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Abstract
High-level, real-time mission control of semi-autonomous robots, deployed in remote and dynamic environments, 
remains a challenge. Control models, learnt from a knowledgebase, quickly become obsolete when the environment or 
the knowledgebase changes. This research study introduces a cognitive reasoning process, to select the optimal action, 
using the most relevant knowledge from the knowledgebase, subject to observed evidence. The approach in this study 
introduces an adaptive entropy-based set-based particle swarm algorithm (AE-SPSO) and a novel, adaptive entropy-
based fitness quantification (AEFQ) algorithm for evidence-based optimization of the knowledge. The performance of 
the AE-SPSO and AEFQ algorithms are experimentally evaluated with two unmanned aerial vehicle (UAV) benchmark 
missions: (1) relocating the UAV to a charging station and (2) collecting and delivering a package. Performance is meas-
ured by inspecting the success and completeness of the mission and the accuracy of autonomous flight control. The 
results show that the AE-SPSO/AEFQ approach successfully finds the optimal state-transition for each mission task and 
that autonomous flight control is successfully achieved.

Keywords High-level robot control · Cognitive robotics · Knowledge optimization · Maximum entropy principle · 
Markov decision process · Adaptive entropy-based fitness quantification · Set-based particle swarm optimization

1 Introduction

Cognitive robotics is described as “the study of knowl-
edge representation and reasoning problems, faced by 
an autonomous robot (or agent) in a dynamic and uncer-
tain world” [1]. The efficient control of robots, operating in 
remote environments, has long proved to be a challenge, 
especially when the robot operates in a dynamic environ-
ment. In a typical remote-controlled, semi-autonomous 
robot, elementary knowledge is stored in a knowledge-
base (KB), which is augmented by a domain expert. The KB 
is used for the generation of inference models (controllers) 
for decision-making by the robot.

Arguably, the most widely used statistical formalism for 
the high-level control of robots is the use of finite state 
automata (FSA) as high-level controllers. In FSA, Markov 
decision processes (MDPs) represent the states and state-
action pairs of each state-transition. The state-action pairs 
are referred to as the policies of the FSA and it is the poli-
cies which governs the behaviour of the robot. The objec-
tive is to find an optimum policy for each state-transition. 
However, the generation of inference models in dynamic 
and remote environments is not trivial.
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1.1  Problem description

• Augmenting or modifying the KB of a remotely-
deployed robot becomes more convoluted, error-prone 
and computationally expensive if the structure of the 
KB is complex. Limited communication bandwidth also 
restricts the maintenance of the KB.

• High-level controllers are often generated through 
machine learning techniques, where an FSA is gener-
ated for all states. These techniques progressively learn 
the policies of the FSA, using user-defined parame-
ters, which are often selected subjectively or derived 
through experimentation. For example, Q-learning uses 
a user-defined probability state-transition matrix (STM) 
and reinforcement learning (RL) uses a user-defined 
discounted reward to statistically determine the best 
policies for the FSA. Changes in the environment, is 
likely to lead to the re-optimization of the parameters 
and re-learning of the model.

• When machine learning is used to generate models as 
high-level controllers, the controller (FSA) is learnt in 
its entirety. For dynamic environments, a large num-
ber of models have to be learnt to handle different sce-
narios. However, when the underlying knowledgebase 
changes or the environment changes, learnt models 
may become obsolete and need to be replaced. Due 
to the time it takes to relearn a model, re-generation of 
high-level controllers in real-time operation becomes 
infeasible.

1.2  Proposed solution

The solution proposed in this research study aims to 
reduce and simplify the “cognitive world” of the robot (UAV 
in this study). In this study, cognitive reasoning is defined 
as decision-making, based on current knowledge which 
is optimized using real-time evidence. The solution intro-
duces a cognitive reasoning process (CRP) for the UAV in 
order to govern its behaviour in real-time. This process 
is similar to that of the human cognitive framework [2] 
and intuitively provides the UAV with some intelligence in 
decision-making. Figure 1, gives an overview of the CRP:

A domain expert provides all the knowledge, i.e. the KB, 
mission definitions and evidence definitions, to be used 
by the CRP. The KB is the set of all state-transitions (poli-
cies) between the states of the UAV. Each state-transition 
has a trigger formula which is composed of a set of con-
junctive propositions. The mission definition is defined 
as a set of tasks to be completed in order to successfully 
complete the specified mission. The evidence definition 
is a set of variables, representing environmental observa-
tions, received in real-time. The KB, mission definitions and 

evidence definitions are used by the CRP to find the opti-
mal policy, given the evidence. The CRP will be discussed 
in detail in Sect. 4.

Since the KB is a set of discrete elements, the problem 
is defined as a constrained, set-based knowledge opti-
mization problem. Therefore, the CRP uses the AE-SPSO 
and AEFQ algorithms to find, quantify and evaluate each 
potential policy for optimality. The best policy is then 
selected and its action is passed as a command to the UAV.

To the best of our knowledge, there has been no 
attempt to affect high-level robot control through 
dynamic and real-time policy optimization using a particle 
swarm optimization approach.

The main contributions of this research study are the 
following:

1. The introduction of a novel adaptive entropy fitness 
quantification (AEFQ) algorithm for the statistical 
quantification of state-transitions (policies) of a FSA 
as high-level controller.

2. The introduction of an improved set-based PSO which 
uses the AEFQ, to produce an optimized KB*, which 
contains the optimal policies for selection.

3. The generation of re-usable high-level controllers 
(FSAs) as a result of the real-time, evidence-based, 
policy optimization and execution of the CRP.

Fig. 1  Cognitive reasoning process (CRP)
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The remainder of the research study is organized as fol-
lows: Sect. 2 reviews related work on high-level autono-
mous control in robotics; Sect. 3 provides some theoretical 
background on the methodologies used in the study. Sec-
tion 4 introduces the methodology for the CRP and dis-
cusses the novel AEFQ algorithm and AE-SPSO algorithms 
in detail. Sections 5, 6 describes the experiment setup, 
results and analysis, respectively. Section 7 concludes the 
work of this research study and proposes relevant future 
work on autonomous high-level control through knowl-
edge optimization in the CRP.

2  Related work

Improving the cognitive ability of robots has received a 
considerable amount of attention over the last decade. 
As described in the introduction, the two key factors of 
cognitive robotics, are knowledge representation and 
cognitive reasoning [3]. Although the problem of improv-
ing autonomy is non-trivial, it is relevant to a variety of 
robotic applications, for example, in humanoid robotics 
[4, 5], human–robot interaction [6–9], Search and Rescue 
(SAR) [10] and multi-robot systems [11].

2.1  Knowledge representation

In order to perform efficient inference, the structure and 
content of the KB is very important, especially if the KB has 
to be maintained remotely.

For many years various machine learning approaches, 
such as statistical relational learning (SRL) [12], inductive 
logic programming (ILP) [13, 14] and knowledge-based 
model construction (KBMC) [15, 16] have been used 
to derive expert knowledge from existing data sources. 
Some machine learning systems have been developed 
to learn and formulate knowledge: FOIL [17] learns Horn 
clauses from relational data and MADDEN [16] performs 
statistical knowledge extraction from textual data. CLAU-
DIEN [14] is an ILP engine which computes a set of logically 
valid clauses from data sets.

Horn clauses are particularly useful, as its form is simi-
lar to programmatic conditional statements, and therefore 
easier to implement.

More recent approaches are proving more suitable for 
cognitive robotics. Linear temporal logic (LTL) is used as a 
formal language to define the tasks of a robot, as applied 
in [18], where LTL is combined with Petri Nets to determine 
optimal movement planning for multiple robots.

The problem of high-dimensionality in the relation-
ship between task planning, using LTL and robot motion 
is investigated by Shoukry et al. [19]. Here, LTL is used to 
define a set of propositions, applicable to all robots, for 

each region of the workspace. The robots’ movements 
across regions are controlled by the LTL propositions.

2.2  Cognitive reasoning

A lot of research have been focussed on the low-level 
control of robots, for example improving path planning 
in dynamic environments, where obstacles are avoided 
by prioritizing and predicting the future behaviour of 
the object [20]. However, cognitive robotics is concerned 
with cognitive reasoning, using current knowledge. In [9], 
a semi-autonomous high-level controller is proposed for 
the semi-autonomous control of robot teams in urban 
search and rescue missions. The objective of the control-
ler is to reduce the workload of the robot operator. Other 
cognitive robotic approaches, for example, inductive logic 
programming (ILP) which is used for predicate generation, 
is combined with reinforcement learning (RL) to learn opti-
mal behavioural policies in [21].

A popular approach used for cognitive robotics is the 
combination of (LTL) and MDPs, where the LTL formulae 
provide a formal definition of tasks for the robot and the 
MDPs are used to synthesize high-level controllers. How-
ever, synthesizing high-level controllers in a, dynamic envi-
ronment remains a challenge. Meyer and Dimarogonas 
[22] introduces a framework to increase the adaptability 
of the synthesis process, by using a 3-layer top-down hier-
archical decomposition of the control problem. A three 
step-approach is used to firstly, solve the LTL problem on 
a FSA, secondly, find the best policy for transitioning and 
thirdly, synthesize a controller.

Reinforcement learning (also referred to as Q-learning) 
of MDP type controllers are increasingly being combined 
with other methodologies to learn high-level control-
lers to accomplish some task. Generally, the objective of 
Q-learning is to iteratively select the best policy, i.e. state-
action, which maximizes the expected discounted reward 
(Q-value), given the current state, the user-defined STM 
and user-defined rewards. The most popular approach is 
the use of the Bellman equations [23], which calculates 
the optimal Q-value over all policies. In [24], Q-learning is 
used in combination with a Deep Deterministic Policy Gra-
dients (DDPG) algorithm for a UAV to learn a landing task 
in simulation. In [25], the effectiveness of the Q-learning 
algorithm for robot path planning, is improved by using 
a flower pollinating algorithm to initialize the q-values of 
the algorithm.

2.3  Critical review

For semi-autonomous robots, remotely deployed in 
unknown and dynamic environments, the complexity 
of the formulation of expert knowledge is critical. The 
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methods discussed in Sect. 2.1 may prove to be sufficient 
for discovery and formulation of knowledge for high-level 
robot control in a controlled or well-defined environment. 
However, in an unknown or highly dynamic environment, 
the knowledge needs to be maintained in real-time, often 
over vast distances. For these types of environments, the 
methods discussed will prove to be computationally 
expensive and error-prone and may be constrained by 
communication bandwidths.

Similarly, learning high-level controllers using machine 
learning techniques, such as Q-learning mentioned in 
Sect. 2.2, will be sufficient in well-defined or controlled 
environments. For environments such as these, effective 
models can be learned. A degree of dynamism may be 
catered for by learning a large number of models to cater 
for as many scenarios as possible. However, if the environ-
ment is unknown or highly dynamic, the accuracy of the 
models will be sub-optimal. Moreover, it is infeasible to 
relearn a model in real-time, every time the environment 
changes.

The AE-SPSO/AEFQ methodology introduced in this 
study follows a real-time optimization approach, while a 
machine learning methodology follows an a priori learning 
approach. The main differences between the two meth-
odologies are:

• The modification and updating of the expert-knowl-
edge (missions, states and rules), which is used in the 
optimization process is simplified, and therefore uses 
less bandwidth and is less error-prone.

• No subjective user-defined state-transition probabili-
ties are required; instead probabilities are accurately 
calculated from real-time evidence, received from the 
environment.

• An open world assumption (OWA) (c.f. Sect. 3.1) is used 
in the quantification process.

• State-transitions can be composite, i.e. multiple state-
transitions between the same two states, each statisti-
cally quantified using its own rules and with its own 
actions.

• A re-usable high-level controller (FSA) is dynamically 
created, step-by-step in real-time.

These differences are too significant to do a fair empiri-
cal comparison between a machine learning approach 
and the AE-SPSO/AEFQ approach proposed in this study. 
This is mainly due to the differences between the learning 
approach followed by a machine learning methodology 
and a real-time optimization approach followed the AE-
SPSO/AEFQ approach.

Therefore, the performance of the AE-SPSO/AEFQ meth-
odology will be evaluated experimentally, on two simu-
lated UAV benchmark problems.

3  Background

In this section, some characteristics of the knowledgebase 
are discussed and an overview of the standard particle 
swarm optimization algorithm and the set-based particle 
swarm optimization algorithms is given.

3.1  Knowledgebase characteristics

The KB contains domain-specific and relevant knowledge, 
required for decision-making, i.e. inference. In this study, 
the KB is composed of the set of all state-transitions with 
a trigger formula for each state-transition. The trigger for-
mula is composed of a conjunctive set of logic proposi-
tions. Inference, is defined as the CRP which uses the KB to 
find the optimal policy to control the the UAV. The CRP is 
directly influenced by the completeness and consistency 
of the KB.

The KB is considered to be complete, if all possible 
knowledge needed for inference is formulated within the 
KB. This means each trigger formula is completely defined.

The KB is considered to be consistent, if there are no 
changes made to any of the ground propositions during 
inference. While consistency is not a requirement for the 
representation of the knowledge in the KB, it is important 
for efficient reasoning.

In addition, inference is performed, using either a closed 
world assumption (CWA) or an open world assumption 
(OWA) [26, 27]. The CWA assumes the knowledge about 
the environment is complete and consistent. This means 
that, unless it is known that a trigger formula is true, it 
must be assumed to be false.

The OWA on the other hand, assumes that the knowl-
edge representing the environment is incomplete or 
inconsistent. This means that if all knowledge is not explic-
itly specified, the truth of the trigger formula is considered 
unknown, but not false. Therefore, a probability (“degree 
of belief”) is statistically allocated to the trigger formula.

In a dynamic environment, the KB can never be com-
plete, as the domain expert could update the KB with 
new or updated state-transitions or trigger formulae at 
any time.

Also, the KB can never be consistent, as the evidence, 
which will be applied to the trigger formula for fitness 
quantification, constantly changes in real time.

Clearly, for a robot functioning in a dynamic and uncer-
tain environment, the OWA is the preferred approach 
to follow. Therefore, the solution must enable simple, 
dynamic and efficient maintenance of the KB and dynamic 
and real-time reasoning for high-level robot control. Sec-
tion 4 below discusses the proposed methodology to 
achieve this, in more detail.
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3.2  Overview of standard particle swarm 
optimization

Particle swarm optimization (PSO) is a stochastic optimi-
zation algorithm, which has been successfully applied to 
optimization problems in the fields of engineering and 
robotics [28–30]. PSO has been successfully applied to 
problems where the search space is either continuous or 
discrete.

Inspired by the movement and behaviour of a flock 
of birds searching for food, Eberhart and Kennedy intro-
duced the standard particle swarm optimization (StdPSO) 
algorithm [31]. The swarm of particles moves through a 
D-dimensional solution space. The position of particle i  in 
the solution space represents a candidate solution, which 
is defined as a solution vector, �i ∈ ℝD . The optimality of 
the candidate solution is determined by a fitness function, 
f
(
�i

)
∈ ℝ . The particle’s velocity represents the step size 

and direction of its movement and is defined by a vector 
�i ∈ ℝD . StdPSO iteratively updates each particle’s velocity 
and position using the following equations:

where vij(t) represents the jth element of the velocity 
vector of particle i  , at the tth iteration. An inertia weight 
� is applied to the particle velocity. Two key compo-
nents of the velocity equation are, the cognitive com-
ponent, c1r1j

(
yij(t) − xij(t)

)
 , and the social component, 

c2r2j
(
ŷj(t) − xij(t)

)
 , where yij(t) represents the jth element 

of the personal best vector of particle i  at the tth iteration 
and ŷj(t) represents the jth element of the global best vec-
tor of the swarm at the tth iteration. The term, xij(t) , repre-
sents the jth element of the current position of particle i 
at the tth iteration. The two positive real numbers c1 and c2 
are acceleration constants, used to scale the contributions 
of the cognitive and social components. The random val-
ues, r1j , r2j ∼ U(0, 1) , add a stochastic element to the cogni-
tive and social components. A user-defined inertia weight, 
� , is added to the current velocity [32], which, along with 
the acceleration constants, balances the effect between 
global search and local search.

The general fitness function for the PSO is defined as:

For a minimization problem, the personal best position 
at the next iteration is calculated as,

(1)
vij(t + 1) = �vij(t) + c1r1j

(
yij(t) − xij(t)

)
+ c2r2j

(
ŷj(t) − xij(t)

)

(2)xij(t + 1) = xij(t) + vij(t + 1)

(3)f ∶ ℝ
n�

→ ℝ

(4)yi(t + 1) =

{
yi(t) if f

(
Xi(t + 1)

)
≥ f

(
yi(t)

)
Xi(t + 1) if f

(
Xi(t + 1)

)
< f

(
yi(t)

)

and for a maximization problem, the personal best posi-
tion at the next iteration is calculated as,

For a minimization problem, the global best position at 
the next iteration is calculated as,

and for a maximization problem, the global best position 
at the next iteration is calculated as,

On conclusion of all iterations, all (or most) of the parti-
cles have converged on the best solution, which is repre-
sented by the global best vector.

3.3  Overview of set‑based particle swarm 
optimization

When the search space is discrete, the velocity and posi-
tion update Eqs. (1) and (2) cannot be used without re-
definition. Langeveld and Engelbrecht [33] introduced 
a generic, set-based PSO (SPSO), suitable for optimiza-
tion problems with a discrete search space. To remain 
in accordance with standard PSO, velocity and position 
update equations, are redefined in terms of set-based 
operators. The set-based velocity equation is:

where 
(
c1r1 ⊗

(
Yi(t)⊖ Xi(t)

))
 is the cognitive com-

ponent and 
(
c2r2 ⊗

(
Ŷ(t)⊖ Xi(t)

))
 is the social com-

ponent. Two additional components are added 
to the standard PSO equation: c3r3 ⊙

+
k
Ai(t) and 

c4r4 ⊙
− Si(t)  ,  w h e r e  Ai(t) = U�

(
Xi(t) ∪ Yi(t) ∪ Ŷ(t)

)
 

and Si(t) =
(
Xi(t) ∩ Yi(t) ∩ Ŷ(t)

)
 . The parameters are 

c1, c2 ∈ [0, 1] and c3, c4 ∈ [0, |U|] . The random numbers, r1 
to r4 , are random values sampled from a uniform distribu-
tion, i.e. r1, r2, r3, r4 ∼ �(0, 1).

The set-based position update equation is:

While the movement of particles through the search 
space is governed by Eqs.  (1) and (2) for a continuous 
search space, Eqs. (8) and (9) govern the movement of 
particles (sets) through a discrete set-based search space. 

(5)yi(t + 1) =

{
yi(t) if f

(
Xi(t + 1)

)
≤ f

(
yi(t)

)
Xi(t + 1) if f

(
Xi(t + 1)

)
> f

(
yi(t)

)

(6)ŷ(t + 1) =

{
ŷ(t) if f

(
Xi(t + 1)

)
≥ f (ŷ(t))

Xi(t + 1) if f
(
Xi(t + 1)

)
< f (ŷ(t))

(7)ŷ(t + 1) =

{
ŷ(t) if f

(
Xi(t + 1)

)
≤ f (ŷ(t))

Xi(t + 1) if f
(
Xi(t + 1)

)
> f (ŷ(t))

(8)

Vi(t + 1) =
(
c
1
r
1
⊗

(
Yi(t)⊖Xi(t)

))
⊕

(
c
2
r
2
⊗

(
Ŷ(t)⊖Xi(t)

))
⊕

(
c
3
r
3
⊙+

k
Ai(t)

)
⊕

(
c
4
r
4
⊙−

Si(t)
)

(9)Xi(t + 1) = Xi(t) ⊞ Vi(t + 1)
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The knowledge optimization process of the CRP will be 
implemented using an improved SPSO algorithm.

4  Methodology

This CRP of an autonomous UAV (illustrated in Fig. 1), have 
two main functions: cognition and reasoning. The cognition 
component is tasked with the statistical optimization of the 
knowledge from the KB, given the environmental evidence. 
The reasoning component is tasked with selecting the opti-
mal action �∗ , from the optimized knowledgebase, KB. The 
methodology is implemented in Algorithms 1–3.

4.1  Evidence definitions

Environmental evidence is defined as two sets, represent-
ing the mission parameters and evidence parameters. 
The former is provided by the domain expert in relation 
to a specific mission and the latter is sensory information 
observed by the robot.

The runtime parameter is defined as,

where �r
i
 , i = 1, .., n�r is the runtime parameter represent-

ing the evidence observed in the environment.
The mission parameters are defined as,

where �m
j
∈
[
lbmj , ubmj

]
 , j = 1, .., n�m defines the mission 

parameter, constrained to specified lower and upper bounda-
ries. Both the mission and evidence parameters are used in the 
calculation of constraint averages, and represent the dynamic 
environmental information received by the robot’s CRP.

4.2  Knowledgebase definitions

The KB is defined as the set of state-transitions which gov-
erns the behaviour of the UAV:

where �k ∈ KB , k = (1,… , |KB|) represents a state-transi-
tion in the KB.

The state-transition is a tuple,

where � = {0, 1} indicates whether the transition is 
valid, � ∈ ℤ+ is an objective identifier assigned to the 

(10)�r =
{
�r
1
,�r

2
,… ,�r

n�r

}

(11)�m =
{
�m
1
,�m

2
,… ,�m

n�m

}

(12)KB =
{
�1, �2,… , �n|KB|

}

�k = (�, �,A,F)

transition, A =
{
a1,… , anA

}
 is a set of actions and 

F =
{
p1, p2,… , pnF

}
 is the trigger formula for the transi-

tion, consisting of a set of simple logic propositions.
Each proposition pl ∈ F  , l =

(
1,… , nF

)
 is defined by a 

domain expert and is a tuple,

where the runtime and mission parameters are related by 
a logical_operator , from the set {>,<,=} , to form simple 
propositions of the form:

(Any non-numeric argument is discretized to a numeric 
value, prior to quantification of F ).

The indicator � , the objective identifier � , the actions A 
and all the propositions pl are defined and maintained by 
the domain expert.

4.3  Adaptive entropy fitness quantification

4.3.1  Model construction

In order to perform the quantification of a state-transition 
τk , a problem-specific model is constructed before it is 
presented to the MEP equation for quantification. Given 
a state-transition τk ∈ KB the model is formally defined 
as a tuple,

The set  of  var iables  are  represented by 
� =

{{
vℚ

}
∪,
{
vℙ
1
, vℙ

2
,… vℙ

nℙ

}
∪
{
v𝔸
1
, v𝔸

2
,… v𝔸

n𝔸

}}
 where 

vℚ is the query variable, vℙ
p

 , p = 1,… , nℙ is a predictor vari-
able, representing a proposition in the trigger formula and 
v�
l

 , l = 1,… , n� is an association variable. Note that, since 
the propositions are independent, they will not have any 
effect on the query variable, unless relevant associations 
are defined between the query variable and appropriate 
predictor variables. The associations are problem-specific 
and are defined by the user.

Let m�k
=
||||
{
vℚ

}
∪
{
vℙ
1
, vℙ

2
,… vℙ

nℙ

}|||| , and n�k = 2
m�k , then 

a m�k
× n�k constraint matrix. � is the state space of the 

trigger formula and defines all the joint statements of {
vℚ

}
∪
{
vℙ
1
, vℙ

2
,… vℙ

nℙ

}
 . A binary constraint function, 

F
(
X = xij

)
 , i ∈ n�k and j ∈ m�k

 assigns a boolean constraint 
to each variable in the state space. Let nV =

(
1 + nℙ + n𝔸

)
 , 

then vector � =
(
F1, F2,… , FnF

)
 , nF = nV  are constraint 

averages for each of the variables in � . The vector 
� =

(
�1, �2,… �n�

)
 , n� = nV , represents the Lagrange mul-

tipliers, calculated for each variable in � , using (25).

(13)pl =
(
�r
i
, logical_operator,�m

j

)

(14)
(
𝜑r
i
> 𝜑m

j

)
,
(
𝜑r
i
< 𝜑m

j

)
and

(
𝜑r
i
= 𝜑m

j

)

(15)M�k
= (�,�,�,�)
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Each constraint average FnF ∈ � represents the degree 
of belief in a proposition and is derived from real-time 
information (evidence) received from the environment. 
The constraint average follows the OWA, and is crucial for 
the accurate quantification of the state-transition.

In this research study, the constraint average is calcu-
lated by interpreting a proposition as a degree of believe, 
(probability), derived from a distance calculation. For 
example, Fig. 2 illustrate two example state-transitions:

A constraint average for the proposition is calculated by 
measuring the progress of the current runtime parameter 
�r
i
 , relative to the operational bounds of the mission task. 

The result is a probability assigned to the proposition. Fig-
ure 3 illustrates the approach:

This approach ensures that the constraint average 
accurately reflects relevant environmental evidence. This 
also ensures that the fitness quantification of the trigger 
formula for the state-transition is based on relevant and 
correct environmental evidence.

The rule is translated into a probability as follows:
Firstly, given the proposition pl , calculate the total oper-

ation distance dm
j
, using the upper and lower bounds of 

the mission argument:

(16)dm
j
= ubm

j
− lbm

j

Calculate the current distance dr
i
 of the runtime argu-

ment, �r
j
 with respect to the upper and lower bounds of 

the mission parameter, �m
i

 , according to the logical opera-
tion of the proposition:

Use (16) and (17) to calculate a real valued distance, in 
the range [0, 1] , for the proposition:

where Pr
(
pl
)
 represent the relative remaining distance of 

�r
i
 , within the boundaries lbm

j
 and ubm

j
 as a probability. 

Once the distances for each proposition have been calcu-
lated, the distances for each of the joint statements can be 
calculated. To illustrate, let vℚ = p0 , v

ℙ

1
= p1 and vℙ

2
= p2 , 

then the state space consists of 23 = 8 joint statements. 

(17)dr
i
=

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�r
i
− lbm

j
; if pl =

�
�r
i
≤ �m

j

�

ubm
j
− �r

i
; if pl =

�
�r
i
≥ �m

j

�

0; if pl =
�
�r
i
≠ �m

j

�

1; if pl =
�
�r
i
= �m

j

�

(18)Pr
(
pl
)
=

dr
i

dm
j

Fig. 2  Example state-transitions with corresponding propositions

Fig. 3  Method for constraint average assignment to propositions
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The joint distances, for the predictor variables are calcu-
lated as follows:

The overall distance df  , represented by the probability 
distribution over all the propositions of the trigger for-
mula, is calculated by:

With all the joint distances of the joint statements avail-
able, the respective constraint averages can now be calcu-
lated. Firstly, the constraint average F1 of the query variable 
p0 is set to 1.0. The constraint averages for the predictor 
and association variables are then set as follows:

Next, the Lagrange multipliers are determined.
The duality between the Lagrange multipliers and the 

user-defined constraint averages, allows the Legendre 
transform to be used to derive the Lagrange multipliers:

The multipliers are derived by varying the values of �k 
while keeping the constraint average, Fj fixed, until Ltrans 
reaches a minimum. Table 1 shows an example of a model 
for a trigger formula containing two propositions, B and 
C, including associations with the query variable A, i.e. AB, 
AC, ABC. The model contains a m�k

× n�k boolean constraint 
matrix, where m�k

= 3 and n�k = 8.
Once the model is complete, the fitness quantification 

can be performed.

4.3.2  Fitness quantification

Given the model M�k
 , the probability distribution, 

� =
(
q1, q2,… qn�

)
 , n� = n�k over the variables (proposi-

tions) of the trigger formula can now be calculated. Given 
the m�k

× n�k constraint matrix and let i ∈ n�k and j ∈ m�k
 , 

the MEP is then formally defined as:

(19)dp1p2 = dp1 + dp2

(20)dp1p2 = dp1 +
(
1 − dp2

)

(21)dp2p2 =
(
1 − dp1

)
+ dp2

(22)dp1p2 =
(
1 − dp1

)
+
(
1 − dp2

)

(23)df =
(
dp1p2 + dp1p2 + dp2p2 + dp1p2

)

(24)� =

(
dp0 ,

(
dp1p2 + dp1p2

)

df
,

(
dp1p2 + dp1p2

)

df
,

(
dp1p2 + dp1p2

)

df
,

(
dp1p2 + dp1p2

)

df
,
dp1p2

df

)

(25)Ltrans = � = min
�k

(
ln Z

(
�1, �2,… �k

)
−

mτk∑
j=1

�jFj

)

where Z
�
�1, �2,… �k

�
=

τk∑
i=1

e

mτk∑
j=1

�j Fj(X=xi)

Z is the partition function which ensures the probabili-
ties are assigned between 0 and 1. The Lagrange multipli-

ers are represented by �j , j = 1,… , k and Fj
(
X = xi

)
 assigns 

a real-world, domain-specific constraint, to the state i  of 
variable j.

(Refer to [34], chapters 24 and 25 for a detailed dis-
cussion on the mathematical derivation of the Legendre 
transformation and the MEP formula).

Finally, the fitness of the state-transition �k ∈ KB is cal-
culated as,

where � ∈ �k and � = 1 indicate a valid state-transition and 
� = 0 indicate an invalid state-transition.

Note that any of the resulting probabilities (including 
marginal probabilities) in the distribution � may now be 
used in the fitness quantification. However, in this study, 
only q1 will be used for fitness quantification, since its 
value is conditioned on all the predictor variables, i.e. 
propositions.

4.4  The AE‑SPSO algorithm

The AE-SPSO algorithm is an improved variant of the SPSO 
(c.f. Sect. 3.3). The AE-SPSO algorithm eliminates the ran-
dom removal of (potentially good) solutions from the 
personal best- and global best sets. Moreover, an elitism 

(26)
�
qi�M�k

�
=

1

Z
�
�1, �2,… �k

�e
−

mτk∑
j=1

�j Fj(X=xi)

(27)f
(
�k
)
= � × q1

Table 1  Model of illustrative example

i A B C AB AC ABC

1 1 1 1 1 1 1
2 1 1 0 1 0 0
3 1 0 1 0 1 0
4 1 0 0 0 0 0
5 0 1 1 0 0 0
6 0 1 0 0 0 0
7 0 0 1 0 0 0
8 0 0 0 0 0 0

⟨F
A
⟩ ⟨F

B
⟩ ⟨F

C
⟩ ⟨F

AB
⟩ ⟨F

AC
⟩ ⟨F

ABC
⟩

�
1

�
2

�
3

�
4

�
5

�
6
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approach is added to the AE-SPSO to ensure the best per-
forming elements are retained in a scalable manner. The 
AE-SPSO algorithm uses the same cognitive, social and 
positioning components as those in Eqs. (1) and (2). How-
ever, since the particle is a set of state-transitions, each 
with a trigger formula, the algebraic operations of Eqs. (1) 
and (2) are not suitable and have to be redefined as set-
based operations:

Let:

Xi be the current position of particle i  , (i.e. the set of 
state-transitions, �k).
Yi be the personal best position of particle i  , (i.e. the 
personal best set of state-transitions).
Ŷ  be the global best position of the swarm (i.e. the 
global best set of state-transitions).
c1, c2 be the cognitive and social accelerators respec-
tively.

then

where

The difference between the particle’s personal best set 
yi and the particle’s current set Xi is defined as the unifica-
tion of Yi and the set-theoretic difference between Yi and 
Xi . That is, all the elements in the particle’s personal best 
set are retained and the elements in Xi which are not in Yi 
are included in the difference set.

The difference between the swarm’s global best set Ŷ  
and particle’s current set Xi is defined as the unification of 
Ŷ  and the set-theoretic difference between Ŷ  and Xi . That 
is, all the elements the swarm’s best set is retained and 
the elements in Xi which are not in Ŷ  are included in the 
difference set.

(28)Vi(t + 1) = r1ccog
(
dcog

)
∪ r2csoc

(
dsoc

)

(29)Xi(t + 1) = max�
(
Xi ∪ vi(t + 1)

)

Cognitive difference ∶ dcog ∶ Yi ∪
(
Xi�Yi

)

Social difference ∶ dsoc ∶ Ŷ ∪
(
Xi�Ŷ

)

Cognitive velocity ∶ vcog ∶ f
(
KB, r1,c1

)
∪
(
dcog

)

The cognitive velocity is derived by the union of c1 ran-
dom elements selected from the KB and the cognitive 
difference set. For each c1 , a random integer value r1 is 
selected from the range [1, |KB|] and the element (state-
transition) at index r1 is added to dcog.

The social velocity is derived by the union of c2 ran-
dom elements from the KB and the social difference set. 
For each c2 , a random integer value r2 is selected from the 
range [1, |KB|] and the element (state-transition) at index 
r2 is added to dsoc.

The resulting velocity Vi(t + 1) is the union of the ele-
ments of cognitive velocity vcog and the elements of the 
social velocity vsoc.

Using the AEFQ algorithm (Algoritm 1), the fitness f
(
�k
)
 , 

where �k ∈ Xi , is calculated. In order to preserve the fittest 
elements from one iteration to the next, an elitism param-
eter � , is introduced [48]. The elitist parameter � specifies 
the number of fittest elements to include in the particle’s 
new position set. The new position Xi(t + 1) is derived by 
selecting the top � (fittest) elements from the union of the 
current position xi and the velocity Vi(t + 1) . The selection 
of the top � elements is denoted by max�(⋅).

Note the absence of the inertia weight applied to the 
particle’s current velocity. In the standard PSO, the inertia 
weight � , along with the accelerator constants c1, c2 con-
trol the granularity of the exploration. In set-based PSO, 
the accelerator constants c1, c2 control the granularity by 
specifying the size of the random set of new elements to 
be added. Similarly, the inertia weight � , would specify 
the size of the subset of elements (the inertia set) to be 
selected from the velocity set. However, it would serve no 
purpose to add the inertia set again, because when cal-
culating the new position set, the velocity set is already 
added in full to the current position set. Therefore, when 
calculating the difference sets dcog and dsoc at the next 
iteration, the new position already includes the velocity 
elements.

Social velocity ∶ vsoc ∶ f
(
KB, r2,c2

)
∪
(
dsoc

)

Particle velocity ∶ Vi(t + 1) = vcog ∪ vsoc

Particle position ∶ Xi(t + 1) = max�
(
Xi ∪ Vi(t + 1)

)
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The CRP is implemented according to the logical pro-
cesses defined by Algorithms 1–3. Algorithm 1 shows the 
implementation of the adaptive entropy fitness quantifica-
tion method.

Note that, for simplicity, the sensory input is processed 
as single set, rather than each individual input element. 
Prior to the constraint average calculation (line 9), the 

arguments of the trigger formula of the state-transition 
are ground using the corresponding sensory input param-
eters. This automation of the grounding process simplifies 
modification or creation of new propositions.

Algorithm 2 shows the process for finding the optimal 
solution (state-transition), based on the fitness of the par-
ticle, determined by the AEFQ (Algorithm 1).
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The CRP uses the optimal set of solutions (state-tran-
sitions) found by the AE-SPSO to select and execute the 
relevant actions.

Fig. 4  Experiment platform architecture

5  Experiment setup

The methodology is experimentally evaluated by simula-
tion, where a UAV autonomously execute two benchmark 
missions, one simple and one more complex. The perfor-
mance measures for each of the benchmark missions are:

1. Success—measured by inspecting the completeness 
of the learned FSA (digraph), for each mission and;

2. Reasoning—measured by inspecting the level of 
velocity control of the UAV, based on reasoning about 
the statistical fitness of each state-transition.

Hardware: The experiments were executed on an Intel i7 
laptop computer with 2.97 GHz quad core CPU, 16 Gb RAM 
and an Intel HD Graphics 4000 video adapter.

Software: The experiments were performed using the 
AirSim/Unity simulation environment, running on the 
Microsoft Windows 8.1 operating system.

Figure  4 illustrates the simulation’s software 
architecture:

The code base of the AirSim/Unity simulator is C++ and 
the CRP were implemented using C#/NET (providing 
simpler memory management and easier data structure 
manipulation). To simplify future deployment of the CRP 

on a UAV platform, the CRP was functionally abstracted 
from the simulation environment. Integration between 
the AirSim/Unity simulator and the CRP was performed 
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using a Redis Cache database. Expert data, such as mis-
sion data, were entered in extensible markup language 
(XML) format.

5.1  Benchmark mission 1

From the Home (I) location, arm the motors, ascend to a 
specified operational height and fly to the Charging point 
(IV). Descend on the charging point and disarm the motors 
(Fig. 5).

5.2  Benchmark mission 2

From the Home (I) location, arm the motors, ascend to 
a specified operational height and fly to the Collection 
point (II). Descend and collect the cargo, then ascend to 
the specified operational height and fly to the Delivery 
point (III). Descend at the delivery point and deliver the 
cargo. Ascend to a new operational height and fly to the 
Charging point (IV) for recharging. Descend on the charg-
ing point and disarm the motors (Fig. 6).

The UAV platform has nine states (Table 2).
The nine UAV states yields a KB of 81 possible state-

transitions (Table 3).
The KB is constructed as a square matrix, assuming a 

transition from every state to every other state. Valid states 
are defined by the domain expert, by setting an indica-
tor on the state-transition as well as defining a trigger 
formula for each valid state-transition. Although some 

Fig. 5  Benchmark mission 1

Fig. 6  Benchmark mission 2
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Table 2  UAV states

S1—Motors off S2—Motors on S3—Ascending
S4—Hovering S5—Flying S6—Descending
S7—Rotating S8—Acquiring cargo S9—Releasing cargo
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state-transitions can never be valid [e.g. from S5 (flying) 
to S1 (Motors Off )], this approach makes it simpler for the 
domain expert to activate new transitions. Valid state-
transitions for the experiments are marked in Table 3 as 
shaded/italic/bold cells.

For each of the benchmark missions, an annotated 
video of the simulation is recorded and published to 
YouTube:

1. UAV benchmark mission 1 [35]
2. UAV benchmark mission 2 [36]

6  Experiment results

6.1  Benchmark mission 1: results

Figure 7 shows the resulting FSA for benchmark mission 
1, dynamically learned by the CRP from the KB (Table 3), 
during the execution of mission 1. The node in bold shows 
the start state, i.e. Motors Off.

Figure 8 provides a “zoomed” view showing the “fly” 
state-transitions, and corresponding fitness of each, gen-
erated by the CRP.

Fig. 7  FSA learned for benchmark mission 1

Fig. 8  A “zoomed” image of the iterative “fly” transition generated during mission 1
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The learned FSA can be saved and, provided the mis-
sion and operational conditions remain the same, may 
be used as high-level controller to execute similar, subse-
quent missions.

Figure 9 shows the dynamic control of the velocity, 
derived from the state-transition fitness. The graph shows 
the reduction in velocity, in accordance with the reduction 
in fitness of the “fly” state-transition, as the UAV nears its 
destination.

Fig. 9  Dynamic velocity adjustment during mission 1

Fig. 10  UAV reducing its velocity as it approaches its target destination
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On the graph, the target destination (charging) of mis-
sion 1 can be seen at task 18. The graph shows that the 
UAV proportionally reduces its velocity as it approaches 
its destination.

Figures 10 and 11 show some key stages in the simula-
tion for benchmark mission 1. The window at the bottom 
shows the CRP finding the optimal state-transitions and 
sending the corresponding actions to the simulator. The 
window on the left shows the results of the simulator as it 
performs the actions received from the CRP.

Figure 10, shows the dynamic velocity adjustment of 
the UAV, derived from the fitness probability, as the UAV 
approaches its target. This behaviour is used to evaluate 
performance measure 2.

As the UAV approaches its target, Pr
(
𝜑r
i
< 𝜑m

j

)
 is 

reduced from 0.3 to 0.25 and the velocity of the UAV (indi-
cated in the window left) is adjusted accordingly from 8.00 
to 2.00 m/s.

Figure  11, shows the successful completion of the 
mission. This behaviour is used to evaluate performance 
measure 1.

When the UAV reached its target destination (the charg-
ing point), it descends and successfully completes the 
mission.

6.2  Benchmark mission 2: results

Figure 12 shows the resulting FSA for benchmark mission 
2, dynamically learned by the CRP from the KB (Table 3), 
during the execution of the mission. The node in bold 
shows the start state, i.e. Motors Off.

Figure 13 provides a “zoomed” view showing the “fly” 
state-transitions, and corresponding fitness for each, gen-
erated by the CRP.

The graph in Fig. 14 shows the dynamic velocity con-
trol, derived from the state-transition fitness. The graph 
shows the corresponding reduction in velocity every time 
the UAV near its target.

On the graph, the three target destinations (collec-
tion, delivery and charging) of the missions can be seen 
at tasks 7, 15, and 21. The graph shows that the UAV pro-
portionally reduces its velocity as it approaches each of 
the destinations.

Figures 15 and 16 shows some key stages in the simula-
tion for benchmark mission 2. Figure 15 shows the UAV in 
process of collecting its cargo.

Figure 16 shows the UAV adjusting its velocity in accord-
ance with the fitness of the state-transition, fly.

Figure  17 shows the UAV successfully delivering its 
cargo.

Fig. 11  UAV reaching its destination and completing the mission



Vol:.(1234567890)

Research Article SN Applied Sciences (2019) 1:1684 | https://doi.org/10.1007/s42452-019-1697-4

6.3  Discussion

6.3.1  Performance

Overall, the experimental results (Figs. 7, 8, 9, 10, 11, 12, 
13, 14, 15, 16, 17) shows that our approach works well for 
real-time knowledge optimization for high-level control 
in cognitive robotics.

The simulation was executed repeatedly, with consist-
ent results. Figures 7 and 8 (for benchmark mission 1) 
and Figs. 12 and 13 (for benchmark mission 2) shows that 
the approach successfully executed the expert-defined 

missions. This success was also observed during the sim-
ulation. Figures 9 and 14, for benchmark mission 1 and 2 
respectively, shows the successful reasoning for velocity 
control, using statistical reasoning. The figures show the 
corresponding velocity adjustment, based on the fitness 
(probability) which is also shown in the zoomed Figs. 8 and 
13 for the “fly” action.

In addition, conducting the experiments also showed 
the following general benefits:

• The approach is less error prone and requires less band-
width to maintain because, in our approach, knowl-

Fig. 12  FSA learned for benchmark mission 2

Fig. 13  A “zoomed” image of the iterative “fly” transition generated during mission 2
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edge and missions are defined using a simple structure. 
The trigger formula of state-transitions is constructed 
as a simple conjunction of propositions, and is there-
fore more intuitive to the domain expert. Moreover, 

the knowledgebase and missions can be modified 
independently, reducing errors during the updating 
process.

Fig. 14  Dynamic velocity adjustment during mission 2

Fig. 15  UAV collecting its cargo at the collection point
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Fig. 16  UAV reducing its velocity as it approaches its target destination

Fig. 17  UAV successfully delivering its cargo
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• There is no re-learning of complex statistical reason-
ing models or networks whenever the knowledge or 
evidence changes because, in our approach, potential 
solutions are evaluated in real-time and a statistical 
model for reasoning is generated in real-time by the 
MEP.

• Autonomous behaviour can be controlled more effec-
tively because in our approach, the probabilities and 
marginal probabilities provided by the AEFQ algorithm 
enables a finer control of the statistical fitness evalua-
tions of the state-transitions.

• The high-level control provided by the CRP is more 
representative of human cognition, because in our 
approach, the OWA is followed. This means the action 
of a state-transition may be less probable, but not 
impossible. This gives the CRP powerful reasoning 
capabilities.

• The fitness of a state-transition is a true representation 
of the environment because, the MEP applied in our 
approach, guarantees an accurate probability assign-
ment, based only on the constraint averages derived 
from the mission constraints and environmental evi-

dence. There are no other subjective control param-
eters or bias in the fitness quantification.

6.3.2  Time efficiency

The objective of this study is the real-time, high-level con-
trol provided by the CRP. Therefore, the time efficiency of 
the CRP, i.e. the time taken by the AE-SPSO to find an opti-
mal solution for a mission task, is evaluated. Optimization 
algorithms, including the PSO algorithm, is known for the 
extensive time it takes to converge on an optimum. This is 
especially true for large, multi-dimensional and real search 
spaces. However, in our approach, the search space is finite 
and discrete, allowing the AE-SPSO to find optimal solu-
tions in acceptable and sufficient time. Moreover, the con-
trol parameters of the AE-SPSO makes it easy to scale the 
performance of the PSO when the search space increases.

Figure 18 shows the time the CRP took to find an opti-
mal solution for each of the tasks of each mission.

The average CRP time for benchmark mission 1 was 
0.0785  s and for benchmark mission 2, the average 
CRP time was 0.1477  s. These times were found to be 

Fig. 18  CRP time of benchmark missions
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completely suitable for the high-level control of the UAV, 
while executing its missions.

The behaviour of the UAV in both benchmark missions 
is demonstrated in the accompanying videos [35, 36].

6.3.3  Simulation constraints

The performance of the UAV may appear slow in the vid-
eos. This is because the complex integration architecture 
of the AirSim simulator and the Unity games engine is not 
optimal and causes a considerable time lag between the 
simulator and the games engine. It was observed that, 
at high velocity, the UAV would overshoot its target des-
tination in the Unity games engine. This resulted in the 
target position parameters reported by the AirSim to be 
inconsistent from that reported by the games engine. This 
caused the UAV to wrongly interpret its position and there-
fore miss its objectives.

To improve the performance, a delay was explicitly 
implemented between the execution of mission tasks, 
in order to give the games engine and simulator time to 
synchronise. Assisted by the explicit delay, the UAV would 
autonomously correct its positioning, by repeating the 
task (see Figs. 8 and 13), while constantly reducing its 
velocity according to the fitness of the task. At low velocity, 
the positioning of the UAV was quite accurate and it could 
achieve its objectives. With the autonomous velocity con-
trol, the UAV was able to successfully reach the charging 
station in benchmark mission 1 and was able to success-
fully collect and deliver its cargo in benchmark mission 2. 
It should be noted that this is a simulation problem which, 
is unlikely to occur in a real-world scenario.

7  Conclusion and future work

In real-world scenarios, semi-autonomous systems, such 
as exploratory robots, operate in environments which 
may constantly change. Therefore, it must be trivial and 
computationally inexpensive to alter a robot’s behaviour, 
by updating its KB and/or mission objectives in real-time. 
This is especially important for remotely deployed robotic 
systems, such as extra-terrestrial exploration robots, where 
communication time and bandwidth are at a premium.

In this research study, an approach which combines 
expert knowledge and a cognitive reasoning process was 
introduced. The approach simplifies the management of 
the knowledgebase by domain experts, while providing 
the system with autonomous reasoning, by optimizing 
the knowledge, given the real-time environmental knowl-
edge. The approach presented here introduces a simple 
knowledgebase structure, which is easy to maintain and 
less error-prone. The results of the research also show that, 

the robot can successfully execute its missions by opti-
mizing the expert-provided knowledge and dynamically 
and progressively generating and executing a high-level 
controller.

Further study could extend this approach by investigat-
ing multi-objective knowledge optimization in order to 
generate parallel FSA’s with specific sub-task objectives. 
This will be useful for high-level control of a robotic system 
with multiple capabilities. For example, a FSA for flight-
control, a FSA for camera control and a FSA for gripper 
control.

Open Access This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat iveco 
mmons .org/licen ses/by/4.0/), which permits unrestricted use, distri-
bution, and reproduction in any medium, provided you give appro-
priate credit to the original author(s) and the source, provide a link to 
the Creative Commons license, and indicate if changes were made.
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