustment process by increasing the convergence rate and decreasing learning stalls while
maintaining the simplicity and efficiency of the standard backpropagation algorithm [58].

Algorithm 1: Learning method using the three-term backpropagation with dropout used in
training the DNN model.

Data: α, β, γ, ω, δ, e
DNN weights, ω, are randomly initialized ω11 ... ... ... ωij

initialize the learning rate, α ; momentum factor, β; and proportional factor, γ

for Number of epochs (k) do
for Number of data samples = 1, 2 ..... n do

for Number of hidden layers = 1, 2 ..... f do
/* Calculate the errors and the delta, δ, of the output nodes
e = d− y
δ = φ

′
(ν) e

/* compute the nodes’ output yij

yij = yij ∗ Dropout (yij, ratio)
/* propagate the network output yz backwards, and calculate the delta, δ

ep = WT δ

δp = φ
′

(νp) ep

/* update and adjust the weights according to δ

∆ ωij(k) = α δi xj + β ∆ ωij(k− 1)+γ ei xj

ωij ← ωij + ∆ ωij

end
end

end
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A stability analysis of the three-term backpropagation was studied in the work by the authors
of [58] to test the convergence rate and stability of the algorithm. This training algorithm has proven to
be effective in training a network with good prediction accuracy and a high convergence rate [58,59].

A deep learning model with dropout can be trained using the stochastic gradient descent which
can be similar to a standard neural network, the only difference here is the random dropping of units
in the network’s hidden layers. Different methods have been used to improve the standard gradient
descent algorithm such as momentum, annealed learning rates, as well as L2 weight decay [55]. Here,
the effectiveness of the dropout trained method using the three-term backpropagation algorithm
is demonstrated. The three-term backpropagation algorithm speeds up weight space adjustment
compared to a conventional backpropagation algorithm. The dropout has proven to be successful for
computer vision tasks as it helps to avoid overfitting and improve generalization [60,61].

3.6. Hyperparameters

A deep learning model requires the modification of various hyperparameters in order to improve
the results, and these largely depend on the dataset and other hyperparameters. The backpropagation
algorithm involves two parameters in updating the weights during training which are: the learning
rate (α) and momentum factor (β).

The initial learning rate α is one of the most important hyperparameters; too small a learning rate
makes the network learn slowly, and too large a learning rate possibly leads to oscillation preventing
the error falling below a certain value.

The momentum factor β is believed to make the learning procedure more stable and accelerate
convergence in shallow regions of the error function, which in practice does not always happen [62].

The extra term introduced by the three-term back propagation algorithm, called the proportional
factor (γ), speeds up the weight adjustment process by increasing the convergence rate and decreasing
learning stalls of the algorithm.

The best choice of these parameters depends on the problem which often requires a trial and error
process before a suitable choice is found [63]. Having run the experiments a number of times based on
trial an error, the optimum values of the parameters were achieved which trained the network and
output good results.

3.7. Architecture of the Deep Learning Model

The deep learning model was designed using the 288 bands as input to the network. Each pixel
is taken as an independent input to the network. In this research study, we do not consider the
spatial information. The network has four hidden layers each containing 30 nodes and one output
corresponding to the abundance of hydrocarbon. The network was trained using the ground truth
abundances for the different mixtures, as detailed in Table 4.

The data was randomly divided into 3 categories, namely: training, validation, and test sets.
The training set is used to fit the parameters of the deep learning model, the test set (unseen data)
is used to investigate the predictive power of the model while the validation set is used to avoid
overfitting using the cross-validation algorithm.

The cross-validation algorithm avoids overfitting because the training sample is independent of
the validation sample [64]. The size of the data sets depended on the soils’ absorption level during
the experiment (i.e., when a local shallow pool was formed). Only image pixels corresponding to
data from inside the Petri dish were considered. Moreover, for each scanned image, 1000 pixels were
randomly selected. Thus the data sets ranged between 5000 pixels × 288 bands (where five mixture
types were available) to 10,000 pixels × 288 bands (for samples with ten possible mixtures). The size
of the data sets and number of mixtures used for the experiments (see Table 1) are summarized in
Table 3. Subsets of the hyperspectral data were fed into the network as follows: 80% of the data were
randomly selected for training the network, 10% were used to test the network and 10% were used for
cross-validation.
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We compared two neural network architectures one with and another without dropout, respectively.
This is to prove the dropout’s efficiency to improve the generalization capabilities of the neural network.

The network used a sigmoid activation function which was applied to the hidden and
output nodes.

The deep learning abundance estimation experiments were conducted to obtain optimum
hyperparameters in order to achieve maximum accuracy in estimating the amount of HCs in each soil
mixture type. The ground truth, or known abundances from the sample preparation, were used as class
labels (targets) to train the network for the abundance estimation. These ground truth abundances were
estimated based on the HC type in each data set as detailed in Table 4 and depend on the density of each HC.

Table 4. Ground truth abundances (expressed in wt%) for the different mixtures corresponding to
2 mL, 4 mL, 5 mL, 10 mL, 15 mL, 20 mL, 25 mL, 30 mL, 35 mL, 40 mL, and 45 mL of HC , respectively.

Corresponding mixtures (mL) Petrol Diesel Biodiesel Ethanol

2.0 0.02 0.023 0.034 0.029
4.0 0.055 0.063 0.065 0.059
5.0 0.068 0.08 0.08 0.073

10.0 0.128 0.148 0.149 0.136
15.0 0.181 0.206 0.208 0.191
20.0 0.227 0.258 0.260 0.240
25.0 0.269 0.303 0.305 0.283
30.0 0.340 0.342 0.345 0.321
35.0 38.1 – – –
40.0 42.0 – – –
45.0 46.2 – – –

All the experiments were conducted with the learning rate of α set to 0.01, β set to 0.5, and γ set
to 0.1, which allowed convergence of the objective function at a high rate. The algorithm was run
iteratively with 20 epochs.

Moreover, in order to find the optimum level of dropout, the models were trained using the
three-term backpropagation algorithm with different ranges of dropout (10–50%).

4. Results

In this section, we present the results obtained from the deep learning model demonstrating the
abundance estimation of the different HCs. Results are presented to demonstrate the effectiveness of
dropout in the model in terms of generalization capabilities. We also show the accuracy of the proposed
method compared to the hybrid spectral unmixing method and DL models trained with conventional
backpropagation with and without dropout, respectively. Results with laboratory and remote sensed
data are presented. The algorithms were implemented using MatLab 2018b. The experiments were
carried out on an LG desktop with Intel (R) core (TM)2 Duo CPU 3.00 GHZ processor 8.00 GB RAM.

4.1. Experiment with Laboratory Data

The reflectance spectra of different soil samples with 15% hydrocarbon concentration mixture are
shown in Figure 5 showing specific absorption at around 1700 µm and 2300 µm, respectively
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Figure 5. Spectral reflectance of different soils and 15% hydrocarbon concentration mixtures.

The ground truth abundances in Table 4 were used to estimate the amount of hydrocarbon used
in the experiment. The abundances were calculated based on the density of the different hydrocarbon
types. The aim is to quantify the percentage or amount of HC in each pixel using deep learning and
hybrid spectral unmixing method (using abundance estimation). This was calculated based on the
saturation level of the different hydrocarbons as shown in Table 1.

To demonstrate the ability of the proposed deep learning model to generalize on unseen data,
Table 5 displays the results obtained from the test sets with and without dropout, respectively.

Table 5. Mean square error of the deep learning model on unseen data with and without dropout,
respectively.

Dataset Test Set with Dropout Test Set without Dropout

Clay biodiesel 7.11× 10−3 9.1× 10−3

Clay diesel 1.16× 10−3 6.9× 10−3

Clay ethanol 8.26× 10−4 6.2× 10−3

Clay loam biodiesel 7.62× 10−4 1.4× 10−3

Clay loam diesel 2.20× 10−3 3.3× 10−3

Clay loam ethanol 8.80× 10−4 7.1× 10−3

Clay loam petrol 2.50× 10−3 8.1× 10−3

Sandy loam biodiesel 8.00× 10−4 1.2× 10−3

Sandy loam diesel 1.20× 10−3 9.8× 10−3

Sandy loam ethanol 4.01× 10−3 8.4× 10−3

Sandy loam petrol 6.71× 10−3 9.3× 10−3

Sandy clay loam biodiesel 8.25× 10−4 3.5× 10−3

Sandy clay loam diesel 8.84× 10−4 9.8× 10−3

Sandy clay loam ethanol 2.10× 10−3 7.5× 10−3

Sandy clay loam petrol 5.13× 10−3 6.1× 10−3

The experimental process was repeated with different dropout ratios on the hidden layers of 10%,
20%, 30%, 40%, and 50% respectively. Results demonstrate both the training and validation accuracy
of the network. Tables 6–9 illustrate the mean square error of the proposed method with the different
dropout ratios. It is noted that in all cases the error is 10 times lower for dropout ratio of 40% than for 50%.
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Then again when the error drops significantly for dropout ratio 20%. However, when it is further reduced
to 10%, the error increases. The 20% dropout is adopted subsequently in the rest of the experiments.

Table 6. Mean Square Error (MSE) of the deep learning model for Clay Loam datasets with different
hydrocarbon types and different Dropout (DO) ratios.

HC Types DO 10% DO 20% DO 30% DO 40% DO 50%

Bio-diesel
MSE 3.5× 10−4 0.22× 10−4 0.69× 10−4 6.5× 10−4 72× 10−4

Diesel
MSE 0.31× 10−4 0.25× 10−4 0.52× 10−4 7.3× 10−4 59× 10−4

Ethanol
MSE 3.1× 10−4 0.21× 10−4 5.6× 10−4 74× 10−4 76× 10−4

Petrol
MSE 2.9× 10−4 0.22× 10−4 0.73× 10−4 6.7× 10−4 72× 10−4

Table 7. Mean square error of the deep learning model for Clay datasets with different hydrocarbon
types and different Dropout (DO) ratios.

HC Types DO 10% DO 20% DO 30% DO 40% DO 50%

Bio-diesel
MSE 2.7× 10−4 2.3× 10−4 1.9× 10−4 5.1× 10−4 77× 10−4

Diesel
MSE 1.7× 10−4 0.35× 10−4 1.7× 10−4 3.2× 10−4 76× 10−4

Ethanol
MSE 1.6× 10−4 2.2× 10−4 2.8× 10−4 4.3× 10−4 83× 10−4

Table 8. Mean square error of the deep learning model for Sandy Clay Loam datasets with different
hydrocarbon types and different Dropout (DO) ratios.

HC Types DO 10% DO 20% DO 30% DO 40% DO 50%

Bio-diesel
MSE 2.7× 10−4 0.33× 10−4 0.61× 10−4 3.4× 10−4 86× 10−4

Diesel
MSE 2.7× 10−4 2.0× 10−4 5.3× 10−4 6.6× 10−4 94× 10−4

Ethanol
MSE 3.4× 10−4 2.2× 10−4 4.3× 10−4 7.2× 10−4 88× 10−4

Petrol
MSE 2.2× 10−4 1.3× 10−4 3.6× 10−4 4.7× 10−4 83× 10−4

Table 9. Mean square error of the deep learning model for Sandy Loam datasets with different
hydrocarbon types and different Dropout (DO) ratios.

HC Types DO 10% DO 20% DO 30% DO 40% DO 50%

Bio-diesel
MSE 3.6× 10−4 3.4× 10−4 1.6× 10−4 7.3× 10−4 72× 10−4

Diesel
MSE 2.7× 10−4 0.2× 10−4 0.66× 10−4 3.1× 10−4 68× 10−4

Ethanol
MSE 2.5× 10−4 0.2× 10−4 7.3× 10−4 5.8× 10−4 86× 10−4

Petrol
MSE 0.68× 10−4 1.5× 10−4 2.7× 10−4 6.8× 10−4 81× 10−4



Remote Sens. 2019, 11, 1938 14 of 24

Results of the experiments are shown in Figures 6 and 7 for individual soil types contaminated
with different HCs to confirm the accuracy of the method. Figure 6 shows the mean square error
during training, and demonstrates the network’s ability to converge rapidly with low numbers of
epochs. The plots in Figure 7 show the model’s estimated output and target output for 4 different
combinations. It is observed that the DL model quantifies correctly all the different HC abundances
with low error.
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Figure 6. Mean square error of different soils contaminated with different HC contents.
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Figure 7. Neural network estimated output and target output of different soils contaminated with
different HC contents.

From the results obtained, it is noted that the proposed method was able to generalize on unseen
testing and validation data with high prediction accuracy. We observed a similar trend on all the datasets
used for the experiment which indicates a reduction in the error rate and a high convergence rate.
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To demonstrate the effectiveness of the proposed method, a deep learning model trained with
a conventional backpropagation algorithm was similarly used to quantify the HC abundances;
first without dropout, and then with 20 % dropout to train the networks. For fair comparison, the same
network structure was used and these include: number of layers, number of nodes for each layer,
range of initial values, and learning rate. Another comparison was conducted with the hybrid spectral
unmixing method for switching between linear and nonlinear methods [21]. Hybrid spectral unmixing
uses a neural network to determine the most appropriate method among a set of linear and non
linear unmixing method for each pixel in the scene. Specifically, we used Vertex Component Analysis
(VCA) [65], Fully Constrained Least Square Method (FCLS) [66], Generalized Bilinear Mixing Model
(GBM) [67], and the Polynomial Post Nonlinear Mixing Model (PPNMM) [68]. This means that the
hybrid switch method selects the best of these four methods for each pixel.

From the results obtained, it may be observed that our proposed method outperforms the hybrid
switch method and conventionally trained networks with the closest estimate from the ground truth
values as demonstrated in Tables 10 and 11.

4.2. Soil Continuity Experiments

In this research, four different mixtures of soil were created and HC were added in discrete
steps. However, in real life situations, both HC and soil levels of given samples are continuous
rather than discrete. Therefore, in order to simulate a more realistic scenario, several strategies were
explored. The first strategy was to create a generic model with all soils combined as opposed to
separate models for each soil as in the previous experiments. It is noted that the soils were prepared
and mixed manually and contained grains of different size (e.g., clay and sand mixture). By feeding
the DL network with all types of soils, differences in the soil composition would appear from pixel to
pixel. DLs were created including all four different soil mixtures (Clay, Clay–loam, Sandy loam, and
Sandy clay–loam) rather than individually. Using the same architecture of the deep learning model,
80% of the resultant data was used to train the model, 10% was used as test sample and the remaining
10% was used for cross-validation. This was conducted to validate the network’s ability to estimate
the amount of HC regardless of the soil type and allowing for different soil types. The results were
in the same range as for the different HC. Table 11 summarizes the results obtained for biodiesel.
It is noted the training MSE was in the same range as the individual model although the number of
epochs required increased to 178. Average MSE for the individual models are shown in brackets for
comparison purposes. The generalization MSE on the training data is higher than in the individual
models. However, it is noticed that this data is more complex as the individual models as it contains
four different soil types. In the work of the authors of [16], an individual model per soil type was
recommended as the generic models degraded the responses. We believe that with further tuning of
the hyperparameters, improved results could have been achieved. However, this is out of the scope of
this paper.

In order to simulate a more realistic scenario, and following a similar approach presented in
the work by the authors of [16], noise was added to the data to simulate continuous spectra values
instead of discrete and also to evaluate the noise rejection of the models. Here, the datasets were
corrupted with Random Gaussian noise with signal-to-noise ratio (SNR) ranging from 10 to 40 dB.
The model shows similar performance even with low SNR, showing good noise rejection and accurate
prediction at different ranges of SNR. For SNR lower than 20 dB, the generalization error deteriorates
slightly. Initially, we added noise to the test data but not to the training, to simulate training with
discrete samples and testing with continuous samples. The performance deteriorates for SNR = 10 dB,
while for higher SNR, it is very stable showing good adaptation of the model to continuous spectra.



Remote Sens. 2019, 11, 1938 16 of 24

Table 10. Estimated hydrocarbon abundance predicted by the proposed method, compared with the hybrid switch method, conventional neural network, and
conventional neural network with dropout (DO) for Clay and Clay Loam (CL) mixtures. A comparative summary showing the average estimation error in percentage
is included for each mixture type.

Mixtures Reference Proposed Method Hybrid Switch Method Conventionally Trained NN with DO (0.2) Conventionally Trained NN

Clay–biodiesel 0 0.002 0.03 0.61 0.69
Clay–biodiesel 3 3.4 3.7 3.9 4.5
Clay–biodiesel 6 6.5 6.9 7.3 7.9
Clay–biodiesel 8 8.4 9.4 9.8 9.9
Clay–biodiesel 14.9 15.3 16.9 18.0 18.9
Clay–biodiesel 20.8 21.4 22.6 17.3 17.9
Clay–biodiesel 26.0 26.8 28.3 29.9 30.3
Clay–biodiesel 30.5 31.9 32.2 35.1 38.6

Average error (%) 2 10 17 20

Clay–diesel 0 0.003 0.04 1.06 1.79
Clay–diesel 3 3.3 3.7 4.6 4.9
Clay–diesel 6 6.5 6.3 6.9 7.21
Clay–diesel 8 8.1 7.6 4.8 3.7
Clay–diesel 14.8 15.3 13.0 19.1 19.8
Clay–diesel 20.6 21.4 18.5 23.8 25.5
Clay–diesel 25.8 25.6 23.6 29.1 29.4
Clay–diesel 30.3 30.6 32.2 36.1 37.7

Average error (%) 2 14 20 24

Clay–ethanol 0 0.004 0.05 1.41 2.04
Clay–ethanol 2 2.7 2.3 3.4 3.9
Clay–ethanol 5 5.5 5.3 6.01 6.63
Clay–ethanol 7.3 7.6 8.2 4.9 4.1
Clay–ethanol 13.6 14.1 15.6 10.4 9.9
Clay–ethanol 19.1 19.6 18.1 22.7 22.9
Clay–ethanol 24 24.9 22.9 27.7 28.3
Clay–ethanol 28.3 28.9 27.7 32.8 33.7

Average error (%) 3 9 19 23

CL–biodiesel 0 0.002 0.16 0.90 1.63
CL–biodiesel 3 3.2 3.6 4.5 4.9
CL–biodiesel 6 6.4 6.6 7.1 7.8
CL-biodiesel 8 8.5 7.7 9.9 10.8
CL-biodiesel 14.9 15.5 13.6 17.9 18.3
CL-biodiesel 20.8 21.6 18.7 24.6 24.9
CL-biodiesel 26.0 26.4 24.1 29.6 29.9

Average error (%) 2 11 17 21
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Table 10. Cont.

Mixtures Reference Proposed Method Hybrid Switch Method Conventionally Trained NN with DO (0.2) Conventionally Trained NN

CL-diesel 0 0.003 0.001 0.76 1.88
CL-diesel 3 3.3 3.1 3.7 4.3
CL-diesel 6 5.8 6.6 7.2 7.8
CL-diesel 8 8.4 10.4 11.6 11.9
CL-diesel 14.8 14.3 12.8 18.7 19.0
CL-diesel 20.6 21.1 22.1 24.4 25.3
CL-diesel 25.8 26.8 27.7 28.2 30.7

Average error (%) 3 13 26 31

CL-ethanol 0 0.002 0.05 1.22 1.79
CL-ethanol 2 2.4 2.7 3.6 3.9
CL-ethanol 5 5.2 5.4 5.9 6.4
CL-ethanol 7.3 7.6 6.7 9.6 9.9
CL-ethanol 13.6 14.4 11.6 16.7 17.0
CL-ethanol 19.1 19.7 18.5 22.6 22.9
CL-ethanol 24 24.6 25.9 26.7 27.5
CL-ethanol 28.3 28.7 29.9 30.7 31.2

Average error (%) 2 11 17 21

CL-petrol 0 0.002 0.006 0.36 1.40
CL-petrol 2 2.4 2.2 2.9 3.3
CL-petrol 5 5.1 5.5 6.3 6.9
CL-petrol 6.8 5.9 7.9 8.4 8.9
CL-petrol 12.8 12.9 13.0 11.0 9.9
CL-petrol 18.1 18.4 17.4 16.8 15.6
CL-petrol 22.7 23.1 24.4 19.8 18.5
CL-petrol 26.9 27.4 27.8 24.6 23.9
CL-petrol 34 34.9 35.6 29.7 29.8
CL-petrol 38.1 38.5 39.6 36.6 36.9
CL-petrol 42 42.4 44.4 38.3 36.1
CL-petrol 46.2 46.9 45.2 43.5 43.7

Average error (%) 1 5 13 16
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Table 11. Soil continuity experiments. Mean square error of the bio-diesel deep learning model using
generic models and individual models with added noise. Training and testing results are shown.

Dataset Traning Data Test Data

Biodiesel with generic model 7.2238 ×10−4 (1.525× 10−4) 6.8× 10−3 (2.374× 10−3)

Biodiesel with added noise

SNR (dB) Traning data Test data

40 8.2117× 10−4 8.9821× 10−4

30 8.2594× 10−4 8.9333× 10−4

20 9.393× 10−4 0.001
10 9.671× 10−4 0.001

Biodiesel with added noise on testing data

SNR (dB) Training data Test data

40 6.9997× 10−4 9.3811× 10−4

30 6.9997× 10−4 9.0321× 10−4

20 6.9997× 10−4 9.0657× 10−4

10 6.9997× 10−4 0.0012

4.3. Experiment with Remote Sensed Data

A remote sensed data captured by an airborne system, adjusted to work under stationary condition
in the field, was used to validate our proposed method. This dataset contains soils contaminated
with different levels of hydrocarbon (between 0 to 10 wt% in steps of 1 wt%) that were acquired at
three different locations (Hamra, Kokhav, and Evrona) with a Hyper-Cam LW instrument. Each pixel
responses are captured by 88 spectral bands in the spectral range of 8 to 12 µm with spectral resolution
of 0.25 cm−1. The experimental protocol, data capturing, and preprocessing of these datasets are fully
described in the work by the authors of [16].

Each one of the 3 datasets was independently trained with a DL network. For each network, 75% of
the samples were randomly selected for training and 25% were used for testing. These parameters were
selected similar to the work by the authors of [16] in order to provide a fair comparison to the results
they presented. A dropout ratio of 20% was used and all other hyperparameters were left as in our
previous configuration. Results are presented as MSE for each dataset in Table 12. It was noted that our
results surpassed in term of prediction accuracy the ones presented in the literature for these datasets.
Moreover, the results show good generalization capabilities.

Table 12. Summary of the evaluation on the 3 different soils using the deep learning model trained
with and without dropout.

Soil Type MSE on Training Set MSE on the Test Set

Hamra 0.48× 10−4 1× 10−4

Evona 0.78× 10−4 3.5× 10−4

Kokhav 2× 10−4 3× 10−4

Results on all 3 datasets shows that our proposed DL method achieved acceptable results with
consistent MSE values as shown in Figure 8c for both training and generalization.
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Figure 8. Mean square error of the 3 different soils contaminated with different HC contents.

5. Discussion

In this study, controlled hyperspectral datasets were used to assess the capabilities of the
deep learning model to predict and quantify the amount of HC spills on different soil types.
The deep learning approach was trained using a three-term backpropagation algorithm with dropout
technique. The deep learning model designed for this experiment utilizes a sigmoid activation
function and dropout of 20% in all the hidden layers of the architecture in order to avoid overfitting.
Another advantage of utilizing dropout is its ability to generalize.

The main aim of the three-term backpropagation algorithm was to reduce the number of training
epochs and maintain the system’s stability during training. Our proposed method was able to estimate
the amount of HCs in each dataset with high accuracy using a low number of epochs. The network
was able to achieve an average of 2.2× 10−4 mean square error on an average of 18 epochs as shown
in Tables 5–8 and Figure 6.

Dropout plays an important role in the architecture of the proposed deep learning model by
improving the performance of the model and avoided overfitting on the training data. This can be
proven from Table 5, where the results show the ability of the model to generalize on unseen data with
good accuracy.

From the results obtained, it may be observed that hydrocarbon can be estimated even at low
levels as shown in Tables 10 and 11.

Tables 10 and 11 summarize the abundance estimation of the quantity of HCs in the different
mixture types using our proposed method, the hybrid spectral unmixing method, and the
conventionally trained NN with and without dropout. For instance, if we observe the first mixture
from Table 10 (biodiesel mixed with clay), it is noted that for pure clay sample (reference 0% HC),
all methods provide very close estimate. The second raw presents the results for the same mixture
with 8% of biodiesel, 92% of clay. Our proposed method estimated 8.4% of biodiesel with the hybrid
switch method at 9.4%, while the neural network trained with a standard backpropagation algorithm
with and without dropout estimated at 9.8% and 9.9%, respectively. Similar results were obtained for
all the different samples as shown in Tables 10 and 11.

In addition, the soil’s properties such as grain size and texture can lead to a variation in
the absorption level, and thus the difference in detection of the different hydrocarbon types.
The hybrid switch method was also able to estimate the amount of hydrocarbon spills with reasonable
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accuracy unlike the conventionally trained neural network which has low accuracy compared to the
proposed method.

In the work by the authors of [69], it was revealed that deep learning requires large amounts of
training data to achieve optimal performance and good generalization with minimum error. However,
despite the size of the datasets used, the training process is faster with our proposed method, attributed
to the use of the three-term backpropagation algorithm for training and the use of cross-validation
with dropout. The authors of [55] reported that large neural networks trained in the standard way tend
to overfit on small datasets. To see if dropout can improve this condition, we ran the experiment on all
the datasets and varied the dropout ratio as shown in Tables 6–9. From the results obtained, the error
rate is relatively low when the dropout ratio is between 10% and 30%, with a slight increase when
the ratio is set above 50%. Therefore, it can be concluded that dropout ratio between 10% and 30%
provides an acceptable prediction estimation and could be used in any dataset for estimation analysis.

The proposed deep learning method was further validated on field datasets. In particular,
the Hamra soils produced a better results with lower MSE of 0.48× 10−4 compared to the Kokhav and
Evrona soils as shown in Figure 8c. This shows a similar trend to what was obtained in the work by the
authors of [16]. Although the deep learning model did not estimate well abundances between 1 and
3 wt%, this could be attributed to the fact that the data was obtained within the Longwave Infrared
Region (LWIR), which has a different spectral range with the laboratory controlled data used in this
research. Nevertheless, our proposed deep learning model perform better with all 3 datasets in terms
of MSE accuracy.

Recent research in deep learning suggests that a large dataset is required for training remote
sensing data, which is a major drawback. This was not the case for our proposed model because the
three-term backpropagation algorithm allows it to train faster using a minimum number of epochs to
converge. The training process was relatively fast compared to standard networks where parameter
updates are noisy in architectures with dropout. Learning takes an average of 28.16 seconds with
our proposed deep learning model compared to the conventionally trained neural networks which
takes an average of 300.68 seconds to learn. The data processing-to-end-product time of our proposed
method is relatively more time-consuming compared to traditional spectral unmixing method, which
is approximately 35.45 seconds compared to the hybrid spectral unmixing method which has an
average of 24.64 seconds. This could be attributed to the number of parameters and training in the
deep learning method compared to the spectral unmixing method.

However, we anticipate that including a wider range of data such as field HC leaks, will require
larger datasets and longer training to account for the variability of the data. Nevertheless, the proposed
methodology has proven to decrease significantly both the learning time and sample data required to
achieve accurate generalization.

6. Conclusions

In this paper, we developed a deep learning approach to accurately estimate hydrocarbon spills
on different soil samples measured using imaging spectroscopy. The deep learning model was trained
using a three-term backpropagation algorithm with dropout. The aim was to improve the accuracy of
the model, avoid overfitting, and converge faster.

Standard backpropagation algorithms build co-adaptation, which work well on training data
but the network does not generalize to unseen data. Dropout neutralizes these co-adaptations by
improving the network’s performance, thus enabling it to generalize. The choice of dropout ratio used
in any neural network depends on the type of dataset and application.

The three-term backpropagation algorithm improves the network’s ability to train faster and
overcome local minima when compared to conventional backpropagation algorithms. The effectiveness
of the deep learning model was verified when tested on the datasets containing different soil samples
mixed with different hydrocarbon types to estimate the amount of hydrocarbon spills in each
dataset. The datasets were acquired using a Hyspex 384 SWIR camera under laboratory conditions.
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Many studies have shown the ability to detect HC using spectroscopy in the SWIR region. The results
of the experiments consistently show that the proposed method provides high prediction accuracy with
low error even for amounts of HC as low as 6.8%. Therefore, it can be concluded that the three-term
backpropagation algorithm with dropout significantly improves the model’s operation.

The deep learning model was further applied on three datasets acquired with an airborne LWIR
camera in field conditions which proved the effectiveness of the proposed method and its applicability
in real world scenarios.

Satellite and airborne hyperspectral data with ground truth are expensive, thus making it
difficult to obtain; but with the emergence of new lightweight sensors mounted on Unmanned
Aerial Vehicles (UAV), the potential application of this research is very large. It is noted that data
acquired in field conditions could be affected by several limitations such as variable illumination,
atmospheric conditions, and sensor sampling distance which could affect the accuracy in using such
dataset. However, in the work by the authors of [70], the correlation between datasets obtained under
laboratory and outdoor conditions was demonstrated. Thus, a neural network could be trained with
laboratory data and validated using remote UAV or airborne data. The information provided in this
research study can be used as a guide to understand the potential and limitations of a hyperspectral
sensor for HC abundance estimation.

Future work will develop networks that are able to classify and identify different types of HC
incorporating also spatial information using convolutional neural networks.
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Abstract: Spectral unmixing is a key process in identifying spectral signature of materials and
quantifying their spatial distribution over an image. The linear model is expected to provide
acceptable results when two assumptions are satisfied: (1) The mixing process should occur at
macroscopic level and (2) Photons must interact with single material before reaching the sensor.
However, these assumptions do not always hold and more complex nonlinear models are required.
This study proposes a new hybrid method for switching between linear and nonlinear spectral
unmixing of hyperspectral data based on artificial neural networks. The neural networks was trained
with parameters within a window of the pixel under consideration. These parameters are computed
to represent the diversity of the neighboring pixels and are based on the Spectral Angular Distance,
Covariance and a non linearity parameter. The endmembers were extracted using Vertex Component
Analysis while the abundances were estimated using the method identified by the neural networks
(Vertex Component Analysis, Fully Constraint Least Square Method, Polynomial Post Nonlinear
Mixing Model or Generalized Bilinear Model). Results show that the hybrid method performs
better than each of the individual techniques with high overall accuracy, while the abundance
estimation error is significantly lower than that obtained using the individual methods. Experiments
on both synthetic dataset and real hyperspectral images demonstrated that the proposed hybrid
switch method is efficient for solving spectral unmixing of hyperspectral images as compared to
individual algorithms.

Keywords: hyperspectral image; spectral unmixing; endmembers; artificial neural networks;
hybrid switch method

1. Introduction

Spectral Unmixing (SU) is the process of identifying spectral signatures of materials often
referred to as endmembers and also estimates their relative abundance to the measured spectra.
Spectral unmixing is used in a wide range of applications including crop/vegetation classification,
disaster monitoring, surveillance, planetary exploration, food industry, fire and chemical spread
detection and wild animal tracking [1]. Endmembers play an important role in exploring spectral
information of a hyperspectral image [2,3] the extraction of endmembers is the first and most crucial
step in any image analysis which is the process of obtaining pure signatures of different features present
in an image [1,4,5]. SU often requires the definition of the mixing model underlying the observations
as presented on the data. A mixing model describes how the endmembers are combined to form the
mixed spectrum as measured by the sensor [6]. Given the mixing model, SU then estimates the inverse
of the formation process to infer the quantity of interest, specifically the endmembers, and abundance
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from the collected spectra [7,8]. This could be achieved through a radiative transfer model which
accurately describes the light scattering by the materials in the observed scene by a sensor [6].

The most common approach to spectral unmixing is the linear spectral unmixing [6,7],
which assumes that each photon reaching the sensor interacts with only one material as measured by
the spectrum [7]. Promising and excellent results have been recorded with linear spectral unmixing
methods as proposed by Keshava and Mustard [1], with some of the commonly used linear mixture
models being; Adaptive Spectral Mixture Analysis (ALSMA) [9], Subspace Matching Pursuit (SMP) [10],
Orthogonal Matching Pursuit (OMP) [11]. Li et al. [12] proposed a robust collaborative sparse
regression method to spectrally unmix hyperspectral data based on a robust linear mixture model.
Thouvenin et al. [13] proposed a linear mixing model which explicitly accounts for spatial and
spectral endmembers variability. Foody and Cox [14] used a linear mixture model and regression
based fuzzy membership function to estimate land cover composition while in [15] the use of the
VCA algorithm is demonstrated to unmix hyperspectral data with relatively lower computational
complexity compared to other conventional methods. Non linear mixing models cope with nonlinear
interactions capturing effects that are mostly present in an image [7]. Li et al. [12] proposed a robust
collaborative sparse regression method using a robust linear mixture model which takes into account
nonlinearity in the image and treat them as mere outliers. The linear spectral unmixing method
generally provides poor accuracy when the light suffers multiple interactions between distinct
endmembers or intimate interaction before reaching the sensor [16,17]. In this case, the linear mixture
model can be advantageously replaced with nonlinear methods [18,19] which provides an alternative
approach to SU. When interactions occur at a microscopic level, it is said that the materials are
intimately mixed. A model proposed by Hapke [6] describes the interactions suffered by light when it
comes into contact with a surface composed of particles; they involve meaningful and interpretable
quantities that have physical significance, however, these models require a nonlinear formulation
which is complex and complicates the derivation of the unmixing strategies [7]. These methods account
for the intimate mixture of materials, as covered by a scene, in a dataset [1,8]. Different nonlinear
mixing models exist, some motivated by physical arguments such as bilinear models, while others
exploit a more flexible nonlinear mathematical model to improve the performance of the unmixing
method [7]. Nonlinear models can be grouped into several classes such as: intimate mixture models [1],
bilinear models [20], physics based nonlinear mixing models [20], polynomial post nonlinear mixing
models [21]. Nascimento and Dias [22] solve the nonlinear unmixing problem with an intimate mixture
model. This method first converts the observed reflectance into albedo using a look-up table, then
a linear algorithm estimates the end members albedo and mass fraction for each sample. Chen et al. [18]
formulated a new kernel-based paradigm that relies on the assumption that the mixing mechanism
can be described by a linear mixture of end member spectra, with additive nonlinear fluctuations
defined in a reproducing Kernel Hilbert Space. Hapke [6] derive an analytical model used to express
the measured reflectance as a function of parameters intrinsic to the mixtures, these include mass
fraction, density size and single scattering albedo. The main limitation is that these models depend
solely on parameters inherent to the experiment because they require the full information of the
geometric position of the sensor with respect to the observed samples therefore making the inversion
process more challenging to implement especially when the spectral signatures of the endmembers
are unknown [1].

Another effect that has been considered to great extend is the endmember variability during
spectral unmixing due to atmospheric and temporal conditions. Machine learning methods have
worked well to account for spectral variability. The combination of spectral information and spatial
context may improve the accuracy of the results for hyperspectral unmixing and classification [23].
Techniques such as morphological filters [24], Markov Random Fields (MRF) [23,25,26] Zhang [27] ,
Support Vector machines (SVM) [28] and Self Organizing Maps (SOM) [29] among others have been
proposed to impose spatial information. MRF, in particular, is a very powerful tool used to describe
neighborhood dependence between image pixels and have proven to provide accurate results for
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hyperspectral image classification. MRF are effective under the Bayesian inferring framework to
incorporate spatial information which proves to provide accurate results in classification and unmixing
of hyperspectral data [23]. Markov Random Fields is a method that integrates spatial correlation
information into the posterior probability distribution of the spectral features [25]. SVM have shown
excellent performance with high classification accuracies when applied to datasets with limited
number of training samples [30]. Artificial Neural Networks (ANN) are mathematical models that
were initially developed to mimic the complex pattern of neuron interconnections in the human
brain [31,32]. Presently, a lot of feed-forward neural networks models have been extensively studied in
fault detection and diagnosis of mechanical systems. Moreover, ANN have been successfully applied
for many years with excellent performance in pattern recognition [33], and in particular for spectral
data [34,35]. SOM is one of the most widely used unsupervised neural network algorithms successfully
applied for hyperspectral image classification [29,36,37] and data visualization [38]. Alternative
approaches include rule base fuzzy logic [39–41] and Markovian jump systems [42,43] which could be
combined with ANN for switching decision making.

Deep learning involves modeling, which hierarchically learn features of input data using Artificial
Neural Networks (ANN) and typically have more than three layers [44]. Deep learning has been
extensively used in the literature for a range of different applications such as vehicle detection [45,46],
investigated avalanche search and rescue operations with Unmanned Areal Vehicles (UAV), change
detection [47,48]. In this scheme, high level features are learned from low level ones where the
features derived can be formulated for pattern recognition classification [49]. Neural network pattern
recognition is often used to classify input data into a set of target categories by training a network
to evaluate its performance using a confusion matrix. The application of neural networks has been
demonstrated in the field of remote sensing and hyperspectral unmixing due to their ability to
recognize complex patterns in high dimensional images [50]. Neural network based unmixing of
hyperspectral imagery has produced excellent results [51]. Lyu et al. [48] have demonstrated neural
networks to be a good tool for unmixing using both linear and nonlinear methods simultaneously [52].
In [46], the use of artificial neural networks was reported to detect and count cars in Unmanned Areal
Vehicle (UAV) images. Wu and Prasad [53] used neural networks for hyperspectral data classification,
where a recurrent neural network was used to model the dependencies between different spectral
bands and learn more discriminative features for hyperspectral data classification. Li et al. [35]
reported the use of a 3D convolution neural network to extract spectral - spatial combined features
from a hyperspectral image. Kumar et al. [51] used a linear mixture model to unmix hyperspectral
data and then neural networks to predict a fraction of the data that accounts for the nonlinear mixture;
they used ground truth data and the abundance estimated by the linear method to train the network
for effective validation. Giorgio and Frate [50] used neural networks to unmix hyperspectral data
to estimate endmembers and their abundance. Atkinson and Lewis [54] applied neural networks to
decompose hyperspectral data and compared their results with a linear unmixing model and a fuzzy
c-mean classifier; results showed that the neural networks outperformed the conventional linear
unmixing method.

Little work in combining the linear and nonlinear approaches has been presented in the literature,
and in particular the selection of the most appropriate technique in using the two methods. In this
paper, we note that some nonlinear methods are a better method in scenes with multiple interactions
and a complex mixture of features commonly composed of multi-layered materials. The linear model
is appropriate for images that have a single cover type of material in a pixel. The objective of this
paper is to propose a new hybrid methodology for switching between linear and nonlinear spectral
unmixing methods using artificial neural networks based on deep learning strategies. The paper is
organized as follows. Section 2 describes our methodology. Experimental results are presented in
Section 3, results were discussed in section 4 and Conclusions are drawn in Section 5.
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2. Methodology

2.1. Research Design

In this study, two linear and two nonlinear spectral unmixing methods were adopted to unmix
hyperspectral data. The question as to whether a mixed pixel is better explained with a linear or
nonlinear process is still an unresolved problem in spectral analysis. Researchers have identified
temporal, spectral and spatial variability that maybe due for instance to variable illumination,
environmental, atmospheric, and temporal conditions in the scenes as the main error in spectral
unmixing [55]. Thus endmember variability problem has been deeply studied, neglecting the effects
of multiple scattering and the resulting nonlinear mixing [56]. Non linearities may occur when the
photons interact with different material before reaching the sensor. In that sense, studies suggest that
linear mixing is associated to mixtures for which the pixel components appear in spatially segregated
patterns, (checker board scene) [55]. The structure of the canopy and the spatial distribution of the
plants area are also known to play an important role in nonlinearity [56]. This paper proposes a
novel approach to decide whether a mixed pixel is better explained with a linear or non linear model.
Here we use a ANN to learn and to decide the non-linearity of a pixel based on some simple spatial
and spectral features. The methods chosen were the state of the art methods that have been used
extensively as reference in literature. They are: the Vertex Component Analysis (VCA) [15] and Fully
Constrained Least Square Method (FCLS) [57] for the linear models, and the Polynomial Post Nonlinear
Mixing Model (PPNMM) [21] and Generalized Bilinear Model (GBM) [58] for the nonlinear models.
Hybridization between the methods was experimented with Artificial Neural Networks (ANN) to
conduct a switch between the linear and nonlinear models.

2.1.1. Vertex Component Analysis (VCA)

This algorithm is based on the geometry of convex sets and exploits the fact that endmembers
occupy the vertices of a simplex [59]. The VCA algorithm assumes the presence of spectrally pure
pixels in a dataset and iteratively projects the data onto the direction orthogonal to the subspace
spanned by the end members that are already determined Weeks [4]. The new endmember signature
corresponds to the extreme of the projection. The algorithm iterates until all endmembers are exhausted
Bioucas et al. [60].

2.1.2. Fully Constrained Least Square Method (FCLS)

The FCLS algorithm is derived from an unconstrained least square based orthogonal subspace
projection Heinz [57]; in this method, negative values are considered 0 and the abundance fractions of
the remaining material signatures are normalized to 1. FCLS utilizes a simplex method to produce
a set of feasible solutions for spectral unmixing of material signatures while discarding the negative
abundance values of the remaining material signatures to unity [57].

2.1.3. Polynomial Post Nonlinear Mixture (PPNM)

This model assumes that the reflectance of an image are nonlinear functions of pure spectral
components contaminated by additive noise; the nonlinear functions are often approximated using
polynomial function leading to a polynomial post nonlinear mixing model Altmann et al. [21].

The model involves linear and quadratic functions of the abundances. In this case, the R-spectrum
Y = [y1, ..., yR]

T of a mixed pixel is defined as a nonlinear transformation g of a linear mixture of L
spectra ml contaminated by additive noise n.

Y = gp

(
L

∑
l=1

alml

)
+ n (1)
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where ml is the spectrum of the lth material in the scene, al its corresponding proportion, L is
the number of endmembers contained in the image and g is an appropriate nonlinear function.
Another motivation for the PPNMM is the Weierstrass approximation theorem which states that every
continuous function defined on an interval can be uniformly approximated by a polynomial with any
desired precision [21].

2.1.4. Generalized Bilinear Mixing Model

The GBM model introduces a second term that accounts for multiple photon interactions [20].
This model proposes that the spectrum of a mixed pixel, Y can be derived as follows:

Y =
L

∑
l=1

alml +
L−1

∑
i=1

L

∑
j=i+1

γi,jaiaj mi �mj + n (2)

where mi
⊙

mj is the Hadamard (term by term) product of the i and j spectra, mi is the spectrum
of the endmember i, ai is the corresponding abundance and n is an additive noise. The first
model term describes the linear mixture model and the double sum models the nonlinear effect.
γ = [γ1,2..., γL−1, L] is a real parameter vector, γi,j ∈ (0, 1), that quantifies the interaction between
different spectral components. The parameter introduced in this model is used to obtain a more flexible
model Halimi et al. [61]. This model also adopts the positivity and sum to one constraints.

2.2. Vicinity Parameters

The objective of this study is to switch between linear and nonlinear methods depending on the
mixture type of the neighboring pixels. The linear model is expected to provide acceptable results when
two assumptions are satisfied [1] i.e., the mixing process should occur at macroscopic level and the
photons must interact with single material before reaching the sensor (checker board scene). Generally
this can not be known a priori and might change in different parts on a given scene. Most profound
sources of error in spectral mixture analysis, however, lies in the lack of ability to account for sufficient
temporal and spatial spectral variability [55]. Endmember variability problem is often caused by spatial
and temporal changes thereby neglecting the effects of multiple scattering and the resulting nonlinear
mixing [62]. In fact, it is more likely that the position, extent and number of stable spectral zones
depends on the spatial, spectral and temporal complexity and composition of the endmembers present
in the scene [55], therefore, it would be very interesting to design new models and nonlinear unmixing
procedures that are capable of simultaneously exploiting the spatial correlation between abundances
and nonlinearities to produce best results. Here, we propose a methodology to automatically switch
between linear and nonlinear spectral unmixing to provide more accurate results based on deep
learning neural network strategies. A number of parameters that are related to the pixels’ neighboring
characteristics are used. We assume that neighboring pixels in a checkerboard type of scene have more
spectral spatial coherent spectrum than those in a nonlinear scene. The following values represent the
diversity of the neighborhood for the pixel under consideration to the ones in its vicinity. These values
are the minimum and maximum Spectral Angular Distance (SAD), covariance and a nonlinearity
parameter. In order to compute these parameters, we defined a window W around the examined pixels
of size n× n.

2.2.1. Spectral Angular Distance (SAD)

Spectral Angular Distance (SAD) describes the angular distance between two vectors,
this is estimated by computing the cosine of the angles between the actual and the estimated
endmembers [63].
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The SAD between two spectra: U = (Ui, ..., UR)
T and V = (Vi, ..., VR)

T is defined as

SAD(U, V) = cos−1

(
∑R

i=1 UiVi

‖U‖ ‖V‖

)
(3)

where R is the number of bands and ‖U‖ ‖V‖ are the modules of the vectors. Here, we compute the
SAD between all pixels within the window W and use the minimum and maximum values respectively.

2.2.2. Covariance Matrix

The Covariance matrix proposes a way of fusing multiple spectra that are correlated. The variance
of each spectra are represented by the diagonal values of the covariance matrix while the non-diagonal
values represent the correlation [64]. The covariance matrix is defined by the following equation:

C =
1

R− 1

R

∑
i=1

(Xi − µi)(Xi − µi)
T (4)

where µi is the mean vector of all pixels in band i and Xi is the vector containing all pixel values in
band i within window W.

2.2.3. Nonlinearity Parameter

The non-linearity parameter, b as computed to a window, is a parameter which quantifies the
levels of nonlinearity in a pixel, given as:

b =
L

∑
i=1

L

∑
j=i+1

aiaj mi �mj + n (5)

where � is the Hadamard (term by term) product operation, ai and aj are the abundance reflectance
spectra of endmembers i and j and L is the number of endmembers.

2.3. Learning

An Artificial Neural Network was used to predict the best method when switching between linear
and nonlinear spectral unmixing.

The data for the Artificial Neural Networks were divided into 3 categories, namely: training,
validation and testing sets.

1. The training set is used to fit the parameters of the classifier.
2. Validation set is used to minimize over-fitting (i.e., verifying the accuracy of the training data) over

some untrained data by the networks, while
3. testing sets are used to test the final solution in order to confirm the actual predictive power of the

network [65].

The networks were trained with scale conjugate gradient back propagation because it has proven
to be efficient and produce accurate results [66–68] . The back propagation procedure simply adopts
the chain rule derivative [69], this is achieved where the gradient of the objective with respect to the
input module, is computed backwards from the output module [69,70]. This was considered due to
its performance in updating the weight and bias values according to the scaled conjugate gradient;
the training stops when certain conditions are met such as the maximum number of epochs is reached,
maximum amount of time is exceeded, performance is minimized to the goal and the validation
performance has increased more than the maximum it recorded [65]. We expect that the linear model
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will perform better if neighborhood pixels are similar, on the other hand, when the pixel have multiple
interactions, we expect higher diversity in the pixels.

The neural networks have 3 layers namely: input, hidden and output layers. The input layer
has 12 nodes when using a 3× 3 window corresponding to the vicinity parameters as described in
Section 2.2 (min. SAD, max. SAD, c1, c2, c3.....c9, b); the hidden layer has 10 nodes while the output layer
has 1 node. The output layer provides the decision between linear and non-linear unmixing models.

3. Experimental Setup and Results

3.1. Data Description

3.1.1. Simulated Data

A simulated dataset of images of size 36 × 36 pixels and 224 channels was generated with
abundances computed according to a Dirichlet distribution with 21 endmembers. The spectral
signatures of the endmembers are mineral reflectance with 224 bands from the ENVI spectral
library [15]. Additionally, a nonlinearity co-efficient was added ranging between [0, 1] these parameters
were tuned accordingly with different numbers of endmembers ranging from 3 to 9. The images were
corrupted with Random Gaussian noise with Signal to Noise Ratio (SNR) 10 dB, 30 dB and 50 dB
respectively. Figure 1 show the spectral reflectance of endmembers of the simulated data.

Figure 1. Spectral reflectance of endmembers of the simulated data plotted, reflectance [%]
against wavelength (a) Brucite; (b) Clinochlore; (c) Axinite; (d) Erionite; (e) Ammonioalunite;
(f) Clintonite; (g) Almandine; (h) Carnallite; (i) Actinolite; (j) Andradite; (k) Antigorite; (l) Elbaite;
(m) Ammonio-jarosite; (n) Diaspore; (o) Halloysite; (p) Biotite; (q) Galena; (r) Carnallite; (s) Chlorite;
(t) Goethite; (u) Corundum.

3.1.2. Real data

Samson Data

Samson data is a hyperspectral data owned by Oregon State University provided by WeoGeo [71],
which is a push broom visible to near infrared sensor. The pixel responses are captured by 156 bands in
the spectral range of 401 nm–889 nm with resolution up to 3.13 nm. The data has 952 scan lines with 952
pixels in each line. For this experiment a subset of the image covering 95× 95 pixels was used, which is
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comprised of three endmembers i.e., soil, tree and water. Figure 2 shows the spectral reflectance of
endmembers of the Samson data.

Figure 2. Spectral reflectance of endmembers of the Samson data (a) rock; (b) tree; (c) water.

Jasper Ridge

Jasper Ridge is a hyperspectral data cube recorded by AVIRIS over the standard scene of the
Jasper Ridge, a biological reserve in California. The dataset consist of 512× 614 pixels recorded in
224 channels ranging from 380 nm to 2500 nm. The data has a spectral resolution of 9.46 nm. In this
experiment, a subset of 100× 100 pixels was used from the original image and 198 bands were selected
after removing those bands with atmospheric effects and dense water vapor. There are four main
endmembers in this image: road, soil, water and tree [71]. Both datasets and corresponding abundance
ground truth are available at [71], and are used as a benchmark to test classification and unmixing
algorithms. Figure 3 show the spectral reflectance of endmembers of the Jasper Ridge data.
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Figure 3. Spectral reflectance of endmembers of the Jasper Ridge data (a) tree; (b) water; (c) soil;
(d) road.

3.2. Experiments with Synthetic Data

This experiment was carried out using the synthetic dataset described in Section 3.1.1,
which allows a priori control of the data. Here, VCA, FCLS, PPNMM and GBM methods were
used to unmix spectra of mineral mixtures. We compared the accuracy of the individual methods to the
proposed hybrid methods for switching between linear and nonlinear spectral unmixing based on the
diversity of the neighboring pixels. The algorithms were coded according to [15,21,57,58]. The hybrid
methods for switching were between VCA–PPNMM, VCA–GBM, FCLS–PPNMM, and FCLS–GBM,
respectively. VCA was used to estimate the endmembers as contained in the dataset, while the
four methods as well as the hybrid methods were used to estimate the fractional abundances.
The experiment was conducted with different numbers of endmembers ranging 3, 5, 7 and 9 and
different Signal to Noise Ratios of 10 dB, 30 dB and 50 dB respectively on the simulated dataset. We ran
Monte Carlo simulations based on 100 generated images for each experiment.

The switching was predicted using Artificial Neural Networks (ANN). Here, we randomly split
the samples into training, validation and test sets. During training, 70% of the datasets were selected to
train the network, 15% were used as validation set to learn the hyperparameters of the neural networks
and 15% of the remaining samples were used to test the accuracy of the networks.

In the first experiment, a 3× 3 window was used around the pixel of interest. A vector containing
12 values i.e., SAD min, SAD max, covariance matrix (9 values) and nonlinearity was computed for
each pixel as input to train the ANN. Each input data consisted of 12 nodes with the number of hidden
nodes set to 10 and the output layer having 1 node which output (0 or 1) corresponding to either a linear
or nonlinear approach where a threshold was set at 0.5 for the switching. The Artificial Neural Network
was used to choose between a linear or nonlinear approach for each pixel. The overall accuracy and
the abundance estimation error of the methods were computed and summarized in Table 1. Results
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shows that the VCA – PPNMM hybrid method predicted better overall accuracy of 98.8% as estimated
by the confusion matrix with neural networks in switching between linear and nonlinear spectral
unmixing, followed by FCLS–PPNMM with an overall accuracy of 95.6%, VCA–GBM and FCLS–GBM
both have an overall accuracy of 92% and 92.4% respectively. Examples showing the generated data
and the error in abudance estimation are shown in Figures 4 and 5. Here have chosen to display
a linear method (VCA) and a non linear (GBM) for comaprison purposes and two different signal to
noise ratios (SNR=10 and 50, respectively).

Table 1. Abundance estimation error (3× 3 window )of the individual and hybrid methods between
linear and nonlinear spectral unmixing with different signal to noise ratios and endmembers. The best
results are shown in bold.

SNR (dB) = 50 P = 3 P = 5 P = 7 P = 9

INDIVIDUAL METHODS

PPNMM 0.0206 0.0307 0.0371 0.0486
GBM 0.0207 0.0303 0.0346 0.0449
VCA 0.0521 0.0696 0.0777 0.0778
FCLS 0.0714 0.0916 0.0922 0.0924

HYBRID METHODS

VCA – PPNMM 0.0117 0.0201 0.0143 0.0373
VCA – GBM 0.0189 0.0201 0.0158 0.0353

FCLS – PPNMM 0.0177 0.0179 0.0177 0.0340
FCLS – GBM 0.0193 0.0196 0.0199 0.0174

SNR (dB) = 30 P = 3 P = 5 P = 7 P = 9

INDIVIDUAL METHODS

PPNMM 0.0696 0.0951 0.0914 0.0886
GBM 0.0965 0.1193 0.1405 0.1285
VCA 0.0597 0.0662 0.0886 0.0945
FCLS 0.0684 0.0747 0.0894 0.0911

HYBRID METHODS

VCA – PPNMM 0.0390 0.0317 0.0421 0.0556
VCA – GBM 0.0591 0.0412 0.0579 0.0662

FCLS – PPNMM 0.0396 0.0320 0.0539 0.0645
FCLS – GBM 0.0866 0.0926 0.0990 0.1081

SNR (dB) = 10 P = 3 P = 5 P = 7 P = 9

INDIVIDUAL METHODS

PPNMM 0.0907 0.1510 0.1640 0.1733
GBM 0.1106 0.1222 0.1334 0.1740
VCA 0.1289 0.1514 0.1257 0.1988
FCLS 0.1169 0.1702 0.1791 0.1763

HYBRID METHODS

VCA – PPNMM 0.0401 0.0421 0.0736 0.0775
VCA – GBM 0.0704 0.0911 0.0813 0.0915

FCLS – PPNMM 0.0440 0.0508 0.0813 0.0814
FCLS – GBM 0.0917 0.0959 0.1099 0.1112
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Figure 4. Abundance estimation errors with simulated data with 5 endmembers (SNR = 10 dB).
The first row shows the ground truth abundances for the 5 classes. From the top, then the error in
abundances as estimated by the hybrid, VCA and GBM methods, respectively.

Figure 5. Abundance estimation errors with simulated data with 5 endmembers (SNR = 50 dB). The first
row shows the ground truth abundances for the 5 classes. From the top, then the error in abundances
as estimated by the hybrid, VCA and GBM methods, respectively.
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A second experiment was conducted with the 3× 3 window where each of the parameters used
in creating the input training data was excluded one at a time. This was performed in order to assess
the importance of the parameters in the vector created. The experiment was also repeated for SNR
values 10 dB, 30 dB, and 50 dB with different endmembers of 3, 5, 7 and 9 respectively. Here we expect
to have higher error values when each of the parameters are removed from the vector in comparison
with the results in Table 1 where all the parameters are involved in the experiment. Results (Table 2)
show that all parameters play an important role in the vector and hybrid switch methods. SAD max
proves to be the most important parameter with the highest error value in the experiment where it was
excluded for all SNR values as compared to the other parameters. For comparison purpose, the size
of the window was increased to 4× 4 and the experiment repeated to evaluate the accuracy of the
parameters. Results show an increase in the error value when each of the parameters is excluded from
the ANN input data.

Table 2. Abundance estimation error (3× 3 window) of the individual and hybrid methods between
linear and nonlinear spectral unmixing with different signal to noise ratios and 3 endmembers where
each of the parameters is removed one at a time. The best results are shown in bold.

WITHOUT SAD MIN. SNR (dB) = 10 SNR (dB) = 30 SNR (dB) = 50

INDIVIDUAL METHODS

PPNMM 0.1503 0.0537 0.0179
GBM 0.1220 0.1274 0.0168
VCA 0.1090 0.1000 0.0952
FCLS 0.1670 0.1370 0.0997

HYBRID METHODS

VCA – PPNMM 0.0433 0.0392 0.0150
VCA – GBM 0.0854 0.0784 0.0163

FCLS – PPNMM 0.0434 0.0402 0.0143
FCLS – GBM 0.1180 0.1080 0.0161

WITHOUT SAD MAX. SNR (dB) = 10 SNR (dB) = 30 SNR (dB) = 50

INDIVIDUAL METHODS

PPNMM 0.0969 0.0876 0.0878
GBM 0.1002 0.0920 0.0741
VCA 0.1216 0.0791 0.0451
FCLS 0.2726 0.1073 0.0560

HYBRID METHODS

VCA – PPNMM 0.0584 0.0467 0.0251
VCA – GBM 0.0885 0.0731 0.0525

FCLS – PPNMM 0.0521 0.0467 0.0251
FCLS – GBM 0.1689 0.1000 0.0772

WITHOUT COVARIANCE DISTANCE SNR (dB) = 10 SNR (dB) = 30 SNR (dB) = 50

INDIVIDUAL METHODS

PPNMM 0.0940 0.0518 0.0173
GBM 0.1243 0.0921 0.0166
VCA 1.0488 0.0824 0.0590
FCLS 1.1673 0.0966 0.0680

HYBRID METHODS

VCA – PPNMM 0.0506 0.0340 0.0145
VCA – GBM 0.0902 0.0588 0.0163

FCLS – PPNMM 0.0506 0.0336 0.0145
FCLS – GBM 0.1231 0.0916 0.0161
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Table 2. Cont.

WITHOUT NONLINEARITY PARAMETER SNR (dB) = 10 SNR (dB) = 30 SNR (dB) = 50

INDIVIDUAL METHODS

PPNMM 0.1447 0.0532 0.0183
GBM 0.1100 0.1039 0.0185
VCA 0.1251 0.0982 0.0865
FCLS 0.1852 0.1167 0.0927

HYBRID METHODS

VCA – PPNMM 0.0448 0.0432 0.0173
VCA – GBM 0.0856 0.0789 0.0178

FCLS – PPNMM 0.0448 0.0431 0.0171
FCLS – GBM 0.1236 0.1096 0.0137

In order to assess the accuracy of the methods, we also trained a network with the raw data
(i.e., 224 bands) as input instead of the vicinity parameters. Here we have 224 while the rest of the
parameters remain the same. Table 3 summarizes the results of 100 Monte Carlo simulations. It is
noted that the results are of the same order of magnitude as obtained in Table 1. Figure 3 displays the
abundance estimated error by the 4 methods with SNR = 10 dB.

Table 3. Abundance estimation error with the individual and hybrid methods of the raw hyperspectral
data between linear and nonlinear spectral unmixing with different signal to noise ratios and different
endmembers. The best results are shown in bold.

SNR (dB) = 50 P = 3 P = 5 P = 7 P = 9

INDIVIDUAL METHODS

PPNMM 0.0253 0.0276 0.0378 0.0418
GBM 0.0253 0.0276 0.0347 0.0383
VCA 0.0775 0.0612 0.0717 0.0719
FCLS 0.0891 0.0663 0.0877 0.0612

HYBRID METHODS

VCA – PPNMM 0.0125 0.0127 0.0230 0.0285
VCA – GBM 0.0457 0.0164 0.0269 0.0317

FCLS – PPNMM 0.0217 0.0214 0.0236 0.0316
FCLS – GBM 0.0513 0.0627 0.0850 0.0981

SNR (dB) = 30 P = 3 P = 5 P = 7 P = 9

INDIVIDUAL METHODS

PPNMM 0.1520 0.1759 0.1464 0.1353
GBM 0.1568 0.1442 0.1473 0.1337
VCA 0.1007 0.1195 0.0313 0.2767
FCLS 0.1072 0.1713 0.1344 0.1819

HYBRID METHODS

VCA – PPNMM 0.0231 0.0223 0.0219 0.0268
VCA – GBM 0.0317 0.0360 0.0364 0.0370

FCLS – PPNMM 0.0308 0.0358 0.0458 0.0654
FCLS – GBM 0.0437 0.0787 0.0901 0.0956
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Table 3. Cont.

SNR (dB) = 10 P = 3 P = 5 P = 7 P = 9

INDIVIDUAL METHODS

PPNMM 0.1809 0.1816 0.1856 0.1883
GBM 0.1517 0.1506 0.1440 0.1481
VCA 0.1196 0.0612 0.0717 0.0717
FCLS 0.1072 0.0663 0.0877 0.0612

HYBRID METHODS

VCA – PPNMM 0.0548 0.0564 0.0570 0.0584
VCA – GBM 0.0751 0.0940 0.0962 0.0961

FCLS – PPNMM 0.0714 0.0739 0.0740 0.0763
FCLS – GBM 0.0974 0.0981 0.0990 0.1170

From the experiments conducted between the 3× 3 window and the raw data, it can be seen that
the results are similar between the Signal to Noise Ratios 10 dB and 50 dB. However, the results were
better with the 3× 3 window with a Signal to Noise Ratio of 30 dB. Therefore, it can be concluded
that the ANN does not require the whole raw data and the reduced choosen parameters provide good
results. Figure 5 shows the abundance results with simulated data (SNR = 50 dB). The first row shows
the ground truth abundances in grayscale where a white pixel means abundance equal to one for
that class and a black pixel means no abundance for that class. The other rows display the error in
abundance estimation for each class and each method also coded in grayscale where the brighter the
pixel, the higher the error is.

3.3. Experiment with Real Data

To evaluate the accuracy of the methods involved, the raw data, as well as the vicinity parameters
computed in a 3× 3 window, and 4× 4 window respectively, were used to train the neural network.
In the first experiment, the Jasper Ridge data was used. The training samples for each experiment
were selected randomly, 70% of the samples were used for training (7000 samples), 15% each were
considered for validation and testing (1500 samples for validation and 1500 samples for testing) of the
neural networks. In a second experiment, the number of training samples were reduced, with 30%
used for training (3000 samples), 35% each used for validation and testing (3500 samples for validation
and testing) of the neural networks respectively. Finally, the experiment was repeated with 1000 and
300 training samples, respectively. Figure 6 shows the groundtruth abundances and the abundances as
estimated by a linear (VCA), nonlinear (PPMM) and the corresponding hybrid methods on the Jasper
Ridge data.

The next experiment was with Samson data, where the training, validation and testing samples
were randomly selected at 70%, 15% and 15% respectively resulting in 6317 samples for training,
1353 samples each for testing and validation, then number of training samples were reduced to
30%; 35% for validation and 35% for testing which is equivalent to 2707 samples for training, 3158
samples each for validation and testing the neural networks respectively. Finally, the experiment was
repeated with 1000 and 300 training samples, respectively. Figure 7 shows the groundtruth abundances,
and the abundances as estimated by the a linear (VCA), nonlinear (PPMM) and hybrid methods on the
Samson data.

The experiment was repeated on a 3× 3 window, and 4× 4 window. This was to compare and
evaluate the accuracy of the hybrid methods with regards to the size of the data used to train the
networks. The results on both datasets show that our proposed methods achieved the best results in
all scenarios. Results of the experiments based on the abundance estimation error, are summarized in
Tables 4 and 5.
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Figure 6. Abundance estimate of endmembers of the Jasper Ridge data showing from left;
the groundtruth, linear (VCA), nonlinear (PPMM) and the hybrid methods. From top water; tree; soil;
and road.

The overall accuracy of the network, the abundance estimation error, the training, validation
and testing abundance error of the networks were used to evaluate the performance of the methods
investigated in this paper. From the results obtained, experiments with the raw dataset, 3× 3 and
4× 4 windows produce similar overall accuracy in all the experiments. It indicates that the hybrid
methods for switching between linear and nonlinear spectral unmixing are more effective than the
individual methods, meanwhile, it can also be said that ANN pattern recognition has good capability
in recognizing patterns which is very effective even with fewer samples used to train the network.
From the four hybrid switch methods, the VCA – PPNMM method outperforms the other methods
with a higher overall accuracy of 96% as compared to the other methods, FCLS – PPNMM has an overall
accuracy of 94.5% while VCA – GBM and FCLS – GBM both have overall accuracies of 92.8%. VCA –
PPNMM also has the lowest abundance estimation error and produced the lowest abundance error
in terms of training, validation and testing of the neural networks. However, it can be observed that
the proposed hybrid switch methods obtained similar results when using the 3× 3 and 4× 4 window
to conduct the experiment when fewer samples were used to train the networks. Therefore, it shows
that the proposed hybrid method does not requires all the raw data for training the networks and can
be used effectively to switch between linear and nonlinear spectral unmixing of hyperspectral data.
In terms of computational time, the individual methods are 40% more time consuming compared to
the hybrid method thereby making them computationally expensive in terms of simulation. Tables 6
and 7 summarizes the result of the experiments showing the accuracy of the neural network based on
training, testing and validation of the networks.
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Figure 7. Abundance estimate of endmembers of the Samson data showing the groundtruth, linear
(VCA), nonlinear (PPMM) and the hybrid methods. From top water; rock; tree.

Table 4. Average abundance estimation error of the hybrid methods with different numbers of training
samples (7000 to 300) and different window size vectors on the Jasper Ridge data as compared with the
abundance estimation error of the individual methods which are: PPNMM = 0.2115, GBM = 0.2441,
VCA = 0.6513, and FCLS = 0.1832. The best results are shown in bold.

Raw Data 7000 3000 1000 300

VCA – PPNMM 0.1417 0.1478 0.1405 0.1994
VCA – GBM 0.2079 0.2049 0.3087 0.3897

FCLS – PPNMM 0.1402 0.1402 0.1590 0.1663
FCLS – GBM 0.1399 0.1397 0.1483 0.1495

3× 3 WINDOW

VCA – PPNMM 0.1697 0.1607 0.1781 0.1763
VCA – GBM 0.2595 0.2454 0.2932 0.3350

FCLS – PPNMM 0.1765 0.1624 0.1783 0.1790
FCLS – GBM 0.2448 0.2448 0.3442 0.3642

4× 4 WINDOW

VCA – PPNMM 0.1712 0.1640 0.1736 0.1704
VCA – GBM 0.2488 0.2250 0.3117 0.3460

FCLS – PPNMM 0.1632 0.1659 0.1705 0.1722
FCLS – GBM 0.2647 0.2459 0.2488 0.2732
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Table 5. Average abundance estimation error of the hybrid methods with different numbers of training
samples (6317 to 300) and different window size vectors on the Samson data as compared with the
abundance estimation error of the individual methods which are: PPNMM = 0.1455, GBM = 0.1588,
VCA = 0.1254, and FCLS = 0.1577. The best results are shown in bold.

Raw Data 6317 3158 1000 300

VCA – PPNMM 0.0839 0.0841 0.0871 0.0979
VCA – GBM 0.0841 0.0846 0.0879 0.0939

FCLS – PPNMM 0.1229 0.1230 0.1258 0.1308
FCLS – GBM 0.1614 0.1615 0.1674 0.1696

3× 3 WINDOW

VCA – PPNMM 0.0888 0.0885 0.0902 0.0973
VCA – GBM 0.0975 0.1040 0.1079 0.1112

FCLS – PPNMM 0.1148 0.1151 0.1197 0.1292
FCLS – GBM 0.1615 0.1617 0.1657 0.1710

4× 4 WINDOW

VCA – PPNMM 0.0904 0.0905 0.0949 0.0994
VCA – GBM 0.0945 0.0945 0.1061 0.1106

FCLS – PPNMM 0.1154 0.1197 0.1216 0.1245
FCLS – GBM 0.1616 0.1616 0.1636 0.1658

Table 6. Abundance estimation error on Jasper Ridge data showing training, validation and testing
accuracy on the individual and hybrid methods with different training samples and different window
size vectors. The best results are shown in bold.

7000 Samples 3000 Samples

Raw Data VCA–PPNMM VCA–GBM FCLS–PPNMM FCLS—GBM VCA–PPNMM VCA–GBM FCLS–PPNMM FCLS—GBM

TRAIN 0.0905 0.1025 0.1184 0.1084 0.0953 0.0859 0.1085 0.1200
VALIDATION 0.0777 0.0780 0.1008 0.0980 0.0809 0.0866 0.1006 0.0995

TEST 0.0751 0.0797 0.1012 0.1000 0.0811 0.0832 0.1013 0.0906

3× 3 Window

TRAIN 0.0967 0.1054 0.0981 0.1268 0.0473 0.0533 0.0991 0.1229
VALIDATION 0.0524 0.0505 0.1274 0.1138 0.0465 0.0549 0.0923 0.1125

TEST 0.0486 0.0614 0.1276 0.1147 0.0454 0.0506 0.0914 0.1135

4× 4 Window

TRAIN 0.0906 0.1523 0.0941 0.1171 0.0393 0.1531 0.0997 0.1146
VALIDATION 0.1696 0.0704 0.0911 0.0954 0.0351 0.0530 0.0918 0.1117

TEST 0.1608 0.0382 0.0938 0.0944 0.0354 0.0445 0.0920 0.1121

Table 7. Abundance estimation error on Samson data showing training, validation and testing accuracy
on the individual and hybrid methods with different training samples and different window size
vectors. The best results are shown in bold.

6317 Samples 3158 Samples

Raw Data VCA–PPNMM VCA–GBM FCLS–PPNMM FCLS—GBM VCA–PPNMM VCA–GBM FCLS–PPNMM FCLS—GBM

TRAIN 0.0255 0.0741 0.1058 0.1585 0.0280 0.0732 0.1182 0.1167
VALIDATION 0.0466 0.0101 0.0792 0.0098 0.0553 0.1026 0.0733 0.1311

TEST 0.0494 0.0105 0.0762 0.0098 0.0569 0.1053 0.0719 0.1311

3× 3 Window

TRAIN 0.0726 0.0842 0.1046 0.1581 0.0722 0.0897 0.1021 0.1161
VALIDATION 0.0530 0.0100 0.0748 0.0098 0.0588 0.0692 0.0703 0.1309

TEST 0.0533 0.0100 0.0740 0.0098 0.0594 0.0696 0.0706 0.1309

4× 4 Window

TRAIN 0.0836 0.0842 0.1046 0.1581 0.0822 0.0843 0.1007 0.1160
VALIDATION 0.0536 0.0100 0.0748 0.0098 0.0569 0.0654 0.0710 0.1308

TEST 0.0545 0.0100 0.0740 0.0098 0.0569 0.0640 0.0712 0.1308
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4. Discussion

4.1. Results

Nonlinearity occurs when the photons interact with different materials before reaching the
sensor. We assumed here that the linear mixing could be associated to mixtures for which the
pixel components appear in spatially segregated patterns. More specifically areas that are spatially
correlated are more likely to be explained with the linear model. In this paper, we first used controlled
simulated data. Each image consisted of a series of regions. Each region had the same type of
ground cover with added noise. Figure 5 shows the results for the simulated data with 5 classes
and SNR = 50 dB. Although the average error is in the same order of magnitude for both linear and
nonlinear approaches, the distribution of the error differs. It is noted that the linear model (VCA)
detects well the low abundances of classes and pixels that do not contain a particular class (shown in
black in the ground truth figures). The errors are related to quantification rather than to detecting the
wrong class. This might be due to the algorithm performing worse with high spectral variability within
the classes. The non-linear method (GBM), on the other hand, returns an error which is more uniform
and not so related to the spatial pattern of the data or spectral variability as displayed in Figures 4
and 5. The proposed approach assumptions are further proven with the real data sets. In particular,
the Jasper Ridge data set includes different classes; water, soil and road. Figure 6 shows the abundance
estimation for the different methods. It is noted that VCA has been reported to underperform in
this data set [27]. However, the road class is very well identified against the non-linear methods that
failed to detect this class. On the other hand, the linear methods failed to classify correctly the water
class which is more spectrally variable medium. Thus, it seems that noise and endmember spectral
variability makes the non-linear models outperforming the linear ones while the spatially structured
areas are well defined with the linear model. The vicinity parameters used in this paper address both
the spatial and spectral diversity of the data. The test shown in Table 2 showed that all parameters
played an important role in the decision making process. Moreover, Figures 6 and 7 also support that
the chosen features are suitable and that the switching is appropriate achieving improved results.

4.2. Advantages and Limitations

The proposed method provides a switch between unmixing methods for given spectral images.
It can not only provide more accurate results, as shown in the experimental section but also reduce
computational costs by selecting the most appropriate approach. This research study has proven the
capabilities of the proposed methodology based on certain parameters. However, the supervised
ANN relies on having ground truth data for training which is not always available. Future work will
expand to unsupervised approaches such as self-organizing maps which have been successfully used
in spectral data for classification and anomaly detection tasks [33,72]. Although we used spatial and
spectral features within windows for learning and thus to make the decision, the switching was made
at individual pixel level. Thus future work will base the decision on group of pixels or areas using for
instance Markov random fields.

5. Conclusions

In this paper, a new hybrid switch method for switching between linear and nonlinear spectral
unmixing of hyperspectral data based on deep learning neural networks is proposed. The endmembers
were extracted using VCA while the abundances were estimated using individual and hybrid methods.
The ANN was trained with a set of parameters extracted from the diversity of the neighboring pixels of
the images computed within a 3× 3 and 4× 4 window. These parameters are spectral angular distance,
covariance and nonlinearity parameters. Experiments were conducted with different Signal to Noise
Ratio (SNR) ranging between 10 dB, 30 dB, 50 dB and different numbers of endmembers: 3, 5, 7 and 9.
We have noted that the hybrid methods are more suitable than the individual technique with high
overall accuracy and the abundance estimation error is significantly lower than that obtained with the
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individual methods in particular, VCA – PPNMM proved to be the best with about 98% accuracy in
all the experiments conducted. The experiment with the Jasper Ridge and Samson data confirmed
the effectiveness of the approach. The method was applied to two real datasets with ANN trained
using 70%, 30%, 10% and 0.3% samples. Experimentation with the real data, 3× 3 window and 4× 4
window vectors, proved the effectiveness of the hybrid switch methods, the results show that the size
of datasets used for training the network and the vector size does not affect the accuracy of the hybrid
methods in switching between linear and nonlinear spectral unmixing, which means that the network
can be trained with less sample data without the loss of prediction accuracy. An area to consider for
future research is the application of Markovian Jump method for switching between linear/nonlinear
spectral unmixing.
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ABSTRACT

Oil spill can be described as a global issue, which causes serious concern to human life and the environment,
therefore early identification and remedial measures taken at an early stage is very important. Spectral Unmixing
is the process of identifying the constituent spectra of a mixed pixel referred to as endmembers and computing
the corresponding proportions or abundances within each pixel in a given image. Many spectral unmixing
methods have being proposed in the literature based on linear or nonlinear models. Deep neural networks
allow computational models that are composed of multiple processing layers to learn representations of data
with multiple levels of abstractions. Deep neural networks have shown excellent performance on various task
on image processing with better accuracy compared to shallow learning networks and are increasingly gaining
popularity with Hyperspectral imaging. Here we propose to use deep neural network to quantify different
Hydrocarbon (HCs) substances in sandy clay loam soil type. Hyperspectral data sets have been acquired using
mixtures of different HCs with the soil type. Vertex Component Analysis (VCA) algorithm was used to identify
the endmembers and deep neural network was used to predict the quantity of each endmember. Experimental
result shows the effectiveness of the proposed method with high accuracy.

Keywords: Spectroscopy, Hydrocarbons, Spectral unmixing, Hyperspectral imaging, Deep neural networks

1. INTRODUCTION

Intensive Petro-chemical activities around industrial facilities and oil production sites have led to an increase in
the contamination of soils with hydrocarbons causing serious concern to the environment1 . Hydrocarbon (HC)
contamination in soils is a worldly concern phenomenon, it posses significant environmental problem, which
raises serious concern for the environment and human health, therefore, there is need for rapid identification of
the affected areas in order to allow swifter site characterization and prioritizing remediation actions.2 HCs are
pollutants of major concern due to their significant toxicity to humans. Soils contaminated with HCs produce
unpredictable effect on the soils as a result compromise the soils health.3

Some of the existing methods used to track and detect oil spills in soils are often expensive and time consum-
ing.4 Some of the methods as described in literature includes; analytical methods such as Gas Chromatography
-mass Spectro- Meter (GC-MS) method and infrared spectroscopy.5 Imaging spectroscopy has been recognized as
an alternative method for detecting HCs in soils which has proven to be rapid and cost effective.6 Spectroscopy
measures the diffuse reflected electromagnetic energy from source object to a light source.7 Spectroscopy analysis
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includes Visible - Near-Infrared (Vis-NIR) and ShortWave Infrared (SWIR) spectrum, which has been demon-
strated to be a powerful tool for the measurement of HC concentration in soils.4

Different methods have been described to effectively analyze reflectance spectroscopy data to detect HCs in
soils; Okparanma et al8 used regression analysis and spectral pre- processing to generate statistical models to
identify different HC products mixed with mineral substrates. Other methods includes; Partial Least Squares
Regression (PLSR),3 Stepwise Multiple Linear Regression (SMLR),9 Standard Normal Variate Pre-processing
followed by Detrending (SNV-DT)7 etc.

One important problem in hyperspectral image processing is to decompose the mixed pixels into the materials
that contribute to the pixel endmembers and the corresponding fractions of the spectral signatures in the mixed
pixel which is often referred to as unmixing problem. Spectral Unmixing (SU) is the process of identifying and
decomposing mixed pixel into a collection constituent spectral and estimates their corresponding abundance to
the measured spectra.10 Endmembers play an important role in exploring spectral information of a hyperspectral
image which is the first step in hyperspectral unmixing applications.11 The two main approaches to hyperspectral
unmixing are the linear and nonlinear methods to which their application rely on some certain conditions and
the type of mixing citedobigeon et al 2016.

Artificial Neural Networks (ANN) has proven to rapidly grow in remote sensing application mainly due to its
ability to learn complex patterns and has proven to be an effective approach for unmixing problem and image
classification.12 ANN often extract features in a shallow manner which do not extract deep features, on the
other hand, Deep Neural Networks (DNN) hierarchically learn features from the input data, this typically is a
multi- layer neural network with two or more hidden layers thereby extracting high level abstract features of
different characteristics such as scaling and translation invariance.13 DNN has demonstrated to be of excellent
performance on various image processing tasks with better accuracy compared to shallow neural network. DNN
are a class of machine learning that learn features hierarchically using high level features from low level ones.14

In practice, DNN, Convolutional Neural Networks (CNN) and Restricted Boltzmann Machines (RBM) are more
often used to implement deep learning procedures.15 Deep learning techniques have shown promising results in
various application such as image classification,16 object detection17 and pixel unmixing.18

More specifically, DNN has proven to be of excellent performance on various image processing tasks with
better accuracy compared to shallow neural networks. In a similar way, we propose to use spectroscopy analysis
and deep neural networks to quantitatively analyse a hyperspectral data to detect different hydrocarbon contents
contaminated with sandy clay loam soil type.

2. MATERIALS AND METHODS

2.1 Materials

Different Hydrocarbon (HC) types were used in this experiment, which includes Diesel, Bio - diesel, petrol and
Ethanol. Soil type used in this experiment is sandy clay loam. This soil type has high concentration of sand in
them which gives them the gritty feel. Sandy clay loam soils are capable of quickly draining excess water but do
not hold a significant amount which make them saturates easily.

2.2 Sample Preparation

In the experiment, each hydrocarbon type was mixed with sandy clay loam soil untill saturated. The sample
preparation began with the addition of 50 g of the sandy clay loam soil to a petri dish of size 12 cm in diameter,
followed by the addition of 5 ml of the HC to the soil using a syringe. The mixture was homogenized with
a disposable plastic spoon after which the sample was measured with Hyspex SWIR 320 m camera. In the
same sample, a further addition of 5 ml was added to the mixture; again the mixture was homogenized using
a disposable plastic spoon and another measurement taken. This procedure was repeated with a step of 5 ml
until a total of 25 ml was added or until the soil sample mixture was saturated and forms a shallow local pool
as shown in figure 1. For the experiment with petrol, saturation occurs when a total of 35 ml was added to the
soil sample.

The procedure was repeated with all four HCs. Experiments using bio-diesel and ethanol, 10 samples were
produced with 5 mixtures for each HC and soil combination, experiment with diesel produced 4 samples and
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Figure 1. Sandy clay loam soil contaminated with 5 ml and 20 ml diesel.

experiment with petrol produced 7 mixtures as summarized in Table 1. The hyperspectral data was measured
and scanned with Hyspex SWIR 320 m camera under constant illumination.

Table 1. Samples combination and their saturation levels.

Soil type Hydrocarbon type Number of samples Saturation levels (ml)

Sand clay loam Diesel 4 20

Sand clay loam Bio- diesel 5 25

Sand clay loam Ethanol 5 25

Sand clay loam Petrol 7 35

2.3 Hyperspectral Imaging

The hyperspectral image was obtained using Hyspex SWIR 320 m camera as shown in figure 2. The camera is
equipped with a Mercury Cadmium- Telluride (MCT or HgCaTe) detector array which simultaneously acquires
a full Short Wave Infa-Red (SWIR) spectrum, it has a spectral sample interval of 5 nm between 1300 and 2500
nm, each along a line of 384 pixels.19 The images acquired are 700×384 pixels. The obtained datasets were then
analyzed to extract the endmembers and estimate the percentages of the HCs using deep learning approach.

Figure 2. Scanning process of the dataset.

2.4 Endmember Extraction

Vertex Component Analysis (VCA) algorithm was used to identify the spectra of the hyperspectral data and
extract the abundance materials. This algorithm is based on the geometry of convex sets and exploits the fact
that endmembers occupy the vertices of a simplex.20 This algorithm assumes the presence of spectrally pure
pixels in a dataset. The algorithm iteratively projects the data onto the direction orthogonal to the subspace
spanned by the endmembers already determined.21 The new endmember signature as estimated by the method
corresponds to the extreme of the projection. The algorithm iterates until all endmembers are exhausted.22
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2.5 Deep Neural Networks

A DNN is a network which comprises of multiple nonlinear processing layers, operating using simple elements,
it has an input layer, several hidden layers as well as an output layer. The hidden layers are interconnected
via nodes or neurons where each hidden layer utilizes the output of the previous layer as input.23 DNN has
proven to be competitive and even outperform shallow neural networks in different applications,24 likewise, the
application of DNN to hyperspectral data has been explored in,25 where application is mostly based on spectral
and spatial information of the hyperspectral data because DNN learns the representation of a spectral signature
for each class and uniquely distinguish it from the other classes.

Figure 3. Deep neural network system architecture.

Here, we built a simple DNN architecture to quantify the amount of HCs mixed with a soil type using
hyperspectral data. The DNN model comprises of multiple layers with different nodes, followed by one fully
connected layer, the neurons in the fully connected layer have full connections to all activation in the previous
layer and are responsible for the classification of the data. The output layer has a very similar structure with
the fully connected layer, this layer has the same number of neurons as the number of classes we’re trying to
classify the input data. Each neuron in the outputs layer yields a probability which corresponds to each of
the predicted classes which is often presumed to have a maximum value,14 DNN requires tweaking of various
hyperparameters to achieve optimum results, these largely depends on the type of dataset used for the model
and other hyperparameters such as the initial learning rate alpha, beta and the algorithm used to train the
network.13

3. EXPERIMENTAL SETUP AND RESULTS

In this study, imaging spectroscopy and deep neural networks were used to estimate the amount of HC content
in sand - clay -loam soil. Imaging spectroscopy is a method which utilizes information obtained from surface
reflectance in the electromagnetic spectrum using different sensors and the resultant information is used for
spectral and spatial analysis.8 Spectral analysis is a process that involves the evaluation of energy reflected
and absorbed at different wavelengths26 .The hyperspectral imaging sensor used for this experiment covers the
Shortwave Infrared (SWIR); this range of the electromagnetic spectrum has shown positive response in detecting
different HC content,3 for mineral and lithological mapping27 and the distribution and mapping of mafic and
ultramafic units in Cape Smith Belt.28 The soil sample and the HC types chosen for this experiment have been
used extensively as reference in the literature for assessments of HC contamination with different soil types.3,4

The Deep Neural Networks (DNN) experiment was conducted using MatLab 2017a. The experiments were
carried out on an LG desktop with Intel (R) core (TM)2 Duo CPU 3.00 GHZ processor. The DNN was trained
with scale conjugate back propagation which adopts the chain rule derivate with learning rate α set to 0.9, A
subset of the raw hyperspectral vector was fed into the network for all the obtained datasets which corresponds
to 4000 × 288 for samples mixed with ethanol, bio-ethanol and diesel ( where each 1000 point corresponds to
5 ml, 10 ml, 15 ml and 20 ml of the HC content as mixed in the experiment) while for sample mixed with
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petrol, a subset of 7000 × 288 was used. 288 points were used as input for all the datasets, the input data
were then propagated through 3 successive hidden layers each containing 30 nodes and 1 output corresponding
to the abundance of the HC. The labeled samples were split into 50 % training and 50 % generalization sets.
The algorithm was run iteratively with 1000 epochs, the training stops when the maximum number of epoch is
reached or when the performance is minimized to the goal and the validation performance increases more than
the maximum recorded. A sigmoid activation function was computed to predict the probabilities of the different
categories. Finally, the extracted high level features were then flattened to fixed dimensional vectors, which were
fully connected to the output layer for prediction estimation of the quantity of the HCs in each dataset.

VCA, which is a popular endmember extraxtion method, was used as a baseline to identify and compare the
endmembers as mixed in the dataset for the accuracy of the deep neural network model. VCA has proven to show
excellent results in literature as a method to find pure materials in mixed pixels.20 Results of the experiments
were based on the prediction estimation error of the test data and the generalized dataset as summarized in
(Table 2).

Table 2. Abundance estimation error of the dataset showing training and generalization accuracy of the deep neural
network model.

Data Training Generalization

Sand clay loam -Petrol 0.0523 0.0535

Sand clay loam - Ethanol 0.0400 0.0422

Sand clay loam - Diesel 0.0441 0.0457

Sand clay loam - Biodiesel 0.0482 0.0486

The effectiveness of the proposed deep neural network model has been demonstrated to quantify the amount
of HCs in the soil sample with relatively low estimation error thus high accuracy. From the four datasets, the
soil sample contaminated with ethanol predicted the lowest average abundance estimation error of about 0.0400
for the training data and 0.0422 on the generalization dataset as shown in table 2. The prediction estimation on
all the datasets has been demonstrated in figures 4, 5, 6 and 7 by plotting the output of the DNN against the
real abundances.
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Figure 4. Training and generalization error plots for sandy clay loam soil contaminated with biodiesel.
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Figure 5. Training and generalization error plots for sandy clay loam soil contaminated with diesel.
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Figure 6. Training and generalization error plots for sandy clay loam soil contaminated with ethanol.
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Figure 7. Training and generalization error plots for sandy clay loam soil contaminated with petrol.

4. CONCLUSIONS

In this paper, we proposed a deep neural network model to correctly estimate hydrocarbon spills on sandy
clay loam soil sample measured using spectroscopy analysis, the proposed method could achieve higher accuracy
using the experimental datasets. The deep neural network was trained with the scale conjugate back propagation
algorithm, the network had 3 hidden layers each with 30 nodes. Experimental validation shows that the deep
neural network approach presents superior performance on all the datasets used with low average abundance
estimation error. The quite promising quantitative evaluation indicate the high potentials of the developed
approach. Finally, in the future, we will aim to apply the deep neural network and deep learning approach to
quantify the amount of HC using different soil types.
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[2] Medina, R., Gara, P. M. D., Fernández-González, A. J., Rosso, J. A., and Del Panno, M. T., “Remediation
of a soil chronically contaminated with hydrocarbons through persulfate oxidation and bioremediation,”
Science of the Total Environment 618, 518–530 (2018).

[3] Scafutto, R. D. M. and de Souza Filho, C. R., “Quantitative characterization of crude oils and fuels in
mineral substrates using reflectance spectroscopy: Implications for remote sensing,” International Journal
of Applied Earth Observation and Geoinformation 50, 221–242 (2016).

[4] Okparanma, R. N. and Mouazen, A. M., “Visible and near-infrared spectroscopy analysis of a polycyclic
aromatic hydrocarbon in soils,” The Scientific World Journal 2013 (2013).

[5] Fernández-Varela, R., Andrade, J., Muniategui, S., Prada, D., and Ramı́rez-Villalobos, F., “The comparison
of two heavy fuel oils in composition and weathering pattern, based on ir, gc-fid and gc–ms analyses:
Application to the prestige wreackage,” Water research 43(4), 1015–1026 (2009).

[6] Scafutto, R. D. M., de Souza Filho, C. R., and de Oliveira, W. J., “Hyperspectral remote sensing detection
of petroleum hydrocarbons in mixtures with mineral substrates: Implications for onshore exploration and
monitoring,” ISPRS Journal of Photogrammetry and Remote Sensing 128, 146–157 (2017).

[7] Chakraborty, S., Weindorf, D. C., Li, B., Ali, M. N., Majumdar, K., and Ray, D., “Analysis of petroleum
contaminated soils by spectral modeling and pure response profile recovery of n-hexane,” Environmental
Pollution 190, 10–18 (2014).

[8] Okparanma, R. N. and Mouazen, A. M., “Determination of total petroleum hydrocarbon (tph) and poly-
cyclic aromatic hydrocarbon (pah) in soils: a review of spectroscopic and nonspectroscopic techniques,”
Applied Spectroscopy Reviews 48(6), 458–486 (2013).

[9] van der Meijde, M., Knox, N. M., Cundill, S. L., Noomen, M. F., Van der Werff, H., and Hecker, C.,
“Detection of hydrocarbons in clay soils: A laboratory experiment using spectroscopy in the mid-and thermal
infrared,” International journal of applied earth observation and geoinformation 23, 384–388 (2013).

[10] Ahmed, A. M., Duran, O., Zweiri, Y., and Smith, M., “Hybrid spectral unmixing: using artificial neural
networks for linear/non-linear switching,” Remote Sensing 9(8), 775 (2017).

[11] Xu, M., Zhang, L., Du, B., Zhang, L., Fan, Y., and Song, D., “A mutation operator accelerated quantum-
behaved particle swarm optimization algorithm for hyperspectral endmember extraction,” Remote Sens-
ing 9(3), 197 (2017).

[12] Giorgio, L. and Frate, F. D., “A neural network approach for pixel unmixing in hyperspectral data,” tech.
rep., Earth Observation Laboratory- Tor Vergata University Via del Politecnico, 1–00133 Rome, Italy.

[13] Hu, X. and Yuan, Y., “Deep-learning-based classification for dtm extraction from als point cloud,” Remote
Sensing 8(9), 730 (2016).

[14] Makantasis, K., Karantzalos, K., Doulamis, A., and Doulamis, N., “Deep supervised learning for hyper-
spectral data classification through convolutional neural networks,” in [Geoscience and Remote Sensing
Symposium (IGARSS), 2015 IEEE International ], 4959–4962, IEEE (2015).

[15] Petersson, H., Gustafsson, D., and Bergstrom, D., “Hyperspectral image analysis using deep learninga
review,” in [Image Processing Theory Tools and Applications (IPTA), 2016 6th International Conference
on ], 1–6, IEEE (2016).

[16] Chen, Y., Lin, Z., Zhao, X., Wang, G., and Gu, Y., “Deep learning-based classification of hyperspectral
data,” IEEE Journal of Selected topics in applied earth observations and remote sensing 7(6), 2094–2107
(2014).

Proc. of SPIE Vol. 10789  107890N-7
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 15 Oct 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



[17] Mnih, V. and Hinton, G. E., “Learning to label aerial images from noisy data,” in [Proceedings of the 29th
International conference on machine learning (ICML-12) ], 567–574 (2012).

[18] Licciardi, G. A. and Del Frate, F., “Pixel unmixing in hyperspectral data by means of neural networks,”
IEEE transactions on Geoscience and remote sensing 49(11), 4163–4172 (2011).

[19] Mathieu, M., Roy, R., Launeau, P., Cathelineau, M., and Quirt, D., “Alteration mapping on drill cores
using a hyspex swir-320m hyperspectral camera: Application to the exploration of an unconformity-related
uranium deposit (saskatchewan, canada),” Journal of Geochemical Exploration 172, 71–88 (2017).

[20] Nascimento, J. M. and Dias, J. M. B., “Vertex component analysis: A fast algorithm to unmix hyperspectral
data,” Geoscience and Remote Sensing, IEEE Transactions on 43(4), 898–910 (2005).

[21] Weeks, A. R., [Fundamentals of electronic image processing ], SPIE Optical Engineering Press Bellingham
(1996).

[22] Bioucas-Dias, J. M., Plaza, A., Dobigeon, N., Parente, M., Du, Q., Gader, P., and Chanussot, J., “Hy-
perspectral unmixing overview: Geometrical, statistical, and sparse regression-based approaches,” Selected
Topics in Applied Earth Observations and Remote Sensing, IEEE Journal of 5(2), 354–379 (2012).

[23] Morchhale, S., Deep convolutional neural networks for classification of fused hyperspectral and LiDAR data,
PhD thesis, Wake Forest University (2016).

[24] LeCun, Y; Bengio, Y. and Hinton, G., “Deep learning,” Nature 521(7553), 436–444 (2015).

[25] Ammour, N., Alhichri, H., Bazi, Y., Benjdira, B., Alajlan, N., and Zuair, M., “Deep learning approach for
car detection in UAV imagery,” Remote Sensing 9(4), 312 (2017).

[26] Lord, B., “Remote sensing techniques for onshore oil and gas exploration,” The Leading Edge 36(1), 24–32
(2017).

[27] Feng, J., Rogge, D., and Rivard, B., “Comparison of lithological mapping results from airborne hyperspectral
vnir-swir, lwir and combined data,” International Journal of Applied Earth Observation and Geoinforma-
tion 64, 340–353 (2018).

[28] Rogge, D., Rivard, B., Segl, K., Grant, B., and Feng, J., “Mapping of nicu–pge ore hosting ultramafic
rocks using airborne and simulated enmap hyperspectral imagery, nunavik, canada,” Remote sensing of
environment 152, 302–317 (2014).

Proc. of SPIE Vol. 10789  107890N-8
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 15 Oct 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Application of Hybrid Switch Method to Quantify Oil Spills

Asmau M. Ahmed1, Olga Duran, 1, Yahya Zweiri, 2 and Mike Smith, 3

Abstract— Oil spill occurs across large landscape in a variety
of soils which causes serious concern to the environment,
therefore, it is important to identify and quantify spills at an
early stage. Linear umixing methods are primary used due to
their simplicity and computational cost with respect to non
linear to monitor oil spills. However, the effectiveness of the
different methods to quantify oil spills has not been assessed yet.
Here we propose to robustly choose the most suitable method
among linear and non linear spectral unmixing approaches to
quantify different Hydrocarbon (HCs) substances in different
soils. Hypersectral data sets have been acquired using mixtures
of different HCs and soils. Then Artificial Neural Networks was
used to switch between linear and non-linear methods to assess
the most suitable method in quantifying the amount of spills.
Results are presented for Vertex Component Analysis (VCA)
and Fully Constrained Least Square Method (FCLS) for the
linear models, and the Polynomial Post Nonlinear Mixing Model
(PPNMM) and Generalised Bilinear Model (GBM).

I. INTRODUCTION

Hydrocarbons refers to chemical substances formed exclu-
sively from carbon and hydrogen. Hydrocarbons (HC) are
naturally occurring substances and depending on the length
of the carbon chain, HCs often occur in different forms; solid,
liquid and gas [1]. These often occur as a result of decay
of organic substances trapped within sedimentary rocks.
High temperatures and pressures convert the trapped malta
into hydrocarbons. Liquid hydrocarbons found in nature
are also referred to as crude oil [1]. Crude oil consist of
a complex mixture of hydrocarbons of various molecular
weights, in addition nitrogen, sulphur and oxygen occur in
small quantities [2].

It is important to have knowledge about the concentration
and nature of oil spill in order to track it’s propagation
in the environment, assess its risk and propose remediation
strategies [3]. Fast and accurate determination of the affected
area is needed, in order to effectively protect communities
and species affected by the spill, particularly if monitoring
large areas affected by an oil spill or aged oil transporting
facilities [4] .

A hyperspectral camera captures the light intensity (radi-
ance) for a large number of spectra. More specifically, Near
and Shortwave Infrared (NIR SWIR) spectroscopy is a pop-
ular method for detecting, quantifying and mapping HCs in
contaminated soils with reasonable accuracy [4]. Moreover,
NIR SWIR spectra have proven effective at identifying and
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predicting soil organic and inorganic material content [5].
HCs demonstrate good absorption in spectral bands between
1200 mm, 1725 nm and 2310 nm [3]. Therefore, spectral
information obtained in the NIR SWIR spectrum output
excellent results for both quantitative and qualitative analysis
of detecting HCs in soils [4].

Spectral Unmixing (SU) is described as the process of
identifying spectral signatures of materials referred to as
endmembers and estimating their relative abundance to the
measured spectra [6]. Endmembers play an important role
in exploring spectral information of a hyperspectral image
[7]. SU often requires the definition of the mixing model
underlying the observations as presented on the data. A
mixing model describes how the endmembers combine to
form the mixed spectrum as measured by the sensor [8].
Given the mixing model, SU then estimates the inverse of the
formation process to infer the quantity of interest, specifically
the endmembers, and abundance from the collected spectra
[9]. The two main approaches to spectral unmixing are: linear
and nonlinear. Analysis with these methods generally outputs
excellent results as reported in the literature [6].

Artificial Neural Networks (ANN) are mathematical mod-
els initially developed to mimic the complex pattern of
neuron interconnections as presumed in the human brain
[10]. Presently, a lot of feed-forward neural network models
have been extensively studied in the literature that show
excellent results [11]. The deeper network layers provide
excellent results with the ability to extract stronger features
but in turn leads to a vanishing gradient [12]. The objective
of this paper is to use hybrid switching method between
linear and nonlinear spectral unmixing using artificial neural
networks to identify and quantify different Hydrocarbon
(HC) substances in real controlled hyperspectral datasets.

II. MATERIALS AND METHODS

A. Materials

Different Hydrocarbon (HC) types used in spectral mixing
experiment includes: Diesel, Bio - diesel and Ethanol. Soil
type used in this experiment is Clay. Clay is made of fine
material particles which largely accounts for its properties,
the particles are smooth and in a collidal state. Clay particles
retains and absorb water, it also exhibit some properties such
as flocculation, deflocculation , plasticity and stickiness [13].

B. Sample Preparation

In the experiment, the preparation of each sample began
with the addition of 50g of clay soil to a petri dish 12cm
in diameter, followed by the addition of 5ml of the HC to
the soil using a syringe. A disposable plastic spoon was



used to homogenize the mixture after which the sample
was measured with a Hyspex SWIR 320m camera. In the
same sample, a further addition of 5 ml was added to the
mixture; again the disposable spoon was used to homogenize
the mixture and another measurement taken. This procedure
was repeated with increments of 5 ml until a total of 25 ml
was added or until the soil sample mixture was saturated and
formed a shallow local pool.

Fig. 1. Clay Soil mixed with 5 ml and 25 ml diesel.

This procedure was repeated with all three HCs. A total of
15 samples (Table 1) were produced, five mixtures for each
HC, mixed and homogenized at the addition of every 5 ml,
measured and scanned with Hyspex SWIR 320 m camera
under constant illumination.

Fig. 2. Scanning process of the dataset.

TABLE I
SAMPLES GENERATED FOR EACH COMBINATION MADE IN THE

EXPERIMENT AND THEIR SATURATION LEVELS

Soil type Hydrocarbon type Number of samples HC saturation (ml)
Clay Diesel 5 25
Clay Bio- diesel 5 25
Clay Ethanol 5 25

C. Hyperspectral Imaging

The data was obtained using Hyspex SWIR 320 m camera.
The camera is equipped with a Mercury Cadmium- Telluride
(MCT or HgCaTe) detector array which simultaneously
acquires a full Short Wave Infa-Red (SWIR) spectrum, with a
spectral sample interval of 5 nm between 1300 and 2500 nm,
each along a line of 384 pixels [14]. The images acquired are
700 × 384 pixels. The obtained datsets were then analyzed
to extract the endmembers and estimate the percentages of
the HCs using the hybrid switch method.

D. Unmixing Methods

The hybrid switch method as described in [6] was used in
this study, the methods are currently state of the art meth-
ods and have been used extensively in the literature. They
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Fig. 3. Spectral Reflectance of the Petroleum Hydrocarbons from the top;
(a) Biodiesel, (b) Diesel and (c) Ethanol

are: the Vertex Component Analysis (VCA) [15] and Fully
Constrained Least Square Method (FCLS) [16] for the linear
models, and the Polynomial Post Nonlinear Mixing Model
(PPNMM) [17] and Generalized Bilinear Model (GBM)
[18] for the nonlinear models. The linear mixing model is
applicable when the photon interacts with a single cover
type (checker board scene) while non linearity occurs when
the photon interacts with different materials before reaching
the sensor. The question of using either linear or nonlinear
methods for spectral unmixing is still an unresolved problem.
We propose hybridization between the linear and nonlinear
spectral unmixing methods with Artificial Neural Networks
(ANN) to conduct the switch between the two models. The
models used are;

1) Vertex Component Analysis (VCA): This algorithm is
based on the geometry of convex sets and exploits the fact
that endmembers occupy the vertices of a simplex [19].
The VCA algorithm assumes the presence of spectrally pure
pixels in a dataset and iteratively projects the data onto
the direction orthogonal to the subspace spanned by the
end members that are already determined [20]. The new
endmember signature corresponds to the extreme of the
projection. The algorithm iterates until all endmembers are



exhausted [21].
2) Fully Constrained Least Square Method (FCLS):

The FCLS algorithm is derived from an unconstrained least
square based orthogonal subspace projection [16]; in this
method, negative values are considered 0 and the abundance
fractions of the remaining material signatures are normalized
to 1. FCLS utilizes a simplex method to produce a set of
feasible solutions for spectral unmixing of material signa-
tures while discarding the negative abundance values of the
remaining material signatures to unity [16].

3) Polynomial Post Nonlinear Mixture (PPNM): This
model assumes that the reflectance of an image are nonlinear
functions of pure spectral components contaminated by ad-
ditive noise; the nonlinear functions are often approximated
using polynomial function leading to a polynomial post
nonlinear mixing model [17].

The model involves linear and quadratic functions of the
abundances. In this case, the R-spectrum Y = [y1, ..., yR]

T

of a mixed pixel is defined as a nonlinear transformation g
of a linear mixture of L spectra ml contaminated by additive
noise n.

Y = gp

(
L∑

l=1

alml

)
+ n (1)

where ml is the spectrum of the lth material in the
scene, al its corresponding proportion, L is the number of
endmembers contained in the image and g is an appropriate
nonlinear function. Another motivation for the PPNMM is
the Weierstrass approximation theorem which states that
every continuous function defined on an interval can be
uniformly approximated by a polynomial with any desired
precision [17].

4) Generalized Bilinear Mixing Model: The GBM model
introduces a second term that accounts for multiple photon
interactions [22]. This model proposes that the spectrum of
a mixed pixel, Y can be derived as follows:

Y =

L∑

l=1

alml +

L−1∑

i=1

L∑

j=i+1

γi,jaiaj mi �mj + n (2)

Where mi

⊙
mj is the Hadamard (term by term) product

of the i and j spectra, mi is the spectrum of the end-
member i, ai is the corresponding abundance and n is an
additive noise. The first model term describes the linear
mixture model and the double sum models the nonlinear
effect. γ = [γ1,2..., γL−1, L] is a real parameter vector,
γi,j ∈ (0, 1), that quantifies the interaction between different
spectral components. The parameter introduced in this model
is used to obtain a more flexible model [23]. This model also
adopts the positivity and sum to one constraints.

E. Hybrid Switch

The hybrid switching was experimented with Artificial
Neural Networks (ANN), the networks were trained with
scale conjugate back propagation which adopts the chain rule
derivate. The training stops when the maximum number of

epoch is reached or when the performance is minimized to
the goal and the validation performance increases more than
the maximum recorded. The neural networks have 3 layers
(input, hidden and output). A dataset of size 5000×288 was
used as input, the hidden layer has 10 nodes and the output
layer has 1 node which corresponds to the decision between
the linear and nonlinear unmixing models.

III. EXPERIMENTAL SETUP AND RESULTS
In the experiment, each category of the mixture type was

analyzed separately, where clay contaminated with each HC
was used as input vector. A subset of 5000 × 288 per data
set was used for the experiment. We randomly split the
labeled samples into training, testing and validation sets. We
implemented the ANN algorithm using MatLab 2018a. The
experiments were carried out on LG desktop with intel (R)
core (TM)2 Duo CPU 3.00 GHZ processor.

Here, we want to know which of the unmixing methods
best quantifies the amount of HC content in each sample.
The experiments were conducted with 70% and 30% of
training samples in order to check if the size of the training
data affects the accuracy of the network. The remaining
samples were split for testing and validation. Results of the
experiments were based on the abundance estimation error
of the individual and hybrid methods as summarized in Table
2.

TABLE II
AVERAGE ABUNDANCE ESTIMATION ERROR OF THE HYBRID METHODS

WITH DIFFERENT NUMBERS OF TRAINING SAMPLES (70% AND 30%) AS

COMPARED WITH THE ABUNDANCE ESTIMATION ERROR OF THE

INDIVIDUAL METHODS.

(CLAY - BIODIESEL) 70% SAMPLES 30% SAMPLES
PPNMM 0.0217 0.0217

GBM 0.0082 0.0082
VCA 0.0955 0.0955
FCLS 0.0083 0.0083

Hybrid methods
VCA – PPNMM 0.0073 0.0079

VCA – GBM 0.0104 0.0103
FCLS – PPNMM 0.0097 0.0097

FCLS – GBM 0.0082 0.0082

(CLAY - DIESEL) 70% SAMPLES 30% SAMPLES
PPNMM 0.0045 0.0045

GBM 0.3775 0.3775
VCA 0.0845 0.0845
FCLS 0.3776 0.3776

Hybrid methods
VCA – PPNMM 0.0041 0.0043

VCA – GBM 0.0634 0.0640
FCLS – PPNMM 0.0048 0.0053

FCLS – GBM 0.3770 0.3776

(CLAY - ETHANOL) 70% SAMPLES 30% SAMPLES
PPNMM 0.0036 0.0036

GBM 0.7046 0.7046
VCA 0.7499 0.7499
FCLS 0.7048 0.7048

Hybrid methods
VCA – PPNMM 0.0025 0.0030

VCA – GBM 0.2516 0.2513
FCLS – PPNMM 0.0047 0.0047

FCLS – GBM 0.0056 0.0060

The overall accuracy of the network was based on the
training, validation and testing error of the trained network.
From the results obtained (Table 3), it shows that the hybrid



methods are more effective in quantifying the amount of
hydrocarbons in each sample with minimum abundance
estimation error as compared to the individual methods.

TABLE III
ABUNDANCE ESTIMATION ERROR OF THE DATASETS SHOWING

TRAINING, VALIDATION AND TESTING ACCURACY OF THE HYBRID

METHODS WITH DIFFERENT TRAINING SAMPLES

70% TRAINING SAMPLES
(CLAY - BIODIESEL) VCA – PPNMM VCA – GBM FCLS – PPNMM FCLS – GBM

TRAIN 0.0083 0.0137 0.0207 0.0246
VALIDATION 0.0082 0.0196 0.0694 0.0644

TEST 0.0082 0.0173 0.0713 0.0632

(CLAY - DIESEL) VCA – PPNMM VCA – GBM FCLS – PPNMM FCLS – GBM
TRAIN 0.0071 0.0635 0.0117 0.2183

VALIDATION 0.0093 0.1020 0.0128 0.0694
TEST 0.0078 0.1071 0.0138 0.0694

(CLAY - ETHANOL) VCA – PPNMM VCA – GBM FCLS – PPNMM FCLS – GBM
TRAIN 0.0039 0.3018 0.0177 0.0069

VALIDATION 0.0057 0.5385 0.0309 0.0060
TEST 0.0049 0.5439 0.0249 0.0077

30% TRAINING SAMPLES
(CLAY - BIODIESEL) VCA – PPNMM VCA – GBM FCLS – PPNMM FCLS – GBM

TRAIN 0.0083 0.0169 0.0471 0.0103
VALIDATION 0.0083 0.0161 0.0401 0.0375

TEST 0.0083 0.0155 0.0403 0.0369

(CLAY - DIESEL) VCA – PPNMM VCA – GBM FCLS – PPNMM FCLS – GBM
TRAIN 0.0098 0.0723 0.0174 0.0514

VALIDATION 0.0097 0.0631 0.0184 0.0466
TEST 0.0117 0.0610 0.0165 0.0466

(CLAY - ETHANOL) VCA – PPNMM VCA – GBM FCLS – PPNMM FCLS – GBM
TRAIN 0.0044 0.4110 0.0455 0.0093

VALIDATION 0.0056 0.3704 0.0278 0.0097
TEST 0.0064 0.3628 0.0464 0.0151

From the four hybrid methods, the VCA – PPNMM
method outperforms the other methods with the lowest aver-
age abundance estimation error of about 0.0073 when mixed
with biodiesel, 0.0041 when mixed with diesel and 0.0025
when mixed with ethanol as shown in table 2. The overall
accuracy of the hybrid switch methods was calculated, it
shows that the PPNMM has an overall accuracy of 98%,
followed by FCLS – PPNMM with an overall accuracy
of 96 %, VCA – GBM has an overall accuracy of 95
% while FCLS – GBM has an accuracy of 93 %. The
result is similar to what was obtained in [6]. From the
individual methods, the average abundance estimation error
as displayed on the table was for 100% of samples thus the
values are same irrespective of the number of samples used,
this is because the hybrid switching cannot be done on the
individual methods alone. The PPNMM method produced the
best results with lower abundance estimation error on all the
mixture types in comparison to other individual methods. It
could be said that the nonlinear models are best suited for this
application. The abundance estimation error of the network
produced very low error which can be concluded that the
network is good for the prediction of HCs in soils. The
network has similar pattern in terms of training, validation
and testing abundance error with similar or almost the same
values.

IV. CONCLUSIONS

In this paper, the hybrid switch method for switching
between linear and nonlinear spectral unmixing of hyper-
spectral data based on artificial neural networks was used to
estimate the quantity of petroleum hydrocarbons mixed with

different soil samples. The endmembers were extracted using
VCA while the abundances were estimated using individual
and hybrid methods. The method was validated with ANN to
propose the best method in the estimation of the abundance.
Results show that the hybrid methods are more suitable
than the individual technique with high overall accuracy
and lower abundance estimation error compared to those
obtained with the individual methods in particular, the VCA
– PPNMM hybrid method proved to be the best with 98%
accuracy in all the experiments conducted. With regards to
the individual methods, the PPNMM nonlinear model proves
to be a good method with lowest abundance estimation
error in comparison to other individual methods. therefore,
it can be concluded that the nonlinear models are suited for
the task of estimating hydrocarbon spills on different soil
types. Although, the abundances estimated by VCA were
not the correct ones, we replaced the estimates with known
endmembers from our experiment and obtained good results
with the method. The size of datasets used for training the
network produced similar results with different number of
training samples used, therefore, it can be concluded that the
size of the training data does not affect the accuracy of the
hybrid methods in switching between linear and nonlinear
spectral unmixing,
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and Wilson José de Oliveira. Hyperspectral remote sensing detection
of petroleum hydrocarbons in mixtures with mineral substrates: Im-
plications for onshore exploration and monitoring. ISPRS Journal of
Photogrammetry and Remote Sensing, 128:146–157, 2017.

[5] Rebecca DelPapa Moreira Scafutto and Carlos Roberto de Souza Filho.
Quantitative characterization of crude oils and fuels in mineral sub-
strates using reflectance spectroscopy: Implications for remote sensing.
International Journal of Applied Earth Observation and Geoinforma-
tion, 50:221–242, 2016.

[6] Asmau M Ahmed, Olga Duran, Yahya Zweiri, and Mike Smith. Hybrid
spectral unmixing: using artificial neural networks for linear/non-linear
switching. Remote Sensing, 9(8):775, 2017.

[7] Mingming Xu, Liangpei Zhang, Bo Du, Lefei Zhang, Yanguo Fan, and
Dongmei Song. A mutation operator accelerated quantum-behaved
particle swarm optimization algorithm for hyperspectral endmember
extraction. Remote Sensing, 9(3):197, 2017.

[8] Bruce Hapke. Bidirectional reflectance spectroscopy: 1. theory. Jour-
nal of Geophysical Research: Solid Earth, 86(B4):3039–3054, 1981.

[9] Abderrahim Halimi, Yoann Altmann, Gerald S Buller, Steve McLaugh-
lin, William Oxford, Damien Clarke, and Jonathan Piper. Robust
unmixing algorithms for hyperspectral imagery. In Sensor Signal
Processing for Defence (SSPD), 2016, pages 1–5. IEEE, 2016.



[10] Stefan Raith, Eric Per Vogel, Naeema Anees, Christine Keul, Jan-
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