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Abstract 

Today’s production environment faces multiple challenges involving fast adaptation to modern 

technologies, flexibility in accommodating them to current industrial practices and cost reduction 

through automating repetitive tasks. At the same time the requirements for manufacturing 

functional, aesthetic and versatile products, turn these challenges to clear and present industrial 

problems that need to be solved by delivering at least semi-optimal results. Even though sculptured 

surfaces can meet such requirements when it comes to product design, a critical problem exists in 

terms of their machining operations owing to their arbitrary nature and complex geometrical features 

as opposed to prismatic surfaces. Current approaches for generating tool paths in computer-aided 

manufacturing (CAM) systems are still based on human intervention as well as trial-and-error 

experiments. These approaches neither can provide optimal tool paths nor can they establish a 

generic approach for an advantageous and profitable sculptured surface machining (SSM).   

Major goal of this PhD thesis is the development of an intelligent, automated and generic 

methodology for generating optimal 5-axis CNC tool paths to machine complex sculptured surfaces. 

The methodology considers the tool path parameters “cutting tool”, “stepover”, “lead angle”, “tilt 

angle” and “maximum discretisation step” as the independent variables for optimisation whilst the 

mean machining error, its mean distribution on the sculptured surface and the minimum number of 

tool positions are the crucial optimisation criteria formulating the generalized multi-objective 

sculptured surface CNC machining optimisation problem.     

The methodology is a two-fold programming framework comprising a virus-evolutionary genetic 

algorithm as the methodology’s intelligent part for performing the multi-objective optimisation and 

an automation function for driving the algorithm through its argument-passing elements directly 

related to CAM software, i.e., tool path computation utilities, objects for programmatically retrieving 

tool path parameters’ inputs, etc. These two modules (the intelligent algorithm and the automation 

function) interact and exchange information as needed towards the achievement of creating globally 

optimal tool paths for any sculptured surface.  

The methodology has been validated through simulation experiments and actual machining 

operations conducted to benchmark sculptured surfaces and corresponding results have been 

compared to those available from already existing tool path generation/optimisation approaches in 

the literature. The results have proven the methodology’s practical merits as well as its effectiveness 

for maintaining quality and productivity in sculptured surface 5-axis CNC machining.  
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Chapter 1 

Introduction 

The usage of sculptured surfaces in product development has increased dramatically in the past few 

years owing to their property of combining high aesthetics and long-term functionality to a wide 

range of products found in aerospace, automobile, mold/die, electronics and bioengineering. 

Consequently, there is an ever-increasing requirement to manufacture parts comprising sculptured 

surfaces.  

Such surfaces are mainly produced by means of material removal (cutting) operations with emphasis 

to 5-axis machining. Since such a machining process can only be implemented using computer 

numerical control (CNC), part programs in the form of ISO codes need to be prepared in dedicated 

manufacturing software (CAM systems) as direct results of tool path planning.  

Tool path planning is a critical task that is usually conducted by experienced machinists and 

programmers with the use of a typical and commercially available CAM system. Considering that the 

main stages of sculptured surfaces production are roughing, semi-finish, finishing and polishing 

(benchwork), tool path planning is required for roughing and finishing. The purpose of roughing stage 

is to remove the unnecessary material volume from the raw stock at high production rates and to 

approach a semi-final part geometry close to the final one. The purpose of finishing is the removal of 

roughed part’s remaining volume achieving thus, the final requirements in terms of quality, 

dimensional accuracy and tolerance. Since it is physically impossible to reach the ideally designed 

surface of a product, time-consuming benchwork is needed for polishing sculptured surfaces. The 

labor needed mainly depends on the varying complexity and the material of a sculptured surface 

product. It is estimated that over 78% of the overall production time is devoted to finishing, grinding 

and polishing of such products (Warkentin et al. 1997). Therefore it is obvious that more 

advantageous (if not optimal) finishing tool paths are needed to achieve better surface consistency so 

that benchwork is reduced or ultimately avoided.  

A common technique to plan tool paths for the finishing stage is to select one of the standard 

currently available pattern distribution styles and apply it to the designed stock with reference to the 

target model and the upper and lower part levels. The tool path may be applied either as an entire 

cutting pattern to provide complete surface coverage or to limited contours constituting the surface 
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regarding its complexity and special geometrical features. In either case the tool path planning 

operation must ensure that the finished surface will come to meet the morphological and quality 

demands in order to be considered in agreement with technical specifications. Towards this goal, a 

number of parameters crucial to tool path planning task should be properly set. 

The most important obstacles for achieving the above goal are three. The first obstacle suggests that 

no unique combination among tool path parameters and their corresponding result exists. The 

second obstacle deals with the particular relations between varying cutting tool geometries and 

surface configurations (i.e. curvature) which is impossible to be examined on-the-job. The third 

obstacle is the fact that magnitudes of crucial performance objectives representing part quality and 

process productivity may strongly fluctuate towards the tool path trajectory owing to the complexity 

of a sculptured surface, i.e., convex, concave and saddle surface regions. This obstacle is even more 

profound in the case of 5-axis surface machining where two additional axes need to be determined to 

effectively adapt to part’s changing curvature and perform smooth tool positioning variation as well. 

 5-axis sculptured surface machining is a well-established field for which numerous tool path 

strategies have been already proposed  and seen service in the market’s leading CAM systems, yet, 

they all share several shortcomings such as lack of essential optimisation functions, insufficient 

automation level and significant end-user intervention. At a practical level, approaches based on 

expertise, trial-and-error experiments and empirical adaptations of known feasible solutions to new, 

similar problems are generally followed. Undoubtedly, such approaches impose general 

assumptions/simplifications of the problem at hand, whilst the majority of cases end up with 

conservative solutions without general application.   

Even though significant contributions have been made to all research branches of sculptured surface 

machining, there is still a need to come up with a comprehensive, generic, intelligent and practically 

viable methodology for generating optimal tool paths for the 5-axis machining of sculptured surfaces. 

By recognizing aspects involving the need to develop such a methodology, the need for higher 

intelligent and automation environment in modern production and the problems/obstacles of 

traditional 5-axis tool path planning approaches, this Ph.D. thesis establishes important research 

questions related to the problem as follows: 

• How the sculptured surface CNC machining problem should be expressed to acquire a generic 

representation? 
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• How the sculptured surface CNC machining problem should be solved to have practical 

rationale and deliver applicable results to industry? 

• How to reduce labour cost and  human intervention when it comes to tool path planning for 

sculptured surface CNC machining?   

• What kind of environment facilitates the generic solution of the sculptured surface CNC 

machining problem and how its outputs can be directly transferred to industry? 

• What kind of module should be selected to provide “intelligent” optimisation capabilities to 

problem solving?     

The research questions stated above are answered through the major goal and the objectives that 

this Ph.D. thesis establishes.    

 

1.1 Research aim and objectives  
 

The major aim of this PhD thesis is to develop a generic methodology for the intelligent optimisation 

of 5-axis sculptured surface CNC machining (end-milling) tool paths. To fulfill this aim the 

methodology takes under full consideration the above problems as well as the literature related to 

the sculptured surface CNC machining problem and establishes criteria with global optimisation 

perspectives.  

The methodology represents the environment where the sculptured surface CNC machining problem 

is turned to a machining modeling task to be optimised for producing tool paths with superior 

performance. The sculptured surface CNC machining problem is treated in the Ph.D. thesis as a 

problem of multi-objective nature, being influenced by the settings corresponded to key tool path 

parameters.       

The criteria of this thesis aim to represent the simulated part quality and the productivity of the 

process under which quality should be achieved. The machining error (as a combination of chordal 

deviation and scallop height) has been selected to formulate the first criterion that has to be 

minimized. The second criterion deals with the local variations of machining error as the cutting tool 

moves from point to point throughout the tool path and should be minimized. The third criterion 

corresponds to the total number of cutting points constituting a tool path under the assumption that 

such magnitude directly affects the time needed for processing and cycle time itself. This objective 

should also be minimised. The rationale behind the inclusion of the aforementioned optimisation 
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criteria to the optimisation problem stems from the need to simultaneously satisfy the two essential 

aspects of quality and productivity. Machining error as a combination of the cutting tool interpolation 

error and scallop height, characterises surface finish and thus, quality. Machining error distribution 

constitutes an indication to quantify local tool axis variations responsible for producing the machining 

error throughout the entire tool path. Typical and commercially available CAM systems estimate local 

machining errors and incorporate additional cuts, if applicable, into a single block. However, such a 

utility would inherently lead to a substantial increase of cutting points comprising a tool path and 

consequently an increase of the machining time. Therefore the total number of cutting points for tool 

paths is considered an important optimisation criterion to reflect machining time and thus, 

productivity. Note that an alternative objective for representing productivity may be tool path length.     

Tool path parameters that need to be set in any given 5-axis finish-machining strategy have been 

considered as the independent variables for which not only feasible but beneficial values should be 

determined so as to come up with an advantageous tool path. These parameters are the cutting tool 

type (referring to flat end-mills and filleted end-mills), the stepover (step for determining the distance 

among adjacent cuts to machine a surface), lead angle (the rotation of the cutting tool in feed 

direction), tilt angle (the rotation of cutting tool towards a vector perpendicular to feed direction) and 

maximum discretisation step (step for determining the maximum distance among tool path points 

towards feed direction).  

Obviously, the different settings for any of the aforementioned tool path parameters inevitably affect 

the resulting tool path and as a consequence the machining operation itself. Each of these 

parameters plays an essential role and contributes just as significantly when it comes to both 

productivity and precision machining.     

The methodology that this research has been established focuses on the need to simultaneously 

examine the tool path parameters so as to deliver a set of values for their settings and satisfy the 

three optimisation criteria stated above.  To manage the establishment of such an environment, 

three discrete objectives were defined as follows: 

1. Experimental exploration of crucial relations to be selected for their capability to represent 

5-axis sculptured surface CNC machining as a generic problem and extract globally optimal 

solutions when these relations are to be handled by an intelligent module. 

2. Development of a fully automated interface to handle CAM software properties as needed, 

to automate repetitive and time-consuming tasks and to interact with an intelligent module 

for proper feedback and control.  
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3. To develop, to test and finally to deploy an artificial intelligent algorithm to undertake the 

optimisation process.   

 

To meet the requirements of these objectives, development tasks were planned for each one as 

follows: 

For the first objective’s requirements the development tasks are: 

• Design of standard benchmark sculptured surfaces based on the literature for machining 

simulation experiments. 

• Design of experiments and statistical evaluation-comparison between analytical results and 

experimental measurements taken from machining simulation outputs.  

 

For the second objective’s requirements the development tasks are: 

• The development of programming functions for automating CAM environment’s repetitive 

activities namely: (1) project tree scanning, (2) tool path strategy retrieval, (3) automatic 

assignment of values for tool path parameters, (4) automatic tool path computation, (5) 

automatic cutter location data (CL data) file creation and (6) CL data evaluation with respect 

to the theoretical sculptured surface (target CAD model). 

• The development of routines either to import or to extract important data according the 

methodology’s processing phase, argument-passing capabilities among functions, etc. 

       

For the third objective’s requirements, the development tasks are: 

• The development of data structures to represent tool path chromosomes through an 

encoding scheme to facilitate the methodology’s computations. 

• The formulation of the objective function and its representation as a “Pareto” triple-

bounded criterion.   

• The development of conventional genetic operators for building a genetic algorithm 

compatible to CAM environment’s open application programming interface (API). 

• The development of additional non-conventional intelligent operators to improve the 

functionality of the genetic algorithm.  
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Having investigated the proposed methodology’s strengths and weaknesses, it was implemented to 

benchmark case studies with experimental results available from the literature for fair and rigorous 

comparisons. Validation of the proposed methodology has been conducted by performing both 

algorithmic and process-related experiments. Process-related experiments refer to actual machining 

operations performed to represent the positive impact, the gain and the merits of the methodology’s 

implementation.  

Based on the results obtained by implementing the methodology developed as well as their 

comparison to those available in the literature for the same problem, same impact cases and – 

wherever it was feasible – same resources, its contributions have been recognised as follows: 

1. The methodology constitutes a practically viable tool to optimise complex sculptured surface 

tool paths by using standard and known resources to practitioners.  

2. The methodology pushes further the envelope of profitability and efficiency of intelligent 

manufacturing by supporting automation and optimisation. 

3. The methodology handles simultaneously a large number of parameters and achieves 

optimisation under a global sense. 

4. The methodology shares and develops new ideas for the next generation’s manufacturing 

software development, dealing with artificial intelligence and its effective implementation. 

 

1.2 Thesis outline 
 

The detailed description of the proposed methodology for optimizing 5-axis tool paths for sculptured 

surface CNC machining is given in seven chapters. The first chapter (Chapter 1) motivates and 

introduces the important problem of 5-axis sculptured surface CNC machining. It also mentions the 

major goal and the objectives of the work as a consequence of important research questions as well 

as the development tasks in order to reach the final status.  

Chapter 2 presents the fundamentals of tool path generation for 5-axis sculptured surface CNC 

machining and gives a critical review of the most noticeable and latest research contributions in the 

broader scientific field of sculptured surface tool path generation. Emphasis is given to the philosophy 

underpinning the different approaches to solve the problem and their key attributes they implement. 

The review discusses also the types of independent process parameters as well as the criteria that 

other research works have already presented as promising aspects for solving the problem. The 

chapter ends with the knowledge gap and the conclusions-shortcomings of the existing literature.   
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Chapter 3 deals with the problem formulation, the definition of criteria for global optimisation and 

their experimental validation prior to their integration with the proposed methodology’s 

environment. Main effects and interactions among critical tool path parameters are examined to be 

taken into account in the methodology’s development.  

Chapter 4 presents the steps and the overall workflow of the methodology developed to optimize 5-

axis sculptured surface CNC machining tool paths. The multi-objective virus-evolutionary genetic 

algorithm (MOVEGA) and the interactive function comprising the methodology are presented in 

detail as the intelligent module and the automation module respectively.  

Chapter 5 presents the methodology’s implementation on a benchmark sculptured part under the 

scope of investigating the effects of algorithm-specific parameters on results dealing with solution 

quality and convergence speed. Investigation of algorithm-specific parameters is accomplished by 

examining the coverage of non-dominated solutions from several Pareto fronts according to 

experimental runs as well as by assessing the generations where final points are observed in 

convergence diagrams. Through this parametric study, advantageous settings for algorithm-specific 

parameters are determined to improve further the overall performance of the methodology to solve 

the sculptured surface CNC machining problem.  

Chapter 6 presents the results from the implementation of the proposed optimisation methodology 

to several impact cases using benchmark sculptured surfaces. Moreover, results for validating the 

proposed methodology are also reported and compared to those already published by other 

researchers for the same problem and same surfaces. These results have been obtained by 

performing actual 5-axis machining experiments using optimized tool paths. In addition, results from 

comparisons among the algorithm developed and others found in the literature are also given in the 

chapter.    

Chapter 7 presents the overall conclusions are drawn and achievements accompanied with the pros 

and cons of the methodology are discussed. The chapter is concluded by proposing new directions for 

further research work and future perspectives.    
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Chapter 2 

Literature Review 

 

Among the problems that need to be addressed in metal cutting processes, two are of particular 

importance. The first deals with the determination of those values of process parameters that will 

maintain high product quality meeting thus the general technical requirements. The second refers to 

the simultaneous maximization of profit and process performance. Owing to the complexity 

characterizing machining processes, the noise factors and the interactions among several operational 

parameters, delivering an optimal solution sounds difficult if not impossible. Furthermore stat-of-the-

art technology and ever-increasing developments in computerized production systems impose new 

research directions involving intelligence, automation and flexible decision-making. 

 At a practical level, practices based on experience are still preferred. Experience-based practices may 

involve either the application of previous successfully implemented technical approaches to solve a 

new problem or the application of empirical relations. Such options are based on 

assumptions/simplifications and, to a large extent, they can only lead to conservative solutions 

without generic characteristics. At a scientific level, most of the research directions where 

contributors have shown interest are the correlation among influential parameters of a process to its 

crucial quality criteria, the development of algorithms based on local geometrical data for 

computerized control and the application of artificial intelligent techniques for the heuristic search of 

optimal results.   

The aforementioned problems become even more tedious in terms of their solution in the case of 

tool path planning to machine parts comprising sculptured surfaces. Their complexity implies a 

number of points to concern, i.e., each product is “unique” hence, restricting the adaptation of a 

previously successful technique to a new part, machining time increases owing to the large number of 

cutting tool positions a tool path generates in order to stay under tolerance and the fact that such 

products are deemed of high precision despite their free-form geometry.   

This chapter attempts to provide a solid background concerning the essentials of tool path planning 

for the machining of sculptured surfaces using 5-axis CNC technology. A detailed literature review is 

also presented with emphasis to the most noticeable contributions. The methodologies are given 
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through a number of categories based on their similarities whilst their pros and cons are critically 

discussed. The chapter ends by mentioning the conclusions derived from the literature review as 

crucial attributes to reveal their contribution range they have achieved so far as well as the remaining 

knowledge gap. 

    

2.1  Tool path planning for 5-axis sculptured surface machining 

Tool path planning is an important activity of machining modeling process. During this process the 3D 

model representation of the part is imported to a CAM system. With reference to the 3D model a 

number of manufacturing attributes are determined. Given the part’s geometry, the stock is decided 

to be either an offset form of the 3D model or a standard prismatic solid (i.e. rectangular, orthogonal, 

plate, etc). According to the machining setup and fixture, the machining reference axis system (G54) 

is determined. A machining operation along with its corresponding tool path is then applied to the 

model. The top, bottom and safety planes are determined next. Several tool paths are available in 

CAM systems such as multi-axis sweeping, concentric, spiral, Z-level and iso-parametric to name a 

few. Although these tool paths differ significantly in terms of their cutting style, they all need to be 

planned by selecting the cutting tool type, the distance between adjacent passes (known as 

stepover), the two inclination angles (lead and tilt) for varying the tool axis towards cutting direction 

and the forward (or discretisation) step for determining the interpolation error with reference to the 

theoretical surface (Turnier and Duc 2005,  Lavernhe et al. 2007).  

The tool path is represented as a set of cutting points from which the tool will pass on its way to 

machine the surface towards feed direction. The cutting tool interpolates subsequently these points 

whilst it performs several adjacent passes across the entire surface. The number of adjacent passes 

influences directly the height of the scallop which is the uncut material remained among tool passes. 

The interpolation error among individual tool positions with regard to subsequent cutting points may 

be large enough to cause the tool to mismatch the surface. This error can be reduced by properly 

defining the step the cutting tool takes to move forward to the next cutting point. Both the number 

of adjacent passes and the step defining interpolation error affect the magnitude of cutting points or, 

equivalently, the number of tool positions. Thus, an advantageous tool path should simultaneously 

maintain low scallop height, low interpolation error and reduced number of cutting points/tool 

positions.       
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Tool path points are converted to Cartesian coordinates and tool axis vectors with the usage of a 

post-processor engine embedded to CAM software. The selection of post-processor depends on the 

type and functions of the CNC unit integrating the 5-axis machining center to be employed for 

machining the sculptured surface. The particularities of such equipment deal with kinematical 

properties as well as lead and tilt angle configurations (Warkentin et al., 2001) therefore the post-

processor to be selected for generating the ISO code from cutting data should simulate and translate 

exactly the same functions.    

 

2.1.1 Cutting tool geometry 
 

5-axis CNC technology provides many beneficial utilities for sculptured surface machining. One of 

those is the ability to select from a variety of cutting tool geometries, as opposed to 3-axis machining 

where only ball end-mills can be used for finish-machining sculptured surfaces. In order to ensure 

surface quality in terms of low scallop height and interpolation error, many closely spaced adjacent 

passes and forward steps need to be determined in 3-axis machining. In each tool pass a hemi-

spherical posture is left on the surface as an impression of the removed volume from the work piece. 

In addition, much of the ball end-mill’s machining is conducted near the bottom end of its center 

where tangential speed is the lowest, hence, deteriorating surface quality. In this case much time 

should be spent on benchwork to finish the part.  

On the contrary in 5-axis machining flat end as well as filleted end-mills can be selected for machining 

sculptured surfaces (Figure 2.1). 5-axis machining technology allows the cutting tool to be inclined 

about surface curvature avoiding this way machining with bottom end where cutting speed is 

theoretically zero and favoring machining at cutting tool’s edge where speed reaches its highest level. 

Inclined cutting leaves more advantageous material removal postures which have elliptical shapes. By 

changing inclination angles the dimensions of these elliptical shapes may be altered to better 

approximate the surface curvature, lead to smaller scallops, avoid gouging and allowing for less 

adjacent tool passes to machine the surface. Consequently, fewer cutting points are required 

compared to traditional 3-axis surface machining. Numerical and experimental results have been 

provided by Vickers and Quan (1989) as well as by Bedi et al., (1997) to show the beneficial nature of 

flat end-mills and filleted end-mills against ball end-mills in 5-axis surface machining. 
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Figure 2.1: Standard cutting tool geometries for sculptured surface CNC machining: flat-end, filleted-end and ball-end mills. 

 

2.1.2 Stepover 
 

Stepover (or tool pass interval) parameter is responsible for determining the cutting tool’s transversal 

step among adjacent tool passes. Its value can be directly determined using either distance units, i.e. 

mm or decimals of an inch, or it can be expressed as a percentage of the cutting tool’s nominal 

diameter. It is also possible to be determined as the overlap distance among tool passes or via the 

number of total paths with regard to the part’s nominal length (Figure 2.2). In the case of 3-axis 

machining it can also be determined by the required scallop height. Stepover parameter along with 

the cutting tool type determines the magnitude of scallop height. Stepover alone influences the 

overall tool path length and therefore machining time. Large stepover values would result to less 

cutting passes and machining time but larger scallop heights at the same time.      

 

Figure 2.2: Standard functions for stepover parameter adjustment: (a) number of paths, (b) distance, (c) distance as a 
percentage of tool diameter, (d) overlap, (e) scallop height (Dassault Systèmes CATIA V5 R18). 
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2.1.3 Inclination angles 

 

Lead and Tilt angles determine the cutting tool inclination regarding the machining surface. The 

former angle is the angle between the surface normal and the new tool orientation in the direction of 

the machining path tangent, whereas the cutting tool’s inclination with reference to the surface 

normal from this position corresponds to tilt angle (Figure 2.3).  

 

  
Figure 2.3: Tool inclination angles (lead and tilt) in 5-axis sculptured surface CNC machining (Siemens© AG SINUMERIK, 

Manual, 5-axis machining, 2009). 

 

In 5-axis sculptured surface machining it is evident that different cutting tool orientations in terms of 

lead and tilt angles determine different effective cutting shapes which in turn influence scallop 

height, number of adjacent passes and machining strip width. Machining strip should be as wide as 

possible to yield a high material removal rate and simultaneously allow for reducing tool path 

intervals (step-over passes) as well as scallops towards feed direction. In order to maintain wider 

machining strips, lead and tilt angles ought to be as low as possible. On the other hand, low 

inclination angles might yield gouges between the cutting tool and the machining surface.  

 

2.1.4 Maximum discretisation step 

 

Maximum discretisation step (Figure 2.4) allows the determination of the largest spacing between 

subsequent cutting points/tool positions along a cutting tool pass in feed-forward direction. 

Therefore, it refers to the determination of the maximum allowable value for feed-forward distances 

along a tool pass according to a preset tolerance. Tool positions along a tool pass should be closely 

spaced to avoid significant deviations from the theoretical surface as the CNC unit conducts 
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interpolation. On the other hand, the overall number of cutting points should be minimised to 

facilitate the functions of the CNC controller. Such a problem is difficult to be solved in the case of 5-

axis surface machining owing to kinematics and the requirement to remain within a preset tolerance.  

Traditional tool path planning would suggest first to ensure machining accuracy by applying low 

values for maximum discretisation step parameter rather than prioritizing the throughput of the CNC 

unit. Another important issue that would tempt a process planner to select low discretisation step for 

generating a sculptured surface tool path is gouging avoidance. Maximum discretisation step 

parameter should be taken under careful consideration because the smallest change in its 

corresponding value could result to different topological properties of cutting points, denser point 

spacing, larger number of tool orientations and as a consequence larger cutting tool joint trajectory. 

Therefore, there is a need to adjust maximum discretisation step parameter such that machining 

accuracy is maintained, yet, without too closely spaced cutting tool orientations. An illustration of the 

effect of maximum discretisation step parameter on surface quality is shown in Figure 2.5.        

 

Figure 2.4: Discretisation step parameter for sculptured surface CNC machining tool paths (Beudaert et al. 2014). 

        

   Figure 2.5: Effect of maximum discretisation step parameter on surface quality: (a) large discretisation, (b) small 
discretisation (Dassault Systèmes CATIA V5 R18). 
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2.2 Geometrical indicators for evaluating machining accuracy 
 

It is obvious that the traditional decision-making followed for generating tool paths to machine 

complex sculptured surfaces may significantly affect final results referring to machining accuracy and 

productivity. Under the premise that CAM software and other related systems for virtually planning 

manufacturing processes (Lopez de Lacalle et al., 2005, Altintas et al., 2014,) constitute reliable, 

trustworthy and time-saving environments, much of the research works concerning tool path 

planning and optimisation, have been focused on the identification of crucial performance metrics for 

assessing tool paths, towards their ultimate goal of developing, deploying and testing their 

approaches.   

Approaches aiming towards beneficial tool paths, i.e. tool path planning strategies, tool positioning 

strategies, intelligent systems, etc., have inevitably evaluated their contribution using performance 

metrics (criteria or objectives) that can be handled by computational algorithms and not process-

related indicators such as tool wear, surface roughness, system stability, etc., which can only be 

assessed by conducting actual manufacturing operations. Nevertheless, the practices these 

approaches suggest can deliver promising outcomes when accompanied to reliable decision-making 

referring to the determination of process parameters (i.e. feed rate, cutting speed, depth of cut) that 

affect physical objectives such as those reported above.  

The most important performance metrics known also as “criteria” or “objectives” to evaluate the 

techniques available to the existing literature so far are scallop height, chordal deviation, machining 

error and machining strip width. Based on the evidence concerning the influence of the 

aforementioned tool path planning parameters on such criteria, it has to be noted that the selection 

of a single criterion to assess resulting tool paths not only implies the existence of another but also 

the introduced trade-off.    

2.2.1 Scallop Height 
 

The material left uncut among consecutive tool passes in the transverse direction is known as scallop 

(Lin and Koren, 1996), whereas its maximum limit on the height is known as scallop height. In 3-axis 

machining scallop volume inherits the negative ball-end shape of the tool. Therefore it is relatively 

simple to predict or control scallop height given the stepover distance and the diameter of a ball end-

mill. Functions for computing scallop height with reference to the diameter of the ball end-mill and 
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the stepover distance have already been established by Feng and Huiwen (2002) and Chen et al., 

(2005). Figure 2.6 illustrates the scallop height formation in the simple case of 3-axis machining.     

 

Figure 2.6: Scallop height in 3-axis CNC machining. 

In the case of 5-axis surface machining scallop height is affected by cutting tool geometry, stepover 

distance and cutting tool inclination angles. Cutting tool geometry alters its swept posture while 

travelling towards feed direction to remove the material from the work piece, owing to lead and tilt 

angles. This can be observed by examining the projection of an incline tool’s bottom-end onto the 

machining surface. The projection of the inclined tool’s bottom-end is an elliptical silhouette where 

the minor axis is affected by lead angle whilst the major axis is affected by tilt angle. Consequently 

the geometrical properties of elliptical silhouettes for inclined tools depend on the inclination angles 

for a given cutting point/tool position and their magnitudes determine the effective cutting radius 

which finally influences scallop height. Figure 2.7 depicts the relation between effective radii / 

elliptical postures and inclination angles whereas Figure 2.8 illustrates how scallop geometry may 

vary under different inclination angles (lead-tilt). Therefore a more advantageous geometrical 

matching can be achieved by employing flat and filleted end-mills compared to ball-end mills.  

 

Figure 2.7: Relation between effective radii/elliptical postures and different tool inclination angles. 
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Figure 2.8: Variation of scallop geometry owing to 5-axis cutting tool inclination angles. 

 

2.2.2 Chordal Deviation (chord error) 
 

During surface machining operation the cutting tool’s segmented trajectory deviates from the 

theoretical sculptured surface profile resulting to the chordal deviation (Figure 2.9). Chordal deviation 

is the resulting error owing to the linear segmentation of a given curved surface profile among a pair 

of cutting points. It is the maximum Euclidean distance between a chord whose connecting points lie 

on the original curve and a point on this curve (Yeh and Hsu 2002, Mayor and Sodemann, 2008).  

 

Figure 2.9: Chordal deviation between actual and theoretical trajectory owing to tool interpolation. 
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As an additional error to that of scallop height, it should be minimised so as to maintain machining 

accuracy within tolerance, yet, not at the expense of machining efficiency. This implies that proper 

values for profile discretisation should be used to end up with dense tool path points as much as it is 

required to maintain tool path efficiency as well and confront this way to the “productivity-quality” 

trade-off.   

Chordal deviation is mainly observable when adopting conservative interpolation techniques such as 

linear and circular interpolation (Yang and Hong, 2002). To overcome the limitations of such 

conservative interpolation strategies many significant works have been focused on developing 

enhanced interpolation methods under the major goal of reducing large numbers of cutting points 

found in corresponding NC part-programs. Most noticeable ones are those referring to the non-

uniform rational B-spline (NURBS) interpolators (Liu et al. 2015, Jahanpour and Alizadeh 2015, Chen 

and Khan 2014, Annoni et al. 2012). Nevertheless, there is enough evidence in these works to support 

that the special merit of implementing NURBS interpolation is found in feed acceleration capabilities 

and not that much in its superiority concerning machining accuracy (Sun et al. 2014, Cheng and Tsai 

2004). From an industrial engineering perspective, same precision may be achieved by implementing 

linear interpolation as well, provided that huge NC files must be stored in NC units to enable the 

accurate representation of varying slope and local curvatures (Chu et al. 2012). Nevertheless, this is 

not of major concern given the current state of high-tech CNC controllers which have become more 

sophisticated and efficient while coping with large NC data, under fast processing rates (Lin et al. 

2014). In addition, high frequency servo loop functions integrated to CNC systems, allow smoother 

machining operations whilst maintaining good transition from one move to the next, in terms of feed 

rate (Yang and Altintas, 2015). NURBS interpolators come with their own expensive policy as extra 

modules to integrate only few cutting-edge CNC units found today in industry. It has been also stated 

that NURBS equation to represent high order curves for tool paths can be overly complex, hence, 

imposing additional time to compute real-time trajectories during cutting (Mayor and Sodemann, 

2008). Such aspects have already led to the reconsideration of still employing common interpolators 

when it comes to high-precision machining (Lin et al. 2014). Besides NURBS converters and other 

similar utilities are embedded to CAM software for converting an “optimised” point-to-point end 

milling tool path to a NURBS part program for 5-axis machining (Cheng et al. 2002).   

2.2.3 Machining error 
 

Cutting points comprising a surface machining tool path are sequentially met to position the tool 

according to its configuration and the properties (curvature) of the sculptured surface. With every 

machining step the cutting tool takes from a point to another a local scallop height and a local chordal 
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deviation are generated. The combined effect of scallop height and chordal deviation introduces the 

machining error (Kayal 2007). Apparently the machining surface will be characterized by many local 

machining errors whilst their magnitudes are depended by the overall number of cutting points, their 

coordinates in 3D space, the local curvatures of the surface, the cutting tool type and the trajectory 

followed to produce the cuts. Figure 2.10 gives a graphical depiction of the combined error of scallop 

height and chordal deviation, hereafter referred as machining error.    

 

Figure 2.10: Machining error as a combined effect of scallop height and chordal deviation. 

 

2.2.4 Machining Strip Width (MSW) 
 

Machining strip width (MSW) is the distance taken between the fringes of two consecutive scallop 

curves formulated by a tool pass and it can be considered as an alternative performance criterion to 

that of scallop height. The larger the machining strip width is, the smaller the scallop height occurs as 

well as the number of adjacent tool passes. Obviously, such a result increases production rate with 

the simultaneous benefit of reducing the time needed for following benchwork processes.  

By machining sculptured surfaces using either flat or filleted end-mills under 5-axis mode 

maximization of machining strip width can be maintained provided that the effective cutting tool 

profile closely matches the surface curvature through proper inclination regarding the surface normal 

(Figure 2.11a). An important aspect when studying machining strip width as a performance objective 

is that adjacent passes should overlap to some extend for reducing scallop height between them 

(Figure 2.11b), however, excessive overlap may lead to repeated cutting in limiting contours of the 

surface. Under this prism cutting tool type, inclination angles and tool pass interval (stepover) have to 
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be adjusted accordingly to achieve the aforementioned benefits and ensure gouge-free machining at 

the same time.      

  

Figure 2.11: (a) Machining strip width (MSW), (b) Tool pass overlap. 

 

2.3 Tool positioning strategies 
 

Tool positioning, or equivalently, tool orientation strategies aim to position the cutting tool in each 

cutting point so as to generate the entire tool path. Such approaches constitute a large part of the 

research related to the sculptured surface machining problem. The benefit of properly inclining flat 

end-mills or filleted end-mills with regard to the surface was captured at an early stage by Vickers and 

Quan (1989) who presented the well-known Sturz method. According to this tool positioning method, 

a tool is tilted at a fixed angle in feed direction about the corresponding cutting point in the plane to 

where the point belongs, the feed direction and the surface normal (Gray et al., 2003). The angle of 

which the tool is inclined varies typically between 5 and 10 degrees (Figure 2.12).  

  

Figure 2.12: The “sturz” method for surface machining (Vickers and Quan 1989). 
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Undoubtedly by arbitrarily selecting a constant value for positioning the tool cannot ensure optimal 

orientations for the entire surface since local curvature variations are not considered. Cho et al., 

(1993) enhanced tool inclination by proposing the Z-map strategy. According to this strategy a finite 

set of (x,y) points represents the XY plane. Both cutting tool and machining surface are illustrated as z 

values for each (x,y) point whereas collision checking is conducted by observing whether any of the z 

values representing the surface exist above the z values representing the tool. With reference to the 

weighted average of interference points, tool positions are conducted by rotating the tool about the 

center contact point. If the collision problem still exists, end-user has to manually set a feasible tool 

orientation. To improve this approach, Li and Jerard (1994) automated the tool orientation and 

presented the cutting tool and the machining surface as faceted models against their inefficient 

representation as infinite (x,y) point sets. To perform collision checking they processed the 

geometrical entities models such as lines, points and planes. However, their approach accounts for 

gouge-free tool positions with uncertain results in terms of scallop minimization. Rao et al. (1997) 

proposed the Principal Axis Method (PAM) which is another tool positioning variant similar to that of 

Sturz method. However, PAM takes into account two principal curvatures κ1, κ2 at a given cutting 

point as well as their associated principal directions λ1, λ2 (Figure 13). PAM aims at matching the 

surface curvature of a cutting point to the projected effective radius of the inclined tool. This way 

proper local curvature matching is guaranteed for all cutting points in the surface, nevertheless PAM 

method shown major limitations in the case of saddle and convex surface contours using filleted end-

mills, as shown by the experimental work reported in Rao et al. (1997).   

 

    Figure 2.13: The principal axis method (PAM) for surface machining (Rao et al., 1997). 

 

The aforementioned tool positioning strategies manage to produce subsequent cutting points that 

will result to cutting trajectories free of gouges and under the predetermined cut tolerance. However, 

machining efficiency is not recognized as an essential issue. Warkentin et al (2000) successfully 
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captured the necessity of generating gouge-free tool positions by simultaneously maintaining 

efficiency in machining passes and presented the multi-point machining (MPM) tool positioning 

strategy. Their algorithm undertakes a number of computations dealing with tool position, surface 

normal and local curvature at two cutting points instead of a single one. In first the algorithm 

establishes the first cutting point on a convenient surface region to where the first hypothetical 

cutting path is set. Thereby, a number of subsequent cutting points are generated to formulate the 

first cutting path. With reference to the initial set of cutting points constituting the first cutting path, 

the second cutting path is obtained, having a distance from the first, equal to the desired machining 

strip width (Figure 2.14). As a consequence, their procedure lead to machining passes with larger strip 

widths and, to a large extent, free of collisions. However, MPM seeks to maintain a constant 

separation distance between contact points that should be in the opposite side of the tool. Under 

such a requirement it is quite possible that the second cutting point might not be found to position 

the tool. Moreover, when setting the constant separation distance as a requirement to machine 

sculptured surfaces, sequences of flat and sharp scallops can be left on the surface owing to its 

arbitrary and complex geometrical variation (Gray et al. 2005).     

 

    Figure 2.14: The multi-point machining method (MPM): (a) determination of MPM tool positioning, (b) path of cutter 
contact points in MPM method (Warkentin et al., 2000). 

 

Gray et al. (2003) took advantage of the best features from PAM and MPM strategies to propose an 

enhanced and stable algorithm to position a filleted end-mill, called Rolling Ball Method (RBM). As a 

pure derivative of PAM and MPM, RBM inherits much of their properties and computational process. 

RBM implements MPM to locate the tool inside of a rolling ball. In PAM method curvature 

computations for a given cutting point neglecting neighboring regions, thus, imminent gouges with 

the surface may occur. In contrast, RBM method (Figure 2.15a) utilizes the area underneath the tool 

named as the “shadow checking area” (Figure 2.15b). This area is then discretized into a finite set of 
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points, the “shadow grid” points. A pseudo-radius of curvature is then computer for each of these 

points as the radius of a sphere whose center lies along the surface normal of a given cutting point 

and contacts both the specific cutting point and the “shadow-grid” point. With reference to a 

hierarchy of such radii the rolling ball’s radius is selected as the most concave radius when compared 

to the rest of “shadow grid” points, to finally position the tool. Thereby the tool is inclined such that a 

circular profile is created and is in contact with the rolling sphere. Since the most concave radius is 

selected the tool position in the cutting point results as gouge-free (Gray et al. 2003). Through this 

approach the curvature of a filleted end-mill is sequentially matched to local regional curvatures of a 

sculptured surface and has also a built-in gouge detection function unlike to other strategies where 

this process is implemented separately.  

 

 Figure 2.15: The Rolling Ball Method (RBM): (a) basic principles of RBM method, (b) The “shadow checking” area for RBM 
method (Gray et al., 2003). 

 

The same authors recognized the need to further simplify their tool positioning method in terms of 

parametric surface equations and provide a practical tool for implementing their algorithm. Their 

efforts towards this direction resulted to a graphics-assisted environment for applying the RBM 

method (Gray et al. 2004). Their enhanced approach can be implemented to surfaces represented 

through triangulated data instead of surface equations and their experimental work involves the 

selection of a challenging sculptured surface with multiple patches to show that their method is 

prominent. Unfortunately, surface triangulation has been considered as an extremely complex 

operation owing to pre-filtering and post-processing procedures required. In addition, tool path 

planning for triangulated sculptured surfaces is degraded owing to the absence of curvature 

information in the case of polygonal models (Zhang et al. 2009). Rolling ball method (RBM) for tool 

positioning was applied to several experiments by its inventors. These experiments revealed that 

RBM overestimated the area underneath the tool to consider it as the shadow check area thus a 

larger region was considered for creating the rolling sphere’s radius and further proceed to tool 

positioning. As an outcome inclination angles larger than necessary were recommended. Therefore, it 
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was clear that RBM created conservative tool inclinations under the ultimate scope of ensuring 

gouge-free tool orientations.  

On their way to deliver a more reliable solution, Gray et al. (2005) developed the Arc-intersect 

method (AIM). As in the case of RBM method, AIM is a derivative of previous tool positioning 

methods under the philosophy of considering their beneficial attributes whilst trying to rectify their 

shortcomings. AIM is initialized by considering a cutting point and computing its associated surface 

normal either numerically or implicitly whereas feed direction is manually determined by end-user. 

The method employs the “shadow-check” area as well as its discretisation to set of points as in the 

case of RBM. Two types of constraints are applied to AIM method. The former refers to the constraint 

of the cutting tool to be positioned on the given cutting point whilst the latter refers to the tool axis 

constraint with regard to the tilting plane and the surface normal (Figure 2.16a). Major scope of this 

technique is to achieve a beneficial contact of the tool to a second cutting point after its contact to 

the first one. Unlike MPM method, AIM rotates the whole shadow grid of points until the tool is met 

instead of repetitively inclining the tool and checking for contact. In this algorithm, the shadow 

checking region is depicted as a circle and its discretisation to points is based on the transformation 

of rendered volumes and their corresponding pixel coordinates to Euclidean coordinates. As a 

shadow grid point is rotated about the cross vector it postures an arc. Thereby the arc radius of each 

shadow point is computed as the shortest distance between the point and the cross-vector along 

another vector perpendicular to cross-vector (Figure 2.16b). 

 

  Figure 2.16: The Arc-Intersect Method (AIM): (a) tool axis and tool positioning constraints, (b) arc intersection and shadow 
grid point tilt angle (Gray et al., 2005). 

 

Inclination angles are considered as the angles about the cross-vectors by which the toroidal shapes 

of the tool should be rotated to touch the shadow grid points. The exact values of angles are then 
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obtained by finding the intersections of arcs with the toroidal tool postures (Gray et al. 2005). A 

prerequisite of the successful tool positioning is to previously investigate which arcs are to intersect 

the tool since not all shadow grid points will guarantee intersection. Finally, the largest inclination 

angle tracked from the shadow grid of points is selected to achieve a gouge-free tool position. 

Apparently AIM can be considered as a multi-point tool positioning strategy since it suggests a second 

tool contact with the surface. Although this is a common attribute between AIM and MPM several 

significant differences distinguish the former from the latter and reported in Gray et al. (2005). A 

major drawback of AIM is the fact that it implements a fixed user-determined discretisation step to 

formulate the machining cuts. This implies that quality requirements cannot be satisfied since high-

curvature surface contours would demand denser tool positions along the tool path.  

The rotary contact method for tool positioning (RCM) proposed by Fan et al. (2012) developed by 

adopting an alternative way to suggest the MPM proposed by Warkentin et al. (2000). Based on this 

way an offset surface is generated regarding the original one. The offset distance is equal to the 

corner radius of a filleted end-mill. Thereby the position of the toroidal tool (filleted end-mill) on the 

original surface is equivalent to that between the inclined tool’s elliptical profile and the offset 

surface. Another offset surface is then created with a distance to the first offset restricted to cut 

tolerance. The basic idea is to manage the tool position by taking the tool’s elliptical profile and 

rotating it regarding a given cutting point until it touches the first offset surface regarding feed 

direction. The final inclination angle should be gouge-free when the toroidal shape contacts the 

original surface at that cutting point. A graphical depiction of the RCM of Fan et al. (2012) is given in 

Figure 2.17. This work wouldn’t provide an integrated solution since the case of convex sculptured 

surface machining had yet to be investigated. As an extension to the already existing work of Fan et 

al. (2012) the possibility of machining convex shapes was also examined (Fan et al. 2013). However, 

this later work needs to be further extended to cover the case of mixed (convex, concave) sculptured 

surfaces.  

 

  Figure 2.17: Graphical illustration of the RCM method (Fan et al., 2013). 
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The main principles of the several mechanisms presented in the tool positioning methods inspired 

Duvedi et al. (2014) to develop a multi-point machining strategy for the machining of triangulated 

surfaces. The method is applied as a zig-zag tool path style. In each tool position the tool is “dropped” 

on the triangulated surface to meet its first cutting point. A loop in their algorithm suggests the 

iterative check based on STL triangles in terms of finding either a tangency between the tool and the 

interior of a node or a tangency between the tool and any edge or vertex. Finally, the highest point of 

tangency among them is selected as the first point. The tool is then rotated accordingly with 

reference to this point on the surface to achieve a contact with a second point. Duvedi et al. (2017) 

extended also their approach to cover the case Bezier surfaces, yet, significant research efforts are 

needed to interface the method to industrial manufacturing systems and numerical algorithms should 

be implemented to solve surface equations for higher order curves and surfaces.  

He et al. (2015) contributed to tool positioning methods by presenting a technique that not only 

accounts for productive machining strips during machining but also aims at reducing fluctuation in 

terms of their width. To achieve this goal, they examined the changes of inclination angle towards a 

machining strip by applying a middle point error control. This control point is in the middle of the 

region existing underneath the toroidal tool. Chen et al. (2017) examined the capabilities of this 

approach by changing its primary objective of computing maximum machining strip width to that of 

multi-point tool orientation. The need to switch from evaluating machining strip width to multi-point 

tool orientation was the ambiguity of the relation between the machining strip width and the 

inclination angle.      

Based on the review of most noticeable tool positioning methods in the literature several conclusions 

- shortcomings can be derived as follows: 

• Tool positioning methods require mathematical solvers for surface equations to succeed on 

their goal of producing advantageous tool paths for sculptured surfaces. To solve surface 

equations, data regarding the surface is required and their availability is not always ensured.   

• If assumptions made for the surface region existing underneath the cutting tool are violated 

tool positioning methods may fail to deliver results.   

• Tool positioning methods cannot guarantee optimised tool path planning since the latter 

comes as a result not only by successfully generating cutting points but considering a specific 

cutting strategy as well (i.e. zig-zag, concentric, 3D offset, etc.) 

•  Many tool positioning strategies are available for dealing with the same problem, but no 

assistance is provided to decide which strategy should be employed to solve it. 
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• Many of the methods for tool positioning are implemented using separate modules, one for 

generating the tool contacts with the surface and one for gouge detection. Such a philosophy 

increases the time needed to plan the tool path. 

• Most of tool positioning strategies make use of local differential geometry to obtain results 

for tool positions. If the research problem is extended beyond local towards globally optimal 

tool path planning the benefits of local differential geometry are lost. 

• Many of the tool positioning strategies utilize conservative magnitudes about crucial tool 

path parameters i.e. inclination angle, constant forward and/or side step (stepover) and 

constant separation distance among cutting points (like MPM). Such settings cannot achieve 

optimised tool path generation. 

2.4 Intelligent techniques for optimal 5-axis tool path planning 
 

The later research concerning the optimisation of tool paths for the CNC machining of sculptured 

surfaces spans several different directions distinguished by the different philosophy and perspectives 

they follow to solve the problem. These directions have been identified to include: 

• Methodologies based on theoretical fundamentals concerning tool path planning for the 

development of analytical models and algorithmic procedures for prediction – problem 

solving. 

• Systematic approaches that aim to identify the impact of influential parameters on major 

criteria and correlate them through design of experiments and resulting regression models. 

• Methodologies based on evolutionary algorithms developed under the scope of predicting 

quality criteria or directly optimised them through fitness function evaluations.  

  

2.4.1 Methods using analytical models and algorithmic procedures 
  

The approaches falling to this category emphasize to several aspects of theoretical knowledge i.e. 

kinematics of machine tools and geometrical properties of cutting tools and surfaces. In general, the 

approaches implement programming modules, mathematics, predictive modeling and technical 

computing to produce efficient tool paths for the machining of sculptured surfaces using 3 and/or 5 

axis CNC machine tools. Representative works of this category are those of Lazoglu and Liang (1997), 

Lazoglu (2003), Budak et al. (2004), Lamikiz et al. (2004) and Lopez de Lacalle et al. (2007). The 

aforementioned works have as a major objective the creation of analytical process models to predict 
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cutting forces in the case of 3-axis ball end-milling. An important attribute of these works is that the 

mechanics of processes are considered to optimise tool path generation. Nevertheless, a 

measurement or at least, a statistical significance test among samples of analytical and experimental 

data to quantify the contribution of the models in terms of their prediction capability for cutting force 

is not clearly reported. In addition, cutting force has been studied under the convenient case of using 

ball end-mills where inclined postures are always of a spherical shape regardless of the inclination 

angle in 5-axis milling mode.  

A significant research effort based on analytical relations and algorithms for improving machining 

quality is that of Jun et al. (2003) who proposed the configuration space approach to optimise tool 

orientations in 5-axis sculptured surface machining. Their method is based on the machining error to 

find a set of feasible tool orientations through a boundary search module. The requirement of 

minimum scallop is given as a fitness function and then locally optimal tool orientations are created in 

a given configuration space to minimise machining error. Thereby adjacent part geometry is 

considered with regard to the alternative feasible tool orientations to finally end up with a globally 

optimised tool path. However, their algorithm had the tendency to consider as optimal, all feasible 

solutions for orienting the cutting tool which had to be a flat end-mill. The authors recognized that 

their method should consider the trade-off between machining error and its fluctuation during tool 

path generation to guarantee globally optimal tool path generation. Quinsat and Sabourin (2006) 

emphasized on the development of an algorithmic procedure to assist on the selection of optimal 

milling direction in 3-axis milling for sculptured surfaces. To develop their algorithm the authors took 

advantage of the most often-implemented cutting style, the parallel-planes, that allows sweeping the 

entire surface using a ball end-mill. Although it is obvious that the best direction to feed a cutting tool 

on a sculptured surface is always the direction with the lowest curvature, their work still contributes 

since actual feed rate is assessed at each cutting point. This way feed adaptation can be achieved 

according the local curvature among pairs of cutting points and further improve the machining 

operation. Giri et al. (2005) proposed a strategy to generate master cutter paths for the machining of 

sculptured surfaces. The philosophy underpinning this approach is that the edges or the boundaries 

of a surface can be utilized as trustful drive curves to construct tool passes under the perspective that 

intrinsic properties of all cutting points will be considered. These tool paths were recognized as 

muster cutter paths whilst their proper orientation was based upon the maximum convex and 

maximum concave curvatures for smooth surfaces, i.e., if the master cutter path is oriented towards 

the maximum convex curvature the side step will be studied in the direction of maximum concave 

curvature. Such a side step would then result as the largest one (Rong and Koren, 1996). A 

prerequisite for the successful implementation of the aforementioned strategy is that the surface 
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should not vary abruptly, yet, in production engineering such a premise is not always ensured. The 

work of Giri et al. (2005) established also the simultaneous requirement of minimizing machining 

time and cutting data file size (or equivalently the number of cutting points). They identified that the 

trade-off was not satisfied, and the problem should be set as a multi-objective optimisation problem 

to be handled by a suitable evolutionary algorithm. Li and Chen (2006) proposed a tool positioning 

method to advocate the global tool path optimisation for sculptured surface machining. Their 

algorithmic procedure differs significantly from the conservative tool positioning strategies because 

both inclination angles are considered as well as the instantaneous cutter position error in each 

forward step towards feed direction. In their work both postures of flat end-mills and filleted end-

mills were examined. Based on the properties of virtual cutting edges of these types of end-mills their 

trajectories towards feed were investigated after their discretisation to linear segments whilst the 

instantaneous characteristic curve was deduced with the properties of motion envelopes using a 

mathematical formula. The goal of the work was to determine cutting tool positioning adjustments 

capable of extending the segments of instantaneous cutter position error curves satisfying tolerance 

to the longest possible extend. The first step of their algorithm undertakes a smooth and symmetrical 

position of the instantaneous cutter position error curve by adjusting lead and tilt angles 

simultaneously. The second step handles the changes in terms of Z-height distance where in the case 

of 5-axis machining varies significantly. The scope of this step is to maintain the length of 

instantaneous error satisfying the tolerance as long as possible. During the procedure each parameter 

change is to suggest a new computation for the instantaneous error and seek for an efficient cutting 

strip width. The two steps are sequentially repeated until the longest cutting strip is obtained 

whereas the data (x,y,z,a,b) is stored as the optimal parameters. The whole procedure is repeated to 

find tool positions for the entire tool pass and thereby the entire surface. In a recent work proposed 

by Lu et al. (2016) machining strip width was examined via an intelligent algorithm and tool 

orientations were sequentially computed for cutting points and tool passes under a similar fashion to 

that of Li and Chen (2006). Lu et al. (2016) realized that optimal solutions of next positions/passes 

were affected by those preceded them whereas the properties satisfying next positions could not be 

considered during the computation of previous ones. Based on this result they concluded that such 

an approach partially solves the problem and cannot be considered as a generalized solution for 

optimizing the whole sculptured surface. Makhanov et al. (2002) proposed a tool path optimisation 

approach based on a global interpolation of the required surface by a virtual surface composed from 

tool trajectories. Their approach was determined to opitmise tool paths of milling robots. 

Noticeable contributions have also recognized CAM software as a standard environment to take 

advantage of its already existing utilities and examine automation potentials as per the properties of 
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the problem to solve. Xu et al. (2010) proposed an automated approach hosted to a commercial CAM 

system to generate successive cutter contact points for sculptured surface tool paths whilst the 

cutting tool is controlled by two guide-curves. Their approach utilized the primary curve for 

generating cutter contact points according to a preset tolerance whilst another group of points is 

created through the secondary guide-curve to complete the two-point contact towards the whole 

machining strip. Zeroudi et al. (2012) presented an approach for computing cutting forces by taking 

advantage of all tool position points regarding local inclination angle provided by a typical CAM 

system. Unfortunately, their work is referred to 3-axis sculptured surface machining and 

consequently the usage of ball-end mills. Based on this work, Zeroudi and Fontaine (2015) presented 

a methodology to compute tool deflection and corresponding error compensation for the prediction 

of cutting forces in 3-axis sculptured surface machining. Prior to these works Lee and Chang (1996) 

developed an automatic cutting tool selection system which was later interfaced to constitute a 

manufacturing modeling software. Lartigue and Tournier (1999) made efforts to characterize 

machining error with reference to CAM software parameters, machining direction, stepover and 

discretisation step in the case of 3-axis sculptured surface machining. To examine quality through 

machining error repetitive machining simulation tests to measure scallop heights from 3D CAM 

outputs need to be conducted. If the tests do not suggest promising results they need to be repeated 

to meet requirements. To this end, Gray et al. (2003) presented an algorithm to reduce the repetitive 

tasks of scallop height computations on simulated machining outputs. Their algorithm was built using 

a computer-graphics environment to allow the practical user interaction.  

Segonds et al. (2017) presented the latest work concerning the correlation of scallop height to the 

effective cutting radius of filleted end-mills by considering as well as all important characteristics 

affecting it such as stepover distance (tool path interval) and inclination angles, lead and tilt. Their 

latest research was preceded by two studies (Redonnet et al. 2013, Redonnet et al. 2016) 

demonstrating the relation between stepover distance and effective cutting radius. Their research 

was based on several fundamental lemmas concerning geometrical aspects such as curvature analysis 

and vector algebra. Their results were theoretically generalized for any given machining strategy.  

Despite the solid background on which the research of this category is based, generic solutions have 

not been delivered owing to the complexity of the sculptured surface machining problem, the 

increased number of influential parameters and the suggested trade-offs among criteria. Much of 

their integrity is also dependent on the several assumptions made by most related contributions and 

is further degraded by the bottleneck of analytical expressions to capture the interactions introduced 

among the parameters.  
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2.4.2 Methods for experimental design and regression modeling 
 

The approaches involving design of experiments (DOE) may be considered as the most 

straightforward ones. According to their common principle, experiments are established and then 

conducted by to identify the significance of effect of independent parameters on the response under 

question. Such approaches may be implemented instead of analytical techniques if they fail to 

associate independent parameters to critical objectives. Experiment-based approaches follow the 

procedure of “experiment-observation-conclusion”. The benefits gained by adopting DOE approaches 

are their direct implementation and data acquisition as well as high resolution in terms of accuracy. 

On the other hand their major drawbacks suggest that results might not be interpreted correctly 

whereas hypotheses in the form of assumptions should be set since, neither it is possible to 

investigate all important factors, nor the behaviour under which each one of them affects the 

response, is known in advance. The rationale behind their inclusion in a distinct category is their 

systematic methodology of defining experiments, obtaining and interpreting results. Additionally, the 

analysis of main effects and interactions of independent parameters on dependent objectives is also a 

unique characteristic of the approaches fall in this category. Most important and often-employed 

approaches are the response surface methodology (RSM) and Taguchi’s techniques based on 

orthogonal arrays (OAs).  

In RSM the significant parameters are utilized to develop a polynomial model in which independent 

variables and their numerical coefficients can predict the experiment’s response under a given 

percentage. To find the global minimum/maximum experiments are conducted to sweep the 

response surface towards several directions. The model’s generation involves the computation of the 

surface’s slope and the implementation of a “steepest ascent” algorithm (Myers and Montgomery, 

1995). 

Taguchi’s orthogonal arrays (OAs) are considered as entities for preparing multi-factorial experiments 

where the columns are assigned to factors, column entries correspond to factor levels and the rows 

designate the number of experimental runs (Taguchi 1986, Ross 1996). The implementation of an OA 

allows reducing the overall number of experiments, yet, without the loss of statistically significant 

information. Experimental results are further analyzed using analysis of variance (ANOVA).       

The difference between RSM and Taguchi’s OAs is that RSM investigates the behaviour of significant 

factors in terms of their effect on the response and generates a second-order model which is more 

general and practical for its usage.  Instead, Taguchi’s OAs aim to identify the most significant factors 

and their corresponding values that produce the desired effect on the response without the necessity 
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of developing a model. In any case, the philosophy characterizing both methodologies can be applied 

to any problem when the reduction of its solution domain is necessary.  

Representative research works of this category aim at correlating significant machining parameters to 

performance objectives emphasizing mostly on quality and productivity. Gittens et al. (2005) aimed 

on improving machining time and surface finish by creating multi-variable polynomial regression 

equations relating axial depth of cut and feed rate. Their research methodology involved a design of 

experiments based on Taguchi’s approach. 25 machining experiments were conducted using the 

Renshape® 5030 as test material, and a 10mm carbide flat end-mill. For the axial depth of cut 

parameter levels, values from 1 mm to 5 mm were examined whereas the operational range for feed 

rate was from 20 mm/sec to 60 mm/sec. Spindle speed was kept equal to 15000 rpm. On their efforts 

to predict surface roughness in the case of CNC face milling, Benardos and Vosniakos (2002) used an 

artificial neural network (ANN) to predict surface roughness in face milling. In order to provide a 

complete dataset for training, testing and validating the network they conducted machining 

experiments using the Taguchi’s design of experiments method. Their experiments considered depth 

of cut, cutting speed, feed per tooth, tool engagement (stepover), cutting tool wear and the usage of 

cutting fluid. An L27 OA was finally selected to design the experiments. Krimpenis et al. (2005) 

conducted machining simulation experiments under the L27 OA to study the remaining volume after 

implementing a roughing strategy to machine sculptured surfaces. In these experiments machining 

time was suggested as the second objective. As significant parameters for their experiments tool path 

interval, tool offset distance, stepdown, profiling, feed direction, cut tolerance and the joining range 

between two consecutive passes along Z-axis were selected. Major scope of their work was to 

examine the effect of the aforementioned parameters on the objectives of remaining volume and 

machining time. Fountas et al. (2015) conducted machining simulation experiments to study the 

effect of machining strategies and related parameters to minimise machining time and surface 

deviation in the case of 3- and 5-axis sculptured surface machining. Saroj and Jayswal (2013) 

investigated several strategies to machine sculptured surfaces using a CAM system for conducting 

machining simulation experiments. Parameters such as cutting tool diameter, stepover, stepdown 

and feed rate were examined in terms of their effect on machining time for all cutting strategies 

involved. Stahovec and Kandráč (2013) adopted RSM to establish the mathematical relationship 

between scallop height as the response and depth of cut, stepover and tool diameter as the 

independent parameters in the case of 3-axis sculptured surface milling. Their 2nd order prediction 

model was generated with regard to their experimental design and could explain 79.52% of the 

variation. Kumar et al. (2015) presented an empirical study considering cutting forces in ball end-

milling for sculptured surfaces. Their RSM experiments were followed by regression analysis and 
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model fitting. Three models, -one per cutting force component- were generated and used for 

validating their efficiency by comparing experimental to predicted results. It was shown that the 

maximum correlation error was 7.1%, yet, the authors recognized that the models were only valid in 

the case of machining mild steel as work piece material. 

From the literature presented in this category the methods for designing experiments cannot lead to 

the direction of establishing a generalized result for solving the sculptured surface machining 

optimisation problem. The results from systematic approaches of designing and analyzing 

experiments depend on the materials and the methods that the researchers choose to apply thus 

they can be considered as reliable only if similar attributes are suggested to a problem (i.e. 

same/similar work piece material, same/similar sculptured surface geometry to test, etc). 

Nevertheless, polynomial models, regression equations and other empirical relations can be 

successfully considered as “objective functions” to evaluate and compare the performance of 

superior problem solving techniques such as those suggested by artificial intelligence (i.e. genetic 

algorithms). Representative works that have already followed this concept can be found in Rao et al. 

(2016), Bhavsar et al. (2015), Kuriachen et al. (2015), Garg et al. (2012), Pandey and Dubey (2012), 

Zain et al. (2010) and Palanikumar et al. (2009).    

2.4.3 Methods using artificial intelligence  
 

Artificial intelligence attempts to simulate the behaviour of human interaction, information 

processing and decision-making. Artificial intelligence approaches that have drawn the interest of 

researchers worldwide and see services to almost all branches of science are based on artificial neural 

networks (ANNs) and genetic/evolutionary algorithms (GAs-EAs). Both approaches have already 

interfaced to engineering software to constitute practically viable tools when dealing with real world 

optimisation problems.          

Artificial neural networks (ANNs) are mathematical models inspired by the functional behaviour of 

the human brain. They can be trained through datasets of solved problems, demonstrate the ability 

to “memorize” them and generalize their results to a large extend for solving similar problems but not 

identical (Fausett 1994). These properties constitute ANNs the ideal tools to model very complex 

problems since neither an analytical description of the problem, nor an algorithmic procedure for its 

solution are required. On their goal to develop a reliable model for predicting surface roughness in 

CNC face milling, Benardos and Vosniakos (2002) conducted experiments with the use of Taguchi’s 

method of designing experiments. An ANN was trained using some of the results whilst others were 

kept for testing and validation. Their ANN handled the most influential parameters found in face 
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milling, depth of cut, feed per tooth, cutting speed, radial cut (stepover) distance, cutting tool wear 

and usage of coolant. The responses were the cutting force components and surface roughness. 

Cutting tool wear and usage of coolant were treated as categorical factors and designated accordingly 

(i.e. “small”, “average” for cutting tool wear and “yes”, “no” for coolant usage). Their ANN was of a 

“feed forward” architecture meaning that information flows from the nodes (neurons) of input layer 

to the output layer with no feedback connections or loops. Different ANN architectures are presented 

and explained in Haykin (2009). The Levenberg-Marquardt algorithm was implemented for training 

the network which is a variant of the classic back-propagation algorithm (Demuth and Beale, 1998). 

Finally, their model was examined through the mean squared error (MSE). El-Mounayri et al. (2002) 

moved towards the same research direction and developed a back-propagation ANN to optimise the 

CNC flat end-milling process. In their work radial cut (stepover), feed rate, spindle speed, cutting tool 

diameter, number of flutes, axial cutting depth, rake angle and clearance angle were the input 

parameters whereas the statistical results for cutting force (maximum, minimum, mean and average) 

were considered as the output parameters. To provide a practical tool for CNC machining, they 

developed post-processor engines to translate “optimal” data to recognizable commands for most 

CNC units found in industry. Their work was further extended to cover the case of ball end-milling (El-

Mounayri et al. 2005) whereas the initial ANN model was replaced by a radial basis function network 

(RBFN). Radial activation function can reduce training time in contrast to the back-propagation 

algorithm. Their new ANN was trained using the leas mean squares (LMS) function embedded in 

Mathworks’ Matlab® which has been the main development platform for their experiments. A 

thorough comparison between radial basis function and back-propagation neural networks can be 

found in Markopoulos et al. (2016). Krimpenis and Vosniakos (2004) investigated the capability of 

developing two feed-forward ANNs so as to predict machining time and remaining volume for 

sculptured surface machining in the roughing stage. A design of experiments was conducted to obtain 

the results in the form of a dataset to train, test and validate both network models. Their experiments 

were conducted using CAM software so as to reduce the resources needed for real cutting examples. 

They concluded that the proposed approach as it was developed did not reflect a generic 

characteristic since the ANN was trained by the experimental results of the specific part adopted and 

further integration would be needed to determine product families under similar properties to cover 

all sculptured surface machining problem cases. Towards their initial research on presenting solutions 

for the 5-axis sculptured surface CNC machining optimisation problem, Fountas et al. (2014) 

investigated the generalization capability of ANNs by conducting machining simulation experiments 

by adopting cutting tool type, stepover, lead angle and tilt angle as the input parameters. Surface 

deviation and machining time were selected as the outputs. Their ANN was of a feed-forward type 
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using the Levenberg-Marquardt algorithm to train it. Mean square error (MSE) was used as the 

objective function. Lasemi et al. (2014) proposed a strategy to take advantage of machining process-

related errors through an on-line inspection system and compensate them such that machining 

accuracy is maintained. Their methodology involved two ANNs. The first was trained to predict error 

results referring to the tangential component and the second was trained to predict the error results 

given to the normal component. The neuro-fuzzy interference system (ANFIS) embedded to 

Mathworks’ Matlab® was employed as the development platform. Li et al. (2015) adopted a back 

propagation neural network to optimise energy consumption, surface roughness and machining time 

regarding feed rate, spindle speed, cutting depth and tool path spacing as the independent process 

parameters for sculptured surface tool path generation. Their network is trained using known results 

obtained by an experimental design.  

With reference to the authors’ conclusions referring to the literature presented above regarding the 

application of ANNs for process optimisation it is evident that further work is still needed for these 

tools to become promising when it comes to engineering problem solving under a global and generic 

essence. ANNs prove to be unstable models owing to the reason that initial weights and bias should 

be randomly selected each time the ANN is trained. Random selection might influence the training 

operation as well as the network’s final error. It has been stated that although a network may reach 

thorough training for a given set of weights and biases it might still be prone to fail to be trained 

again using different set of weights and biases (Markopoulos et al. 2016). The process of building 

different ANN architectures is still based on experience since a standard theoretical background on 

selecting proper ANN architectures or developing them, is yet to be provided.        

Genetic algorithms are based on evolutionary principles to search for optimal solutions in a preset 

search domain. Candidate solutions are coded in the form of encoded strings - chromosomes and are 

evaluated using a fitness function. Elite chromosomes are then selected for transmitting their 

characteristics to next generations through genetic operators determining this way the searching 

procedure in the solution domain. The stochastic nature of genetic operators affects both 

convergence speed and ability to escape form trapping to local optima (Goldberg 1989, Mitchell 

1999). However genetic algorithms might be vulnerable to local trapping because simple genetic 

operators are not fully capable of sustaining the balance between exploitation and exploration rate. 

The former term deals with the local search of the algorithm in regions where the optimal solution 

may be found whereas the latter term deals with the ability of a heuristic to efficiently navigate the 

entire solution space. Maintaining the balance between these two parameters is mandatory to GAs-

EAs because, both the advantages of rapidly searching the whole problem’s space and identifying 



 
 

36 
 

preferable solutions near to elite ones lying in local regions, are needed (Ortiz-Boyer et al. 2005). 

Thus, crossover operator allows for an “in-depth” search of local regions (exploitation) whereas 

mutation operator undertakes the breadth search of the entire solution space (exploration). 

Consequently, the task of balancing these two important parameters has led researchers to use 

hybrids or develop several artificial intelligence variants.  

Intelligent heuristics (including GAs-EAs) have already been used by researchers to solve optimisation 

problems. In the field of machining operations, a number of different optimisation objectives (or 

criteria) are also suggested. In the work of Castelino et al. (2003) a genetic algorithm has been 

implemented to minimise idle time for tool paths connected to linear segments. In their case the 

machining problem is formulated as a generalized “traveling salesman” problem with constraints and 

it is solved using a simple genetic algorithm. The “traveling salesman” problem suggests that a 

salesman should visit N cities where, each of these N cities is visited only once and then return to 

his/her reference city (the starting city) with the minimal cost. Oysu and Bingul (2009) moved towards 

a similar way of minimizing idle time during pocket milling. In their work a hybrid procedure involving 

genetic algorithm (GA) and simulated annealing (SA) is implemented to solve their tool path planning 

optimisation problem. SA algorithm is a local search algorithm and was proposed by Kirkpatrick et al. 

(1983). SA simulates the annealing operation of materials to reduce defects and increase the crystals’ 

magnitude. Both are material attributes affected by its thermodynamic free energy. Thereby Oysu 

and Bingul (2009) took advantage of the local search that SA provides to strengthen this ability on the 

GA they implemented. Agrawal et al. (2006) optimised the orientation of the primary master cutter 

path using a genetic algorithm to further generate the rest as needed to machine sculptured surfaces. 

Their goal was to provide optimised 3-axis ball end-milling tool paths for iso-scallop sculptured 

surface CNC machining that would minimise machining time as well. In iso-scallop tool paths (Lin and 

Koren, 1996), stepover is determined such that a constant scallop height is achieved for the entire 

sculptured surface. A master cutter path is first obtained whilst the rest are created as offsets of it 

regarding the preset stepover. Although overall cutting length is significantly reduced using iso-

scallop tool path planning, it suffers from inaccurate curvature determinations in feed direction as 

well as inconsistencies referring to the conversion form Cartesian to parametric space (Lee and Yang 

2002). In addition, sculptured surfaces need to be defined by their corresponding equations either 

implicitly or explicitly (Kayal 2007). Ülker et al. (2009) developed an artificial immune (Clonal-G) 

algorithm (De Castro and Von Zuben 2002, De Castro and Timmis 2002) to compute cutter contact 

points for optimal tool paths with reference to a predetermined tolerance in the case of 3-axis 

surface machining. Their work first focused on finding ideal steps in the first parametric direction (let 

it be “u”) and generated a population of “yet to visit” points on a curve to drive the tool path. 
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Through the Clonal-G algorithm they evaluated sequentially the separation distances among pairs of 

cutting points and ensured that cut tolerance is satisfied. According the input tolerances their 

algorithm was then applied to the other parametric direction (let it be “v”) to produce the new curve 

on the sculptured surface. Under this scheme tool path curves i and j were generated after each 

algorithmic evaluation for “u” and “v” parametric directions that should be intersected on the 

coordinate S[(u(i), v(j)] respectively. Despite the application of such a sophisticated artificial module 

the problem was formulated by subsequently creating targeted cutting points to satisfy cut tolerance 

whereas machining time or another equivalent criterion to suggest productivity was not involved. 

Moreover, their work handled only 3-axis tool path planning (ball end-milling) with no 

recommendation of its application to more advanced cases such as 5-axis surface machining. 

Sculptured surface machining should be formulated as a multi-objective optimisation problem owing 

to the number of significant tool path parameters and the different optimisation criteria one may 

distinguish. Owing to the inherent trade-off among the different quality objectives multi-objective 

representation is reasonable for the case. In fact, there is no unique optimal solution for such 

problems since many candidates are generated. In order to achieve a hierarchy among different 

solutions the multi-objective Pareto optimal approach is generally preferred (Coello et al. 2002). 

According to its principle a solution dominates another if none of its objectives involved is inferior 

and at least one objective value is better. Solutions obtained by adopting this approach are known as 

Pareto optimal or non-dominated solutions. Therefore, a generic approach for solving the sculptured 

surface CNC machining problem should provide a set of solutions reflected to an entire Pareto front. 

Kersting and Zabel (2009) proposed an intelligent solution for solving the 5-axis sculptured surface 

CNC machining problem under a multi-objective fashion. Their work involved a genetic algorithm that 

handled the minimization of the cutting tool’s positioning deviation as the first objective and the 

minimization of tool trajectory fluctuations as the second objective. Unfortunately, their problem 

formulation was based on the control of multiple degrees of freedom referring to normal vectors. To 

accomplish this under a reasonable time span, they discretized the surface and optimised its 

corresponding tool path region-by-region to deal this way with smaller NC paths. Inevitably this idea 

turns the initial problem to many separate optimisation problems that need to be handled either at 

once (i.e. via parallel computing) or subsequently. Although such an approach can be considered as 

generic, its problem formulation with global criteria is absent. The number of tool orientations for the 

discretised tool path may significantly vary from few hundreds to thousands as the authors 

themselves advocate, hence processing time can be varied accordingly.    



 
 

38 
 

“Pareto optimal” method neglects important engineering aspects such as expert’s knowledge, 

technical background, process planning time span available in the shop, etc., whilst the expert should 

be able to select between non-dominated solutions with regard to his/her technical background, 

specialized knowledge and specific needs-requirements of production. From a practical perspective 

engineers may prefer one optimal solution among the rest. Under such circumstances the multi-

objective problem formulation may be facilitated to some extend by adopting the “weighted 

objectives” technique. The technique simplifies the multi-objective problem to a single-objective one 

by expressing it as a linear combination among the problem’s objectives and their associated impact 

weights.  Impact weights determine the importance of each objective to the total cost. The sum of 

impact weights referring to their corresponding objectives cannot be above 100% thus, each impact 

weight is determined as per the practical requirements of the expert or production.  

Manav et al. (2013) presented an intelligent approach of selecting tool paths to machine sculptured 

surfaces based on the concept of the weighted objectives technique. In their work the sculptured 

surface machining problem is treated as a triple-bounded problem with mean cutting force, mean 

scallop height and machining time as the optimisation objectives. Mean cutting force is the result of 

several experimental samples-outputs estimated by a force-prediction model (Lazoglu and Manav 

2009). thus, it suggests a global depiction of cutting force objective. Mean scallop height is adopted in 

their work as the global objective to represent the overall depiction of scallop height measurements 

computed by a 3D scallop model. These measurements were validated by direct measurements taken 

on CAM outputs for the same sculptured surface examined. Unfortunately, the methodology has 

been applied to 3-axis ball end-milling for sculptured surface machining with unknown potentials 

concerning its application to 5-axis machining.  

Lu et al. (2017) implemented recently a differential evolutionary algorithm (DE) to solve the 

sculptured surface machining problem using a flat end-mill. The authors realized that significant tool 

path parameters should be simultaneously handled when it comes to a global and generic problem 

formulation for the sculptured surface machining optimisation problem. In their methodology, 

lead/tilt angles and feed directions at each cutting point are involved and optimised as a whole to 

maximise machining strip width with less overlap, maintain tool path smoothness and reduce scallop 

height. Their three-objective optimisation problem formulation involves a criterion for feed direction, 

a criterion for cutter location curve and a criterion for tool orientation. The first criterion is 

formulated regarding the forward step which is affected by its corresponding chord length during the 

interpolation. The second criterion deals with the cutter location curve and its associated cutting 

points. According to the authors, the curvature of this curve may dictate a metric for tool path 
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smoothness whilst the curve’s curvature is computed after passing the tool from all cutting points 

along the curve’s trajectory. Finally, the third criterion reflects the metric for tool orientation results, 

and it involves the angle between pairs of adjacent tool orientations. A differential evolutionary 

algorithm is utilized to evaluate the weighted summation among the aforementioned independent 

tool path parameters and their associated impact weights and this weighted summation is the 

objective function for their algorithm. Their evaluation procedure is conducted by following a number 

of steps. Adjacent paths are then created with reference to the optimised primary cutter location 

curve whilst they are subjected to constraints dealing with minimum-maximum overlap and 

minimum-maximum gap. Despite the potentials of these constraints to keep all cutting paths 

comprising the entire tool path under advantageous connections with low overlapping and as much 

gap as necessary, is not explained. Therefore, the ranges of constraints should be assumed as they 

are seen fit. It appears that the restriction to overlapping and gap conditions in order to compute 

adjacent paths, seems to suggest prior work for conducting experiments or trial-and-error tests to 

identify the exact values for these parameters. In such a case it is not known to what extend 

optimality is ensured. In addition, the approach is case-oriented to flat end-mills since the 

requirement for smooth tool path postures will be violated when dealing with postures produced by 

filleted end-mills which are completely different. In their work the authors comment on DE algorithm 

and advocate that may be prone to local trapping when dealing with large-scale optimisation 

problems. To ensure guaranteed convergence to global optimum they implement a sequence linear 

programming (SLP) algorithm and prevent local trapping. As regards adjacent tool path overlapping 

the work could include also the parameter of path interval instead of trying to weight a hypothetically 

targeted pass-overlap magnitude. After all, stepover parameter has the possibility of its adjustment 

by considering cutting tool’s diameter both as a percentage of it and as an overlap magnitude in most 

commercially available CAM systems. As a final comment in the work of Lu et al. (2017) the usage of 

Pareto optimal method could be incorporated at least for academic purposes to present and exploit a 

full-spectrum multi-objective optimisation problem concerning sculptured surface machining.    

 

 

 

 

2.5 Conclusions on the state-of-the art 
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Sculptured surface machining (SSM) is a well-established manufacturing field for which numerous 

individual strategies, methodologies and approaches have been proposed, including those reported 

in the literature presented in this Chapter. Nevertheless, several flaws are observed when it comes to 

both problem formulation and multi-objective optimisation aspect. The flaws of the already 

suggested optimisation techniques are stated as follows: 

1. The majority of tool path optimisation strategies concerning the sculptured surface 

machining problem aim at generating the tool path point-by-point or pass-by-pass by 

neglecting the cutting strategy. Tool path optimisation should be achieved regarding the tool 

path strategy to ensure complete surface coverage, hence, obtaining optimised cutting 

positions or adjacent cutting passes individually is a philosophy away from delivering globally 

optimal tool paths.   

2. Aspects adopted by the different existing techniques for optimizing the sculptured surface 

machining problem do not suggest a generic multi-objective solution from the perspective 

that only few parameters considered for optimisation whilst others are constrained to fixed 

magnitudes depending the case. Such attempts do not introduce a design space that will 

reflect a generic search domain. The same also goes for the different criteria selected to 

formulate the problem where the generic character is yet to be given to properly solve it. 

3. Assumptions and constraints suggested for solving the sculptured surface machining 

optimisation problem renders noticeable approaches found in the literature to appear 

inadequate, although some of their properties may lead to reduced computational cost. Such 

assumptions/constraints do not only lead to partial problem solving but they jeopardize the 

practical validity of these methodologies and consequently the very essence of optimality of 

the solution.  

4. By taking into consideration the current needs for versatile systems and production 

requirements, approaches that exhibit automation utilities seem to be favored against 

others. However only few works in the literature report automation capabilities to facilitate 

proper interaction among their modules and functions towards the ultimate goal of solving 

the multi-objective optimisation problem referring to sculptured surface machining.  

5. Different methodologies exist to solve the same problem but human intervention is still 

required to decide which of them should be implemented and what parameter settings 

should be set.  

Formulating the sculptured surface machining problem so that generic aspects are introduced for 

global optimisation is a complex task. Major reasons for this complexity are the different properties 

of sculptured surfaces, the variety of cutting tool types and the variable operational ranges for 
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determining tool path planning parameters, the non-unique relation among parameters to 

optimisation criteria, etc. By considering the limitations of already existing works proposed for solving 

the sculptured surface machining optimisation problem, this work comes to the important conclusion 

that the perfect algorithm to directly generate optimal tool paths to machine sculptured surfaces 

might never exist.  

Instead, this thesis presents a methodology where a typical CAM environment is adopted whose 

functions are part of a generic, stochastic and global multi-objective optimisation methodology for 

solving the sculptured surface machining problem. CAM system’s functions are automatically handled 

by a virus-evolutionary genetic algorithm through external programming to iteratively evaluate pairs 

of tool path parameter values as candidate solutions (encoded chromosomes) related to specific 

generic optimisation criteria. The generic character of optimisation criteria dealing with quality and 

efficiency is derived from local information of cutting points generated by the tool path strategy itself. 

The values for tool path parameters are subjected to applicable ranges that may vary according the 

needs of the operation and tool path planning characteristics. The ranges of tool path parameters 

lead to the establishment of a feasible solution space from which optimal solutions are to be found. 

Optimal results are presented by adopting both Pareto optimal and weighted summation techniques.  

Such an optimisation methodology has neither been proposed nor applied so far and therefore its 

different philosophy as well its components proposed for implementation are original. In addition, it 

inherits the necessary fundamentals and aspects of previous successful research proposed on solving 

the sculptured surface machining optimisation problem. Original attributes of the research presented 

in this thesis may be distinguished by considering the perspectives of production engineering and 

evolutionary computation. These original attributes are as follows:  

• The methodology proposed, provides a fully automated and user-friendly infrastructure to be 

directly transferred to industry,  

• The methodology proposed, handles simultaneously the significant tool path parameters 

under variable encoding accuracies and regardless of their heterogeneous properties, 

• The methodology can be applied to any sculptured surface which can be supported by a CAD 

interface. 

• The methodology develops a multi-objective evolutionary algorithm based on the virus 

theory of evolution and deploys it as the optimisation module of the proposed methodology. 
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Chapter 3 

Sculptured surface CNC machining problem 

definition 

 

3.1  Introduction 
 

In the case of sculptured surfaces, the effects and interactions among 5-axis tool path parameters 

may vary depending on the complexity of the surface. For this reason, CAM software constitutes the 

only safe and low-cost environment to investigate how 5-axis tool path planning parameters 

influence optimisation criteria. Since 5-axis machining of sculpted surfaces introduces different 

combinations among tool geometries, tool orientations positions, forward step values and tool path 

intervals, consideration should be given to the influence of the parameters on the set optimisation 

criteria.  

This can provide important information both for the successful modeling of the problem and for the 

development of the optimisation methodology. Thus, the investigation of 5-axis tool path planning 

parameters is considered necessary whilst it should be carried out systematically by one of the 

available methods for designing experiments. The first step in such a process is to determine 

applicable ranges for tool path parameters that will be examined for a number of different 

experimental sculptured surfaces. 

This chapter aims to investigate the 5-axis tool path planning parameters in terms of their significance 

to the objectives considered and to formulate the sculptured surface machining problem according to 

them. This activity assists on understanding the problem’s main attributes and defining it clearly to 

take corresponding results into account to establish the optimisation methodology.    
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3.2  Problem definition 
 

 
The problem is defined for the 5-axis sculptured surface CNC machining as it has already been 

mentioned. Since it is a pure finish-machining operation, machining accuracy requirements are most 

important and therefore any meaningful optimisation effort should aim to optimise criteria related to 

them. The problem is formulated to optimise 5-axis tool path planning parameters regardless of the 

conditions under which the roughed part is being under. The definition of the problem does not 

impose any standard limitations in terms of the applicable tool path parameter values; however, it is 

established by considering a machining modeling document already prepared (process planning).  

The problem is formulated by representing a set of 5-axis tool path parameters under a machining 

strategy as candidate solution for heuristic evaluation. The set comprises an integer value for cutting 

tool designation and four decimal values for tool path interval (stepover distance), lead angle, tilt 

angle and maximum discretisation step. In other words, the entire machining strategy is considered 

as a string of values, consisted of the parameters responsible for its control. To generalize it, let n be 

the number of tool path parameters (Prm) of a machining strategy MS for assessment. The candidate 

solution CS for the machining strategy MS can be given as follows:    

  Prm 1;  Prm 2;  Prm 3;  .. ;  Prm MSCS n=                                Eq. 3.1 

Each of these parameters existing in the candidate solution needs to be optimised such that the rest 

of parameters’ effects are also considered and thus, the optimal solution (as a sequence of 

parameters) is subjected to be obtained as an entire tool path for the machining strategy. From an 

evolutionary computation perspective this is interpreted as the process of evaluating a chromosome 

with regard to some optimisation criteria such that the tool type, the tool’s orientation and the 

spacing of cutting points referring to both directions (u and v) are simultaneously considered. The 

identification of variables and their applicable ranges determine the problem’s domain. Since the 

problem is to be solved using an intelligent evolutionary algorithm, the search step needs to be 

defined. This step will specify the accuracy of the search carried out by the algorithm whereas this 

accuracy is decided via the number of digits associated to the parameters’ binary representations. By 

considering the number of accuracy digits (abits) of each tool path parameter in the machining 

strategy and the constrained minimum and maximum numbers of digits (minbits, maxbits) referring to 

the entire candidate solution CSMS, then the expression presented in Equation 3.1 is transformed to 

the one given in Equation 3.2. 
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        1 2 3 Prm 1 , Prm 2 , Prm 3 ,....., Prm n n

MS bits bits bits bitsCS a a a a= ,

 
max

min
min ,max

bits

bits

bits bitsa                     Eq. 3.2

     

The tool path parameters involved in the machining strategy are evaluated to converge to a set of 

non-dominated solutions according to the Pareto optimal approach and the corresponding number of 

optimisation criteria. Let SSMS to depict the objective domain of the multi-objective sculptured 

surface machining optimisation problem, SSMs S a non-dominated point,  max1,2,...,c C a single 

optimisation criterion and maxC  the maximum number of the criteria. If the candidate solution CSMS is 

considered a vector of decision variables (tool path parameters) as well, then the multi-objective 

optimisation problem for the sculptured surface machining can be expressed via Equation 3.3. 

( ) ( ) ( ) max

max max1 1 2 2, ,....,
C

SSM MS MS C C MSS s R s f CS s f CS s f CS=  = = =                           Eq. 3.3 

In Eq.3.3, ( )MSf CS designates the feasible objective domain of candidate solution CSMS and is 

associated to the corresponding feasible decision domain for the CSMS.  

3.3  Machining strategy and cutter location points 
 

Multi-axis sweeping is a global surface machining strategy available to Dassault Systemes CATIA® V5. 

The strategy produces parallel tool paths to the plane defined by feed direction (F) and view direction 

(V). Like in any other multi-axis strategy for surface machining, the cutter location (CL) points 

generated introduce a variable cutting tool orientation along the tool path with respect to the 

surface.  Thus, the values of tool path parameters, type of cutting tool, stepover, lead and tilt angles 

and maximum discretisation step, alter the resulting work piece-engagement boundaries at each of 

cutter contact points, suggesting different tool path postures. 

Cutter location data formulate a m x n pattern of points covering the entire sculptured surface 

represented in the u, v parametric space. A unique cutter location (CL) point is determined as CL (x, y, 

z, i, j, k, c1, c2), where (x, y, z) are the coordinates of the machining axis system whilst (i, j, k) are the 

components determining the unit normal vector representing the tool’s position for a given CL point. 

Finally, c1 and c2 are the two principal curvatures of the surface for u and v respectively, responsible 

for the tool’s inclined position to the CL point. The aforementioned instances play crucial role to a 
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multi-axis tool path definition since they affect the entire machining strategy’s cutting style in terms 

of quality and efficiency.  

3.4  Optimisation criteria definition 
 

There are several possible alternative solutions to efficiently produce a specific product, each of 

which has a given manufacturing cost. In order to have a clear depiction whether a solution 

outperforms another, specific criteria should be determined. As it has been already mentioned, the 

primary objective of 5-axis sculptured surface machining is machining accuracy and surface quality. 

Although it is a metal cutting operation dedicated to finish-machining, it comes inevitably with excess 

material in the form of remaining volume. This volume is the direct result of machining error as a 

combined effect of scallop height and chordal deviation and it should have specific characteristics to 

accept the part from a production perspective. In addition, the topology of the material left owing to 

machining error should facilitate last operations of benchwork and polishing. 

The criteria or objectives determined to solve the sculptured surface machining problem in this thesis 

are the machining error, the uniformity of machining error (tool path smoothness) and the number of 

cutting points comprising a tool path.  To enable their evaluation for globally optimising the tool 

paths, local data is collected referring to each of the cutting points constituting the entire tool path 

and then results corresponding to machining error and uniformity are represented by their true 

means respectively. The number of cutting points is obtained by the cutting data file (APT source or 

CL data file). A prerequisite for using the means of measurements to represent global criteria is to 

consider all cutting points and not only a sample of them. The criterion of machining error uniformity 

is introduced in the problem to characterize the smoothness for tool paths when varying the tool axis 

along feed direction during the cut. Fluctuations of machining error indicate the abrupt changes 

among different tool orientations and consequently they may prevent machining strips from having 

smooth tool path postures. The beneficial control in terms of tool axis variations when machining 

sculptured parts is also a technical requirement since collisions between the tool and the work piece 

can be prevented.   

It is clear that a trade-off for this triple-bounded problem is introduced and should be properly 

treated to positively judge multi-objective optimality. Machining error is an efficiency-opposed 

criterion since dense cutting point patterns reduce the error but increase machining time whilst it is 

uncertain whether a low machining error will maintain uniformity. Nevertheless, there should be at 

least one region in a Pareto front where the three criteria are simultaneously satisfied, that is, an 
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adequate number of cutting points for maintaining low and uniform machining error to the lowest 

possible processing time. In order to perform global multi-objective optimisation, tool path 

parameters should be simultaneously investigated to include their effects on the optimisation 

criteria, at once.    

3.4.1 Machining error 
  

As the tool follows the tool path towards feed direction, it subsequently meets cutter location points 

with the consequence of producing sequential chord errors whose magnitude depends on the 3D 

distance , 1i iL + and the local curvature , 1i i + existing in between pairs of unit normals 
in and 

1in +
. If

iCL , 1iCL + are considered as two consecutive cutter location points then their chord length , 1i iL + in 

3D Cartesian space with reference to the machining axis system can be computed using Equation 3.4 

(Fisher 1989). 

( ) ( ) ( )
2 2 2

, 1 1 1 1i i i i i i i iL x x y y z z+ + + += − + − + −                                Eq. 3.4
 

Consecutive local curvatures may be computed by employing vector algebra and retrieving dot 

products of normal vectors utilizing the angle between them. Thereby, with reference to the two unit 

normals 
in and 

1in +
the angle 

, 1i i +
 is determined as,

, 1 1arccos( )i i i in n + += , whereas local curvature 

, 1i i +  (mm-1) is computed by using Equation 3.5. Finally, the chord error , 1i i + (mm) is given in 

Equation 3.6.  

, 1
2 sin /

2

i i

i iL


 + 
=   

 
                                    Eq. 3.5

 

2

, 12

, 1 , 1 , 1
2

i i

i i i i i i

L
   +

+ + +

 
= − − 

 

                                 Eq. 3.6 

Effective cutting postures differ regarding the cutting tool geometry and inclination in each cutter 

location point. The postures result to significant fluctuations of scallop height. Redonnet et al. 2013 

and Segonds et al. 2017, managed to define the effective cutting radii effR by considering the three 

most often-used cutting tool geometries, flat-end (Equation 3.7), fillet-end (Equation 3.8) and ball-

end (Equation 3.9) as well as the two inclination angles, lead and tilt. Note that for ball end-mills,
EffR

is not affected by tool inclination angles in 5-axis machining and is equal to the radius of the tool.    
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( )

2

2 2

cos

sin 1 sin sin

F T
eff

L T L

R a
R

a a a


=

 − 
                                Eq. 3.7 

( )

( )

2

2 2

cos

sin 1 sin sin

TT

eff

L T L

R r a
R r

a a a

− 
= +

 − 
                                Eq. 3.8

 

B

effR R=                                    Eq. 3.9

 

  where, 

, ,F T B

eff eff effR R R : the effective cutting radius for flat-end, filleted-end and ball-end mills, 

R :     Radius of cutting tool, 

r :     Corner radius of filleted (toroidal) end-mills,  

La : Lead angle in degrees, 

Ta : Tilt angle in degrees. 

 

Scallop height magnitude can be estimated by considering the effect of stepover, with reference to 

the effective cutting radius depending on the cutting tool geometry as follows (Segonds et al. 2017):  

2
2

4

e
eff eff

a
h R R= − −                                              Eq. 3.10 

  

In order to achieve high accuracy for tool path generation, both chord error , 1i i + and scallop height h

need to be controlled. Both chord error and scallop height formulas were examined for their accuracy 

and they were programmed via a “FOR-NEXT” function developed in Visual Basic®. The function 

retrieves the 5-axis machining strategy from the machining modeling document and executes the APT 

generator to produce the corresponding CL file. Thereby, the file is accessed as a *.txt file and tool 

positions (x, y, z, i, j, k) are examined for computing all local chord errors and scallop heights. From 

the entire set of computations, the mean value of machining error is finally obtained to represent the 

general error for the tool path. The “FOR-NEXT” function developed for automatic machining error 

computations is a part of an integrated programming module which is presented in Chapter 4.      
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3.4.2 Machining error uniformity (distribution) 
 

Machining error criterion is mandatory for evaluating the geometrical accuracy of 5-axis tool paths to 

machine sculptured surfaces. Apparently, the values recommended as “optimal” will be under the 

preset tolerance. However, some local distances among pairs of subsequent tool path points might 

produce exceeding chord errors capable of affecting the smoothness of tool path trajectory (Zhou et 

al. 2015). In addition, the topology of tool path points may impose the sudden change in tool 

postures that eventually affect NC controllability.  

In order to quantify machining error changes in local cutting points, the uniform distribution of 

machining error has been added to the optimisation problem as the second quality requirement. To 

evaluate the local error distribution regarding cutting points of the tool path and obtain a general 

outcome, statistical rules were implemented. Thus, the variance or standard deviation of the absolute 

difference among mean machining error and individual local machining error measurements was 

selected to formulate the second optimisation criterion and improve the tool path smoothness.  

To implement the aforementioned optimisation criterion and allow for the necessary computations a 

second “FOR-NEXT” function developed in Visual Basic® was applied, which is also a part of the 

integrated programming module to be presented in Chapter 4. The statistical formulas involved to 

the programming procedure are given in Equations 3.11, 3.12, 3.13 and 3.14 and refer to the mean, 

the mean difference, the variance and standard deviation respectively.                 

 

1

1
i

i

x x


 =

=                                                Eq. 3.11 

1

1
_ i

i

x diff x x


 =

= −                                                                         Eq. 3.12 
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2 2 2
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1 ( 1)
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


 = = =

  
=  − =  −   − −   

                                           Eq. 3.13 
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  
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                               Eq. 3.14
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By deploying the property of machining error distribution as a quality objective via the standard 

deviation to assess tool path smoothness, the error’s variability and, indirectly, local fluctuations of 

tool path smoothness are quantified for the entire tool path with reference to resulting tool 

orientations at all CL points comprising it. 

3.4.3 Density and topology of tool path points 
 

The number of cutting points comprising the tool path has been introduced as the third optimisation 

criterion since this number directly affects machining time. Therefore, optimal tool paths should 

contain an adequate number of cutting points for satisfying machining accuracy but not at the 

expense of machining time. Obviously, a varying density among cutting points is required according 

the surface curvature to sustain a topologically equivalent machining error variations among different 

regions of the surface.       

 

3.5  Objective function 
 

The objective function evaluates a candidate solution’s state in an optimisation process and in that 

sense,  it is used for representing the solution’s quality/contribution. The objective function of each 

candidate solution is individually computed; thus, objective function values differ in a set of solutions. 

Objective function suggests the very first research step for formulating an optimisation problem.  

Two widely applied techniques for formulating objective functions for optimisation problems exist. 

The first method is known as Pareto-optimal and deals with a set of non-dominated solutions 

depicted in a Pareto front. Each axis in a Pareto front depicts an optimisation objective, that is, the 

number of axes is equal to the number of optimisation objectives. Pareto-optimal is a pure multi-

objective optimisation technique. According to its principles, a point 0

Objp S is considered as a 

“Pareto-optimal” result or non-dominated result if (and only if) there is no other result in the 

objective space, let it be Objp S which outperforms 0p  with regard to all objectives. In the objective 

space ObjS the entire set of non-dominated solutions formulate a border, known as the “Pareto” front. 

The impact of Pareto-optimal points in the objective space ObjS is distinguished through their location 

in the Pareto front with reference to the coordinate system origin. Given the nature of the objective 

and the problem -minimization or maximization- each point’s impact is given by its related distance 
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from the axis that corresponds to the objective. If the objective needs to be minimised then the point 

is preferred to be closer to the axis’ origin and vice versa.    

The second most popular technique for formulating objective functions is the weighted sum. In the 

weighted sum technique, the multi-objective treatment of criteria is turned to a single-objective one 

through the linear combination of the criteria involved as well as their corresponding weights of 

importance. In order to remove the inherent bias among different criteria magnitudes and avoid 

disorienting results, normalization should be carried out (especially when it comes to contradictory 

criteria) by mapping their objective space using the same percentage scale. 

The weighted sum with respect to the single criteria and their weights is depicted in Equation 3.15, 

where 1 2, ,...,nrm nrm nrm

nC C C are the normalized optimisation criteria,
1 2, ,..., nw w w are their 

corresponding impact weights, whilst, 
1

1 0 1.0
n

i i

i

w w
=

=   .  

1 1 2 2 ....WS n nOF w C w C w C=  +  + + 
 
,  ( 1,2,... )iw i n=                            Eq. 3.15

 

The weighted sum technique seems to facilitate the optimisation process from a practical viewpoint, 

however it is not known whether it can ensure a clear and concise depiction in terms of the problem’s 

global scale or its generic characteristics. An important drawback is also the absence of a scientific or 

standard philosophy for determining the weights of optimisation objectives thus, researches have to 

figure out how to decide the impact of each objective in the problem at hand (Das and Dennis, 1997).     

In this thesis both techniques have been implemented and the objective functions have been 

designed accordingly. By considering the optimisation criteria presented above the objective 

functions are given in Eq.3.16 and Eq.3.17 following the Pareto-optimal and the weighted sum 

techniques respectively. Note that in the case of the weighted sum technique normalization of 

criteria has been conducted by using the maximum value among experimental results which are to be 

presented in the following sections.  

( ) ( ) ( )
2 2 2

POOF h stdev stdevh CL = + + + +                              Eq. 3.16 

( ) ( ) ( )1 2 3 1 2 3 0.33nrm nrm nrm nrm nrm

WS i i i i iOF w h w stdev stdevh w CL w w w =  + +  + +  = =      
 

                                  Eq. 3.17 
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3.6  Design of experiments 
 

For an optimisation methodology to address the variables of the problem at hand in a generalized 

essence based on the criteria involved, it should somehow emphasize on the impact and the effect of 

these variables. This practically means that if the variable’s effect on the interrelated combination of 

objectives has a specific/fixed impact regardless of the particularities of the sculptured surface being 

studied, then the design of the problem’s solution domain should be such that it accounts for, and 

describes the range of applicable values for this variable accordingly, through more or less precision 

digits.  

Additionally, analytical expressions presented for estimating chord error and scallop height values 

should be experimentally tested to clarify the percentage of successful predictions they provide for 

the objectives. Such an experimental process requires the exploration of tool path parameters and 

optimisation criteria on different sculptured surfaces with variable complexity characteristics so that 

results will technically contribute to the design and development of the generic methodology for 

globally optimizing the sculptured surface machining problem. Thereby, the methodology may 

achieve the appropriate representation of the problem’s solution domain and adjust the optimisation 

requirements for tool path parameters accordingly, for any case of sculptured surface.  

Based on the above, experiments were designed and conducted on four different sculptured surfaces 

and the corresponding results were statistically examined to determine the influence of tool path on 

the optimisation criteria. The sculptured surfaces studied are benchmark sculptured surfaces taken 

from the literature whilst they have been used in the past by other researchers. Thus, the ranges of 

applicable values for tool path parameters -as well as other related attributes- were determined on 

the basis of the proposed data that previous research works provide, so as to compare the proposed 

methodology as rigorous and as valid as possible with them.  

The objectives of the following study are: 

• To examine the effects of tool path parameters on the interrelated criterion of mean 

machining error, mean standard deviation of the error and number of cutting points to 

decide their impact during the development of the proposed optimisation methodology, 

• To evaluate the scallop height prediction capability of Eq.3.10 by comparing its computational 

outputs to experimental results referred to the same objective, 

• To verify the automated process of extracting results in terms of chord error using 

programming scripts, 
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• To generate regression models for the optimisation criteria and consider them as temporary 

objective functions that will be handled by several intelligent algorithms (including the one 

developed in this research) for comparisons regarding the same problem.    

 

3.6.1  Benchmark sculptured surfaces 
 

The geometries of benchmark sculptured surfaces developed are depicted in Figure 3.1. The first 

benchmark surface (Fig.3.1a) is a bi-cubic Bezier patch and it was designed to test the robustness of 

“rolling ball” tool positioning method (Gray et al. 2003). Its control points were selected such that 

convex, concave and saddle regions would be created to test all possible tool orientation challenges. 

With reference to the control points given in the work of Gray et al. (2003) the same surface was 

designed in advanced free-form surface design environment of CATIA® V5 R18.  

The second benchmark surface is a double surface patch contour (Fig.3.1b). The two bi-cubic surface 

patches are symmetrical in x-axis and they are joined together with C0 continuity. The surface was 

previously used in the work of Gray et al. (2004) to demonstrate the efficiency of their proposed tool 

positioning methodology, known as “graphics-assisted rolling ball”.  

The third benchmark surface (Fig.3.1c) is a “sin-cos” benchmark sculptured surface designed with the 

help of a function equation presented in Equation 18. The same surface has been used in the works of 

Lazoglu et al. (2009) and Manav et al. (2013) as a test surface to examine force-minimal tool paths.   

3 cos sin 3
20 20

y x
z

       
=   +    

    
                              Eq. 3.18 

The fourth benchmark surface has been used in the work of Roman et al. (2015) and is an arbitrary 

geometry with varying curvature (Fig.3.1d).  

All surfaces have been designed using the exact CAD information provided by the aforementioned 

research works. The surfaces have been designed in the advanced free-form surface design 

environment of CATIA® V5 R18.   
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Figure 3.1: Benchmark sculptured surfaces and multi-axis sweeping tool paths: (a) SS-1, (b) SS-2, (c) SS-3, (d) SS-4.  

      

(d) 

(c) 

(b) 

(a) 
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3.6.2 Design of machining simulation experiments 
 

The selection of a specific type to design experiments is based on the objectives and the number of 

independent parameters under examination. The major approaches for designing experiments are 

presented as follows (Montgomery, 2013):  

1. Factorial designs of experiments 

Factorial designs include one-factorial, fractional factorial and full factorial designs of experiments. 

One-factorial experimental design allows to design experiments such that only one factor at a time is 

investigated with reference to the objectives involved. The purpose is to identify the impact of the 

factor under investigation on the objective (or objectives) at different parameter levels. The factor 

may be either categorical or numerical. In the case of categorical factors, no predictions in terms of 

the objective(s) can be carried out of the vicinity of the levels tested; only the effect of the factor on 

the objective can be estimated. When it comes to numerical factors both effect examination and 

objective prediction may be achieved if adequate experimental results exist.  

Fractional factorial designs examine only a fraction of all possible combinations leading thus to a 

reduced number of experimental runs which considered necessary, without the loss of statistically 

significant information. The experimenter should choose which combinations are to be excluded thus 

a significant knowledge is needed to identify the most important ones. In addition, some certain 

interactions cannot be determined owing to the excluded combinations. In general, multiple 

parameters can be examined simultaneously during the experiment whilst categorical and numerical 

factors can be involved to the problem as in the case of one-factorial designs. The aim is to identify 

the impact of each parameter affecting the objective(s) as well as the generation of predictive 

models. A limited number of interactions among parameters can also be investigated. 

In full factorial designs of experiments each of the parameters involved may have different number of 

levels whilst they can be categorical and/or numerical. In this approach all experimental runs need to 

be conducted to obtain adequate statistical information to further investigate the impact of 

independent parameters on the objective(s). These designs obviously come with the shortcoming of 

increasing the cost which may significantly vary according the nature of experiments. However there 

is a possibility of reducing the number of experimental runs by adopting the two-level full factorial 

design of experiments where two levels (high and low) are considered for all factors. By reducing the 

number of experiments following this approach, one can benefit from the investigation of all factors 

as well as their interactions.           
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2. Taguchi’s orthogonal arrays (OAs) 

Taguchi’s orthogonal arrays allow fractional designs, for estimating main effects with only few 

experimental tries without the loss of significant statistical information. These designs are applicable 

for investigating main effects when factors have up to two levels. Designs are also available to 

examine the effects for mixed-leveled experiments where the factors involved are not assigned with 

the same number of levels. However, the results provided by this approach may fail to indicate 

exactly which factor has the highest impact on the objective. Furthermore, difficulties when 

addressing interactions between independent parameters have been reported as an important 

drawback (Ross, 1996).   

3. Response surface designs (RSM) 

Response surface designs are often preferred when it comes to the determination of the suitable 

settings of parameters to attain an optimal value for the objective(s) under investigation. They try to 

interpolate the experimental results obtained by the experiment to locally or globally predict 

beneficial correlations among independent variables and objectives (responses). RSM methods are 

insensitive to unusual observations whilst they provide a consistent visualization of the problem’s 

design space. However, when it comes to global approximations and many independent parameters, 

an RSM design may need an excessive number of function evaluations to provide reliable and 

qualitative results (Box and Draper, 1987).    

According to the aforementioned information concerning the techniques available for designing 

experiments, the five surface machining tool path parameters, tool type, stepover, lead angle, tilt 

angle and maximum discretisation step were assigned to an L32 (25 ) array according the two-level full 

factorial experimental design approach. The selection of this approach facilitates the experimental 

process for obtaining the necessary results to further examine the impact of tool path parameters on 

the optimisation criteria which are the means of the machining error, the uniformity and the number 

of cutting points. The total number of experiments is deemed necessary in order to obtain reliable 

means. In addition, computational time is dramatically reduced anyway since the experimentation is 

based on automated machining simulations in CAM environment. The L32 (25 ) array allows also fitting 

a model including a mean term, five main effects, ten 2nd order interactions, ten 3rd order 

interactions, five 4th order interactions and a 5th order interaction (32 parameters).  

The two-level full factorial experimental design approach was implemented to examine the impact of 

the 5-axis tool path planning parameters regarding the optimisation objectives by considering the 

benchmark sculptured surfaces depicted in Figure 3.1. The two-level full factorial design of 
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experiments was selected to reduce the number of experiments, obtain all statistically significant 

information and take into consideration all possible interactions up to the 3rd order. Four 

independent designs were established, and their experimental runs were conducted to obtain results 

for further statistical examination. Table 3.1 summarizes the independent experimental designs 

referring to the benchmark sculptured surfaces tested.   

Table 3.1: Two-level full factorial experimental designs with reference to the benchmark sculptured surfaces examined. 

Benchmark 
surface 

Levels Tool Stepover (%D) Lead angle (deg) Tilt angle (deg) MaxDstep (mm) 

SS-1 
Low D37.4-Rc0 10 20 0 0.7 
High D37.4-Rc6 45 35 7 1.397 

SS-2 
Low D50.8-Rc6.35 10 15 0 0.762 
High D50.8-Rc0 45 20 15 2 

SS-3 
Low D12-Rc0 17 15 0 1 
High D12-Rc3 45 20 15 5 

SS-4 
Low D20-Rc0 10 30 0 0.5 

High D20-Rc4 45 40 5 2.5 

 

A number of steps were followed to conduct the experiments and obtain the necessary results for 

statistical analysis and interpretation. The steps are presented and explained in the following sub-

sections.    

1. Automatic tool path computation according to the inputs for tool path parameters 

corresponding to the “multi-axis sweeping” strategy.  

Experimental values of parameters for the tool path were imported to the sculptured surface 

machining strategy and the outputs for performance metrics were extracted using the automated 

part of the proposed methodology through a function developed in Visual Basic®. Computations deal 

with all necessary attributes to obtain the average values of chord error, scallop height, standard 

deviations and the number of cutting points. The function that automates the entire manufacturing 

environment has been developed in Microsoft Visual Basic®. At that point the automation function 

was deployed to automatically extract computational results for the aforementioned objectives 

whilst its main goal is to interact with the intelligent algorithm developed in this research towards the 

ultimate purpose of heuristic tool path optimisation for sculptured surface machining. The 

automation function was executed as many times as the number of experimental runs for each of the 

four individual designs for the benchmark sculptured surfaces, hence, 128 times.        

2. Machining simulation and storage of 3D CAM outputs in *.stl file format.  

The computational outputs for all tool paths were stored and simulated using material removal 

functions embedded to CAM software. Corresponding machined models were stored as 3D CAM 
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outputs to examine their machining quality. Machining quality of 3D CAM outputs was investigated 

by means of virtual surface touch probing techniques available to the commercially available 3D 

metrology software Geomagic® Qualify Probe® 2013.    

3. Real-time deviation measurements with respect to ideal surfaces, performed on scallop volumes 

of 3D CAM outputs in their *.stl version using 3D metrology utilities of Geomagic® Qualify Probe® 

2013.  

Experimental 3D CAM outputs were imported to Geomagic® Qualify Probe® 2013 3D metrology 

package as *.stl entities and compared to the original CAD sculptured surface models. The models 

were aligned regarding the same machining axis system as that determined in the process documents 

for the machining simulations. Virtual probing was conducted to all scallop curves in 3D CAM outputs 

whilst 500 to 1000 measurements were taken depending on the benchmark surface’s nominal 

dimensions and profound scallop volumes (excess material). Real-time deviation measurements for 

machining error were then exported in *.txt format in order to compare them to those obtained by 

analytical computations.  

 

3.6.3 Experimental results and descriptive statistics  
 

The results of the experiments performed on all surfaces and the domains of their variables, as 

determined by the L32 (25) array, are shown in Figure 3.2 and summarized in Tables 3.2, 3.3, 3.4 and 

3.5 corresponding to sculptured surfaces SS-1, SS-2, SS-3 and SS-4 respectively. The optimisation 

objective under interest is the Pareto criterion. The magnitudes of individual objectives were mapped 

to [0, 1] range using a simple normalization technique. According to this technique the results for 

each objective are divided to their largest observation-result, thus, the inherent bias in favor of larger 

magnitudes and different units is removed and comparison is achieved under fair means. Thereby the 

Pareto criterion for each experimental design has been computed using Eq.3.16.  

With reference to the experimental designs summarized in Table 3.1, the experimental runs that 

minimise and maximise the Pareto criterion were investigated. For the first benchmark sculptured 

surface (SS-1) the 26th experiment minimised the Pareto criterion. The parameters corresponding to 

this run are shown in Table 3.2 along with the rest experimental runs. For the same surface the 5th 

experiment maximised the Pareto criterion whilst its corresponding values for tool path parameters 

are also summarized in Table 3.2. It can be seen that cutting tool and stepover parameters do not 

give a clear indication for the trend of Pareto criterion since both parameters minimise and maximise 
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its magnitude for the same values (Flat end-mill, stepover 10%). For the second benchmark 

sculptured surface (SS-2) minimum and maximum Pareto results were observed in 17th and 32nd 

experiments respectively. The results are also summarized in Table 3.3. In this case only MaxDstep 

parameter does not provide evidence for the trend of Pareto criterion since the same value is 

indicated to both experimental runs, 17th and 32nd. As far as the third benchmark sculptured surface 

(SS-3) is concerned, the 4th and the 20th experiment minimised and maximised respectively the result 

of Pareto criterion whilst MaxDstep parameter was the only parameter to exhibit a clear indication 

about the trend of Pareto result (Table 3.4). The rest of parameters minimised and maximised Pareto 

result under the same experimental values. In the case of the fourth benchmark sculptured surface 

(SS-4) minimum and maximum indications for the Pareto criterion were observed to the 22nd and the 

1st experiment respectively. The results are also summarized in Table 3.5. The tool path parameters 

that gave a clear effect on Pareto criterion were cutting tool, lead angle and MaxDstep whereas 

stepover and tilt angle did not show evidence in terms of their effects on Pareto criterion.  

 

Figure 3.2: Benchmark sculptured surfaces and multi-axis sweeping tool paths: (a) SS-1, (b) SS-2, (c) SS-3, (d) SS-4.  
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Table 3.2: Two-level full factorial experimental results corresponding to the first benchmark sculptured surface (SS-1). 

a/a 
exp Tool ea  

(%Ø) 
La  

(◦) 
Ta  

(◦) 

MaxDstep 
(mm) h    stdevh  stdev  NoCLs 

POOF  

1 D37.4Rc0 10 20 0 0.7 0.2692 0.1474 0.4022 0.9165 0.9829 1.6967 
2 D37.4Rc6 10 20 0 0.7 0.1718 0.0526 0.0281 0.2338 0.9640 1.0238 
3 D37.4Rc0 45 20 0 0.7 0.8700 0.4842 0.0907 0.3523 0.2255 1.4426 
4 D37.4Rc6 45 20 0 0.7 0.6864 0.0632 0.0028 0.1401 0.2173 0.7934 
5 D37.4Rc0 10 35 0 0.7 0.2873 0.3053 0.7474 1.0000 0.9163 2.0602 
6 D37.4Rc6 10 35 0 0.7 0.1757 0.2316 0.6886 0.2488 1.0000 1.4299 
7 D37.4Rc0 45 35 0 0.7 1.0000 0.9105 0.1559 0.4054 0.2226 2.0037 
8 D37.4Rc6 45 35 0 0.7 0.8276 0.7684 0.1494 0.1971 0.2374 1.6503 
9 D37.4Rc0 10 20 7 0.7 0.2757 0.0526 0.0236 0.9969 0.9492 1.4319 

10 D37.4Rc6 10 20 7 0.7 0.1727 0.0474 0.0007 0.2345 0.9503 1.0034 
11 D37.4Rc0 45 20 7 0.7 0.9414 0.0526 0.0001 0.4057 0.2394 1.1000 
12 D37.4Rc6 45 20 7 0.7 0.7078 0.0737 0.0060 0.1330 0.2399 0.8292 
13 D37.4Rc0 10 35 7 0.7 0.2506 0.3684 0.4435 0.8308 0.8990 1.6779 
14 D37.4Rc6 10 35 7 0.7 0.1736 0.1895 0.2505 0.2422 0.9812 1.1565 
15 D37.4Rc0 45 35 7 0.7 0.8199 0.1895 0.0079 0.2970 0.2190 1.0769 
16 D37.4Rc6 45 35 7 0.7 0.6891 0.0842 0.0073 0.1336 0.2310 0.8192 
17 D37.4Rc0 10 20 0 1.397 0.2384 0.2263 0.0560 0.1067 0.3588 0.6092 
18 D37.4Rc6 10 20 0 1.397 0.1681 0.1368 0.0084 0.0272 0.3515 0.4666 
19 D37.4Rc0 45 20 0 1.397 0.6125 0.5579 0.0118 0.0218 0.0823 1.1738 
20 D37.4Rc6 45 20 0 1.397 0.6814 0.1684 0.0010 0.0184 0.0797 0.8538 
21 D37.4Rc0 10 35 0 1.397 0.2375 0.4000 0.0980 0.0995 0.3354 0.7469 
22 D37.4Rc6 10 35 0 1.397 0.1728 0.3263 0.0993 0.0332 0.3651 0.6325 
23 D37.4Rc0 45 35 0 1.397 0.7318 1.0000 0.0207 0.0288 0.0814 1.7344 
24 D37.4Rc6 45 35 0 1.397 0.7746 0.8684 0.0201 0.0211 0.0868 1.6458 
25 D37.4Rc0 10 20 7 1.397 0.2238 0.1158 0.0072 0.0877 0.3481 0.4955 
26 D37.4Rc6 10 20 7 1.397 0.1661 0.1263 0.0001 0.0272 0.3465 0.4542 
27 D37.4Rc0 45 20 7 1.397 0.7168 0.1368 0.0000 0.0343 0.0874 0.8587 
28 D37.4Rc6 45 20 7 1.397 0.6900 0.1632 0.0011 0.0163 0.0880 0.8579 
29 D37.4Rc0 10 35 7 1.397 0.2053 0.4368 1.0000 0.0000 0.3293 1.2332 
30 D37.4Rc6 10 35 7 1.397 0.1690 0.2789 0.0377 0.0291 0.3608 0.5790 
31 D37.4Rc0 45 35 7 1.397 0.6266 0.4316 0.0087 0.0221 0.0800 1.0616 
32 D37.4Rc6 45 35 7 1.397 0.6714 0.3000 0.0061 0.0170 0.0853 0.9754 

 

Table 3.3: Two-level full factorial experimental results corresponding to the second benchmark sculptured surface (SS-2). 

a/a 
exp Tool ea  

(%Ø) 
La  

(◦) 
Ta  

(◦) 

MaxDstep 
(mm) h    stdevh  stdev  NoCLs POOF  

1 D50.8Rc6.35 10 15 0 0.762 0.2058 0.3252 0.0549 0.4066 1.0000 1.2227 
2 D50.8Rc0 10 15 0 0.762 0.2774 0.3497 1.0000 0.0631 0.9855 1.5794 
3 D50.8Rc6.35 45 15 0 0.762 0.8830 0.1840 0.0009 0.2114 0.2230 1.1106 
4 D50.8Rc0 45 15 0 0.762 0.9984 0.2209 0.0012 0.3655 0.2220 1.2924 
5 D50.8Rc6.35 10 20 0 0.762 0.2068 0.4724 0.0928 0.3774 0.9971 1.2948 
6 D50.8Rc0 10 20 0 0.762 0.2684 0.5706 0.1178 1.0000 0.9968 1.7167 
7 D50.8Rc6.35 45 20 0 0.762 0.8925 0.2699 0.0018 0.1935 0.2229 1.1997 
8 D50.8Rc0 45 20 0 0.762 0.8528 0.2945 0.0021 0.2339 0.2244 1.1926 
9 D50.8Rc6.35 10 15 15 0.762 0.2117 0.5092 0.0757 0.3482 0.8522 1.1940 

10 D50.8Rc0 10 15 15 0.762 0.2944 0.6810 0.1003 0.9452 0.8350 1.6558 
11 D50.8Rc6.35 45 15 15 0.762 0.8831 0.4049 0.0037 0.1751 0.2226 1.3193 
12 D50.8Rc0 45 15 15 0.762 0.9928 0.5521 0.0052 0.3137 0.2218 1.5930 
13 D50.8Rc6.35 10 20 15 0.762 0.2099 0.6687 0.1085 0.3124 0.8760 1.3101 
14 D50.8Rc0 10 20 15 0.762 0.2872 0.8773 0.1416 0.9544 0.8577 1.8147 
15 D50.8Rc6.35 45 20 15 0.762 0.8615 0.5215 0.0050 0.1557 0.2224 1.4099 
16 D50.8Rc0 45 20 15 0.762 1.0000 0.7117 0.0072 0.3381 0.2220 1.7602 
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17 D50.8Rc6.35 10 15 0 2.000 0.1948 0.5215 0.0093 0.0463 0.3788 0.8122 
18 D50.8Rc0 10 15 0 2.000 0.2305 0.5215 0.0094 0.1057 0.3751 0.8481 
19 D50.8Rc6.35 45 15 0 2.000 0.8712 0.3620 0.0002 0.0298 0.0849 1.2365 
20 D50.8Rc0 45 15 0 2.000 0.8004 0.3865 0.0002 0.0332 0.0844 1.1904 
21 D50.8Rc6.35 10 20 0 2.000 0.2072 0.5890 0.0115 0.0600 0.3752 0.8831 
22 D50.8Rc0 10 20 0 2.000 0.2583 0.6994 0.0159 0.1345 0.3762 1.0398 
23 D50.8Rc6.35 45 20 0 2.000 0.8843 0.3865 0.0002 0.0261 0.0844 1.2739 
24 D50.8Rc0 45 20 0 2.000 0.7790 0.4479 0.0003 0.0312 0.0849 1.2302 
25 D50.8Rc6.35 10 15 15 2.000 0.2062 0.6074 0.0094 0.0487 0.3263 0.8785 
26 D50.8Rc0 10 15 15 2.000 0.2589 0.7485 0.0124 0.1186 0.3184 1.0646 
27 D50.8Rc6.35 45 15 15 2.000 0.8535 0.6564 0.0007 0.0244 0.0847 1.5126 
28 D50.8Rc0 45 15 15 2.000 0.8384 0.6442 0.0007 0.0344 0.0847 1.4854 
29 D50.8Rc6.35 10 20 15 2.000 0.2089 0.8528 0.0164 0.0451 0.3338 1.1146 
30 D50.8Rc0 10 20 15 2.000 0.2685 1.0000 0.0191 0.1221 0.3258 1.3173 
31 D50.8Rc6.35 45 20 15 2.000 0.8160 0.5706 0.0005 0.0213 0.0845 1.3893 
32 D50.8Rc0 45 20 15 2.000 0.9660 1.0000 0.0012 0.0444 0.0833 1.9683 

 

Table 3.4: Two-level full factorial experimental results corresponding to the third benchmark sculptured surface (SS-3). 

a/a 
exp Tool ea  

(%Ø) 
La  

(◦) 
Ta  

(◦) 

MaxDstep 
(mm) h    stdevh  stdev  NoCLs POOF  

1 D12Rc0 17 15 0 1 0.4253 0.0954 0.1596 0.8776 0.9835 1.5212 
2 D12Rc3 17 15 0 1 0.3948 0.0983 0.4684 0.3941 1.0000 1.4096 
3 D12Rc0 45 15 0 1 0.9087 0.1012 0.0572 0.4202 0.3791 1.1796 
4 D12Rc3 45 15 0 1 0.9595 0.0954 0.0025 0.2266 0.3851 1.1461 
5 D12Rc0 17 20 0 1 0.4508 0.0954 0.0245 1.0000 0.9838 1.5218 
6 D12Rc3 17 20 0 1 0.3839 0.0954 0.2129 0.3272 0.9960 1.2302 
7 D12Rc0 45 20 0 1 0.9037 0.1012 0.0574 0.3680 0.3768 1.1544 
8 D12Rc3 45 20 0 1 0.9716 0.0954 0.0025 0.2411 0.3839 1.1598 
9 D12Rc0 17 15 15 1 0.4498 0.0809 0.0075 0.9921 0.9772 1.4952 

10 D12Rc3 17 15 15 1 0.3818 0.0925 0.0205 0.3172 0.9988 1.1561 
11 D12Rc0 45 15 15 1 0.9436 0.1040 0.0769 0.4820 0.3856 1.2485 
12 D12Rc3 45 15 15 1 1.0000 0.1040 0.0666 0.2768 0.3869 1.2193 
13 D12Rc0 17 20 15 1 0.4401 0.0954 0.0301 0.9435 0.9815 1.4826 
14 D12Rc3 17 20 15 1 0.3886 0.0954 0.0254 0.3409 0.9982 1.1682 
15 D12Rc0 45 20 15 1 0.9170 0.1040 0.0759 0.4082 0.3839 1.1935 
16 D12Rc3 45 20 15 1 0.9623 0.0983 0.0091 0.2109 0.3889 1.1508 
17 D12Rc0 17 15 0 5 0.3439 0.8931 0.8911 0.0224 0.1901 1.5494 
18 D12Rc3 17 15 0 5 0.3700 0.9162 0.9505 0.0143 0.1898 1.6190 
19 D12Rc0 45 15 0 5 0.7666 0.8815 0.1269 0.0135 0.0737 1.6558 
20 D12Rc3 45 15 0 5 0.9573 1.0000 0.1568 0.0110 0.0727 1.9658 
21 D12Rc0 17 20 0 5 0.3415 0.8584 0.8457 0.0275 0.1931 1.4965 
22 D12Rc3 17 20 0 5 0.3594 0.8382 0.7915 0.0118 0.1911 1.4547 
23 D12Rc0 45 20 0 5 0.7660 0.8035 0.1051 0.0169 0.0737 1.5759 
24 D12Rc3 45 20 0 5 0.8891 0.9162 0.1388 0.0088 0.0739 1.8128 
25 D12Rc0 17 15 15 5 0.4038 0.9017 0.9546 0.0381 0.1930 1.6513 
26 D12Rc3 17 15 15 5 0.3937 0.8295 0.7886 0.0167 0.1945 1.4773 
27 D12Rc0 45 15 15 5 0.7810 0.7630 0.0998 0.0139 0.0764 1.5501 
28 D12Rc3 45 15 15 5 0.9514 0.8786 0.1286 0.0110 0.0751 1.8368 
29 D12Rc0 17 20 15 5 0.4150 0.9133 1.0000 0.0409 0.1965 1.6990 
30 D12Rc3 17 20 15 5 0.4035 0.8699 0.8842 0.0169 0.1956 1.5722 
31 D12Rc0 45 20 15 5 0.8355 0.8208 0.1221 0.0175 0.0772 1.6640 
32 D12Rc3 45 20 15 5 0.9753 0.9249 0.1419 0.0121 0.0759 1.9079 
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Table 3.5: Two-level full factorial experimental results corresponding to the fourth benchmark sculptured surface (SS-4). 

a/a 
exp Tool ea  

(%Ø) 
La  

(◦) 
Ta  

(◦) 

MaxDstep 
(mm) h    stdevh  stdev  NoCLs 

POOF  

1 D20Rc0 10 30 0 0.5 0.3182 0.0710 0.1336 0.9713 1.0000 1.5402 
2 D20Rc4 10 30 0 0.5 0.2275 0.0625 0.0230 0.2601 0.9557 1.0381 
3 D20Rc0 45 30 0 0.5 1.0000 0.0682 0.0016 0.3568 0.2178 1.1475 
4 D20Rc4 45 30 0 0.5 0.9381 0.0625 0.0011 0.1574 0.2092 1.0344 
5 D20Rc0 10 40 0 0.5 0.3109 0.2131 0.0087 0.9124 0.9455 1.4202 
6 D20Rc4 10 40 0 0.5 0.2196 0.0625 0.0236 0.2438 0.9542 1.0303 
7 D20Rc0 45 40 0 0.5 0.9444 0.0625 0.0012 0.2844 0.2096 1.0674 
8 D20Rc4 45 40 0 0.5 0.8912 0.0625 0.0011 0.1474 0.2095 0.9877 
9 D20Rc0 10 30 5 0.5 0.3191 0.0653 0.0283 1.0000 0.9881 1.4770 

10 D20Rc4 10 30 5 0.5 0.2299 0.0625 0.0288 0.2746 0.9538 1.0427 
11 D20Rc0 45 30 5 0.5 0.9738 0.0710 0.0197 0.3310 0.2300 1.1259 
12 D20Rc4 45 30 5 0.5 0.9389 0.0682 0.0179 0.1587 0.2205 1.0460 
13 D20Rc0 10 40 5 0.5 0.2904 0.2330 0.0055 0.7743 0.9430 1.3309 
14 D20Rc4 10 40 5 0.5 0.2072 0.0625 0.0237 0.1868 0.9445 1.0045 
15 D20Rc0 45 40 5 0.5 0.9380 0.0625 0.0012 0.2822 0.2097 1.0608 
16 D20Rc4 45 40 5 0.5 0.8988 0.0625 0.0025 0.1514 0.2121 0.9964 
17 D20Rc0 10 30 0 2.5 0.2654 0.5085 1.0000 0.0356 0.2185 1.3111 
18 D20Rc4 10 30 0 2.5 0.2237 0.3068 0.1299 0.0124 0.2102 0.5882 
19 D20Rc0 45 30 0 2.5 0.8574 0.4460 0.0350 0.0152 0.0473 1.3053 
20 D20Rc4 45 30 0 2.5 0.9523 0.3239 0.0107 0.0077 0.0455 1.2771 
21 D20Rc0 10 40 0 2.5 0.2310 0.3239 0.2510 0.0281 0.2131 0.6566 
22 D20Rc4 10 40 0 2.5 0.2167 0.2784 0.0565 0.0128 0.2186 0.5457 
23 D20Rc0 45 40 0 2.5 0.9444 0.0625 0.0012 0.2844 0.2096 1.0674 
24 D20Rc4 45 40 0 2.5 0.9315 0.3097 0.0083 0.0105 0.0470 1.2422 
25 D20Rc0 10 30 5 2.5 0.2694 0.4006 0.5112 0.0369 0.2180 0.8926 
26 D20Rc4 10 30 5 2.5 0.2258 0.3267 0.2388 0.0128 0.2095 0.6422 
27 D20Rc0 45 30 5 2.5 0.8477 0.4290 0.0313 0.0130 0.0504 1.2784 
28 D20Rc4 45 30 5 2.5 0.9402 0.3807 0.0250 0.0072 0.0478 1.3221 
29 D20Rc0 10 40 5 2.5 0.2383 1.0000 0.0823 0.0296 0.2137 1.2616 
30 D20Rc4 10 40 5 2.5 0.2149 0.3125 0.2522 0.0120 0.2162 0.6282 
31 D20Rc0 45 40 5 2.5 0.8134 0.3011 0.0066 0.0101 0.0470 1.1157 
32 D20Rc4 45 40 5 2.5 0.8900 0.3182 0.0139 0.0074 0.0474 1.2093 

 

Obviously, the observations derived from the experimental runs do not indicate clearly the effects of 

tool path parameters on the Pareto criterion. It can be also deduced that the trend of Pareto criterion 

does not follow the same trend when examining different sculptured surfaces under different tool 

path parameter values with reference to their applicable ranges. Further analysis has been conducted 

with reference to experimental results by examining the main effects of the normalized individual 

optimisation objectives and Pareto criterion. Main effects plots have been generated to investigate 

the differences among level means regarding the tool path parameters. The effect of each tool path 

parameter is illustrated with a straight line passing across the reference line (dashed line) that depicts 

the overall mean. In the case of obtaining a horizontal effect line (parallel to x-axis) no indication for 

the main effect will exist. This means that each parameter level will affect the objective under study 

in the same manner whilst the objective’s mean will be maintained across the two levels of that 
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parameter. For a line to exhibit the corresponding parameter’s main effect, both a steep slope and a 

large length should be noticeable.  

Main effects of tool path parameters on the objective of machining error (as a combined effect of 

scallop height and chordal deviation) were investigated by generating corresponding main effects 

plots. The group of main effects plots for all benchmark sculptured surfaces regarding machining 

error objective is illustrated in Figure 3.3. A first observation suggests that significant differences in 

terms of main effects are indicated when dealing with a variety of sculptured surfaces and variable 

tool path parameter levels. In addition, a dominant effect by stepover parameter on machining error 

objective is also profound in all cases. In the case of the first benchmark sculptured surface (SS-1) the 

mean of machining error is reduced for a fillet end-mill, low stepover distance, low lead angle, high 

tilt angle and low MaxDstep. The largest main effect is indicated by stepover parameter, followed by 

the main effects of lead angle, tilt angle, cutting tool and MaxDstep. In the case of the second 

benchmark sculptured surface (SS-2) the mean of machining error is reduced for a fillet end-mill, low 

stepover distance, low lead angle, low tilt angle and low MaxDstep parameter values. Yet again the 

largest main effect is observed for stepover parameter, followed by the main effects of tilt angle, 

cutting tool, lead angle and MaxDstep. By comparing main effects of parameters on machining error 

for SS-1 and SS-2 it can be seen that main effects reduce the mean under the same levels respectively 

(except from tilt angle) but they differ in impact order. In the case of the third benchmark sculptured 

surface (SS-3) the mean of machining error is reduced for flat end-mill, low stepover distance, high 

lead angle, low tilt angle and low MaxDstep values. The largest main effect is indicated by MaxDstep, 

followed by stepover distance, cutting tool, tilt angle and lead angle. This is an entirely different main 

effect order compared to the case of SS-1 and SS-2. In the last case of the fourth benchmark 

sculptured surface (SS-4) results suggest that mean is reduced for fillet end-mill, low stepover, high 

lead angle, low tilt angle and low MaxDstep parameter values. Stepover parameter holds the largest 

main effect whilst the main effects of MaxDstep, cutting tool, tilt angle and lead angle follow next. 

 



 
 

63 
 

  

  

Figure 3.3: Main effects of linear terms on machining error objective, per benchmark sculptured surface experiment, SS-1, 
SS-2, SS-3 and SS-4.  

 

The same plots for main effects were generated to investigate the impact of tool path parameters on 

the objective of machining error distribution. The main effects plots are depicted in Figure 3.4. For 

the case of the first benchmark sculptured surface (SS-1) machining error distribution is greatly 

affected by MaxDstep parameter. The main effect of MaxDstep is followed by the profound effects of 

stepover distance, cutting tool, lead angle and tilt angle parameters. The mean is reduced using fillet 

end-mill, large stepover distance, low lead angle, high tilt angle and high MaxDstep. In the case of the 

second surface (SS-2) MaxDstep holds the most dominant main effect machining error distribution 

whilst the main effects of stepover distance, cutting tool, tilt angle and lead angle parameters follow 

it. The main effect of lead angle is hardly observable since the mean is the same for both low and high 

lead angle parameter levels. The mean is reduced for fillet end-mill, large stepover distance, high tilt 

angle and high MaxDstep levels. In the case of the third surface (SS-3) stepover dominates against the 

rest of parameters in terms of its main effect. The main effect of cutting tool follows next as well as 

MaxDstep, lead angle and tilt angle. The mean is reduced when using flat end-mill, large stepover, 

high lead angle, high tilt angle and large MaxDstep. In the case of the fourth surface (SS-4) stepover 

holds the strongest effect whilst cutting tool exhibits also a significant impact. The effects of these 
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two parameters are followed by those of MaxDstep, lead angle and tilt angle. The mean is reduced 

using fillet end-mill, large stepover, high lead angle, high tilt angle and large MaxDstep.      

  

  

Figure 3.4: Main effects of linear terms on machining error distribution objective, per benchmark sculptured surface 
experiment, SS-1, SS-2, SS-3 and SS-4.  

 

By comparing the main effects of machining error and those referring to its distribution, an important 

observation suggests that, while the error is benefited by low stepover distances and low 

discretisation steps (as it is expected), its distribution is maintained under large values for these tool 

path parameters. Therefore, an important trade-off is found between the machining error and its 

distribution.  

The main effects of tool path parameters on the objective of the number of cutting points (CL points) 

were examined and the resulting plots are depicted in Figure 3.5. A significant observation for this 

objective is that the order of tool path parameters’ main effects is more profound compared to those 

reported for the objectives of machining error and machining error distribution, at least when it 

comes to stepover and MaxDstep. For the first surface (SS-1) the number of CL points is mainly 

affected by stepover and MaxDstep followed by the main effects of cutting tool, tilt angle and lead 

angle. Lead and tilt angle effects do not seem to have a significant effect as regards their parameter 

levels. The mean is reduced using flat end-mill, large stepover, high lead angle, high tilt angle and 
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large MaxDstep. For the second sculptured surface (SS-2) stepover and MaxDstep suggest the 

strongest effect on CL points as in the case of SS-1. Their main effects are followed by those of tilt 

angle, lead angle and cutting tool. The effects of cutting tool and lead angle seem to be of minor 

importance.  

  

  

Figure 3.5: Main effects of linear terms on number of CL points objective, per benchmark sculptured surface experiment, SS-
1, SS-2, SS-3 and SS-4.  

 

The mean is reduced when using large stepover distance and large MaxDstep (as expected) as well as 

high tilt angle, whilst it is slightly reduced when using flat end-mill and low lead angle. In the case of 

the third surface (SS-3) MaxDstep holds a dominant effect followed by the effects of stepover and 

cutting tool. The main effects of lead and tilt angles do not seem to be significant. The mean is slightly 

reduced using flat end-mill whilst no change is observed referring to the effects of lead and tilt angles. 

As regards the case of the last sculptured surface (SS-4), main effects of stepover and MaxDstep 

dominate the same, followed by the effects of cutting tool and tilt angle. The main effect of lead 

angle is deemed as insignificant. The mean is reduced when using fillet end-mill, high tilt angle, as 

well as large stepover and large MaxDstep as expected.  

By considering the results for main effects reported for the individual objectives of machining error, 

machining error distribution and number of CL points, the main effects on the Pareto criterion -which 
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is the criterion under interest- were examined.  The resulting plots for main effects of tool path 

parameters on the Pareto criterion are shown in Figure 3.6.       

  

  

Figure 3.6: Main effects of linear terms on Pareto criterion, per benchmark sculptured surface experiment, SS-1, SS-2, SS-3 
and SS-4.  

 

For the first sculptured surface (SS-1) MaxDstep seems to hold the most significant effect on Pareto 

criterion. MaxDstep’s effect is followed by the main effects of cutting tool, lead angle, tilt angle and 

stepover parameters. The mean is reduced using fillet end-mill, low stepover, low lead angle, high tilt 

angle and high MaxDstep. In the case of the second sculptured surface (SS-2) cutting tool and tilt 

angle exhibit the most significant effects on Pareto criterion. MaxDstep follows next with significant 

effect as well, followed by the effects of stepover and lead angle. Mean is reduced using fillet end-

mill, low stepover, low lead angle, low tilt angle and high MaxDstep. As regards the third sculptured 

surface (SS-3), MaxDstep has the strongest effect on Pareto criterion. The main effects of lead angle, 

cutting tool, stepover and tilt angle follow next. The mean is reduced using fillet end-mill, large 

stepover, high lead angle, low tilt angle (with insignificant effect) and low MaxDstep values. In the 

case of the last sculptured surface (SS-4) cutting tool has the most significant effect on Pareto 

criterion. Its dominant effect is followed by the effects of MaxDstep, stepover, lead angle and tilt 
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angle whilst the mean is reduced using fillet end-mill, low stepover, high lead angle, low tilt angle and 

large MaxDstep parameter values.  

It is obvious that main effects of tool path parameters referring to the individual criteria do not 

maintain the same trend and significance when compared to the ones corresponding to the Pareto 

criterion even though the latter is derived from the individual criteria. To draw the conclusion 

concerning the formulation of tool path chromosomes in terms of the representation accuracy of 

parameters, interactions among them were also examined. To establish a solidified assumption about 

the effects of tool path parameters, Pareto charts and normal plots of the standardized effects have 

been generated directly for investigating all effects and possible interactions up to the 3rd order for 

Pareto criterion, for all benchmark sculptured surfaces with reference to their corresponding 

experimental results. Similar results concerning interaction effects among tool path parameters 

referring to individual criteria have been also investigated, whilst the exact contribution in the form 

of percentages for all tool path parameters and objectives have been categorized accordingly. 

 A Pareto chart indicates the absolute values for standardized effects in descending order. 

Standardized effects are t-statistical results and as such they test a null assumption that an effect is 

zero. The chart is accompanied to a reference line for indicating the statistically significant effects. 

The reference line’s position on the Pareto chart depends on the level of significance (dictated by α 

term or “alpha”). The reference line’s value is determined according to the method for selecting 

terms in the regression model to be created (i.e. stepwise, backwards or forward) and the significance 

level selected (i.e. alpha = 0.05 or 95%). Through a Pareto chart it is possible to determine significant 

effects, yet, to determine which of them increase or reduce the objective under question, a normal 

plot of the effects is needed. Such a plot can reveal the magnitude, the direction and impact of the 

effects. Normal plot of the effects indicates the standardized effects accompanied to a reference line 

representing a distribution fit. Positive effects are dictated in the case where settings change from 

low to high parameter levels to increase the objective under question whilst negative effects are 

shown in the case where settings change from low to high parameter levels to reduce the objective 

under question. Effects further from 0 regarding X-axis (standardized effect) suggest higher 

magnitudes and consequently statistically significant results whilst the magnitude of significance is 

given by their distances from the reference line. Finally, these distances are depended on the 

selected level of significance. 

Pareto charts and normal plots of the standardized effects of tool path parameters on the Pareto 

criterion were generated for conducting a deeper analysis that the one preceded referring to the 

main effects. Figure 3.7 illustrates the resulting charts and normal plots for all benchmark sculptured 
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surfaces. A straightforward indication of these results is that, main effects of tool path parameters as 

well as their interactions up to the 3rd order have an entirely different behaviour both in order, and 

magnitude.  
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Figure 3.7: Pareto charts and normal plots for the standardized effects on Pareto criterion, per benchmark sculptured 
surface experiment, SS-1, SS-2, SS-3 and SS-4.  

By examining the Pareto chart and the normal plot of the standardized effects for the first benchmark 

sculptured surface (SS-1) it is shown that the most significant effects are those of MaxDstep, product 

of Stepover*MaxDstep, lead angle, cutting tool, tilt angle and product of stepover*tilt angle. 

MaxDstep and cutting tool parameters have the largest negative distance from the normal plot’s 

reference line which means that the magnitude of Pareto criterion is reduced when changing levels 

from low to high. This result is in total agreement with the main effects plot generated for the case of 

sculptured surface (SS-1) and Pareto criterion. The product stepover*MaxDstep and lead angle have 

the largest positive distance from the normal plot’s reference line which means that the magnitude of 

Pareto criterion is increased when changing levels from low to high. This result also agrees with the 

main effects plot generated for the case of sculptured surface (SS-1) and Pareto criterion, at least for 

lead angle parameter. The product stepover*MaxDstep comes first in the hierarchy of effects in the 

case of the second sculptured surface (SS-2) and it is followed by the effects of tilt angle, cutting tool, 

MaxDstep, stepover and lead angle parameters. MaxDstep parameter has the largest negative 

distance from the reference line followed by the product cutting tool*MaxDstep. The product 

stepover*MaxDstep, tilt angle and cutting tool have the largest positive distance from the reference 

line. These results are also in agreement with those reported in the main effects plot for SS-2 and 

Pareto criterion referring to the linear terms (MaxDstep, tilt angle and cutting tool). As regards the 

results for the sculptured surface (SS-3), the effects of MaxDstep parameter, stepover*MaxDstep 

product, cutting tool*stepover product, cutting tool*MaxDstep product, stepover*tilt 

angle*MaxDstep product and finally lead angle*tilt angle product are statistically significant at the 

0.05 level. The product stepover*tilt angle*MaxDstep has a negative standardized effect with the 

largest distance whilst MaxDstep parameter and stepover*MaxDstep product have positive 

standardized effects with MaxDstep to have the largest positive distance. For the fourth sculptured 

surface (SS-4) the product stepover*MaxDstep, cutting tool, the product cutting tool*stepover and 

finally MaxDstep parameter are statistically significant. Cutting tool and MaxDstep are the only tool 

path parameters to be on the left side of the corresponding normal plot of standardized effects with 

cutting tool to have the largest negative distance. The products stepover*MaxDstep and cutting 

tool*MaxDstep are the only factors with positive distance on the right side of the normal plot of 

standardized effects. The product stepover*MaxDstep has the largest positive distance. The exact 

contributions of all terms’ effects based on the experiments conducted for the surfaces SS-1, SS-2, SS-

3 and SS-4 are given to Tables 3.6, 3.7, 3.8 and 3.9 respectively.  
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Table 3.6: Factorial regression analysis and ANOVA contributions of all model terms for sculptured surface (SS-1). 

Benchmark sculptured surface SS-1 

Objective   h  
stdev
 

stdevh
 

NoCLs 
ME 

 + h  

stdev

+ 

stdevh
 

POOF

 

(%) Contributions         
Model 99.58 99.95 90.90 99.86 99.99 99.87 97.47 99.33 

Linear terms 68.34 95.57 44.51 70.15 87.75 85.17 68.69 62.96 
Tool 5.40 1.77 5.04 16.97 0.05 4.67 15.29 13.61 
Stepover 11.38 91.69 18.68 9.41 55.73 62.41 19.05 2.36 
Lead angle 28.96 0.06 15.52 0.02 0.01 10.45 4.23 14.46 
Tilt angle 18.67 0.20 0.98 0.13 0.00 7.57 0.61 9.42 
MaxDstep 3.93 1.85 4.28 43.61 31.96 0.08 29.51 23.10 

2-Way interactions 21.89 3.08 26.79 25.57 12.17 10.21 22.56 28.89 
Tool*Stepover 0.54 0.00 3.94 4.90 0.03 0.16 6.40 0.69 
Tool*LeadAngle 0.00 0.05 0.75 0.12 0.08 0.01 0.06 0.02 
Tool*TiltAngle 1.15 0.00 0.57 0.03 0.00 0.35 0.09 0.25 
Tool*MaxDstep 0.01 1.24 0.14 13.44 0.01 0.54 4.77 2.71 
Stepover*LeadAngle 2.15 0.08 10.71 0.02 0.00 1.02 2.86 0.26 
Stepover*TiltAngle 14.55 0.07 0.00 0.01 0.02 5.51 0.00 4.73 
Stepover*MaxDstep 0.17 0.86 1.39 6.63 12.03 0.12 5.39 16.20 
LeadAngle*TiltAngle 3.08 0.77 0.19 0.39 0.00 2.41 0.03 2.62 
LeadAngle*MaxDstep 0.16 0.00 0.77 0.00 0.00 0.04 0.25 0.04 
TiltAngle*MaxDstep 0.06 0.01 8.33 0.01 0.00 0.05 2.72 1.37 

3-Way interactions 9.36 1.30 19.60 4.14 0.07 4.49 6.22 7.48 
Tool*Stepover*LeadAngle 0.45 0.02 1.15 0.01 0.04 0.22 0.28 0.59 
Tool*Stepover*TiltAngle 1.15 0.04 1.07 0.06 0.00 0.25 0.17 0.39 
Tool*Stepover*MaxDstep 0.00 0.58 0.32 3.64 0.01 0.21 0.87 0.03 
Tool*LeadAngle*TiltAngle 2.07 0.07 4.09 0.22 0.00 0.43 0.64 0.94 
Tool*LeadAngle*MaxDstep 0.00 0.00 2.02 0.01 0.02 0.01 0.73 0.24 
Tool*TiltAngle*MaxDstep 0.00 0.01 2.44 0.00 0.00 0.01 0.69 0.44 
Stepover*LeadAngle*TiltAngle 5.34 0.54 0.98 0.01 0.01 3.17 0.22 3.55 
Stepover*LeadAngle*MaxDstep 0.09 0.00 0.18 0.00 0.00 0.03 0.06 0.04 
Stepover*TiltAngle*MaxDstep 0.14 0.03 4.09 0.03 0.00 0.10 1.00 0.35 
LeadAngle*TiltAngle*MaxDstep 0.10 0.02 3.26 0.16 0.00 0.07 1.55 0.90 

Error 0.42 0.05 9.10 0.14 0.01 0.13 2.53 0.67 
Total 100 100 100 100 100 100 100 100 

 

Table 3.7: Factorial regression analysis and ANOVA contributions of all model terms for sculptured surface (SS-2). 

Benchmark sculptured surface SS-2         

Objective   h  
stdev
 

stdevh

 
NoCLs 

ME 

 + h  

stdev

+ 

stdevh
 

POOF

 

(%) Contributions         
Model 98.00 99.80 83.57 91.96 100.00 98.35 99.89 97.82 

Linear terms 90.09 98.46 25.77 61.39 87.75 92.08 74.16 58.66 
Tool 7.50 0.54 3.51 7.62 0.00 6.06 10.32 15.88 
Stepover 13.06 97.38 10.02 11.21 56.63 58.31 19.06 7.21 
Lead angle 11.75 0.00 1.77 0.84 0.00 4.51 0.00 4.55 
Tilt angle 44.72 0.11 2.12 0.64 0.55 20.58 0.01 16.57 
MaxDstep 13.06 0.42 8.36 41.08 30.57 2.62 44.76 14.44 

2-Way interactions 6.47 0.80 31.12 19.11 12.12 4.69 22.73 35.77 
Tool*Stepover 0.00 0.04 3.44 2.12 0.00 0.04 4.62 1.40 
Tool*LeadAngle 1.25 0.00 2.64 1.31 0.00 0.51 0.00 0.68 
Tool*TiltAngle 2.51 0.26 2.65 1.74 0.00 2.27 0.04 2.68 
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Tool*MaxDstep 0.00 0.19 3.36 4.02 0.00 0.19 6.67 2.78 
Stepover*LeadAngle 1.05 0.01 1.83 1.56 0.00 0.55 0.09 0.38 
Stepover*TiltAngle 0.87 0.02 2.30 0.71 0.54 0.54 0.01 3.82 
Stepover*MaxDstep 0.10 0.16 7.89 5.41 11.44 0.04 11.25 22.17 
LeadAngle*TiltAngle 0.67 0.03 2.76 0.90 0.00 0.49 0.01 0.88 
LeadAngle*MaxDstep 0.01 0.08 2.00 0.66 0.00 0.05 0.01 0.26 
TiltAngle*MaxDstep 0.01 0.00 2.26 0.67 0.12 0.00 0.02 0.73 

3-Way interactions 1.45 0.54 26.68 11.46 0.13 1.59 3.01 3.39 
Tool*Stepover*LeadAngle 0.18 0.00 2.66 1.63 0.00 0.07 0.03 0.08 
Tool*Stepover*TiltAngle 0.07 0.17 2.70 0.93 0.00 0.33 0.01 0.62 
Tool*Stepover*MaxDstep 0.10 0.07 3.31 0.80 0.00 0.00 2.82 0.84 
Tool*LeadAngle*TiltAngle 0.23 0.13 2.76 0.79 0.00 0.45 0.02 0.68 
Tool*LeadAngle*MaxDstep 0.48 0.08 2.70 1.12 0.00 0.51 0.00 0.69 
Tool*TiltAngle*MaxDstep 0.00 0.02 2.67 1.51 0.00 0.01 0.02 0.05 
Stepover*LeadAngle*TiltAngle 0.01 0.06 2.73 1.80 0.00 0.09 0.04 0.08 
Stepover*LeadAngle*MaxDstep 0.02 0.02 2.05 1.33 0.00 0.00 0.03 0.01 
Stepover*TiltAngle*MaxDstep 0.10 0.00 2.40 0.77 0.12 0.05 0.01 0.30 
LeadAngle*TiltAngle*MaxDstep 0.25 0.00 2.69 0.77 0.00 0.07 0.02 0.04 

Error 2.00 0.20 16.43 8.04 0.00 1.65 0.11 2.18 
Total 100 100 100 100 100 100 100 100 

 

Table 3.8: Factorial regression analysis and ANOVA contributions of all model terms for sculptured surface (SS-3). 

Benchmark sculptured surface SS-3         

Objective   h  
stdev
 

stdevh
 

NoCLs 
ME 

 + h  

stdev

+ 

stdevh

 

POOF

 

(%) Contributions         
Model 99.97 99.91 99.82 99.71 100.00 99.92 99.43 99.40 

Linear terms 99.11 97.21 71.33 77.10 88.00 97.33 79.56 62.86 
Tool 0.07 0.60 0.02 10.92 0.01 0.47 7.78 0.21 
Stepover 0.00 95.07 34.70 7.25 26.41 32.35 70.92 0.01 
Lead angle 0.01 0.00 0.19 0.02 0.00 0.01 0.32 0.32 
Tilt angle 0.03 0.29 0.24 0.03 0.00 0.03 0.13 0.00 
MaxDstep 99.00 1.24 36.19 58.88 61.58 64.47 0.40 62.32 

2-Way interactions 0.45 2.50 25.64 19.52 12.00 1.96 16.89 33.29 
Tool*Stepover 0.18 1.55 0.07 3.22 0.00 1.20 1.73 9.06 
Tool*LeadAngle 0.00 0.02 0.05 0.00 0.00 0.01 0.09 0.16 
Tool*TiltAngle 0.01 0.02 0.45 0.05 0.00 0.02 0.78 0.69 
Tool*MaxDstep 0.07 0.59 0.18 9.77 0.01 0.47 5.45 6.54 
Stepover*LeadAngle 0.00 0.01 0.10 0.04 0.00 0.00 0.02 0.01 
Stepover*TiltAngle 0.02 0.00 0.39 0.01 0.00 0.01 0.52 0.08 
Stepover*MaxDstep 0.00 0.19 23.35 6.36 11.99 0.10 7.38 15.14 
LeadAngle*TiltAngle 0.13 0.01 0.47 0.03 0.00 0.14 0.29 1.21 
LeadAngle*MaxDstep 0.01 0.01 0.10 0.03 0.00 0.00 0.21 0.06 
TiltAngle*MaxDstep 0.03 0.11 0.48 0.01 0.00 0.00 0.41 0.33 

3-Way interactions 0.41 0.21 2.85 3.09 0.00 0.63 2.98 3.24 
Tool*Stepover*LeadAngle 0.00 0.01 0.02 0.04 0.00 0.00 0.09 0.03 
Tool*Stepover*TiltAngle 0.01 0.01 0.49 0.00 0.00 0.01 0.60 0.46 
Tool*Stepover*MaxDstep 0.23 0.04 0.91 2.86 0.00 0.28 0.27 0.26 
Tool*LeadAngle*TiltAngle 0.00 0.01 0.03 0.05 0.00 0.01 0.14 0.20 
Tool*LeadAngle*MaxDstep 0.00 0.01 0.01 0.00 0.00 0.01 0.02 0.00 
Tool*TiltAngle*MaxDstep 0.01 0.00 0.02 0.04 0.00 0.01 0.09 0.00 
Stepover*LeadAngle*TiltAngle 0.00 0.01 0.43 0.00 0.00 0.01 0.48 0.09 
Stepover*LeadAngle*MaxDstep 0.00 0.01 0.05 0.04 0.00 0.00 0.00 0.00 
Stepover*TiltAngle*MaxDstep 0.04 0.02 0.90 0.03 0.00 0.07 1.24 1.33 
LeadAngle*TiltAngle*MaxDstep 0.11 0.10 0.00 0.04 0.00 0.23 0.05 0.86 

Error 0.03 0.09 0.18 0.29 0.00 0.08 0.57 0.60 
Total 100 100 100 100 100 100 100 100 
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Table 3.9: Factorial regression analysis and ANOVA contributions of all model terms for sculptured surface (SS-4). 

Benchmark sculptured surface SS-4         

Objective   h  
stdev
 

stdevh
 

NoCLs 
ME 

 + h  

stdev

+ 

stdevh
 

POOF

 

(%) Contributions         
Model 94.43 99.91 95.46 99.25 99.88 98.05 97.30 93.87 

Linear terms 62.85 98.97 41.71 66.23 81.16 87.11 68.73 32.72 
Tool 3.85 0.15 4.07 16.18 0.05 2.21 24.67 17.95 
Stepover 3.51 98.38 17.56 7.85 40.54 71.22 27.05 5.37 
Lead angle 0.01 0.10 5.74 0.09 0.00 0.06 3.14 3.19 
Tilt angle 2.12 0.05 0.40 0.24 0.02 0.38 0.72 0.05 
MaxDstep 53.36 0.29 13.93 41.88 40.55 13.23 13.15 6.16 

2-Way interactions 17.40 0.76 35.27 26.04 18.45 6.58 21.14 54.38 
Tool*Stepover 4.96 0.25 3.85 4.01 0.01 3.05 9.44 16.85 
Tool*LeadAngle 0.26 0.00 4.39 0.00 0.00 0.12 1.81 0.86 
Tool*TiltAngle 1.13 0.01 3.07 0.16 0.02 0.24 2.15 0.02 
Tool*MaxDstep 0.80 0.39 3.13 10.36 0.01 0.01 3.45 0.47 
Stepover*LeadAngle 4.06 0.00 4.22 0.34 0.04 1.41 3.31 0.03 
Stepover*TiltAngle 0.28 0.03 0.68 0.03 0.01 0.23 0.13 0.02 
Stepover*MaxDstep 0.80 0.01 11.96 10.13 18.24 0.37 0.59 33.96 
LeadAngle*TiltAngle 2.55 0.02 0.57 0.28 0.03 0.59 0.00 1.55 
LeadAngle*MaxDstep 0.62 0.02 3.23 0.72 0.08 0.10 0.12 0.17 
TiltAngle*MaxDstep 1.92 0.01 0.18 0.01 0.02 0.45 0.14 0.44 

3-Way interactions 14.18 0.18 18.48 6.98 0.27 4.36 7.43 6.77 
Tool*Stepover*LeadAngle 3.57 0.03 3.77 0.15 0.05 0.85 2.46 0.03 
Tool*Stepover*TiltAngle 0.34 0.01 2.87 0.07 0.02 0.20 0.67 0.00 
Tool*Stepover*MaxDstep 1.48 0.04 2.96 6.05 0.04 0.77 1.41 0.72 
Tool*LeadAngle*TiltAngle 2.96 0.01 0.32 0.14 0.02 0.83 0.00 2.10 
Tool*LeadAngle*MaxDstep 0.19 0.01 2.64 0.34 0.05 0.03 0.23 0.07 
Tool*TiltAngle*MaxDstep 1.06 0.00 1.92 0.03 0.02 0.32 1.07 0.09 
Stepover*LeadAngle*TiltAngle 0.95 0.01 0.74 0.00 0.03 0.40 0.30 1.49 
Stepover*LeadAngle*MaxDstep 0.97 0.03 2.81 0.00 0.01 0.16 1.17 0.12 
Stepover*TiltAngle*MaxDstep 0.27 0.04 0.14 0.20 0.03 0.23 0.03 0.32 
LeadAngle*TiltAngle*MaxDstep 2.39 0.02 0.30 0.00 0.02 0.57 0.08 1.83 

Error 5.57 0.09 4.54 0.75 0.12 1.95 2.70 6.13 
Total 100 100 100 100 100 100 100 100 

 

It was reported in section 3.6.2 of this thesis that experiments were based on machining simulations 

conducted using a CAM system whilst two automation functions were developed and deployed to 

automatically provide computational results for chordal deviation and scallop height for each cutting 

point of a tool path. It was also mentioned that computational results for scallop height were 

compared to real-time deviation measurements taken on scallop curves of 3D CAM outputs for all 

sculptured surfaces examined, by applying virtual probing techniques. The following paragraphs 

report the results obtained by conducting different tests to verify the applicability of the automation 

functions responsible for automatically computing scallop height and chordal deviation. 

To evaluate the consistency of scallop height analytical formula given in Eq.3.10, the results of 

analytical computations and virtual measurements were considered as two independent populations 
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with different size. The pairs of populations were individually examined for each benchmark 

sculptured surface to prove the assumption that there is no statistically significant difference 

between their means against the alternative which suggests difference, under the significance level of 

alpha 0.05. It should be mentioned that resulting means from analytical computations provided by 

the corresponding automation function give a true figure of the average since they derive from the 

entire populations of computational results and not from samples of them. The same cannot be 

claimed in the case of the populations of virtual measurements whose sizes vary significantly against 

those referring to computational results. However, the necessity to show whether computational 

results agree with experimental ones taken from virtually machined models (and to what extend) is of 

major importance since actual CNC machining is based on process planning that involves machining 

simulations in CAM environment. The separate variance 2-sample t-test (non-pooled t-test) was 

selected and applied under the assumption that there is no difference between the means of paired 

populations of analytical and experimental results against the alternative, considering the standard 

significance level in the literature, that of α=0.05. Figures 3.8, 3.9, 3.10 and 3.11 depict the results of 

t-tests conducted for all benchmark sculptured surfaces, SS-1, SS-2, SS-3 and SS-4 respectively. The 

red line in the illustrations represents the significance level which is represented by p-value. 

According to descriptive statistics, magnitudes that exceed a p-value equal to 0.05 imply statistically 

insignificant results. On the contrary magnitudes equal to p-values of 0.05 or less dictate statistically 

significant results between objectives under comparison. It is observed for the benchmark sculptured 

surfaces tested that most of p-values do not reject the null hypothesis, indicating thus concrete 

evidences for statistically insignificant difference among the means of analytical computations and 

experimental measurements for scallop heights. Analytical results for scallop heights referring to the 

experiments conducted for surface (SS-1) and the corresponding 2-sample t-test were found to be in 

agreement to the percentage of 87.5%. As it can be seen in Fig.3.8, 4 out of 32 comparative 

populations’ means had statistically significant differences which for the case of SS-1 it is interpreted 

to the percentage of 12.5%. In the case of the second surface (SS-2) the same results were found 

(Fig.3.9), whilst for the third sculptured surface (SS-3) the success in achieving statistically 

insignificant differences among the means of analytical computations and experimental 

measurements for scallop heights reached 81.25%. In this case, 6 out of 32 comparative populations’ 

means had statistically significant differences, with a result equal to 18.75% (Fig.3.10). As regards the 

fourth sculptured surface (SS-4) all 32 comparative populations’ means were found to have 

statistically insignificant differences (Fig.3.11). By considering all 128 (4*32) experimental runs for the 

overall estimation of scallop height, statistically significant differences among the means of analytical 

computations and experimental measurements for scallop heights span 14 experiments. This can be 
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given as a percentage equal to 10.94%. Based on these results the formula given in Eq.3.10 for 

computing scallop heights can be considered as being a quite reliable attribute. The magnitudes of p-

values per benchmark sculptured surface are also summarized in Tables 3.10, 3.11, 3.12 and 3.13 for 

the separate variance 2-sample t-tests referred to sculptured surfaces SS-1, SS-2, SS-3 and SS-4 

respectively. In the tables, the 1st column is assigned to the number of experiments, the 2nd to the 

population size of computational results for scallop heights, the 3rd to the population size of 

experimental measurements for scallop heights, the 4th to the means of the population size of 

computational results for scallop heights, the 5th to the means of population size of experimental 

measurements for scallop heights, the 6th and the 7th to their standard deviations respectively and 

finally the 8th column is assigned to the resulting p-values. Figs.3.8, 3.9, 3.10 and 3.11 depict also the 

correlation among analytical and experimental means of scallop heights.     

  

Figure 3.8: 2-sample t-test results for the statistical significance between analytical and experimental means of scallop 
heights for the benchmark sculptured surface SS-1.  

Table 3.10: Detailed results of the 2-sample t-test for the benchmark sculptured surface (SS-1). 

SS-1 N h (comp) N h (exp.) 
Mean h 
(comp) 

Mean h 
(exp.) 

StDev h 
(comp) 

StDev h 
(exp.) 

P-value 

1 13927 1000 0.125 0.0176 0.0011 0.00056 0.419 
2 13455 0015 0.0448 0.0438 0.0651 0.0161 0.819 
3 3417 1000 0.227 0.2206 0.333 0.0175 0.264 
4 3311 1000 0.179 0.1701 0.209 0.0172 0.015 
5 13618 1000 0.075 0.0714 0.134 0.0176 0.005 
6 13416 450 0.0458 0.0466 0.0674 0.0172 0.421 
7 3345 1000 0.261 0.2498 0.371 0.0176 0.087 
8 3301 1000 0.216 0.2104 0.251 0.0174 0.216 
9 13825 1000 0.072 0.0699 0.132 0.0171 0.102 
10 13328 120 0.0450 0.0438 0.0658 0.0180 0.476 
11 3383 1000 0.246 0.2397 0.366 0.0176 0.350 
12 3287 1000 0.185 0.1800 0.205 0.0175 0.204 
13 13567 1000 0.065 0.0623 0.122 0.0175 0.010 
14 13358 450 0.0453 0.0459 0.0668 0.0170 0.537 
15 3341 1000 0.214 0.2102 0.310 0.0175 0.494 
16 3287 1000 0.180 0.1752 0.206 0.0174 0.209 
17 5081 1000 0.062 0.0650 0.117 0.0175 0.108 
18 4930 0015 0.0438 0.0423 0.0606 0.0190 0.766 
19 1242 1000 0.160 0.1497 0.221 0.0173 0.110 
20 1214 1000 0.178 0.1707 0.207 0.0172 0.238 
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21 5002 1000 0.062 0.0587 0.115 0.0171 0.060 
22 4909 450 0.0451 0.0469 0.0673 0.0171 0.149 
23 1224 1000 0.191 0.1795 0.260 0.0172 0.128 
24 1211 1000 0.202 0.2007 0.223 0.0175 0.837 
25 5047 1000 0.058 0.0553 0.107 0.0176 0.058 
26 4879 0035 0.0433 0.0421 0.0612 0.0164 0.671 
27 1234 1000 0.187 0.1800 0.283 0.0171 0.387 
28 1206 1000 0.180 0.1701 0.195 0.0172 0.081 
29 4951 1000 0.0535 0.0525 0.0984 0.0174 0.470 
30 4885 450 0.0441 0.0469 0.0633 0.0172 0.020 
31 1218 1000 0.163 0.1603 0.227 0.0174 0.626 
32 1212 1000 0.175 0.1698 0.198 0.0174 0.355 

 

  
Figure 3.9: 2-sample t-test results for the statistical significance between analytical and experimental means of scallop 

heights for the benchmark sculptured surface SS-2.  

 

Table 3.11: Detailed results of the 2-sample t-test for the benchmark sculptured surface (SS-2). 

SS-2 N h (comp) N h (exp.) 
Mean h 
(comp) 

Mean h 
(exp.) 

StDev h 
(comp) 

StDev h 
(exp.) 

P-value 

1 9466 1000 0.0505 0.0476 0.0824 0.0175 0.004 
2 9812 800 0.0681 0.0661 0.133 0.0169 0.186 
3 2111 800 0.217 0.2104 0.276 0.0174 0.290 
4 2174 800 0.245 0.2300 0.364 0.0172 0.053 
5 9435 800 0.0508 0.0488 0.0796 0.0175 0.056 
6 9846 800 0.066 0.0691 0.125 0.0172 0.022 
7 2096 800 0.219 0.2098 0.265 0.0169 0.110 
8 2169 800 0.209 0.1995 0.283 0.0179 0.108 
9 8736 800 0.0520 0.0501 0.0826 0.0174 0.076 
10 8969 800 0.0722 0.0697 0.133 0.0171 0.091 
11 1974 800 0.217 0.2098 0.268 0.0176 0.252 
12 2011 800 0.244 0.2300 0.365 0.0178 0.093 
13 8875 800 0.0515 0.0508 0.077 0.0174 0.449 
14 9108 800 0.071 0.0721 0.132 0.0178 0.302 
15 2005 800 0.211 0.2100 0.248 0.0178 0.791 
16 2046 800 0.245 0.2410 0.373 0.0180 0.589 
17 3609 800 0.0478 0.0483 0.0729 0.0171 0.712 
18 3741 800 0.057 0.0541 0.107 0.0174 0.183 
19 805 800 0.214 0.2108 0.272 0.0173 0.748 
20 829 800 0.197 0.1903 0.279 0.0171 0.524 
21 3581 800 0.0509 0.0502 0.0836 0.0173 0.660 
22 3731 800 0.063 0.0648 0.121 0.0177 0.489 
23 799 800 0.217 0.2105 0.255 0.0172 0.466 
24 827 800 0.191 0.1804 0.270 0.0171 0.251 
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25 3341 800 0.0506 0.0505 0.0807 0.0170 0.941 
26 3442 800 0.064 0.0621 0.123 0.0175 0.508 
27 755 800 0.210 0.1997 0.261 0.0172 0.303 
28 769 800 0.206 0.2002 0.309 0.0176 0.613 
29 3393 800 0.0513 0.0502 0.0765 0.0173 0.459 
30 3455 800 0.066 0.0676 0.124 0.0172 0.446 
31 765 800 0.200 0.1903 0.240 0.0171 0.251 
32 767 800 0.237 0.2308 0.359 0.0175 0.623 

 

  

Figure 3.10: 2-sample t-test results for the statistical significance between analytical and experimental means of scallop 
heights for the benchmark sculptured surface SS-3.  

 

Table 3.12: Detailed results of the 2-sample t-test for the benchmark sculptured surface (SS-3). 

SS-3 N h (comp) N h (exp.) 
Mean h 
(comp) 

Mean h 
(exp.) 

StDev h 
(comp) 

StDev h 
(exp.) 

P-value 

1 7054 500 0.0614 0.0591 0.0868 0.0176 0.080 
2 6962 500 0.0570 0.0528 0.0588 0.0169 0.001 
3 2778 500 0.139 0.1304 0.112 0.0179 0.104 
4 2778 500 0.139 0.1315 0.112 0.0171 0.002 
5 7013 500 0.0651 0.0600 0.0932 0.0173 0.001 
6 6953 500 0.0554 0.0594 0.0536 0.0173 0.001 
7 2785 500 0.130 0.1314 0.143 0.0171 0.758 
8 2768 500 0.140 0.1308 0.116 0.0170 0.001 
9 7193 500 0.0649 0.0607 0.0905 0.0170 0.001 
10 7093 500 0.0551 0.0548 0.0518 0.0173 0.734 
11 2872 500 0.136 0.1341 0.159 0.0172 0.491 
12 2847 500 0.144 0.01417 0.121 0.0169 0.261 
13 7221 500 0.0635 0.0622 0.0879 0.0172 0.305 
14 7119 500 0.0561 0.0567 0.0535 0.0170 0.553 
15 2884 500 0.132 0.1298 0.146 0.0170 0.350 
16 2851 500 0.139 0.1372 0.105 0.0173 0.407 
17 1377 500 0.0497 0.0502 0.0709 0.0178 0.778 
18 1371 500 0.0534 0.0514 0.0569 0.0176 0.241 
19 549 500 0.111 0.1093 0.139 0.0166 0.811 
20 546 500 0.138 0.1358 0.126 0.0174 0.659 
21 1397 500 0.0493 0.0488 0.0776 0.0174 0.818 
22 1395 500 0.0519 0.0524 0.0508 0.0165 0.766 
23 562 500 0.111 0.1091 0.153 0.0176 0.816 
24 559 500 0.128 0.1301 0.110 0.0172 0.708 
25 1489 500 0.0583 0.0560 0.0856 0.0175 0.330 
26 1498 500 0.0568 0.0550 0.0562 0.0171 0.266 
27 597 500 0.113 0.1097 0.130 0.0172 0.568 
28 590 500 0.137 0.1340 0.117 0.0177 0.495 
29 1549 500 0.0583 0.0592 0.0548 0.0174 0.553 
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30 1549 500 0.0583 0.0589 0.0548 0.0178 0.686 
31 621 500 0.121 0.1201 0.140 0.0178 0.922 
32 613 500 0.141 0.1355 0.118 0.0168 0.269 

 

  

Figure 3.11: 2-sample t-test results for the statistical significance between analytical and experimental means of scallop 
heights for the benchmark sculptured surface SS-4.  

 

Table 3.13: Detailed results of the 2-sample t-test for the benchmark sculptured surface (SS-4). 

SS-4 N h (comp) N h (exp.) 
Mean h 
(comp) 

Mean h 
(exp.) 

StDev h 
(comp) 

StDev h 
(exp.) 

P-value 

1 15828 500 0.0557 0.0551 0.0927 0.0173 0.572 
2 14711 500 0.0398 0.0386 0.0515 0.0173 0.166 
3 3931 500 0.175 0.1702 0.232 0.0179 0.204 
4 3644 500 0.164 0.1606 0.164 0.0181 0.207 
5 14950 500 0.0544 0.0525 0.0951 0.0171 0.070 
6 14744 500 0.0384 0.0393 0.0497 0.0171 0.313 
7 3705 500 0.165 0.1593 0.219 0.0174 0.103 
8 3661 500 0.156 0.1555 0.157 0.0172 0.863 
9 15625 500 0.0559 0.0551 0.0953 0.0177 0.499 
10 14693 500 0.0402 0.0398 0.0529 0.0177 0.603 
11 3900 500 0.170 0.1693 0.224 0.0174 0.744 
12 3639 500 0.164 0.1637 0.165 0.0169 0.812 
13 14909 500 0.0508 0.0499 0.0878 0.0181 0.393 
14 14746 500 0.0363 0.0374 0.0435 0.0167 0.171 
15 3697 500 0.164 0.1615 0.218 0.0171 0.455 
16 3664 500 0.157 0.1542 0.160 0.0169 0.252 
17 3444 500 0.0465 0.0470 0.0815 0.0170 0.742 
18 3287 500 0.0392 0.0388 0.0503 0.0169 0.725 
19 851 500 0.150 0.1494 0.221 0.0176 0.932 
20 793 500 0.167 0.1642 0.167 0.0169 0.673 
21 3546 500 0.0404 0.0396 0.0703 0.0173 0.552 
22 3577 500 0.0379 0.0389 0.0470 0.0172 0.368 
23 3705 500 0.165 0.1630 0.219 0.0177 0.530 
24 852 500 0.163 0.1652 0.181 0.0172 0.736 
25 3431 500 0.0472 0.0463 0.0833 0.0177 0.599 
26 3284 500 0.0395 0.0387 0.0510 0.0175 0.503 
27 855 500 0.148 0.1447 0.202 0.0171 0.593 
28 790 500 0.165 0.1607 0.162 0.0171 0.504 
29 3552 500 0.0417 0.0414 0.0720 0.0176 0.839 
30 3567 500 0.0376 0.0381 0.0457 0.0169 0.673 
31 861 500 0.142 0.1407 0.176 0.0180 0.774 
32 852 500 0.156 0.1514 0.152 0.0179 0.400 
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Unlike scallop height which can be computed and measured directly on the machined surface, chord 

error can only be limited to analytical computations for estimating its magnitude. The attributes on 

which chord error
, 1i i +

is dependent are local curvature 
i and 3D distance (chord length) , 1i iL + (see 

also Eq.3.4, 3.5 and 3.6). Both these geometric elements depend on the positions of the successive 

cutting points which in turn depend on the selected cutting tolerance set by the user during tool path 

planning. Based on this, chord error
, 1i i +

was automatically computed by using CATIA application 

programming interface (API) for all successive pairs of cutting points. To achieve successful 

computations for estimating chord error 
, 1i i +

(chordal deviation) two private functions were 

developed in Visual Basic®, one for computing subsequent 3D distances (chord lengths) , 1i iL +             

and one for computing subsequent local curvatures
i . Note that for j number of cutting points, 

resulting chord lengths are 1j − since two cutting points designate one chord length.  

To compute subsequent 3D distances (chord lengths) , 1i iL +  the j th cutting point was determined to 

be the first measurable reference and the 1j +  cutting point was determined to be the second 

measurable reference. Thereby the automation property “Get_Distance” was applied to measure 

, 1i iL + for all cutting points comprising the tool path. Local curvatures
i were calculated with 

reference to three fundamental instances. The first refers to the main direction of cutting points 

which is the trajectory forward to feed. The second is the group of vectors normal to surface whilst 

the third is the angle between two subsequent normal vectors. Normal vectors are as much in 

magnitude as the number of cutting points and they were generated via the automation properties 

“Create_Reference_Form_Object”, “Add_New_Projection” and “Add_New_Line_PtPt”. The first 

automation property was implemented to set cutting points as references for creating a new 

collection of points. The second automation property creates these points as projections normal to 

surface under a predefined distance. The third automation property undertakes to connect all cutting 

points to their corresponding projected points from the collection to finally take the normal vectors. 

To compute the angle between each pair of normal vectors the “Get_Angle_Between” automation 

property of CATIA API was used. With reference to the normal vectors (let 
in and 

1in +
be a pair) all 

angles 
, 1i i +

 were programmatically obtained by CAM software whereas local curvatures , 1i i +  (mm-1) 

were computed by passing Eq.3.5 to the corresponding private function. Chordal deviation , 1i i +  (mm) 

was computed by passing Eq.3.6 to the same private function. Both private functions for 3D distances 

(chord lengths) , 1i iL + and local curvatures
i  constitute parts of the integrated programming module 
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which is presented in Chapter 4. Several tests were conducted to evaluate the accuracy of results 

concerning the aforementioned computations obtained by the functions mentioned above. The 

results of 3D distances (chord lengths) and local curvatures were compared to manual measurements 

taken by examining arbitrary designed sculptured surfaces for which the automation functions were 

applied. Manual measurements were obtained by using the surfacic curvature analysis tool available 

to the advanced free-form surface design environment of CATIA® V5 R18. Figure 3.12 illustrates one 

of the arbitrary sculptured surfaces examined along with results manually and programmatically 

obtained for measuring 3D distances, Figure 3.13 shows the results obtained manually and 

automatically for the angles between generated normal vectors for the same surface and Figure 3.14 

shows the manual results corresponding to local curvatures.  

 

Figure 3.12: Manual test results for examining the accuracy of automation function developed for computing 3D distances 
(chord lengths).  



 
 

80 
 

 

   

Figure 3.13: Manual test results for examining the accuracy of automation function developed for computing angles 
between normal vectors.  
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Figure 3.14: Manual test results for examining the accuracy of automatically computed local curvatures.  

 

3.7 Conclusions 
 

A global sculptured surface machining optimisation methodology should first focus on the 

appropriate formulation of the problem to be explored and then implement accurate elements with 

generic capabilities. Based on the results presented in this chapter, it can be deduced that all tool 

path parameters have significant effects on the quality characteristics set. Significance of their 

effects, changes in both magnitude and hierarchy when planning tool paths to machine different 

surfaces even if adopting the same cutting strategy. As much as it has been shown, it is neither safe 

nor profitable to try distinguishing the significance among tool path parameters according to the 

sculptured surface under investigation. Instead the same gravity should be given to all tool path 

parameters in order to ensure that the optimisation methodology will address the sculptured surface 

machining problem impartially, globally and stochastically.  

The effects of the tool path parameters were studied using the two-level full factorial design of 

experiments as one of the available experiment design methods. The overall conclusion stemming 

from this study is the fact that corresponding results cannot be generalized for every case referring to 

the sculptured surface machining problem. However, the experiments conducted provide a good 

insight on the qualitative comparison between the different effects of tool path parameters on the 

criteria, with reference to the benchmark sculptured surfaces examined. 



 
 

82 
 

Experiments were conducted not only to study the behaviour of tool path parameters on the 

problem’s criteria but also to evaluate the consistency of computed outputs given by analytical 

expressions for scallop height and chordal deviation estimation. The results obtained from the 

developed programming functions that involve the aforementioned analytical expressions were 

found to be in a very good agreement with those experimentally obtained by examining the 

benchmark sculptured surfaces. This success can be attributed to the consistency of the performance 

of CAM functions and to the objectives set for representing the problem through the Pareto criterion. 

Based on the detailed experimental study presented for the tool path parameters as well as on the 

fact that its outputs lack generality as they depend on the sculptured surface geometry, the precision 

of tool path parameters’ values when they are represented as binary strings (chromosomes), should 

be of the same number. 
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Chapter 4 

Optimisation methodology for sculptured 

surface CNC machining   

 

4.1  Introduction 
 

This chapter presents the development stages followed to establish the optimisation methodology 

for solving the sculptured surface CNC machining problem. The methodology refers to the 

simultaneous 5-axis CNC machining since this technology is by far more superior to others 

implemented in manufacturing industry. The methodology is consisted of two parts. The first part is 

responsible for automating CAM software functions as well as for computing the optimisation 

criteria, machining error, machining error distribution and number of cutting points, as it has been 

mentioned in Chapter 3 (section 3.4). The second part undertakes the multi-objective optimisation 

process by implementing a virus-evolutionary genetic algorithm developed for this scope, regarding 

the problem definition reported in Chapter 3 (section 3.2). Such an algorithm has never been 

proposed to address the sculptured surface machining problem whilst its significant architecture and 

differentiation from other evolutionary algorithms has caught the interest for its development and 

implementation for solving the sculptured surface machining problem.  

It is of great importance to mention that the proposed methodology has been developed such that 

any representation of the sculptured surface machining problem can be handled as long as the 

objective function is properly formulated, and its objectives ensure generic results. It is also crucial to 

report that the multi-objective virus-evolutionary genetic algorithm accounts for the methodology’s 

successful implementation but doesn’t represent the overall philosophy of stochastically optimising 

tool paths from multi-axis machining strategies as candidate solutions since any other variant of 

intelligent algorithms can be implemented instead. The usage of an evolutionary algorithm other than 

the virus-evolutionary genetic algorithm proposed in this thesis can be suitable provided that its 

components and functions are compatible with the automation part of the methodology. The same 

also goes for the function undertaking to automate CAM system’s utilities and evaluate the 

optimisation criteria adopted in this research.     
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4.2  Fundamentals of genetic and evolutionary algorithms 
        

Genetic algorithms (GAs) are stochastic functions for searching solutions in a potential solution 

domain that mimic the biological evolution of species according to the Darwinian evolution theory. 

Genetic algorithms operate on populations of potential solutions (individuals or candidate solutions) 

by following the principle of the “survival of the fittest” so that better solutions gradually are 

achieved to finally solve a problem. In each generation of potential candidates, a set of functions is 

applied referring to the selection of individuals in a population regarding their “fitness” for solving a 

problem and their following reproduction (crossover) to produce better offspring. This procedure 

leads to the “evolution” of populations consisted of candidate solutions (individuals) that adapt 

better to their “environment” than the individuals from which first came to be, as it occurs in natural 

adaptation. Individuals or candidate solutions are encoded as series of numerical characters known as 

“chromosomes” so that their genotype (the real values of chromosomes) can be unambiguously 

represented as variable numbers (phenotypes) that describe the problem at hand. The most usual 

representation for chromosomes is binary, however other schemes such as real and gray binary are 

available for usage. Figure 4.1 shows an example of a problem involving two independent variables x1 

and x2 represented using binary encoding where the former variable comprises 10 binary digits 

whereas the latter comprises 15 binary digits.    

 

 

Figure 4.1: Binary representation for two independent variables, x1 and x2.  

When the numerical sequence of a chromosome is examined alone few information can be obtained 

concerning the problem to be solved. In order to extract meaningful information concerning a 

candidate solution, its chromosome should be mapped to the corresponding phenotype. 

Nevertheless, the search for optimal solutions is based on the genotypes of candidates unless a real-

value encoding scheme has been applied to represent chromosomes. When chromosomes are 

mapped to phenotypes their fitness can be evaluated. This is achieved by implementing a fitness 

function that expresses the performance (or contribution, or quality) of an individual to the problem’s 

solution. This corresponds to the successful adaptation of an individual to survive to natural 

environment. Hence, a fitness function determines the prerequisites for selecting pairs of individuals 

to produce offspring. During the reproduction phase a fitness value is assigned to each individual 
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whilst this value is a result of a fitness function transformation. Fitness value is biased regarding the 

corresponding function transformation value of an individual. That is, individuals with higher or lower 

fitness will be favored for being selected depending on the optimisation task, maximisation or 

minimisation respectively. Once fitness values have been assigned to individuals, they can be selected 

for reproduction under a probability proportional to their fitness so that a new generation will be 

created. Genetic operators directly handle the genes of chromosomes assuming that the genetic code 

of some specific individuals produces fitted individuals. Crossover operator is applied for exchanging 

genetic material between pairs of individuals. The simplest crossover operator is the single-point 

crossover. According to its operational process the genetic material of two chromosomes is 

exchanged with reference to a given point assigned to both chromosomes. Crossover is not applied to 

all individuals in a population but only to those been selected under a given probability. Another 

important genetic operator is mutation and is applied regarding a predetermined probability to new 

individuals as a result of the reproduction process. Mutation simulates and prompts the genetic 

change of an individual’s binary representation regarding a probability rule. When it comes to binary 

representation, mutation changes a bit for 0 to 1 and vice versa. Mutation operator is essential from 

the perspective of ensuring that the probability to explore a subspace of potential solutions is never 

zero. This technically prevents an algorithm from being converged to a local optimum (minimum or 

maximum) instead of the global optimum.  

After crossover and mutation, the chromosomes are decoded (if necessary) the objective function is 

computed, the fitness value is assigned and individuals are selected for reproduction again, thus the 

evolution process continues until the next generation. As an outcome the average performance of 

individuals constituting a population is expected to be increased since fitted individuals remain and 

produce offspring whilst less fitted ones degrade. The genetic algorithm terminates the evolution 

process once the stopping criteria are met, i.e. maximum number of generations has been reached.  

Genetic algorithms have significant differences compared to other conservative optimisation / 

problem solving methods. Most important differences are that GAs examine a population of solutions 

and not a single solution, they don’t need derivative information or any other mathematical 

“knowledge” except from the objective function and fitness values that guide the GA towards the 

search direction, they apply probabilistic transition rules and not deterministic ones to end up with 

optimal results and finally they operate on encoded groups of parameters rather than on their 

phenotypes unless a real-value encoding scheme has been applied to represent chromosomes. It is 

important to note that genetic algorithms provide a number of potential solutions referring to a given 

optimisation problem whilst it is up to the user which one of the solutions available is to be selected.  
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4.2.1 Representation and initialization of population (candidate solutions)  
 

The most common chromosome representation for candidate solutions is that of binary-encoded 

stings (Goldberg, 1989). Each variable is given as a binary string and all variables are linked to 

formulate a chromosome of a finite length. Recent research concerning encoding schemes to 

represent chromosomes suggests also the employment of several others such as real-value encoding 

scheme (or floating point – FP), Gray-binary encoding, Permutation encoding, etc. (Kumar, 2013). 

Encoding scheme selection plays key role to problem solving and optimisation processes when 

artificial intelligent algorithms are to be employed since it facilitates the functionality of genetic 

operators on their way to generate, evaluate and recombine individuals towards the convergence of 

optimal results. Encoding schemes provide the initial seeding and as such they should satisfy the 

requirements of providing efficient building blocks (patterns that describe subset of chromosomes 

with similar sections (Forrest and Mitchell, 1993, Holland, 2000)), as well as to follow the principle of 

minimal alphabets (Holland 1975). According to the principle of minimal alphabets, encoded patterns 

need to be the smallest possible to increase the possibility of maintaining similar schemes. This is 

based on the fact that by reducing cardinality of alphabets, increase in potential solutions is achieved, 

i.e. encoding using the binary range of (0,1) is better than one using all available letters from the 

alphabet (A,B,C,D………,Y,Z), however, selecting the proper encoding scheme is a problem-dependent 

task (Kumar, 2013, Jaggi et al. 2013). Binary encoding scheme is quite simple in terms of its 

employment and satisfies both principles stated above, that of efficient building blocks and that of 

minimal alphabets. To examine the behaviour of the two most often-implemented encoding 

schemes, binary and real, in the case of CNC machining problems, Krimpenis and Fountas (2016) 

performed experiments on a common CNC machining problem using two genetic algorithms, one 

with binary encoding and one with real-value encoding for chromosome representation. It was found 

that binary encoding was superior to real-value encoding.  

Once the encoding scheme for representing chromosomes has been decided, the creation of the 

initial population of candidate solutions is the next step. This is usually achieved by using a random 

number generator capable of proposing uniformly distributed numbers with reference to a given 

bound. If a binary population is assumed to have N individuals whose chromosomes’ length is L digits 

then N x L randomly distributed numbers around the given bound will be produced.     
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4.2.2 Objective and fitness functions   

Objective function is applied to provide a metric for the performance of individuals in a problem’s 

region. In the case of a minimisation problem best individuals are considered those with the lowest 

objective function value whereas in the case of a maximisation problem best individuals are those 

with high objective function values. Fitness function is a numerical representation of the objective 

function and transforms its value to a non-negative number. Fitness function ought to be more 

sensitive compared to the objective function in order to be able to detect and distinguish a better 

candidate solution from a good one when it comes to low differences in magnitudes. This is of great 

importance since there is a need to decide which partial solutions should be considered over others 

and thus guide the algorithm to an advantageous search direction in which the entire population 

should move towards (Chipperfield et al. 1994). Hence if the transformed fitness of an individual is 

( )ixF  and its initial objective value is ( )ixf , then:            

( ) ( )( )xfgxF =                                                              Eq. 4.1 

where, 

f : the fitness value prior to transformation, 

g: transformation of initial objective/fitness value to a non-negative value, 

F: the resulting fitness value after applying transformation. 

Thereby, the fitness of each individual in a population ( )ixF is defined as the fraction of the 

initial objective/value ( )ixf  , over that of the entire population as shown in Equation 4.2.  

( )
( )

( )
1

i

i N

i

i

f x
F x

f x
=

=


                    Eq. 4.2 

where, 

N:  the population size, 

ix :  the phenotype (arithmetic value) of ith individual.  
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4.2.3 Parent selection for reproduction   

Parent selection is the process of defining the number of cases where a single individual is selected 

for reproduction and is related to the number of offspring that creates. Selection of individuals may 

be treated as a two-fold process involving the definition of the number of cases where the individual 

is selected and their conversion to a specific number of offspring. The former part of selection 

process deals with the transformation of rough fitness values to an estimation of an individual’s 

probability to be selected and this is previously performed during fitness assignment. The latter part 

deals with the probabilistic selection (sampling) of individuals for reproduction based on their fitness 

when compared to others.  

Baker (1987) presented three performance metrics for selection algorithms, bias, spread and 

efficiency. Bias designates the absolute difference between actual and expected probability of 

selecting an individual. Consequently, the optimal (zero) bias may be achieved when the probability 

of selecting an individual, equals to its expected number of selection. Spread refers to the bound 

(upper and lower) of the range of possible number of an individual’s selections. If ( )S i  is the actual 

number of selections for ith individual, then the minimum range is considered that which theoretically 

introduces no bias Equation 4.3.                    

 

( ) ,i iS i Lb Ub
 

        
 

                    

Eq. 4.3 

where, 

( )S i :   the expected number of selections for  ith individual, 

iLb   :  the lower bound of ith individual’s the selection range, 

iUb   :  the upper bound of ith individual’s the selection range. 

Consequently, while bias is an indication of accuracy, the range of a selection method measures its 

consistency. The need for efficient selection methods is motivated by the necessity to maintain 

computation time of a GA within acceptable levels. It has been shown in the literature that the rest of 

algorithmic operations - except objective function evaluation - require computational time equivalent 
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to N x L or better. The selection algorithm must thus achieve zero bias while maintaining a minimum 

range and not leading to increased calculation time. 

Selection process is based on the law of the “survival of the fittest”. This process decides which 

individuals will have the opportunity to participate in reproduction to bequeath to next generations a 

part, or all of their characteristics. The main goal of selection process is to account for the exponential 

growth of elite individuals and thus - after several generations of reproduction - their prevalence. 

Without selection operator within the reproductive procedure, the genetic algorithm is equivalent to 

a system that performs a completely scattered search. There are several ways to implement the 

selection within a GA, yet, given that the size of the population from generation to generation does 

not change (at least in the basic genetic algorithm), any selection technique should somehow give a 

greater chance of reproduction to most competent individuals evaluated in the artificial environment. 

Reproduction may be expressed on an algorithmic basis in many ways from which the easiest and 

most prevalent of them is that of a forced roulette where each string of a population is represented 

as a part of the roulette in proportion to its performance (Goldberg, 1989).  

To introduce the usage of the forced roulette, a population of four individuals comprising five digits 

each is created by casting a coin twenty times whilst their performance (objective function value) is 

evaluated as shown in Table 4.1. 

Table 4.1. Example of forced roulette implementation to four 5-digit individuals. 

No. string String Objective value Performance (%) 

A1 01101 169 14.0 
A2 11000 576 50.0 
A3 01000 064 05.0 
A4 10011 361 31.0 
Sum  1170 100.0 

 

The overall summation of the performance of the four candidate solutions (strings) equals to 1170 

whereas the percentage of each string in the overall population performance is shown in the last 

column of Table 4.1. Figure 4.2 illustrates the performance for each of the four individuals in this 

generation in terms of a percentage.    
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Figure 4.2: Forced roulette selection operation for a generation of four individuals.  

Sum is a range of real values and is defined as the sum of objective values in the current population. 

The performance for each individual is then displayed one by one in a row within the closed range [0, 

Sum]. The size of each interval is proportional to the individual’s fitness. In Figure 4.2 Individual A2 

exhibits the highest fitness thus it occupies the largest roulette’s portion. Similarly individual A3 has 

the lowest fitness thus it occupies the smallest portion in the roulette. A random number is generated 

within [0, Sum] range and the individual within the space of which the random number falls is 

selected for reproduction. This process is repeated until the required number of individuals has been 

selected. Known methods of forced roulette are stochastic sampling with replacement (SSR) and 

stochastic sampling with partial replacement (SSPR). In stochastic sampling with replacement (SSR) 

the interval size and probability of selection remain the same throughout the selection phase and 

individuals are selected according to the aforementioned procedure. SSR has zero bias but probably 

an infinite range. Any individual with a size greater than zero might completely occupy the next 

population. Stochastic sampling with partial replacement (SSPR) is based on SSR, yet, the portion of 

the roulette of a selected individual is updated.  Each time an individual is selected, the magnitude 

corresponding to its portion is reduced by 1.0. If the magnitude of the portion becomes negative, it is 

set to 0.0. This provides an upper limit for the range. However, the lower limit is zero and the bias is 

higher than that of SSR.  

Other selection schemes are steady-state and elitism. A conventional genetic algorithm (Cobb and 

Grefenstette, 1993) will create offspring from an old population’s individuals by applying the genetic 

operators and offspring will be placed in a new population which in turn becomes the old one after 

the entire new population is created (Goldberg, 1989). Now, in an incremental (or steady-state) GA, 

the steady-state selection operation suggests that a single or few elite individuals are to be selected 

for creating new offspring whilst those with low fitness are to be removed from the population with 

offspring to take their place and the rest of population survives to next generation. This operation 

applies a replacement strategy from two available (deleting the oldest, deleting the weakest), to 

determine which individuals will be removed from the population (Whitley and Kauth, 1988). 
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Outstanding candidate solutions may be lost if crossover and mutation operations produce offspring 

weaker that their selected parents. There is a chance for a GA to discover again those individuals in 

subsequent populations of next generations, yet, with no guarantee. To ensure that such solutions 

will be preserved to next generation elitism has been proposed and implemented as a parent 

selection scheme to GAs (Yang, 2007, Chudasama et al., 2001, Romero-Hdz et al., 2016). Elitism 

copies small parts of fittest individuals and preserves them to next generation whilst it saves 

significant computational time referring to the effort needed for retrieving previously discarded 

partial solutions. Thereby eligible elite solutions may be selected as parents for producing offspring. 

Elitism may target to the preservation of a unique individual or few outstanding individuals as copies 

of best solutions to be included to the next generation. 

 

4.2.3 Crossover 
 

As a result of selection operation, the temporary population should pass through a mating procedure 

in order to produce offspring as it happens in nature. Selected individuals will be mated as pairs of 

two to produce new individuals (offspring). Despite that the characteristics of selected individuals 

may significantly affect the algorithm’s convergence speed, mating is randomly performed. In each 

pair of two individuals a simple exchange of genetic material is done known as crossover. In a GA-EA 

crossover facilitates the exploration of new solution regions since it corresponds to the exchange of 

substrings between two individuals. Owing to its high contribution to optimisation process, several 

types of crossover operators is available to implement. However their suitability depends on the 

problem’s properties. Most known crossover types are single-point crossover, multi-point crossover 

and uniform crossover.  

Single-point crossover (or one-point crossover), a crossover point is randomly determined and the 

tails of the two selected individuals are swapped to give offspring with regard to the crossover point 

as shown in Figure 4.3 (a). Multi-point crossover generalizes single-point crossover where alternating 

portions are swapped to give offspring in (Figure 4.3 (b). In uniform crossover shown in Figure 4.3 (c), 

chromosomes of mated individuals are not divided to portions but a mask that assigns which 

chromosome locations referring to both parents will be recombined, is applied.  

 

  (a) 
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Figure 4.3: Crossover operator: (a) single-point crossover, (b) multi-point crossover, (c) uniform crossover.  

 

Crossover operation redirects the search towards new local regions of the solution space and thus it 

facilitates the GA-EA to increase its chance of success. However the possibility of producing offspring 

worst than parents always exists, yet, the probability of multiplication for offspring reduces in next 

reproduction cycles owing to their poor performance and quality. Crossover is applied to GAs-EAs by 

using a certain probability. This probability depends on the optimisation problem whilst it is possible 

to dynamically change its magnitude during the algorithm’s execution time. Crossover probability 

affects both execution time of an algorithm and its convergence speed. The larger the probability for 

crossover (i.e. pc = 1.0) is, the smaller the search step is determined for the algorithm. This results to a 

beneficial search towards global optimum but under slow convergence speed. On the contrary if 

small values for crossover probability are determined fast convergence speed is a favored using large 

search step with the risk to bypass the region containing global optimum solution.  

Each type of crossover comes with its own advantages and drawbacks, thus, selecting one is 

ultimately based on optimisation requirements and the properties of a GA-EA variant. Despite the 

sophisticated schemes of multi-point and uniform crossover they do not always attain optimal results 

when compared to those obtained using the single-point crossover (Mendes, 2013). Single-point 

crossover involves only one point where genetic exchange is determined for a pair of chromosomes 

thus it is less likely to damage building blocks (Goldberg, 1989). In contrast, multi-point crossover and 

uniform crossover impose multiple points where genetic exchange occurs, violating thus the 

requirement of maintaining subsets of chromosomes with similar sections.                         

4.2.4 Mutation 
 

Mutation is a function that improves natural organisms and favors the evolutionary process. Like its 

role in natural environment, mutation introduces positive impact by preventing premature 

convergence of GAs-EAs, exploring new solution regions, as well as maintaining diversity in new 

populations of candidates. As such it is directly related to the “exploration” of the problem’s solution 

(b) 

 (c) 
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domain. Mutation suggests a digit’s reversion (0 to 1 and vice versa) under a given probability (or 

percentage) pm as substrings of chromosomes are copied from parent to offspring. It is essential that 

mutation probability pm is maintained small enough, otherwise the algorithm will degenerate into an 

entirely scattered search (Goldberg, 1989). Mutation operates as a “safety precaution” mechanism in 

cases where selection and crossover operators gradually lose efficient genetic information. As a 

result, mutation redirects the search and ensures that no point in the solution domain will be 

excluded from the search process (Goldberg, 1989).   

Known mutation schemes are single-point mutation (or bit flip) as described above, swap mutation, 

scramble mutation and inversion mutation, each of which is problem-dependent for its employment 

as it occurs to the rest of genetic operators previously presented. Bit flip mutation Figure 4.4 (a) is 

preferable when it comes to binary encoding for chromosomes. Swap mutation randomly selects two 

discrete positions in a chromosome and interchanges genes accordingly in Figure 4.4(b). Scramble 

mutation utilizes a subset of genes whilst their values are either scrambled or shuffled randomly and 

is preferable when it comes to permutation encoding representations for chromosomes in Figure 4.4 

(c). Inversion mutation is similar to scramble mutation but instead of scrambling or shuffling the 

subset of genes a mere inversion of the entire string is performed in Figure 4.4(d).   

 

 

 

 

 

Figure 4.4: Mutation operator: (a) single-point mutation (bit flip), (b) swap mutation, (c) scramble mutation, (d) inversion 
mutation.  

4.2.5 Reinsertion 
 

Once a new population form selection and crossover of old individuals has been created the fitness 

value of offspring can be determined. If fewer individuals have been generated regarding the 

previous population’s size then the fractional difference between the size of new population and that 

of the old one is known as generation gap (De Jong and Sarma, 1993). In order to avoid generation 

gap (which technically means reduction of information) and maintain the original population size, 

  (d) 

(a) 

(b) 

(c) 
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new individuals should be reinserted to the old population. Similarly, if not all new individuals are to 

be used in the next generation or if more offspring are created than old individuals then a reinsertion 

method should be applied so as to determine which individuals will constitute the new population. 

The only advantage gained from the fact that no more offspring than individuals of the current 

population are created, is that computational time in each generation is gradually reduced especially 

in the steady-state GAs. The same goes also for the memory usage since fewer individuals are 

produced and eventually stored. Nevertheless these are of minor importance when compared to the 

preservation of efficient solutions (and probably global optimum) until convergence. As it has been 

reported in selection operation, two methods, -deleting the oldest and deleting the weakest- are 

available for determining the individuals that will be removed from the population. Regardless of the 

method to apply for maintaining the population size, individuals should hold adequate information in 

order to survive to subsequent generations until the GA-EA is terminated.       

4.2.6 Termination 
 

Since genetic algorithms are stochastic searching modules it is rather difficult to formulate one or 

more stopping criteria. Fitness values may not change in terms of their magnitudes for a given 

number of generations before an outstanding candidate solution is found, thus, the implementation 

of conservative stopping criteria becomes problematic. A common practice for a genetic algorithm is 

to stop its workflow after a predetermined number of generations have been evaluated and further 

examine the quality of best solutions with regard to the problem at hand. If no solution satisfies the 

requirements the genetic algorithm may either continue to further evaluate some generations or 

start from the beginning to conduct a new search for the global optimal solution.          

4.3  Optimisation methodology description 
 

The major goal of the methodology developed in this PhD thesis is to formulate globally optimal tool 

paths for the machining of parts comprising sculptured surfaces regarding their important machining 

parameters which are cutting tool, stepover, lead angle, tilt angle and maximum discretisation step. 

To achieve this goal, the methodology adopts specific concepts, the validity of which has been 

supported by the state of the art in available literature as well as modern approaches for industrial 

practices. Such concepts are bulleted below: 

• Tool path parameters do not maintain the same impact/effect on quality objectives such as 

machining error, machining error uniformity and number of successive tool positions when it 

comes to different sculptured surfaces ( as shown in Chapter 3). 
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• Product requirements in terms of precision machining, part quality and accuracy are to be 

satisfied during the finishing stage. 

• Even though machining error and its corresponding uniformity are low in absolute 

magnitudes during the finishing stage, they can yield dramatic tool axis variations which in 

turn may affect the overall cutting tool trajectory and tool path smoothness.   

• Subsequent tool axis variations in the case of 5-axis sculptured surface CNC machining are a 

common occurrence mainly due to the complexity of sculptured surfaces and different local 

curvatures.   

According to the concepts stated above, variations of cutting tool trajectory towards feed direction 

are more likely to occur in those surface regions where local curvatures result to abrupt changes of 

cutting tool orientations and consequently effective cutting postures. In other words, those surface 

regions will be responsible for dramatically varying the overall cutting tool trajectory since they 

impose profound changes in cutting tool orientations either as absolute magnitudes or as a frequent 

phenomenon affecting either way resulting precision and surface quality of products. From a 

functional perspective the methodology’s philosophy on its design and development has been such 

that: 

• It can provide a generic environment for globally optimizing the sculptured surface machining 

problem and maintain quality in its generated outputs in any case of sculptured surface,    

• It can provide flexibility to easily modify its objectives/components to adapt to specific 

applications and / or requirements, 

• It can be practically viable, i.e., to consider the practices, conditions and systems currently 

implemented in production environments and be implemented requiring the least possible 

resources, 

• It can ensure compatibility to cooperate with existing manufacturing systems and offer new 

capabilities or even extend/automate currently available ones using a familiar operational 

interface, 

• It can incorporate the user’s experience based on the principles of manufacturing, without 

preventing the user from making critical decisions. 

From a macroscopic viewpoint, the methodology consists of two parts as it has been already 

mentioned: the first part is responsible to automate repetitive tasks concerning the process planning 

in terms of tool path generation as well as to evaluate the criteria set for optimisation. The second 

part constitutes the optimisation module which in turn involves several functions to achieve artificial 

evolution of candidate solutions to eventually achieve several globally optimal solutions for the 
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sculptured surface CNC machining problem. The selection of methods and approaches to establish 

the overall optimisation methodology has been based on widely accepted conclusions from academic 

and industrial perspectives, most of which have been already (or are about to be) presented and 

discussed in this thesis. The analytical description of the methodology is given in the following 

sections of the chapter. 

 
 

4.3.1 Part I: CAM software automation function and criteria evaluation 
 

The evaluation of criteria involved to the optimisation problem is achieved through an integrated 

programming application in which demanding functions from the perspectives of computational time 

and complexity of CAM software tasks justify its development. As it is the case of any modelling 

approach, this work has examined crucial tool path parameters for 5-axis surface machining to study 

their effects on the optimisation criteria set and represent the problem at hand. Further on it is 

mandatory to automate tool path parameters and any of their associated utilities in order to manage 

the feasible workflow of the entire optimisation methodology as well as the reduction of the 

computational time required to execute it. Note that tool path parameters should be involved to the 

overall optimisation process since they directly affect the final CNC program formulation whilst they 

constitute the only attributes for planning tool paths to machine sculptured surfaces. Even though 

the programming application has been developed to support the optimisation criteria presented in 

Chapter 3 the possibility of including other criteria or replacing the ones introduced with others like 

part production cost, working shift cost, etc., which are not as strictly related to the problem as those 

introduced. The integrated programming application (automation function) has been developed in 

Microsoft® Visual Basic® for Applications environment and has taken advantage of the “open” 

programming architecture (API) of Dassault Systèmes CATIA® V5 R18. The application automates the 

overall management of the aforementioned CAD/CAM system in order to extract appropriate data for 

the evaluation of 5-axis sculptured surface machining tool paths. The same application provides also a 

feedback to the optimisation algorithm concerning the results from the criteria computed, thus, 

playing the role of the objective function. In a rough description the application scans the project tree 

in a machining setup document active in the CAM interface. Once the cutting strategy containing the 

5-axis surface machining tool path has been found, it is retrieved to access its parameters. Thereby, a 

candidate solution in its phenotypic form (real values for tool path parameters) occupies the 

“argument-passing” fields corresponding to each of the tool path’s parameters. The tool path is then 

automatically computed to produce the associated CL file (APT source file) which is accessed to 
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import tool positions in the CAD environment containing the designed sculptured surface. With 

reference to the designed sculptured surface, the cutting strategy/tool path and tool orientations the 

criteria of machining error, machining error uniformity and number of cutting points are evaluated to 

obtain the objective values. These operations are repeated for all populations of candidate solutions 

and subsequent generations that the optimisation algorithm handles. The overall workflow of the 

programming application for CAM software automation and criteria evaluation is depicted in Figure 

4.5.                       
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Figure 4.5: Overall workflow of the programming application (automation function) developed for automating CAM 
software functions and evaluating the optimisation criteria.  
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The programming application operates as an external public function which utilizes the necessary 

programmable references of Dassault Systèmes CATIA® V5 R18 that deal with CAD and CAM 

automation utilities. It also involves three independent “public” functions called to operation 

according the application’s workflow for managing the required automation elements to finally 

compute the optimisation criteria. The main core of the application declares the necessary variables 

as well as the objects to access and handle CAM software properties. In the application, the five tool 

path parameters which are cutting tool, stepover, lead angle, tilt angle and maximum discretisation 

step take values suggested by the optimisation algorithm via argument passing, i.e. “stepover.value = 

phenotype(i,2).” This means that the phenotypic value to be assigned for the second tool path 

parameter - which is stepover-, will be the binary-encoded gene in the chromosome of ith individual 

after its mapping to the corresponding phenotype (real number). It is reminded at this point that 

during machining simulation experiments presented in Chapter 3 tool path parameters were 

conservatively fed with values for the automated computation of optimisation criteria without the 

necessity of this argument-passing technique. Based on this philosophy the phenotypic values 

provided by the optimisation algorithm are assigned to tool path parameters according to their order 

in a chromosome (candidate solution).  

The first tool path parameter refers to the cutting tool which may be any tool, flat end-mill, ball end-

mill or filleted end-mill in the case of 5-axis sculptured surface CNC machining. A cutting tool 

database in the form of “IF-ELSEIF-END” has been properly coded to change cutting tools’ 

configurations according the case whilst the phenotypic value for cutting tool parameter is always an 

integer. The size of tool database in terms of its number of items can be as large as required, 

however, testing a large group of cutting tools adds to computational time since the number of 

experimental scenarios increases accordingly. Each cutting tool in the database is associated to its 

main geometrical configurations involving nominal (cutting) diameter, body diameter, corner radius, 

cutting length and overall length. In addition, applicable feeds and speeds are also associated to each 

of the cutting tools included to the database. Thus, if for example the optimisation algorithm suggests 

for evaluation the 3rd cutting tool in the database, the dedicated argument-passing field for the 

cutting tool which is “SelectedCuttingTool=phenotype(i,1)” takes number 3 as the phenotypic value 

(the tool’s index) and based on the configurations of that tool, the entire cutting tool’s 3D model and 

its feeds/speeds are automatically updated in CAM software.  

The second tool path parameter refers to stepover and may be determined by setting a direct 

distance value, or by setting an overlap distance between consecutive passes, or by giving a 

percentage ratio in terms of the selected cutting tool’s nominal diameter. The third determination 



 
 

100 
 

has been preferred against the first and the second stepover computation settings since it provides 

safety in terms of the final calculated distance with regard to cutting tool’s diameter. Thus, if a cutting 

tool has been selected, based on its index from the database mentioned, i.e. tool no.3, and that tool 

has nominal diameter Dn=8 mm then a phenotypic value for stepover, i.e. “60” given to its associated 

argument-passing field (i.e. “SelectedStepOver=phenotype(i,2)”) would render an actual stepover 

distance equal to 4.8 mm. Similarly for another cutting tool with Dn=16 mm the value of “60” would 

render an actual stepover distance equal to 9.6 mm. Lead angle, tilt angle and maximum 

discretisation step parameters take their phenotypic values suggested by the optimisation algorithm 

as arguments in their associated programming fields, “LeadAngle.Value=phenotype(i,3)”, 

“TiltAngle.Value=phenotype(i,4)” and “MaxDstep.Value=phenotype(i,5)”. 

Once all “argument-passing” fields of tool path parameters are fed with suggested phenotypic values 

the tool path is automatically computed using the programming object available to Dassault Systèmes 

CATIA® V5 R18 open API property, “GetTrajectoryEndPointCoord(EndPoint)”. This property is used to 

retrieve the coordinates of the last cutting point in a tool path but as an advantageous side-effect, it 

computes the entire tool path to do it so. Further on the application executes the three public-

declared functions as routines embedded to the main application’s function. These functions are 

GenAPT, ToolPositionsXYZIJK and ComputeObjectives for generating the APT source code, retrieving 

the cutting tool’s positions and computing the optimisation criteria respectively.  

A prerequisite for GenAPT to be executed is to first compute the tool path with regard to the values 

for tool path parameters as suggested by the optimisation algorithm in the form of phenotypic 

values. Thereby the function takes into account the number of setups in the active process planning 

document as well as the number of manufacturing programs. In the case of a single machining setup 

with a single manufacturing program the function directly extracts CL data associate to that program 

based on the tool path. The function practically calls the post-processor engine that can be 

programmatically deployed using “ManufacturingAPTGenerator” API object. This object provides two 

properties, “InitFileGenerator” and “RunFileGenerator” so as to initialize the post-processing engine 

for the computed tool path and eventually extract the data required for building a complete NC 

program. At this point the post-processing engine does not account for a specific type of a CNC 

controller in order to translate APT commands (CL data) to ISO code (or G-code) since the task is to 

retrieve geometrical information concerning the tool positions rather than execute a complete ISO 

code using a typical 5-axis CNC machine tool. The workflow of public function GenAPT to produce 

the APT source file for further activities related to the overall process of computing the optimisation 

criteria is illustrated in Figure 4.6.          
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Figure 4.6: Workflow of  GenAPT function developed for the automatic generation of APT source files in relation to 
computed tool paths.  

 

The second public-declared function “ToolPositionsXYZIJK” undertakes to scan the APT source file (CL 

data) generated using the previous public-declared function and keep all tool positions with regard to 

their coordinates (X, Y, Z) and cutting tool orientations (I, J, K). The APT source file is accessed and a 

FOR-NEXT loop is assigned to sequentially read each block of the APT source file so as to track the 

tool position. The blocks of APT source file will include also the APT commands for miscellaneous and 

preparatory functions (M and G codes) as well as motion commands, tool change commands, spindle 

rotation, tool inclination mode for 5-axis machining, etc. The workflow of “ToolPositionsXYZIJK” 

public-declared function is shown in Figure 4.7.     
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Figure 4.7: Workflow of  ToolPositionsXYZIJK  function developed for the automatic retrieval of tool positions.  

 

The third public-declared function “ComputeObjectives” handles further the coordinates and tool 

vectors stored from the previous public-declared function to finally compute the optimisation criteria. 

The function initializes the input of meaningful tool positions to CAD environment with respect to the 

original model and its reference axis system if the latter is also the reference coordinate system in the 

machining setup document. As it has been reported each tool position is described by its coordinates 

(X, Y, Z) and cutting tool orientations (I, J, K). In order to transform each tool position to a dimensional 

entity to be imported to CAD environment the automation object “HybridShapeFactory” has been 

deployed along with its corresponding property of creating points from coordinates, 

“AddNewPointCoord”. Vector components (I, J, K) have been taken into account to calculate 

inclination (rotary axis lead and tilt) angles for 5-axis CNC machining. When it comes to inclination 

angles X, Y and Z refer to the linear axes whilst A, B and C refer to rotary axis angles according to the 

machine tool configuration. While this is not of major importance for computing crucial geometrical 



 
 

103 
 

entities such as local distances and machining errors, it is mandatory when it comes to the final post-

processing to generate the appropriate CNC code according to the type and kinematics of CNC 

machining center to be used for actual cutting. However to ensure consistency during the validation 

of the methodology presented in this thesis, the formulas referring to a 5-axis CNC machine tool with 

a profiling (tilting) spindle head were adopted to compute tool positions (rotary axes angles from tool 

vector components) in Cartesian space and with regard to the machining reference system. In such a 

5-axis CNC machine tool configuration, A axis is the primary mechanical rotation axis whilst B (or C) is 

the secondary mechanical rotation axis. This implies that the secondary angle (tilt angle Ta ) is 

computer after primary angle (lead angle La ) since the secondary axis’ positioning depends on the 

primary axis’ orientation. For the case of 5-axis CNC machine tool configuration with a profiling 

(tilting) spindle head the formula to compute the inclination angles is given in Equation 4.4. For the 

case of dual-rotary machine tool tables and trunnions configurations an inverse mathematical 

relation in terms of computing inclination angles is adopted since a rotary machine tool table rotates 

the part and not the cutting tool as it is in a tilting spindle head 5-axis CNC configuration. Warkentin 

et al. (2001) report the classification of several types of 5-axis CNC machine tool configurations as 

well as their mathematical properties to compute tool orientations.  
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                     Eq. 4.4 

The function continues with the sequential computation of effective radii in each cutting point based 

on the selected cutting tool type and is associated geometry. Having computed effective radii, local 

scallop heights are then computed. The computations for each successive cutting point imported to 

CAD environment are executed using a “FOR-NEXT” loop. Based on the overall number of cutting 

points examined to compute effective radii and local scallop heights the third optimisation criterion 

(which is the number of cutting points itself) is straightforwardly evaluated and stored. A part of the 

first optimisation criterion which is the mean machining error is also examined from the summation 

of local scallop heights and consequently the mean scallop height for the entire tool path. With 

regard to these attributes the standard deviation of scallop height which is a part of the second 

optimisation criterion (machining error distribution via its standard deviation) is also computed. At 

this point another “FOR-NEXT” loop is executed by the function in order to examine cutting points as 

pairs and calculate their associated local 3D distances (chord lengths), local curvatures and finally 

local chordal deviations (chord errors). Further on, mean chordal deviation which is a part of the first 
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optimisation criterion (mean machining error) is computed with respect to the sum of local chordal 

deviations whilst standard deviation of this magnitude is also computed and constitutes a part of the 

second optimisation criterion. By computing these instances all three optimisation criteria are fully 

determined as well as the Pareto criterion for the multi-objective optimisation. The mathematical 

relations to compute the aforementioned magnitudes have been presented and reported in Chapter 

3. The workflow of “ComputeObjectives” public-declared function is shown in Figure 4.8.            

Open *.txt file with the tool positions 

(coordinates X,Y,Z and vector components 

I,J,K)

For CLpnt=1 to CLpnt max

Compute:

- Effective radius

-   Local scallop height

Next

CLpnt

Compute:

-      Mean scallop height

-  St. Dev. scallop height

- Total number of CLpnts 

For CLpnt=1 to CLpnt max-1

Retrieve:

-  CLpnt ( j ), CLpnt ( j+1 )

Compute:

- 3D chord length between CLpnt ( j ), CLpnt ( j+1 )

-   Vector angle

- Local curvature and radius

- Local chordal deviation

Next

CLpnt

Compute:

-      Mean chordal deviation

-  St. Dev. chordal deviation

Compute 3D Pareto objective

END

START

Criterion 1

(Machining error)

Criterion 2

(St. Dev. Machining error)

Criterion 3

(No. cutting points)

 

Figure 4.8: Workflow of  ComputeObjectives function developed for the automatic retrieval of tool positions.  
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4.3.2 Part II: Multi-objective virus-evolutionary genetic algorithm (MOVEGA) 
 

The second part of the optimisation methodology presented in this thesis develops and deploys a 

multi-objective virus-evolutionary genetic algorithm (MOVEGA) to search for globally optimal results 

in terms of the 5-axis tool path parameters investigated and corresponding optimisation criteria that 

formulate the problem. By incorporating the CAM software automation function reported in the 

previous section to MOVEGA, it is possible to evaluate each tool path chromosome (candidate 

solution) through objective and fitness functions. The ultimate goal is to attain a minimum machining 

error as uniform as possible (minimize standard deviation for low error distribution) for tool paths 

with the lowest number of cutting points at the same time.  

As it has been mentioned, genetic algorithms are based on the concepts of natural selection and 

survival of the fittest individuals according to Darwin’s evolution theory. The major task of natural 

selection is to create better offspring regarding the characteristics of their ancestors. With the 

progress of molecular biology several evolutionary theories other than Darwin’s natural selection 

have been proposed. Therefore, computer science benefits from such new evolutionary theories to 

realize their key mechanisms and develop intelligent heuristics so as to facilitate engineering problem 

solving under the essential perspective of optimisation. The most important aspect that draws the 

interest of researchers worldwide to propose and create new intelligent heuristics or enhance already 

existing ones is the problem of premature convergence or local stagnation/trapping. The reason why 

genetic algorithms are prone to premature convergence is that proportional selection for mating 

individuals may increase not only efficient schemata but also inefficient ones whilst, increasing robust 

schemata is a fundamental research objective for building reliable evolutionary algorithms to improve 

searching abilities when it comes to engineering optimisation.  

As pure stochastic search systems, evolutionary algorithms are inevitably based on the concept of 

natural selection inheriting thus the benefits but also the drawbacks characterizing it. Fortunately, 

evolutionary theories such as the virus theory of evolution (Anderson 1970) suggest that natural 

selection may not be always responsible for the evolution of species. The virus theory of evolution 

lies thoroughly on the concept suggesting that viral transduction is a major mechanism for 

transferring DNA segments across species (Anderson 1970). Viral transduction represents the 

mechanism of the genetic modification that occurs to bacteria by genomes taken from other bacteria 

through a bacteriophage. Most viruses can cross species’ bounds whilst they can straightforwardly be 

transmitted from phylum to phylum among individuals. This means that viruses can pass over their 

genome to a population as horizontal propagation. In addition, a viral genome may exist in germ cells, 

thus, it can be transferred from generation to generation as vertical inheritance. The term “viral 
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intelligence” has been given by Fountas et al. (2017a, 2018) for the first time in the related literature 

and has been based on the fact that viral individuals might as well act as intelligent, sophisticated 

information carriers (“hill climbers”) capable of providing the necessary local information to 

formulate optimal tool paths for sculptured surface machining since tool paths are represented in the 

form of binary chromosomes (see chapter 3). The following subsections present the features 

comprising the infrastructure of the multi-objective virus-evolutionary genetic algorithm (MOVEGA) 

for addressing the generalized sculptured surface CNC machining optimisation problem as it has been 

formulated in this PhD thesis. The MOVEGA incorporates the following functions:   

• Initialization of candidate solutions (tool path chromosomes) 

• Objective function computation 

• Ranking function 

• Fitness function computation 

• Selection function 

• Crossover function 

• Mutation function 

• Viral infection function 

 

4.3.2.1 Initialization of candidate solutions (tool path chromosomes)  
 

Initialization process involves the generation of randomly formulated tool path chromosomes 

represented in binary encoding. The process of creating randomly formulated tool path 

chromosomes is achieved through the usage of a random generator of numbers uniformly distributed 

to the applicable ranges of tool path parameters based on the user’s inputs (upper and lower levels). 

Initialization process is to be performed if no previous evaluation has been preceded. In the case 

where an evaluation process has been previously conducted, initialization process is bypassed and 

the methodology considers the last best population of candidate solutions as it has been emerged 

from the previous optimisation process. Binary-encoded tool path chromosomes are mapped to their 

phenotypes to obtain the real values associated to their parameters. Thereby the phenotypes of tool 

paths consist of five numbers, each, corresponding to a single tool path parameter. Cutting tool type 

which is the first tool path parameter is of an integer form whereas the rest of parameters, stepover, 

lead angle, tilt angle and maximum discretisation step are of double form, i.e. decimal values are 

allowed. The attributes associated to the initialization process are stored to *.dat files. Thus, 

“population.dat” file is assigned to store the binary-encoded population of tool path chromosomes, 
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“phenotype.dat” file is assigned to store the phenotypes of the binary-encoded population of tool 

path chromosomes and a general file that serves as a repository file namely “variablelog.dat” is 

assigned to store the values for parameters accompanied to their associated values for optimisation 

criteria. The role of the last *.dat file mentioned (“variablelog.dat”) is crucial to the overall evaluation 

process for candidate solutions since it accounts for the prevention of evaluating identical candidate 

solutions by the intelligent algorithm. This means that the algorithm retrieves “variablelog.dat” file 

and if an identical evaluation with reference to the values proposed for tool path parameters is found 

the candidate solution is bypassed and the next is evaluated to save computational time. It should be 

mentioned that the algorithm’s activity for reading the file and identifying whether a set of tool path 

parameter values (candidate solution) retrieved from “variablelog.dat” has already been evaluated, 

requires much less computational time than that required to load them to the machining strategy for 

the tool path and execute the function for computing the optimisation criteria. The workflow of 

initialization process is illustrated in Figure 4.9.                   

START

Define the number 

of generations for 

evolution

Define the length 

of viral 

chromosomes and 

algorithm-specific 

parameters

Define the bounds 

and the accuracy 

of binary-encoded 

tool path 

parameters

Define the number 

of individuals 

(main population 

and virus 

population)

Is there a previous evaluation for 

the same magnitude of 

individuals ?

Apply random 

number generator 

to create the initial 

population

Load previously 

found best 

population

To MOVEGA 

NO YES

Compute the phenotypes 

of tool path parameters 

according to their bounds

Export to:

“population.dat” “phenotype.dat” “variablelog.dat”

END

 

Figure 4.9: Workflow of MOVEGA’s initialization process.  
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Initialization process imposes the need of maintaining data structures using series of arrays for 

binary-encoded tool path chromosomes, their number of accuracy bits and their locations in 

chromosome strings, as illustrated in Equations 4.5, 4.6 and 4.7 respectively.  

1 2 3 4 5

1 2 3 4

1,1 1,2 1,3 1,4 1,5

,1 ,2 ,3 ,4
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... ... ... ... ...

... ... ... ... ...

Pr Pr Pr Pr

b b b b b

b b b b

N N N N N

init
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n n n nN N N N
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=
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 
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 
 

    

           Eq. 4.5 
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              Eq. 4.6 

 
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C
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 
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=  
 
 

                 Eq. 4.7 

 

In Equations 4.5, 4.6 and 4.7,
init

PopC is the initial population of tool path chromosomes, PrTlp m  a tool 

path’s parameter, 
Pr

,

Tlp m

b i jN , the number of bits required for the accuracy of each tool path 

parameter PrTlp m for the thi tool path chromosome of the thj population and iLgth is the thi tool 

path’s chromosome length. Hence, considering a given tool path parameter Pr iTlp m , its 

corresponding domain  Pr ,
iTlp m i iD Ub Lb= and the thi tool path’s chromosome length iLgth the 

following expression has been used for converting binary-encoded values to real-encoded ones 

(Chipperfield et al. 1994). 

( )
2 1i

i i
i i Lgth

Ub Lb
TlpPrm Lb fnc BinStr

−
= + 

−
      Eq. 4.8 

where, iUb , iLb  are the parameter’s upper limit and lower limits, whereas ( )fnc BinStr  is a function 

developed to return the decimal values for binary-encoded schemes depending on the accuracy 

requirements (Holland 1975, Holland 2000). The decision whether a population of candidate solutions 

exists as a result of a previous optimisation process or not has been coded using “flag” statements 
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commonly available to Microsoft® Visual Basic® for Applications environment. Thus, if a population of 

solutions already exists and is stored to “population.dat” file, a coded flag statement “popFlag = 1” is 

valid and suggests that the algorithm is to be seeded with the last best population, otherwise, the 

initialization process is normally executed with the random number generator to produce a new 

population (flag statement “popFlag = 0”).      

 

4.3.2.2 Evolution 
 

The main function for the optimisation process execution (evolution) is depicted in Figure 4.10.  

START

Define MOVEGA parameters

Initialize run or retrieve last best population

For G=1 to Gmax (number of generations)

Run objective function

Next G

Print new population and its 

associated phenotype

Population.dat

Phenotype.dat

RESET

Genetic operators

Viral operators

Run ranking function

Run fitness function

Run selection function

Run crossover function

Run mutation function

Apply viral infection

 

Figure 4.10: Workflow of MOVEGA’s evolution process.  
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The first step in the process is to determine meaningful values for the algorithm-specific parameters, 

i.e., number of generations, number of individuals in a population, number of viruses in a virus 

population, etc. In each generation the following functions are subsequently executed: 

• Objective function computation 

• Ranking function 

• Fitness function computation 

• Selection function 

• Crossover function 

• Mutation function 

• Viral infection function 

 

Once the aforementioned function embedded to the main function (evolution) have been executed 

the results concerning the candidates solutions of the final population in terms of chromosomes and 

corresponding phenotypes are stored to “population.dat” and “phenotype.dat” files whilst the values 

for the three optimisation criteria and the values for the 3D Pareto optimisation criterion are stored 

to “3D-Pareto_values.dat” file. The values for tool path parameters accompanying the results of “3D-

Pareto_values.dat” are also stored to “variablelog.dat” file. The stopping criterion for the MOVEGA is 

the maximum number of preset generations.       

 

4.3.2.3 Objective function computation 
 

Objective function computation is performed by implementing the integrated programming 

application presented in section 4.3.1. By taking into account that the entire integrated programming 

application returns four values, three for the optimisation criteria and one for the Pareto-optimal 

expression it is suggested that it constitutes the objective function. Thus, the integrated programming 

application developed in Dassault Systèmes CATIA® V5 R18 open API architecture, executes an 

evaluation process per candidate solution (tool path chromosome) which examines. The expression 

for the Pareto-optimal non-dominated set of solutions has already been given in Chapter 3 (Equation 

3.16) and is noted again for easy reference (Equation 4.9).        

( ) ( ) ( )
2 2 2

POOF h stdev stdevh CL = + + + +        Eq. 4.9 
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4.3.2.4 Ranking 
 

The resulting values of objective function computation are transferred to ranking function to 

prioritize them regarding their objective scores. Ranking is performed in ascending order regarding 

the optimisation criteria values since all three criteria are to be minimized. The workflow of ranking 

function for objective values is illustrated in Figure 4.11.       

START

For i = 1 to number of individuals

Prioritize values in ascending order with 

regard to Pareto criterion 

Next i

END

ObjectiveValues.dat

RankedObjValues.dat

 

Figure 4.11: Workflow of ranking function.  

 

4.3.2.5 Fitness function computation 
 

The workflow of fitness function computation is depicted in Figure 4.12.   
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START

For i = 1 to number of individuals

Compute the fitness function value (FFi)

Next i

END

Import ascending ranked Pareto criteria values

Descending order sorting of fitness function values

RankedObjValues.dat

FitnessScores.dat
 

Figure 4.12: Workflow of fitness function.  

 

According to the hierarchy performed by ranking function, fitness evaluation is conducted for each 

individual in MOVEGA’s generated population of candidate solutions. Elite individuals in the 

population are considered those with the lowest values in the ranking function’s hierarchy (ascending 

ranking). Fitness function has been determined to transform ranked objective values so that elite 

individuals will come up with a significantly higher fitness scores. The function computes the sum of 

ranking values for the entire population whilst the fitness score iFF for each individual i  is 

computed according to Equation 4.10. 

exp( 2 )
ii RF iFF S RF=  −                   Eq. 4.10 

where: 

iRFS : The sum of ranked values for the entire population, 

iRF : The ranked value of each individual i  

An exponential mathematical expression has been adopted to make profound differences in the 

values obtained by the ranking function by magnifying their result and ultimately favor best solutions. 

It should be noted that differences in terms of ranked values for objectives are very small, usually 
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they are noticeable after the second decimal. The individuals are finally stored along with their 

corresponding fitness scores to a dedicated file (“fitnessScores.dat”) and they are prioritized in 

descending order.     

4.3.2.6 Selection 
 

The workflow of selection function is shown in Figure 4.13. With reference to the fitness scores 

provided by fitness function, selection function is executed next to select individuals for reproduction 

based on their fitness scores. Stochastic sampling with partial replacement (SSPR) has been 

implemented as the main mechanism for selecting individuals (see section 4.2.3).  The function 

imports the fitness scores corresponding to individuals and then computes the fitness cumulative 

sum for the entire population Fitsum . Based on this result the selection range is created with lower 

bound equal to zero and upper bound equal to Fitsum , hence, [0, Fitsum ]. Individuals are then 

subsequently located according to their fitness score, i.e. [0,Fit1}, {Fit1,Fit2} ,….,{FitN-1, Fitsum ] 

whilst a random generator is applied to provide values within this range. Random generator creates 

as many random values as the individuals to be selected for crossover. Random values will belong to 

one of the above sub-ranges that represent the individuals to be selected. With reference to fitness 

scores elite individuals are particularly favored so that elitist behaviour is maintained during the 

optimisation process of MOVEGA.  
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START

Compute cumulative fitness sum (FitSum)

Position individuals in the field [0, FitSum] with regard to their fitness values

Define the number of selected individuals

For j = 1 to number of selected individuals

Create a random number in the field [0, FitSum]

Select the j individual whose field lies the random number

Reduce the field of selected individual j accordingly and 

readjust the individual positions in the field [0, FitSum] 

Next j

Store selected individuals along with their indices

END

FitnessScores.dat

Selected.dat
 

Figure 4.13: Workflow of selection function.  

 

Once an individual has been selected, both the selection range [0, Fitsum ] and the individual’s sub-

range are restructured using the expression given in Equation 4.11 so as to prevent the repetitive 

selection of this particular outstanding individual.  

N

Fitsum
FitFit ii

2
−=                    Eq. 4.11 

 

In Eq. 4.11 iFit is the fitness function score of thi  individual, N is the population’s size (total number 

of individuals in a population) and Fitsum is the cumulative sum of the entire population. Selected 

individuals are stored to “Selected.dat” file to be further handled by crossover function.  
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4.3.2.7 Crossover (mating) 
 

The method adopted to develop the function for crossover is one-point crossover owing to the 

advantages mentioned in section 4.2.3. The workflow of crossover function is shown in Figure 4.14.    

The pairs of individuals are randomly selected to produce offspring.  

 

START

Input selected individuals (parents)

From the selected parents, randomly select pairs to mate

For k = 1 to number of pairs of individuals

Mate the pairs with regard to crossover positions to create 

potential offspring

Next k

Insert parents and offspring into new population with twice 

the original size

Define crossover positions

Call objective function to evaluate the new population

Call ranking function to prioritize the new population

Select the elite individuals to include in the new 

population

END

Selected.dat

Population.dat
 

Figure 4.14: Workflow of crossover function.  
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After the execution of crossover function all individuals – parents and offspring – are imported to a 

new candidate population (individual pool) whose size is twice the original population’s size. For the 

new population size, the objective function is computed and individuals are ranked accordingly by 

implementing ranking function. With reference to their hierarchy, N best individuals are 

deterministically selected where N the original number of individuals initially created to constitute 

the first population. Finally, these individuals are mutated to formulate the new population of 

candidate solutions (tool path chromosomes).    

4.3.2.8 Mutation 
 

Mutation operator involves the determination of the number of individuals to be mutated ( )NIM , 

the number of genes (variables) on which mutation is to be applied ( )NGM as well as mutation rate

MutRate . However, an outstanding individual being found in the population should be preserved and 

remained unchanged in order to avoid the loss of elite inheritance. The mutation operator imports 

the population of candidate solutions as a result of crossover and randomly selects offspring for 

mutation. For the selected offspring, pointers are assigned indicating the locations in their 

chromosomes for which the bits are to be switched from “0” to “1” and vice versa. Mutation rate

MutRatestarts with a relatively high value to maintain diversity for exploration whilst it gradually 

reduces using a linear expression based on the preset initial value for MutRateand the number of 

generations, to prevent the algorithm from the scattered random search (section 4.2.4). An adaptive 

mutation scheme is thus implemented (Thierens 2002). The relation adopted to set and gradually 

reduce mutation rate MutRatewith regard to the number of generations G  is given in Equation 

4.12, where 0MutRate is the mutation rate for the individuals of the 1st generation and MutRate the 

gradually reduced mutation rate for later generations. The operator scans the selected chromosome’s 

bits and mutates every bit with mutation probability mP equal to 0.5%.     

0 0.005MutRate MutRate G= −                  Eq. 4.12 

The functions used for computing the number of individuals to be mutated (NIM) and the number 

of genes (variables) (NGM) on which mutation is applied are given in Equations 4.13 and 4.14 

respectively.  

max

0.005

100

Mutind G
NIM Round i

−  
=  

 
                            Eq. 4.13 
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max
max

0.05

100

G
Mutgen

j
NGM Round j

 
−  

 = 
 
 
 

              Eq. 4.14 

where, 
maxi ,

maxj are the numbers of individuals and genes (variables) respectively, Mutind is the 

initial percentage (%) of selected individuals in the population for which mutation is to be applied,

Mutgen is the initial percentage (%) of selected genes of individuals in the population for which 

mutation is to be applied, Round is a mathematical operator to round decimals to the closest integer 

and finally G is the number of generation in the algorithm. If the number of individuals ( )NIM and 

the number of genes (variables) ( )NGM to be mutated occur less than 1, they intentionally set equal 

to 1 to ensure that at least one individual and one of its bits will be mutated. Thereby the resulting 

population will be the next generation’s first population to be evolved via crossover, mutation, viral 

infection and so on. The workflow of mutation function is shown in Figure 4.15.        
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START

Import current population

Define the number of individuals for mutation

(the number reduces as MOVEGA’s generations increase)

Define the number of variables to be mutated

(the number reduces as MOVEGA’s generations increase)

For i = 1 to number of individuals to be mutated

For j = 1 to number of variables to be mutated

Mutate variable as a percentage of 

the original value

Next j

Next i

Store the new population 

END

Population.dat

Population.dat
 

Figure 4.15: Workflow of mutation function.  

 

4.3.2.9 Viral infection 
 

Initial virus individuals are created as a fraction of the main population’s magnitude after evaluating 

the fitness of all individuals existing to the main population. Then the MOVEGA performs both 

targeted as well as random selection of individuals to infect. The former selection is decided upon the 

elite of few outstanding individuals whereas the latter is normally decided upon the rest of the 

individuals through a probability, to sustain an unbiased selection procedure. Successfully infected 

individuals are appeared as offspring whilst should their fitness has been improved, they occupy the 

position of their ancestors, hence, replacing them. As a consequence, these individuals are to survive 
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in the next generation. The initial population of tool path “chromosomes”,
init

PopC is randomly 

generated and then transduction operation is applied to both fitted and randomly selected 

individuals to create the population of viruses 
init

PopV . The viruses are stored in binary representation to 

a related archive (“virus_population.dat”).  A virus created by transducing from the thi chromosome 

of the thj population is denoted as i jVrs . Substrings being cut represent viruses' chromosomes whose 

length is denoted as iVrsLgth . Locus 1i =  is the starting point from which iVrsLgth length will be 

determined and Locus maxi  is the ending point. These two loci are randomly determined and are 

constrained to the original host’s chromosome length iLgth . The chromosome length ( iLgth ) of 

individuals in the main population is constant, whereas the length of virus individuals ( iVrsLgth ) 

extends as the evolution process continues ( )g maxi strlengthVrsL th V= . The index of the population 

where selected individuals have been attacked for infection is given in the archive 

“infected_host_population.dat” whilst “virus_phenotype.dat” archive includes the phenotypes of the 

individuals as candidates for being attacked to be infected. Finally, the objective values for viruses are 

printed to “virusobjvalues.dat” archive. 

 

Transduction and reverse transcription are the main procedures of viral infection. As it has been 

mentioned, transduction operation is applied to individuals to create the population of viruses. 

Viruses ijVrs attack to infect individuals, using reverse transcription for overwriting their own 

substrings to a randomly selected segment of individuals’ jIdv strings. The indices of both i jVrs and 

jIdv are declared in advance in order to perform the subsequent replacement of selected binary 

digits according to the predetermined references. Transduction and reverse transcription operators 

are depicted in Figures 4.16 and 4.17 respectively. Figure 4.18 depicts an infected individual. 
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Figure 4.16: Transduction operation for the creation on a virus individual.  

 

Figure 4.17: Reverse transcription operation for infecting an individual with a virus.  

 

 

Figure 4.18: Infected individual after the reverse transcription operation performed by the virus.  

 

Assessment of virus individuals is performed using their fitness scores denoted as ,i jFitVrs reflecting 

their infection strength. This fitness is computed after the successful infection of jIdv by i jVrs as 

Equation 4.15 indicates:    

   

,i j j jFitVrs FitInfIdv FitIdv= −                 Eq. 4.15 
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The value obtained by Equation 4.15 is the difference between the two fitness values of individual

jIdv  before and after its infection by i jVrs . Given that i jVrs might infect more than a single individual 

(let S  be the set of infected individuals) then ,i jFitVrs reveals the improvement of fitness values of 

all infected individuals and is as Equation 4.16 determines: 

 

,i i j

j S

FitVrs FitVrs


=                   Eq. 4.16 

 

A virus ijVrs has a maximum viral infection rate inf maxRateV for controlling the number of viral 

infections satisfying the condition inf1 max 10RateV  . As a result the number of reverse 

transcriptions a single virus is to perform depends on its viral infection rate. However the maximum 

viral infection rate inf maxRateV is related also to its fitness value ,i jFitVrs  under the notion that the 

higher the fitness ,i jFitVrs the higher the inf maxRateV . Equation 4.17 gives the relation employed to 

the algorithm so as to correlate the aforementioned viral infection parameters and control 

inf maxRateV with regard to the virus fitness ,i jFitVrs . In Equation 4.17, ( 0)a  is a constant 

coefficient for improving or degrading inf maxRateV parameter with regard to either the positive or the 

negative results for the fitness of a virus ijVrs .      

 

inf ,

inf , 1

inf ,

(1 ) max 0
max ,

(1 ) max 0

Rate i G i

Rate i G

Rate i G i

a V FitVrs
V

a V FitVrs
+

+   
=  

−   
             Eq. 4.17 

 

Every virus ijVrs is accompanied also to its corresponding life force indicating its contribution through 

successful infections to the main population. The life force of a virus ijVrs is presented as 

,i GVrsLiforce where i is the index of the virus ijVrs and G the current generation. ,i GVrsLiforce is 

also dependent from the fitness of a virus ijVrs and is compared to the one obtained by the virus

i jVrs in a previous generation. If its value is negative, then a new transduction operation is applied by 

the virus i jVrs to change its scheme by randomly selecting an individual. Otherwise i jVrs cuts a 

partially new substring form one of the successfully infected individuals for its own benefit from the 
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evolutionary viewpoint. The magnitude of ,i GVrsLiforce parameter is computed in each generation 

with regard to an important indicator which is the virus life reduction rate liferate V satisfying

0.001 1.0liferate V    . Hence, maximum viral infection rate inf maxRateV and virus life reduction 

rate liferate V are related through the relation presented in Equation 4.18.  

, 1 ,i G life i G iVrsLiforce rate V VrsLiforce FitVrs+ =   +               Eq. 4.18 

 

The parameters, inf maxRateV  and ,i GVrsLiforce  are initialized in MOVEGA as 

inf inf ,0max maxRate init Rate iV V= , ,0 0iVrsLiforce = . The operation of partial transduction in the case 

where , 0i GVrsLiforce  is depicted in Figure 4.19 with reference to transduction and reverse 

transcription operations depicted in Figure 4.16 and 4.17 above.  

 

 

Figure 4.19: Partial transduction operation for changing the virus scheme.  

 

With reference to the results obtained by conducting several algorithmic experiments and research 

work on the application of the MOVEGA to the generalized sculptured surface CNC machining 

problem for optimizing it, its overall contribution and as well as the features giving the added value to 

the problem’s solutions, have been recognized and are summarized as follows: 

• Co-evolution among candidate solutions (main individuals) and viruses (“partial” information 

carriers) enables MOVEGA to efficiently question new solutions owing to horizontal 

propagation which is beneficial for local information handling and vertical inheritance. As a 

result, global search is facilitated with the aid of local data as well. 
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• Information exchange for guiding the search is facilitated through the deployment of viral 

“agents” as local information carriers whilst their algorithm-specific parameters allows for the 

self-adaptive change of searching ratio, switching from local to global search and vice versa 

regarding the current status of evolution progress. 

• Viral operators prevent the search from being locally trapped since they rapidly propagate 

schemata and maintain high genetic diversity in the population of candidate solutions.   

Figure 4.20 depicts the workflow of viral infection in the MOVEGA and Figure 4.21 depicts the overall 

workflow of the methodology proposed for optimizing the generalized sculptured surface CNC 

machining problem.    
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Figure 4.20: Workflow of viral infection after the evaluation of main population’s individuals.  
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Figure 4.21: Overall workflow of the proposed methodology for optimizing the generalized sculptured surface CNC 
machining problem.  
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The overall performance of stochastic algorithms is heavily dependent on the proper selection of 

algorithm-specific parameters. To make the MOVEGA to reach its full potentials a thorough study in 

terms of its functional behaviour, efficiency of attaining optimal solutions and repeatability of 

accurate results needs to be conducted to further investigate the capabilities of adjusting optimal 

settings for its algorithm-specific parameters. The next chapter presents such a study having the aims 

and the objectives mentioned above, with the proposed algorithm to handle a generalized sculptured 

surface CNC machining optimisation problem with reference to a benchmark sculptured part and a 

systematic approach for designing machining simulation experiments.    
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Chapter 5 

Algorithm-specific parameters identification 

for multi-objective virus-evolutionary GA  

 

5.1  Introduction 
 

Major scope of this chapter is to examine the efficiency of the multi-objective virus-evolutionary 

genetic algorithm (MOVEGA) on solving the sculptured surface machining problem as well as to 

identify the most beneficial (if not the optimal) settings related to its algorithm-specific parameters 

presented in Chapter 4. Towards achieving this goal, a response surface experimental design was 

established to systematically determine a series of sculptured surface machining experiments applied 

on a benchmark surface and to obtain results for examining performance attributes such as 

convergence speed, coverage (distribution) of non-dominated solutions in Pareto fronts and quality 

of optimal solutions. Response surface methodology (RSM) has been selected to design machining 

experiments to estimate interactions among quadratic and high-order effects, to estimate the 

curvature and overall shape of the response surface under investigation. The major objective 

formulating the response surface is the multi-objective criterion as it has been presented so far, 

expressing the machining error, the machining error uniformity and the number of tool path points. 

In order to generate meaningful results for investigation towards the goal of optimally adjusting 

MOVEGA’s settings, tool path parameters were determined such that profound differences among 

performance attributes would occur. The experimental methodology involves: 

• the experimental setup,  

• the conduction of machining simulation experiments with different algorithm-specific 

parameters, 

• the experimental results interpretation, and 

• the final decision making as regards the algorithm’s parameter settings and the conduction of 

confirmation experiments.      
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5.2  Design of response surface methodology experiments for 

algorithm-specific parameter tuning 
        

Response surface methodology (RSM) was first introduced by Myers 1971 and it has been employed 

to study and optimise the process parameters for numerous engineering problems ever since. RSM is 

a multivariate experimental design methodology that involves fundamental mathematical and 

statistical approaches for determining empirical models to characterise a problem’s navigation 

domain and further optimise its corresponding process parameters with regard to either a single or 

multiple responses. Such empirical models correlate the independent variables which are the process 

parameters to the response. To generate a reliable empirical model to study a problem at hand, a set 

of experiments were conducted so as to collect their corresponding outputs and evaluate them 

properly to fit the model in relation to experimental outputs. In RSM two experimental design 

approaches are the most often-used, “Box-Behnken” and “central composite design-CCD” (Box and 

Hunter 1957). Box-Behnken approach offers the advantage of establishing experiments with a 

reduced number of runs when it comes to three factors (independent variables), however, in the case 

of four or more factors the number of experiments required for fitting a model increases dramatically 

compared to that of CCD approach. A significant advantage of CCD against Box-Behnken approach is 

that CCD augments an embedded factorial design which is very important for examining the main 

effects as well, along with interactions.  

In a typical CCD the number of experiments required involve the standard 2k factorial runs having 

their origin at the center, 2k axial (or star) points in a distance a  from the center so as to create the 

quadratic terms and n points as replicates at the center for estimating the experimental error, where 

k is the number of parameters. Axial points are selected such that they ensure rotatability, that is, the 

empirical model’s variance in terms of its prediction is constant at all points equidistant from the 

design’s center (Box and Hunter 1957). Moreover axial points provide screening analysis and 

readability to check the variance of the empirical model and is fixed at all points equidistant from the 

design center (Behera et al. 2018) The total number of experiments required for the CCD with 2k 

factorial points, 2k axial points and n points-replicates is thus determined by Equation 5.1. 

2 2k

CCDN k n= +  +                     Eq. 5.1 

Distance a  is ( )
0.25

2ka = .  
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The results obtained by the CCD experiments are further processed using statistical analysis and 

response surface regression in order to generate the empirical model for correlating independent 

parameters to responses by fitting them using a 2nd order polynomial relation presented in Equation 

5.2.       

2

0

1 1 1 1

k k k k

i i ii ii ij i j

i i i i j

Y x x x x   
= = =  =

= + + +                    Eq. 5.2 

where Y represents the responses, k is the overall number of independent variables, 0 is a constant 

term and i, ii, ij accompanying  are the coefficients for linear, quadratic and interaction terms 

respectively. Finally, ,i jx x represent the coded levels for the independent parameters.  

The MOVEGA was implemented to optimise the 5-axis surface machining tool path for a benchmark 

sculptured surface other than those already presented in the thesis. Major objectives of the 

application of MOVEGA to this benchmark sculptured surface were:  

• To examine its operational behaviour under different settings in terms of its algorithm-

specific parameters,   

• To determine the effect of MOVEGA’s algorithm-specific parameters and to identify to what 

degree they influence its stochastic evaluation performance, 

• To find the optimal or at least a semi-optimal set of parameter values for tuning MOVEGA 

and study its enhanced performance regarding the set of non-dominated solutions.    

The benchmark sculptured surface was a bi-cubic Bezier surface determined by a 4x4 array of control 

points (Choi and Banerjee 2007). In order to establish a meaningful problem domain, the range of 

values for 5-axis tool path parameters were examined in advance through preliminary experiments so 

that results would yield profound differences and variation to further investigate the effect of 

MOVEGA’s algorithm-specific parameters. For all parameters the number of accuracy digits to 

formulate the tool path chromosomes for algorithmic evaluations was fixed to 20. Table 5.1 

summarizes the 5-axis tool path parameters and their range of values whereas Figure 5.1 illustrates 

the benchmark part and the tool path applied.   

Table 5.1: 5-axis tool path parameter values corresponding to Bi-cubic Bezier benchmark surface for algorithmic evaluations. 

Bi-cubic Bezier  
surface 

Levels Tool  Step over (%D) Lead angle (deg) Tilt angle (deg) MaxDstep (mm) 

Low D16-Rc0 30 10 0 2 

High D16-Rc4 45 20 5 8 
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 Figure 5.1: Experimental Bi-cubic Bezier benchmark sculptured part and 5-axis machining tool path.  

 

The response surface experiment established had 31 runs according to the relation given in Eq. 5.1, 

consisting of 16 factorial points, 8 star points and 7 replicates to estimate the experimental error. 

Hence, the MOVEGA handled the sculptured surface machining optimisation problem for the 

aforementioned benchmark surface with different algorithm-specific parameter settings as per the 31 

runs in the CCD design. The algorithm-specific parameters of MOVEGA are the virus population size

popV , the maximum length of a virus chromosome maxstrlengthV , the virus life reduction rate 

liferate V and maximum infection rate inf maxRateV as presented in Chapter 4. To facilitate curvature 

examination in the experimental outputs concerning the MOVEGA performance and its parameter 

effects the parameters were assumed to be continuous.  

To study the overall performance of MOVEGA in solving the sculptured surface machining 

optimisation problem and examine the effect of algorithm-specific parameters (viral operators) a set 

of indices was investigated, diversity, spacing (coverage), convergence speed, as well as best values of 

non-dominated solutions. Diversity exhibits the amount of success in terms of the adaptation of 

populations (candidate solutions) to changing environments whilst a high value for diversity is 

generally preferable. Spacing or coverage indicates the spread distribution within non-dominated 

solutions existing in a Pareto-front. Convergence speed shows the accuracy of obtained solutions and 

is represented through the objective function’s results in relation to the number of function 

evaluations. During the objective function’s evaluations, a characteristic convergence curve (slope) is 
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formulated indicating the speed of an algorithm’s clustering towards the optimal result ending up 

with an asymptotic straight line parallel to the function’s evaluations showing the end of the search. 

The narrower the convergence slope occurs, the higher the convergence speed is. Best and worst 

values of non-dominated solutions depend of the optimisation problem’s nature (maximization or 

minimization) whereas the average of all non-dominated solutions should be close to the optimal 

result (either minimum or maximum) to indicate the low variance among the set of solutions 

regarding the optimal one. The number of non-dominated solutions in the related repository 

(archive) provides also an important performance index. In general, a wide range of solutions is 

preferred to facilitate final decision making. Table 5.2 summarizes the factors of the CCD response 

surface experiment established along with their upper and lower levels of parameter values and 

Figure 5.2 illustrates this design for k = 4 factors.    

Table 5.2: Experimental algorithm-specific parameters and corresponding levels for the RSM-CCD design of experiments. 

Levels 
popV  maxstrlengthV  

liferate V  inf maxRateV  

Low 2 (1/5 
popC ) 10 0.001 1 (10%) 

High 10 (=
popC ) 40 1.000 10 (100%) 

 

 

Figure 5.2: Graphical illustration of the CCD response surface design.  
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5.3  Results and analysis 
 

The 31 experiments were randomly conducted using the intelligent tool path optimisation 

environment presented in the thesis. In all experiments the MOVEGA evaluated the problem via the 

automation function presented in Chapter 4, section 4.3.1, with constant parameters such as the 

number of generations, number of candidates in a population, single-point crossover scheme and 

single-point mutation scheme. Thus, the number of generations was set equal to 5 and the number of 

candidates in a population equal to 10. Table 5.3 summarizes the results from the RSM-CCD 

experiment with regard to the 3D Pareto criterion (minimal) along with the normalized individual 

criteria,  machining error ( 1C ), machining error distribution ( 2C ) and number of cutting points ( 3C ).  

Table 5.3: Experimental results of the RSM-CCD design of experiments referring to individual criteria and 3D Pareto criterion. 

a/a 
Algorithm-specific parameter levels     

popV  maxstrlengthV  
liferate V  inf maxRateV  Pareto3D 

1C  2C  3C  

Factorial points 

1 2 10 -0.001 1.0 0.301983 0.048 0.201 0.220 
2 10 10 -0.001 1.0 0.291034 0.029 0.087 0.276 
3 2 40 -0.001 1.0 0.297922 0.047 0.114 0.271 
4 10 40 -0.001 1.0 0.300670 0.024 0.114 0.277 
5 2 10 -1.000 1.0 0.286510 0.040 0.182 0.217 
6 10 10 -1.000 1.0 0.304125 0.023 0.116 0.280 
7 2 40 -1.000 1.0 0.307945 0.084 0.183 0.233 
8 10 40 -1.000 1.0 0.297509 0.024 0.144 0.259 
9 2 10 -0.001 10 0.307419 0.058 0.189 0.235 
10 10 10 -0.001 10 0.280594 0.020 0.174 0.219 
11 2 40 -0.001 10 0.294101 0.045 0.114 0.267 
12 10 40 -0.001 10 0.251180 0.017 0.120 0.220 
13 2 10 -1.000 10 0.309630 0.055 0.127 0.277 
14 10 10 -1.000 10 0.267812 0.048 0.150 0.216 
15 2 40 -1.000 10 0.308370 0.048 0.126 0.277 
16 10 40 -1.000 10 0.273437 0.042 0.149 0.225 

Axial points 

17 5.6 25 -0.500 5.5 0.297933 0.035 0.104 0.277 
18 6.4 25 -0.500 5.5 0.294029 0.025 0.190 0.223 
19 6 23.5 -0.500 5.5 0.305419 0.032 0.115 0.281 
20 6 26.5 -0.500 5.5 0.296163 0.030 0.100 0.277 
21 6 25 -0.450 5.5 0.304467 0.025 0.207 0.221 
22 6 25 -0.550 5.5 0.263750 0.033 0.146 0.217 
23 6 25 -0.500 5.05 0.272615 0.034 0.157 0.220 
24 6 25 -0.500 5.95 0.260985 0.035 0.137 0.219 

Center points 

25 6 25 -0.500 5.5 0.296652 0.032 0.101 0.277 
26 6 25 -0.500 5.5 0.290789 0.035 0.182 0.224 
27 6 25 -0.500 5.5 0.284134 0.040 0.175 0.220 
28 6 25 -0.500 5.5 0.282278 0.030 0.176 0.218 
29 6 25 -0.500 5.5 0.295910 0.042 0.113 0.270 
30 6 25 -0.500 5.5 0.294771 0.043 0.088 0.278 
31 6 25 -0.500 5.5 0.294648 0.034 0.192 0.221 
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5.3.1 Main experimental observations  
 

According to Table 5.3 the lowest (best scores) values for 3D Pareto criterion are achieved by 

determining a relatively large number of viruses, i.e., approximately half of the number of individuals 

of the main population or equal to the number of main population’s individuals. Experimental runs 

12, 24 and 22 indicate 3D Pareto values equal to 0.251180, 0.260985 and 0.263750 respectively. For 

these results the number of viruses are 10, 6 and 6 respectively whilst the rest of parameters,

maxstrlengthV , liferate V and inf maxRateV seem to balance accordingly with reference to the number 

of viruses. It is observed that for a large number of viruses i.e. 10 the increased length in their 

chromosome strings favors the result. The same also goes for the infection rate in the case of a large 

number of viruses in the virus population. As it is evident by these results, life reduction rate of 

viruses liferate V doesn’t need to be rapidly reduced for prompting the algorithm to proceed on new 

transductions towards finding new efficient schemes since many viruses already contain an adequate 

amount of genetic information for improving candidate solutions. The results reported in 

experimental runs 22 and 24 which are results from axial points, indicate that it is possible to obtain 

good outputs with fewer viruses (i.e. 
popV = 6) provided that the rest of parameters are adjusted 

accordingly. The maximum length of viral chromosome strings maxstrlengthV is the ¼ (25 bits) to the 

overall main population’s chromosome length which is 100 bits. A reduced number of virus 

individuals, seems to point out the necessity of performing new transductions through the virus life 

reduction rate liferate V which is equal to -0.5 and -0.55 for these two axial point experimental runs. 

The maximum infection rate inf maxRateV in the case of fewer viruses is reduced from 10 (100%) to 5.5 

or 5.95->6.0 (55% or 60%) to achieve minimised objective values. Thus, it can be advocated that 

“infectivity” is, in a way, dependant to the number of viruses (
popV ).  

As regards the individual criteria, machining error ( 1C ), machining error distribution ( 2C ) and 

number of cutting points ( 3C ) it is observed that their magnitudes span normalized ranges from 

0.020 to 0.084, 0.087 to 0.207 and 0.216 to 0.281 respectively. From the combinations of results for 

the three criteria it is clear that a trade-off exists among machining error, its uniformity and number 

of cutting points. The lowest (best) value for 1C is observed in experimental run 10 (factorial run) 

suggesting the maximum number of viruses, minimum number of chromosome string length, 

minimum virus life reduction rate and maximum viral infection rate. On the contrary the maximum 
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(worst) value for 1C is observed in experimental run 7 (factorial run) suggesting the lowest number of 

viruses, maximum number of chromosome string length, maximum virus life reduction rate and 

minimum viral infection rate. The lowest (best) value for 2C is observed in experimental run 2 

(factorial run) suggesting the maximum number of viruses, maximum number of chromosome string 

length, minimum virus life reduction rate and minimum viral infection rate. On the contrary the 

maximum (worst) value for 2C is observed in experimental run 21 (axial point run) determining 6 

viruses, 25 bits for the maximum number of chromosome string length, -0.45->-0.4 (40%) maximum 

virus life reduction rate and 5.5 (55%) viral infection rate. However the same set of algorithm-specific 

parameters with different virus life reduction rate (i.e. from -0.45 to -0.55) are capable of improving 

the 3D Pareto result where 1C = 0.033, 2C = 0.146 and 3C = 0.217. The lowest (best) value for 3C is 

observed in experimental run 14 (factorial run) suggesting the maximum number of viruses, minimum 

number of chromosome string length, maximum virus life reduction rate and maximum viral infection 

rate. On the contrary the maximum (worst) value for 3C is observed in experimental run 19 (axial 

point run) determining 6 viruses, 23.5->24 bits for the maximum number of chromosome string 

length, -0.5 (50%) maximum virus life reduction rate and 5.5 (55%) viral infection rate. Further 

investigation on the effects of algorithm-specific parameters has been experimentally identified with 

the aid of convergence diagrams by considering the number of function evaluations. The latter is 

determined using the relations given in Equations 5.3 and 5.4. Eq. 5.3 determines the number of 

function evaluations ( fncEvals ) with regard to the number of individuals in the main population (

popC ), the number of viruses (
popV ) and the number of generations ( G ) whereas Eq. 5.4 determines 

the number of function evaluations ( fncEvals ) by considering only the number of individuals in the 

main population (
popC ) and the number of generations ( G ). 

( ) ( )2 2pop pop popfncEvals C C V G G = +  +   
                  Eq. 5.3 

( )2pop popfncEvals C C G= +                     Eq. 5.4 

It is evident that the MOVEGA requires theoretically 3 times the computational cost when compared 

to the same algorithm without deploying the viral operators, yet, this magnitude is deemed of minor 

importance since the function checks for individuals identical to those previously evaluated and 

whose objective function result has been already printed in the variablelog.dat file. Moreover, new 

technologies referring to hardware and computer systems allow for a significant reduction of the 

required computational cost.     
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With reference to the results obtained for different numbers of function evaluations (Eq. 5.3) the 

MOVEGA’s performance in terms of the convergence speed and optimal result was examined. By 

considering the population of viruses as a fraction of the main population’s size which is 10 

individuals, convergence curve was investigated referring to its slope and number of function 

evaluation where the optimal point was reached. To exhibit fast convergence, the slope should be the 

narrowest possible with its corresponding asymptotic straight line to indicate an early convergence to 

the lowest point. Figure 5.3 depicts the convergence results for 2 viruses as a fraction of the main 

population size (
popV =2 =

1

5
popC ) and 2 viruses suggest 250 function evaluations according to Eq. 5.3. 

 

Figure 5.3: Convergence results for factorial runs (2 viruses-250 function evaluations).  

 

By looking at the eight factorial experimental runs with 
popV =2, (Table 5.3) it can be seen that the 

algorithm’s performance in terms of the convergence slope improves when determining maxstrlengthV

=10, liferate V = -1.0 (virus life reduction rate) and inf maxRateV =10 (100% viral infection rate). On 

the other hand, fast convergence to lowest point does not necessarily mean that the latter is 

guaranteed. This result is given by the 13th experimental run (7th result in the corresponding diagram). 

For this result the final point is equal to 0.309630 reached in the 168th function evaluation. The best 

score (0.286510) is noticed in the 5th experimental run, 226th function evaluation (3rd result in the 

corresponding diagram) where maxstrlengthV =10, liferate V = -1.0 and inf maxRateV =1.0 (10% viral 

infection rate) are determined. For this set of 250 function evaluations (
popV =2) the earliest 
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convergence (155th evaluation) has been given by the 7th experimental run (4th result in the 

corresponding diagram) with a final point equal to 0.307945. This result determines maxstrlengthV =40, 

liferate V = -1.0 and inf maxRateV =1.0 (10% viral infection rate). The results suggest that fast 

convergence in terms of both narrow slope and fewer function evaluations may be achieved yet, a 

trade-off between convergence speed and best score seems to exist. By considering the latter index 

as the “accuracy” the results so far agree with the literature regarding the fact that speed and 

accuracy in algorithmic experiments are contradictory attributes (Mirjalili et al. 2017).  

Figure 5.4 depicts the convergence results for 10 viruses as an equal magnitude of the main 

population size (
popV =10 =

popC ) and 10 viruses suggest 650 function evaluations according to Eq. 

5.3.               

 

Figure 5.4: Convergence results for factorial runs (10 viruses-650 function evaluations).  

 

By looking at the rest eight factorial experimental runs with 
popV =10, (Table 5.3) it can be observed 

that the algorithm’s performance in terms of the convergence slope improves when determining

maxstrlengthV =40, liferate V = -1.0 and inf maxRateV =10 (100% viral infection rate). At an early stage 

the previous assumption that the final result is favored by determining an increased length (i.e. 40 

bits) for the viral chromosome string in the case of 
popV =10 is proved to be valid. At the same time 

the higher level of viral chromosome string length ( maxstrlengthV ) parameter seems to facilitate both 

the narrow slope needed for fast convergence (16th experimental run - 8th result in the corresponding 
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diagram) and fast convergence speed. For this result the output is equal to 0.273437 obtained in 

256th function evaluation. However the lowest point which is equal to 0.251180 is obtained for

maxstrlengthV =40, liferate V = -0.001 and inf maxRateV =10 (100% viral infection rate) and obtained in 

584th function evaluation (12th experimental result - 6th result in the corresponding diagram). The 

results in this case clearly indicate the trade-off between speed and accuracy to virus life reduction 

rate parameter. liferate V = -0.001 facilitates best score whilst inf maxRateV = -1.0 which controls the 

number or viral infections, facilitates speed (slope and fast convergence) as opposed to the case of 

popV =2. A common characteristic for 
popV = 2 and 

popV =10 is that in both cases acceptable solutions 

may be attained in later function evaluations indicating the avoidance of local stagnation,  despite the 

lower convergence speed.  

The two cases examined so far (
popV = 2 and 

popV =10) conclude the investigation of factorial points in 

the RSM-CCD design generally suggesting that when it comes to the employment of only few viruses 

i.e. 
popV = 2, local search is not facilitated and the problem’s solution is mainly based on global search 

through the performance of conventional operators (crossover and mutation). Thus, a significant 

number of transductions to create new viruses is normally required ( liferate V = -1.0) in order to 

update the scheme and have the chance to escape from local trapping. In the case of only a few 

viruses, a significant magnitude of viral infections are needed to increase schemata and maintain the 

diversity in the population and “infectivity” should be high for these viruses ( inf maxRateV =10, 100% 

viral infection rate). On the contrary a lot of viruses, i.e.
popV = 10, immediately propagate efficient 

schemes supporting local search and avoiding local trapping, whilst fewer transductions are needed 

to update the scheme ( liferate V = -0.001).  

Figures 5.5, 5.6, 5.7 and 5.8 illustrate the convergence results of MOVEGA for the parameter settings 

suggested by the axial points of the RSM-CCD experimental design. These results allow for the effect 

investigation in the form of a parametric study since the investigation can be conducted by examining 

the effect of variation of a single parameter on the result at a time while maintaining the same 

settings for the rest of parameters. Fig. 5.5 shows the effect of number of viruses in the virus 

population
popV for 

popV =5 (400 function evaluations) and for 
popV =7 (500 function evaluations).   
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Figure 5.5: Effect of population of viruses (axial runs with 5 and 7 viruses-400 and 500 function evaluations) in the multi-
objective Pareto result.  

 

The result given in Figure 5.5 corresponds to 17th and 18th experimental runs (axial points) and clearly 

shows that by implementing a higher number of viruses it is improved. The Pareto result for
popV =5 is 

0.297933 whereas for 
popV =7 is 0.294029. However, the former result was obtained at 293 function 

evaluation out of 400 and the latter was obtained at 441 function evaluations out of 500. With 

reference to these indications it is asserted that the “near optimal” result of 0.297933 with 
popV =5 

has been obtained at 73.25% of the total number of function evaluations whilst the lower “near 

optimal” result of 0.294029 with 
popV =7 has been obtained at 88.20% of the total number of function 

evaluations. The result of 0.294029 is 1.34% to that of 0.297933 which seems to be insignificant. 

However, by considering the individual criteria formulating the Pareto result it can be observed form 

17th and 18th experimental runs that the result of 0.294029 corresponds to 1C =0.025, 2C =0.190 and 

3C =0.223 and the result of 0.297933 corresponds to 1C =0.035, 2C =0.104 and 3C =0.277. Based on 

these outputs the former Pareto result (0.294029) outperforms the latter (0.297933) by reducing the 

result of 1C at 28.57%, as well as the result of 3C at 19.50%, yet, at the expense of 2C criterion that 

results 45.26% worst.   

Figure 5.6 shows the effect of viral chromosome string length maxstrlengthV  to the result of Pareto 

criterion for 
popV = 6 (450 function evaluations) as per the indications of the RSM-CCD design and its 

corresponding axial points.  
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Figure 5.6: Effect of viral chromosome string length (number of bits) in the multi-objective Pareto result.  

 

From Figure 5.6 and Table 5.3 (experimental runs 19 and 20) it is deduced that a higher variable 

number of bits in chromosome strings of viruses provides more beneficial schemes towards the 

convergence to an optimal result. The 19th experimental run results to a Pareto solution equal to 

0.305419 obtained at 350 function evaluation whilst the 20th experimental run results to a solution 

equal to 0.296163 obtained at 341 function evaluation. A first observation at least when it comes to 

450 function evaluations, (
popV = 6) is that more bits in the chromosome string of a virus individual 

benefit both optimal result and convergence speed. The Pareto solution obtained using 27 bits in the 

chromosome strings of viruses is 2.96% better that the one obtained using 24 bits. As regards the 

individual criteria all three values for 1C , 2C  and 3C result as better at the amounts of 6.25%, 13.04% 

and 1.42% respectively.     

Figure 5.7 shows the effect of virus life reduction rate liferate V to the result of Pareto criterion for 

popV = 6 (450 function evaluations) as per the indications of the RSM-CCD design and its 

corresponding axial points.  
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Figure 5.7: Effect of virus life reduction rate in the multi-objective Pareto result.  

Figure 5.7 clearly illustrates that virus life reduction rate liferate V is beneficial when it is at an 

intermediate level. The results for Pareto criterion correspond to 21st and 22nd experimental runs 

(Table 5.3). The result with the lower virus life reduction rate ( liferate V =-0.4) gives a result for 

Pareto criterion equal to 0.304467 obtained at 340 function evaluation whereas the result with the 

higher life reduction rate ( liferate V =-0.6) gives a result for Pareto criterion equal to 0.263750 

obtained at 299 function evaluation. The gain obtained in terms of the “best” final point is equal to 

13.49%. As regards the individual criteria two out of three values ( 2C  and 3C ) result as better at the 

amounts of 29.47% and 1.81% respectively whereas the value corresponding to 1C criterion ends up 

as worst at the amount of 24.25%. At least for the 450 function evaluations (
popV = 6 according to the 

RSM-CCD axial points) higher reduction rates for the life of virus individuals are advantageous for 

both lower final point and convergence speed as evident from Fig. 5.7. This implies that transduction 

should be prompted to operate to increase local search capabilities in the algorithm when it comes to 

a population of viruses half to that of the main population of candidate solutions. Another important 

observation based on Fig. 5.7 for the effect of liferate V parameter is that a similar trend is exhibited 

throughout the entire convergence process for the settings, -0.4 and -0.6. 

Figure 5.8 shows the effect of viral infection rate inf maxRateV to the result of Pareto criterion for 
popV

= 6 (450 function evaluations) as per the indications of the RSM-CCD design and its corresponding 

axial points.  
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Figure 5.8: Effect of viral infection rate in the multi-objective Pareto result.  

The two different viral infection rates for the same number of viruses (
popV = 6, 450 function 

evaluations) and the same settings for the rest of algorithm-specific parameters suggest significant 

differences for both convergence speed as well as quality of the result. As it is suggested in Fig. 5.8 

and Table 5.3 the increase of viral infection rate advantageously shifts the algorithm’s behaviour in 

terms of convergence slope and final point whereas the effect seems to maintain its trend. For 

inf maxRateV = 5 (23th experimental run) the result corresponding to Pareto criterion equals to 

0.272615 whereas for inf maxRateV = 6 (24rd experimental run) the result corresponding to Pareto 

criterion equals to 0.260985. Their percentage difference equals to 4.27%. As regards individual 

criteria, two out of three values ( 2C and 3C ) exhibit better outputs (12.74% and 0.46% respectively) 

whereas the value corresponding to 1C criterion occurs as 2.86% worst. The result obtained in 23rd 

experimental run for inf maxRateV = 5 was reached after 280 function evaluations whilst the one 

obtained in 24th experimental run for inf maxRateV = 6 was reached after 286 function evaluations. In 

general the results at this state for 
popV = 6, maxstrlengthV = 25 and liferate V =-0.5, no significant 

changes in terms of arithmetic magnitudes seem to be experienced thus the clear and concise effect 

cannot be determined. Nevertheless from Fig. 5.8 it is evident that inf maxRateV highly contributes to 

algorithm’s general performance towards convergence.  

To prove stability and repeatability of non-dominated solutions as well as the optimal final point the 

results obtained for the center points (replicates) of the RSM-CCD design were statistically examined. 
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Statistical analysis involved the investigation for the hypothesized difference between standard 

deviations and/or variances of two non-dominated solution-sets taken from the outputs of 

experimental results of center points (replicates).  This investigation needs to be done owing to the 

stochastic nature of evolutionary strategies - such as GAs/EAs – and their randomness characteristic 

which might display them as unreliable optimisation techniques (Hoos and Stόtzle 2004). This false 

impression for evolutionary strategies comes as a strong assumption based on the difference among 

results usually found when trying multiple independent algorithmic runs (Kirkpatrick, 1984). However, 

owing to genetic operators, stochastic techniques avoid premature stagnation to local optima as 

opposed to deterministic techniques. Thus, the statistical study for these results is necessary to 

explore repeatability and reliability of MOVEGA in the quality of results when the latter is executed 

iteratively for a finite number of experimental tests (i.e. as many as the center points) for the same 

settings of its algorithm-specific parameters. Figure 5.9 shows the convergence results of MOVEGA 

for the same parameter settings suggested by the replicates (center points in cube) of the RSM-CCD 

experimental design.  

 

Figure 5.9: Convergence results for replicates – center points x 7 (6 viruses-450 function evaluations).  

 
 

For the replicates of the RSM-CCD experiment 450 function evaluations have been determined (
popV

= 6) whilst the rest of parameters have the settings as per the RSM-CCD design dictates (Table. 5.3) 

for the experimental runs 25 to 31 ( maxstrlengthV = 25,  liferate V = - 0.5, inf maxRateV = 5.5). As 

evident from Fig. 5.9, six out of seven evaluations have quite similar trends in terms of the 
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convergence curve with the only exception observed to the first experimental test (25th experimental 

run according to Table 5.3).  

In the statistical analysis conducted, the non-dominated solution sets where considered as 

independent sample data with the same magnitude (450 non-dominated solutions per set with 

reference to the number of function evaluations). Thereby, the non-dominated solutions where 

examined as pairs of two independent sets where the ratio of their standard deviations as well as 

variances is assumed to be equal to 1 according to their confidence intervals for the assessment of 

practical significance of the results. Statistical outputs were based on both Bonett’s and Levene’s 

methods to ensure reliability of results for any kind of data distribution (normal, non-normal, skewed 

and/or heavy-tailed, etc.). p -value interpretation is of immense importance so as to judge 

significance level which is denoted by alpha 0.05 = . The value of alpha equal to 0.05 implies that a 

5% risk may exist on having significant differences among results. As regards 0.05 =  two 

assumptions are made. The former suggests that the ratio of standard deviations and/or variances is 

statistically significant ( 0.05p  = ) thus the null hypothesis 0H is rejected and the conclusion is 

that the ratio of standard deviations (or variances) differs from the hypothesized one. Usually the 

hypothesized ratio HR equals to 1 as a default value. The latter assumption suggests that the ratio of 

standard deviations or variances is not statistically significant ( 0.05p  = ) thus the null hypothesis 

0H is accepted and the conclusion is that there is enough evidence to support that difference the 

ratio of standard deviations (or variances) is statistically insignificant. 

Figures 5.10a to 5.10f summarise outputs from the statistical tests conducted (2-variance ratio test) 

for the pairs of non-dominated solutions for the center points’ replicates. In the outputs the 

confidence intervals for the ratios and the confidence intervals for variances are also presented. In 

the graphs the upper box refers to the estimated values (blue dots in the parallel lines) and 

confidence intervals for Bonett’s and Levene’s tests for the variance ratios with reference to the null 

hypothesis 0 1H =  denoted by the red line vertical to the parallel lines. The lower box refers to the 

estimated values (blue dots in the parallel lines) and confidence intervals for Bonett’s and Levene’s 

tests for the variances referring to the null hypothesis 0 1H = . As it is evident from Figs. 5.10a-f 

significant overlaps among the results of Bonett’s test and those of Leven’s test are observed 

suggesting similarity and insignificant differences among the results of non-dominated solutions. Even 

thought p -values for the tests do not agree in their magnitudes, they all above the critical level of 
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alpha ( 0.05p  = ). Table 5.4 gives the results from the statistical analysis with reference to 

Figures 5.10a to 5.10f.          

 

 

 

 

 

(a) 

(b) 

(c) 

(d) 



 
 

145 
 

 

 

Figure 5.10: 2-variance ratio test results for the pairs of non-dominated solutions of replicates.  

 

Table 5.4: 2-variance ratio test results for the pairs of non-dominated solutions of replicates. 

Pairs N:450 1stCP-2ndCP 1stCP-3rdCP 1stCP-4thCP 1stCP-5thCP 1stCP-6thCP 1stCP-7thCP 

StDev  0.099-0.104 0.099-0.100 0.099-0.093 0.099-0.101 0.099-0.097 0.099-0.101 
Variance 
(V) 

 
0.010-0.011 0.010-0.010 0.010-0.009 0.010-0.010 0.010-0.009 0.010-0.010 

95% CI for 
Variances 

 [0.006,0.015] 
[0.007,0.017] 

[0.006,0.015] 
[0.006,0.016] 

[0.006, 0.015] 
[0.006, 0.013] 

[0.006,0.015] 
[0.007,0.015] 

[0.006,0.015] 
[0.006,0.016] 

[0.006,0.015] 
[0.007,0.016] 

StDevs ratio  0.957 0.989 1.066 0.985 1.020 0.982 
Variances 
ratio 

 
0.917 0.979 1.137 0.970 1.040 0.964 

CI for StDev 
ratio 

Bonett [0.689,1.330] [0.710,1.389] [0.770, 1.463] [0.716,1.318] [0.723,1.505] [0.710,1.344] 
Levene [0.641,1.079] [0.708,1.233] [0.762, 1.309] [0.678,1.151] [0.897,1.688] [0.646,1.091] 

CI for 
Variance 
ratio 

Bonett [0.475,0.770] [0.505,1.929] [0.593, 2.142] [0.513,1.738] [0.523,2.264] [0.504,1.806] 

Levene [0.411,1.164] [0.501,1.519] [0.581, 1.714] [0.459,1.324] [0.804,2.849] [0.417,1.191] 

p -value 
Bonett 0.785 0.948 0.683 0.917 0.911 0.906 

Levene 0.167 0.623 0.996 0.362 0.208 0.193 

 

The results reported so far present an image of the MOVEGA’s functional behaviour in terms of its 

reliability and quality of results. However, to extract rigorous conclusions for these attributes a 

deeper examination of non-dominated solutions quality is needed as well as the investigation of main 

effects and interactions from the statistical analysis. The following sub-sections report the results 

interpreted with reference to the main effects / interactions from regression analysis as well as those 

obtained from the Pareto fronts corresponded to the RSM-CCD design presented.      

(e) 

(f) 
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5.3.2 Main effects and interactions 
 

To ensure rigorous conclusions about the effects of MOVEGA’s algorithm-specific parameters on its 

evaluation/optimisation performance regression analysis was performed to create a reliable model 

capable of providing statistical results to model the curvature of data and further optimise the critical 

response which is the 3D Pareto result per algorithm-specific parameter settings. Regression analysis 

was based on selections about the order of the terms, the cross predictors, the interactions as well as 

the method of forward selection of terms to exclude those that have no significant effect on the 

objective whilst keeping the influential ones. To study the main effects and interactions among 

algorithm-specific parameters, the main effects plot and the normal plot of standardized effects 

corresponding to ANOVA outputs where generated. The curvature was examined after employing the 

ANOVA model to fit the experimental results of the RSM-CCD experiment and generating the 

corresponding contour plots. The main effects plot and the normal plot for the standardized effects 

are shown in Figure 5.11. Such plots have already been used and interpreted also for the tool path 

parameters discussed in Chapter 3.  

 

Figure 5.11: Main effects and standardized effects plots.  

By examining the main effects plot it is observed that the mean of Pareto 3D is reduced for popV =10 

compared to the usage of significantly fewer viruses ( popV =2). maxstrlengthV also reduces the mean of 

Pareto 3D if it is adjusted to its high level, 40 bits for the virus chromosome length. The virus life 

reduction rate liferate V should be at its lower level to offer the opportunity for the viruses to infect 

a large number of individuals from the main population whereas viral infection rate inf maxRateV

reduces the mean of Pareto 3D when set to its high level to facilitate local search. These observations 

are in agreement with those made during the analysis of experimental results for the RSM-CCD 

experimental design established. The half normal plot of the standardized effects indicates that 
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strong interactions exist among the MOVEGA’s algorithm-specific parameters. Terms further from 

zero suggest statistically significant effects for the 0.05a = significance level. popV  and inf maxRateV  

have the strongest effect as individual linear terms whereas their product popV x  inf maxRateV as well 

as maxstrlengthV  x  liferate V and maxstrlengthV x inf maxRateV exhibit the strongest effect among 2-

way interactions. According to ANOVA, the contribution of linear terms, 2-way interactions, 3-way 

interactions and error in the model was found equal to 47.54%, 42.71%, 2.12% and 7.62% 

respectively. The highest significance in terms of influence on the “Pareto 3D” response was exhibited 

by popV ( p − value = 0.006) followed by the interaction popV x inf maxRateV ( p − value = 0.006). 

inf maxRateV alone has an important significance ( p − value = 0.031). The overall significance of linear 

terms in the suggested model has a p − value equal to 0.030 whereas the overall significance of 2-

way interactions has a p − value equal to 0.041. The suggested model is capable of explaining the 

variability of algorithm-specific parameters to the response of Pareto 3D at 2R = 92.38%.  

The curvature of experimental results of the RSM-CCD design is shown in Figure 5.12 in the contour 

plots. The scales for Pareto 3D value ranges accompanying the plots assist to identify the regions for 

recommending beneficial values of algorithm-specific parameters in order to minimise the Pareto 3D 

response. By examining Fig. 5.12a it is observed that 7 to 10 viruses are needed to optimise the final 

result referring to a main population of 10 individuals. At this point no significant effect seems to be 

noticeable for maxstrlengthV . Fig. 5.12b agrees with Fig. 5.12a in terms of the number of viruses and 

further suggests that this number of viruses should have a low life reduction rate ( liferate V ). From 

Fig. 5.12c it is clear that the optimal results may be obtained with a large number of viruses and a 

maximised viral infection rate, yet, there is a large region where good results may be obtained for any 

number of viruses provided that a suitable value for maximum viral infection rate ( inf maxRateV ) will 

be set since there is a region where the optimal result is dramatically deteriorated. Fig. 5.12d 

provides information for the simultaneous effect between maximum viral infection rate ( inf maxRateV

) and virus life reduction rate ( liferate V ). It is clearly shown that an inversely proportional relation 

exists among inf maxRateV and liferate V parameters to balance virus life reduction rate and 

maximum infectivity according to the number of viruses in the virus population popV . Fig. 5.12e 

suggests that a number of bits in the chromosome strings of viruses ( maxstrlengthV ) from 25 to 40 
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could be advantageous only if the virus life reduction rate ( liferate V ) is to be kept at low levels, i.e., 

from 10% to 35-40%. It is further suggested that a virus life reduction rate from 10% to 35% could 

contribute to the optimisation process when viruses operate as 25-bit to 40-bit substrings of their 

hosts. Finally, Fig. 5.12f suggests that the result is optimised for viruses that possess large substrings 

i.e. 35 to 40 bits, yet, with maximised infectivity.                     

 

Figure 5.12: Contour plots of RSM-CCD for investigating the curvature of experimental results.  

Diversity and spacing of non-dominated solutions of Pareto-optimal fronts have been questioned as 

essential indices so as to characterize the quality of results. The next subsection examines the 

properties of Pareto fronts obtained from the algorithmic evaluations according to the RSM-CCD 

design presented.    
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5.3.3 Diversity and spacing (coverage) of non-dominated Pareto-optimal solutions  
 

The Pareto front is the 2-dimensional or 3-dimensional solution region where the non-dominated 

solutions found by solving a multi-objective optimisation problem are presented. The Pareto front is 

2D or 3D depending on the objectives under examination whilst each objective is represented by an 

axis from those formulating the Pareto-front’s solution region. If one criterion tends to improve 

(machining error), then the other tends to deteriorate (number of cutting points – machining time) 

and vice versa. In general, a Pareto front will consist of solutions that are optimal in the sense that no 

other solutions can be found capable of improving all criteria simultaneously, under the given 

(constrained) search space. Two indices are widely examined to characterize the non-dominated 

solutions using stochastic algorithms, diversity and spacing (Branke et al. 2001). The former index 

practically refers to the variety of non-dominated solutions with regard to their magnitudes in terms 

of the optimisation criteria whilst the latter refers to the spread (distribution) of solutions in the 

entire Pareto region. The general depiction, the practical use as well as the interpretation of results 

referring to a Pareto front are all dependent both on the nature of the optimisation problem at hand 

and the philosophy adopted to formulate it. Besides, this the main reason for capturing the 

researchers’ interest to propose and develop new stochastic algorithms or improve current ones for 

solving a variety of engineering optimisation problems. This argument was initially supported by 

Wolpert and Macready (1997) and was based on the “No-Free Lunch” theorem that logically 

advocates that there is no optimisation algorithm capable of solving all optimisation problems.    

For the specific problem of globally optimizing sculptured surface CNC machining tool paths, the 

optimal Pareto fronts where considered to be those that provide a sufficient number of non-

dominated solutions that will have the closest distance from the reference point (Pareto front’s 

origin) since all three criteria should be minimised. This introduces the trade-off among optimisation 

objectives indirectly (i.e. machining error and number of cutting points) as opposed to a variety of 

other engineering optimisation problems where some criteria ought to be maximised. An example 

may be derived by a common material removal process where surface roughness is minimised as a 

quality objective whilst material removal rate is maximised as a productivity objective. In the light of 

this, the Pareto fronts emerged from the results of the independent optimisation criteria values, were 

examined and evaluated with regard on the narrowest spacing between non-dominate solutions as 

well as the lowest diversity. The non-dominated solutions formulating the Pareto fronts refer to the 

RSM-CCD experimental runs as reported in Table 5.3. The Pareto fronts are depicted in Figure 5.13.     
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Figure 5.13: Pareto fronts of non-dominated solutions corresponding to the experiments of the RSM-CCD.  
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The axes of Pareto fronts correspond to the normalised values of the three criteria, machining error, 

standard deviation and number of cutting points. Two discrete regions can be distinguished to all 

Pareto fronts obtained. The first region is the region where some of the non-dominated solutions are 

scattered to satisfy only a single criterion or two out of three criteria and the second region is the 

main solution domain where all criteria are simultaneously satisfied at the best possible extend 

regarding the optimisation problem’s trade-off.  

Regardless of the results examined and interpreted so far, early observations from Fig. 5.13 suggest 

that Pareto fronts 17, 19, 28 and 29 seem to gather most of their non-dominated solutions close to 

their origins. For these results the number of function evaluations is 400 for Pareto front 17 (5 

viruses) and 450 function evaluations for the rest Pareto fronts (6 viruses). Experiments 

corresponding to Pareto fronts 17 and 19 are axial points whereas experiments corresponding to 

Pareto fronts 28 and 29 are center points (replicates). By considering the number of function 

evaluations for the aforementioned Pareto fronts and the results reported for the effects of 

MOVEGA’s algorithm-specific parameters on the final response (Pareto 3D criterion) it can be 

asserted that final recommendations for their optimal selections are expected to be approximately in 

the middle levels.  

Diversity and spacing indices were computed using the latest relations found in the literature 

(Khalilpourazari and Khalilpourazary 2018, Khalilpourazari and Pasandideh 2018, Khalilpourazari and 

Mohammadi 2016). The relation adopted to compute diversity is given in Equation 5.5.         

( )
2

max min

1

maxj

j j

j

D f f
=

= −                    Eq. 5.5 

where D the diversity of all j non-dominated solutions, corresponding to the Pareto front, 
max

jf is 

the maximum objective function’s value and
min

jf is the minimum objective function’s value. Spacing 

has been computed for subsequent pairs of Pareto non-dominated solutions using Equations 5.6 and 

5.7.   

1

1

j

J j j

j

d f f
+

+= −                     Eq. 5.6 

( )
2

1

n
J

j

d d
S

n=

−
=                      Eq. 5.7 
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where, Jd is the spacing between two subsequent non-dominated solutions , 1j j + , jf  the objective 

function’s value for the thj solution, 1jf + the objective function’s value for the next solution with 

reference to the previous one ( j ), d is the average value of all subsequent spacing results, n is the 

total number of non-dominated solutions and S the general spacing result for the Pareto front’s non-

dominated solutions. The summation of the normalized diversity and normalized spacing was 

considered as the final metric to characterize the Pareto fronts. Normalization of the two indices was 

conducted by considering the largest value and dividing each result to that value. Table 5.5 

summarizes the results obtained for diversity and spacing as well as the final metric which was their 

normalized sum D S+ .   

Table 5.5: Results for diversity and spacing corresponding to Pareto fronts of the algorithmic evaluations according to the 

RSM-CCD. 

Pareto front index D  Jd  d  n  S  D S+  

1 0.3709 0.0953 0.0032 194 0.4635 0.8344 
2 0.5880 0.0710 0.0016 441 0.4363 1.0243 
3 0.4272 0.0199 0.0034 202 0.4351 0.8623 
4 0.7368 0.1243 0.0015 527 0.3890 1.1258 
5 0.5983 0.1185 0.0040 226 0.6530 1.2514 
6 0.6980 0.2257 0.0020 406 0.6000 1.2980 
7 0.4063 0.0540 0.0046 155 0.5588 0.9651 
8 0.5759 0.0136 0.0013 479 0.3009 0.8768 
9 0.4530 0.0218 0.0035 206 0.4938 0.9468 
10 1.0000 0.3132 0.0022 500 0.8270 1.8270 
11 0.4394 0.0246 0.0034 209 0.4756 0.9150 
12 0.8812 0.1767 0.0015 584 0.4477 1.3289 
13 0.4064 0.0589 0.0043 168 0.6800 1.0864 
14 0.6023 0.0182 0.0016 446 0.3203 0.9226 
15 0.4790 0.0938 0.0040 195 0.5811 1.0600 
16 0.6853 0.3003 0.0040 256 1.0008 1.6861 
17 0.4001 0.1353 0.0019 293 0.4189 0.8190 
18 0.9111 0.3115 0.0024 441 0.8304 1.7416 
19 0.5992 0.1447 0.0022 350 0.4944 1.0936 
20 0.6977 0.2597 0.0026 341 0.7615 1.4592 
21 0.6465 0.1085 0.0024 340 0.4548 1.1013 
22 0.4698 0.0374 0.0022 299 0.4451 0.9149 
23 0.6968 0.2756 0.0034 280 0.8705 1.5674 
24 0.6036 0.0388 0.0030 286 0.5925 1.1961 
25 0.5854 0.0440 0.0020 362 0.3687 0.9541 
26 0.7549 0.1617 0.0030 293 0.6022 1.3571 
27 0.4775 0.0391 0.0032 233 0.5426 1.0201 
28 0.5237 0.0272 0.0020 351 0.3546 0.8783 
29 0.5159 0.0052 0.0019 344 0.3207 0.8366 
30 0.5193 0.0263 0.0035 235 0.6287 1.1479 
31 0.6288 0.0827 0.0028 308 0.6604 1.2893 

 

According to Table 5.5 the Pareto front that exhibited the lowest final metric by simultaneously 

considering diversity and spacing is the one obtained for the non-dominated solutions of the 17th 
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RSM-CCD experimental run. For this particular Pareto front the score for the final metric which is the 

normalized sum D S+  is equal to 0.8190 with diversity D equal to 0.4001 and spacing S  equal to 

0.4189. For Pareto fronts 19, 28 and 29 the scores for the final metric is 1.0936, 0.8783 and 0.8366 

respectively. These results are in good agreement with the depictions of non-dominated solutions for 

the aforementioned Pareto fronts. Indeed the 17th Pareto front is the one containing the narrowest 

region of scattered solutions whilst most of the non-dominated solutions are gathered very close to 

the Pareto front’s origin. Similar indications are observed for the rest of Pareto fronts proving the 

consistency among the results derived from computations and the outputs illustrated on graphical 

representations.  

5.3.3 Recommended algorithm-specific parameter settings and confirmation experiments  
 

Response optimiser is a utility found to most known and commercially available statistical packages 

like the one used for formulating the RSM-CCD design and analyzing the related outputs. 

Optimisation plots or ramp diagrams show the effect of predicted responses under different 

experimental settings of parameters under investigation according to the model developed for fitting 

the data. Response optimiser was applied to the study to search for algorithm-specific parameter 

settings with near-optimal properties. With reference to the regression model created to fit the data 

given the experimental results several tests were performed to minimise the final response (Pareto 

3D). During the initial setup of response optimisation the desirability function was selected for 

“minimisation” against “maximisation” and “target value” as well as best and worst values (0.251180 

and 0.309630) according to the experimental results presented in Table 5.3. All variables where 

constrained to their corresponding parameter bounds: 2 10popV  ,10 max 40strlengthV  , 

0.001 1.0liferate V−     and inf10% max 100%RateV  . Low middle and high levels were tested 

as starting values for the response optimisation process to reduce the biased search towards local 

optimal points. Unfortunately, the response optimiser was not considered as the appropriate utility 

to contribute to the recommendation of near-optimal selections for algorithm-specific parameters 

since it did not perform a continuous search but a search limited to low-high levels and center point 

as potential candidates for parameter settings. After examining the diversity and spacing for all 

Pareto fronts obtained from the 31 experimental runs of the RSM-CCD design, the trend of parameter 

settings using the means was finally analysed to further examine their variation. Figure 5.14 

illustrates the trend of algorithm-specific parameters on the mean of Pareto 3D as the main response 

when their corresponding levels are investigated for all design points, factorial and center (axial) 

points.           
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Figure 5.14: Main effects of algorithm-specific parameters by considering the entire RSM design points, factorial and axial.  

 

The selection of the most appropriate algorithm-specific parameters was finally based on all 

experimental observations discussed above as well as the main effects and interactions of parameters 

on the response using the entire RSM-CCD design. The final values employed as the recommended 

ones for capturing the MOVEGA’s full potentials were six viruses out of 10 candidates in the main 

population 
6

10
pop popV C

 
= 

 
, maximum variable number of bits in the virus chromosome substring 

equal to 25 as a fraction of the 100-digit chromosome string of the individuals in the main population   

1
max 25 max

4
strlength strlengthV C

 
= = 

 
, maximum virus life reduction rate equal to -0.5 

( )0.5liferate V = −  and maximum infection rate equal to 70% of the maximum viral infectivity 

( )inf max 7RateV = . 

To evaluate the overall functional behaviour of MOVEGA as well as to quantify its contribution to the 

optimisation process, confirmation experiments were conducted for rigorous comparisons by 

adopting two different modes. The first mode was replicated 6 times using the recommended 

algorithm-specific parameters derived from the study presented above whilst the second mode was 

replicated six times using the same algorithm (MOVEGA), yet, without implementing its viral 

operators. As it is evident from Figure 5.15 the contribution of viral intelligence to the response 

optimisation for the multi-objective sculptured surface CNC machining problem is significant with 

reference to the indications given from the convergence results of MOVEGA versus the GA. According 

to the convergence trend referring to the first test, it seems that MOVEGA accelerates its 
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convergence quite early while maintaining a smooth transition towards the minimum recommended 

value. Both algorithms exhibit a fast convergence up to the 45th evaluation. Thereby, convergence 

gradually evolves from the 90th evaluation up to 320. A sudden descent (and eventually trapping) 

occurs for the GA to its recommended "optimum "while MOVEGA maintains its smooth minimisation 

path up to the lowest score obtained at 383rd evaluation. The second test shows that there is fairly 

similar convergence behaviour from both algorithms up to the 135th evaluation whilst from that point 

and further, GA converges and maintains the same value for its recommended "optimal" score up to 

the last evaluation. On the other hand, MOVEGA continues its smooth convergence from 135th 

evaluation up to 225th where its lowest score has been reached and is significantly lower than the one 

that the GA recommends for the same test. The third test suggests that the GA does not only seem to 

exhibit a faster converge rate than MOVEGA even from early evaluations but is also favored by the 

fact that it starts its convergence from a lower score than that from which MOVEGA starts. However, 

there is a decrease in convergence rate observed to the 100th evaluation up to 320th for both 

algorithms, yet, MOVEGA has clearly converged to lower scores than GA’s for these evaluations. 

Finally, from the 320th evaluation, there is a sudden convergence from both algorithms with MOVEGA 

pointing to a lower final score. As far as the fourth test is concerned, it is evident that the 

convergence rate in the first evaluations for both algorithms is almost the same up to the 190th 

evaluation. Further on, MOVEGA not only converges faster than GA but also achieves a much lower 

final score for this test. For the fifth test, similar convergence attributes are observed from both 

algorithms with MOVEGA to minimise yet again the result in contrast to GA. Similarities in terms of 

convergence rate variations are observed to the same number of successful evaluations for both 

algorithms. The sixth test reports almost identical behaviour regarding the minimisation path as well 

as convergence rate for both algorithms up to 315th evaluation. Even though following evaluations do 

not see any improvement for GA, MOVEGA gives the impression of escaping from that local 

"minimum" and continues its convergence until the final result. 

From the results reported for the aforementioned algorithmic tests, it can be deduced that 

MOVEGA's success to beneficial convergence characteristics as well as to final recommended values, 

is obviously due to the robust schemata formulated by viral operators (nvMOGA). It is worth 

mentioning that the computational cost is the same in the case of MOVEGA compared to GA since 

the latter was tested for a total of 15 generations (450 evaluations - see Eq. 5.3 and 5.4) for the sake 

of rigorous comparisons between MOVEGA and GA. 
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Figure 5.15: Convergence results corresponding to confirmation experiments for the optimal selection of algorithm-specific 
parameters.  

 

The non-dominated solutions for MOVEGA and GA with regard to the confirmation tests conducted 

were examined through their corresponded Pareto fronts. The non-dominated solution closest to the 

origin of a Pareto front is considered as the optimal one and is expected to satisfy all three 

contradictory objectives. To characterise the Pareto fronts for the confirmation tests, Eq. 5.5, 5.6 and 

5.7 were adopted, as presented above. Figures 5.16 and 5.17 illustrate the Pareto fronts with 

reference to the confirmation tests for MOVEGA and GA respectively and Tables 5.6, 5.7 summarise 

the results.  
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1 2  

3 4  

5 6  

Figure 5.16: Pareto fronts of non-dominated solutions (MOVEGA) corresponding to confirmation experiments for the 
optimal selection of algorithm-specific parameters.  

 

Table 5.6: Diversity and spacing results for evaluating non-dominated solutions of Pareto fronts obtained by MOVEGA. 

a/a 
Performance evaluation indices for Pareto fronts 

D  Jd  d  n  S  D S+  

MOVEGA confirmation experiments 

1 9.4457 0.0121 0.0025 328.0000 0.0121 1.8027 
2 5.5707 0.0062 0.0031 198.0000 0.0093 1.2172 
3 6.0131 0.0226 0.0017 327.0000 0.0066 1.0695 
4 7.7262 0.0492 0.0021 332.0000 0.0075 1.3053 
5 9.8579 0.0097 0.0027 326.0000 0.0143 2.0017 
6 5.2829 0.0033 0.0021 259.0000 0.0058 0.9397 
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1 2  
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5 6  

Figure 5.17: Pareto fronts of non-dominated solutions (GA) corresponding to confirmation experiments for the optimal 
selection of algorithm-specific parameters.  

 

Table 5.7: Diversity and spacing results for evaluating non-dominated solutions of Pareto fronts obtained by GA. 

a/a 
Performance evaluation indices for Pareto fronts 

D  Jd  d  n  S  D S+  

GA comparative experiments 

1 9.9910 0.1370 0.0022 383.0000 0.0095 1.6324 
2 7.3918 0.0100 0.0027 271.0000 0.0089 1.3273 
3 8.9459 0.0904 0.0023 349.0000 0.0092 1.5023 
4 8.8414 0.1468 0.0028 302.0000 0.0108 1.5991 
5 6.6798 0.0688 0.0025 269.0000 0.0091 1.2743 
6 8.9160 0.2438 0.0026 318.0000 0.0151 1.8910 
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The normalised minimum final metric D S+ is 0.9397 and 1.2743 for MOVEGA and GA respectively 

and with reference to the figures depicting the Pareto fronts it is clear that MOVEGA clusters more 

non-dominated solutions closer to the origins than GA. Through their phenotype, the optimal "non-

dominated" solutions referring to all Pareto fronts contain and the optimal parameter values for 

determining the 5-axis finishing tool path of the benchmark sculptured model used for designing the 

experiments of the current study so as to investigate the MOVEGA’s functional behaviour and its 

algorithm-specific parameter effects. The parameters for the tool path corresponding to the optimal 

"non-dominated" solutions are given in Table 5.8. 

Table 5.8: Recommended 5-axis tool path parameter values by MOVEGA and GA. 

a/a 
Tool path parameters  Optimisation criteria 

Tool Stepover Lead angle Tilt angle MaxDstep Pareto3D 1C  2C  3C  

MOVEGA confirmation experiments 

1 #2 44.147 10.261 2.827 6.062 0.280567 0.0290 0.174218 0.218 
2 #2 44.489 10.113 0.773 7.265 0.287282 0.0364 0.184701 0.217 
3 #2 44.162 14.971 4.095 6.78 0.283043 0.0303 0.167679 0.226 
4 #2 44.066 10.485 0.859 4.433 0.278437 0.0348 0.168384 0.219 
5 #2 44.244 15.455 1.462 5.378 0.284258 0.0536 0.170555 0.221 
6 #2 44.579 13.673 2.916 5.132 0.281614 0.0476 0.174323 0.216 

GA comparative experiments 

1 #2 42.741 15.813 0.668 4.421 0.309707 0.0486 0.129732 0.277 
2 #2 38.356 14.176 0.210 3.282 0.317257 0.0500 0.118326 0.290 
3 #2 39.464 12.820 4.140 4.973 0.304135 0.0478 0.131569 0.270 
4 #2 37.913 15.695 2.568 4.497 0.307393 0.0337 0.11268 0.284 
5 #2 40.661 13.415 3.836 5.507 0.318537 0.0325 0.155671 0.276 
6 #2 38.259 10.439 4.321 6.839 0.289975 0.0348 0.074775 0.278 

 

As shown in Table 5.8, all the solutions recommended by both algorithms are accompanied by the 

selections of the filleted end-mill (#2) against the flat end-mill (#1). For MOVEGA, all solutions 

proposed have a radial cutting tool engagement (stepover) over 44% as a percentage of the cutting 

tool’s diameter, thus, resulting in reduced machining time. Similarly, for GA, only 33% of the solutions 

proposed (2 of 6) have stepover values over 40% as a percentage of the cutting tool’s diameter. In 

general, the average values of recommended values for the filleted end-mill (#2) are 44.281% (7.085 

mm) and 39.566% (6.330 mm) for MOVEGA and GA respectively, exhibiting an increase in 

productivity with the use MOVEGA as opposed to GA. The recommended outputs for lead angle span 

a range from 10.113° to 15.455° for MOVEGA, while for GA span from 10.439° to 15.813°. In 

combination to the values recommended for tilt angle ranging from 0.773° to 4.095° and from 0.210° 

to 4.321° for MOVEGA and GA respectively, it is derived that compared to GA, MOVEGA enlarges 

more the machining strip width (MSW) while maintaining low scallop heights. Maximum 

discretisation step parameter (forward step) spans from 4.433 mm to 7.265 mm and from 3.282 mm 

to 6.839 mm for MOVEGA and GA respectively. MOVEGA seems to promote productivity as it is 
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evident from the recommended tool path parameter values for stepover and forward step, while 

maintaining machining error at low levels without adversely affecting it. These observations are also 

indicated by the results for the individual criteria 1C , 2C  and 3C .  

When it comes to the individual criteria, MOVEGA seems to direct its emphasis on optimising 2 out of 

3 goals (machining error and number of cutting points, 1C and 3C ) while GA emphasizes mostly on 

optimizing machining error distribution 2C . Therefore the MOVEGA addresses more effectively the 

sculptured surface CNC machining optimisation problem compared to GA, according to the 

antagonising nature of the three criteria. The behaviour of MOVEGA regarding the emphasis given to 

machining error and number of cutting points against machining error distribution occurs due to the 

similar nature of these two objectives. When it comes to finishing, it is essential that machining error 

itself should be the criterion to emphasize to, since its distribution could be presented as a magnitude 

proportional to its own magnitude. On the contrary roughing operation may prioritize other criteria, 

i.e. first the cutting force variation exerted to cutting tool’s edges and then the absolute magnitude of 

cutting force itself, in this respect. These "preference" trends of both algorithms as regards the 

individual criteria are illustrated in Figures 5.18, 5.19 and 5.20, where the distributions of values 

obtained for the different states as the optimisation evolves, are shown. 

Figure 5.18 illustrates the evolution trend of obtained solutions referring to 1C criterion by taking into 

account the effect of the rest criteria as well. A first observation is that compared to GA, the MOVEGA 

minimises further the result of 1C criterion. A profound difference between the two algorithms in 

terms of the final score is observed in test 5 where the GA happens to minimise further the result of 

1C criterion, yet, a set of solutions has already been found in earlier generations for MOVEGA where 

their  indications suggest just as low results as those obtained by GA in last evaluations. A significant 

observation is that partial distributions of values obtained for 1C criterion seem to be shifted to 

evaluations with lower indices that those referring to the same results obtained by the GA. This shift 

is clearer and more profound in tests 1 and 4. This substantiates the faster convergence speed as well 

as robustness on the results of 1C criterion.   
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Figure 5.18: Distribution of individual values for “machining error” criterion (C1) during evolutionary optimisation.  

 

Figure 5.19 illustrates the evolution trend of obtained solutions referring to 2C criterion by taking into 

account the effect of criteria 1C and 3C as well. Even though the trends imply a superior performance 

from GA’s side against MOVEGA for this particular criterion, MOVEGA has also reached the same 

optimal solutions. In fact, tests 1 and 5 report some solutions obtained by MOVEGA, very close to 

those obtained by GA while in test 3 MOVEGA manages to outperform GA despite its inherent 

emphasis to the rest criteria. By considering all six confirmation tests, only the 2nd and the 4th exhibit 

a clear dominance of GA over MOVEGA for 2C criterion.         
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Figure 5.19: Distribution of individual values for “machining error deviation” criterion (C2) during evolutionary optimisation.  

 

Figure 5.20 illustrates the evolution trend of obtained solutions referring to 3C criterion by taking into 

account the effect of criteria 1C and 2C as well. As it is evident from the six distribution trends 

referring to 3C criterion the MOVEGA completely dominates over the GA with significant differences 

in the results obtained for the number of cutting points. As regards the GA, advantageous results for

3C criterion are only reported in test 4. Test 3 reports a single advantageous result obtained by GA 

near 100th evaluation for number of cutting points and test 5 reports another one near 90th 

evaluation.       
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Figure 5.20: Distribution of individual values for “number of cutting points” criterion (C3) during evolutionary optimisation.  

 

By assuming that none of the best results is truly optimal, it would be reasonable then to consider 

their average values in order to set the parameters presented by the phenotypic representations of 

candidate solutions. In order to verify this assumption while bearing in mind the actual industrial 

conditions as well, the average values of tool path parameters recommended by both algorithms 

were applied to formulate the respective machining tool paths and conduct material removal 

simulations. The average values for tool path parameters are tabulated in Table 5.9. According to the 

average values MOVEGA recommends 44.281% (7.085mm) as a percentage of the cutting tool’s 

diameter for stepover, 12.943° for lead angle, 2.155° for tilt angle and 5.842 mm for maximum 
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discretisation step whereas GA recommends 39.566% (6.330 mm) as a percentage of the cutting 

tool’s diameter for stepover, 13.726° for lead angle, 2.624° for tilt angle and 4.920 mm for maximum 

discretisation step. The percentage differences for the averages as the recommended tool path 

parameter values are 10.65%, 8.98%, 17.87% and 15.78% for stepover, lead angle, tilt angle and 

maximum discretisation step respectively.  

Table 5.9: Average values of the recommended optimal 5-axis tool path parameter values (MOVEGA and GA). 

Algorithm Tool Stepover Lead angle Tilt angle MaxDstep 

MOVEGA 2 44.281 12.493 2.155 5.842 
GA 2 39.566 13.726 2.624 4.920 

 

To examine whether there is a statistically significant difference among the solutions obtained from 

both algorithms three statistical significance tests were conducted, two 2-sample variance tests and 

one paired t-test with regard to the 450 function evaluations. All non-dominated solutions were 

treated as independent populations with an adequate number of samples to perform the tests. The 

first 2-sample variance test deals with the examination of significantly different variance ratios / 

standard deviation ratios among the populations of solutions for MOVEGA algorithm. The second 2-

sample variance test deals with the examination of significantly different variance ratios / standard 

deviation ratios among the populations of solutions for GA algorithm. The third and last test 

compares the populations of solutions of the two “different” algorithms. The results are reported in 

Tables 5.10, 5.11 and 5.12 for the samples of MOVEGA, GA and MOVEGA-GA respectively.         

 

Table 5.10: 2-sample variance ratio test for detecting significant differences among results of MOVEGA. 

MOVEGA pairs N:450 1st-2nd 1st-3rd 1stCP-4thCP 1stCP-5thCP 1stCP-6thCP 

StDev  0.106-0.103 0.106-0.113 0.106-0.109 0.106-0.093 0.106-0.097 
Variance (V)  0.011-0.011 0.011-0.013 0.011-0.012 0.011-0.009 0.011-0.009 

95% CI for Variances 
 [0.007,0.018] 

[0.007,0.016] 
[0.007,0.018] 
[0.009,0.019] 

[0.007, 0.018] 
[0.008, 0.018] 

[0.007,0.018] 
[0.006,0.013] 

[0.007,0.018] 
[0.006,0.015] 

StDevs ratio  1.035 0.944 0.976 1.141 1.093 
Variances ratio  1.071 0.892 0.954 1.301 1.194 

CI for StDev ratio 
Bonett [0.748,1.422] [0.689,1.258] [0.711, 1.309] [0.827,1.552] [0.789,1.507] 
Levene [0.776,1.318] [0.697,1.162] [0.656, 1.056] [0.881,1.506] [0.854,1.440] 

CI for Variance ratio 
Bonett [0.560,2.023] [0.475,1.582] [0.506, 1.713] [0.684,2.408] [0.623,2.270] 
Levene [0.603,1.736] [0.486,1.350] [0.431, 1.115] [0.776,2.269] [0.729,2.073] 

p -value 
Bonett 0.827 0.695 0.873 0.399 0.575 

Levene 0.938 0.419 0.134 0.300 0.435 
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Table 5.11: 2-sample variance ratio test for detecting significant differences among results of GA. 

GA pairs N:450 1st-2nd 1st-3rd 1st-4th 1st-5th 1st-6th 

StDev  0.092-0.091 0.092-0.080 0.092-0.096 0.092-0.103 0.092-0.087 
Variance (V)  0.008-0.008 0.008-0.006 0.008-0.009 0.008-0.011 0.008-0.008 

95% CI for Variances 
 [0.005,0.014] 

[0.006,0.012] 
[0.005,0.014] 
[0.004,0.010] 

[0.005, 0.014] 
[0.006, 0.014] 

[0.005,0.014] 
[0.007,0.017] 

[0.005,0.014] 
[0.005,0.011] 

StDevs ratio  1.016 1.153 0.964 0.892 1.055 
Variances ratio  1.032 1.329 0.930 0.796 1.114 

CI for StDev ratio 
Bonett [0.694,1.393] [0.787,1.586] [0.656, 1.343] [0.603,1.281] [0.723,1.428] 
Levene [0.885,1.514] [0.942,1.534] [0.789, 1.287] [0.712,1.153] [0.872,1.450] 

CI for Variance ratio 
Bonett [0.482,1.939] [0.619,2.516] [0.431, 1.803] [0.364,1.641] [0.523,2.040] 
Levene [0.783,2.294] [0.887,2.352] [0.623, 1.656] [0.506,1.330] [0.761,2.103] 

p -value 
Bonett 0.924 0.421 0.832 0.524 0.747 

Levene 0.301 0.139 0.966 0.410 0.375 

 

Table 5.12: Paired t-test for detecting significant differences among non-dominated solutions of MOVEGA and GA. 

MOVEGA 
– GA 
pairs 

N:450 1st-1st 2nd-2nd 3rd-3rd 4th-4th 5th-5th 6th-6th 

Means  0.344-0.374 0.337-0.357 0.351-0.353 0.344-0.357 0.329-0.374 0.337-0.343 
St.Dev.  0.106-0.092 0.103-0.091 0.113-0.080 0.109-0.095 0.093-0.103 0.097-0.087 
SE Mean  0.005-0.004 0.005-0.004 0.005-0.003 0.005-0.004 0.004-0.005 0.004-0.004 
95% CI 
for mean 
diff. 

 
[-0.032,-0.027] [-0.022,-0.018] [-0.005,0.001] [-0.015,-0.012] [-0.047,-0.044] [-0.008,-0.005] 

T -value  -25.01 -24.23 -1.14 -15.16 -57.25 -7.49 

p -value  0.001 0.001 0.254 0.001 0.001 0.001 

 

By taking into account the results of 2-variance tests for MOVEGA and GA individually as well as the 

paired t-test for both algorithms, it is concluded that the two algorithms significantly differ in the 

overall functional behaviour when dealing with the generalized sculptured surface CNC machining 

optimisation problem as it has been formulated and reported in the thesis.  

The average values taken as the optimal recommended for tool path parameters were applied to 

simulate the benchmark sculptured part used for establishing and conducting the RSM-CCD 

experiment presented in this chapter. The results examined refer to the number of cutting tool 

positions regarding the entire surface and its curvature characteristics as well as surface quality as an 

output virtually assessed using the utilities of CAM software corresponding to this performance 

metric. By simulating a feed rate fV = 1500 mm/min, 9 subsequent cutting passes with 393 cutting 

tool positions were occurred for MOVEGA’s recommended tool path whereas 11 subsequent cutting 

passes with 401 cutting tool positions were occurred for GA’s recommended tool path. By considering 

the variability of sculptured parts in terms of their geometric properties such differences may 
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correspond to dramatically increased actual machining times. Figure 5.21 illustrates the simulated 

models where both the tool path and the material removal are depicted as CAM software outputs.         

 

 
Figure 5.21: CAM software outputs using the average values of the recommended 5-axis tool path parameters: simulated 

tool paths and machined models for (a) MOVEGA and (b) GA.  

 

5.4  Conclusions 

 
Major scope of the chapter was the investigation of the efficiency of the multi-objective virus-

evolutionary genetic algorithm (MOVEGA) on solving the sculptured surface machining problem and 

the identification of the best possible algorithm-specific parameter settings. With reference to the 

response surface experiments conducted and analysed it was shown that values corresponding to 

intermediate levels for the algorithm’s parameter settings are generally preferable as the balance 

between exploration and exploitation is successfully maintained despite the stochastic nature of the 

algorithm and the high curvature detected to the experimental results. The MOVEGA integrating the 

proposed optimisation methodology provides robust schemata that represent “optimal” outputs for 

tool path parameters and they are repeatable under the perspective of statistically insignificant 

differences in the results despite the stochastic nature and functional complexity. The results indicate 

that the viral operators accompanying the algorithm have significant (positive) effect on the results 

(a) 

(b) 
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and it is clear that they positively contribute to the solutions of the generalized sculptured surface 

CNC machining problem. The magnitudes in terms of the main population and the population of 

viruses as a fraction of the former, was a result of several individual research efforts aiming at 

proposing a low-cost and efficient optimisation framework for the sculptured surface CNC machining 

problem. The methodology from the perspective of the MOVEGA may effectively operate using larger 

magnitudes for populations (candidate solutions and viruses), yet, at the expense of computational 

cost. Nevertheless it is the job of the decision-maker to determine whether it is worth using the 

methodology with such large magnitudes for these attributes with reference to the impact case 

he/she handles. The problem’s nature as it has been formulated and discussed in this PhD thesis 

provides multi-objective Pareto fronts where all criteria are required to be minimised. This does not 

imply that the non-dominated solutions other than that closer to the origin are useless since cases for 

optimal tool paths when it comes to semi-finishing operations may also need to be examined. In such 

cases the final selection as well as its application so as to obtain the “optimal” output depends on the 

decision-maker’s preferences and technical restrictions accompanying the impact case. Hence, it is 

possible to select a non-dominated solution other than the “optimal” one from the set that Pareto 

front provides according to the regions distinguished and related to the significance of each individual 

criterion. The intervals referring to tool path parameters for the benchmark sculptured part used for 

designing the response surface experiments are experimental and they have been selected to provide 

results with profound differences to facilitate the experimental investigation towards the optimal 

performance of MOVEGA. Regardless of the machining case, either experimental or actual according 

to industrial requirements, the intervals for tool path parameters are essential and should be 

meaningful, applicable and reliable in order to formulate a true search domain for the problem at 

hand.  

The results presented and discussed in this chapter are the latest research outputs from a broader 

study aiming towards the direction of fine-tuning the algorithm-specific parameters of the MOVEGA 

integrating the proposed optimisation methodology. Similar efforts have been made using different 

inputs, i.e. benchmark mathematical functions, however, they do not truly reflect the problem 

discussed in this thesis and the results corresponding to such experiments cannot be trusted to 

determine the functionality of the algorithm. The recommended settings for the algorithm-specific 

parameters applied to optimise the tool paths for the machining operations of benchmark sculptured 

parts previously presented in Chapter 3. The results related to these experiments are rigorously 

compared to those available by other researchers for the same problem, using the same benchmark 

sculptured surfaces.       



 
 

171 
 

Chapter 6 

Experimental validation   

 

6.1  Introduction 
 

This chapter reports the results obtained for validating the results of the intelligent methodology 

presented to optimise the generalized sculptured surface CNC machining problem. The results 

obtained refer to several tests conducted using the benchmark sculptured surfaces presented in 

chapter 3. The results are presented with regard to the category of experiments performed, 

algorithmic and process-related.  

The category of algorithmic experiments deals with the selection and the implementation of modern 

intelligent algorithms other than the one presented (MOVEGA) for integrating the optimization 

methodology. To establish a common problem-solving environment for rigorously testing and 

comparing the algorithms, regression equations relating tool path parameters to the optimisation 

criteria, were generated with reference to the series of experiments reported in chapter 3. The multi-

objective optimisation versions of algorithms selected for comparisons with MOVEGA are the multi-

verse algorithm (MOMVO), the ant-lion optimizer (MOALO), the grey-wolf optimizer (MOGWO), the 

dragonfly algorithm (MODA) and another version of a multi-objective genetic algorithm (evMOGA). 

These algorithms were developed in Mathworks® MATLAB® by their inventors whilst they have been 

deployed using the recommended settings for their algorithm-specific parameters.        

The category of process-related experiments deals with the implementation of the intelligent 

methodology proposed in this PhD thesis to the most complex benchmark sculptured parts in order 

to compare corresponding outputs to those already available in the literature by other researchers 

referring to the same problem and ultimately by using the same resources wherever this was 

possible. For this particular category the methodology presented was applied to the benchmark 

sculptured parts by considering them as impact cases for generating their tool paths, simulating 

them, proceed on actual machining and finally examine the experimental results in comparison to the 

most well-known and often-employed methods for tool path planning / optimisation.     
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6.2  Methodology validation with algorithmic tests using modern 

multi-objective evolutionary algorithms (MOEAs) 
        

The aforementioned algorithms adhere to different backgrounds in terms of their operational 

behaviour even though they share some common utilities. For the sake of rigorous comparisons the 

functions and parameters of the algorithms have been set as per their inventors’ recommendations 

for “optimal” performance whereas to provide the same problem domain for each impact case 

(benchmark surface).The generalized sculptured surface CNC machining optimization problem has 

been expressed here through empirical relations involving the independent variables (tool path 

parameters) and the responses (optimization criteria).  

It should be mentioned that, by no means can such an approach express the generalized sculptured 

surface CNC machining optimization problem, yet it may establish a quite reliable solution domain to 

navigate to, for comparison purposes regarding the aforementioned antagonizing algorithms. 

Nevertheless, the algorithms could be improved by using the CAD/CAM system’s compatible 

programming language so as to handle the problem as MOVEGA does, however such an attempt goes 

far beyond the research of this PhD thesis. It should be noted that the methodology presented in the 

thesis has been developed in a way that any intelligent algorithm compatible to the environment 

could integrate the proposed optimisation methodology instead of MOVEGA.      

6.2.1 Fundamental features and properties of selected MOEAs   
 

6.2.1.1 Multi-objective multi-verse optimizer – MOMVO (Mirjalili et al. 2017). 

MOMVO algorithm (Mirjalili et al. 2017) adheres to the principles of some cosmological theories 

suggesting that multiple universes exist and simulates their interaction through white hole, black hole 

and worm hole. According to Physics objects may be transferred form a universe via a tunnel from a 

white hole towards a black hole. As regards worm holes, they are capable of moving objects form the 

“boundaries” of a universe to the “boundaries” of another without the presence of a white or black 

hole. MOMVO is an evolutionary algorithm and as such it belongs to the population-based heuristics. 

Optimization procedure initializes a set of candidate solutions. Each candidate solution is considered 

to be a “universe” whilst variables are analogous to “objects” in the universe. MOMVO deploys its 

specific operators to combine solutions and distinguish elite ones. To achieve combination among 

solutions white and black holes are randomly generated in the “universes” causing the movement of 

objects. MOMVO evaluates an objective function as it occurs to all heuristics. MOMVO employs also 
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the inflation rate which is one of MOMVO’s algorithm-specific parameters and simulates the growing 

speed of a “universe” computed proportional to the objective function. In other words, inflation rate 

is the objective value attained by evaluating the objective function for a given “universe”. In MOMVO 

when inflation rate increases a higher probability occurs for white holes to improve solutions. On the 

contrary existence of black holes is inversely proportional to inflation rate causing the variables’ flow 

from worse “universes” to better ones. 

By incorporating the aforementioned features in MOMVO any solution can contribute to the 

generation of new solutions as opposed to crossover that mates only two parents for producing a 

child. In addition white and black holes maintain exploration of solution space owing to changing 

solutions in a sudden sense. The “elitistic” behaviour of MOMVO keeps the best solutions obtained so 

far whereas worm holes generate tunnels between the best solution and any other solution to pass 

information and this finally aims to improve exploitation in MOMVO.        

6.2.1.2 Multi-objective ant-lion optimizer – MOALO (Mirjalili et al. 2015). 

The multi-objective ant-lion optimization algorithm – MOALO simulates the hunting behaviour of 

antlions found in nature. There are five steps for hunting a prey such as the random walk (scouting) of 

ants, trap building, ant trapping, prey catching and trap rebuilding. Technically the MOALO simulates 

the interaction of antlions and ants as a population-based heuristic whereas optimal solutions are 

approximated by initializing a group of random solutions. The main goal of ants is to explore the 

search space. They are supposed to move around the search space by taking a random walk. The 

antlions maintain the best position obtained by the ants and guide the search of ants towards 

promising regions of the search space.  

The general steps of MOALO for exchanging information among antlions and ants and gradually 

reaching global optimum according to the natural procedure stated above are the following:   

a. Random initialization of a number of ants as main search “agents”. 

b. Ant fitness evaluation regarding the objective function. 

c. Random walk of ants around the antlions in the search space. 

d. The population of antlions is never evaluated. In fact, antlions assumed to be on the location 

of ants in the first iteration and relocate to the new positions of ants in the rest of iterations if 

the ants become better. 

e. There is one antlion assigned to each ant and updates its position if the ant becomes fitter. 

f.  There is also an elite antlion which impacts the movement of ants regardless of their 

distance. 



 
 

174 
 

g. If any antlion becomes better than the elite, it will be replaced with the elite. 

h. Steps b to g are repeated until stopping criteria are met. 

The mathematical model and programming modules proposed for each of these steps are reported in 

(Mirjalili, Jangir and Saremi, 2017). 

6.2.1.3 Multi-objective grey-wolf optimizer – MOGWO (Mirjalili et al. 2014). 

Multi-objective grey-wolf optimizer – MOGWO is another population-based algorithm that simulates 

the behaviour in terms of leadership hierarchy of grey-wolves. In engineering computation four types 

of grey wolves, alpha, beta, delta and omega are distinguished. Moreover, three types of hunting 

techniques are followed as major steps by the grey-wolves, prey searching, prey encircling (trapping) 

and attacking. These steps are also the computational steps for conducting optimization to a problem 

with this algorithm. Grey-wolves use to live in packs consisting of 5 to 12 grey-wolves in average. They 

have a very strict social hierarchy starting from alphas, which are a male and a female grey-wolf. 

Alphas are responsible for decision making when it comes to hunting, sleeping place, wake time, and 

so on. These decisions should be followed by the rest of grey-wolves in the pack. A more 

“democratic” behaviour about the living behaviour of grey-wolves has also been observed where 

alphas may follow the rest of the wolves in the pack. Alpha wolves are those who dominate in their 

corresponding packs whilst they are the only ones allowed to mate. Surprisingly, alpha wolves are not 

necessarily the strongest members in a patch but the best in managing and strategic decision making. 

This implies that discipline and organization is much more essential than strength at least when it 

comes to grey-wolves.    

Second in hierarchy come the “beta” grey-wolves. The “betas” act as advisors to alphas and help 

them in decision making as well as other pack activities. Betas may be males or females whereas they 

are probably the best candidates to be alphas, should an alpha wolf passes away or grows too old. 

Even though a beta wolf should respect an alpha one, a beta may command the rest low-level wolves, 

as a discipliner. Thus, the beta emphasizes alpha’s commands to the whole pack and feedbacks to 

alpha. Omega grey-wolves are the lowest in hierarchy.      

The lowest ranking grey-wolves are “omegas”. Omegas undertake the role of scapegoats. Omega 

wolves always submit to all the rest dominant wolves and they are the last ones allowed to eat. 

Though it seems that omegas are not just as important individuals in the pack as alphas or betas, it 

has been observed that the whole pack can face internal fighting and problems in case of losing an 

omega owing to the venting of violence and frustration of all wolves by the omegas. This contributes 

to the entire pack’s satisfaction and maintains the dominance structure. A grey-wolf other than 
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alphas, betas and omegas is considered to be a “delta”. Delta grey-wolves report to alphas as well as 

betas, yet, they dominate omegas. Scouting wolves, sentinels, hunters and caretakers are fall to this 

category. They watch the bounds of their territory and warn the pack for imminent dangers. All 

engineering computation steps and programming modules corresponding to the steps for executing 

MOGWO algorithm are reported in (Mirjalili et al. 2014). 

6.2.1.4 Multi-objective dragonfly algorithm – MODA (Mirjalili et al. 2016). 

Dragonflies are considered as small predators hunting almost all other smaller insects found in 

nature. Nymphs also predate on other marine insects or small fishes. What is interesting about 

dragonflies is their unique swarming behaviour. Dragonflies swarm only for two major goals, hunting 

and migrating. The former is known as the static (feeding) swarm whereas the latter is known as the 

dynamic (migratory) swarm. When it comes to static swarm dragonflies formulate small groups flying 

back and forth over a small region to hunt other preys such as butterflies and mosquitoes (Wikelski et 

al. 2006). Local movements and abrupt changes in the flying path are the major characteristics of a 

static swarm. When it comes to dynamic swarms a vast number of dragonflies migrate towards long-

distanced directions (Russell et al. 1998).  

These two swarming behaviours implemented to MODA algorithm simulate the two mandatory 

attributes of optimization algorithms, exploration and exploitation. Dragonflies formulate sub-

swarms to fly over several territories in a static swarm, which is the objective of the exploration 

phase. In addition, if a static swarm is formulated by a larger number of dragonflies flying along one 

specific direction facilitates the exploitation phase.  According to Reynolds, the behaviour of swarms 

follows three primitive principles (Reynolds 1987): 

a. Separation - referring to the static collision avoidance of individuals from other individuals in 

the searching neighbourhood, 

b. Alignment – that indicates velocity matching of individuals to that of other individuals in the 

searching neighbourhood, and 

c. Cohesion - referring to the tendency of individuals towards the centre of mass of the 

searching neighbourhood. 

As survival is the major objective of any type of swarm or tribe, all individuals (candidate solutions) 

ought to be attracted towards food sources and avoid outward enemies. Exploration and exploitation 

phases as well as major steps that MODA algorithm deploys to solve an optimization problem are 

mathematically modelled and reported in (Mirjalili et al. 2016). 
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6.2.1.5 Evolutionary multi-objective genetic algorithm – evMOGA (Martinez et al. 2009). 

Martinez et al. (2009) suggested a multi-objective genetic/evolutionary algorithm in order to obtain 

robust non-dominated sets of solutions well-distributed in Pareto fronts. The evMOGA algorithm 

follows the functional principles of the non-dominated sorted genetic algorithm where the elitistic 

behaviour for preserving some few outstanding candidate solutions for next generations, can be 

controlled. Non-dominated solutions of early function evaluations are stored internally and to a 

separate log file. The rest of the non-dominated solutions form the evolving set is stored in an 

external archive. This ensures minimal disruption of Pareto front solution patterns already obtained 

by earlier function evaluations.  

 

6.2.2 Algorithmic experimental results   
 

Ten individual try outs were determined with 10 candidate solutions to be evolved for 5 generations 

which is equal to 450 function evaluations for all MOEAs. Pareto 3D criterion was formulated using 

the regression models developed (a model per benchmark surface) and after normalizing their 

corresponding outputs in the {0-1} interval. To create the regression models the 2nd order polynomial 

relation presented in Equation 5.2 (Chapter 5) was adopted and is also given here for easy reference, 

as Equation 6.1.       

2

0

1 1 1 1

k k k k

i i ii ii ij i j

i i i i j

Y x x x x   
= = =  =

= + + +         Eq. 6.1 

where Y represents the responses, k is the overall number of independent variables, 0 is a constant 

term and i, ii, ij accompanying  are the coefficients for linear, quadratic and interaction terms 

respectively. Finally, ,i jx x represent the coded levels for the independent parameters.  

From the ten runs of each MOEA and benchmark surface, the best (minimum), the worst (maximum) 

the average and the standard deviation of solutions were considered. The study considers the time-

consuming effort and computational burden of the approach when operating using CAM software 

and this justifies the aforementioned settings. During the tests all MOEAs were operated according to 

the last best population to investigate to what extend the suggested “optimal” solution could be 

improved. Tables 6.1, 6.2, 6.3 and 6.4 summarize the results of mean values for best (minimum), 

worst (maximum), average and standard deviation for all MOEAs and test surfaces. Figure 6.1 gives a 

graphical comparison among the best (minimum) solutions of MOEAs regarding the number of 
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executions per benchmark sculptured surface. In all cases MOVEGA attained the minimal result, thus, 

improving the multi-objective optimization criterion (Pareto 3D).  

Table 6.1: Optimization results for MOEAs with regard to the benchmark sculptured surface 1 (SS-1). 

Indices / Metrics MOVEGA nvMOGA MOMVO MOALO MOGWO MODA evMOGA 

10min ffp  0.513 0.520 0.546 0.558 0.547 0.546 0.630 

10max ffp  1.470 1.343 0.854 0.999 1.003 0.929 0.874 

10avg ffp  0.625 0.610 0.637 0.688 0.657 0.632 0.699 

10stdev ffp  0.070 0.089 0.068 0.098 0.102 0.078 0.059 

 

Table 6.2: Optimization results for MOEAs with regard to the benchmark sculptured surface 2 (SS-2). 

Indices / Metrics MOVEGA nvMOGA MOMVO MOALO MOGWO MODA evMOGA 

10min ffp  1.085 1.093 1.193 1.209 1.242 1.273 1.390 

10max ffp  2.052 2.384 2.364 2.461 2.558 2.327 2.217 

10avg ffp  1.154 1.232 1.611 1.668 1.784 1.696 1.739 

10stdev ffp  0.084 0.168 0.275 0.250 0.300 0.232 0.210 

 

Table 6.3: Optimization results for MOEAs with regard to the benchmark sculptured surface 3 (SS-3). 

Indices / Metrics MOVEGA nvMOGA MOMVO MOALO MOGWO MODA evMOGA 

10min ffp  0.411 0.418 0.466 0.454 0.461 0.458 0.620 

10max ffp  1.309 1.303 1.076 1.295 1.266 1.256 1.174 

10avg ffp  0.426 0.498 0.740 0.848 0.813 0.791 0.790 

10stdev ffp  0.080 0.142 0.172 0.212 0.217 0.243 0.132 

 

Table 6.4: Optimization results for MOEAs with regard to the benchmark sculptured surface 4 (SS-4). 

Indices / Metrics MOVEGA nvMOGA MOMVO MOALO MOGWO MODA evMOGA 

10min ffp  0.848 0.879 0.876 0.917 0.857 0.907 1.085 

10max ffp  1.599 1.757 1.406 2.080 1.896 1.789 1.594 

10avg ffp  0.861 1.079 1.065 1.572 1.199 1.173 1.267 

10stdev ffp  0.060 0.124 0.166 0.314 0.243 0.231 0.143 
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Figure 6.1: Optimal Pareto results for the independent algorithmic evaluations: (a) SS-1, (b) SS-2, (c) SS-3, (d) SS-4. 

 

The algorithmic study also demonstrates the MOVEGA's ability to produce approximately the same 

result, since for each independent test, final points were obtained with very small differences. Figures 

6.2 to 6.5 show the convergence diagrams for the tests exhibited the optimum result for all the 

algorithms examined, taking as objective functions the regression models based on the experiments 

carried out for the benchmark sculptured surfaces presented in Chapter 3. Figure 6.2 shows the 

algorithms’ convergence diagrams for the best test out of the 10 totals for each of those concerning 

the benchmark sculptured surface SS-1. It is clear that the competitive algorithms that actually follow 

a swarm-based intelligent philosophy attain faster convergence towards the best result in relation 

with nvMOGA and MOVEGA. Nevertheless, the last two, nvMOGA and MOVEGA, maintain the 

convergence beyond the evaluation numbers where results for the algorithms-competitors are 

obtained. This significant development is observed in 315th function evaluation and further where 

both nvMOGA and MOVEGA continue the downward path towards the minimum, while even more 

intense convergence is presented by MOVEGA. 

(a) (b) 

(c) (d) 
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Figure 6.2: Comparison of best runs for MOEAs for SS-1. 

 

Similar behaviour is also observed for the algorithms with regard to their best algorithmic tests out of 

10 total, for the benchmark sculptured surface SS-2 (Fig. 6.3), except that nvMOGA and MOVEGA 

start to converge from much lower values than those of MOGWO, MOALO and MODA algorithms, a 

behaviour which was not observed in the corresponding convergence diagrams referring to surface 

SS-1. This is most likely due to effect of each objective function’s unique characteristics / factors on 

initialization operation for generating candidate solutions. In the case of benchmark sculptured 

surface SS-2 the difference in convergence speed between nvMOGA and MOVEGA is more profound 

with the latter to achieve the lowest objective value over all other algorithms. The trend of the abrupt 

convergence exhibited by the algorithms-competitors is obvious again, yet, without achieving a better 

result than of MOVEGA. Some of the convergence diagrams of algorithms-competitors seem to 

suggest local trapping to near-optimal values rather than a quick convergence to the best possible 

result. This phenomenon is strongly observable in the convergence diagrams of MOMVO, MOGWO 

and evMOGA algorithms. Nevertheless, the performance of MOMVO, MOGWO as well as MODA 

algorithms seems to be very good considering that their final result is quite close to the final point 

that MOVEGA suggests, while it is achieved during the very first function evaluations. 
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Figure 6.3: Comparison of best runs for MOEAs for SS-2. 

 

Figure 6.4 shows the algorithms’ convergence diagrams for the tests exhibited the optimum result 

relating to benchmark sculptured surface SS-3. In this case, all algorithms except MOGWO begin their 

convergence towards the optimal objective value, almost by the same starting point. Yet again, the 

greatest convergence speed in favor of MOVEGA against nvMOGA is clear. The steep convergence of 

the rest algorithms-competitors as a main feature is also apparent in this case, whereas there is a 

significant improvement in MOALO’s convergence trend, which is not observed in previous cases. 

Early convergence appears to be presented by the MODA and evMOGA algorithms, while the final 

results of both MOGWO and MOALO are deemed moderate. Final convergence path towards the 

optimal result for MOVEGA appears to start from the 360th function evaluation while nvMOGA 

exhibits a final steep convergence path in the last function evaluations. There is also a fairly similar 

behaviour in the convergence trend between MOVEGA and nvMOGA algorithms, during 90th and 

315th function evaluations, yet, the difference in MOVEGA's efficiency in terms of convergence 

compared to nvMOGA is evident and is clearly owing to viral operators. 
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Figure 6.4: Comparison of best runs for MOEAs for SS-3. 

 

Figure 6.5 shows the algorithms’ convergence diagrams for the tests exhibited the optimum result 

relating to benchmark sculptured surface SS-4. In this case, all algorithms seem to start their 

convergence by the same objective function values. MOVEGA and nvMOGA show almost identical 

behaviour in terms of their convergence, while the viral operator's contribution is evident from the 

280th evaluation up to the convergence to final result. As far as the rest of the algorithms-competitors 

are concerned, MODA and evMOGA appear to trap to local minima whilst evMOGA’s performance 

leads to a final result far from those obtained by the rest algorithms. 

By examining the overall performance of algorithms with emphasis to MOVEGA, it appears that the 

latter maintains a fairly stable convergence path regardless of the differences in the associated 

objective functions it evaluates for solving the sculptured surface CNC machining problem, at least 

when it is represented using regression models that correlate the criteria with regard to the 

independent variables. The same seems to apply to the rest of algorithms-competitors yet to a lower 

extent, an issue that does not allow for drawing safe conclusions as to their overall functionality and 

robustness for addressing the sculptured surface CNC machining problem. 
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Figure 6.5: Comparison of best runs for MOEAs for SS-4. 

 

Summarizing the observations on the results obtained by the best algorithmic tests and by 

considering their final results, it broadly seems that all algorithms-competitors present small 

deviations which could give the false impression that the algorithms show the same performance, 

hence, they can practically lead to the same outcome. To either prove, or reject this assumption, a 

series of statistical hypothesis tests were carried out to investigate for any statistically significant 

differences in the results obtained by the algorithms. 

Successive 2-sample t-tests were performed per pairs of algorithms considering all their non-

dominated solutions as independent populations. The null hypothesis 0H in all tests assumed that 

there is no statistically significant difference in MOVEGA’s results with any other multitude of results 

of the rest algorithms-competitors. The results of the 2-sample t-tests for all benchmark sculptured 

surfaces and best algorithmic tests are summarized in the Tables 6.5 to 6.8. In these results, as in 

previous statistical analyses of experiments, emphasis is given to p -value. For most of the pairs of 

algorithms it was found that there is a statistically significant difference between them and therefore 

it cannot be questioned that the results obtained by the algorithms examined, ultimately differ. It 

should be noted here that the sets of the non-dominated solutions resulting from each algorithm 

involve only the original ones and not their replicates, since it is common for intelligent algorithms to 
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exhibit the same solutions in a given time-span for performing evaluations until they finally converge 

to their best scores. This was done in order to reduce the inherent bias that would appear in 

statistical metrics such as the mean and standard deviation of each population, leading thus to an 

unreliable conclusion about whether or not the results of the algorithms-competitors are different. 

All pairs of algorithms included the MOVEGA as the major algorithm under question and another 

algorithm of those examined, whereas pairs between the algorithms-competitors themselves were 

not examined since this is of less importance for the current research. Table 6.5 summarizes the 

results for the 2-sample t-test with reference to the best experiment and its related results per 

algorithm and in accordance with the regression model representing the sculptured surface CNC 

machining problem using the benchmark sculptured surface SS-1. It is shown that MOVEGA and 

nvMOGA have presented a greater number of solutions than the other algorithms-competitors, 

suggesting that MOVEGA and nvMOGA are far more superior in terms of the accuracy in searching for 

the global best within the search space. 

Table 6.5: 2-sample t-test results for best runs of MOEAs for testing significant differences with regard to the benchmark 

sculptured surface 1 (SS-1). 

Pairs N Means StDev 95% C.I. for difference T -value p - value 

MOVEGA-nvMOGA 399-422 0.729-0.691 0.244-0.196 (0.0078, 0.0682) 2.47 0.014 
MOVEGA-MOGWO 399-100 0.729-0.621 0.244-0.090 (0.0593, 0.1567) 4.36 0.001 
MOVEGA-MOMVO 399-062 0.729-0.659 0.244-0.075 (0.0095, 0.1321) 2.27 0.024 
MOVEGA-MOALO 399-100 0.792-0.827 0.244-0.188 (0.0463, 0.1490) 3.74 0.001 
MOVEGA-MODA 399-100 0.729-0.606 0.244-0.052 (0.0757, 0.1720) 5.05 0.001 
MOVEGA-evMOGA 399-062 0.729-0.631 0.244-0.058 (0.0368, 0.1590) 3.15 0.002 

 

Table 6.6 summarizes the results for the 2-sample t-test performed for the best outputs from the 

total of 10 algorithmic experiments per algorithm with reference to the regression model 

representing the sculptured surface CNC machining problem using the benchmark sculptured surface 

SS-2. In this case, MOVEGA and nvMOGA have also provided a larger solution sets than those 

obtained by the rest of algorithms-competitors. In this particular case a minor statistical difference 

between MOVEGA’s and MOMVO’s results was found. However, this occurrence may not represent 

the true statistical conclusion since the number of solutions is much smaller than that of MOVEGA 

and consequently the overall outcome may be influenced by the comparison between two sets of 

solutions that are significantly different in their magnitudes. 

Table 6.6: 2-sample t-test results for best runs of MOEAs for testing significant differences with regard to the benchmark 

sculptured surface 2 (SS-2). 

Pairs N Means StDev 95% C.I. for difference T -value p - value 

MOVEGA-nvMOGA 474-441 1.031-1.098 0.173-0.182 (0.0448, 0.0908) 5.780 0.001 
MOVEGA-MOGWO 474-061 1.031-1.201 0.173-0.241 (0.1219, 0.2193) 6.880 0.001 
MOVEGA-MOMVO 474-030 1.031-0.995 0.173-0.131 (0.0990, 0.0276) 1.110 0.268 
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MOVEGA-MOALO 474-100 1.031-1.580 0.173-0.287 (0.5070, 0.5925) 25.26 0.001 
MOVEGA-MODA 474-100 1.031-1.101 0.173-0.262 (0.0286, 0.1114) 3.320 0.001 
MOVEGA-evMOGA 474-046 1.031-1.102 0.173-0.096 (0.0203, 0.1223) 2.750 0.006 

 

 

Table 6.7 summarizes the results for the 2-sample t-test performed for the best outputs from the 

total of 10 algorithmic experiments per algorithm with reference to the regression model 

representing the sculptured surface CNC machining problem using the benchmark sculptured surface 

SS-3. MOVEGA and nvMOGA have both presented an adequate number of solutions as opposed to 

the rest of algorithms-competitors, whilst evMOGA exhibits only 59 solutions. However the 

population size exceeds the limit for reliable statistical analysis, and therefore one can conclude that 

the results of MOVEGA and MOALO do not statistically differ in this particular case. For the rest of the 

pairs and the one between MOVEGA and nvMOGA in particular, the results have statistically 

significant differences.   

Table 6.7: 2-sample t-test results for best runs of MOEAs for testing significant differences with regard to the benchmark 

sculptured surface 3 (SS-3). 

Pairs N Means StDev 95% C.I. for difference T -value p - value 

MOVEGA-nvMOGA 398-442 1.320-1.371 0.255-0.253 (0.0171, 0.0859) 2.940 0.003 
MOVEGA-MOGWO 398-100 1.320-1.761 0.255-0.336 (0.3813, 0.5013) 14.45 0.001 
MOVEGA-MOMVO 398-100 1.320-1.424 0.255-0.246 (0.0488, 0.1600) 3.690 0.001 
MOVEGA-MOALO 398-100 1.320-1.349 0.255-0.243 (0.0848, 0.0262) 1.400 0.300 
MOVEGA-MODA 398-100 1.320-1.702 0.255-0.263 (0.3262, 0.4389) 13.33 0.001 
MOVEGA-evMOGA 398-059 1.320-1.691 0.255-0.305 (0.2992, 0.4428) 10.16 0.001 

 

 

Finally, table 6.8 summarizes the results for the 2-sample t-test performed for the best outputs from 

the total of 10 algorithmic experiments per algorithm with reference to the regression model 

representing the sculptured surface CNC machining problem using the benchmark sculptured surface 

SS-4. In this case, MOVEGA and nvMOGA do not exhibit statistically significant differences between 

them as it is indicated by the corresponding p -value. By observing the magnitudes of the solution 

sets for both MOVEGA and nvMOGA algorithms, one would advocate that the statistical conclusion of 

whether there are significant differences or not, can ultimately be affected by the equality of 

“sample” magnitudes considered. In other words, if the sample sizes examined are equal (or almost 

equal), then there is high possibility that no statistically significant differences are to be found. 

However, this is not valid because, such statistical tests emphasize on the average, the standard 

deviation, or median, rather than the sample size, and on the other hand, 2-sample t-test is robust 

enough to characterize such solution sets despite the difference in sample magnitudes provided that 

the limited size to allow for a reliable statistical analysis is satisfied. Besides, the paired t-test may be 

applied when it comes to statistical significance testing among pairs of results of the same magnitude.  
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Table 6.8: 2-sample t-test results for best runs of MOEAs for testing significant differences with regard to the benchmark 

sculptured surface 4 (SS-4). 

Pairs N Means StDev 95% C.I. for difference T -value p - value 

MOVEGA-nvMOGA 403-404 0.590-0.606 0.229-0.234 (0.0485, 0.0155) 1.01 0.313 
MOVEGA-MOGWO 403-100 0.590-0.662 0.229-0.138 (0.0247, 0.1186) 3.00 0.003 
MOVEGA-MOMVO 403-069 0.590-0.679 0.229-0.242 (0.0296, 0.1479) 2.95 0.003 
MOVEGA-MOALO 403-100 0.590-0.779 0.229-0.229 (0.1386, 0.2391) 7.38 0.001 
MOVEGA-MODA 403-100 0.590-0.794 0.229-0.236 (0.1538-0.2550) 7.94 0.001 
MOVEGA-evMOGA 403-060 0.590-0.787 0.229-0.180 (0.1361, 0.2576) 6.37 0.001 

 

 

 

The optimal parameter values proposed by each algorithm were transferred to the advanced 

machining workbench of Dassault Systemes® CATIA® V5R18 to compute the tool paths and conduct 

machining simulations aiming at examining manufacturing results directly from CAM outputs. All 

machining simulations were conducted by applying a tool path offset equal to 0.2mm above the ideal 

sculptured surface so as to ensure the noticeable differences in scallop height and excess material. In 

machining simulations productivity is characterized by machining and total times which are 

straightforwardly provided by CAM software whist surface finish is characterized by the excess 

material. For the particular evaluation of surface finish using the CAM outputs from the simulations, 

the volume of the excess material was measured rather than scallop height and / or chord error 

because the optimal results for the tool paths have been emerged without having taken into account 

the importance of CAM properties and without having made the necessary calculations reported in 

Chapter 3 for the clear and concise formulation of the generalized sculptured surface CNC machining 

problem as well as its optimisation, thus, the indices of scallop height and/or chord error cannot 

provide clear evidence of the machining accuracy via regression modelling. In addition, excess 

material and its graphical distribution over the ideal sculptured surface may, at least, provide 

information about the material geometry. Thus, a large scallop height with small material volume 

may suggest tall and sharp scallops. On the contrary low scallop heights accompanied to large 

volumes may indicate small but wide scallops.  

Examination of CAM outputs involved the geometric comparisons between the ideal model 

(benchmark sculptured surface) and the machined model. All geometric comparisons were conducted 

using 0.1mm precision which has been considered sufficient to detect and represent most of the 

features of the machined sculptured surface (Warkentin et al. 2000). The results obtained by the 

machining simulations are graphically illustrated in the following sections whereas the 

aforementioned results relating to machining and total times as well as excess material volumes are 

also reported in Tables.  
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The graphical representations of CAM outputs as manufacturing results present the machined models 

(as they occur from the application of the multi-axis sweeping strategy with its corresponding 

parameter values), the tool paths (where the number of passes is more profound, something that can 

characterize the cutting strategy from a production perspective) and finally the excess material 

volume in the form of a three-dimensional (3D) geometric "map". In the 3D geometric "maps" of 

excess material, the regions where the material has been deemed to be "completely" removed (and 

therefore no excess material is considered) are obvious, as well as the areas with obvious material 

left on the target surface, which may be represented either in the form of scallops, or in random 

formation, according to the material removal pattern depending on the tool path parameter values as 

well as the topological characteristics of such regions. The excess material’s magnitude depends on 

the tool path parameter values and the predetermined cutting tolerance regarding the machining 

case.  

Whether the differences between these results are graphically evident or not, depends mainly on the 

difference in the results of the values for the parameters proposed by the algorithms employed and 

on the geometrical characteristics - complexity of the benchmark sculptured surface. Fortunately, in 

this study, obvious differences were found mainly in the machined models, as well as in the three-

dimensional geometric "charts" of excess material, despite the small differences in parameter values. 

These differences are also observed in the results tables accompanying the graphical evidences 

(Tables 6.9 to 6.16) where the small but noticeable difference among the magnitudes of the 

measured values is given. The graphical results of the study are shown in Figures 6.6, 6.7, 6.8 and 6.9 

for the SS-1, SS-2, SS-3 and SS-4 benchmark sculptured surfaces respectively. Note that the 

classification of results for all tables (Tables 6.9 to 6.16) as well as figures (Figs 6.6 to 6.9) follows an 

ascending ranking according to the “best” (lowest) Pareto3D outputs obtained by the MOEAs.    
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Figure 6.6: CAM outputs, tool paths and 3D maps using optimal parameters for the benchmark sculptured surface SS-1:(a) 
MOVEGA, (b) nvMOGA, (c) MOALO, (d) MOMVO, (e) MOGWO, (f) MODA, (g) evMOGA. 

 

Table 6.9: Optimal Pareto3D tool path parameter values for best runs of MOEAs in ascending classification with regard to 

the benchmark sculptured surface 1 (SS-1). 

a/a best MOEA Pareto3D Best tool path parameters 

   Tool Stepover (D%) Lead (deg) Tilt (deg) MaxDstep (mm) 

1 MOVEGA 0.512070 2 22.378 20.053 0.112 1.386 
2 nvMOGA 0.515699 2 21.787 20.113 0.085 1.392 
3 MOALO 0.521878 2 24.786 21.082 0.736 1.299 
4 MOMVO 0.522748 2 10.000 20.000 0.874 0.700 
5 MOGWO 0.530664 2 37.696 21.870 4.954 1.250 
6 MODA 0.535120 2 17.825 20.262 1.155 1.397 
7 evMOGA 0.565565 2 13.295 20.687 0.760 1.372 

 

Table 6.10: Machining simulation outputs with regard to MOEAs’ best runs for benchmark sculptured surface 1 (SS-1). 

a/a best MOEA CAM simulation outputs  

  tm (sec) tT (sec) # passes VRem (mm3)  + h  (mm) # points 

1 MOVEGA 291.83 345.50 21 337.233 0.141 2400 
2 nvMOGA 292.53 345.57 21 345.300 0.147 2432 
3 MOALO 266.33 313.51 19 417.170 0.175 2329 
4 MOMVO 183.68 215.82 13 480.543 0.223 1648 
5 MOGWO 630.41 748.54 45 257.247 0.069 10137 
6 MODA 353.07 416.02 25 307.564 0.126 2901 
7 evMOGA 475.93 560.47 33 295.074 0.094 3942 
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Figure 6.7: CAM outputs, tool paths and 3D maps using optimal parameters for the benchmark sculptured surface SS-2:(a) 
MOVEGA, (b) nvMOGA, (c) MOMVO, (d) MOGWO, (e) MODA, (f) MOALO, (g) evMOGA. 
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Table 6.11: Optimal Pareto3D tool path parameter values for best runs of MOEAs in ascending classification with regard to 

the benchmark sculptured surface 2 (SS-2). 

a/a best MOEA Pareto3D Best tool path parameters 

   Tool Stepover (D%) Lead (deg) Tilt (deg) MaxDstep (mm) 

1 MOVEGA 0.852960 1 10.668 15.083 0.006 1.999 
2 nvMOGA 0.853417 1 10.745 15.001 0.089 1.998 
3 MOMVO 0.855975 1 10.000 15.000 0.000 1.781 
4 MOGWO 0.856093 1 10.714 15.000 0.177 2.000 
5 MODA 0.861344 1 11.375 15.000 0.449 2.000 
6 MOALO 0.879842 1 42.127 17.644 0.000 2.000 
7 evMOGA 0.982634 2 13.295 20.687 0.760 1.372 

 

Table 6.12: Machining simulation outputs with regard to MOEAs’ best runs for benchmark sculptured surface 2 (SS-2). 

a/a best MOEA CAM simulation outputs  

  tm (sec) tT (sec) # passes VRem (mm3)  + h  (mm) # points 

1 MOVEGA 559.59 694.86 31 047.118 0.0965 2646 
2 nvMOGA 559.73 695.03 31 047.890 0.0962 2646 
3 MOMVO 597.62 740.53 33 038.783 0.0939 3175 
4 MOGWO 560.54 560.54 31 046.852 0.0967 2631 
5 MODA 526.76 526.76 29 098.116 0.0998 2459 
6 MOALO 165.43 204.9 09 349.560 0.3380 0648 
7 evMOGA 630.48 818.83 33 403.860 0.1130 3046 
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Figure 6.8: CAM outputs, tool paths and 3D maps using optimal parameters for the benchmark sculptured surface SS-3:(a) 
MOVEGA, (b) nvMOGA, (c) MOMVO, (d) MOALO, (e) MOGWO, (f) evMOGA, (g) MODA. 

 

Table 6.13: Optimal Pareto3D tool path parameter values for best runs of MOEAs in ascending classification with regard to 

the benchmark sculptured surface 3 (SS-3). 

a/a best MOEA Pareto3D Best tool path parameters 

   Tool Stepover (D%) Lead (deg) Tilt (deg) MaxDstep (mm) 

1 MOVEGA 1.086005 2 34.649 19.995 0.040 1.011 
2 nvMOGA 1.086074 2 33.802 20.000 0.005 1.021 
3 MOMVO 1.086620 2 32.111 20.000 0.000 1.000 
4 MOALO 1.125946 2 45.000 15.000 1.237 2.287 
5 MOGWO 1.155664 1 41.270 17.075 0.000 1.000 
6 evMOGA 1.207695 2 44.476 16.867 1.762 1.000 
7 MODA 1.212903 2 44.600 19.800 0.935 1.270 
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Table 6.14: Machining simulation outputs with regard to MOEAs’ best runs for benchmark sculptured surface 3 (SS-3). 

a/a best MOEA CAM simulation outputs  

  tm (sec) tT (sec) # passes VRem (mm3)  + h  (mm) # points 

1 MOVEGA 346.28 375.48 27 249.228 0.2253 3046 
2 nvMOGA 346.29 375.49 27 248.798 0.2128 3000 
3 MOMVO 373.50 402.72 29 242.692 0.2066 3285 
4 MOALO 274.28 297.63 21 241.306 0.2806 0941 
5 MOGWO 306.10 340.59 23 254.653 0.2134 3285 
6 evMOGA 284.79 309.08 21 264.528 0.2936 2359 
7 MODA 285.46 309.81 21 256.563 0.2899 1716 
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Figure 6.9: CAM outputs, tool paths and 3D maps using optimal parameters for the benchmark sculptured surface SS-4:(a) 
MOVEGA, (b) MOMVO, (c) nvMOGA, (d) MOGWO, (e) MOALO, (f) MODA, (g) evMOGA. 

Table 6.15: Optimal Pareto3D tool path parameter values for best runs of MOEAs in ascending classification with regard to 

the benchmark sculptured surface 4 (SS-4). 

a/a best MOEA Pareto3D Best tool path parameters 

   Tool Stepover (D%) Lead (deg) Tilt (deg) MaxDstep (mm) 

1 MOVEGA 0.410083 2 10.084 39.978 1.649 2.497 
2 MOMVO 0.412033 2 33.412 32.636 2.435 2.317 
3 nvMOGA 0.412234 2 10.111 39.971 1.820 2.499 
4 MOGWO 0.415796 2 10.000 40.000 2.626 2.500 
5 MOALO 0.416677 2 17.797 38.534 1.688 1.930 
6 MODA 0.437219 2 10.453 39.628 1.988 2.416 
7 evMOGA 0.499220 2 13.295 40.000 1.077 2.327 

 

Table 6.16: Machining simulation outputs with regard to MOEAs’ best runs for benchmark sculptured surface 4 (SS-4). 

a/a best MOEA CAM simulation outputs  

  tm (sec) tT (sec) # passes VRem (mm3)  + h  (mm) # points 

1 MOVEGA 476.61 540.06 53 229.651 0.0550 2735 
2 MOMVO 152.50 173.68 17 235.133 0.1680 0864 
3 nvMOGA 477.33 540.88 53 230.800 0.0565 2730 
4 MOGWO 478.54 542.25 53 230.794 0.0524 2738 
5 MOALO 279.08 317.33 31 231.641 0.0935 1799 
6 MODA 467.10 528.90 51 231.590 0.0575 2722 
7 evMOGA 391.30 443.77 41 232.608 0.0750 2277 

 

With reference to the overall results presented for exploring the potentials of modern algorithms to 

optimise the sculptured surface CNC machining problem, MOVEGA achieved the best machining 

simulation outputs and multi-objective optimisation criterion in comparison to the rest of the 

algorithms-competitors at least for their given algorithm-specific parameter settings. In order to 

conduct the study on a common basis, the optimisation problem was formulated here by adopting 

regression models resulting from the individual designs of experiments reported in Chapter 3. 

Although this technique provides a common ground to study the abilities of the algorithms tested and 
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assists on the identification of statistically significant differences in the results they achieve, the 

problem’s representation is not as much sufficient and reliable as needed, compared to the 

philosophy of modelling it under the philosophy presented in this PhD thesis (see Chapter 3 - problem 

formulation). In order to rigorously compare these algorithms and draw crystal clear conclusions 

about their functional behaviour and the results they can obtain, they should be integrated to the 

methodology’s optimisation framework as it has been presented, supported and implemented using 

the MOVEGA. However, such an attempt goes far beyond the boundaries and  research scope of this 

thesis, nevertheless it is envisioned as a major future perspective towards the enhancement or the 

integration of the methodology’s current status with other intelligent systems to further extend its 

optimisation capabilities.     

6.3  Methodology validation with process-related results from 

competing sculptured surface CNC machining strategies 
 

This section reports the comparative observations among the results obtained by applying the 

proposed optimisation methodology for the generalized sculptured surface CNC machining problem 

and other similar methods dedicated to tool path planning and / or optimisation for multi-axis 

sculptured surface CNC machining. Some of the methods, even older, have already been applied to 

integrate computer-aided manufacturing systems that currently see service in industry while others, 

more recent, share similar functional principles with those developed in the past, for solving the 

sculptured surface CNC machining problem. The process of comparing the results referring to the 

different tool path planning and optimisation methodologies is far more challenging here, since 

results are obtained by taking series of measurements conducted to physical machining parts 

comprising sculptured surfaces which designed according to literature attributes, studied and 

manufactured for validating the methodology proposed in the PhD thesis. To achieve unbiased and 

rigorous comparisons among results, same resources and/or tooling as well as validation approaches 

were applied wherever it was feasible. Machining simulations for additional comparative analysis 

between the algorithm integrating the proposed methodology (MOVEGA) and the same algorithm 

without the application of viral operators (nvMOGA) was not performed since it has already been 

proved on several occasions that the former is superior to the latter (Figs 6.2 to 6.5 and Tables 6.9 to 

6.15). By considering the overall experimental observations for validating the proposed methodology 

against other methods it is deduced that the proposed methodology not only is competitive but also 

it implicitly accounts for the behaviour of adhering to noticeable characteristics related to the 

mechanics of multi-axis CNC machining processes, despite its stochastic nature.   
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6.3.1 Comparison to tool path generation / optimisation methods based on machining-

simulated outputs  
 

A first comparison among the results obtained by the different tool path generation / optimisation 

methods is referred to the average scallop height characterizing surface machining accuracy. The 

comparative analysis is referred to “Inclined tool - ITM”, “Principal axis – PAM” and “Multi-point 

machining – MPM” tool path generation / optimisation methods. Results from simulations using the 

aforementioned methods have been given by Warkentin et al. (1997) where a widely examined 

benchmark sculptured part was designed to play the role of an impact case to allow for rigorous 

comparisons among the results of the methods. The benchmark sculptured part has a significant 

research timespan from 1997 to 2017 (Lu et al. 2017, Chen et al, 2017, Gan et al. 2016, Xu et al. 2010, 

Warkentin et al. 2000, Rao et al. 1997). 

The benchmark sculptured surface representing the impact case for all these tool path planning / 

optimisation methods is a second-order, open-form parametric sculptured surface fully defined by 

Equation 6.2 and depicted in Figure 6.10. This surface is designated in the thesis as “SS-5”. 
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Figure 6.10: The 2nd order, open-form parametric benchmark sculptured surface (SS-5). 
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Warkentin (1997) compared his tool path planning / optimisation methodology “multi-point 

machining – MPM” to 3-axis ball end-milling, “Inclined tool - ITM” and “Principal axis – PAM”. To 

validate his results, he conducted machining simulation experiments using the benchmark sculptured 

surface illustrated in Figure 6.10 while studying the average scallop height for a range of tool path 

intervals (stepover values), from 1mm to 10mm with reference to a D16 Rc3 toroidal cutting tool. The 

same work was carried out to investigate the average scallop height on machining-simulated CAM 

outputs by applying the proposed optimisation methodology. Ten algorithmic evaluations were 

performed by simulating the same cutting tool and maintaining constant tool path intervals from 

1mm to 10mm while trying to find optimal values for the rest of tool path parameters, lead angle, tilt 

angle, and maximum discretization step. Average scallop height was computed after obtaining a 

significant number of pick-point measurements on each of the CAM output’s surface depending on 

the noticeable features indicating the error characterizing the surface. Cutting tolerance for the 

machining simulations was equal to ±0.05 for both excess and gouged material while the ranges for 

the rest of tool path parameters were from 1◦ to 5◦ for lead angle, 0◦ to 1◦ for tilt angle and 0.06mm 

to 0.10mm for MaxDstep. For the simulations referring to the tool path intervals from 1mm to 4mm 

an offset equal to 0.2mm was applied to the tool path in order to ensure that machining error owing 

to scallop height would be observable when examining the corresponding CAM outputs. Thereby, 

scallop height was computed by considering the results measured on profound scallops minus the 

offset value of 0.2mm. In general, the average scallop height obtained by applying the proposed 

optimisation methodology referring to all tool path intervals was found 93.21%, 65.82% and 12.48% 

lower than those reported for ITM, PAM and MPM respectively. Table 6.17 summarizes the results for 

average scallop heights per each methodology and tool path interval tested, while Figure 6.11 gives 

the graphical depictions of these results. Figure 6.12 illustrates the resulting CAM outputs per tool 

path interval tested using the proposed optimisation methodology and optimal parameter values.    

Table 6.17: Tabulated results of average scallop heights (μm) for ITM, PAM, MPM and proposed methodology (benchmark 

sculptured surface SS-5, cutting tool D16Rc3). 

Tool pass 

 interval (mm) 
Inclined Tool - ΙΤΜ Principal Axis - PAM Multi-point machining -MPM 

Proposed 

methodology 

1 02.10 0.40 0.40 0.40 

2 07.50 0.60 0.60 0.50 

3 15.30 0.70 0.90 0.80 

4 27.50 1.30 1.20 0.90 

5 49.40 2.70 1.60 1.30 

6 67.50 6.00 3.00 2.80 

7 100.5 12.9 5.30 3.60 

8 132.7 21.9 9.50 8.40 

9 162.2 37.5 16.2 13.1 

10 282.1 84.3 27.0 25.7 
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Figure 6.11: Comparative simulation results of average scallop height among the intelligent methodology and “Inclined Tool 
– ITM”, “Principal axis  – PAM” and “Multi-point machining  – MPM” methods under constant tool path intervals 

(benchmark sculptured surface SS-5, cutting tool D16Rc3).  
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Figure 6.12: Simulated CAM outputs for examining scallop height using the intelligent methodology (benchmark sculptured 
surface SS-5, cutting tool D16Rc3).  

 

Βy examining the graphical results depicted in Figures 6.11 and 6.12, with reference to Table 6.17, it is 

clear that the proposed methodology produces tool paths capable of maintaining surface quality for 

any tool path interval, and especially for those that side step spans from 5mm to 10mm. Specifically 

for these tool paths, surface quality is dramatically degraded since the distances between the 

successive tool trajectories increase, thus, increasing scallop height as well. 

 

The performance of the proposed method compared to ITM starts to be observed by the tool path 

interval of 2mm and beyond, which is quite reasonable since the ITM method is applied with fixed 

lead angles whose values should be given prior to the computations necessary for generating the tool 

path and without considering local surface curvatures as the tool removes material in feed direction 

resulting in poor surface quality even for low tool path intervals. This observation is evident from the 

relative graph presenting the irregular increase in average scallop height by ITM method. 
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The performance of the proposed method compared to the PAM method is observable for tool path 

intervals greater than, or equal to that of 5mm. While considering local curvatures, PAM method 

ignores feed direction which provides important information for computing tool paths when it comes 

to such methods since lead angle’s adjustment is based on feed vector. Instead, the proposed 

optimisation methodology does not need this kind of information since it is applied to already 

existing tool path planning scenarios whilst local curvatures corresponding to the various tool 

positions are calculated under an already defined feed direction. 

The performance of the proposed method compared to the MPM method is observable for the tool 

path intervals corresponding to the range of values from 7mm to 10mm, with respect to the toroidal 

cutting tool geometry used, while the shape of scallops is quite uniform. The MPM method considers 

both the local curvatures of a sculptured surface (yet implicitly) and feed direction. However, results 

from computations referring to the various tool orientations per surface regions, as well as the multi-

point contact requirement, may not always maintain efficiency in the case of different tool path 

intervals. In addition, the second cutting tool contact-point that needs to be determined for the 

successful implementation of the MPM method (Warkentin et al., 2000), might either yield a 

significant surface deviation regarding the ideal surface, or may not even exist.  

The optimisation methodology proposed in the thesis does not require finding optimal tool 

orientations with respect to local curvatures, but inherently imposes them as an optimisation side-

effect, based on the tool path strategy under the stochastic requirement to minimize the machining 

error for the problem’s generalized solution. Whether the advantageous cutting tool positions on the 

surface result in multi-point contact, depends on the optimal values for tool path parameters 

according to the selected machining strategy. 

Nevertheless, it is reasonable to assume that in order for the generalized result to satisfy productivity 

requirement in addition to quality, it is expected that optimal cutting tool positions generated by the 

optimisation methodology for sculptured surface CNC machining, should mostly achieve multi-point 

contacts to account for wider machining strip widths - MSW.   

The following section comments on the requirement of achieving multi-point cutting tool contacts 

with a given sculptured surface and presents the characteristics of the multi-point tool contact when 

it comes to convex and concave surface regions. 
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6.3.2 Effect of stochastically optimised tool path planning parameters on the multipoint tool-

surface contact      
 

By accepting that the contact between a cutting tool and a given sculpted surface is rather of a 

“multi-point” nature in the majority of cutting tool positions, a stochastic optimization methodology 

at its minimum ought to eventually result (even implicitly) to multi-point tool paths so as to increase 

machining strip width - MSW wherever is possible, with reference to the geometrical properties of 

the surface and cutting tool. In other words, any methodology developed for creating and/or 

optimising sculptured surface machining tool paths should adhere to the multi-point cutting tool 

contact effect as a key element to maximize efficiency of its tool path strategy in the complex case of 

the simultaneous multi-axis sculptured surface CNC machining (Sharma et al. 2018, Chen et al. 2017, 

Gan et al. 2016, He et al. 2015, Fan et al. 2013, Warkentin et al. 2000).  

In addition to the regular scallop material left between subsequent cutting passes, the multi-point 

contact also leaves excess material underneath the cutting tool. This excess material is acceptable as 

long as it satisfies the predetermined cutting tolerance. Figure 6.13 depicts the six cases for the multi-

point contact between a cutting tool and a sculptured surface, three referring to a concave surface 

(Fig.6.13a-6.13c) and three referring to a convex surface (Fig.6.13d-6.13f). According to Figure 6.13a 

the machining error will form owing to scallops among subsequent tool passes and material left 

between the two cutting points underneath the tool. Figure 6.13b suggests that machining error will 

form only between the two cutting points underneath the tool and Figure 6.13c implies that 

machining error is the result of the combination of the two aforementioned cases. The same also 

goes for the cases of multi-point tool contact with a convex surface (Fig.6.13d-6.13f). Note that these 

cases are also valid for flat end-mills (Lu et al. 2017).  

In the case of multi-point tool contact, machining error formation is an outcome of the error 

distribution curve which is the projection of the cutting tool’s characteristic curve, based on its 

inclined orientation on the surface whilst is in the form of a "W", at least as regards convex surfaces. 

The error distribution curve characterizes the degree of the geometrical matching between the 

cutting tool’s and the ideal surface’s different geometries, it is used by several researchers to 

estimate machining strip width - MSW (Figure 6.14). 
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Figure 6.13: Resulting machining error owing to multi-point tool contact for concave and convex sculptured surfaces.  

 

 

Figure 6.14: Machining error distribution curve and resulting machining strip width by applying a toroidal end-mill to 
machine a convex sculptured surface (Chen et al. 2017).  

 

In order to examine the characteristics of the optimised tool paths under the perspective of the multi-

point contact between the tool and the surface, measurements were taken on four discrete cross-

sections of the SS-5 surface in the case of the 50% tool path interval given the cutting tool diameter 
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of 16mm.  Based on Warkentin’s research (Warkentin 1997, Warkentin et al. 2000) four cross-

sections were examined at X = -5mm, X = -30mm, X = -60mm and X = -90mm. The results of the 

measurements obtained using 1 mm as the measuring step are shown in Figure 6.15 where both 

multi-point error and scallop height are visible. Multi-point contact errors are distinguished in the 

graphs of Figure 6.15 as low and wide whereas subsequent scallops owing to tool path interval are 

observed from the peaks which are taller than multi-point contact’s error. 

The magnitudes of these errors, multi-point contact and scallop height are affected by a number of 

factors such as the tool path’s cutter location topologies, the local curvatures of these locations, the 

tool path interval, lead and tilt angles and maximum discretization step. Other important aspects 

affecting these measurements are the selected value for the measuring step and the topologies 

where the measurements are taken for further evaluation. In order to ensure that an adequate 

number of measurements will be taken for the scope of multi-point error examination while 

maintaining low processing time, the value of 1mm for the measuring step was decided according to 

the benchmark sculptured surface SS-5 length of 103.2mm.  

The error is more noticeable in the areas where abrupt changes in curvature occur as the cutting tool 

removes material from the part. In open-form surfaces with low curvature variation the effect of 

multi-point machining error may not be noticeable enough. The results from the measurements 

graphically illustrated in Figure 6.15 show obvious indications of the multi-point tool contact with the 

machining-simulated benchmark sculptured surface SS-5. Machining error distribution follows the 

"W" trend to almost the entire measuring space referring to all four cross-sections, X = -5mm, X = -

30mm, X = -60mm and X = -90mm. A reasonable emphasis is given to cross-sections X = -30mm, X = -

60mm and X = -90mm where the tool has already left behind the approaching region where early tool 

positioning is produced (i.e., from X=0mm to X=-10mm) and moves towards the main surface region 

until its departure after X = -90mm. Obviously the surface region between X=-5mm and X=-90mm 

contains almost all successful tool positions produced by the tool path generation and therefore a 

profound multi-point machining error reasonably characterizes this surface portion. Note that the 

scale for presenting the measurements also affects the graphical illustrations referring to error owing 

to multi-point tool contact with the surface. If the error was examined using a narrower scale, i.e. 

±0.025mm the overall effect would be more noticeable. However the scale ±0.050mm has been 

deemed reasonable to graphically depict the resulting error given its magnitude, despite that the 

analogous illustrations in the work of Warkentin et al. (2000) have been reported using a larger scale, 

equal to ±0.100mm. Such a large scale was not considered in order to avoid unsuccessful depictions 

of the multi-point tool contact effect.   
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According to the comments made above and the illustrations presented in Figure 6.15 it can be 

argued that the optimal tool paths the proposed optimisation methodology formulates, adhere to the 

standard multi-axis surface machining behaviour despite the stochastic nature while they share much 

of the properties of multi-point machining for which they implicitly account for. As a result, optimally 

formulated tool paths by the implementation of the proposed methodology are expected to present 

wide enough machining strips, even though this objective has not been established as an 

optimisation criterion in advance. This is achieved because the algorithm prompts CAM software 

functions to affect the cutting tool trajectory of a standard tool path to increase efficiency. 
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Figure 6.15: Machining error distribution curve and machining strip width for a toroidal end-mill and a convex sculptured 
surface.  

 

6.3.3 Comparison to tool path generation / optimisation methods based on actual CNC 

machining results     
 

The results presented in this section are thoroughly related to actual CNC machining operations 

conducted by implementing the proposed methodology for optimising the generalized sculptured 

surface CNC machining problem and others corresponding to the same problem yet, under a different 

problem formulation philosophy. All methods have already been reviewed in Chapter 2 whilst all their 

outputs correspond to benchmark sculptured surfaces SS-1, SS-2 and SS-5.  

Machining operations of benchmark parts as well as corresponding quality inspections per impact 

case were carried out at Hellenic Aerospace Industry – H.A.I. (http://www.haicorp.com). The FOOKE 
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Endura® 5-axis gantry-type CNC machining center equipped with the SIEMENS Sinumerik® 840D CNC 

controller was used for the machining of sculptured surfaces. Al-5083 was selected as raw material 

for machining SS-1 and SS-2 whilst Al 7050 T-7451 was selected as raw material for machining SS-5. 

No particular reason was led to the different material selection for machining the parts, besides no 

specific working material was mentioned by the various comparative tool path planning / 

optimisation methods. This experimental effort was conducted for validating the successful 

application of the proposed research against others and is accompanied by a document 

substantiating the research validation with a reference number printed as a common practice for 

exposing public documents. An electronic copy of this document is available to Appendix A.  

The various tool path planning / optimisation methods are mentioned in the following text as the 

results obtained by the implementation of the proposed methodology are compared to those cited 

by mentioning their corresponding references. The results will be examined per benchmark 

sculptured surface since the various tool path planning / optimisation methods do not provide exactly 

the same outputs for full comparative analysis. To cover all experimental cases, the results presented 

for the proposed methodology refer to all these alternative performance metrics stated by the 

comparative methods.      

6.3.3.1 Benchmark sculptured surface SS-5 

The results obtained from simulations and the actual cutting experiment performed on SS-5 were 

compared to the results obtained by  Lu et al. 2017, Chen et al. 2017, Gan et al. 2016, Xu et al. 2010, 

Warkentin, Ismail and Bedi 200a, 2000b, Rao, Ismail and Bedi 1997 for the same benchmark 

sculptured surface. In the work of Warkentin et al. (2000) rigorous comparisons were made among 

simulations and machining results obtained by implementing the multi-point machining (MPM) 

method (Warkentin et al. 2000a, 2000b), against those obtained by Vickers and Quan (1989) and Rao 

et al. (1997) by employing the “inclined tool - ITM” and the “principal axis method – PAM” 

respectively. 

Comparisons were made regarding simulation and actual cutting trends referring to the surface 

deviation examined on four 2D cross sections (X=-5mm, X=-30mm, X=-60mm and X=-90mm) for 

which a number of measuring points were taken using a DEA CMM machine tool model. With 

reference to these results, inclined tool method reaches the lowest surface deviation error as the tool 

approaches the surface contour (X=-5mm) and is estimated as being close to 0.040mm. However, the 

largest surface deviation value exceeds 0.1mm. In all four cross-sections examined, “inclined tool” 

method presents a highly non-uniform error. PAM significantly improves the machining operation by 
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maintaining low surface deviation in all four-cross sections. The value for this deviation was estimated 

equal to 0.010mm at X=-5mm whereas the largest surface deviation value was observed at X=-60mm, 

equal to ±0.040mm. The whole deviation fluctuates strongly throughout the trend of both simulation 

and experimental results with emphasis to X=-5mm and X=-90mm cross-sections which is reasonable 

since lead and tilt angles yield higher vibration magnitudes in these surface regions (tool approach 

and departure). MPM method’s results shown further improvement mainly in terms of the scallop 

height magnitude. Indeed, according to Warkentin et al. (2000a, 2000b) sharpness of peaks 

representing the scallop magnitudes are hardly observed. Nevertheless minimum and maximum 

values for surface deviation stay at the same levels as those attained with PAM, yet, with the 

significant difference of presenting noticeable irregularities in terms of the error distribution 

especially at cross section X=-30mm. Warkentin’s results for the measurements (Warkentin et al. 

2000) in the four discrete cross-sections X=-5mm, X=-30mm, X=-60mm and X=-90mm are given in 

Appendix B along with those obtained by ITM and PAM for easy reference. 

The work of Xu et al. (2010) contributes to the results reported above by simultaneously controlling 

tool path smoothness criterion and machining strip width maximization. The same benchmark surface 

(SS-5) was machined using a toroidal cutter with a torus radius 5 mm and insert radius 3 mm while 

cutting tolerance was set to 0.01 mm. The spindle speed used was 16000 rpm and feed was 5000 

mm/min. The total time was around 1 min. The cross-sections selected for validating their 

methodology were at X=-5mm, X=-30mm and X=-60mm. By reviewing their results, it is deduced that 

the entire surface deviation is found under a zone of ±0.045mm with no profound peaks in scallops 

whereas the number of tool passes was found to be equal to 17 implying narrower machining strips.  

Gan et al. (2016) machined the benchmark surface SS-5 using the “mechanical equilibrium” method - 

MEM. According to their work, error distribution curves are examined to optimise matching for two 

contact points of a toroidal cutting tool on the surface. In their work a cutter with major radius R=6.5 

mm and minor radius r=1.5 mm (D16Rc1.5) was used for machining the same benchmark surface. 

Gan et al. (2016) claimed that their strategy produced 14 subsequent machining strips with an 

average width equal to 8.21 mm whilst scallop height was found under the preset allowance of 

0.01mm. Obviously machining strip width is maximized and the number of machining passes is 

reduced owing to the smaller rounded inserts (Rc 1.5mm) of the tool selected. Chen et al. (2017) 

implemented their “efficient convergent optimization - FCO” method to evaluate the matching 

degree between the tool and the theoretical surface. A cutter with major radius R=6.5 mm and minor 

radius r=1.5 mm (D16Rc1.5) was used for machining the same benchmark surface SS-5. Their strategy 

produced 12 subsequent machining strips whereas their average was equal to 9.5 mm. Although a 

noticeable smoothness was achieved throughout the junctures of strips created by their method, a 
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significant degradation of the surface’s free-form profile is observed. Lu et al. (2017) tried to 

implement a “global optimisation” method using flat end-mills and two algorithms (differential 

evolution and sequence linear programming) to balance tool path smoothness and machining strip 

width by avoiding “step-by-step” computational methods for tool positioning. The results reported 

concern the machining strip width which was found equal to 8.74 mm using a D16 flat end-mill. 16 

tool passes were obtained. By reviewing their results from a practical perspective, it is argued that 

flat end-mills do not facilitate their accurate tool orientation owing to their discontinuous contact 

between the machining surface and theoretically sharp corner. This uncertainty is suggested owing to 

the inability of applying the tangency criterion for flat end-mills, implying that a free-gouge and 

tangential contact cannot be ensured. As opposed to cutters with squared flutes (teeth) as flat end-

mills, tools with rounded corners tend to maintain the uniform wear spread in longer cutting edge, 

leaving thus a much smoother surface finish result on a machined sculptured part.        

The benchmark sculptured surface SS-5 was machined using the proposed tool path optimisation 

methodology. The optimisation ranges for tool path parameters were the same as those determined 

for the simulations to examine the average scallop height for the different stepover parameter 

settings. To present a rigorous optimisation process three tools were tested, D16Rc8, D16Rc0 and 

D16Rc3 corresponding to a D16 ball end-mill, D16 flat end-mill and D16 toroidal (filleted) end-mill 

respectively. The parameters recommended as optimal were implemented for the machining 

simulation and the actual cutting experiment using the benchmark surface SS-5. By applying a feed 

velocity Vf = 3000 mm/min under 12.000 rpm spindle speed n, machining time resulted to 1min-

24sec. Table 6.18 tabulates the optimisation range (low-high) per tool path parameter as well as the 

optimal settings recommended by the proposed optimisation methodology.   

  

Table 6.18: Tool path parameter bounds and optimal recommended values for the case of benchmark surface SS-5. 

Benchmark 
surface 

Levels Tool Stepover (%D) 
Lead angle 

(deg) 
Tilt angle 

(deg) 
MaxDstep (x10-3 mm) 

SS-5 

Low D16-Rc3 20 1 0 6 

High D16-Rc0 45 5 1 10 

Optimal D16-Rc3 41.729% (6.677 mm) 2.957 0.027 6.338 (x10-3) 

 

 

Figure 6.16a illustrates the spindle setup during machining, Figure 6.16b the machining operation and 

Figure 6.16c the finished result. The simulated machining time was found in agreement with actual 

machining time given by the CNC unit. 15 smooth and uniformly distributed cutting strips were left on 

the actual cutting surface whilst their theoretical widths were computed during the machining 
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simulation by examining sequential pairs of two scallop lines. This way allowed for finding the real 

cutting strip widths without their overlaps. The average machining strip width was equal to 8.583 mm 

and their average overlap was 2.79 mm. The average machining strip width measured on the actual 

cut surface was estimated around 6.62 mm. The actual cut surface was examined at the four cross-

sections with respect to the previous works reported above, X=-5mm, X=-30mm, X=-60mm and X=-

90mm (Figure 6.17). In the simulation the test points were arranged in the same way as the 

measurement points taken by the CMM for the experimental results. According to the results the 

maximum deviation error does not exceed 0.026 mm and the minimum deviation equals 0.012 mm. 

 

 

 
 

Figure 6.16: Machining results for SS-5: (a) machine spindle setup, (b) machining process, (c) final part. 

 

 

By comparing these results with those reported in the above stated methods, one can notice that not 

only the deviation is much lower but it is well distributed to both positive and negative error 

directions as well. Two cases are distinguished in X=-5 mm and X=-90 mm where the error 

significantly fluctuates yet, still under tolerance. The fluctuations occur in these regions owing to   

tool’s vibrations in approach and departure.  
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CMM simulation results are in very good agreement with CMM experimental ones, yet, slight 

differences exist owing to various inconsistencies. Referring to the experimental results, these 

inconsistencies deal with the CMM’s reference axes misalignment during the job setup, missing of 

measurements in potential scallop regions where sharp peaks might exist and sliding of touch probe 

sensor in curved surface regions. Another type of error in experimental results might be given owing 

to the simultaneous rotation of the two additional axes of the 5-axis machine tool, A and C. This error 

propagates during finish-machining and may affect CMM measurements.  

Even though CMM simulations were performed using the CAM output in *.stl format in CAM 

environment an additional effort was carried out to provide more accurate results by simulating the 

same CMM machine tool (DEA) used for collecting experimental CMM measurements with the same 

measuring step. 200 measurements were taken every 0.5mm as a measuring step, by implementing 

the novel cyber-physical manufacturing metrology model – CPM3 of Majstorovic et al. (2017). CMM-

simulated results obtained may also involve errors mainly due to the quality of *.stl CAM output 

representation and inconsistencies of wrapping technique for producing *.stl models.                 

By examining the results of CMM measurements depicted in Figure 6.17 referring to all four cross-

sections investigated, it can be estimated that 25% to 30% of the experimental CMM measurements 

tend to fall close to zero reference line without significant peaks suggesting wide scallops with 

negligible height. Machining error is uniformly distributed across the entire sculptured surface and it 

was neither observable nor could be felt by touch. If the aforementioned inconsistencies of both 

actual and virtual CMM methods for obtaining the necessary measurements for assessing surface 

finish weren’t experienced, simulation and experimental results could be very close to an excellent 

agreement.        

By reviewing the results obtained for the impact case of benchmark sculptured surface SS-5 with 

emphasis to machining error (i.e. surface deviation, average scallop height, machining strip width – 

MSW) with reference to those reported in the research works related to the same optimisation 

problem it can be concluded that the proposed methodology not only is competitive but outperforms 

other methods especially in the objective of machining quality. 



 
 

211 
 

 

Figure 6.17: Comparison of experimental CMM and simulated CMM results for the 2D cross-sections of SS-5: (a) X=-5 mm, 
(b) X=-30 mm, (c) X=-60 mm, (d) X=-90 mm. 
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An additional quality inspection was conducted on the benchmark sculptured surface SS-5 to examine 

the result of maximum discretization step which determines the location of cutting points in relation 

to feed rate and variation of the two rotational axes, A and C. For this type of inspection, the Taylor-

Hobson®
 Surtronic 3+ roughness tester was used for examining the continuity among sequentially 

connected postures of cutting points referring to X-axis feed-forward direction. Except from the 

reasonable expectation of obtaining physical surface quality indicators as well, the roughness tester 

was used mainly under the assumption that, with a continuous measuring step to be performed by 

the instrument’s travelling stylus, the uniformity of the interpolation error might also be observed. 

Figure 6.18 shows the process of testing three of the machining strips as representative to the 

machining error owing tool interpolation. Two machining strips selected close to the part’s curved 

edges referring to Y-direction and a third one was selected in the middle. Proper positioning was 

ensured to reduce the process-related errors to the best possible extent.   

 
 

   
 

Figure 6.18: Roughness testing for the finished sculptured surface towards feed direction: (a) measurement taken to the left 
machining strip, (b) measurement taken to the central machining strip, (c) measurement taken to the right machining strip. 

 

 

The corresponding measurement processing software Talysurf® was used for measuring and analyzing 

the machining strips. A measuring length equal to 0.8 mm was applied for the measurements. By 

measuring all machining strips to several regions, the means of the unfiltered roughness parameters 

were computed and are summarized in Table 6.19. These values reveal important information 

concerning the characterization of machining.  

The results corresponding to this type of inspection presented a remarkably similar pattern of 

roughness profiles indicating that the physical machining process is not only successful from a 

manufacturing perspective but also maintains the smoothness of tool path postures without 

noticeable error fluctuations. Figure 6.19 illustrates three of the roughness profiles as representative 

indications for the forward step error and physical surface finish. 

(c) (b) (a) 
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Figure 6.19: Surface quality inspection: (a) roughness profile obtained for the left machining strip, (b) roughness profile 
obtained for the central machining strip, (c) roughness profile obtained for the right machining strip.  

 

Table 6.19: Mean values for unfiltered roughness parameters. 

 

Unfiltered roughness parameter 
Mean value from machining strip 

measurements 

Pa (μm) 0.383765 
Pq (μm) 0.465059 
Pp (μm) 1.085294 
Pv (μm) 1.087059 
Pt (μm) 2.172353 
Psk 0.034563 
Pku 2.355882 
Pz (μm) 2.172353 
PTp (%) [1μm under the highest peak] 48.08353 
PHTp (μm) [20%-80%] 0.858529 
PSm (mm) 0.057759 
PDq (o) 3.802353 
PLq (mm) 0.044012 
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Plo (%) 0.286176 
PPc (pks/mm) [+/- 0.5μm] 2.720588 
PzJIS (μm) 1.604706 
P3z (μm) 1.908824 
Pc (μm) 1.041765 
Pfd 1.322353 
PHSC (Num Of Peaks) [1μm under the highest peak] 15.76471 
PH (μm) 1.511176 
PD (1/mm) 18.92176 
PS (mm) 0.036800 
Pvo (mm3/mm2) 0.000497 
Pmr (%) [1μmunder the highest peak] 48.08353 
Pdc (μm) [20%-80%] 0.858529 

 

 

6.3.3.2 Benchmark sculptured surface SS-1 

Gray et al. (2003) presented a methodology to implement for the machining of complex sculptured 

surfaces known as the “rolling ball” method. This method takes advantage of a computational 

approach capable of positioning a toroidal tool inside a hypothetical rolling sphere. The rolling ball 

radius is chosen as a curvature pseudo-radius which is used for positioning the cutter at a given 

surface contact point. Under this scheme several pseudo-radii are created according the surface 

properties and the tool subsequently utilizes them for being properly positioned under a preset 

tolerance to avoid gouging with the surface. The part was machined using a 5-axis CNC machining 

center with a toroidal cutter with major radius R=12.7 mm and minor radius r=6 mm (D37.4Rc6). 

Their algorithm implemented a range for discretization step from 0.007mm to 1.397mm. Scallop 

profiles were examined via CMM measurements and their average scallop height was found equal to 

0.025 mm. 23 sequential machining strips were observed on the cut surface yet, the average width 

was not measured.  

The methodology proposed in this PhD thesis was implemented to optimise the 5-axis machining tool 

path for the same benchmark surface (SS-1) using the parameters recommended as optimal. Table 

6.20 summarizes the upper and lower inputs as well as the optimal values found. 

 
Table 6.20: Tool path parameter bounds and optimal recommended values for the case of benchmark surface SS-1. 

Benchmark 
surface 

Levels Tool Stepover (%D) Lead angle (deg) Tilt angle (deg) MaxDstep (mm) 

SS-1 

Low D37.4-Rc0 10 20 0 0.007 

High D37.4-Rc6 45 35 7 1.397 

Optimal D37.4-Rc6 18.9% (7.069 mm) 20.231 0.114 1.090 
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The recommended parameters were implemented for the machining simulation and the actual 

cutting experiment. As the optimal tool D16Rc3 was used against D16Rc0. By simulating a feed equal 

to 1000 mm/min the simulation result was found equal to 1min-51sec for machining time and 2min-

04sec. for total time. The simulated machining time was found in agreement with actual machining 

time given by the CNC unit. 22 smooth and uniformly distributed cutting strips were left on the actual 

cutting surface. The average machining strip width was equal to 20.082 mm and their average overlap 

was 13.733 mm. The optimal simulated and actual cut surfaces were examined at three cross-

sections with respect to the work of Gray et al. (2003). The cross sections were taken on Y=39 mm, 

Y=76.5 mm and X= 151.5 mm. In the simulation the test-points were arranged in the same way as the 

measurement points taken by the CMM for the experimental results with 1.683 mm measuring step. 

Figure 6.20 depicts the machining result, Figure 6.21 the normalized deviation of the machined 

surface examined in the three aforementioned cross-sections and Figure 6.22 the results for the same 

surface obtained by Gray et al. (2003) for easy reference. By examining each of the three cross-

sections it was observed that not only the Z-height difference between actual and nominal surface 

was lower than that reported for the “rolling ball” method but it was also uniformly distributed across 

the measuring path. Maximum deviation error does not exceed 0.07 mm whereas minimum deviation 

approximates -0.02 mm. Scallop curves were almost unnoticed in the actual cut surface and their 

average height did not exceed 0.02 mm.     

 

 
 

Figure 6.20: Machining result for the benchmark sculptured surface SS-1. 
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 Figure 6.21: Plot of the Z-height difference between actual and nominal measurements for the various cross-sections of 
benchmark sculptured surface SS-1. 

 

 

Figure 6.22: Research results from Gray et al. (2003): (a) actual surface machined using the “Rolling ball” method, (b) plot of 
the Z-height difference between actual and nominal measurements for the various cross-sections of benchmark sculptured 

surface SS-1.  
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6.3.3.3 Benchmark sculptured surface SS-2 

The method proposed by Gray et al. (2003) was integrated by graphics-assisted utilities to contribute 

further to the tool path planning problem for sculptured surface CNC machining. In the work of Gray 

et al. (2004) tool paths for sculptured surfaces are generated using triangulated data rather than 

employing parametric surface equations. In addition, the method can create tool paths for sculptured 

surfaces where only positional continuity exists. To verify their approach, they implemented it on the 

benchmark surface SS-2 which is a surface with two bi-cubic contours connected with a C0 continuous 

curve. This was suggested as an extreme case in the machining of multiple patches having only C0 

position continuity (Gray et al. 2004). Results reported in the work of Gray et al. (2004) were limited 

to the forward step value computed in the vicinity of the C0 curve and the rest of the surface which 

was found equal to 0.762 mm and 2.00 mm respectively. 22 machining strips were left on the surface 

whilst the maximum scallop height was found equal to 0.1 mm. The maximum undercut was 0.07 

mm. Note that feed direction was intentionally determined to be vertical to C0 curve during surface 

machining to introduce special challenge in terms of quality and productivity. The methodology 

proposed in this PhD thesis was implemented to optimise the 5-axis machining tool path for the same 

benchmark surface using the parameters recommended as optimal. Table 6.21 summarizes the upper 

and lower inputs as well as the optimal values found. 

 

 
Table 6.21: Tool path parameter bounds and optimal recommended values for the case of benchmark surface SS-2. 

Benchmark 
surface 

Levels Tool  Stepover (%D) Lead angle (deg) Tilt angle (deg) 
MaxDstep 

(mm) 

SS-2 

Low D50.8- Rc6.35 10 15 0 0.762 

High D50.8-Rc0 45 20 15 2.000 

Optimal D50.8-Rc6.35 14.232% (7.230 mm) 15.7 5.373 1.653 

 

 

The recommended parameters were implemented for the machining simulation and the actual 

cutting experiment. As the optimal tool Ø50.8 Rc6.35 was used against Ø50.8 Rc0. By simulating a 

feed equal to 1000 mm/min the simulation result was found equal to 3’43’’ for machining time and 

4’33’’ for total time. The simulated machining time was found in agreement with actual machining 

time given by the CNC unit. The rotational speed was set to the relatively low value of 4000 rpm to 

avoid vibrations during cutting owing to the length of the tool assembly. 22 smooth and uniformly 

distributed cutting strips were left on the actual cutting surface. The average machining strip width 

was equal to 27.088 mm and their average overlap was 21.121 mm. Figure 6.23a depicts the 5-axis 

machining center’s spindle setup during machining, Figure 6.23b depicts the machining operation 
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close to the C0 continuous curve and Figure 6.23c shows the final part. Figure 6.24 shows the resulting 

part by implementing the “graphics-assisted rolling ball method” of Gray et al. (2004) for comparison 

purposes. The finished part was inspected by taking several CMM measurements with 2.5 mm 

measuring step in five 2D cross sections determined on X=25.4 mm, X=50.8 mm, X=76.2 mm, X=101.6 

mm and X=127 mm (Figure 6.25) vertical to feed direction with reference to the machining axis 

system (G54). The average deviation was found equal to 0.0148 mm, 0.0116 mm, 0.0220 mm, 0.0131 

mm and 0.0185 mm for the cross sections respectively, giving a total average deviation equal to 

0.0160 mm. The maximum scallop height was equal to 0.071 mm whereas the maximum undercut 

measured was 0.058 mm.  

 

 

 
Figure 6.23: Machining results for SS-2: (a) machine spindle setup, (b) machining process, (c) final part. 
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Figure 6.24: Machining result of the benchmark sculptured surface SS-2 (Gray et al. 2004). 

 

  

 

(a) 

(b) 
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Figure 6.25: Experimental results (CMM measurements) of 2D cross section profiles for SS-2: (a) X=25.4 mm, (b) X=50.8 mm, 
(c) X=76.2 mm, (d) X=101.6 mm, (e) X=127 mm. 

 

Further validation tests were examined on the same benchmark sculptured surface SS-2 to examine 

the fluctuation (uniformity) of the deviation error on the two scallop curves where the largest error 

was observed (Figures 6.26a and 6.26b). These two scallop curves were on the contours of the 

surface where the cutting tool approached to and departed from. The 2D profiles determined on the 

cross sections at Y= 4mm and Y= 149.5mm were examined through simulation measurements taken 

(c) 

(d) 

(e) 
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with 1 mm measuring step using the CAM output since no probe accuracy could be achieved on the 

scallops by CMM. For these two profiles the height of measuring points in Z-axis was found in good 

agreement when compared to the exact points taken on the same cross sections of the ideal CAD 

model. It was observed that the error fluctuates smoothly and uniformly at the bi-concave regions of 

the surface whilst approaching the vicinity of C0 continuous curve this error is reduced. A remarkable 

agreement of the simulated error was also observed on the C0 continuous scallop curve where 

another 2D profile taken on its corresponding cross section was examined (Figure 6.26c). This result 

implies that C0 continuous scallop curve was not significantly affected (in terms of its geometry) by 

the changes of tool axis orientation which means smooth transition among tool position vectors. By 

comparing the results obtained using the proposed optimization methodology to the related ones 

available by Gray et al. (2004) it is deduced that further improvement has been achieved for the tool 

path to machine SS-2. Both the machining error deviation and its distribution leads to the conclusions 

of achieving more beneficial tool positions regarding the discretization step as well as lead and tilt 

angle values for the same cutting tool suggested.     
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Figure 6.26: Experimental results (CMM measurements) of 2D cross section profiles for SS-2: (a) Y= 4 mm, (b) Y=149.5 mm, 
(c) C0 continuous curve. 

 

6.4  Summary and conclusions 
 

The proposed methodology for optimising the sculptured surface CNC machining problem was 

applied to various benchmark sculptured surfaces to validate the results obtained by its application 

and perform rigorous comparisons with reference to results from other tool path planning / 

optimisation methods available in the literature. The intelligent part of the methodology which is the 

multi-objective virus-evolutionary genetic algorithm – MOVEGA is responsible for maintaining quality 

of optimal results. Thus, to compare its capabilities against those found to other modern stochastic 

algorithms a common problem-solving environment (design space) was formulated using regression 

models from the series of machining simulation experiments introduced in Chapter 3 to study the 

effect of tool path planning parameters.  

As far as the algorithmic validation part is concerned the average gain by selecting the MOVEGA as 

the intelligent algorithm to integrate the proposed optimisation methodology is close to 17.80% 

when testing the various regression models as objective functions to optimise the tool paths for the 

benchmark sculptured surfaces examined. This percentage implies significant differences among the 

individual objectives i.e. mean machining error, machining time and remaining volume after finish-

machining.  Although such an approach cannot fully represent the sculptured surface CNC machining 

problem owing to lack of generality found in regression modelling, it was accepted only under the 

perspective of comparing results obtained by the same problem design space since linking all new 

algorithms examined in the proposed optimisation methodology goes far beyond the research 

bounds set in this work.  

(c) 
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Machining-simulated results as well as actual experimental outputs were investigated to characterize 

the efficiency and quality of the properties the proposed optimisation methodology exhibits. It was 

found that the methodology manages to distinguish optimal tool path parameter values among other 

candidate solutions for the tool path applied to machine the benchmark sculptured surfaces. It was 

also shown that, despite its stochastic nature and the absence of mathematical definitions for 

representing the benchmark surfaces, the methodology can indirectly adhere to crucial elements 

characterizing the mechanics of multi-axis material removal operations such as the multi-point 

contact between the cutting tool and the surface leading thus to an efficient machining with wide 

tool path strips while maintaining surface quality and precision. 

As far as the validation of results when studying actual CNC machining outputs is concerned the 

proposed methodology exhibits a gain equal to 12.48% by considering the best tool path planning / 

optimisation method, the multi-point machining (MPM). This percentage is referred to the average 

scallop height as a key objective of the MPM method whilst other optimisation criteria such as 

machining strip width where also found to be competitive by using the proposed methodology. From 

the resulting machined surfaces, the methodology seems to surpass the “Rolling ball” in a significant 

level whilst it produces 29% lower average scallop height that that of the graphics-assisted rolling ball 

method for the same number of cutting paths. By comparing the maximum undercuts of the 

proposed methodology and graphics-assisted rolling ball method the former produces 17.15% less 

gouging that the latter. Similar conclusions are drawn when examining the rest of the results 

corresponding to the tool path planning / optimisation methods especially when dealing with the 

same resources / materials with emphasis to the cutting tool’s geometry and configuration.    
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Chapter 7 

Conclusions and future recommendations   

 

7.1  Conclusions and research assessment 
 

Sculptured surface CNC machining is an important industrial manufacturing process to produce a 

variety of aesthetic, modern, and versatile complex products. Computer-aided manufacturing 

environment provides the one and only infrastructure to generate multi-axis surface machining tool 

paths by determining specific values for the parameters involved, cutting tool, stepover, lead angle, 

tilt angle and maximum discretization step. Advantageous sculptured surface CNC machining using 

optimised tool paths will ultimately result to better surface finish while maintaining competitive 

production times. The research aim of this work was to develop a generic methodology for the 

intelligent optimisation of 5-axis sculptured surface CNC machining (end-milling) tool paths. With 

reference to the various experimental results presented it has been shown that methodology 

developed in the thesis has fulfilled this research aim. 

One of the most crucial objectives of this work was to determine the criteria for formulating the 

generalised sculptured surface CNC machining problem having in mind the independent parameters 

one needs to set so as to generate a swept surface multi-axis tool path. The machining parameters 

investigated in this research work are cutting tool, stepover, lead angle, tilt angle and maximum 

discretization step. Under this premise the independent parameters were studied by testing the 

swept surface multi-axis tool path to several sculptured surfaces with different properties to 

generalise the results. Machining simulations were conducted to examine the effect of important 

multi-axis tool path parameters on the generic criteria established for representing the generalised 

sculptured surface CNC machining problem. The criteria were used not only for presenting the 

generalised problem but also for providing a relation among tool path parameters and CAM outputs 

as virtually “physical” products. The elements used for determining the problem’s generic criteria 

were examined for their validity through experiments and statistical significance tests. Apart from this 

important activity the parameters were also investigated for deciding the number of accuracy digits 

when it comes to the binary representation of tool path “chromosomes” and the data structure 
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needed for allowing proper interaction among the several programming modules the developed 

methodology comprises. It comes as a conclusion that such a methodology could only be established 

once the aforementioned attributes were properly examined.  

After the problem formulation and investigation of the effects of swept surface multi-axis tool path 

parameters the next objective was to establish the generic methodology for optimising sculptured 

surface CNC machining tool paths. A two-fold programming framework was developed involving the 

part that fully automates CAM environment and its corresponding functions and the part of 

intelligent optimisation module embedding the multi-objective virus-evolutionary genetic algorithm 

(MOVEGA). The two parts interact and exchange data for performing stochastic evaluations to solve 

the generalised sculptured surface CNC machining problem and provide globally optimal surface 

machining tool paths for any sculptured surface regardless of its mathematical definition.  

The optimisation methodology’s functional behaviour would remain vague as well as its full potentials 

should an investigation for the optimal algorithm-specific parameter settings wouldn’t have been 

conducted. Therefore, an important objective of this work was to study the effect of the parameters 

referring to the viral operators of the new algorithm, on the overall algorithmic performance and 

quality of final “optimal” result. In order to study the effect of algorithm-specific parameters the 

methodology was applied to a benchmark sculptured surface and the results were statistically 

exploited to observe the advantageous regions of parameter values so as to decide their final 

settings. These settings were employed to perform confirmation experiments and compare the 

optimisation methodology’s embedded algorithm (MOVEGA) to itself when omitting the viral 

operators to prove that the former is prominent.  

The last objective of this work was to validate the results of the optimisation methodology against 

those available from other competing tool path planning and/or optimisation methods for sculptured 

surface CNC machining. In addition, the methodology developed was compared to various intelligent 

algorithms using regression models correlating the independent tool path parameters to the generic 

optimisation criteria introduced to formulate the sculptured surface CNC machining problem. From 

the perspective of algorithmic evaluations, the MOVEGA was found quite promising in terms of the 

prerequisites needed for achieving better results to simultaneously optimise machining efficiency and 

surface finish. However, these algorithms should be rebuilt from scratch to become compatible with 

the already developed environment for their reliable implementation to solve the problem. From the 

perspective of process-related assessment the methodology not only outperforms other competitive 

tool path planning / optimisation methods but also exhibits important indications accompanying 

physical sculptured surface CNC machining processes, even unintentionally, with emphasis to the 
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simultaneous 5-axis machining and the multi-point tool-surface contact for increasing efficiency while 

maintaining surface finish. Even though one may not expect that a software-based system dedicated 

to tool path optimisation would adhere to physical process elements or mechanics of processes, the 

methodology presented in this work has managed to enhance the trajectory of multi-axis swept 

surface tool paths as well. This outcome suggests a major departure from any other method 

proposed for multi-axis tool path planning / optimisation while it significantly contributes to the fields 

of intelligent manufacturing, sculptured surface machining and engineering software development.  

The need to develop the proposed optimisation methodology for sculptured surface CNC machining 

arises from the particularity of tool path parameters which cannot be correlated so that a generic 

solution can be found. The requirement for tool paths capable of simultaneously minimising surface 

machining error, maintaining its uniformity and minimizing the number of cutting data for the CNC 

program, calls for a stochastic methodology to deal with the direct exploitation of the 

aforementioned tool path parameters as a single candidate solution. There is also a need to automate 

time-consuming, repetitive tasks when it comes to tool path planning as well as trial-and-error 

machining simulation scenarios. Consequently, the methodology developed for addressing the 

generalised sculptured surface CNC machining problem contributes to the broader research field of 

intelligent manufacturing as follows:   

1 The methodology constitutes a practically viable tool and user-friendly environment to 

optimise complex sculptured surface tool paths by using standard and known resources to 

practitioners, such as CAD/CAM systems,  

2 The methodology pushes further the envelope of profitability and efficiency of intelligent 

manufacturing by supporting automation and optimisation, 

3 The methodology handles simultaneously the parameters involved to tool path planning / 

optimisation for complex machining while it achieves optimisation under a global essence, 

4 The methodology shares and develops new ideas for the next generation’s manufacturing 

software development, dealing with artificial intelligence and its effective implementation, 

5 It accounts for absolutely zero trial-and-error machining simulation scenarios and iterative 

experimental efforts for finding “optimal” values for tool path parameters.  

 

It is reasonable to consider that any new technology aiming at facilitating industrial operations comes 

also with its shortcomings. The methodology developed for optimising sculptured surface tool paths 

for the multi-axis CNC machining has the major drawback of needing a considerable amount of time 

to execute the evaluations in order to end up to the optimal result since each algorithmic evaluation 
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corresponds to a machining simulation. This running time depends on the nominal dimensions of the 

surface under investigation, the settings of algorithm-specific parameters, i.e. the number of 

evaluations required for reaching an optimal output, the number of candidate solutions (tool path 

chromosome) about to be evaluated and the configuration of the computer system on which the 

system will be operated. The experiments required for this research were performed on a Windows 

8.1 Pro., Intel® Core ™ i3-4160 CPU, 3.60 GHz 64-bit operating desktop system with 8.00 GB RAM. The 

average time needed to simulate the benchmark sculptured parts was about 3 to 4 hours including 

the system setup referring to the initial tool path planning according to the cutting strategy selection. 

However this running time may antagonise the actual time practically needed even by an experienced 

process planner in the case of complex sculptured surfaces. In addition one can imagine a reduction 

to an important fraction of this running time when a high-performance hardware system may be 

implemented to support the developed methodology. 

It is very likely that the proposed methodology might not lead to optimal results for tool path 

parameters with regard to optimization criteria established in this work. This may occur in 

exceptional cases of extremely complex sculptured surfaces where the dramatic changes in curvature 

may not allow for a reliable tool path trajectory generation for the cutting tool to follow. It is 

mentioned here that the CAM system would be responsible for such a case and not the proposed 

optimisation methodology since the latter depends on the capabilities of CAM software. This can be 

addressed by integrating the optimisation methodology with a routine to search for the optimal feed 

direction whilst it is expected to be the one with the lowest curvature. Nevertheless, the current 

status of the methodology can guarantee that, at worst, the resulting near-optimal solution would be 

again more advantageous compared to a tool path planning scenario prepared even by a highly 

experienced NC programmer since it is impossible to find near-to-optimal or exact values for planning 

a tool path capable of simultaneously optimising all criteria involved based only in experience. 

The optimization methodology proposed can only guarantee optimal tool paths under the 

perspective of implementing multi-axis sweeping tool paths accompanied to their corresponding 

recto-linear cutting paths (zig-zag cutting style). In addition, feed direction with reference to the 

recto-linear angle has not been under investigation by taking in advance that the optimal one would 

be found towards the surface region with the lowest curvature. Nevertheless, to ensure quality of 

results or even optimize further the second optimization criterion introduced (tool path smoothness 

or machining error distribution) feed direction ought to normally constitute an optimization 

parameter. Finally the CAM solution plays important role to the optimal results the proposed 
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methodology may obtain, since different software packages for CAM offer different utilities, sharing 

several strengths and weaknesses themselves.       

    

7.2  Recommended future work 
 

The generic methodology for globally optimising the sculptured surface CNC machining problem has 

been tested with reference to tool paths following a multi-axis swept surface cutting strategy. Despite 

that this cutting strategy covers almost the 90% of finish-machining operations for moulds / dies and 

other complex products found in industry one could automate the functions of other already existing 

or newly developed tool paths. In this case, the changes or amendments needed to integrate the 

methodology developed may be straightforwardly done once the programming instances are known 

and incorporated in the form of additional code using the methodology’s automation function. Since 

this function has been externally developed its modules can accommodate the routines of other 

CAD/CAM packages other than the one employed in this work. This can be accomplished provided 

that the software development architecture (known as the application programming interface – API) 

of a CAD/CAM system allows for further customization via programming or the development of new 

code to extend its capabilities.  

The work conducted leaves also room for the research concerning the optimal coordinates of NURBS 

control points if tool paths are to be planned by adopting a NURBS interpolation. Instead of 

inherently optimising the cutting tool positions for reducing machining error it is possible to fit NURBS 

tool paths with fewer control points and with optimal locations in the parametric space. In addition, 

one can envision a novel post-processing engine for turning the optimal CNC program of this work to 

a NURBS format according to the recommendations of noticeable contributions found in literature. 

Speaking of post-processor development, it is easy to take advantage of the current functions for 

computing sequential tool positions towards the direction of feed rate and apply an adaptive feed 

rate interpolator to optimise also cutting conditions including rotational speed. In addition to feed 

adaptation one can easily employ the functions of latest NC units found in industry as well as 5-axis 

machine tool configurations and support any type of CNC format and 5-axis machining kinematics 

with reference to the recommendations found in Fountas et al. 2017b. The formulation of optimised, 

complete manufacturing programs with roughing, finishing and some intermediate machining 

operations can be also a prosperous future research with this work as a reference. It is possible to 

apply the existing environment to optimise the roughing process for a sculptured surface once the 
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criteria have properly been modified. Obviously, one should decide to deal with cutting force 

components - with emphasis to the main cutting force – with cutting force variations and the material 

volume left for the forthcoming processes, semi-finishing and finishing. Such an effort would not be 

started by scratch; research has already been conducted to initialize such an idea (Fountas et al. 

2015). With the progress of hardware and software new utilities are to be introduced in the next few 

years related to machining kinematics, servos and NC controllers as well as to 4th generation CAM 

systems and novel algorithms for intelligent machining/process planning to facilitate industry 4 and 

its corresponding elements. One should follow these trends and try to apply new knowledge to the 

already existing environment towards the establishment of a complete infrastructure for optimised 

design (CAD), optimised analysis with either the boundary element method or the finite element 

method (BEM-FEM) and finally optimised computer-aided manufacturing (CAM) with Step-NC 

commands for on-line CNC monitoring. The possibility of introducing optimal setups with automated 

fixturing / part positioning could be also a future work based on the current one.     
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Appendix B 

Research results for the benchmark sculptured parts from the 

literature  

 

B1. Research results from Xu et al. (2010) 

 

 

Simulated tool paths and actual part machined using the method of Xu et al. (2010) 

 

Measured results of the machine surface using the method of Xu et al. (2010). 
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B2. Research results from Gan et al. (2016) 

 

 

 

 

Machining simulation result and actual part machined using the “mechanical equilibrium method – 

MEM” of Gan et al. (2016). 
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B3. Research results from Warkentin et al. (2000) for “inclined tool method – ITM”, “principal axis 

method – PAM” and “multi-point machining – MPM”  

 

Test surface machined using the “inclined tool method – ITM” with D16Rc3 mm toroidal end-mill, 

8mm tool pass interval (stepover 50%) and 6o inclination angle. 

 

Test surface machined using the “principal axis method – PAM” with D16Rc3 mm toroidal end-mill 

and 8mm tool pass interval (stepover 50%). 
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Test surface machined using the “multi-point method – MPM” with D16Rc3 mm toroidal end-mill, 

8mm tool pass interval (stepover 50%) and 0.8 separation ratio for the two contact points. 
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Comparison of experimental and simulated results for “inclined tool method – ITM” using a D16Rc3 

toroidal end-mill with 8.0mm tool pass interval (stepover 50%) and 6o inclination angle. 
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Comparison of experimental and simulated results for “principal axis method – PAM” using a D16Rc3 

toroidal end-mill with 8.0mm tool pass interval (stepover 50%). 
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Comparison of experimental and simulated results for “multi-point method – MPM” using a D16Rc3 

toroidal end-mill with 8.0mm tool pass interval (stepover 50%) and 0.8 separation ratio between the 

two contact points. 
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B4. Research results from Chen et al. (2017) 

 

 

 

 

Machining simulation result and actual part machined using the “efficient convergent optimization 

method – FCO” of Chen et al. (2017). 
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B5. Resulting benchmark sculptured surface from Fountas et al. (2017) 
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Actual machining result and measured outputs using the proposed intelligent optimisation 

methodology for sculptured surface CNC machining tool paths. 

 

 


