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Abstract: While Shannon’s differential entropy adequately quantifies a dimensioned random variable’s
information deficit under a given measurement system, the same cannot be said of differential weighted
entropy in its existing formulation. We develop weighted and residual weighted entropies of a
dimensioned quantity from their discrete summation origins, exploring the relationship between
their absolute and differential forms, and thus derive a “differentialized” absolute entropy based on a
chosen “working granularity” consistent with Buckingham’s Π-theorem. We apply this formulation
to three common continuous distributions: exponential, Gaussian, and gamma and consider policies
for optimizing the working granularity.
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1. Introduction

Informational entropy, introduced by Shannon [1] as an analogue of the thermodynamic concept
developed by Boltzmann and Gibbs [2], represents the expected information deficit prior to an outcome
(or message) selected from a set or range of possibilities with known probabilities. Many modern
applications using this concept have been developed, such as the so-called maximum entropy method
for choosing the “best yet simplest” probabilistic model from amongst a set of parameterized models,
which is statistically consistent with observed data. Informally, this can be stated as: “In order to
produce a model which is statistically consistent with the observed results, model all that is known and
assume nothing about that which is unknown. Given a collection of facts or observations, choose a
model which is consistent with all these facts and observations, but otherwise make the model as
‘uniform’ as possible” [3,4]. Philosophically, this can be regarded as a quantitative version of “Occam’s
razor” from the 14th Century - “Entities should not be multiplied without necessity”. Mathematically,
this means that we find the parameter values which maximize the entropy of the model, subject to
constraints that ensure the model is consistent with the observed data, and MacKay [5] has given a
Bayesian probabilistic explanation for the basis of Occam’s razor. This maximum entropy approach
has found widespread applications in image processing to reconstruct images from noisy data [6,7] -
for example, in Astronomy, where signal to noise levels are often extremely low - and in speech and
language processing, including automatic speech recognition and automated translation [3,8].

This idea of informational entropy has been expanded and generalized. Tsallis [9] proposed
alternative definitions to embrace inter-message correlation [10], though the information of a
potential event remained solely dependent on its unexpectedness or “surprisal”. This is somewhat
counterintuitive: “Man tosses 100 consecutive heads with coin” is very surprising but not important
enough to justify a front-page headline. Conversely “Sugar rots your teeth” is of great importance but
its lack of surprisal disqualifies it as news. “Aliens land in Trafalgar Square” is both surprising and
important and we would expect it be a lead story. To reflect this, Guiaşu [11] introduced the concept
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of “weighted entropy” whereby each possible outcome carried a specific informational importance,
an idea expanded by Taneja and Tuteja [12], Di Crescenzo and Longobardi [13], and several others.
Another modification considers the entropy of outcomes subject to specific constraints: for example,
“residual entropy” was defined by Ebrahimi [14] for lifetime distributions of components surviving
beyond a certain minimum interval.

From the outset, Shannon identified two kinds of entropy: the “absolute” entropy of an outcome
selected from amongst a set of discrete possibilities [1] (p. 12) and the “differential” entropy of a
continuous random variable [1] (p. 36). The differential version of weighted entropy has found
several applications: Pirmoradian et al. [15] used it as a quality metric for unoccupied channels in
a cognitive radio network and Tsui [16] showed how it can characterize scattering in ultrasound
detection. However, under Shannon’s definition the differential entropy of a physical variable requires
the logarithm of a dimensioned quantity, an operation which necessitates careful interpretation [17].

In this paper we examine the implications of this dimensioned logarithm argument to weighted
entropy and show how an arbitrary choice of unit system can have profound effects on the nature
of the results. We further propose and evaluate a potential remedy for this problem; namely a finite
working granularity.

2. Absolute and Differential Entropies

Entropy may be regarded as the expected information gained by sampling a random variable
(RV) with a known probability distribution. For example, if X is a discrete RV and pX(x) = Pr(X = x)
then outcome X = x occurs on average once every 1/pX(x) observations and the mean information
encoded as log2 1/pX = − log2 pX bits. However, it is common to use natural logarithms for which the
information unit is the “nat” (≈1.44 bits). Entropy can therefore be defined as

H(X) = E[− log pX(X)] = −
∑
x∈Ω

pX(x) log pX(x) (1)

where Ω is the set of all possible X. (An implicit assumption is that X results from an independent
identically distributed process: while Tsallis proposed a more generalized form to embrace inter-sample
correlation [9,10], the current paper assumes independent probabilities.) Shannon extended (1) to
cover continuous RVs as “differential” entropy

h(X) = E[− log fX(X)] = −

∫
∞

−∞

fX(x) log fX(x)dx (2)

where fX(x) is the probability density function (PDF) of X. Two points may be noted: firstly, since in (2)
x only affects the integrand through fX(x), h(X) is “position-independent”, i.e., h(X) = h(X + b) for all
real b. Secondly h(X) is not, as one might naïvely suppose, the limit of H(X) as resolution tends to zero
(see Theorem 9.3.1 in [18]). Furthermore, while H(X) is always positive (since 0 ≤ pX(x) ≤ 1), h(X)

may be negative if most larger values of fX(x) are ≥ 1. In the extreme case of a Dirac delta-function
PDF, representing a deterministic—and therefore non-informative—outcome, the differential entropy
would not be zero but minus infinity.

Take for example the Johnson-Nyquist noise in an electrical resistor: if the noise potential vn

is Gaussian with an RMS value ε volts it is easy to show that h(vn) = log
√

2π+ log ε+ 1/2 nats.
(Position-independence makes the bias voltage irrelevant.) Suppose that ε = 0.4µV; working in
microvolts we obtain h(vn) = 0.5026 nats but in millivolts h(vn) = −6.405 nats. If differential entropy
truly represented information then a noise sample in microvolts would increase our information but
measured in millivolts would decrease it. Thus, h(X) must be regarded as a relative, not an absolute
measure and consistent units must be used for different variables to be meaningfully compared.
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“Residual” entropy, where only outcomes above some threshold t are considered, is given by [14]

h(X; t) = E

− log
fX(X)

FX(t)

∣∣∣∣∣∣X ≥ t

 = −∫
∞

t

fX(x)

FX(t)
log

fX(x)

FX(t)
dx (3)

where FX(t) =
∫
∞

t fX(x)dx is called the “survival function” since in a life-test experiment it represents
the proportion of the original component population expected to survive up to time t. Some authors
call fX(x)/FX(t) the “hazard function” (a life-test metric equal to failure rate divided by surviving
population) though this is only valid for the case of x = t; it is better interpreted as the PDF of X subject
to the condition X ≥ t. This somewhat eliminates the positional independence since a shift in X only
produces the same entropy when accompanied by an equal shift in t, i.e., h(X; t) = h(X + b; t + b),
but the contribution of each outcome to the total entropy still depends on rarity alone.

Guiaşu’s aforementioned weighted entropy [11] introduces an importance “weighting” w(x)
to outcome X = x whose surprisal remains − log pX(x): the overall information of this outcome
is redefined w(x) × − log pX(x) so entropy becomes Hw(X) = −

∑
x∈Ω w(x)pX(x) log pX(x). It seems

intuitively reasonable that the differential analogue should be −
∫
∞

−∞
w(x) fX(x) log fX(x)dx, though if

w(x) is a monotonic function we could define this more compactly as [13]:

hw(X) = E[−X log fX(X)] = −

∫
∞

−∞

x fX(x) log fX(x)dx (4)

and the residual weighted entropy

hw(X; t) = E

−X log
fX(X)

FX(t)

∣∣∣∣∣∣X ≥ t

 = −∫
∞

t
x

fX(x)

FX(t)
log

fX(x)

FX(t)
dx. (5)

We have already noted that the logarithms of probability densities behave very differently from
those of actual probabilities. Aside from the fact that fX(x) may be greater than 1 (a negative entropy
contribution) it is also typically a dimensioned quantity: for example if x represents survival time then
fX(x) has dimension [Time]−1, leading to the importance of unit-consistency already noted. In the next
section we explore more deeply the consequences of dimensionality.

3. Dimensionality

The underlying principle of dimensional analysis, sometimes called the “Π-theorem”,
was published in 1914 by Buckingham [19] and consolidated by Bridgman in 1922 [20]. In Bridgeman’s
paraphrase [20] (p. 37) an equation is “complete” if it retains the same form when the size of the
fundamental units is changed. Newton’s Second Law for example states that F = ma where F is
the inertial force, m the mass and a the acceleration: if in SI units m = 2 kg and a = 2 ms−2 then
the resulting force F = 2 × 2 = 4N, where the newton N is the SI unit of force. In the CGS system
m = 2000 g and a = 200 cms−2 so the force is 2000× 200 = 400, 000 dynes, the exact equivalent of four
newtons. The equation is therefore “complete” under the Π-theorem which requires that each term be
expressible as a product of powers of the base units: in this case [Mass][Length][Time]−2.

The problem of equations including logarithms (and indeed all transcendental functions) of
dimensioned quantities has long been recognized. Buckingham opined that “ . . . no purely arithmetic
operator, except a simple numerical multiplier, can be applied to an operand which is not a dimensionless
number, because we cannot assign any definite meaning to the result of such an operation” ([19], p. 346).
Bridgman was less dogmatic, citing as a counter-example the thermodynamic formula λ = RT3 dlogp

dT
where T is the absolute temperature, p is pressure, and R and λ are other dimensioned quantities ([20],
p. 75). It is true that the logarithm returns the index to which the base (e.g., e = 2.718 . . . ) must be
raised in order to obtain the argument: for example if p = 200 Pa (the Pa or pascal being the SI unit of
pressure) then to what index must p be raised to in order to obtain that value? It is not simply a matter
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of obtaining 200 from the exponentiation but 200 pascals. Furthermore, the problem would change if
we were to switch from SI to CGS where the pressure is 2000 barye (1 barye being 1 dyne cm−2) though
the physical reality behind the numbers would be the same.

However, in the current case it is the derivative of log pressure which is important, and since
dlogp

dT = 1
p

dp
dt it has dimension [Temperature]−1 and the Π-theorem is therefore satisfied. Unfortunately,

Shannon’s differential entropy h(X) = −
∫
∞

−∞
fX(x)log fX(x)dx has no such resolution since it is the

absolute value of fX(x) (not merely its derivative) which must have a numeric value. This kind of
expression has historically provoked much debate and though there are several shades of opinion we
confine ourselves to two competing perspectives:

Molyneux [21] maintains that if m = 10 grams then log m should be correctly interpreted
as log(10× gram) = log(10) + log(gram) and “log(gram)” should be regarded as a kind of
“additive dimension” (he suggests the notation 2.303 <gram>).

Matta et al. [17] argue that “log(gram)” has no physical meaning; while Molyneux had dismissed
this as pragmatically unimportant, they echo the views of Buckingham [19] saying that dimensions are
“ . . . not carried at all in a logarithmic function”. According to Matta, log m must be interpreted as
log(m/gram) (the dimension of m cancelled out by the unit).

Since most opinions fall more or less into one or other of these camps it will be sufficient to
consider a simple dichotomy: we refer to the first of these as “Molyneux” and the second as “Matta”.
Under the Molyneux interpretation the differential entropy must be expressed

h(X) = −

∫
∞

−∞

fX(x) log fX(x·second)dx = −

∫
∞

−∞

fX(x) log fX(x)dx + log(second) (6)

which has an additive (and physical) dimension of “log(second)” (or <second>) in addition to the
multiplicative (and non-physical) dimension of nats. Pragmatically this is not important since entropies
of variables governed by different probability distributions may still be directly compared (assuming
X is always quantified in the same units). However, when we consider weighted entropy, we find that

hw(X) = −
∫
∞

−∞
x fX(x) log fX(x·second)dx

= −
∫
∞

−∞
x fX(x) log fX(x)dx + E[X] log(second)

(7)

where E[X] is the expectation of X. Here Molyneux’s approach collapses since the expression has a
multiplicative dimension nat-seconds and an additive dimension “E[X] log(second)”. Since the latter
depends on the specific distribution, hw(X) loses any independent meaning; comparing weighted
entropies of two different variables would be like comparing the heights of two mountains in feet,
defining a foot as 12 inches when measuring Everest and 6 when measuring Kilimanjaro.

So, if Molyneux’s interpretation fails, does Matta’s fare any better? Since Matta requires the
elimination of dimensional units, we introduce the symbol ∆X to represent one dimensioned unit
of X (for example, if X represents time in seconds then ∆X = 1 s). The Shannon differential
entropy now becomes h(X) = −

∫
∞

−∞
fX(x) log[ fX(x)∆X]dx and the corresponding weighted entropy

hw(X) = −
∫
∞

−∞
x fX(x) log[ fX(x)∆X]dx. At first glance this appears hopeful since the logarithm

arguments are now dimensionless, but let us consider a specific example: the exponential distribution
fX(x) = λe−λt (t ≥ 0) where the mean outcome µ = 1/λ. This yields h(X) = 1 + log(µ/∆X) which is
(as one would expect) a monotonically increasing function of µ tending to −∞ as µ→ 0 .

However, the weighted entropy hw(X) = µ[2 + log(µ/∆X)] which experiences a finite minimum
when µ = e−3∆X. Though dimensionally valid, this creates a dependence on the unit-system used.
Figure 1 shows the entropy values plotted against the expectation for calculation in seconds and minutes,
showing the shift in the minimum weighted entropy between the two unit systems. The absurdity of
this becomes apparent when one considers two exponentially distributed random variables X and Y
with E[X] = 9 s and E[Y] = 15 s: Table 1 shows that hw(X) > hw(Y) when computed in nat-hours but
hw(X) < hw(Y) when computed in nat-seconds.
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Table 1. Comparison of the weighted and unweighted entropies for two exponential processes. Entropy
units are nats (unweighted) and nat-seconds/nat-hours (weighted).

E(X) = 9 s (0.0025 h) E(Y) = 15 s (0.00417 h) Entropy Increase

Measurement Units Seconds Hours Seconds Hours Seconds Hours

Unweighted Entropy 3.1972 −4.9915 3.7081 −4.4806 0.511 0.511
Weighted Entropy 37.775 −0.01 70.621 −0.0145 32.85 −0.0045

The underlying problem is as follows: since logarithm polarity depends on whether or not
fX(x) exceeds 1/∆X, different sections of the PDF may exert opposing influences on the integral
(Figure 2). While this is unimportant for h(X) which has no finite minimum, hw(X) is forced towards
zero with decreasing E[X], which ultimately counteracts the negative-going influence of the logarithm.
The two factors therefore operate contrarily: zero surprisal appears as entropy minus infinity and zero
importance as entropy zero. Two solutions suggest themselves: (i) combine X and − log[ fX(X)∆X] in
an expression to which they both always contribute positively (e.g., a weighted sum, which in fact
yields a weighed sum of expectation and unweighted entropy) and (ii) retain the product but redefine
the logarithm argument such that surprisal is always positive. With this in mind, the following section
considers the fundamental relationship between absolute and differential entropies.

4. Granularity

All physical quantities are ultimately quantified by discrete units; time for example as a number
of regularly-occurring events (e.g., quartz oscillations) between two occurrences, which is ultimately
limited by the Planck time (≈ 10−43 s), though the smallest temporal resolution ever achieved is around
10−21 s [22]. Finite granularity therefore exists in all practical measurements: if the smallest incremental
step for a given system is δx then fX(x) is really an approximation of a discrete distribution, outcomes 0,
δx, 2δx . . . . having probabilities fX(0)δx, fX(δx)δx, fX(2δx)δx . . . etc., so

Hδx(X) = −
∑
∞

i=0
fX(iδx) log[ fX(iδx)δx]δx

which may be expanded into two terms (in the manner of [18])

Hδx(X) = −
∑
∞

i=0
fX(iδx) log[ fX(iδx)∆X]δx + log

∆X

δx
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and if δx is sufficiently small

Hδx(X) ≈ −

∫
∞

0
fX(x) log[ fX(x)∆X]dx + log

∆X

δx
= h(X) + χX (8)

where the logarithm argument in h(X) is “undimensionalised” (as per Matta et al. [17]) and χX = log ∆X
δx

is the information (in nats) needed to represent one dimensioned base-unit in the chosen measurement
system: this provides the correctional “shift” needed when the unit-system is changed and thus makes
(8) comply exactly with the Π-theorem.
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The corresponding weighted entropy may be dealt with in the same manner

Hw
δx(X) = −

∑
∞

i=0 iδx fX(iδx) log[ fX(iδx)]δx

= −
∑
∞

i=0 iδx fX(iδx) log[ fX(iδx)∆x]δx + log ∆X
δx ·

∑
∞

i=0 iδx fX(iδx)δx

∴ Hw
δx(X) ≈ −

∫
∞

0
x fX(x) log[ fX(x)∆X]dx + log

∆X

δx
·E[X] = hw(X) + E[X]·χX. (9)

While the second term in (9) corresponds to the enigmatic E[X] log(second) “dimension” of (7), it now
has an interpretation independent of the measurement system and allows weighted entropies from
different distributions to be compared. However, a suitable δx must be chosen; while this need not
correspond to the actual measurement resolution, it is necessary (in order for all entropy contributions
to be non-negative) that fXi(x)·δx ≤ 1 across all random variables X1, X2 . . . XN whose weighted
entropies are to be compared. It must therefore not exceed

δxmax = 1/ max
i=1,...,N

max
0≤x<∞

fXi(x). (10)

Similarly, the residual weighted entropy can be shown to be

Hw
δx(X; t) ≈ hw(X; t) + E[X|X > t]·χX (11)

where E[X|X > t] is the expectation of X given X > t. The maximum granularity now becomes

δxmax = 1/ max
i=1,...,N

max
ti≤x<∞

[
fXi(x)/FXi(ti)

]
(12)

where ti is the t-value pertinent to the random variable Xi and FXi(ti) is the corresponding survival
function. Equations (9) and (11) also provide a clue as to the lower acceptable limit of the granularity: if δx
were too small then the second terms in these expressions would dominate, making “weighted entropy”
merely an overelaborate measure of expectation. Within this window of acceptable values, a compromise
“working granularity” must be found. This will be addressed later.

5. Gamma, Exponential and Gaussian Distributions

For the purpose of studying this granular entropy, the following specific probability distributions
were chosen:

1. Exponential: this is the distribution of time intervals between independent spontaneous events.
2. Gamma: this generalizes the Erlang distribution of a sequence of k consecutive identically

distributed independent spontaneous events; this generalization allows k to be a non-integer.
3. Gaussian (Normal): this represents the aggregate of many independent random variables in

accordance with the central limit theorem. It is also the limit of the gamma as k→∞ and has the
largest possible entropy for a given variance [1].

Figure 3 compares examples of the three distributions with the same mean, showing how the
exponential and Gaussian are the limiting cases for the gamma distribution for k equal to 1 and infinity
respectively. As before, we assume that X represents a time interval (though it could represent other
physical quantities).
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Figure 3. Exponential, gamma and Gaussian distributions. Gamma for k = 1 is identical to the
exponential, while the Gaussian is the limiting case of gamma as k→∞. E(X) = k/λ = 1 for all the
gammas, and the Gaussian σ = 0.2s (that of the gamma for k = 25).

5.1. The Exponential Distribution

The exponential distribution models spontaneous events such as the decay of atoms in a
radioactive isotope or “soft” electronic component failures. The PDF is fX(x) = λe−λt; x ≥ 0 where λ is
the “rate parameter”: it has the property that 1/λ is both the expectation and the standard deviation.
Applying (9) and (11) we find that the regular and weighted entropies are:

Hδx(X) = 1− log(λδx), (13)

Hw
δx(X) =

1
λ
[2− log(λδx)]. (14)

Residual weighted entropy is worked out as an example in [13] (p. 9): “granularized”, it can be written

Hw
δx(X; t) = t +

2
λ
−

(
t +

1
λ

)
log(λδx) (15)

which is clearly a linear function of t with gradient 1− log(λδx). In the original formulation (with ∆X

in place of δx) this was problematic since the slope could be either positive and negative, but now by
keeping λδx ≤ 1 we ensure the weighted entropy never decreases with t and always remains constant
or decreases with increasing λ.

5.2. The Gamma Distribution

The PDF of the gamma distribution is:

fX(x) =
λ

Γ(k)
(λx)k−1e−λx; x ≥ 0 (16)

where Γ(k) =
∫
∞

0 zk−1e−zdz (the gamma function). Since the variance σ2 = k× 1/λ2 and the expectation
E[X] = k/λ, we can obtain a gamma distribution with any desired expectation and standard deviation
by setting k = E[X]2/σ2 and λ = E[X]/σ2. Substituting (16) into (8) yields

Hδx(X) = k− (k− 1)ψ(k) + log Γ(k) − log(λδx) (17)

where ψ(x) = d log Γ(k)/dk (the digamma function).
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Since Γ(1) = 1, (17) simplifies to (13) when k = 1. Similarly, the weighted entropy can be written

Hw
δx(X) =

1
λ
[k + 1− (k− 1)ψ(k + 1) + log Γ(k) − log(λδx)]. (18)

Using the recursive property ψ(k + 1) = ψ(k) + 1/k [23] and recalling that E(X) = k/λ, we uncover a
very simple relationship between the weighted and unweighted entropies:

Hw
δx(X) =

1
λ
[1 + kHδx(X)] =

1
λ
+ E(X)Hδx(X). (19)

(Note that (18) and (19) are consistent with (13) and (14) for k = 1.) In a similar manner, the residual
weighted entropy can be shown to be

Hw
δx(X; t) =

1
λΓ(k,λt)

[
Γ(k + 1,λt) log

λδx
Γ(k,λt)

+ (k− 1)Λ(k,λt) − Γ(k + 2,λt)
]

(20)

where Γ(y, z) =
∫
∞

z xy−1e−xdx (the upper incomplete gamma function) and Λ(y, z) =
∫
∞

z xye−x log xdx.
Though not a well-recognized function, this converges for all y, z > 0, may be defined 0 for z = 0
(y > 0) and computed to any required degree of accuracy using Simpson’s rule. Also note that when
k = 1, the term containing Λ vanishes and (20) simplifies to (15).

5.3. The Gaussian (or Normal) Distribution

The PDF of the Gaussian distribution is given by

fX(x) =
1

σ
√

2π
exp

[
−

1
2

(x− µ
σ

)2
]
; −∞ < x < ∞ (21)

where µ is the expectation and σ the standard deviation. While the distribution extends to infinity in
both directions (unlike the exponential and gamma which are defined only for x ≥ 0) we have been
considering temporal separation which can only be positive; for this reason we impose an additional
restriction that σ ≤ µ/3 such that Pr(X < 0) never exceeds 0.0013, which may, for practical purposes,
be neglected. The expression for the Shannon differential entropy has already been introduced in
Section 2; “granularized”, the expression may be written

Hδx(X) = log
√

2π+ log
σ
δx

+
1
2

. (22)

For the weighted entropy we substitute (21) into (9) and simplify to obtain

Hw
δx(X) = µ

[
log
√

2π+ log
σ
δx

+
1
2

]
= E[X]Hδx(X). (23)

So, the weighted entropy is simply the unweighted entropy multiplied by the expectation. With the
exception of the 1/λ term this is almost the same as (19), and as k becomes large the two expressions
converge. This is to be expected since the central limit theorem [24] requires that the sum of many
independent random variables behaves as a Gaussian: since the gamma distribution represents the
convolution of k exponentials (each with expectation 1/λ), when k is large (and thus 1/λ small) the
gamma and Gaussian acquire near-identical properties for x > 0.

To obtain an expression for the residual weighted entropy of the Gaussian distribution we
substitute (21) into (11) and simplify to obtain:

Hw
δx(X; t) =

1
√
π

[
µa− σ

√

2
(
b− a2

− 1
)] e−a2

erfc(a)
− µ

[
b−

1
2

]
(24)
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where a =
t−µ
σ
√

2
, b = log δx

√
2/π

σerfc(a) and erfc(a) = 2
√
π

∫
∞

a e−z2
dz (the complementary error function).

5.4. Numerical Calculations

Figure 4 shows the weighted entropies computed for exponential, Gaussian and gamma
distributions for a mean outcome of 1 s and two levels of granularity (0.05 and 0.1 s) across a
range of standard deviations less than the mean. We make the following observations:

1. Both the weighted and unweighted entropies for σ = 0 should in principle be zero (since here
fX(x) becomes a Dirac delta function located at x = µ) but would actually tend to minus infinity
as σ→ 0 . Our “granularized” entropy definitions (8) and (9) cease to be meaningful in this region
since they approximate absolute entropies which must be non-negative.

2. Meaningful Gaussian curves cannot be computed for σ & 0.3 since this would significantly violate
the assumption that all X > 0 (see Section 5.3). Thus, the gamma “takes over” from the Gaussian
across the range 0.3 . σ . 1.0, thus providing a kind of “bridge” to the exponential case on the
far right.

3. Although Hδx(X) ceases to rise significantly beyond σ ≈ 0.8, Hw
δx(X) increases almost linearly up

to σ = 1.0. This is because the expanding upper tail of the distribution, though not significantly
increasing the surprisal, nevertheless causes larger X values to contribute more significantly.
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6. Choosing a Working Granularity

In Section 4 we postulated the existence of a “window” from which an acceptable working value
of δx must be chosen. Though we did not specify its limits, we noted that if δx were too small it would
eliminate the nuance of “entropy” from Hw

δx(X; t) and make it merely an overelaborate measure of
expectation. For this reason, we suggest that δx be as large as possible, though not so large as to exceed
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the reciprocal of the maximum probability density and thus introduce negative surprisal. Here we test
this suggestion and explore its implications for the distributions previously described.

6.1. The Upper Limit

The exponential distribution has the property fX(x)/F(t) = f (x− t) of which the maximum
is always constant and equal to the rate parameter λ. Thus if all distributions to be compared are
exponential then δxmax = 1/ max

1≤i≤N
λi whereλi is the rate parameter for fXi(x) independent of t. However,

this property does not apply to the more general gamma distribution, whose modal value (k− 1)/λ
when substituted into (16) and (12) (noting that F(t) = Γ(k,λt)/Γ(k)) gives

max
t≤x<∞

fX(x)

FX(t)
=


λ

Γ(k,λt) (k− 1)k−1e−(k−1); t ≤ (k− 1)/λ
λ

Γ(k,λt) (λt)k−1e−λt; t > (k− 1)/λ
. (25)

Similarly for the Gaussian distribution the overall maximum probability density 1/σ
√

2π occurs when

x = µ and F(t) = 1
2 erfc

(
t−µ
σ
√

2

)
so the maximum value for the range t ≤ x < ∞must be

max
t≤x<∞

fX(x)

FX(t)
=


√

2/π

σ·erfc
(

t−µ
σ
√

2

) ; t ≤ µ
√

2/π

σ·erfc
(

t−µ
σ
√

2

) exp
[
−

1
2

( t−µ
σ

)2]
; t > µ

(26)

Calculations were performed on a set of four distributions, each with an expected value of 1.0 s:

1. Gaussian with standard deviation 0.3 s
2. Gamma with k = 5 (standard deviation 0.447 s)
3. Gamma with k = 15 (standard deviation 0.258 s)
4. Exponential with λ = 1.0 s−1.

Figure 5 shows the residual PDFs for the first of these with the maximum probability density
overlaid. Figure 6 compares this with the other three distributions: the maximum for the entire set
(for 0 ≤ t ≤ 1.5 s) is 6.938 s−1, so from (12) the maximum allowable granularity for comparing their
entropies δxmax = 1/6.938 = 0.144 s.
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While this ensures positive surprisal throughout our range of interest, the granularity may
nevertheless be subject to other constraints. To investigate further we introduce an alternative
calculation for weighted entropy to which (9) and (11) may be compared. Consider a “histogram” of

C cells, each δx wide, the cell i ∈ {1, . . . , C} having constant probability P(i) =
∫ xi+δx

xi
fX(x)dx (xi being

the lower cell boundary and x1 = t). Figure 7 shows the histograms for the Gaussian distribution with
three different granularities (C taking the minimum value required to cover the range [0, 6σ]) and
t = 0. Clearly as δx increases the discretized distribution resembles less the corresponding continuous
distribution. In each case the weighted entropy can be approximated

H
w
δx = −

C∑
i=t/δx

xi
P(i)

F(t)
log

P(i)

F(t)
δx (27)

where xi is the horizontal position of the centroid of the PDF enclosed by cell i and F(t) = 1−
∑i=t/δx

0 P(i).
Figure 8 compares the results of (27) with those of (24) across a range of granularities for t = 0,

showing the values are almost identical for small δx but diverge as the granularity increases. The “upper
limit” δx = max

t≤x<∞
fX(x)/F(t) = 0.752 s (represented by the three-cell distribution in Figure 7) shown

by the broken line appears to represent the lower boundary for large errors, though noticeable
discrepancies do exist for all δx greater than half this value.

We therefore define the upper limit of granularity as the maximum δx for which the two weighted
entropy approximations disagree by no more than a fraction α of their combined average, i.e.,

∣∣∣∣Hw
δx(X; t) −Hw

δx(X; t)
∣∣∣∣ = α

H
w
δx(X; t) + Hw

δx(X; t)

2
(28)

which may be computed iteratively for any given distribution and t-value. We choose as our benchmark
α = 0.321 (i.e., 32.1% maximum error) which corresponds to the previously computed δx = 0.752 s and
plot the upper limits of δx for a range of σ values (see Figure 9).

The granularity computed from (12) is mostly lower (and never significantly higher) than the
value from (28) and the former could be regarded as a cautious “engineering” lower limit: for the
range of distributions compared in Figure 6 this is 0.144s and Figure 10 shows the weighted entropy
calculated using this value across the same range of t. We make the following observations:
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1. The residual weighted entropy for the exponential distribution has the strongest dependence
on t; since the distribution shape (and variance) does not depend on t, the increase in weighted
entropy is caused entirely by the increased mean weighting.

2. For the gamma distribution with k = 5, the residual variance decreases with increasing t,
the distribution becoming progressively more concentrated around its mean. This causes the
entropy to fall, counteracting somewhat the increased weightings. Thus, the rise in weighted
entropy with increasing t is less pronounced than for the exponential distribution.

3. For the gamma distribution with k = 15, these competing effects almost cancel each other,
the decreased variance compensating almost exactly for the increased average weighting.

4. The Gaussian results are similar, the weighted entropy now showing a pronounced decrease with
increasing t. Re-plotting the Gaussian graph for smaller δx-values (Figure 11) shows that a critical
granularity exists (in this case δx = 0.0465 s) where the residual weighted entropy remains almost
constant as t is varied.
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Figure 11. The effects of mean and variance on residual weighted entropy of a Gaussian RV (µ = 1 s,
σ = 0.3 s) for different values of δx (noted on the left for each curve) which clearly determines the
dominating influence. There exists a critical value (δx ≈ 0.0465 s) where the residual weighted entropy
barely depends upon t.

6.2. The Lower Limit

Having established an upper limit for granularity, we observe the effect of using lower values
than this. Figure 11 shows results obtained from the Gaussian PDF, indicating that with different
granularities the weighted entropy can both rise and fall with increasing t, a situation not unlike that
which arose from applying Molyneaux’s dimensionality approach to differential weighted entropy
(see Section 3): the largest weighted entropy amongst a group of distributions now depends not on
measurement units but on the measurement granularity. This is to be expected since as δx decreases,
Hw
δx(X; t) becomes progressively more “expectation-like” due to the increased influence of the second

term in (11). However, we must ask at what point does Hw
δx(X; t) cease to be a meaningful “entropy”

and merely a measure of expectation? What additional condition might be imposed to prevent this
from happening?

One possibility would be to constrain the granularity such that two scenarios, one with higher
and the other with lower entropy should never be allowed to switch over when granularity is changed.
However, there remains the possibility that acceptable δx ranges for different distributions to be
compared do not overlap, and some may have to be compared with others based solely on an
expectation-like weighted entropy.

7. Conclusions

We have identified and attempted to address the dimensionality problem present in Di Crescendo
and Longobardi’s differential residual weighted entropy formulation [13]—namely the opposing
influences of the positive and negative values of log fX(x) which (since fX(x) is a dimensioned quantity)
depend on the unit system. This does not affect Shannon’s differential entropy [1] so long as consistent
units are employed, but it does become important when x appears as an all-positive weighting.
We circumvent this problem by applying a “working granularity” δx to convert differential entropy
into a “quasi-absolute” quantity, choosing δx to be the largest value required to make log fX(x)δx ≤ 0
in all distributions of interest. We demonstrate this formulation using the residual exponential, gamma,
and Gaussian distributions. There are many other issues to be investigated: firstly, we have assumed
throughout a single random variable X whose sample values are uncorrelated. The extension of this
idea to the strongly correlated Tsallis [9,10] entropy definition remains to be explored. Furthermore,
the application to joint entropies in multivariate distributions has yet to be investigated.
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