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Abstract. The aim of the present work is to carry out a simplified mathematical modelling
for nonlinear stress analysis of plates under temperature changes and mechanical transverse
loads. The material properties of the plate are proposed to be temperature-dependent. The
geometrically nonlinear plate theory is employed to understand the stress distribution due to
thermo-mechanical loads. A set of coupled nonlinear partial differential equations are solved
using harmonic series expansion to find the static responses. Two boundary conditions are
considered for simply supported plates, namely, movable edges and immovable edges. The
accuracy of the results is checked by comparing with the output of other solution methods.

1. Introduction
In plate theories the small deformation assumption is no longer acceptable when the deflection
magnitude is of the same order as the plate thickness. Thus, large deformation theory is
introduced which includes the effect of membrane forces and coupling between the axial reactions
and the transverse deformation of the plate. In response to the need for new structural materials,
materially nonlinear theory was also developed by introducing nonlinear constitutive relations
for stresses and strains [1-3]. Later on, both geometrically and materially nonlinear theories were
employed to analyse plates with large deflections, but the most common approach was using
approximate solutions for plates with movable simply supported edges. For movable (stress-free)
boundary condition the supported edges are free to move whereas the out-of-plane displacement
is fixed. However, for immovable boundary condition, equivalent axial reaction loads could be
defined to prevent both in-plane and out-of-plane displacements along the edges [4]. To the
best authors knowledge few attempts were made to find a simplified mathematical procedure
for large deflection analysis of rectangular plates under thermo-mechanical loads [5, 6].

In this paper an analytical method is developed to present a robust nonlinear analysis for
plates under thermo-mechanical loads. Geometric nonlinearity theory is used to establish the
nonlinear governing partial differential equations. The plate properties are assumed to vary with
temperature according to the Eurocode [7]. The accuracy of the present methodology is checked
by comparing the results with some exiting results for large deflections of plates.

2. Mathematical formulations
The inverse strain-stress relations for plane stress including the thermal strains are

Eεxx = (F,yy − νF,xx)+αEΔT, Eεyy = (F,xx − νF,yy)+αEΔT, Eγxy = −2(1+ν)F,xy (1)
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where E, F , ν, α and ΔT are modulus of elasticity, stress function, Poisson’s ratio, coefficient
of thermal expansion and temperature change, respectively. The compatibility equation formed
by strain components can be expressed by

εxx,yy +εyy,xx−γxy,xy = w,2xy −w,xxw,yy (2)

Substitution from relations (1) into (2) and then integration over the thickness leads to

h∇4F +NT ,xx+NT ,yy −Eh
(
w,2xy −w,xxw,yy

)
= 0 (3)

where h is the plate thickness and NT is the thermal stress resultant defined by

NT = Eα

∫ h/2

−h/2
ΔTdz (4)

The other nonlinear partial differential equation is given by

D ∇4w − h (F,yy w,xx−2F,xy w,xy +F,xxw,yy ) +MT ,xx+MT ,yy −q(x, y) = 0 (5)

where q is the applied load per unit area and MT is the thermal moment resultants expressed
by

MT =
Eα

1− ν

∫ h/2

−h/2
ΔTzdz (6)

The following functions satisfy the two governing equations (3) and (5) for a plate with length
a, width b and simply supported edges

(w, q,NT ,MT ) =
N∑

m=1

N∑
n=1

(wmn, qmn, N
T
mn,M

T
mn) sin(αmx) sin(γny) (7)

F = −2Pxy
2 − 2Pyx

2 +
N∑

m=1

N∑
n=1

Fmn sin(αmx) sin(γny) (8)

where

(NT
mn,M

T
mn, qmn) =

4 (−1 + (−1)m) (−1 + (−1)n)

mnπ2
(NT ,MT , q) (9)

Here αm = mπ/a and γn = nπ/b. Two different in-plane boundary conditions are considered
for simply supported plate, SS1 where w = w,xx= 0 and SS2 where u = v = w = w,xx= 0. Px

and Py are the tensile loads defined at x = 0, a and y = 0, b, respectively, for SS2 case which can
be obtained by the following relations. The purpose is that the plate edges should be restricted
to move along the x and y directions. Then, the axial displacements can be expressed by

u =

∫ a

0

{
1

E
(F,yy − νF,xx)− 1

2
w2
,x + αΔT

}
dx (10)

v =

∫ b

0

{
1

E
(F,xx − νF,yy)− 1

2
w2
,y + αΔT

}
dy (11)

Substitution from relations (7) and (8) into the above relations gives

u =
−4aPx

E
+

4aνPy

E
− aFmn[να

2
m + γ2n] [−1 + (−1)m] [−1 + (−1)n]

Emnπ2
+ aαΔT − a

8
α2
mw2

mn

(12)

v =
−4bPy

E
+

4bνPx

E
− bFmn[α

2
m + νγ2n] [−1 + (−1)m] [−1 + (−1)n]

Emnπ2
+ bαΔT − b

8
γ2nw

2
mn

(13)
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where for immovable edges u = v = 0 and the tensile loads will be expressed by

Px = −γ2nFmn [−1 + (−1)m] [−1 + (−1)n]

mnπ2
− Ew2

mn

8(1− ν2)
(α2

m + νγ2n) +
NT

h(1− ν)
(14)

Py = −α2
mFmn [−1 + (−1)m] [−1 + (−1)n]

mnπ2
− Ew2

mn

8(1− ν2)
(να2

m + γ2n) +
NT

h(1− ν)
(15)

Substituting relations (7) and (8) into equations (3) and (5) leads to

((
α2
m + γ2n

)2
Fmnh−

(
α2
m + γ2n

)
NT

mn

)
sin(αmx) sin(γny)

−Eh {(αmγnwmn cos(αmx) cos(γny)) (αrγswrs cos(αrx) cos(γsy))

−
(
α2
mwmn sin(αmx) sin(γny)

) (
γ2swrs sin(αrx) sin(γsy)

)}
= 0 (16)

(
D
(
α2
m + γ2n

)2 − 4hPxα
2
m − 4hPyγ

2
n

)
wmn sin(αmx) sin(γny)

−h
{(

γ2sFrs sin(αrx) sin(γsy)
) (

α2
mwmn sin(αmx) sin(γny)

)
−2 (αrγsFrs cos(αrx) cos(γsy)) (αmγnwmn cos(αmx) cos(γny))

+
(
α2
rFrs sin(αrx) sin(γsy)

) (
γ2nwmn sin(αmx) sin(γny)

)}
−
((

α2
m + γ2n

)
MT

mn − qmn

)
sin(αmx) sin(γny) = 0 (17)

Using the expansion theorem we obtain

(
α2
m + γ2n

)2
hFmn −

(
α2
m + γ2n

)
NT

mn

−4Eh
(
αmγnαrγswmnwrsζmnrs − α2

mγ2swmnwrsηmnrs

)
= 0 (18)

D
(
α2
m + γ2n

)2
wmn − 4h(α2

mPx + γ2nPy)wmn −
(
α2
m + γ2n

)
MT

mn − qmn

−4hFrswmn

(
α2
mγ2sηmnrs − 2αmγnαrγsζmnrs + γ2nα

2
rηmnrs

)
= 0 (19)

where

ζmnrs =
(−m+ 2m(−1)2m+r −m(−1)r)(−n+ 2n(−1)2n+s − n(−1)s)

π2(4m2 − r2)(4n2 − s2)
(20)

ηmnrs =
(−2m2 + 2m2(−1)r − (−1)rr2 + r2(−1)2m+r)

rsπ2(4m2 − r2)(4n2 − s2)

+
(−2n2 + 2n2(−1)s − (−1)ss2 + s2(−1)2n+s)

rsπ2(4m2 − r2)(4n2 − s2)
(21)

For uncoupled term approximation (r = m and s = n), the above equations will be reduced to
a cubic nonlinear equation as follows

32Ehα4
mγ4nH

2
mn

(α2
m + γ2n)

2 w3
mn +

(
D
(
α2
m + γ2n

)2 − 4h(α2
mPx + γ2nPy) +

8NT
mnHmnα

2
mγ2n

(α2
m + γ2n)

)
wmn

−
(
α2
m + γ2n

)
MT

mn − qmn = 0 (22)

Modern Practice in Stress and Vibration Analysis 2012 (MPSVA 2012) IOP Publishing
Journal of Physics: Conference Series 382 (2012) 012022 doi:10.1088/1742-6596/382/1/012022

3



where

Hmn =
−1 + 2(−1)m + 2(−1)n − (−1)3m − (−1)3n − 3(−1)m+n + (−1)3m+n + (−1)m+3n

3mnπ2

(23)

The membrane stresses may be obtained by the stress function F as follows

σxx = F,yy =
N∑

m=1

N∑
n=1

(
−4Px − γ2nFmn sin(αmx) sin(γny)

)
(24)

σyy = F,xx=
N∑

m=1

N∑
n=1

(
−4Py − α2

mFmn sin(αmx) sin(γny)
)

(25)

τxy = −F,xy = −
N∑

m=1

N∑
n=1

αmγnFmn cos(αmx) cos(γny) (26)

The extreme-fiber bending stresses are expressed by

σ́xx =
N∑

m=1

N∑
n=1

Eh(α2
m + νγ2n)

2(1− ν2)
wmn sin(αmx) sin(γny) (27)

σ́yy =
N∑

m=1

N∑
n=1

Eh(γ2n + να2
m)

2(1− ν2)
wmn sin(αmx) sin(γny) (28)

τ́xy = −
N∑

m=1

N∑
n=1

Ehαmγn
2(1 + ν)

wmn cos(αmx) cos(γny) (29)

where the Einstein summation convention over repeated indices m,n, r, and s are used. For
any assumed N , a set of nonlinear algebraic equations will be derived. Figure 1 describes this
procedure for determining the transverse displacement of the plate.

Figure 1. Flow chart of the solution
programme.
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3. Results and discussion
In this section, numerical examples for nonlinear analysis of plates under thermo-mechanical
loads are presented to demonstrate the performance of the proposed method. The Poisson’s
ratio of the plate is assumed to be 0.3. Dimensionless parameters are considered as: centre
deflection= w/h, load parameter= qa4/Eh4, stress= (σxx, σ́xx, ´τxy)a

2/Eh2.
The centre deflection for an isotropic square plate (E = 7.8 × 106 psi, a = b = 1) subjected

to uniformly distributed load is firstly compared in Figure 2 with the results of a finite element
(FE) solution [8]. Numerical results are presented for N = 1 and N = 3 and for two specific
simply supported boundary conditions, SS1 and SS2. Solutions for one term approximation
(N = 1) match closely with FE solutions. As mentioned before, the material properties of the
plate are assumed to be temperature-dependent. For this purpose Eurocode [7] suggests a trend
for reduction of elasticity modulus of carbon steel with temperature which is plotted in Figure 3.
Figure 4 shows the variation of extreme-fibre bending and membrane stresses in a square plate
under uniformly distributed load and linear temperature changes (ΔT = 0.5 + T,z z). The case
associated with SS1 produces higher membrane and extreme-fibre bending stresses than SS2
case because of the existence of extension-bending coupling. It is observed that by increasing
the value of load parameter, the plate is dominated by membrane stresses. For SS2 case, mem-
brane stresses decrease due to the nature of the proposed stress function. The contour plots of
extreme-fibre bending stresses for a square plate under thermo-mechanical loads are illustrated
in Figure 5. The stress concentration for both patterns are similar to the finite element analyses.
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Figure 2. Convergence of the
centre deflection for a square plate
under uniformly distributed load.
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Figure 4. Bending and membrane
stresses in a square plate under
thermo-mechanical load (N =
1, T,z = 200).
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Figure 5. Contour plots of bend-
ing stresses for a square plate (N =
3, T,z = 800, load parameter=100):
(a) ´σxx= 10.437; (b) ´τxy= -8.517.

The present analysis has wide applications in structures under fire, particularly when elements
of fire compartment boundaries such as wall panels are subjected to high temperatures and
thermal gradients resulting in large displacements. Furthermore, evaluating new materials for
aerospace applications could involve this kind of analysis.

4. Conclusions
A new mathematical formulation is developed for nonlinear stress analysis of plates with
large displacements subjected to thermo-mechanical loads. The solution based on one term
approximation was very close to those of other considered approaches whereas the solution of
coupled terms provides more accurate results. The actual immovable edges can be simulated
using an appropriate stress function. The results reveal that the effects of membrane action on
large scale plates under thermo-mechanical loads are more than the effect of bending action.
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