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Abstract Visual simultaneous localization and map-
ping (SLAM) has attracted high attention over the past

few years. In this paper, a comprehensive survey of the
state-of-the-art feature-based visual SLAM approaches
is presented. The reviewed approaches are classified based

on the visual features observed in the environment. Vi-
sual features can be seen at different levels; low-level
features like points and edges, middle-level features like
planes and blobs, and high-level features like semanti-

cally labeled objects. One of the most critical research
gaps regarding visual SLAM approaches concluded from
this study is the lack of generality. Some approaches

exhibit a very high level of maturity, in terms of ac-
curacy and efficiency. Yet, they are tailored to very
specific environments, like feature-rich and static en-

vironments. When operating in different environments,
such approaches experience severe degradation in per-
formance. In addition, due to software and hardware
limitations, guaranteeing a robust visual SLAM approach

is extremely challenging. Although semantics have been
heavily exploited in visual SLAM, understanding of the
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scene by incorporating relationships between features is
not yet fully explored. A detailed discussion of such re-

search challenges is provided throughout the paper.
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1 Introduction

Following several decades of exhaustive research and

intensive investigation, Simultaneous Localization and
Mapping (SLAM) continues to dominate a magnificent
share of the research conducted in the robotics commu-
nity. SLAM is the problem of concurrently estimating

the position of a robotic vehicle navigating in a previ-
ously unexplored environment while progressively con-
structing a map of it. The estimation is done based on

measurements collected by means of sensors mounted
on the vehicle including: vision, proximity, light, posi-
tion, and inertial sensors, to name a few. SLAM sys-
tems employ these measurements in a multitude of var-

ious methods to localize the robot and map its sur-
roundings. However, the building blocks of any SLAM
system include a set of common components such as:
map/trajectory initialization; data association; and loop
closure. Different estimation techniques can then be
used to estimate the robot’s trajectory and generate a
map of the environment. The implementation details of
every SLAM approach relies on the employed sensor(s),
and hence on the data collected from the environment.
In this paper, we thoroughly review the most recent
visual SLAM systems with focus on the feature-based
approaches, where conventional vision sensors such as
monocular, depth, or stereo cameras are employed to

observe the environment. From here on, visual SLAM
systems are referred to as monocular SLAM, RGB-D
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Fig. 1: Different visual features extracted from the same visual frame. Left: low-level features (SURF [1]), middle: middle-level
features (planes), right: high-level features (semantically labeled objects)

SLAM, or stereo SLAM if they employ a monocular
camera, an RGB-D camera, or a stereo camera, respec-
tively.

The non-conventional event-based vision sensor, such
as the asynchronous time based image sensor (ATIS) [2]
and the dynamic and active pixel vision sensor (DAVIS)
[3], can also be used to solve the SLAM problem as

proposed in [4], [5], and [6]. Its operation principle is
biologically inspired, where instead of capturing frames
at a set rate, it asynchronously captures events, which

are timestamped changes in brightness of independent
pixels. Due to its unique way of acquiring information
from the environment, a paradigm shift is necessary to

construct algorithms that accommodate such informa-
tion. Event-based SLAM is beyond the scope of this
review paper and interested readers are referred to the
comprehensive survey in [7].

Some SLAM systems depend solely on visual mea-
surements, while others augment them with different
observations such as range or inertial measurements.

Fusion of multiple types of observations might escalate
the complexity of the algorithm, require more computa-
tional resources, and increase the cost of the platform.
However, it makes the system more reliable, robust to

outliers, and resilient to failures.

To choose the vision sensor suited for the developed
visual SLAM system, the following should be consid-
ered. It is not possible to discern the scale of the envi-
ronment based on observations from a single monocular
frame. To compensate for that, monocular SLAM sys-
tems adopt different approaches to deduce the depth

such as employing a set of one or more other sensors
to obtain measurements from which the depth can be
deduced, hypothesizing the depth of the observed fea-
tures using neural networks for example, or by exploit-
ing prior information about the environment, like the
size of an observed feature. RGB-D cameras can provide
information about depth from a single frame, but they
are very sensitive to light, which may limit their appli-

cations or the environments in which they can success-
fully operate. Stereo cameras overcome the limitations
of monocular and RGB-D cameras but they are more
expensive and resource extensive. The choice of the vi-
sion sensor is also dependent on the robotic platform to
be used. For instance, ground vehicles do not have any
constraints with regards to the weight of on-board sen-

sors, which makes all the options open. However, if an
aerial vehicle is to be used, a monocular camera seems
to be the most convenient option since it can be seam-

lessly accommodated on-board, due to its lightweight,
small size, and low power requirements. Nevertheless,
the employed algorithms must deal with the scale am-
biguity of the obtained visual observations.

Visual measurements can be handled at different

levels of detail. Direct SLAM systems, for example:
[8],[9], and [10], process the intensities of all or a sub-
set of pixels in the image. Then, based on the bright-

ness consistency constraint [11], correspondences are es-
tablished between multiple observations. Feature-based
SLAM, on the other hand, targets features that ex-

hibit distinctive properties and can be repeatedly de-
tected by the employed detection algorithms. Examples
of such systems include [12],[13], and [14]. Features can
be classified into different levels; low-level features such
as points, corners, and lines, medium-level features such
as blobs and planes, and high-level features such as ob-
jects as illustrated in Figure 1. A visual SLAM system
might employ a single ([15], [16], [17]) or a hybrid ([18],
[19], [20]) of different feature levels.

In our review, we classify the state-of-the-art feature-
based visual SLAM solutions based on the features used
to perform localization and mapping. Within each cat-
egory, implementation choices of the adopted SLAM
pipeline are thoroughly discussed and compared. Strengths
and weaknesses of each category are highlighted and

open research problems are emphasized at the end.
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1.1 Existing Surveys on SLAM:

The proposed approaches to SLAM were surveyed by

several researchers in the field and the open research

problems to-date were highlighted. In [21], the authors

argued that SLAM is entering the robust perception

era and thoroughly discussed the main characteristics

of state-of-the-art solutions in terms of several perfor-

mance metrics such as scalability, robustness, and rep-

resentation. In addition, the paper addressed the re-

cent advancements at the hardware and algorithmic

levels and pointed out the research problems that are

yet to be solved. A comprehensive review of key-frame

based approaches to SLAM was presented in [11] where

the general architecture of key-frame based monocu-

lar SLAM and the corresponding implementation ap-

proaches were presented. The survey conducted in [22]

targeted SLAM approaches that omit the assumption

that the environment under investigation is static and

addressed the underlying techniques adopted to recon-

struct a dynamic environment. Along the same lines,

the survey presented in [23] studied the SLAM approaches

that can operate in dynamic environments and those

that employ heterogeneous data that can be obtained

through a visual sensor, for instance: color, depth, and

semantic information. Visual SLAM approaches that

rely on observing primitive features in the scene were

surveyed in [24] and classified according to the descrip-

tors used for such features, emphasizing their strengths

and weaknesses. An overview of the anatomy of visual

odometry and visual SLAM, along with the underly-

ing formulations and implementation choices was pro-

vided in [25]. Similarly, in [26], the solutions to visual

SLAM were analyzed based on their implementation

of the main building blocks of SLAM, and their fail-

ure in dynamic environments was analyzed. The SLAM

approaches reviewed in [27] were classified into feature-

based approaches, direct approaches, and RGB-D based

approaches. Comparisons between the state-of-the-art

solutions back in 2016 were conducted, followed by a

set of open research problems relating to the mentioned

categories. Finally, a recent survey on SLAM, with fo-

cus on semantics can be found in [28]. In this paper, we

contribute a comprehensive survey of the most recent

state-of-the-art feature-based visual SLAM systems and

we classify the reviewed approaches based on the el-

ements, i.e. features, they extract from visual frames

to localize the robot and reconstruct the environment.

Such features fall in one of the following categories:

low-level, middle-level, or high-level features. So, the

reviewed approaches are classified as shown in Figure

2. Our review serves as a thorough reference for re-

searchers interested in investigating the various imple-

mentation options and advances in feature-based visual

SLAM. Approaches that fall into the same feature-level

category were further grouped based on other goals

that they accomplish, like real-time performance, han-

dling scene dynamics, and resilience to data association

failures. The techniques that made each of these goals

possible were listed and analyzed. This will assist the

readers to accurately determine what makes out each

of these approaches and what implementation methods

they need to adopt and/or improve to develop a system

that can achieve a particular set of objectives.

Fig. 2: Classification of feature-based visual SLAM ap-
proaches

The rest of this paper is organized as follows. The

anatomy of a generic SLAM system is presented in Sec-

tion 2 where the SLAM building blocks are discussed in

detail along with different implementation options. The

review and analysis of the feature-based visual SLAM

systems and their design choices are provided in Sec-

tion 3. In Section 4 we highlight the outcomes of our

review and identify the open problems that need further

investigation.

2 SLAM Building Blocks

Before delving into the implementation details of the

current state-of-the-art solutions, the common compo-

nents of visual SLAM are briefly discussed, including

(1) Map/Trajectory Initialization, (2) Data Associa-

tion, (3) Loop Closure, (4) Relocation, and (5) Estima-

tion Algorithms, as shown in Figure 3. The purpose of

each component is first provided, followed by the most

prevalent implementation approaches, when applicable.

2.1 Map/Trajectory Initialization

Upon starting a robotic task in a new environment, a

map of which is not available a priori, it is necessary to

estimate the 3D structure of the surroundings as well

as the position of the robot with respect to it. This

serves as an initial assessment of the map that will be

iteratively updated based on the sensory measurements

collected throughout the task. This process is only re-

quired to bootstrap the system at startup. There are

several ways in which initialization can be carried out
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Fig. 3: SLAM Pipeline

when different sensors are employed. For instance, one

depth frame or a stereo pair are sufficient to initialize

a map, as presented in [29] and [14], since they provide

depth and scale information, which monocular frames

lack. On the other hand, initialization can be done man-

ually when monocular cameras are in operation, for ex-

ample [30], where the system is provided with prior

information about the observed scene, which include

the positions and appearance of four features, resolving

the scale ambiguity problem. Examples of other algo-

rithms that are commonly used for map initialization

are iterative closest point (ICP) [31], [32], image align-

ment [33], [34], five-point algorithm [35] together with

a model fitting algorithm such as random sample con-

sensus (RANSAC) [36] or MLESAC [37], and inverse

depth parameterization relative to the camera, which

is used to parameterize observed features [38]. Kine-

matic models, for example [39], and integration of iner-

tial measurements, as presented in [40], can be used to

initialize the trajectory.

2.2 Data Association

While maneuvering in the environment, the robot may

sense the same area multiple times. Establishing cor-

respondences between the image frames, collected each

time the same scene was observed, is of paramount sig-

nificance to estimate the map and the robot’s trajec-

tory, and is referred to as data association.

Feature-based approaches target features, which

are areas in the image that exhibit distinctive prop-

erties. Features can be of different scales; low-level fea-

tures such as geometric primitives, middle-level features

such as super-pixels, or high-level features such as se-

mantically labeled objects. The most critical character-

istic of a feature is repeatability, which makes the fea-

ture detectable repeatedly when appearing in multiple

frames taken from different viewpoints.

To detect features in an image, several detectors

were proposed in the literature for different feature types.

For low-level features, such as points, lines, edges, and

corners, Table 1 shows some examples of feature detec-

tors as well as descriptors. After detecting a feature,

it is extracted from the image together with its sur-

rounding pixels, then assigned a quantitative measure,

referred to as a descriptor, to facilitate matching with

other features.

Table 1: Feature Detectors and Descriptors
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rs Hessian Corner Detector [41]
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rs BRIEF [42]

Harris Detector [43] SURF [1]

Shi-Tomasi Corners [44] SIFT [45]

Laplacian of Gaussian Detector [46] HoG [47]

MSER [48] ORB [49]

Difference of Gaussian [50] FREAK [51]

FAST/AGAST/OAST [52] BRISK [53]

To detect planes in images, model fitting algorithms,

such as RANSAC, are employed. It is also possible to

combine modeling and a convolutional neural network

(CNN) to identify planes, such as walls, in an image

[54]. As for high-level features, several techniques were

proposed for detecting objects and semantically label-

ing them in images including, but not limited to, con-

ditional random fields (CRFs) [55], support vector ma-

chines (SVMs) [56], and deep neural networks (for ex-

ample: single shot multi-box detector [57] and you only

look once (YOLO) [58]).

Establishing correspondences between low-level fea-

tures can be done between features in two images (2D-

2D matching), between a point in the 3D map and its

projection onto the image frame (3D-2D matching), or

between two 3D points in the reconstructed map (3D-

3D matching) [59] as depicted in Figure 4(a).

Matching a feature in the current image to a fea-

ture in another image (2D-2D) is performed by means

of a search within a window in the second image en-

closing the location of the feature in the current image.

The search is reduced to one dimension if the trans-

formation between both images is known and hence,
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Fig. 4: Data association and loop closure examples

epipolar geometry [60] can be established. The similar-

ity between the features’ descriptors can be measured

using different quantities depending on their types, such

as the sum of squared distance, L1/L2 Norms, or the

hamming distance, to name a few. Such measures might
hinder the performance of the system due to their high

computational requirements and can be replaced by kd-

tree search, similar to [61], or bag of binary words ap-

proaches such as [62].

3D-2D matching is necessary when the pose of the

camera needs to be estimated given the 3D structure

of the environment. 3D points surrounding a hypothe-

sized pose are projected onto the current image frame.

2D projections are then matched to 2D features in the

image using the previously mentioned techniques.

Upon re-visiting a location, i.e. closing a loop, the

corresponding 3D landmarks are matched (3D-3D) yield-

ing a corrected, drift-free path.

Establishing associations between middle-level fea-

tures, such as planes, is done by comparing plane pa-

rameters, such as normals (for example: [19]), the over-

lap, and the distance between the plane detected in the

current frame and those available in the map (such as

[20]). If the distance is below a particular threshold, cor-

respondences are established. Otherwise, a new plane is

added to the map.

In order to establish correspondences between se-

mantically labeled landmarks, the predicted label is

used to associate a detection with a landmark in the

map. In case multiple instances of the same object cat-

egory appear in the environment, a minimum distance

threshold between them must be exceeded to consider

inserting a new landmark into the map [18]. Other-

wise, the detection is associated with its closest land-

mark. In a recently proposed SLAM solution [63], ob-

jects are detected and characterized at the category

level rather than just the instance level. This is based on

the fact that all objects in one class have common 3D

points irrespective of their different categories. Other

approaches to data association will be discussed in more

detail in the next section.

2.3 Loop Closure

As the robot progresses through its task, errors from

several sources accumulate causing the estimation to

drift off the real trajectory (An example is illustrated

in Figure 4(b)). Such drift may severely affect the recon-

struction of the environment and hence lead to failure

of the ongoing robotic task. To correct such drift, sev-

eral techniques were proposed in the literature to detect

loop closure, i.e. to detect whether or not the currently

observed scene was assessed by the robot earlier, and

hence achieve global consistency. Global consistency is

the condition where the SLAM estimate matches, ap-

proximately, the ground truth and the reconstructed

map conforms to the real topological structure of the

observed area. However, local consistency refers to the

case where the observations are matched locally but,

perhaps, not globally [64].

Loop closures usually involve two main steps: visual

place recognition and geometric verification. The for-

mer can be done using kd-tree search [65], bag of words

approaches [66], Bayesian filtering [67], deep learning

[68] [69], and visual feature matching [70], [71], while

the latter can be achieved through image alignment,

and RANSAC [36].

2.4 Re-Localization

Re-localization is the ability of a SLAM system to re-

cover from a fatal localization failure in which the robot

is assigned an arbitrary location. This failure can re-

sult due to several reasons, such as abrupt motions,

motion blur, or absence of features [11]. Moreover, the
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robotic vehicle might be re-positioned through an oper-

ation that is out of the robot’s control, in which case the

robot’s global position is to be determined [72]. These

cases are referred to as the Kidnapped Robot prob-

lem [73] and can be resolved using several techniques,

including but not limited to, matching feature descrip-

tors [74], re-observing semantically labelled objects [75],

[76], epipolar geometry [77], or bags of binary words ap-

proach [12], [78],

2.5 Estimation Algorithms

Estimation algorithms are needed to resolve the SLAM

constraints, and can be classified into batch and in-

cremental algorithms. Batch algorithms, such as global

bundle adjustment (GBA) [79] and full graph SLAM

[80], process a large set of measurements collected by

the robot, over a relatively large period of time, to re-

construct the map of the environment as well as the

robot’s trajectory. Incremental algorithms, on the other

hand, compute estimates of the map and trajectory

upon arrival of new measurements. Some incremental

algorithms, such as [81] operate on the entire set of

measurements collected throughout the robotic task,

while others, such as [82] operate on a subset of those

measurements collected over a small time frame, which

facilitates operation in an online manner. While batch

algorithms succeed in achieving global consistency, they

are computationally expensive, and hence, may impede

real-time operation. In addition, due to the constrained

memory resources, they might not work for large-scale

environments or for continuously operating systems,

which emphasizes the significance of incremental algo-

rithms that do not suffer from such limitations. Revis-

iting old data association decisions is not possible when

estimation is done through incremental algorithms that

do not consider all measurements, which may increase

the cumulative error compared to other algorithms. In

what follows, batch algorithms, such as GraphSLAM

[80] and GBA [79], as well as incremental algorithms,

such as extended Kalman filter (EKF) [80], incremen-

tal smoothing and mapping [81], [82], and local bundle

adjustment (LBA) [83], are briefly presented.

2.5.1 Extended Kalman Filter (EKF) [80]

Given multiple measurements recorded over a period of

time, possibly from several sensors, an EKF estimates

the state of the system under observation. The state of

a system consists of the states of both the environment

and the robotic vehicle. The former describes the poses

of the landmarks observed in the environment, while the

Fig. 5: The Extended Kalman Filter Algorithm [84]

latter describes the vehicle’s kinematics. The estima-

tion process involves filtering the noise associated with

each measurement to reduce the overall uncertainty of

the estimated state. Then, EKF estimates the states of

the system through several iterations of predictions and

updates based on the measurements collected from the

environment, as depicted in Figure 5.

2.5.2 Factor Graph SLAM [80]

As the name of this algorithm suggests, a graph is used

to reconstruct the map of an environment along with

the robot’s trajectory in it. Map features and robot

poses are represented as vertices, and are connected

using edges that encode two types of nonlinear con-

straints: motion and measurements as shown in Fig-

ure 6(a). The summation of all the constraints makes

SLAM a nonlinear least squares problem. To obtain

an estimate that is globally consistent, all constraints

are first linearized, yielding a sparse information ma-

trix and an information vector. Due to the sparseness

of the matrix and for a more efficient computation, the

matrix is reduced in size using a variable elimination

algorithm. An inference technique is then employed to

find the assignment of poses to the nodes of the graph

which minimizes the errors imposed by the constraints.

Alternatively, successive robot poses in the environ-

ment could be used alone to estimate the location of the

robot using a Pose Graph [85]. The graph used in this

problem includes the robot poses as nodes and motion

constraints as edges between those nodes as depicted in

Figure 6(b).

Bundle adjustment (BA) [86] is an instance of fac-

tor graph SLAM and can be defined as a refining pro-

cess that simultaneously optimizes the 3D structure,

the camera trajectory, and possibly its calibration pa-

rameters using a sequence of images collected from the

environment as depicted in Figure 7. A cost function

that assesses the error in the system is minimized to

yield an improved estimation of the reconstruction. If



Feature-based Visual Simultaneous Localization and Mapping: A Survey 7

Fig. 6: Factor and pose graph examples

all measurements since the beginning of the robotic task

were considered in the estimation, the process is re-

ferred to as GBA, and is known to be computationally

expensive which hinders online operation [87].

Fig. 7: Bundle adjustment illustrative example

A more computationally efficient approach that in-

crementally adjusts the 3D reconstruction and camera

trajectory was proposed in [83] and is referred to as

Local Bundle Adjustment (LBA). Only a window of

n recent frames is adjusted upon reception of a new

measurement. Using LBA makes it possible to execute

SLAM in real time.

ParallaxBA is another variation of BA that was pre-

sented in [88] where features are parameterized using

parallax angles instead of their Euclidean coordinates

or inverse depth, ParallaxBA outperformed traditional

BA in terms of accuracy and convergence.

2.5.3 Incremental Smoothing and Mapping

Incremental Smoothing and Mapping is an approach

to SLAM that gradually computes estimations of the

map and robot trajectory while measurements are be-

ing collected from the environment. Several approaches

were proposed in the literature, the most prevalent of

which are iSAM [89] and iSAM2 [90]. iSAM performs

smoothing using QR factorization of the square root in-

formation matrix and iSAM2 operates on a novel data

structure referred to as the Bayes tree which is obtained

from factor graphs.

3 Feature-based Visual SLAM - Design Choices

In this section, an overview of the state-of-the-art feature-

based visual SLAM systems is presented. As mentioned

earlier, features can be of different granularities; low-

level features, middle-level features, or high-level fea-

tures. A visual SLAM system may be based on the

use of either one or a hybrid of two or more feature

types as will be discussed in the following sections. The

most alarming concern about feature-based approaches

is their failure in absence of features. Regardless of their

high achievable performance and accuracy in feature-

rich environments, if the environment under investiga-

tion lacks the features that visual SLAM relies on, be

it points, planes, or objects, localization fails and the

estimation of the robot’s surroundings would not reflect

the true structure. In what follows, visual SLAM sys-

tems are classified and discussed according to the types

of features employed in the system.

3.1 Low-Level Feature-based Approaches

Low-level features are geometric primitives that are ob-

servable in abundance in textured scenes. The vast ma-

jority of the existing visual SLAM systems, for instance

[12], [39], [91], [92], [93] exploit these features, through-

out the localization and mapping processes, and have

achieved a very high-level of maturity in terms of ac-

curacy and efficiency. However, if the environment in
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which the robot is operating is texture-less or lacks the

features that the system can track, such methods fail

due to the absence of features, hence why the most re-

cent SLAM approaches started to consider features at

different levels at the same time.

3.1.1 Multiple Feature Types to Aid Robustness:

Feature-based visual SLAM systems that depend on a

single type of features are susceptible to failure when

such features do not exist in the environment under

investigation. To circumvent this issue, the work pre-

sented in [94] proposes using points and lines together

to perform monocular SLAM in a poorly textured en-

vironment. Lines are parameterized by their endpoints

to facilitate integration with point-based approaches.

In absence of point features, this work proposes a novel

technique to initialize the system using lines only. The

same set of landmarks were also adopted to perform

stereo SLAM in [95]. Stereo visual odometry is used to

track points and lines, and Gauss Newton optimization

is then employed to estimate the motion of the camera

by minimizing the projection errors of the correspond-

ing features. In [96], observations of point features are

combined with laser scans and used in a factor graph to

estimate the pose of the robot. A new map representa-

tion combining both an occupancy grid map and point

features was proposed. By matching observed features

to landmarks in the map, loop closure and localization

can be achieved efficiently. Hence, the flexibility regard-

ing what type of feature to adopt while estimating the

robot’s trajectory in the environment greatly benefits

the robustness of visual SLAM.

3.1.2 Facilitating Real-Time Performance

The maps generated by low-level features are sparse

yet require large computational and memory resources.

This is attributed to the fact that the process of de-

tecting, extracting, and matching features is one of the

most computationally expensive blocks in the SLAM

pipeline.

In order to achieve real-time performance, some sys-

tems [14], [97], [98], [99] heavily exploit parallelism to

perform tracking and mapping as originally proposed in

PTAM [13]. Two threads are concurrently run to local-

ize the robot and map its surroundings [13], [14]. Un-

like tracking, delays are tolerable in the mapping thread

where most of the heavy computations take place. To

further reduce computations, [98] limited the number of

features to be extracted, and used a local map through

which feature matching is performed. In order to max-

imize parallelism, a separate thread was employed to

Fig. 8: Techniques to facilitate real-time performance

perform loop closing and a synchronization process was

proposed where access to map points is granted to a

thread only if the points are not currently being pro-

cessed by another thread.

In [97], three parallel modules are employed; scene

flow for feature detection, extraction, and matching, vi-

sual odometry for camera motion estimation, and global

SLAM for loop closing and global consistency.

Localization and mapping can also be done in a dis-

tributed manner by multiple robotic vehicles while ex-

ploiting parallelism as proposed in [99] where tracking

and image acquisition, which are lightweight processes,

are run on-board all MAVs in parallel while mapping is

done off-board by a powerful computer due to its com-
putational demands. A recent monocular SLAM sys-

tem was proposed in [100] where EKF and BA were

exploited together to achieve real-time robust perfor-

mance. ORB features and inertial measurements were

used in a visual inertial odometry (VIO) framework

based on EKF which is capable of estimating the cam-

era motion with minimal delays. To further assist real-

time performance, not all ORB features are extracted

from visual frames in the VIO framework which oper-

ates on all incoming frames. In addition, to circumvent

the estimation errors resulting from EKF, a globally

consistent map estimated using BA is frequently up-

dated based on selected keyframes and fed to EKF to

correct any estimation errors. The selected keyframes

go through another round of feature extraction and

matching since the features extracted for VIO are not

sufficient for building a robust map. Loop closure is run

in a parallel thread to correct accumulated error by per-

forming place recognition and ORB feature matching.

Once a loop is detected, pose graph optimization as well
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Fig. 9: Techniques to resolve scale ambiguity

as GBA are carried out. Due to the fusion of visual and
inertial measurements, the approach is robust to abrupt
motions and is capable of resolving scale ambiguity. It
also combines the advantages of EKF and BA to achieve

real-time performance and robustness respectively.

Figure 8 summarizes the techniques that can be
adopted to speed up the localization and mapping pro-

cesses and get the estimation done in real-time.

3.1.3 Resolving Scale Ambiguity

When using a monocular camera, a SLAM system needs
to handle the inherent scale ambiguity challenge which

results from the difficulty to discern depth from a sin-
gle frame. An EKF based approach was proposed in
[91] where scale ambiguity and intermittent absence
of features are compensated for by fusion of monoc-
ular vision, ultrasonic and atmospheric pressure mea-
surements. Fusion of multiple sensors was also seen in
[101] where vision, inertial, and range measurements

were employed to achieve the objectives of SLAM. Scale
ambiguity in [77] is circumvented by two-view initial-
ization. A pair of images is selected according to their
relative rotation, Euclidean distance, and the time dif-
ference between them. Then, epipolar geometry is used
to estimate the scale based on the matched features be-
tween these frames. In another monocular SLAM ap-

proach [102], the depth of ORB features was computed
based on their distance to the vanishing points identi-
fied in the scene. Furthermore, inverse depth parame-
terization was used in [103] to recover the scale of the
scene.

While not required for RGB-D and stereo SLAM,
adopting a technique to resolve the scale of the map is

essential for monocular SLAM. Figure 9 illustrates the
techniques that can be used to resolve scale ambiguity.

3.1.4 Resilience to Feature Detection/Association
Failure

Failure to observe or match low-level features in an
environment is equivalent to operating in texture-less
environments in which feature-based visual SLAM sys-

tems fail. In both cases, the system suffers from ab-
sence of measurement constraints, causing severe per-
formance degradation. A vision system fails to detect or

match features between frames in case of abrupt sensor
motions or in presence of dynamics in the scene.

One of the limitations of the original EKF-SLAM,
which is described in [80], is its inability to handle
abrupt motions. To overcome this, the approach pro-

posed in [105] employs visual input in both phases of the
filter; prediction and update. Optical flow and epipolar
geometry are used to estimate the state transition of the

camera. Using images in the prediction stage made the
system robust against abrupt motions and infrequent
data acquisition. This has also eliminated the need for
dynamic models and resulted in a faster and more effi-

cient performance. Although this EKF variant improves
the robustness and efficiency of SLAM in particular
cases, it still fails if there are no features in the scene.
Another variation of EKF-SLAM is proposed in [109]
IMU measurements are used in the prediction phase
and RGB-D images are used in the update phase. To
achieve global consistency, pose graph optimization is
performed. Fusion of IMU measurements made it possi-
ble for the system to successfully operate in texture-less
and dynamic environments.

ORB-SLAM2 [12] is a state-of-the-art visual SLAM
system that performs tracking, mapping, and loop clos-
ing based solely on ORB features in real time while
running on standard CPUs. Due to its dependence on
visual features, ORB-SLAM2 fails in absence of ORB

features in the scene. To this end, a tightly-coupled fu-
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Table 2: Implementation choices adopted by Low-level Feature-based Approaches. Abbreviations: factor graph (FG), pose
graph (PG) bundle adjustment (BA), extended Kalman filter (EKF), maximum-a-posteriori(MAP), vocabulary tree (VT),
particle filter (PF), feature matching (FM), bags of binary words (BBW), Gauss Newton (GN), Levenberg Marquardt (LM),
first frame (FF), prior map (PM), stereo initialization (SI), Epipolar geometry (EG), Inverse depth parameterization (IDP),
Odometry (Odom), small blurry image relocation (SBI), least square optimization (LSO), image moment invariants (IMI)

Ref
SLAM Component

Initialization Data Association Loop Closure Estimation Relocation

[101] IMU measure-
ments

Sweep matching & approxi-
mate nearest neighbor

LSO Algorithm in [104] -

[91] Range mea-
surements

Visual measurement models - EKF -

[39] Kinematic
model

Geometric matching then
ICP

- EKF -

[92] - FM BBW FG BBW
[93] SI FM VT RANSAC & non-linear re-

finement
-

[77] SI Optical flow IMI GBA EG & BA
[94] Trifocal tensor

eq.
Relational graph strategy Essential graph FG and GBA EPnPL

[105] IDP FM - EKF -
[13] SI &

RANSAC
FM Mapping module GBA -

[97] - VT and EG VT GBA VT
[106] PM Edge alignment using GN - GN Optimization + EKF -
[14] SI FM BA LM algorithm -
[98] SI FM PG Co-visibility graph -
[12] FF 2D-3D points matching BBW FG and GBA BBW
[107] FF 2D-3D points matching BBW FG and GBA Odom
[99] SI+ RANSAC FM GBA GBA SBI [108]
[109] FF FM FM FG -
[110] Odom FM BBW FG -
[111] PM Multi-hypotheses via PF - PF -
[112] PM Distance function - EKF -
[113] FF FM FM Effiicnet PnP and BA -
[100] VIO EKF ORB FM PG & GBA EKF & BA -
( - ) indicates that implementation details about the corresponding element/block are not provided

sion of odometry and ORB-SLAM2 was proposed in

[107] where the motion model is replaced by odometry,

which supports the estimation when no features can be

detected in the scene.

Similarly, the approach proposed in [92], exploits

tightly-coupled fusion of inertial and visual measure-

ments to perform visual inertial odometry. Global con-

sistency is then achieved by means of loop closure detec-

tion and global pose graph optimization. Another varia-

tion of ORB-SLAM2 can be found in [114], where ORB

features were replaced by learnt point features, referred

to as GCNv2. It was demonstrated that the proposed

approach has comparable performance to ORB-SLAM2

in most scenarios, but performs slightly better in case

of fast rotations.

Failure to associate features across subsequent frames

can also result from dynamics in the scene. The work

proposed in [113] demonstrates the ability to success-

fully perform RGB-D SLAM in a dynamic environment

while observing low level features only. Using the fun-

damental matrix, feature points belonging to moving

parts of the scene are extracted. Then, efficient PnP

was used to estimate the pose of the camera in the

environment. The re-projection errors are then further

optimized by means of BA. The proposed approach was

successfully used in real experiments but only under the

assumptions that there is small parallax and more than

24 point matches between consecutive frames. Hence,

the approach fails to work in presence of abrupt motions

and in absence of low-level features in the environment.

In order to enhance the performance of visual SLAM

in dynamic environments, the approach proposed in

[115] employs a sparse motion removal scheme. A Bayesian

filter is used to compute the similarities and differences

between consecutive frames to determine the dynamic

features. After eliminating such features, the scene is

fed to a classical visual SLAM approach to perform

pose estimation. This approach works only in presence

of features in the scene and fails otherwise.

Another low-level feature based visual SLAM ap-

proach that is robust to false data association occur-

ring in dynamic scenes is found in [116]. The approach
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Fig. 10: Illustration of reconstructed map based on planar
features

is based on a novel filter where poses are encoded as
dual quaternions. Association of ORB feature observa-
tions and map landmarks is done through an optical
flow-based approach which makes it robust to dynam-
ics in the scene.

In summary, lack of features, abrupt camera mo-
tions, and dynamics in the observed scene are the main
reasons behind failure to perform data association. Some

techniques that are adopted in the literature to solve
these issues include employing multiple sensors that ob-
serve different information in the scene and eliminating

observations that involve dynamics.

The implementation details of the reviewed low-

level feature-based approaches are provided in 2.

3.2 Middle-Level Feature-based Approaches

Middle-level features are planes or blobs that are ob-
served in the environment. Using such features as land-
marks improves the SLAM performance in texture-less
environments where it is challenging to observe low-
level features; in corridors for example. To observe such
features, model fitting approaches are employed. Hence,
there is a trade-off between the estimation accuracy and
the time needed to compute accurate models from the
environment. Using those features alone is not common
since fusing them with low- and high-level features re-
sults in better accuracy as discussed in Section 3.4. In
[117], a SLAM approach based solely on RGB-D data is
proposed. A 3D map of the environment is constructed
using planes representing walls and floors while remov-

ing all other objects from the scene. RANSAC is em-
ployed to estimate planar surfaces which are then re-
fined by estimating their normals and extracting the
corresponding convex. Then, an l0 norm minimization
algorithm is used to maintain planes that are highly

likely to represent walls or floors while minimizing the
inclusion of smaller ones. Using this approach, it was
possible to reconstruct a map of the walls and floor as
illustrated in Figure 10. However, no other features are
present in the map which makes it unusable for the ma-
jority of SLAM application. This motivates the need for
considering high-level features, as presented in the next
section.

3.3 High-Level Feature-based Approaches

Perceiving high-level features is paramount when robots
are expected to perform tasks that require scene under-
standing such as searching for a victim after a catastro-
phe, building meaningful maps, and grasping or oper-
ating on particular objects in the environment. This
is very challenging to achieve with maps reconstructed
using low-level features since they lack expressive rep-
resentation which makes it harder for humans to under-
stand [118], [119]. High-level features add critical infor-

mation about the structure of the scene and convey the
semantic meaning of every part of the reconstructed
map. They are environment-specific and may vary in

size, shape, and dynamicity. In a city-scale application,
possible landmarks include trees, buildings, streets, or
sidewalks. On the other hand, furniture, office supplies,

and home appliances may serve as landmarks for in-
door applications. In this section, different approaches
to data association in high-level feature-based SLAM
approaches will be thoroughly discussed. Then, tech-

niques to achieve real-time performance and handle dy-
namics in the scenes will be presented.

3.3.1 Associating High-Level Feature Observations
With Landmarks

Although high-level features are detected and seman-
tically annotated, data association in the event that
multiple instances of the same object category exist in

the environment poses a fundamental challenge in high-
level feature-based visual SLAM systems [15].

In [63], objects are detected and characterized at
the category level rather than just the instance level.
This is based on the fact that all objects in one class
have common 3D points, irrespective of their differ-
ent categories. Such points, referred to as keypoints,
are used to distinguish between the different categories
of the same class. Input monocular frames are passed
to an object detector, YOLO9000 [120], and 3D key-

points in the resulting bounding boxes are localized by
means of another convolutional neural network. Shapes
and poses are optimized using the Ceres solver. Instead
of performing object and keypoint detection on every
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Fig. 11: High-level features data association techniques

frame, objects are tracked in successive frames leading

to higher efficiency and speed.

Another novel data association approach was pre-

sented in [17] to localize a robot in a prior map. First,

a query graph is computed for each image where a

vertex represents an object’s class and centroid, and

undirected edges between vertices indicate the fulfill-

ment of a proximity requirement. A merged graph for

all the images is then created by connecting vertices

from consecutive images using the Euclidean distances

between them. Vertices that are too close to each other

are merged to avoid duplicates. The second step is the

generation of a random walk descriptor for each vertex.

That is, an n×m matrix containing the labels of m vis-

ited vertices in n random walks. Third, the query graph

is to be matched to the global database graph based on

a similarity score. The similarity score of two vertices

indicates the number of identical rows in their descrip-

tors. The highest k matches are then used to localize

the query graph in the database graph.

In [121], semantically labeled objects as well as their

inter-relationships are employed in the process of es-

tablishing correspondences between input monocular

frames. An RGB frame is first passed to a Faster R-

CNN to detect objects. Then, the transformation be-

tween consecutive images is computed by first generat-

ing multiple cuboids that lie along the line, formed by

the camera center and the center of the bounding box,

and projecting them onto the detected bounding box.

Generation of cuboids is done at discrete distances and

angles. After that, coordinate descent is performed to

minimize the difference between the corners of the de-

tected bounding box and the projection of each cuboid

into the image plane. Redundant cuboids are then re-

moved. Each of the remaining cuboids is then used as

a seed to generate a scene, which is a set of cuboids

each corresponding to a detected bounding box, based

on contextual constraints. To find correspondences be-

tween the generated set of scenes, a sampling-based ap-

proach is used. Every pair of scenes is searched for corre-

spondences based on semantic labels. Three correspon-

dences from every pair are picked and frames of refer-

ence for each scene are constructed. The transformation

between the scenes is computed accordingly and scored



Feature-based Visual Simultaneous Localization and Mapping: A Survey 13

based on how well the remaining correspondences fit

using the computed transformation. The sample with

the highest rank is then used to estimate the transfor-

mation between camera poses.

In [122], an object hypothesis is generated if the

same object segment is observed in multiple frames and

is represented using 3D feature descriptors which facil-

itate loop closure. Inlier correspondences between the

current object and the objects in the map are com-

puted, then, the object is associated with the hypothesis

with which it achieved the highest number of correspon-

dences. If the number of correspondences falls below a

threshold, a new object representation is added. Only

one or a few static instances of an object category are

assumed to be in the environment. A prior estimation of

the robot pose based on odometry and ICP is computed

using OmniMapper [123]. Based on that, the current

frame’s segments are projected into a common frame

of reference with all previously segmented objects. The

centroid of each segment is matched to the closest seg-

ment centroid in the map. To verify the match, the

bounding box of the current segment and that of the

segment to which it was matched are compared. If there

is not enough overlap between the bounding boxes, a

new object is initialized. The final object model is cre-

ated by aggregating all the corresponding segments af-

ter transforming them according to the relative camera

poses. Spatial constraints between the object model and

the robot poses are then added to the SLAM system.

In [15], SLAM and data association are addressed as

tightly coupled problems and a novel approach is pro-

posed to simultaneously estimate a robot’s position and

associate its observations with landmarks. A back-end

approach was used to jointly solve the object detection

and SLAM problems. After being detected, an object is

represented by the centroid of its point cloud obtained

from RGB-D data. Neither data association nor the to-

tal number of landmarks in the environment are known

a priori. A probabilistic model based on the Dirichlet

Process was hence introduced to establish proper data

association. Overall, a mixed-integer nonlinear problem

is set up to estimate the robot poses, landmark loca-

tions, and data association given the robot’s relative

poses and observations.

The most common approach to data association in

presence of multiple instances of the same object cate-

gory is the distance threshold as presented in [16]. Each

robot in the proposed distributed SLAM framework

performs SLAM through OmniMapper [123] based on

visual and odometry measurements. Each input RGB

image is passed to a YOLO object detector. Detected

objects are segmented and the PFHRGB features in

their point cloud and in the corresponding model are

extracted and matched. If at least 12 correspondences

were detected, generalized iterative closest point (GICP)

[124] is performed to compute a refined pose of the

object. Data association is then performed by search-

ing for instances of the same detected object category

within a distance threshold. Figure 11 summarizes the

main approaches found in the literature to perform data

association of high-level features.

3.3.2 Facilitating Real-Time Performance

Performing real-time localization and mapping is very

critical for some robotic tasks, especially those per-

formed in harsh environment for search and rescue pur-

poses. However, the processing time for some blocks in

the pipeline, such as object detection and segmentation,

goes beyond that. In this section, focus will be devoted

to the techniques used to facilitate real-time perfor-

mance in high-level feature-based SLAM approaches.

The work proposed in [63] proposes not performing

object detection on all the incoming frames. Rather,

after detecting an object in a keyframe, it is tracked in

successive frames, which significantly reduces the time

needed to process the data.

For the same purpose, the system proposed in [122]

pre-processes the scene by dividing it into planar and

non-planar (object) segments. After removing planar

segments, object segments are refined and associated

to already existing landmarks in the map.

Representing objects using quadrics is an alterna-

tive technique to reduce computations while employing

semantically labeled landmarks in a visual SLAM sys-

tem. The work proposed in [125] uses an object detector

as a sensor where the detected bounding boxes are used

to identify the parameters of the quadric representing

the corresponding object. A quadric provides informa-

tion about the size of the object, its position, and its

orientation, encoded in ten independent parameters. A

geometric error formulation was proposed to account

for the spatial uncertainty of object detections, result-

ing from occlusions for example. Using quadrics instead

of detailed object models enhances the speed of the sys-

tem at the expense of reconstructing information-rich

maps which are useful in a wide range of applications.

An illustration of the discussed techniques that aid the

efficiency of high-level feature-based visual SLAM sys-

tems is provided in Figure 12.

3.3.3 Handling Dynamics In The Scene

The majority of SLAM systems are developed under the

unrealistic assumption that the environment is static.

Only a few systems were proposed in the literature
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Fig. 12: Techniques to achieve real-time performance by high-
level feature-based visual SLAM approaches

where scene dynamics are accounted for. Most of these

system detect the non-stationary parts of the observed

scene, eliminates them, then perform SLAM based on

the remaining static environment. An example of such

approach can be found in [126] where moving objects

were tracked and stationary ones were used to gen-

erate a static map of the environment under investi-

gation. Observations were done using a laser scanner

and data association was carried out using a multi-level

RANSAC approach.

Differently, the work presented in [127] uses cuboids

as objects’ representation, where an object SLAM sys-

tem is proposed. The system relies on observations from

a monocular camera and exploits dynamic objects in

the scene to improve localization by adding motion model

constraints to the multi-view BA formulation that is

used to solve the optimization problem. Objects and

feature points belonging to them are tracked in succes-

sive frames and motion models are estimated and em-

ployed to improve the accuracy of trajectory and map

estimation.

Exploiting motion models of dynamic objects rather

that ignoring them imposes additional constraints on

the systems and hence improves the accuracy of the

estimation.

A summary of all the reviewed high-level feature-

based approaches in the previous sections is provided

in Table 3.

3.4 Hybrid Feature-based Approaches

In the previous sections, SLAM systems that employ

features of a single type were discussed and analyzed.

Features at each level enhance the outcome of SLAM

in a distinct way. For instance, localization methods

based on observation of low-level features have achieved

a high level of maturity in terms of accuracy and effi-

ciency. The maps they produce, however, are of high

sparsity without any semantic indications. Taking ad-

vantage of middle-level features, such as planes, in the

scene makes it possible to attain higher reconstruction

density as well as more robustness in texture-less envi-

ronments. To create meaningful maps that humans can

easily perceive, recent SLAM approaches make effective

use of the emerging object detection techniques and em-

ploy semantically labeled observations throughout the

localization and mapping processes. To make the most

out of what can be visually observed in a scene and

to enhance their overall outcome, SLAM systems have

lately started to employ features at two or more levels as

discussed in this section. In this section, feature-based

visual SLAM approaches that adopt features from mul-

tiple levels will be reviewed. The reviewed systems are

classified based on the features used to perform SLAM

into three categories; low- and middle-level feature based

approaches, low- and high-level feature based approaches,

and low-, middle-, and high-level feature-based approaches.

Table 4 presents a summary of the implementation choices

adopted by the reviewed approaches.

3.4.1 Low- and Middle- Level Feature-based

Approaches

The systems presented in [20], [129], [130], and [132]

employ low and middle-level features to achieve the ob-

jectives of SLAM.

In some environments, such as corridors, plane SLAM

becomes unconstrained. Fusing planes and points can

greatly enhance the robustness of SLAM in such envi-

ronments as proposed in [20] where planes, detected in

monocular frames using a pop-up 3D model, are used

to estimate the camera trajectory and the 3D map of

the environment. Across different frames, planes are as-

sociated based on a weighted sum of three quantities:

the difference between their normals, the distance be-

tween them, and the overlap between their projections.

For each incoming monocular frame, ORB descriptors

are computed and a bag of words approach is used to

detect loops. Upon detection of a loop, corresponding

plane pairs are determined and the factor graph is mod-

ified accordingly.

Geometric primitives and planes were employed dif-

ferently in [129]. A least-squares optimization using a

graph formulation, where planar constraints are involved,

is used to solve the SLAM problem. The detected points

are constrained to belong to a particular plane, param-

eterized by its normal and depth with respect to the

camera, in the environment. Angles between planes in

the environment are also considered as constraints. All

constraints are coupled into a cost function and the re-

sulting non-linear least squares problem is solved.
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Table 3: Implementation choices adopted by high-level feature-based SLAM approaches

Ref
SLAM Component

Initialization Data Association Loop Closure Estimation

[15] Open loop predictions A probabilistic model based on the
Dirichlet process

Data association approach Factor graph

[16] - Object class/label within a distance
threshold

objects detected by multiple
robots

Factor Graph

[17] Prior Map Matching of Random-Walk Descrip-
tors

- Graph-based tech-
nique then Maximim
A Posteriori

[126] - Multi-level RANSAC and Maha-
lanobis distance

ML-RANSAC EKF

[121] Relative poses are es-
timated then refined
using coordinate de-
scent

Contextual Relevance based on the
face centric geometric descriptors

Sampling-based approach to
search for correspondences

Coordinate descent

[128] - Object class/label and greedy object
tracker

Hungarian Algorithm (Cost
is estimated object shape and
pose)

Factor Graph

[127] Object detections
used to initialize
depth of points

Matching point features belonging
to detected objects, 2-D KLT sparse
optical flow algorithm for tracking
dynamic points, and visual object
tracking for dynamic objects

No explicit loop closure mod-
ule used

BA

( - ) indicates that implementation details about the corresponding element/block are not provided

A third variation was proposed in [130] where an

RGB-D SLAM approach based on planes and points

was proposed. Each incoming image is divided into in-

tervals, then labeled, based on the planes present in

it. The orientation of a frame is estimated based on the

orientation of the most dominant plane in it while trans-

lation between frames is computed based on matched

SIFT features and RANSAC. Global alignment and

loop closure are carried out based on a fusion of the

low- and middle-level features, which aids the robust-

ness of the proposed approach.

A recent RGB-D SLAM was proposed in [131] where

points and planes are exploited to estimate the pose of

a camera and a map of its surroundings. ORB features

are extracted from RGB frames and handled by the

RGB-D version of ORB-SLAM2. On the other hand,

depth frames are used to extract planes, along with

their contour points from the scene. Contour points are

employed to construct spatial and geometric constraints

between planes in the reconstructed map. A novel data

association technique for planes was used, where the an-

gle between two planes was used to judge whether they

are perpendicular or parallel, while accounting for mea-

surement noise. Two planes are matched if the distance

between the observed plane’s point and the plane in the

map is below a particular threshold. Imaginary planes

that are perpendicular to planes appearing in the scene

are also exploited and treated as the other observed

features in the pose estimation process. A factor graph

is constructed and solved by means of the Levenberg-

Marquardt optimizer. The proposed plane data associ-

ation method is more robust than approaches consid-

ering plane normals and/or plane distances because it

takes into account the measurement noise, which is in-

evitable.

Super-pixels are middle-level features seen as planar

regions exhibiting similar intensities in input frames.

Employing super-pixels comes with the advantage of

being able to reconstruct poorly-textured scenes. How-

ever, there isn’t a robust descriptor of such features,

which makes it hard to match them in different images.

In [132], a feature-based monocular SLAM approach

was proposed, integrating super-pixels with PTAM, where

PTAM keyframes are divided into super-pixels of ir-

regular sizes. The map state, that is to be estimated,

consists of the pose of all keyframes, the Euclidean co-

ordinates of point features, and the parameters of the

planar super-pixels. Two keyframes, the pose of which

is already computed using PTAM, are used to initialize

a super-pixel. All super-pixels in the keyframes are ex-

tracted and matched using a Monte Carlo approach. BA

is used to optimize the camera and 3D points’ states,

which are then used to estimate the parameters of the

super-pixels. On every new keyframe, all super-pixels

are re-projected to search for matches. When the re-

projection error drops below a threshold, the match is

added to the optimization problem as a constraint.

Another work that exploits the fusion of point fea-

tures and planar regions, represented as squared fiducial

markers in this case, in an environment can be found in
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Table 4: Implementation choices adopted by hybrid feature-based SLAM approaches. Abbreviations: factor graph (FG), bundle
adjustment (BA), feature matching (FM), bags of binary words (BBW), bag of words (BoW) first frame (FF), Inverse depth
parameterization (IDP),least square optimization (LSO), nearest neighbor search (NNS)

Ref
SLAM Component Approach Features Level

Initialization Data Association Loop Closure Estimation Relocation

F
il
te

r

K
e
y
-

fr
a
m

e

L
o
w

M
id

H
ig
h

[20] Ground truth pose Plane normals’ difference,
distance between planes and
projection overlap

BoW FG - x x X X x

[129] - Points belonging to planes
are known a priori

- FG - x x X X x

[130] FF Joint compatibility branch
and bound test

FM FG - x X X X x

[131] FF ORB FM and angles between
planes

BoW FG FM x X X X x

[132] Monte Carlo Ap-
proach, SI &
RANSAC

Super-pixel contour re-
projection

Done by the mapping
module

GBA - x X X X x

[75] Triangulation FM between input image and
object model using k-d tree
search

object matching GBA object matching x X X x X

[133] - SIFT FM + object detection Implicitly using ob-
ject detection

Semantic-
BA

- x x X x X

[76] - Matching detected text in
door signs

Matching detected
text in door signs

FG Matching de-
tected text in
door signs

x x X x X

[29] FF K-d tree search based on Eu-
clidean distance between 3D
points of detection and land-
marks

BBW FG &
GBA

BBW x X X x X

[103] IDP FM then RANSAC Visual recognition EKF Real Time SLAM
Relocalization
[134]

X x X x X

[78] Cheap optimiza-
tion of the camera
position

FAST FM - GBA BBW &
RANSAC

x X X x X

[74] FM NNS in a Kd tree and Place
Recognition

NNS in a Kd tree and
Place Recognition

non-linear
LSO

Matching DAISY
Descriptors

X x X x X

[18] - Expectation maximization
for soft data association

Mahalanobi’s dis-
tance to semantic
measurements

FG - x X X x X

[19] - ORB FM, semantic labels &
NNS, distance & normal dif-
ference between planes

BoW FG - x X X X X

[127] Depth of points ini-
tialized based on ob-
jects and planes’ de-
tections

ORB FM, and matching
points of objects and planes

FM BA - x X X X X

[135] Homography or es-
sential matrix and
Marker-based initial-
ization [136]

FM, markers matching Marker detection us-
ing a BoW approach

BA Marker detection
OR RANSAC
PnP approach

x X X X x

( - ) indicates that implementation details about the corresponding element/block are not provided
(X) indicates that the corresponding option is adopted
(x) indicates that the corresponding option is not adopted

[135]. Besides the robustness achieved due to employing

point features, utilizing fiducial markers in this system

comes with several advantages such as eliminating scale

ambiguity, robustness in repetitive environments where

distinguishing point features can be challenging, and

feature invariance over time.

3.4.2 Low- and High-Level Feature-based Approaches

A multitude of different SLAM approaches were pro-

posed based on the use of a combination of low- and

high-level features in [75], [133], [76], [29], [103], [78],

[18], [74], and [137]. Such approaches demonstrate high-

level expressiveness while maintaining robustness.

The system proposed in [75] does tracking, object

recognition, and mapping while mainly operating on

monocular RGB frames. Frames exhibiting distinctive

geometrical and/or semantic information are selected

as keyframes. A semantically labelled object is added

to the map after being detected in multiple frames that

contain at least 5 point correspondences, have a min-

imum parallax angle of 3◦, and must exhibit accept-

able geometric conditioning. To distinguish between in-

stances of the same object model in the scene, the pose

of the detected instance in the world frame is hypoth-

esized given the map scale, and the overlap with pre-

viously detected instances is computed. If no overlap is
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detected, a new object instance is added to the map. If

the scale of the map is not yet known, objects detected

sequentially are assumed to belong to the same object

instance in the map. Correspondences are established

between measurements and object models using a k-d

tree search. For more robustness, ORB features in in-

put images are computed and 2D-3D correspondences

are established.

Instead of employing low-level features independently,

geometric features can be used to detect objects in the

scene as proposed in [133] where object detection and

SLAM were done jointly for 2D and 3D sensors using

a novel BA formulation, referred to as Semantic BA.

Upon reception of a new image, features are extracted

and matched to those in the objects model database.

A validation graph is then created for each set of cor-

respondences to an object. The frames in which the

features are matched along with the model from the

database are then transformed into a common pose and

the cost of the corresponding semantic feature is the

re-projection error of the detected features weighted by

the confidence of matches. In the 3D case, when an

object is detected multiple times, the cost function of

the semantic edge includes the re-projection of one de-

tected feature into the other. Frames in which features

were matched to a common point in the model are said

to have a virtual match represented by an edge in the

graph. For consistency purposes, geometric constraints

obtained from SLAM are added to the graph. The re-

sulting validation graph is optimized to obtain the min-

imum re-projection error for all constraints.

In some environments, such as educational entities

and hospitals, each room is assigned a unique identi-

fier which can serve as a landmark in a SLAM system

as presented in [76]. After eliminating the points that

corresponds to walls, a door-sign detector, based on

an SVM classifier, is employed. Characters contained

in a door sign are recognized using Optical Charac-

ter Recognition (OCR). Lines extracted from laser data

along with measurements from the door-sign detector

are then passed to a mapper to map the environment.

Observations of generic objects were used to extend

RGB-D ORB-SLAM2 in [29]. Objects are detected, seg-

mented, and associated to landmarks in the map by

means of a k-d tree. The pose of the objects is deter-

mined using ORB-SLAM. Detected objects are stored

with three pieces of information: the RGB point cloud

of the object, their pose from ORB-SLAM, and the ac-

cumulated detection confidence. The class label is de-

termined based on the entire history of detection of an

object. A sparse map of the environment can be built

explicitly by projecting the point cloud based on the

latest trajectory estimate. Finally, object points are in-

serted into the SLAM state vector as Euclidean coor-

dinates and hence are tracked and further refined upon

reception of new data in the following frames.

EKF-Monocular-SLAM, Structure from Motion (SfM),

and Visual Recognition were combined in the system

proposed in [103]. Objects are detected by associat-

ing SURF points in an images to object models in a

database. Such associations are then geometrically ver-

ified using RANSAC. Afterwards, the PnP algorithm

or DLT algorithm are employed to compute the trans-

formation or Homography matrices for non-planar and

planar models, respectively, which are then used to re-

fine the pose of the object. Matched points are fed into

the monocular SLAM module which is based on EKF-

Monocular-SLAM where the state vector to be esti-

mated consists of the camera motion parameters and

the point features along with the geometry of the de-

tected objects.

On a different note, some scenes in the environment

under observation may exhibit dynamicity which if not

accounted for, hinders the overall performance of SLAM

systems. Hence, most SLAM systems assume a scene

where objects remain static throughout the localization

and mapping processes. The SLAM system presented in

[78] eliminates this assumption by removing dynamic

objects from the observed scene before operation. More

specifically, every RGB-D frame is processed to mask

out regions in which a person was detected using an

RGB-D based method [138]. The remaining data image

a static environment which can be processed using a

standard visual SLAM algorithm. A similar approach

can be found in [137] where dynamic objects are seg-

mented out of the scene by means of a computation-
ally efficient step-wise approach to detect the object

and extract its contour. The static environment is then

mapped based on point features using a novel look-up

table approach that targets using a large amount of dis-

tinct, evenly-distributed point features from the envi-

ronment, which enhances the accuracy of mapping and

localization.

Along the same lines, an online method for extract-

ing non-static objects from the observed scene, and

hence improving the performance of RGB-D SLAM in

non-static environments was proposed in [139]. The ap-

proach consists of three main stages, starting with im-

age differencing to detect any moving objects in the

scene. A particle filter is then employed to track motion

patches in consecutive RGB-D frames, which makes it

more general than approaches that track particular ob-

ject models. Finally, maximum-a-posteriori is used to

identify the scene’s foreground, after segmenting the

moving objects by means of vector quantization. To op-
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erate reliably, the approach requires the observed scene
to consist mainly of static objects and to contain planes.

As the scene to be re-constructed by visual SLAM
grows larger, matching features to points becomes more
challenging because some places exhibit similar appear-
ances. To circumvent this, the work presented in [74]
employs a coarse place recognition module where frames
containing common points are grouped together under
location classes using an overlapping view clustering al-
gorithm. Matching features is then done based on the
Hamming distance between BRIEF descriptors of Har-
ris corners.

Data association and SLAM are tightly coupled prob-
lems that were not considered jointly except in a few re-
search work where they were solved as two optimization
sub-problems. Data association for each observation-
landmark pair is estimated then used to estimate the
sensor and landmark poses. Using this approach, the
accuracy of sensor and landmark pose estimation is

critically degraded by incorrect data association. In ad-
dition, measurements that are discarded due to their
ambiguity cannot be reconsidered when more refined

measurements of the same landmarks are obtained.

These limitations motivated the changes in the SLAM
algorithm proposed in [18] where data association, and

estimations of sensor and landmarks poses were consid-
ered in a single optimization problem. Instead of asso-
ciating each observation to a single landmark, Expec-
tation Maximization was employed to account for the

entire density of the data association while estimating
the sensor and landmark poses, which was referred to
as soft data association. Estimation is based on inertial

measurements, ORB features, and semantic informa-
tion obtained from an object detector. The depth of
an observed landmark is the median of the ORB fea-
tures detected within the bounding box of that land-
mark. In case multiple instances of the same object ex-
ist in the environment, Mahalanobi’s distance is used
to decide data association. An extension of this work
was presented in [140], where semantic structure was
inferred differently. Instead of relying on ORB features,
a stacked hourglass convolutional network was used to
detect semantic features of the object found within each
bounding box. Structure constraints are used to relate
each semantic feature to the corresponding landmark
and Kabsch Algorithm is then used to estimate the ori-

entation of the object. A very similar approach can be
found in [141] with the distinction that it employs non-
Gaussian sensor models as opposed to majority of the
proposed approaches, where Gaussian model are always
assumed.

The system proposed in [142] combines high-level se-

mantically labeled features and low-level CNN features

to localize a mobile robot by means of a coarse to fine
approach. Observations are matched to visual frames
in the map by first comparing the objects appearing in
the image. A finer search is then carried out based on
CNN features of the image. The estimated poses of the
camera as well as the features are finally refined using
BA.

3.4.3 Low-, Middle-, and High-level Feature-based
Approaches

In [143] and [127], SLAM systems are developed based
on features from all three levels; points, planes, and
objects.

The system proposed in [143] employs an RGB-D
sensor to observe features in the environment. Real-
time, efficient performance of this system is achievable
because objects are represented by means of quadrics
which do not require highly detailed representation.

The SLAM problem is formulated as a factor graph
where various types of factors are used, including obser-
vations of points, objects, and planes as well as point-

plane, plane-plane, and object-plane relationships. A
variation of ORB-SLAM2 is used to detect points in the
environment which are then matched among frames in

a coarse-to-fine pyramid. Faster R-CNN is used to de-
tect objects in incoming frames and the corresponding
ellipsoids representing the objects are then computed.
Across frames, semantic labels are used to associate ob-

servations to objects if a single instance of the object
appears in the environment. Otherwise, data associa-
tion is achieved by means of nearest-neighbor matching.

The point cloud representing the scene is segmented to
extract planes using an organized point cloud segmenta-
tion technique. Planes are associated using thresholds
on the distance between them and the difference be-
tween their normals. Factors are added between planes
and points that belong to them, objects and the cor-
responding planes they lie on, and between multiple
planes assuming a Manhattan World. A bag of words
approach is adopted to detect loop closures.

Using points, planes, and objects, observed through
a monocular camera, the work presented in [127] achieves
improved localization, especially in absence of loop clo-
sure, compared to state-of-the-art SLAM systems. This

is attributed to the long-range observability of objects
and planes which facilitates more associations between
old and new measurements. Objects are represented as
cuboids, plane edges are detected then back-projected
to obtain their parameters, and points are added to fur-
ther constrain the camera poses. BA formulation is used
with four types of constraints, camera-plane, camera-

object, object-plane, and point-plane. The maps gen-
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erated are dense and exhibit a high level of expressive
representation.

4 Conclusion

Simultaneous Localization and Mapping is the most
predominant research problem in the robotics commu-
nity where tremendous amounts of effort are put into
generating novel approaches that maximize its robust-
ness and reliability. Upon acquisition of the first set
of measurements from the environment to be recon-
structed, the trajectory of the robot and the map are
initialized. Subsequent measurements go through a pipeline
of different processes that are implemented differently
in each SLAM system but do achieve the same purpose.
Such processes include data association, loop closure,
re-localization, and trajectory and map estimation.

In this paper, we surveyed most of the state-of-the-
art visual SLAM solutions that employ features to lo-

calize the robot and map its surroundings. We classi-
fied feature-based visual SLAM approaches into cat-
egories based on the types of features they rely on;

low-level, middle-level, high-level, or hybrid features.
The strengths and weaknesses of each category were
thoroughly investigated and the challenges that each
solution overcomes were highlighted, when applicable.

Comparisons between approaches in the same category
were provided in tables, comparing the methods that
were adopted to implement each component of the SLAM

pipeline.

Based on our intensive review, we believe that the

following challenges remain unsolved.

1. Generality: Current SLAM solutions lack the ability
to adapt to the environment in which the robot is
operating. Because they depend on a certain type of
features. Failure to detect such features in the envi-

ronment leads to catastrophic degradation in the ac-
curacy of the SLAM outcome. This could be due to
the intermittent presence of features in the environ-
ment or the inability of the employed vision system
to detect them. The former happens if the SLAM
system depends on a very limited set of features, for
instance the set of objects that a neural network can

detect, while not utilizing other elements in the im-
age like planes, geometric primitives, or new objects
that the network was not trained to detect. The lat-
ter might occur in challenging environments or due
to abrupt motions. To cope with such challenges, the
vision system employed by SLAM should be flexi-
ble to accommodate various types of features based
on the environment in which the robot is operating,

for example during a transition between indoor and
outdoor environments.

2. Robustness: In presence of noise from several sources
in the SLAM pipeline, it is sometimes hard for the
estimation algorithm to generate optimum estimates
of the map and trajectory. Very limited research
work has been done to guarantee the optimality
of a SLAM estimate or at least verify whether or
not the estimate is optimal [144], [145], [146], [147],
[148], [149]. To that end, post-processing SLAM es-
timates by means of a neural network, for example,
might result in significant improvements to the esti-
mated trajectory and reconstructed map, and hence
a more robust SLAM system.

3. Scene Understanding and Expressive Representation:
Ever since the deep learning breakthrough in 2012,
object detectors have been heavily exploited in SLAM.
However, the current object detectors do not exploit
any temporal or spatial relationships between the
detections [150]. If such constraints are accounted
for, an increase in the efficiency and reliability of

the detections is expected.

The advances in software and hardware technology
that we currently witness should be directed towards
developing an environment-aware, error-free, general vi-

sual SLAM algorithm that is capable of circumventing
all of these challenges.
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