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ABSTRACT 

 

Although many solid tumors use the lymphatic system to metastasize, there are few treatment 
options that directly target cancer present in the lymphatic system, and those that do are highly 

invasive, uncomfortable, and/or have limitations. This review gives a brief overview of 
lymphatic function and anatomy, discusses changes that befall the lymphatics in cancer and the 
mechanisms by which these changes occur, and presents limitations for drug delivery to the 

lymphatic system. We then go on to summarize relevant techniques and new research for 
targeting cancer populations in the lymphatics and enhancing drug delivery intralymphatically, 

including intralymphatic injections, isolated limb perfusion, passive nano drug delivery systems, 
and actively targeted nanomedicine.  
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1. INTRODUCTION 

 

Before discussing drug delivery to the lymphatic system, it is important to understand the 
anatomy and physiology of the lymphatics. One of the main roles of the lymphatic system is the 

drainage of interstitial fluid from tissues back into circulation through the thoracic duct, 
preventing fluid build-up and edema [1–3]. Additionally, the lymphatic system is important 
immunologically, as one of its main functions is providing a networked system of vessels for the 

transport of immune cells throughout the body [1,4]. Antigens and antigen presenting cells enter 
into the lymphatic vasculature and travel to the nearby lymph nodes [4]. Lymphocytes within the 

lymph nodes that are exposed to antigen presenting cells trigger an immune response to the 
antigen [4]. The lymphatic system also plays an integral part in lipid metabolism [3,5,6]. As fats 
are consumed, enterocytes package lipids into lipoproteins. Lipoproteins are then transported by 

the lymphatic vessels [5]. 
 

The lymphatic system begins at the initial lymphatic capillaries where interstitial fluid enters [1]. 
After entering the lymphatics, interstitial fluid becomes lymph, the fluid that fills the lymphatic 
capillaries comprised of lipids, proteins, and white blood cells [4,6]. The cells that compose 

lymphatic capillaries are made of a monolayer of non-fenestrated endothelial cells that are 
typically collapsed until pressure in the interstitium increases [7,8]. As pressures rise within the 

initial lymphatic capillaries, the ends close and prevent the backwards flow of lymph [1]. 
Therefore, the anatomy of lymphatic capillaries contribute to their functionality, enabling them 
to act as valves [1,7]. As discussed later in section 3, many times, lymphatic drug delivery will 

occur through the lymphatic capillaries because the walls are quite thin, making this an easier 
place for substances to cross. 

 
After the lymph has passed through the lymphatic capillaries, it flows to pre-collecting 
lymphatics, vessels that have one-way bicuspid valves and a smooth muscle layer capable of 

contracting to assist in propelling lymph forward [1]. Some areas in in the pre-collecting 
lymphatics are without a smooth muscle layer and will continue to absorb excess fluid [1,9]. 

From here, fluid flows into the collecting lymphatics, the walls of which are comprised of three 
layers – the intima consisting of endothelial cells, the media made of smooth muscle, and the 
adventitia, composed of collagen fibers [1]. These lymphatics have secondary valves which are 

typically bicuspid valves [10]. Lymphatic vessels are connected to the surrounding tissue by 
connective tissue fibers [2,11]. These fibers enable the lymphatics to remain open and prevent 

the lymphatic vessels from collapsing in on themselves, and the attachment of collagen fibers to 
elastin fibers allow the lymphatics to respond to movement [2,11]. After passing through the 
collecting lymphatics, lymph and its contents, including any drugs that have been successfully 

delivered to the lymphatic system, are drained either into the right subclavian vein or into the 
thoracic duct and back into blood circulation where the jugular and subclavian veins meet [1]. 
1
 

                                                 
Abbreviations:  

vascular endothelial growth factor (VEGF)-C  

vascular endothelial growth factor receptor (VEGFR) 

nicotinamide adenine dinucleotide phosphate oxidase 3 (NOS3) 

fatty acid synthase (FAS) 

platelet derived growth factor (PDGF) 

hypoxia inducible factor (HIF) 
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insulin-like growth factor binding protein 1 (IGFBP1) 

insulin growth factor (IGF) 

Kangai 1 (KAI1) 

COOH-terminal interacting tetraspanin (KITENIN) 

chemokine receptor (CCR) 

chemokine ligand (CCL) 

protein kinase B (AKT) 

extracellular-signal regulated kinase (ERK) 

Wingless-type mouse mammary tumor virus (MMTV)  

MMTV integration site family (WNT) 

semaphorin 7a (SEMA7a) 

focal adhesion kinase (FAK) 

interleukin- (IL-) 

prospero homeobox protein 1 (Prox-1) 

lymphatic vessel endothelial receptor 1 (LYVE-1) 

lysophosphatidic acid (LPA) 

nuclear factor (NF) 

cyclooxygenase- (COX-) 

sine oculis homeobox homolog 1 (SIX1) 

transforming growth factor-β (TGF-β) 

glycogen synthase kinase 3 β (GSK3β) 

transforming growth factor β induced protein (TGFβIp) 

Kirsten rat sarcoma viral oncogene homolog (Kras) 

retinoblastoma gene (Rb) 

inhibitor of differentiation (ID-) 

sex determining region Y-box 18 (SOX-18) 

protease-activated receptor 2 (PAR2) 

sphingosine-1-phosphate (S1P) 

sphingosine kinase-1 (SK1) 

human epidermal growth factor receptor 2 (HER2) 

Fms related tyrosine kinase 4 (FLT4) 

tumor necrosis factor α (TNF-α) 

forkhead box (FOX) 

tropomyosin-related kinase B (trkB) 

cellular inhibitor of apoptosis 2 (cIAP2) 

nuclear receptor corepressor 1 (NCoR) 

thyroid hormone receptor β1 (TRβ1) 

E26 transformation-specific (ETS) domain-containing protein Elk-3 (ELK3) 

soluble vascular endothelial growth factor receptor (sVEGFR) 

cluster of differentiation (CD) 

serine/threonine/tyrosine kinase 1 (NOK, also called STYK1) 

sulfatase 2 (Sulf2) 

decoy receptor 3 (DcR3) 

phosphoinositide-3-kinase (PI3K) 

inducible nitric oxide synthase (iNOS) 

tumor associated macrophages (TAMs) 

tyrosine kinase with Ig and EGF homology domains -2 (TIE-2) 

TIE-2-expressing monocytes (TEMs) 

chitinase 3-like protein 1 (CHI3L1) 

macrophage colony-stimulating factor (M-CSF) 

type 2 T helper cell (Th2) 

Janus kinase (JAK) 

signal transducer and activator of transcription 3 (STAT3) 
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Lymphoid organs include the bone marrow, thymus, spleen, appendix, tonsils, Peyer’s patches, 
and lymph nodes [1]. The bone marrow and thymus are primary lymphoid organs and produce 

lymphocytes. The other lymphoid organs are secondary organs [1]. Lymphocyte maturation and 
immune response initiation occur in the secondary lymphatic organs [1]. As this review will be 

focusing mainly on the lymphatic vasculature and lymph nodes, we will only briefly discuss the 
anatomy of healthy lymph nodes. Secondary lymphatics are discussed in depth in another 
lymphatic review [1]. 

 
Drug delivery to lymph nodes is of interest in cancer treatment, as many solid tumors metastasize 

through the lymphatic system. Lymph nodes, like the lymphatic vessels, have an outer layer of 
smooth muscle, and thus contract as well [1]. As lymph flows through the lymph nodes, there is 
higher resistance compared to the rest of the lymphatics [1,12]. Upon entering the lymph node, 

lymph flows into the subcapsular sinus, around the lymphoid compartment, and is distributed 
into the nodal sinuses [1]. After reaching the sinuses, macrophages filter the fluid [1]. Most of 

the lymph is then pushed through the efferent vessels back into the lymphatic circulation, while 
some lymph enters the lymphoid compartment which is comprised of a highly impermeable 
membrane that prevents large molecules from entering the bloodstream [1,13]. The conduit 

system is full of specialized channels that allows lymphocytes, lymph, and small molecules to 
enter the lymph node [1,13]. High endothelial venules inside the lymphoid compartment permit 

the lymph within the lymphatic system to enter the bloodstream, and lymphocytes from the 
bloodstream to enter the lymph node [1,13,14]. Lymphatic anatomy, structure, and function is 
discussed more in depth in other reviews and papers referenced herein [1–4,7,8,11–14]. A 

schematic of lymphatic vessel anatomy can be found in Figure 1. 

                                                                                                                                                             
phosphorylated-STAT3 (p-STAT-3) 

ATP-dependent chromatin remodeler SMARCA4 (BRG1) 

switch/sucrose non-fermentable (SWISNF) 

human immunodeficiency virus (HIV) 

polyglutamic acid (PGA) 

polyethylene glycol (PEG) 

poly(lactide-co-glycolide) (PLGA) 

poly(lactic acid) (PLA) 

methoxy poly(ethylene glycol)5,000-block-poly(ε-capro lactone)10,000 (mPEG-PCL) 

carboxy poly(ethylene glycol)5,000-block-poly(ε-caprolactone)10,000 (cPEG-PCL) 

polystyrene nanoparticles (PS) 

PLGA-PMA:PLA -PEG (PP) 

isolated limb perfusion (ILP) 

Toll-like receptor (TLR) 

scanning electron microscopy (SEM) 

methyl poly(ethylene glycol)-distearoylphosphatidyl-ethanolamine (mPEG-DSPE) 

poly-(ethylene glycol) phosphorethanolamine (PEG-PE) 

polyethylenimine-stearic acid conjugate (PSA) 

tyrosinase-related protein 2 (Trp2) 

polyamidoamin dendrimers conjugated to alkali blue (PANAM-AB) 

paclitaxel loaded onto PANAM-AB dendrimers (PTX-P-AB) 

lymphatics-homing peptide (LyP-1) 

polycaprolactone-polyethylenimine (PCL-PEI) 

immunoglobulin G1 (IgG1) 
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Figure 1. A brief schematic of lymphatic vessel anatomy, showing lymphatic capillaries, pre-
collecting lymphatics with an intermittent smooth muscle layer, collecting lymphatics with a 3-

layer cell wall, and location of lymph node macrophages. Lymph nodes are connected to 
collecting lymphatics and have a smooth muscle layer.  
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Over the past several years, ongoing research has begun to elucidate the effects the lymphatic 
system can have in various illnesses, such as cancer. Although the lymphatic system is a part of 

the pathology of several disease states, it is can be difficult to target with conventional 
medications administered systemically. This review seeks to briefly explore the role the 

lymphatic system plays in cancer, discuss new insights into the mechanisms for increased 
lymphangiogenesis in cancer, and highlight options, benefits, and challenges for drug delivery to 
the lymphatics. 

 
2. THE ROLE OF LYMPHATICS IN CANCER 

 
2.1. Lymphatics in cancer 

 

Solid tumors metastasize via the lymphatics in approximately 80% of cases, first by spreading to 
the sentinel node, the lymph node immediately downstream of the tumor that receives lymph 

proximally from the area of the tumor [15]. From there, the cancer can spread to other regional 
lymph nodes, to more distant nodes, or to other organs, though the mechanism by which this 
occurs has not been fully elucidated [15]. As the cancer cells spread throughout the lymphatic 

system, they may metastasize into the blood stream, other tissues, or organs that are perfused by 
lymphatic vessels [16]. This highlights the need to have a reliable way to deliver drugs to cancer 

cell populations within the lymphatics. Although lymphatic vascular changes in solid tumors 
have been well described and studied, there is limited literature describing lymphatic changes in 
blood cancers. In this review, we will be focusing on lymphatic changes in solid tumors. 

 
2.2. Factor, molecule, and enzymatic variations in cancer leading to lymphatic changes: a 

mechanistic discussion of recent studies 

 

Lymphatic vasculature near tumors is more dense than in normal tissue, and lymphatic vessels 

can develop intratumorally [17]. This indicates that cancer stimulates lymphangiogenesis. It has 
been shown that in patients with breast cancer, disease free survival and overall survival are 

significantly lower in patients with a high lymphatic vessel density compared to patients with 
low lymphatic vessel density [17]. This finding may be applicable to other cancers as well, and 
increased lymphatic involvement is associated with poorer outcomes. There are several factors, 

signaling molecules, and upregulated enzymes found in the tumor microenvironment that lead to 
increased lymphangiogenesis, and this review will discuss new findings on several of these from 

works published in the last couple of years. A simple overview of many of the factors discussed 
in this paper are presented in Figure 2. A table with information about which factors were 
studied with each cancer is also included (Table 1). 

 
 

ACCEPTED MANUSCRIPT



ACCEPTED M
ANUSCRIPT

 

 

 
 
Figure 2. A simplified overview of the factors discussed in section 2.2 that contribute to lymphangiogenesis. Abbreviations can be 

found in the footnotes and in section 2.2. Items in red have central roles or are implicated across several discussed cancers. 
 

 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

Cancer Markers 

Gastric VEGF-C [18] 

IL-6 [19] 

Ring finger protein 180 [20] 

ID-1 [21] 

Sonic hedgehog [22] 

iNOS [23] 

Melanoma VEGF-C [24,25] 

FAS [24] 

Microphthalmia-associated transcription factor [25] 

c-Jun N-terminal kinase and p38/mitogen-activated 

protein kinase [25] 

Integrin α4β1 [26,27] 

FLT4 [28] 

High fat diet – CCL18, CCL21/CCR7 axis [29] 

SOX-18 [30] 

Cervical VEGF-C [31] 

SIX1 [31] 

TAMs [32] 

VEGFR-3 [33] 

Breast VEGF-C [34–37] 

IL-6 [34] 

Ezrin [34] 

COX-2 [35,38] 

Prostaglandin E2 and E receptor [35] 

NCoR and TRβ1 [36] 

TAMs [39,40] 

IL-24 [41] 

ELK3 [37] 

S1P [42] 

SEMA7a [43] 

DcR3 [44] 

Sulf2 [45] 

Mast cell density [46] 

Squamous Cell Carcinoma COX-2 [47,48] 

WNT5B [49] 

WNT-1 inducible signaling pathway protein-1 [50] 

Prox-1 [51] 

FOXC2 [51] 

VEGF-D [52] 

Neuropilin 1 receptor [53] 

IL-6 [54] 

VEGF-C [47,54–56] 

Periostin [55] 

ID-1 [57] 
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Α-smooth muscle actin protein [58] 

NF-κB [56] 

Notch1 [56] 

Cancer-associated fibroblasts [58] 

Gallbladder VEGF-C [59] 

Tropomyosin-related kinase B [59] 

TNF-α [60] 

cIAP2 [61] 

Colon VEGF-C [62,63] 

BRG1 [64] 

Integrin α4β1 [62] 

KITENIN [65] 

Smads [31] 

High mobility group box 1 protein [63] 

Neuropilin-2 [66] 

Lung VEGF-C [67] 

IL-7 [68] 

IL-1α [69] 

CCR7 [70] 

CCL21 [70] 

PDGF [71] 

TAMs [40] 

Insulin- like growth factor binding protein 7 [72] 

Prostaglandin E2 [67] 

Adrenomedullin [73] 

HeLa Tumors/Ovarian Osteoclast-like giant cells [74] 

Podoplanin [75] 

NOK [76] 

Chondrosarcoma Adiponectin [77] 

Pancreatic Heparanase [78] 

Ephrin B2 [79] 

PAR2 [80] 

Angiopoietin-1 and angiopoietin-2 [81] 

Kras and Rb gene and Kras and INK4a [82] 

Neuroblastoma sVEGFR-2 [83] 

Prostate Cancer CD151 [84] 

Obesity [85] 

Caveolin1 [86] 

Hepatocellular Carcinoma HIF-1α [87] 

HIF-2α [87] 

Non-Specifically Studied LPA and receptors LPA1-3 [88] 

Table 1. A list of the markers discussed in section 2.2. The markers are arranged by the cancers 

in which they were studied. Abbreviations can be found in the text and within the footnotes.  
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Lymphatic changes in cancer may occur due to a variety of chemical changes and signals. Often, 
vascular endothelial growth factor (VEGF)-C expression is an important player in lymphatic 

vessel growth in cancer. VEGF-C expressed in tumor cells binds to and activates its receptor, 
vascular endothelial growth factor receptor (VEGFR)-3 found on lymphatic endothelial cells. 

After activation of VEGFR-3, Homeobox transcription factor HOXD10 is activated, and is 
involved in lymphatic endothelial cell migration and formation of cord-like structures, as it 
regulates the expression of VE-cadherin, claudin-5, and nicotinamide adenine dinucleotide 

phosphate oxidase 3 (NOS3) [89]. Examples of cancers that have upregulated VEGF-C include 
melanoma, squamous cell carcinomas, gastric, cervical, breast, gallbladder, colon, lung, ovarian, 

chondrosarcoma, pancreatic, neuroblastoma, and prostate cancers [18–20,24,25,28,32,34–
36,41,47,50,51,54,55,59,62,63,71,90]. Many variables can increase VEGF-C expression in 
cancers. Additionally, other factors, molecules, and enzymatic variations that contribute to 

lymphatic changes in cancer are discussed in more detail below. Sections are divided based on 
types of cells involved in the lymphangiogenesis process. 

 
2.2.1. Cancer Cell Involvement in Lymphangiogenesis 
 

Many times, cancer cells themselves are expressing or emitting factors and molecules that 
contribute to lymphangiogenesis. A major way cancers promote lymphangiogenesis is through 

the expression of VEGF-C. One factor that can contribute to VEGF-C upregulation is fatty acid 
synthase (FAS), a protein that catalyzes the production of fatty acids from acetyl-CoA and 
malonyl-CoA. FAS overexpression is correlated with a poor prognosis, and it may play a role in 

lymphangiogenesis, as melanoma mouse models treated with FAS inhibitors show a reduction in 
lymph node metastases due to decreased production of VEGF-C [24]. Mice given B16-F10 

melanomas and treated with FAS inhibitors show a decrease in the volume of lymph node 
metastases by 39% and lower VEGF-C expression. Another factor, platelet derived growth factor 
(PDGF) is overexpressed in cancers [71]. In one study, about 65% of non-small cell lung cancer 

tissues had PDGF-BB or VEGF-C overexpession, and about 50% had overexpression of both 
factors simultaneously. Lymphatic microvessel density was significantly higher in cancers with 

PDGF-BB and VEGF-C overexpression, along with increased likelihood of lymph node 
metastasis and significantly shorter survival. 
 

Other factors that can contribute to lymphangiogenesis include hypoxia inducible factors (HIFs). 
In hepatocellular carcinoma, HIF-1α expression is associated with increased lymphatic 

metastases [87]. HIF-2α silencing also leads to lymphangiogenesis, as it typically inhibits 
lymphangiogenesis by inducing insulin- like growth factor binding protein 1 (IGFBP1). Insulin 
growth factor (IGF) increases lymphangiogenesis, and IGFBP1 inhibits IGF. Interestingly, 

silencing of Kangai 1 (KAI1) COOH-terminal interacting tetraspanin (KITENIN) leads to 
decreased expression of VEGF-A, HIF-1α, and VEGF-C, but is significantly associated with 

lymph node metastases in colon cancer [65]. KITENIN positive tumors are not associated with 
higher lymphatic vessel density, indicating that perhaps it may only contribute to metastases via 
angiogenesis. HIFs also play a role in managing chemokine expression. Chemokines and 

chemokine receptors involved in lymphangiogenesis include chemokine receptor (CCR)4 and 
chemokine ligand (CCL)12 [27]. VEGF-C increases CCR4 expression on lymphatic endothelial 

cells, HIF-1α regulates its expression, and CCL12 acts as a chemoattractant for lymphatic 
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endothelial cells by stimulating lymphangiogenesis via protein kinase B (AKT) and 
extracellular-signal regulated kinase (ERK) phosphorylation. 

 
Integrins and their receptors play a major role in lymphangiogenesis. Lymphatic vessel 

expression of integrin α4β1 is increased by the presence of tumors and lymphangiogenic growth 
factors, such as VEGF-C [26]. Integrin α4β1 was recently found to be a member of the VEGF-
C/VEGF receptor pathway [62]. Lv et al. examined the role of integrin α4 in colon cancer and its 

relationship with VEGF-C expression and lymphangiogenesis [62]. Expression of integrin α4, 
VEGF-C, and VEGFR-3 were increased in the colon cancer tissues, and lymphatic microvessel 

density was increased in cancerous versus non-cancerous tissues. There is a positive correlation 
between integrin α4 and VEGF-C, and integrin α4 and VEGF-C are significantly associated with 
poorer prognosis. Integrin α4β1 promotes survival and proliferation of lymphatic endothelial 

cells near the tumor, contributing to lymphatic metastases. Wingless-type mouse mammary 
tumor virus (MMTV) integration site family, member 5B (WNT)5B is upregulated in oral 

squamous cell carcinoma with high lymphatic metastatic potential, regulates Snail and Slug 
proteins through WNT signaling, and induces tube formation [49]. Snail and Slug are proteins 
involved in epithelial to mesenchymal transition [91]. This, in turn, induces lymphangiogenesis. 

WNT-1 inducible signaling pathway protein-1 regulates VEGF-C expression via the 
αvβ3/integrin- linked kinase/Akt pathway [50]. Semaphorin 7a (SEMA7a) is a 

glycophosphatidylinositol membrane anchored protein, and it likely causes increased 
lymphangiogenesis due to activation of the β1-integrin receptor [43]. Breast cancers with 
SEMA7a upregulation are associated with decreased overall survival and increased distant 

metastases. Additionally, neuropilin-2 activation in lymphatic endothelial cells increases 
lymphangiogenesis through activation of integrinα9β1/focal adhesion kinase/ERK 

(integrinα9β1/FAK/ERK) pathway signaling [66]. Periostin, a ligand for the αvβ3/integrins, has 
also demonstrated the propensity to induce lymphangiogenesis mediated through the AKT 
pathway and cause VEGF-C upregulation [55]. 

 
Interleukins also affect lymphangiogenesis. Interleukins of interest in breast cancer and 

lymphangiogenesis include interleukin (IL)-24 and IL-6. IL-24 is a cytokine that binds to IL-
22R, and its expression is reduced in breast cancer cells [41]. Reduced expression is seen in 
populations with increased lymphatic metastases. Decreased expression of IL-24 and IL-22R in 

tumor samples have increased markers for lymphangiogenesis, including podoplanin, prospero 
homeobox protein (Prox)-1, and lymphatic vessel endothelial receptor (LYVE)-1, a lymphatic 

vessel marker. Introducing IL-24 to cells reduced VEGF-C and VEGF-D expression. IL-8 is also 
important. Lysophosphatidic acid (LPA) and its receptors (LPA1-3) can be overexpressed in 
cancer, and they may contribute to lymphangiogenesis, as LPA increases IL-8 expression by 

activating the nuclear factor (NF)-ĸB pathway in endothelial cells [88]. In vitro, it was 
determined that LPA-induced lymphangiogenesis and IL-8 production are a result of the LPA2 

receptor in lymphatic endothelial cells. IL-8 production may also be enhanced in acidic 
microenvironments [92]. Acidosis in the cancer microenvironment increases lymphatic 
endothelial cell growth, and there are increased mRNA levels of IL-8 in lymphatic endothelial 

cells in acidic environments. Acidity also increases NF-κB activation, and inhibition of NF-κB 
decreases IL-8 expression. IL-7 also increases lymphangiogenesis by increasing VEGF-D and 

inducing the c-Fos/c-Jun pathway [68].  
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In efforts to understand what increases VEGF-C expression in melanoma, Puujalka et al. 
examined 22 human melanoma cell lines and determined that there is a negative correlation 

between mRNA expression of VEGF-C and microphthalmia-associated transcription factor [25]. 
Patients with high VEGF-C expression and low microphthalmia-associated transcription factor 

expression had a significant increase in metastasis development. C-J N-terminal kinase and 
p38/mitogen-activated protein kinase are implicated in this inverse relationship. Increased c-Jun 
N-terminal kinase signaling is seen in VEGF-C low and microphthalmia-associated transcription 

factor high melanoma. This melanoma is highly proliferative with low lymphangiogenesis. 
However, when p38 signaling is predominant in the tumors, the opposite is seen, with a VEGF-C 

high and microphthalmia-associated transcription factor low melanoma that is metastatic and has 
increased lymphangiogenesis. 
 

Cyclooxygenase- (COX-)2 has been implicated in promoting lymphangiogenesis and 
contributing to lymph node metastases [48]. Often, COX-2 and VEGF-C are co-expressed, and 

co-expression is significantly correlated with lymphangiogenesis, metastases within the 
lymphatic system, and density of the lymphatic vessels located proximally to the tumor [47]. Co-
expression of VEGF-C and COX-2 acts as a negative prognostic factor in oral tongue cancer 

[47]. COX-2 affects metastases in post-partum breast cancer, as it contributes to 
lymphangiogenesis in the mammary gland [38]. Another study in breast cancer shows that COX-

2 can stimulate cancer cell invasion and produces VEGF-C, leading to increased 
lymphangiogenesis from prostaglandin E2 activation of prostaglandin E 1 and 4 receptors [35]. 
Insulin- like growth factor binding protein 7, prostaglandin E2 and prostaglandin E receptor 

signaling pathways contribute to lymphangiogenesis. IGFBP7 is associated with increased 
metastases and a higher lymphatic vessel density [72]. Prostaglandin E2 and prostaglandin E 

receptor signaling pathways are involved in lymphangiogenesis, as prostaglandin E receptor 
signaling increases the expression of VEGF-C and VEGFR-3 [67]. Celecoxib, a COX-2 
inhibitor, decreases both VEGFR-3 and podoplanin expression [67]. 

 
Smads also play a role in lymphangiogenesis. In a cervical cancer model, sine oculis homeobox 

homolog 1 (SIX1) promotes lymphangiogenesis by enhancing transforming growth factor-β 
(TGF-β) activation of Smad2/3, thereby increasing VEGF-C expressing tumor cells [31]. Smads 
direct signals from extracellular TGF-β receptors to the nucleus. In colon cancer, smad4 acts in 

the TGF-β signaling pathway and inhibits lymphangiogenesis, likely by decreasing VEGF-C 
secretion [90]. Inhibition of Smad3 phosphorylation also affects lymphangiogenesis [93]. 

Treatment with lithium inhibits glycogen synthase kinase 3 β (GSK3β) activation in colon 
cancer; this in turn inhibits Smad3 phosphorylation and reduces transforming growth factor β 
induced protein (TGFβIp) expression in colon cancer cells, decreasing lymphangiogenesis and 

lymphatic endothelial cell migration. Gore et al. found that lymphangiogenic genes and 
lymphatic endothelial cells are present in higher numbers in pancreatic ductal adenocarcinomas 

that have mutated Kirsten rat sarcoma viral oncogene homolog (Kras) and deleted retinoblastoma 
gene (Rb) and in models with mutated Kras and deleted INK4a [82]. Pancreatic tumors with a 
Kras mutation and Rb deletion secrete amphiregulin, a prolymphangiogenic factor. It was noted 

that TGF-β1 increases amphiregulin secretion in these pancreatic cells, though this does not hold 
true for pancreatic cancer cells without Smad4 [82]. 
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Other factors that have demonstrated a propensity to increase lymphatic metastases include 
inhibitor of differentiation- (ID)-1, NF-ĸB, Notch1, sex determining region Y-box 18 (SOX-18), 

ephrin B2, heparin sulfate proteoglycans, and protease-activated receptor 2 (PAR2). ID-1 is a 
protein that assists in cellular activities throughout the cell life [94]. ID-1 also plays a role in 

tumor growth, as ID-1 silencing decreases lymphangiogenesis and VEGF-C expression [57]. 
Further, in tissue samples with well-differentiated cancer cells, ID-1 is primarily expressed in the 
nucleus; however, in samples with poorly differentiated cancer cells, the ID-1 expression mainly 

occurs within the cytoplasm [21]. This data clearly indicates that nuclear expression inhibits 
lymphangiogenesis and angiogenesis, and the opposite effects are seen with cytoplasmic 

expression, with increased lymphangiogenesis and angiogenesis. In esophageal squamous cell 
carcinoma, NF-ĸB and weak expression of Notch1 are present in tumors that develop lymph 
node involvement [56]. NF-ĸB and Notch1 expression are significantly inversely correlated with 

each other, and this expression is significantly associated with VEGF-C expression, metastases 
within the lymphatic system, and lymphangiogenesis [56]. SOX-18 expression may be important 

in lymphatic metastases, as suppression of SOX-18 decreases the rate of metastases and reduces 
lymphatic vessel density in melanoma [30]. Although SOX-18 is necessary for 
lymphangiogenesis in embryos, it also appears to be important in tumor-associated 

lymphangiogenesis, as it is re-expressed in lymphatic vessels after tumor-induced 
lymphangiogenesis. Ephrin B2, a membrane anchored protein, binds to the receptor, ephrin B4, 

to stimulate angiogenesis and lymphangiogenesis [95]. This process occurs normally, as well as 
in some disease states. Administration of an anti-ephrin B2 antibody decreases pancreatic tumor 
growth and VEGF-induced vascularization in xenograft mice [79]. Heparan sulfate 

proteoglycans are part of the extracellular matrix, and they have increased expression in several 
cancer types [78]. Increased expression is positively correlated with stage, grade, and metastases. 

Heparanase increases invasiveness of tumors, and heparanase elevation significantly increases 
lymphangiogenesis proximally to the tumor in the tumor microenvironment. PAR2 is a G 
protein-coupled receptor that is highly expressed in pancreatic cancer cells [80]. In vitro tube 

formation assays show that although PAR2 does not inhibit the tube forming of lymphatic 
endothelial cells, it inhibits cancer cell induced tube formation. Although its presence increases 

tumor growth, it limits lymphatic metastases and tumor-induced lymphangiogenesis. 
 
Cobec et al. showed that podoplanin is important in promoting ovarian cancer metastasis [75]. 

Podoplanin expression in ovarian carcinoma tumor cells was compared to peritumoral and 
intratumoral lymphatic density. Density of proliferating lymphatics intratumorally positively 

related to proliferating tumor vessels peritumorally and number of mature vessels intratumorally. 
Peritumoral microvessel density of proliferating lymphatics correlate with peritumoral mature 
vessels. Additionally, proliferating tumor cells at the invasive front have higher expression of 

podoplanin, indicating that podoplanin assists in tumor progression and metastasis to the 
lymphatic system. Further, hypermethylation of ring finger protein 180 DNA promoter is 

significantly associated with metastases to the lymph nodes, and there is a negative correlation 
between ring finger protein 180 expression and lymph node metastases [20]. Ring finger protein 
decreases podoplanin expression and lymphangiogenesis in mice, as well as hepatocyte growth 

factor, matrix metalloproteinase 2 and 14, and VEGF-C and VEGF-D. 
 

One signaling molecule that plays a role in lymphangiogenesis is sphingosine-1-phosphate 
(S1P). S1P is a sphingolipid produced by sphingosine kinase-1 (SK1) [42]. S1P is produced 
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intracellularly, and it affects cells via autocrine and paracrine mechanisms [42,96]. SK1 is 
overexpressed in several tumor types, and in 3-D collagen matrices, S1P causes endothelial cell 

sprouting, indicating overexpression of SK1 can contribute to lymphangiogenesis [42]. In 
patients with breast cancer, S1P levels in tumor tissues are significantly higher in patients with 

high white blood cell counts, patients without human epidermal growth factor receptor 2 (HER2) 
overexpression, and in patients who had cancer tissues with high phospho-SK1 expression [97]. 
Significantly higher levels of S1P are seen in tumor tissues of patients with lymph node 

metastases [97].  
 

Fms related tyrosine kinase 4 (FLT4) is a tyrosine kinase receptor for VEGF-C and VEGF-D that 
has been studied in melanoma, and it is important for lymphangiogenesis. When VEGF-C 
secreted by tumors binds to this receptor, lymphatic vessels can form, and tumor metastases may 

be initiated [28]. After administration of an FLT4 antagonist in a melanoma model, there was 
decreased tumor size and metastases in the lungs, fewer proliferative lymphatic vessels in the 

lungs in the intratumoral region, and a decrease in proliferating melanoma cells compared to 
untreated mice. In tissue with melanoma, there were higher amounts of FLT4 and tumor necrosis 
factor α (TNF-α), and lymphatic markers, including FLT4, VEGF-C, and Prox-1, had marked 

reductions in mice treated with an FLT4 inhibitor. TNF-α is associated with inflammation in 
cancer, and is involved in lymphatic metastasis [60]. Its expression is positively correlated with 

VEGF-D expression in gallbladder cancer patients, and VEGF-D can lead to an increase in 
lymphangiogenesis and lymph node metastases. Prox-1 and forkhead box (FOX)C2 expression 
affect lymphangiogenesis and angiogenesis [51]. Prox-1 expression is significantly correlated to 

stage of the tumor, lymphatic vessel density, metastases to the lymph nodes, and a poorer 
prognosis. In vitro, Prox-1 regulates growth and proliferation, invasiveness, and 

lymphangiogenesis. The effects of Prox-1 on lymphangiogenesis are regulated through VEGF-C. 
Higher immunoreactivity of FOXC2 is associated with an increase in microvessel density and 
worse prognosis. FOXC2 causes an increase in Prox-1 expression, and it can cause angiogenesis 

by increasing VEGF-A. 
 

Farahani et al. examined the role of neuropilin 1 receptor in dysplastic epithelium and cutaneous 
squamous cell carcinoma [53]. Their findings show neuropilin 1 receptor is expressed in 
differentiated cells in the skin epithelium and squamous cell carcinoma, and upregulation is 

significant in oral squamous cell carcinoma and oral epithelial dysplasia. In non-cancerous 
tissue, the expression is similar to normal skin epidermis, though it is upregulated in dysplastic 

tongue epithelium and oral squamous cell carcinoma in both basal and proliferating epithelia. 
This is interesting, as this phenomenon not observed in cutaneous squamous cell carcinoma. In a 
xenograft with HSC3, a human oral squamous cell carcinoma from a cervical lymph node with 

high neuropilin 1 receptor levels, there was extensive lymphangiogenesis in the tumor. 
 

Recent studies have examined the effects of tropomyosin-related kinase B (trkB) signaling and 
cellular inhibitor of apoptosis 2 (cIAP2) expression in lymphatic metastases of gallbladder 
cancer. TrkB increases gallbladder cancer invasion, expression at the invasive front is correlated 

with more advanced tumors, and survival decreases with increasing expression [59]. Signaling 
from activated trkB increases invasion, resultant from the induction of epithelial mesenchymal 

transition and activation of matrix metalloproteinases-2 and -9. Inhibition of trkB decreases 
VEGF-C and VEGF-D, tumor growth, lymphangiogenesis, and tumorigenesis. Additionally, 
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cIAP2 expression was recently correlated with negative patient outcomes in gallbladder cancer 
[61]. It acts as a lymphangiogenesis factor for cancer cells and promotes lymph node metastases 

by activating the NF-κB pathway [61]. 
 

Interestingly, tumor cell type and hormones can be associated with VEGF-C tumor expression. 
For example, Hatano et al. showed HeLa tumors that contain osteoclast-like giant cells form 
larger tumors in xenograft mouse models, and lymphangiogenesis and macrophage infiltration in 

these tumors occur more rapidly compared to tumors without osteoclast-like giant cells [74]. 
Quantitative PCR shows VEGF-C mRNA expression is increased in tumors with these cells; 

therefore, one of the ways osteoclast-like giant cells within tumors stimulate lymphangiogenesis 
is by increasing VEGF-C in the microenvironment. Additionally, adiponectin, a hormone 
produced by differentiated adipocytes, has been studied in chondrosarcoma. Some research has 

indicated that high levels of adiponectin contribute to tumor stage, increased angiogenesis, and 
adds to a pro-metastatic tumor environment [77]. Increased adiponectin is associated with higher 

VEGF-C expression and tumor stage in patients. Huang et al. investigated the process by which 
lymphangiogenesis is promoted by adiponectin in human chondrosarcoma cells and found that 
the increase in VEGF-C expression in response to adiponectin is facilitated via the calmodulin-

dependent protein kinase II, AMP activated protein kinase, and p38 signaling pathway. 
 

Other key factors that increase lymphangiogenesis by altering VEGF-C expression include 
nuclear receptor corepressor 1 (NCoR) and the thyroid hormone receptor β1 (TRβ1), E26 
transformation-specific (ETS) domain-containing protein Elk-3 (ELK3), and high mobility group 

box 1 protein. Ncor and TRβ1 decrease the invasiveness of tumors [36]. Martinez-Iglesias et al. 
studied the means by which this occurs and found that NCoR and TRβ1 decrease VEGF-C and 

VEGF-D expression in breast cancer cells, decreasing lymphangiogenesis and lymph node 
metastases in a tumor xenograft mouse model. They are negatively associated with 
lymphangiogenic genes and LYVE-1 in breast cancer tumors. ELK3 suppression inhibits triple 

negative breast cancer metastasis. Oh et al. examined the mechanism behind this with a triple 
negative breast cancer cell line, MDA-MB-231, with suppressed ELK3 [37]. Peritumoral 

lymphatic vessels did not develop in the ELK3 suppressed tumors due to decreased NF-κB 
signaling, which leads to lower VEGF-C expression. High mobility group box 1 protein is a 
chromatin protein in the nucleus that supports transcription. Li et al. examined colon cancer 

samples taken from patients, and presence of this protein significantly increased with VEGF-C 
expression in cancer tissues [63]. Due to increased VEGF-C expression, lymphatic vessel density 

and lymph node metastases are increased with high mobility group box 1 protein expression. In 
vitro studies show high mobility group box 1 protein upregulates VEGF-C mRNA expression 
and VEGF-C protein. This upregulation is dose dependent and is facilitated through NF-κB. 

 
VEGFRs are also important players in lymphangiogenesis in cancers. Soluble vascular 

endothelial growth factor receptor (sVEGFR)-2 is a lymphangiogenesis inhibitor. In advanced 
neuroblastoma, sVEGFR-2 can be downregulated, and the degree of downregulation is 
correlated to disease progression [83]. In metastatic neuroblastoma, there is downregulation of 

the lymphangiogenesis inhibitors VEGFR-1 and sVEGFR-2. In cervical cancer, VEGFR-3 
expression is significantly associated with peritumoral lymphatic vessel density and lymph node 

metastases, which is correlated to a poorer prognosis [33].  
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Factors and proteins important for normal cellular function that contribute to lymphangiogenesis 
in cancer include caveolin-1, CD151, and adrenomedullin. Caveolae are necessary for standard 

cellular activities, such as signal processing, lipid transport, gene regulation, and pathway 
activation [98]. Formation of caveolae require caveolin-1 and polymerase I and transcript release 

factor/cavin-1 [86]. Caveolin-1 is has increased expression in prostate cancer tissue compared to 
normal tissue, and overexpression contributes to tumor aggressiveness. When polymerase I and 
transcription release factor are absent from prostate cancer cells, there is a significant increase in 

tumor progression and metastasis because both angiogenesis and lymphangiogenesis are 
increased. A protein, cluster of differentiation (CD)151, is located on cell surfaces. In both tumor 

cells and normal cells, it regulates cellular migration [99]. In cancer, it enhances invasiveness, 
and higher expression levels are associated with an increased lymphatic vessel density [84]. 
Additionally, studies in a mouse model show that there is significantly higher CD151 expression 

and lymphatic vessel density in tumors that metastasize compared to tumors without metastases. 
Prognosis is poorer with increasing CD151 expression. Adrenomedullin is another factor that 

causes lymphatic endothelial cell proliferation [73]. Overexpression in tumors is associated with 
increased lymphangiogenesis, proliferation of lymphatic endothelial cells, and enlarged 
lymphatic vessels [73]. Karpinich et al. demonstrated that adrenomedullin secreted by tumors is 

important in tumor and lymph node lymphangiogenesis.  
 

Protein kinase expression can also increase lymphangiogenesis in some cancers. NOK 
(serine/threonine/tyrosine kinase 1 STYK1) is a tyrosine protein kinase involved in 
tumorigenesis and tumor metastasis [76]. Liu et al. showed that increased expression of NOK 

helps the occurrence of angiogenesis and lymphangiogenesis. HeLa cells with and without NOK 
expression were implanted into nude mice. Blood vessels in HeLa tumors with NOK expression 

were higher, and there is an increase in lymphatic vessels intratumorally and peritumorally 
compared to HeLa tumors without NOK expression. 
 

Other pathways, factors, and ligands that contribute to lymphangiogenesis include activation of 
the sonic hedgehog pathway, the nitric oxide pathway, sulfatase 2 (Sulf-2), and decoy receptor 3 

(DcR3). Activation of the sonic hedgehog pathway signaling occurs in several tumor types, and 
in gastric cancer, expression of sonic hedgehog is associated with lymphatic metastases and 
higher lymphatic vessel density [22]. It is thought that the phosphoinositide-3-kinase 

(PI3K)/AKT pathway may play a role in sonic hedgehog pathway activation, as inhibition of 
PI3K/AKT decreases the activity of matrix metalloproteinase 9 and blocks lymphangiogenesis 

and epithelial-mesenchyme transition. A recent study has demonstrated that the nitric oxide 
pathway may play a direct role in lymphangiogenesis in gastric cancers as well [23]. Inducible 
nitric oxide synthase (iNOS) expression is associated with lymphangiogenesis. Expression of 

iNOS in non-cancerous tissues is lower than expression in gastric carcinoma, and its expression 
is positively correlated with cancer presence within the lymphatics and increased lymphatic 

vessel density throughout and around the tumor. Sulf2 increases lymphangiogenesis in in breast 
cancer because of its regulatory role in VEGF-D expression [45]. Sulf2 significantly increases 
formation of lymphatic endothelial cells. Additionally, AKT1 is upregulated by Sulf2, and thus it 

increases lymphangiogenesis and lymphatic metastatic potential though VEGF-D and AKT1. 
DcR3, a Fas ligand that protects endothelial cells from apoptosis, is overexpressed in some 

cancers [44]. One study found that in 92% of breast cancer tissues, DcR3 is overexpressed in 
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both the tumor tissue and the vascular endothelial cells. Additionally, lymphatic microvessel 
density increases as DcR3 overexpression increases. 

 
2.2.2. Macrophage and Mast Cell Involvement in Lymphangiogenesis 

 
Interestingly, macrophages play a role in lymphangiogenesis. Tumor associated macrophages 
(TAMs) are implicated in the upregulation of lymphangiogenesis. Initially in cervical cancer, it 

was shown that TAMs may be responsible for increasing lymphangiogenesis and lymphatic 
metastases, as mRNA levels of IL-1β, IL-8, VEGF-C, and VEGF-A are increased when 

macrophages are co-cultured with cervical cancer cells [32]. This was further studied in breast 
cancer [39]. Tyrosine kinase with Ig and EGF homology domains-2 (TIE-2) is an angiopoietin 
receptor. TIE-2-expressing monocytes (TEMs) are immunosuppressive cells, and TIE-2 and 

VEGFR pathways promote TEM-related immunosuppression. In breast cancer, TEMs have been 
shown to express LYVE-1, podoplanin, VEGFR-3, and Prox-1, and contribute to 

lymphangiogenesis. Fagiani et al. determined the effects and roles of angiopoietin-1 and -2 in 
tumor angiogenesis and lymphangiogenesis [81]. Angiopoietin-1 acts as a stabilizing factor, 
decreasing vascular permeability, and angiopoietin-2 is responsible for angiogenic sprouting. 

Individual expression of angiopoietin-1 or -2 caused peri-insular lymphatic vessels to form 
without changes in blood vessel density. When angiopoietin-1 or -2 are expressed, there is an 

increase in peritumoral lymphangiogenesis without metastases to lymph nodes or organs. 
Angipoietin-1 expressing tumors do not increase blood vessel density; however, angiopoie tin-2 
expressing tumors show a decrease in blood vessel functionality and a presence of highly 

permeable endothelia with hemorrhagic tumors. 
 

Additionally, TAMs can assist in promoting tumor growth. This was initially demonstrated in 
lung adenocarcinoma where researchers show that TAMs have an M2-polarized subtype. Zhang 
et al. demonstrated that the presence of TAMs is correlated to worse outcomes due to 

lymphangiogenesis and lymphatic metastases [40]. A more recent study in breast cancer shows 
that a mechanism by which M2 macrophages promote metastasis is by producing chitinase 3-like 

protein 1 (CHI3L1) [100]. Further, tumors with higher metastatic potential overexpress IL-1α, 
and IL-1α overexpression promotes the activation of lymphangiogenesis through crosstalk with 
macrophages [69].  

 
Other immune cells that may be related to lymphangiogenesis are mast cells. Mast cell density 

within the tumor microenvironment is a sign of tumor progression [46]. With increasing tumor 
size and volume, there is a positive correlation in mast cell density in lymph nodes with 
metastases. Positive correlations are seen between mast cell density, lymphatic vessel growth and 

density, and cancer presence in within lymphatic vasculature. Sometimes, apoptosing cancer 
cells can contribute to lymphangiogenesis via macrophages [101]. During tumor cell death, S1P 

is released and TAMs exposed to S1P produce lipocalin 2, promoting lymphangiogenesis, 
enabling the survival of caner by providing an avenue for metastases [101]. 
 

Diet may also affect lymphangiogenesis in cancer models. A study with a B16F10 allograft 
model shows a high fat diet contributes to melanoma growth, metastases, and lymphangiogenesis 

[29]. Mice had increased lipid vacuoles in the tumor and M2 macrophages. Lymph node CCL19 
and CCL21 levels were increased, and CCR7 in tumors increased. Intratumoral M2 macrophages 
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increase with increasing CCL2 and macrophage colony-stimulating factor (M-CSF) in response 
to a high fat diet. This allows for crosstalk between tumor cells and M2 macrophages, 

potentiating additional cytokines and lymphangiogenic promoters. Mature adipocytes therefore 
activate the CCL19, CCL21/CCR7 axis which is shown to increase lymph node metastases by 

inducing ERK 1/2 and AKT phosphorylation, enhancing VEGF-D expression [70]. Although 
obesity is associated with an increased risk of acquiring cancer, in prostate cancer, 
lymphangiogenesis may be inhibited in obese patients. In one study, Lyve-1 expression was 

negatively correlated with body weight and epididymal fat, indicating obesity may inhibit 
metastases via the lymphatics in prostate cancer [85]. The mechanism behind this is unclear, 

though Moreira et al. determined that the mechanism is independent of leptin or insulin. 
 
VEGF-D has demonstrated conflicting roles in various cancers. Honkanen et al. hypothesized 

that VEGF-D may have different effects based on tumor stage, and they studied this 
phenomenon in squamous cell carcinoma. In early stage skin tumors, VEGF-D decreased type 2 

T helper cell (Th2) response and increased m1/Th1 and Th17 polarization [52]. This decreases 
inflammation, promotes an environment that is anti-tumor, and allows for some tumor 
regression. However, in later stages of cancer, VEGF-D enables lymphangiogenesis and 

increases risk of metastases [52]. 
 

2.2.3. T Cell Involvement in Lymphangiogenesis 
 
IL-6, a pro-inflammatory cytokine secreted by T cells and macrophages, is implicated in cancer 

progression and lymphangiogenesis [102]. IL-6 signaling plays a role in lymphatic metastasis 
development in oral squamous cell carcinoma [54]. Increased IL-6 and VEGF-C mRNA 

expression in patients are significantly correlated with lymph node metastases. IL-6 regulates 
VEGF-C mRNA levels through the PI3K/AKT pathway. In a xenograft mouse model, an anti-
IL-6 receptor antibody showed decreased VEGF-C mRNA expression and lymphangiogenesis 

related to the tumor. Treatment also inhibited tumor metastases to the lymph nodes, indicating 
that IL-6 may play a role in increasing lymphatic metastases. Additionally, IL-6 and its receptors 

are expressed in many gastric cancer cell lines [19]. Exogenous IL-6 increases proliferation and 
invasion, VEGF-C production, and lymphangiogenesis in human dermal lymphatic endothelial 
cells. IL-6 administration causes an increase in Janus kinase (JAK), signal transducer and 

activator of transcription 3 (STAT3), phosphorylated-STAT3 (p-STAT-3) and VEGF-C protein 
levels. This indicates that IL-6 is responsible for lymphangiogenesis, tumor invasion, and tumor 

growth by acting on the JAK-STAT3-VEGF-C pathway [19]. ATP-dependent chromatin 
remodeler SMARCA4 (BRG1) is part of the switch/sucrose non-fermentable (SWISNF) 
chromatin-remodeling complex, and affects lymphangiogenesis through binding to STAT3 and 

modulating its activation [64]. Tumors with lower BRG1 expression have increased lymphatic 
vessel density, and its expression level is inversely associated with lymphatic metastases. 

Cancers with ezrin expression are associated with poorer outcomes, and in breast cancer cell 
lines, ezrin demonstrates the ability to regulate lymphangiogenesis by modifying STAT3, 
VEGF-A, VEGF-C, and IL-6 expression [34].  

 
2.2.4. Fibroblast Involvement in Lymphangiogenesis 
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Cancer-associated fibroblasts promote cancer progression and have been studied in oral 
squamous cell carcinoma patient samples [58]. Samples were evaluated for lymphatic vessel 

density, microvessel density, and α-smooth muscle actin. In nearly 70% of tumors, there is 
positive expression of α-smooth muscle actin protein. The presence of this protein is 

significantly correlated to tumors with increased severity, lymphatic metastases, and lymphatic 
vessel density. In a nude mouse model, cancer-associated fibroblasts increase tumor cell invasion 
and significantly increase angiogenesis and lymphangiogenesis associated with the tumor 

compared to mice injected with oral squamous cell carcinoma cells alone. This study is 
fascinating, as it highlights the importance of other cancer-related cells in lymphangiogenesis. 

 
2.3. Preparing for metastasis in the lymphatic system 

 

Before cancers reach the sentinel lymph node, the tumors start a process called “preparing the 
soil.” Hypervascularization of lymph nodes occurs before metastasis begins, and both lymphatic 

vessel lumen diameter and lymph nodes increase in size [15,103,104]. Additionally, it has been 
shown that the sinusoidal lymphatic endothelium grows before cancer reaches the lymph nodes, 
which may assist in cancer stem cell survival within the lymph nodes [15,104,105]. Tumors have 

increased interstitial pressure, high enough to passively push the cancer cells through the 
lymphatic vessels and into the sentinel lymph node [15]. Upon colonizing the lymph node, 

lymph flow may be blocked due to congestion at lymphatic sinuses caused by tumor metastasis. 
The decreased lymph flow allows tumor cells the chance to proliferate within the lymph node 
and lymphatic vessels [15]. Once cancer cells are in the sentinel node, they can continue to 

release factors that promote remodeling in the lymphatics downstream, increasing lymphatic 
vessel and lymph node size [16]. After metastasizing into lymph nodes, cancer cells may be able 

to enter the blood stream in the nodal sinuses, providing an additional avenue for metastasis [16]. 
Targeting and delivering drugs to cancer cell populations in the lymph nodes is critical to prevent 
further dissemination of the malignancy through the lymphatic system and to distant organs. 

 
3. LYMPHATIC DRUG DELIVERY ESSENTIALS 

 

3.1. Importance of drug delivery to lymphatics 

 

In patients with cancer, lymphatic metastasis is associated with poorer prognosis [106]. 
Depending on cancer type, lymph node metastases from solid tumors outside the lymphatics 

begin in stage I to stage III, disseminating from the primary tumor. Along with treatment for the 
cancer, removal of affected lymph nodes is recommended to attempt to stop further cancer 
spread throughout the lymphatics or into other tissues and organs [107]. Solid tumors likely 

prefer to metastasize through the lymphatics compared to blood vessels because the lymphatic 
vasculature has wider vessel lumens, a decreased pressure gradient, a slower fluid flow, and 

increased endothelial permeability [15,16,108]. Additionally, throughout cancer progression, 
lymphatic vessels located proximally to the tumor undergo extensive remodeling that favor and 
enable cancer metastasis through this route, as discussed in the previous section [16]. 

 
Lymphatic involvement is an important indicator of disease progression and outcome, and there 

is poorer prognosis for patients with cancer after their cancer has metastasized to the lymphatic 
system. For example, in melanoma, an increased number of lymph nodes positive for metastases 

ACCEPTED MANUSCRIPT



AC
CEP

TE
D M

AN
USC

RIP
T

 

 

correlates with decreasing five year survival rates [106]. One staging system used in cancer is 
called the TNM system, where T is for the extent of the tumor, N is classification of lymph node 

involvement, and M is related to metastases [109]. If there is no cancer present in any lymph 
nodes, the N classification is N0. N1 indicates that one lymph node has cancer. 

Subclassifications include N1a to denote micrometastases and N1b for macrometastases. N2a 
indicates that there are 2 to 3 lymph nodes with micrometastases, and N2b is used when there are 
2 to 3 lymph nodes involved and at least one has a macrometastasis. N2c is used to describe 

cancer without lymph node involvement when satellite or in transit metastases are observed. 
When the cancer has metastasized to four or more lymph nodes, matted lymph nodes are present, 

or satellite metastases or in transit metastases with involvement of at least 1 lymph node is seen, 
the cancer is staged at N3. The poorer prognosis related to lymphatic metastases may be due to 
difficulty treating the cancer that is located within the lymph nodes and lymphatic vasculature. 

 
Cancer is not the only disease state in which the lymphatics play a role. Several other disease 

states, including Milroy’s disease, human immunodeficiency virus (HIV), and psoriasis, involve 
the lymphatic system [110–112]. Targeting drugs directly to the lymphatics may be able to 
improve outcomes in diseases that either compromise the lymphatics or are harbored within the 

lymphatic system; however, getting free drug molecules into the lymphatics is challenging. In 
theory, targeting drugs to the lymphatic system can directly treat problems related to the 

lymphatics, something that would be extremely beneficial to those with diseases in the 
lymphatics or an aberrant lymphatic system; in practice, direct drug delivery to the lymphatic 
system is quite difficult, based on the nature of common medications. The limitations that 

prevent drugs from entering the lymphatic system are discussed in the following sections. 
 

3.2. Lymphatic delivery limitations and challenges 

 
According to Bayer, more than 90% of all drugs available on the market are small molecules 

[113]. Chemotherapeutic regimens typically use small molecule drugs that are administered 
systemically, such as via the intravenous or oral route [107,114]. These drugs are unable to reach 

adequate concentrations in the lymphatic system to treat cancer cells that are in transit or that 
have metastasized to lymph nodes [115–117]. Chen et al. showed that in patients with breast 
cancer, carboplatin administered intravenously has very low nodal accumulation [115]. 

Supersaxo et al. shows that small molecules administered subcutaneously have minimal uptake 
into the lymphatics [116]. Another study by Wilson et al. shows intravenously administered 

small molecules demonstrate very little accumulation in lymph nodes [117]. Because many solid 
tumors use the lymphatic system as the primary means for metastasis, this is a major downfall of 
standard therapies that are currently in place [107,114]. Additionally, since drugs are unable to 

reach therapeutic concentrations in the lymphatic system, the lymphatics can act as a reservoir 
for cancer cells [118]. 

 
Several factors influence lymphatic uptake. Limitations to lymphatic uptake include route of 
administration, molecular weight, size, charge, and hydrophobicity, and will be discussed in the 

following sections. 
 

3.2.1. Route of Administration 
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Subcutaneous, intramuscular, or intradermal administration shows greater lymphatic uptake 
compared to orally or intravenously administered drugs [115,117,119]. Systemically 

administered small molecules are unable to be taken up lymphatically in clinically significant 
concentrations [114,115,117,119]. Peyer’s patches are areas of lymphatic tissues in the intestines 

that may come into contact with orally administered substances. These tissue nodules assist in 
monitoring the bacterial flora in the intestines, and play an immunological role, mounting a 
response should any pathogenic bacteria overgrowth occur [120]. Uptake of drugs through the 

Peyer’s patches is more difficult compared to uptake through initial lymphatics, as Peyer’s 
patches have a basal lamina and tight junctions [120]. Administration of drugs intravenously also 

bypasses the lymphatics, leaving regional lymph nodes with low drug concentrations [114,115]. 
Once in the blood stream, drugs will reach target organs and enact their effects without coming 
into contact with the lymphatic system in clinically relevant concentrations [115,117]. 

 
Using a subcutaneous delivery method, instead of orally or intravenously administered drugs, 

ought to show increased uptake into the lymphatics because injection into the subcutaneous layer 
increases interstitial pressure, which in turn should cause the lymphatics to open from their 
collapsed state and drain the excess fluid from the area [107,114]. Additionally, the lymphatic 

anatomy is advantageous to drainage as well. The lymphatic capillaries have larger gaps between 
endothelial cells compared to blood vessels and lack a basement membrane to assist in drainage 

in the presence of interstitial pressure [1,7]. This will contribute to the removal of injected 
material from the site of administration. A study by Chen et al. demonstrated that carboplatin 
administered subcutaneously compared to intravenous administration increased the lymphatic 

uptake in breast cancer patients [115]. Additionally, Wilson et al. demonstrated a slight 
advantage to administering free small molecules subcutaneously versus intravenously [117]. 

 
After drugs are administered subcutaneously, they can enter the lymphatic system through three 
main mechanisms – transcellular uptake by binding to external receptors on lymphatic vessels; 

phagocytosis or by attachment onto dendritic cells; and passive paracellular uptake [107]. 
Transport by dendritic cells is more likely to occur when materials are large (>70 kDa or >50 

nm), have too much of a negative charge or positive charge (<-47 mV or >56 mV demonstrated 
by Lunov et al.), or are hydrophobic, as they are restricted to the injection site and may have 
problems moving though interstitial water channels [107,121–123]. When substances are taken 

up by dendritic cells, they may not be able to exert their pharmacological effect against their 
target within the lymphatics [124]. Similar to subcutaneously administered medications, 

substances given intradermally can drain through lymphatic capillaries located in the dermal 
space and reach the lymph nodes [125,126]. Intramuscular administration of drugs has also been 
shown to facilitate greater lymphatic uptake compared to intravenous administration, though not 

as much as subcutaneous administration [107,119,127]. 
 

Another method that can be used for lymphatic drug delivery is intralymphatic injections. 
Intralymphatic injections are not commonly done, as they can cause lymph node damage. 
Repeated doses to lymph nodes cause nodal structure damage and formation of scars [128]. In a 

study by Randomski et al, intralymphatic ports were given to patients for dendritic cell infusions 
(Figure 3). Ports lasted for an average of 7.5 weeks. Although this study shows that it is feasible 

to use intralymphatic ports for direct drug delivery, there are some downsides. For example, the 
ports must be replaced often. Additionally, in a cancer model, this may not be the best option for 
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treatment as the lymphatic system has one-way flow and should there be any in transit cancer 
cells before reaching the lymph node, the cell population would not be treated. Drugs must be 

administered upstream of metastases in the lymphatics or benefits may not be seen. Further, this 
study looked at the delivery of dendritic cells. Most drugs are small molecules and would likely 

perfuse out of the lymph node and nearby lymphatic vasculature before making much of an 
impact due to their size and molecular weight limitations [113]. 

 
Figure 3. The procedure for intralymphatic port placement. A) Image of femoral vessels. The 

white arrow is showing the femoral lymphatic vessel surrounded with a vessel loop. The black 
arrow shows the cannula to be placed in the lymphatic vessel. B) Image through operative 

microscope. Black arrow is showing the cannula as it enters the lymphatic vessel. C) 
Intralymphatic port after lymphatic cannulation, before placement in the subcutaneous pocket. 
D) Lymphangiogram of subcutaneous right femoral lymphatic port. Image demonstrates patency 

of port. Contrast material is entering the lymphatics through the port and is seen in inguinal 
lymph nodes. Figure obtained through open access distributed under the terms of Creative 

Commons Attribution 4.0 International License (license link 
http://creativecommons.org/licenses/by/4.0/). Reprinted from Journal for ImmunoTherapy of 
Cancer, 4:24, Michal Radomski, Herbert J. Zeh, Howard D. Edington, James F. Pingpank, Lisa 

H. Butterfield, Theresa L. Whiteside, Eva Wieckowski, David L. Bartlett, and Pawel Kalinski, 
Prolonged intralymphatic delivery of dendritic cells through implantable lymphatic ports in 

patients with advanced cancer, 2016 [128]. 
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Isolated limb perfusion (ILP) is another method for permeating the lymphatics with therapeutic 
agents. ILP is a treatment strategy for cancer that is located solely on a limb. The limb is isolated 

through clamping and cannulating the major artery and vein to the limb and using a tourniquet to 
compress the other vessels [129]. Treatment is given directly to the affected limb. During the 

procedure, intracompartmental pressure is increased from 13 mmHg up to a maximum of 90 
mmHg and measured carefully (Figure 4) [130]. This technique is useful for tumors, such as 
melanoma, that have in transit metastases in the lymphatic vessels. Oloffson el al. showed that of 

patients treated with ILP with in transit melanoma metastases, 65% had a complete response and 
20% had a partial response [129]. Perhaps one reason why ILP is beneficial in this setting is the 

increase of pressure in the limb causes the initial lymphatics to open and forces the small 
molecule chemotherapeutics into lymphatic vessels in the affected area. A shortcoming of this 
treatment is it is only useful for cancers that are located on the limb, and would not be useful for 

tumors, metastases, or micrometastases in other areas. 

 
Figure 4. Probe tip and machine used in isolated limb perfusion to monitor compartmental 

pressure. Reprinted from European Journal of Surgical Oncology, Volume 22, Issue 2, Peter 
Hohenberger,Lothar H. Finke,Peter M. Schlag, Intracompartmental pressure during hyperthermic 
isolated limb perfusion for melanoma and sarcoma, pages 147-151, 1996, with permission from 

Elsevier [130]. 
 

3.2.2. Molecular Weight of Administered Substances 
 
Particles with a molecular weight greater than 16,000 Daltons have been shown to preferentially 

accumulate into the lymphatics [116]. In one study, mitomycin C, a small molecule, 
administered intramuscularly was not detected in the lymphatics 30 minutes after administration 
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[119]. However, when it was conjugated to dextran, molecular weight increased and 
accumulation in the lymph nodes was seen through approximately 48 hours. As dextran 

molecular weight increased, accumulation in the lymph nodes increased. Another study by 
Bagby et al. examined lymphatic uptake of particles with varying molecular weights of hyaluron 

conjugated to a near infrared dye [131]. Hyaluron molecular weights studied were 6.4 kDa, 35 
kDa, 74 kDa, 132 kDa, 357 kDa, and 697 kDa. The 74 kDa hyaluron conjugate had the highest 
lymphatic uptake in the axillary, popliteal, and iliac nodes; larger molecular weights had less 

lymphatic uptake, indicating that there is both a lower limit and upper limit to how heavy 
particles can be for optimal lymphatic uptake. Molecular weight changes had a significant impact 

on the lymphatic uptake of the hyaluron and dye conjugate. Smaller molecular weight substances 
can be removed quickly by the blood stream. Substances with larger molecular weights 
accumulate at the site of injection and are cleared through the lymphatics, as larger gaps in the 

endothelial wall and lack of a basement membrane allow for easier clearance through lymphatic 
vessels than blood vessels. 

 
3.2.3. Size of Administered Substances 
 

Ideally, substances should be sized between 10-80 nm for lymphatic uptake [114]. One study 
shows that nearly 75% of 40 nm liposomes are cleared from the subcutaneous injection site after 

administration; however, liposomes sized at 400 nm have less than 20% clearance from the 
injection site [132]. Particles smaller than 10 nm are more likely to be cleared from the injection 
site by blood vessels because, due to their small size, they can readily fit through the tight 

junctions in blood vessels [114]. Additionally, since the flow is greater in the blood vasculature, 
there is preferential uptake for particles less than 10 nm compared to the lymphatics [108]. This 

10 nm size does not appear to be a strict cut off, as some proteins and dendrimers smaller than 10 
nm can be taken up lymphatically, though small dendrimers are quicker to diffuse out of the 
lymphatics and into the interstitium [108,133]. Particles larger than 80 nm drain slowly from the 

site of injection. In some cases, particles may accumulate at the injection site because their size 
prevents them from entering either blood vessels or lymphatic vessels. These particles must be 

sequestered and cleared by dendritic cells [114,134–136]. Another study that demonstrates size is 
an important factor in lymphatic uptake is by Abellan-Pose et al. DiD labeled polyglutamic acid 
(PGA)-polyethylene glycol (PEG) nanocapsules with a mean size of 100 nm showed 

significantly higher fluorescence, and therefore accumulation, in livers, hearts, lungs, and 
kidneys of mice compared to those injected with 200 nm nanocapsules at 24 hours post 

administration [137]. Accumulation was also noted to be higher in mesenteric, axillary, 
mediastinal, and cervical lymph nodes in mice treated with 100 nm nanocapsules compared to 
mice treated with 200 nm nanocapsules. 

 
3.2.4. Charge of Administered Substances 

 
Particle charge has been shown to play a role in lymphatic uptake of substances. In one study by 
Hawley et al, poly(lactide-co-glycolide) (PLGA) nanoparticles with and without a poly(lactic 

acid) (PLA) and PEG coating had charges of -36 mV and -15 mV, respectively [138]. 
Nanoparticles with the -15 mV charge were detected in larger quantities in the lymphatics 

compared to nanoparticles with a -36 mV charge [138].  
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Another study by Doddapaneni et al. loaded nanoparticles made from different ratios of methoxy 
poly(ethylene glycol)5,000-block-poly(ε-caprolactone)10,000 (mPEG-PCL) and carboxy 

poly(ethylene glycol)5,000-block-poly(ε-caprolactone)10,000 (cPEG-PCL) [124]. mPEG-PCL 
nanoparticles alone had a charge of -6 mV, cPEG-PCL nanoparticles alone had a charge of -36 

mV, and a 60:40 ratio of mPEG-PCL:cPEG:PCL had a charge of -19 mV. Nanoparticles were 
then loaded with drugs to treat NRAS mutant melanoma and administered proximal to the 
inguinal lymph node to determine efficacy against lymph node metastases. The mPEG-PCL 

nanoparticles were efficacious the inguinal lymph node near the site of administration, 
demonstrating that particles with a -6 mV charge can enter the lymphatics. The cPEG-PCL 

nanoparticle had no effect on lymph node metastases, indicating that at -36 mV, the nanoparticle 
was likely taken up by macrophages or sequestered by other dendritic cells due to its highly 
negatively charged nature. The -19 mV nanoparticle was efficacious against nodal metastases 

both at the inguinal lymph node and the axillary lymph node, indicating that nanoparticles with 
this charge can repel and distribute throughout the lymphatic system without being too highly 

charged, avoiding immediate phagocytosis by dendritic cells at the site of administration. 
Cationic substances can also be used for lymphatic delivery, but are associated with increased 
toxicity to nonphagocytic cells [139,140]. 

 
3.2.5. Hydrophobicity of Administered Substances 

 
Hydrophobicity of administered substances also impacts lymphatic drainage from the site of 
injection and lymph node retention. It has been shown that increasing hydrophobicity causes an 

increase in phagocytosis, and opsonins are attracted to hydrophobic surfaces [121,122]. 
Therefore, increasing the surface hydrophilicity will increase the amount of free substance that is 

available for lymphatic uptake that does not get seized by phagocytic cells [141]. Hawley et al. 
demonstrated this with PLGA nanoparticles with and without a PEG + PLA coating [138]. 
Nanoparticles made from only PLGA are highly hydrophobic and had limited uptake into the 

lymphatic system. PLGA nanoparticles given a PEG + PLA coating had increased drainage from 
the site of injection, increased detection in the lymph nodes, and increased lymphatic retention 

times. A study by Rao et al. also examined the effects of hydrophobicity of compounds and the 
relationship to lymphatic uptake [142]. This study compared lymphatic uptake of hydrophobic 
polystyrene nanoparticles (PS) to similarly sized nanoparticles made from PLGA-PMA:PLA-

PEG (PP) with increased hydrophilicity. The nanoparticles were injected into the dorsal surface 
of the rat footpad. The cumulative lymph node AUC over 48 hours post injection was 

significantly higher for the PP nanoparticles compared to the PS nanoparticles of similar sizes. 
This study also indicates that increased hydrophilicity contributes to increased lymphatic uptake. 
 

3.3. Passive and active lymphatic targeting delivery systems 

 

3.3.1. Passive Nanodelivery Systems 
 
Given the limitations of substances for optimal lymphatic uptake, the platforms that are 

commonly used to deliver drugs to the lymphatics include liposomes, micelles, and 
nanoparticles. 
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Liposomes are drug delivery vehicles that can be sized in the nanometer range and are composed 
of one or more phospholipid bilayers [143]. Hydrophilic drugs can be dissolved and loaded in the 

center of liposomes, and hydrophobic drugs can be loaded within the bilayer. Oussoren et al. 
evaluated subcutaneously administered liposomal uptake into the lymphatics on the basis of size, 

lipids used, and dose [144]. Liposomes less than about 150 nm entered the lymphatics, neutral 
liposomes had limited lymphatic uptake, and increasing doses did not have an effect on 
absorption. Oussoren’s work demonstrates passive uptake into the lymphatics.  

 
Micelles are made with amphiphilic molecules that have both a hydrophilic and hydrophobic 

portion [143]. They are made of a single layer, and hydrophobic drugs can be carried in the core 
of micelles. Chida et al. used epirubicin- loaded micelles made of poly(ethylene glycol)-b-
poly(beta-benzyl L aspartate) to target breast cancer metastases in the axillary lymph nodes 

[145]. Epirubicin polymeric micelles had pH-triggered drug release and inhibited tumor growth 
and metastasis to the axillary lymph nodes. Micelles accumulated in the primary tumor and axial 

lymph node, and epirubicin was released proximally to the tumor due to the acidic 
microenvironment. 
 

Another polymeric micelle composed of methyl poly(ethylene glycol)-distearoylphosphatidyl-
ethanolamine (mPEG-DSPE) loaded with doxorubicin showed increased uptake of doxorubicin 

into A375 cells (51.2% free doxorubicin compared to 88.7% micelle) [146]. Micelles 
administered subcutaneously were taken up lymphatically and showed accumulation in draining 
lymph nodes. Doxorubicin can cause tissue damage; however, doxorubicin- loaded micelles had 

less tissue damage compared to doxorubicin alone. Weights of draining lymph nodes were lower 
in the micelle-treated group than the saline and doxorubicin treated groups, and micelles were 

able to eradicate tumor cells within the lymph nodes. 
 
Zeng et al. created hybrid particles to target the lymph nodes with a cancer vaccine, keeping in 

mind that particles between 10 and 100 nm and a neutral or negative charge is preferred for 
lymphatic uptake with subcutaneous or intradermal injection [147]. Polymeric hybrid micelles 

were made with poly-(ethylene glycol) phosphorethanolamine (PEG-PE) and polyethylenimine-
stearic acid conjugate (PSA). Melanoma antigen peptide tyrosinase related protein 2 (Trp2) and 
TLR-9 agonist were loaded into micelles with a < 30 nm size. Micelles made with equal parts 

PEG-PE and PSA were able to target lymph nodes near the site of injection and dendritic cells, 
and demonstrated an antitumor effect.  

 
Polymeric nanoparticles are made out of block co-polymers with hydrophobic and hydrophilic 
properties, and hydrophobic drugs can be loaded into the hydrophobic nanoparticle core [143]. A 

study by Doddapeneni et al. shows that drug loaded PEG-PCL nanoparticles are able to passively 
target the lymphatic metastases after subcutaneous administration proximal to the site of the 

tumor [124]. Another nanoparticle prepared for lymphatic uptake is composed of 
methoxypoly(ethylene glycol)-b-poly(D L -lactic acid) (mPEG-PLA) and mixed poly(D L -
lactic-co-glycolic acid) (PLGA/mPEG-PLA) [148]. These particles were used for delivery of a 

small molecule, resiquimod, that acts as an agonist for TLR7, an immunotherapy that is used for 
skin cancer topically, but has systemic toxicity if administered via any other route. These 

nanoparticles were taken up by dendritic cells and macrophages, activating an immune response 
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against cancer. Though no toxicity was observed in immune cells after subcutaneous 
administration, there were cytotoxic effects against cancer.  

 
Kishimoto et al. used nanoparticles composed of PLGA and PLA-PEG loaded with rapamycin 

[149]. Intravenous administration of this formulation with PEGylated uricase in mice and non-
human primates inhibited antidrug antibody formation. In mice with uricase deficiency, uric acid 
levels were comparable to normalized mice. These nanoparticulates accumulated in the spleen, 

the lymphoid organ responsible for inducing tolerance in organisms after administration of the 
nanoparticle and antigen. When this formulation was administered subcutaneously with 

adalimumab (Humira) in TNF-α transgenic mice, there was inhibition of antidrug antibody 
formation. This drug administration strategy may be useful in administering biological anticancer 
agents, as often, antidrug antibodies can be blamed for treatment failure or adverse reactions 

associated with biologics. 
 

An amphiphilic gold nanoparticle 5 nm in size coated with 1-octanethiol and 11-
mercaptoundecanesulfonic acid was used to deliver a TLR7 ligand to tumor draining lymph 
nodes to act as an immunostimulant [150]. Nanoparticles were administered subcutaneously and 

caused local immune activation. There was a cytotoxic T-cell response that was stimulated 
against the tumor. The treatment inhibited growth of large tumors and increased survival time in 

groups treated with the nanoparticle compared to freely administered drug. 
 
Several recent studies have utilized materials conjugated to polymers for lymphatic delivery. 

Mannose alginate nanoparticles have been used for dendritic cell targeting within the lymphatic 
system [151]. Using ovalbumin as a model antigen conjugated to mannose, Zhang et al. found 

these nanoparticles increased antigen uptake into bone marrow dendritic cells. It is important to 
the get the antigen to the lymph nodes so the adaptive immune response can be stimulated for 
cancer immunotherapy. When nanoparticles were labeled with Cy7, they demonstrated uptake in 

the lymph nodes after subcutaneous administration. 
 

Research by Verbeke et al. used an injectable porous hydrogel to deliver BDC peptide in a 
mouse model of type 1 diabetes [152]. In this study, BDC was delivered either in PLGA 
microparticles or conjugated to alginate polymer. Pore-forming gels were loaded with GM-CSF 

gold nanoparticles and peptide loaded PLGA microparticles, and T cells in draining lymph nodes 
were examined. Antigen-specific CD4+ T cells increased significantly by day 5. Though this 

study occurs in a noncancerous model, it indicates that platforms like this can be used to affect 
the presence of immune cells in draining lymph nodes, perhaps assisting in cancer vaccination.  
 

A study that examined polymer hydrogel nanodelivery was conducted by De Koker et al [153]. 
Mesoporous silica particles were infiltrated with poly(methyacrylic acid) and disulfide 

crosslinked. PEGylation increased lymphatic drainage, demonstrated by Alexa Fluor 488-
cadaverine labeling. To determine if antigen presentation to lymphatic T cells occurred with this 
platform, SIINFEKL, the MHC1 epitope of the antigen ovalbumin was conjugated to 

nanoparticles. PEGylated poly(methylacrylic acid) nanoparticles successfully delivered the 
peptide with increased antigen presentation compared to poly(methylacrylic acid) nanoparticles 

alone. PEGylation increased lymph node targeting. This type of hydrogel may be useful for 
cancer vaccine delivery directly to the lymphatic system. 
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Borrajo et al. targeted the lymphatic system with PGA-PEG nanocapsules [154]. Nanocapsules 

were 100 nm, and uptake into the lymphatic system via different dosing routes was measured. As 
determined by fluorescence, unsurprisingly, subcutaneous administration had greater uptake into 

the lymphatic system compared to nanocapsules administered via the intravenous route. In an 
orthotopic lung cancer model with lymph node metastases, docetaxel-loaded nanocapsules 
administered subcutaneously demonstrated better antitumor efficacy and less toxicity compared 

to standard docetaxel. Further, it nearly completely eradicated the cancer in mediastinal lymph 
nodes compared to regular docetaxel which demonstrated very little efficacy in lymph nodes. 

 
Another study looked at lipid-based nanocapsules in a hydrogel for lymphatic targeting. 
Wauthoz et al. used a lauroyl derivative of gemcitabine and administered the formulation 

subcutaneously or intravenously to target the lymphatic system, decrease the toxicity associated 
with gemcitabine therapy, and fight against mediastinal metastases in a mouse model with 

orthotopic non-small cell lung cancer in immunodeficient mice [155]. The biodistribution study 
indicates that the nanocapsules were targeted to the lymph nodes, caused no significant 
myelosuppression compared to normal saline, and significantly prolonged survival compared to 

standard therapy and control. Nanocapsules administered intravenously had an elimination half-
life of 19 hours; however, nanocapsules administered subcutaneously in the hydrogel had an 

elimination half-life of 32 hours. Biodistribution studies showed that nanocapsules delivered 
subcutaneously in the hydrogel had similar levels of accumulation in the local lymph nodes 
within the first 8 hours; however, there was much higher nodal accumulation at later time points 

through 336 hours compared to intravenously administered nanocapsules. Further, there was 
limited distribution of nanocapsules to other organs at any time point. Taken together with the 

half-life data, this indicates the nanocapsules administered in hydrogel subcutaneously have a 
controlled release profile and higher specificity for the lymphatics compared to intravenously 
administered nanocapsules. Nanocapsules as a drug delivery vehicle for lymphatic targeting have 

proven useful; however, size plays a role in how much reaches the lymphatics [137]. To study 
this effect, polyaminoacid nanocapsules were loaded with docetaxel [137]. 100 and 200 nm 

nanocapsules were compared. The polyaminoacid assisted with colloidal stability in biological 
fluids, and the 100 nm nanocapsules had adequate docetaxel loading with a sustained release 
profile. Biodistribution after nanocapsules were administered via subcutaneous injection show 

that 100 nm nanocapsules reach the lymphatics faster than 200 nm nanocapsules. Another 
nanocapsule strategy utilizes a polysaccharide shell. Polyglucosamine/squalene nanocapsules 

labeled with indium-111 were monitored for biodistribution profile after subcutaneous 
administration in rabbits [156]. These nanocapsules demonstrate slow clearance from the 
injection site and accumulate in draining lymph nodes, whereas free 111InCl3 drained into 

systemic circulation. Nanocapsules formed a depot at the injection site and had slow lymphatic 
drainage and long lymphatic retention. 

 
Carbon nanotubes have also been used for drug delivery to reach cancer in the lymphatic system. 
One study loaded gemcitabine in magnetic multiwalled carbon nanotubes and compared these to 

magnetic-activated carbon particles [157]. Magnetism was conferred by Fe3O4 on the outside of 
nanotubes, and nanotube bundles had a diameter of 40-60 nm. Subcutaneous administration of 

the nanotubes in the hind paw foot pad shrunk lymphatic metastases and inhibited lymph node 
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metastases under magnetic field, and the nanotubes had increased efficacy compared to 
magnetic-activated carbon particles. 

 
Several studies have looked at dendrimers as a means to increase drug uptake into the 

lymphatics. A study examined how much doxorubicin gets into the lymphatics after 
subcutaneous and intravenous administration when administered as the plain hydrochloride salt, 
in a PEGylated polylysine dendrimer (12 nm), in a PEGylated liposome (100 nm), and in 

different Pluronic micelles (5 nm) [158]. Results were determined in thoracic lymph duct 
cannulated rats. Micelles had poor stability in vivo and their pharmacokinetics were similar to 

those of doxorubicin hydrochloride. The dendrimer formulation increased doxorubicin in the 
thoracic lymph after intravenous and subcutaneous dosing. Liposomes were also better than plain 
solution, but much less effective than dendrimers. Draining lymph nodes of the injection site 

retained amounts of doxorubicin from the formulations in the following order: dendrimer > 
liposome > micelles and solution. Dextrans have proven to be quite useful in conjunction with 

nanodelivery systems. In a study with liposomes, dextrans inhibited macrophage uptake and 
increased the number of liposomes draining into the lymphatics [159]. Further, liposomes with 
dextran loaded with doxorubicin had less tissue damage compared to liposomal doxorubicin 

alone. 
 

One factor that can affect the lymph node targeting capability of dendrimers is the length of the 
drug linker [160]. As dendrimers are injected subcutaneously, they can interact with the 
interstitium and draining into the lymphatics can be limited. To study linker length effects, 

methotrexate was conjugated to PEGylated dendrimers. Dendrimers with shorter linkers had 
higher drainage, likely due to increased PEG protection; however, dendrimers with shorter 

linkers have less retention in lymph nodes. Drainage of dendrimers with longer linkers can be 
increased with dextran coadministration. This allows for more retention in lymph nodes because 
of the presence of longer linkers, and increased drainage from the injection site due to the 

presence of dextran. PEGylation appears to be quite important for dendrimers that target the 
lymphatics. A study using polylysine dendrimers examined the effects of PEGylation on 

absorption and trafficking through the lymphatic system with various weights of PEG, as well as 
4-benzene sulphonate [161]. Dendrimers were given either intravenously or subcutaneously. 
With increasing PEG length, there was decreased absorption into the blood and increasing 

amounts in the lymphatic system. The sulphonate dendrimers had difficulty draining from the 
subcutaneous tissue. Methotrexate-conjugated PEGylated polylysine dendrimers were then used 

to determine if there was increased efficacy against lymphatic metastases [162]. More 
dendrimers reached the lymphatics when administered subcutaneously rather than intravenously, 
and methotrexate conjugated dendrimers inhibited lymph node metastases effectively. 

 
Polyamidoamin dendrimers conjugated to alkali blue (PANAM-AB) have been synthesized as a 

lymphatic tracer [163]. When administered subcutaneously, lymph nodes were stained blue after 
10 minutes. Lymphatic absorption is rapid, and compared to methylene blue solution, water-in-
oil microemulsion, and multiple microemulsion, PANAM-AB had increased lymph node AUC 

and longer lymphatic retention times. In another study, paclitaxel was loaded onto PANAM-AB 
dendrimers (PTX-P-AB) [164]. There was more absorption into the lymphatics compared to 

standard Taxol®, as well as increased AUC values in the lymphatics, longer retention in lymph 
nodes, and increased metastasis inhibition.  
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3.3.2. Active Lymphatic Targeting Systems 

 
In section 3.3.1, nanodelivery using passive targeting was discussed. Nanocarriers with targeting 

ligands have also been developed. For example, a study by Kaur et al. used liposomes with 
surface modifications to increase absorption of zidovudine, a medication for HIV, into the 
lymphatic system [165]. Mannose was added as a targeting moiety to increase macrophage 

uptake into the lymph nodes and spleen. Their results conclude that mannose-coated liposomes 
had the most uptake lymphatically compared to plain liposomes and free drug. 

 
One study by Wang et al. used polymeric micelles conjugated to tumor lymphatics-homing 
peptide (LyP-1) [166]. LyP-1 micelles were more targeted to tumor lymphatic vessels compared 

to polymeric micelles without the targeting agent, which tended to accumulate near blood 
vessels. Additionally, LyP-1 micelles had the most efficacy against tumors in vitro. In a study by 

Li et al, micelles composed of two amphiphilic diblock copolymers, polycaprolactone-
polyethylenimine (PCL-PEI) and PCL-PEG, were loaded with Trp2 peptide and CpG 
oligodeoxynucleotide as an adjuvant [167]. Different ratios of cationic PCL-PEI were used, and 

it was determined that 10% w/w PCL-PEI had the best distribution into the lymph nodes and 
efficacy after subcutaneous administration. Further, this ratio demonstrated low toxicity against 

dendritic cells and efficacy in a B16F10 melanoma mouse model. Another study by Luo et al. 
used LyP-1 conjugated to PEG-PLGA nanoparticles [168]. The LyP-1 conjugated nanoparticles 
were compared to nanoparticles without LyP-1, and the LyP-1 nanoparticles had significantly 

higher distribution in metastatic lymph nodes compared to unconjugated nanoparticles. 
 

Bahmani et al. used a polymeric nanoparticle drug delivery system comprised of PLGA-PEG and 
PLGA-PEG maleimide to deliver immune therapeutics to the lymphatic system to increase 
survival after cardiac allograft [169]. Nanoparticles carried anti-CD3 and were coated with 

MECA79 monoclonal antibody as a way to directly increase lymph node accumulation by 
targeting the lymphatic system, specifically. Nanoparticles were taken up by immune cells in the 

lymphatics, and mice with heart allografts treated with this therapy had longer survival rates and 
increased Treg immune cells in both grafted tissues and draining lymph nodes. Another study 
used MECA79 as a coating for microparticles loaded with tacrolimus [170]. It was given 

intravenously and, because MECA79 targets high endothelial venules in lymph nodes, there was 
accumulation in draining lymph nodes in animals with allografts. 

 
A study by Thomas et al. used 30 nm polymeric nanoparticles stabilized with Pluronic F-127 to 
target intralymphatic dendritic cells [171]. Formulations were administered intradermally 

ipsilaterally to the tumor, and accumulation was seen in the tumor-draining lymph node. 
Nanoparticles with CpG or paclitaxel caused dendritic cells to mature in vitro. The same was 

seen in vivo in tumor draining lymph nodes. CD4+ T cells were of a Th1 phenotype, and there 
was increased CD8+ T cells in the tumor, slowing tumor growth. Additionally, the CD8+:CD4+ T 
cell ratio was significantly higher in tumor draining lymph nodes compared to control, indicating 

a lower risk for lymph node metastasis, making this a promising therapeutic strategy. In another 
study, Jeanbart et al. used nanoparticles conjugated to tumor-associated antigens or CpG as 

vaccines [172]. This study also showed that targeting the tumor draining lymph node with 
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vaccines increased cytotoxic CD8+ T cell responses locally and systemically compared to a 
nontargeting vaccine.  

 
Schmid et al. used nanoparticles with antibodies that target and bind to CD8+ T cells in 

lymphatic tissues, as well as blood and tumor tissues, in mice [173]. They used anti-PD-1 on the 
surface of PEG-PLGA nanoparticles to target PD-1 expressing cells, and delivered SD-208, an 
inhibitor of TGF-β signaling, to PD-1-expressing cells. This platform was also able to deliver a 

TLR7/8 agonist to the tumor. The CD8-targeting nanoparticles had some accumulation in the 
sentinel lymph node, and their concentrations in the lymph node increased over time, potentially 

indicating that the nanoparticles are passively accumulating in the draining lymphatics. 
 
Potential shortcomings of nanodelivery systems include their relative novelty on the market, a 

time-consuming manufacturing process, difficult scale up procedures, and cost. According to C. 
Lee Ventola, there were only 60 approved drugs with nanomedicine components in the 

formulation as of 2017 [174]. A way to potentially overcome time-consuming manufacturing and 
assist in scale-up is the use of microfluidics, which can produce larger volumes of liquid 
nanomedicines more rapidly than traditional bench techniques and improve batch-to-batch 

consistency [175].  
 

3.3.3. Microneedle Systems 
 
Microneedle intradermal delivery systems are used to deliver drugs or imaging agents to the 

lymphatic system by draining through the lymphatic capillaries in the dermal space. Harvey et al. 
used microneedles to deliver proteins into the lymphatics [125]. When the microneedles were 

loaded with dyes, they demonstrated clearance through the lymphatic system. Loading the 
microneedles with insulin increased the Cmax and resulted in a higher Tmax in swine. Using 
microneedles to deliver insulin dramatically changed the pharmacokinetic profile and allowed 

for uptake into the lymphatic system.  
 

Another study by Yang et al. utilized microneedles and transferomes to increase lymphatic 
uptake of doxorubicin [126]. The platform included microneedles made of hyaluronic acid with 
the ability to dissolve. Transferomes were located on the needle tips and loaded with 

doxorubicin. When placed on rat skin, transferomes were released in the dermis as microneedles 
dissolved. Utilizing both transferomes and microneedles enhanced doxorubicin uptake into the 

lymphatics, as measured by fluorescence intensity. 
 
A study by Aldrich et al. used a nanotopography device to increase etanercept uptake into the 

lymphatics [176]. Etanercept is a biologic used for rheumatoid arthritis that is typically 
administered subcutaneously and has poor lymphatic uptake. Nanotopography works by 

disrupting tight junctions between cells in the skin, thereby increasing the delivery of drugs to 
the lymphatic system. The nanotopography device used was a microneedle device with a 
polyether, ether, and ketone film (SOFUSA™ device) pictured in Figure 5. Compared to 

subcutaneous or intradermally administered drugs, nanotopography had increased efficacy, as 
well as higher uptake and retention in lymph nodes draining the area as determined by 

radiolabeled etanercept. 
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One microneedle vaccine strategy uses a hollow microneedle array for delivery of nanoparticles 
to the intradermal space. This system has been studied in rats and demonstrates a burst transit 

through lymph nodes that drain the site of application [177]. Further, there appears to be less 
systemic exposure compared to subcutaneous or intravenous administration. Niu et al. developed 

a vaccine with ovalbumin as the antigen and Toll-like receptor (TLR) agonists imiquimod and 
monophosphoryl Lipid A in PLGA nanoparticles to be administered through hollow 
microneedles. Because of the draining through lymph nodes, there was faster antibody affinity 

maturation, increased IgG2a, and more interferon-γ secreting lymphocytes, indicative of Th1 
response. The microneedle-nanoparticle delivery system performed better than intramuscular 

injection or simply administering the antigen through microneedles without using nanoparticle s. 
 
Benefits of microneedle systems include controlled delivery of drugs, and delivery directly to the 

intradermal space where draining lymphatic capillaries can take up the drugs. Additionally, data 
in the above studies have consistently shown that microneedles allow for higher efficacy, 

lymphatic uptake, or lymphatic retention compared to controls. This form of drug delivery may 
be cost prohibitive, and scale-up can be difficult; however, newer, easier methods for 
microneedle fabrication are currently being researched as potential, cost-effective alternatives 

[178,179].  

 
Figure 5. a) Image of the SOFUSA™ nanotopography device used to increase etanercept uptake 
into the lymphatics. (i) microfluidic block, with silicon microneedles on the bottom, attachment 
adhesive, microfluidic distributor, and attachment adhesive on top. Each array has 100 350 μm 

long and 110 μm wide microneedles with a 30 μm hole for drug delivery. (ii) Scanning electron 
microscopy (SEM) image of microneedles with nanotopographic film (scale bar 300 μm). (iii) 

SEM image of one microneedle. (iv) SEM image of nanostructures present on microneedles 
(scale bar 3 μm). b) (i) Device placement on back skin of rats. (ii) cross-section of 
nanotopography device. (iii) image of full microfluidic block. Figure obtained through open 

access distributed under the terms of Creative Commons Attribution 4.0 International License 
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(license link http://creativecommons.org/licenses/by/4.0/). Reprinted from Arthritis Research & 
Therapy, 19:116, Melissa B. Aldrich, Fred C. Velasquez, Sunkuk Kwon, Ali Azhdarinia, 

Kenneth Pinkston, Barrett R. Harvey, Wenyaw Chan, John C. Rasmussen, Russell F. Ross, 
Caroline E. Fife, and E. M. Sevick-Muraca, Lymphatic delivery of etanercept via 

nanotopography improves response to collagen- induced arthritis, 2017 [176]. 
 
3.3.4. Other Methods of Drug Delivery to the Lymphatics 

 
Other research has been conducted using additional methods for targeting the lymphatic system. 

For example, monoclonal antibody aggregate uptake into the lymphatics has been studied. 
Subcutaneously administered protein aggregates were administered in mice [180]. Murine and 
human monoclonal immunoglobulin G1 (IgG1) were labeled with fluorescent dye, and 

aggregates were created. Biodistribution studies measured with in vivo fluorescence imaging 
demonstrated that aggregates less than 1 micron had increased uptake into lymph nodes one hour 

after injection compared to micron sized aggregates. 
 
Gels have demonstrated the propensity to target and deliver drugs to the lymphatic system when 

formulated properly. For example, one study examined a polypeptide hydrogel for 
immunotherapy in melanoma [181]. The hydrogel consisted of injectable self-assembled 

PEGylated poly(L-valine) and was formulated as a 3D porous hydrogel that had the ability to 
recruit dendritic cells. Loaded in the hydrogel, tumor cell lysates as an antigen and a TLR3 
agonist (polyinosinic:polycytidylic acid) were administered and demonstrated sustained release. 

Recruited dendritic cells were activated. The hydrogel allows for an increase in antigen time at 
the site of injection and increases the amount that reaches the lymph nodes. Subcutaneous 

administration causes a cytotoxic T-lymphocyte response and increases CD8+ T cells in draining 
lymph nodes. This formulation demonstrated good efficacy against melanoma tumors in vivo.  
 

Qiao et al. developed a nanovaccine with polyelectrolyte complexation of chitosan and heparin 
to encapsulate VP1 protein antigen. This antigen is found in the virus that causes hand foot and 

mouth disease. TNF-α or CpG were used as adjuvants [182]. The vaccine was prepared with 
flash nanocomplexation to both reduce size and size distribution of the particulates. After 
subcutaneous administration, distribution was noted in proximal and distal lymph nodes, and 

retention was noted within the lymphatic system. There was immune activation, and treatment 
demonstrated efficacy and protection against a lethal virus challenge. 

 
A study by Muraoka et al. set out with the goal of developing a more effective vaccine for cancer 
[183]. A synthetic long peptide antigen was formulated in a nanogel composed of cholesteryl 

pullulan and injected subcutaneously in mice. The peptide drained to the local lymph nodes and 
was taken up my macrophages in the node medulla, demonstrated in Figure 6. Interestingly, the 

peptide was only taken up specifically by macrophages located in the medulla and not immune 
cells located elsewhere in the interstitium or lymph node. This formulation presented the antigen 
to CD8+ T cells and was able to inhibit cancer growth. 
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Figure 6. Illustration of stealth nanogel vaccine. Nanogel was administered subcutaneously in 
mice and is not sensed by immune cells in the skin or lymph node outside of the node medulla. 

In the node medulla, macrophages captured the vaccine and stimulated a CD8+ T cell response. 
Reprinted with permission from D. Muraoka, N. Harada, T. Hayashi, Y. Tahara, F. Momose, S. 

Sawada, S. Mukai, K. Akiyoshi, H. Shiku, Nanogel-based immunologically stealth vaccine 
targets macrophages in the medulla of lymph node and induces potent antitumor immunity, ACS 
Nano. 8 (2014) 9209–9218. doi:10.1021/nn502975r. Copyright 2014 American Chemical 

Society. [183] 
 

Microbubbles for theranostics have been developed. mRNA complexed to cationic liposomes 
were loaded into microbubbles for ultrasound-mediated drug delivery, with the goal of delivering 
mRNA to lymph nodes [184]. Subcutaneous injection in dogs showed microbubbles with and 

without the mRNA enter lymphatic vasculature and go to lymph nodes. These could be useful for 
imaging, diagnostics, and treatment. 

 
Some research has examined lymphatic drug delivery through the oral route of administration. 
Though the lymphatic tissue in the intestines is thicker due to the presence of a basal lamina and 

is therefore less permeable than the initial lymphatics, an advantage to delivering drugs through 
this tissue is the potential of oral drug dosing. A study by Cao et al. attempted to formulate drugs 

to be taken up into the lymphatics through the intestines when given orally [185]. A liver-X 
receptor agonist, a treatment intended for atherosclerosis, has better uptake through the 
lymphatics when administered orally in formulations that contain a long chain lipid oleic acid in 

an emulsion. The long chain oleic acid assists in increasing lymphatic uptake of the drug because 
they are taken up by enterocytes, transformed into triglycerides, then converted to lymph 

lipoproteins. Additionally, this formulation allows for higher efficacy at lower doses.  
 
4. CONCLUSION 

 
The lymphatics play an integral role in several necessary physiologic processes, as well as numerous 

disease states, especially those with inflammation as a part of the pathology. In cancer, the lymphatic 
system is overgrown near the site of tumors, as cancer cells release factors, signaling molecules, and 
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enzymes that promote lymphangiogenesis. These pro-lymphangiogenic molecules assist in the 
progression of cancer and metastasis of tumor cells to distant locations. As prognosis becomes poorer 

and overall survival decreases with lymphatic involvement, there is significant interest in delivering 
chemotherapeutic drugs to cancer within the lymphatic system. However, simply administering 

standard therapy options alone is not enough to treat cancer harbored in the lymphatics, as route of 
administration, weight, size, charge, and hydrophobicity of substances all affect lymphatic delivery, 
and standard, systemically administered treatments do not fit the necessary constraints for adequate 

lymphatic uptake. Using nanocarriers that meet the requirements for optimal lymphatic uptake as 
delivery options for chemotherapeutic agents may prove beneficial for treating lymphatic metastases 

and reaching cancer populations that otherwise would be undertreated with current therapies.  
 
Although many treatments proposed within this review sound promising, few are used in 

practice. Studies with intralymphatic injections and isolated limb perfusion have been completed 
in humans as described in section 3.2.1; however, the many other methods of delivery are mainly 

studied in animals thus far. A major improvement that is needed in the field of lymphatic drug 
delivery is further development of the discussed methods. Developing formulations for 
translational and clinical use is necessary before understanding how beneficial these methods for 

lymphatic drug delivery will be in a patient population. Challenges to progress include expensive 
development and scale up for many of the methods discussed, as well as complicated or time-

consuming manufacturing processes. These lymphatic delivery systems would not only have 
implications in cancer treatment, but they may be useful for delivery of drugs in other disease states 
that involve the lymphatics, such as HIV or psoriasis. The research discussed herein is promising; 

however, for the field to progress, there needs to be a greater push for taking steps to develop 
these platforms in a clinically relevant manner.  
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Cancer Markers 

Gastric VEGF-C [18] 

IL-6 [19] 

Ring finger protein 180 [20] 

ID-1 [21] 

Sonic hedgehog [22] 

iNOS [23] 

Melanoma VEGF-C [24,25] 

FAS [24] 

Microphthalmia-associated transcription factor [25] 

c-Jun N-terminal kinase and p38/mitogen-activated 

protein kinase [25] 

Integrin α4β1 [26,27] 

FLT4 [28] 

High fat diet – CCL18, CCL21/CCR7 axis [29] 

SOX-18 [30] 

Cervical VEGF-C [31] 

SIX1 [31] 

TAMs [32] 

VEGFR-3 [33] 

Breast VEGF-C [34–37] 

IL-6 [34] 

Ezrin [34] 

COX-2 [35,38] 

Prostaglandin E2 and E receptor [35] 

NCoR and TRβ1 [36] 

TAMs [39,40] 

IL-24 [41] 

ELK3 [37] 

S1P [42] 

SEMA7a [43] 

DcR3 [44] 

Sulf2 [45] 

Mast cell density [46] 

Squamous Cell Carcinoma COX-2 [47,48] 

WNT5B [49] 

WNT-1 inducible signaling pathway protein-1 [50] 

Prox-1 [51] 

FOXC2 [51] 

VEGF-D [52] 

Neuropilin 1 receptor [53] 

IL-6 [54] 

VEGF-C [47,54–56] 

Periostin [55] 

ID-1 [57] 
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Α-smooth muscle actin protein [58] 

NF-κB [56] 

Notch1 [56] 

Cancer-associated fibroblasts [58] 

Gallbladder VEGF-C [59] 

Tropomyosin-related kinase B [59] 

TNF-α [60] 

cIAP2 [61] 

Colon VEGF-C [62,63] 

BRG1 [64] 

Integrin α4β1 [62] 

KITENIN [65] 

Smads [31] 

High mobility group box 1 protein [63] 

Neuropilin-2 [66] 

Lung VEGF-C [67] 

IL-7 [68] 

IL-1α [69] 

CCR7 [70] 

CCL21 [70] 

PDGF [71] 

TAMs [40] 

Insulin- like growth factor binding protein 7 [72] 

Prostaglandin E2 [67] 

Adrenomedullin [73] 

HeLa Tumors/Ovarian Osteoclast-like giant cells [74] 

Podoplanin [75] 

NOK [76] 

Chondrosarcoma Adiponectin [77] 

Pancreatic Heparanase [78] 

Ephrin B2 [79] 

PAR2 [80] 

Angiopoietin-1 and angiopoietin-2 [81] 

Kras and Rb gene and Kras and INK4a [82] 

Neuroblastoma sVEGFR-2 [83] 

Prostate Cancer CD151 [84] 

Obesity [85] 

Caveolin1 [86] 

Hepatocellular Carcinoma HIF-1α [87] 

HIF-2α [87] 

Non-Specifically Studied LPA and receptors LPA1-3 [88] 
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Figure 1. A brief schematic of lymphatic vessel anatomy, showing lymphatic capillaries, pre-
collecting lymphatics with an intermittent smooth muscle layer, collecting lymphatics with a 3-

layer cell wall, and location of lymph node macrophages. Lymph nodes are connected to 
collecting lymphatics and have a smooth muscle layer.  

 
Figure 2. A simplified overview of the factors discussed in section 2.2 that contribute to 
lymphangiogenesis. Abbreviations can be found in the footnotes and in section 2.2. Items in red 

have central roles or are implicated across several discussed cancers. 
 

Table 1. A list of the markers discussed in section 2.2. The markers are arranged by the cancers 
in which they were studied. Abbreviations can be found in the text and within the footnotes. 
 

Figure 3. The procedure for intralymphatic port placement. A) Image of femoral vessels. The 
white arrow is showing the femoral lymphatic vessel surrounded with a vessel loop. The black 

arrow shows the cannula to be placed in the lymphatic vessel. B) Image through operative 
microscope. Black arrow is showing the cannula as it enters the lymphatic vessel. C) 
Intralymphatic port after lymphatic cannulation, before placement in the subcutaneous pocket. 

D) Lymphangiogram of subcutaneous right femoral lymphatic port. Image demonstrates patency 
of port. Contrast material is entering the lymphatics through the port and is seen in inguinal 

lymph nodes. Figure obtained through open access distributed under the terms of Creative 
Commons Attribution 4.0 International License (license link 
http://creativecommons.org/licenses/by/4.0/). Reprinted from Journal for ImmunoTherapy of 

Cancer, 4:24, Michal Radomski, Herbert J. Zeh, Howard D. Edington, James F. Pingpank, Lisa 
H. Butterfield, Theresa L. Whiteside, Eva Wieckowski, David L. Bartlett, and Pawel Kalinski, 

Prolonged intralymphatic delivery of dendritic cells through implantable lymphatic ports in 
patients with advanced cancer, 2016 [128]. 
 

Figure 4. Probe tip and machine used in isolated limb perfusion to monitor compartmental 
pressure. Reprinted from European Journal of Surgical Oncology, Volume 22, Issue 2, Peter 

Hohenberger,Lothar H. Finke,Peter M. Schlag, Intracompartmental pressure during hyperthermic 
isolated limb perfusion for melanoma and sarcoma, pages 147-151, 1996, with permission from 
Elsevier [130]. 

 
Figure 5. a) Image of the SOFUSA™ nanotopography device used to increase etanercept uptake 

into the lymphatics. (i) microfluidic block, with silicon microneedles on the bottom, attachment 
adhesive, microfluidic distributor, and attachment adhesive on top. Each array has 100 350 μm 
long and 110 μm wide microneedles with a 30 μm hole for drug delivery. (ii) Scanning electron 

microscopy (SEM) image of microneedles with nanotopographic film (scale bar 300 μm). (iii) 
SEM image of one microneedle. (iv) SEM image of nanostructures present on microneedles 

(scale bar 3 μm). b) (i) Device placement on back skin of rats. (ii) cross-section of 
nanotopography device. (iii) image of full microfluidic block. Figure obtained through open 
access distributed under the terms of Creative Commons Attribution 4.0 International License 

(license link http://creativecommons.org/licenses/by/4.0/). Reprinted from Arthritis Research & 
Therapy, 19:116, Melissa B. Aldrich, Fred C. Velasquez, Sunkuk Kwon, Ali Azhdarinia, 

Kenneth Pinkston, Barrett R. Harvey, Wenyaw Chan, John C. Rasmussen, Russell F. Ross, 
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nanotopography improves response to collagen- induced arthritis, 2017 [176]. 

 
Figure 6. Illustration of stealth nanogel vaccine. Nanogel was administered subcutaneously in 

mice and is not sensed by immune cells in the skin or lymph node outside of the node medulla. 
In the node medulla, macrophages captured the vaccine and stimulated a CD8+ T cell response. 
Reprinted with permission from D. Muraoka, N. Harada, T. Hayashi, Y. Tahara, F. Momose, S. 

Sawada, S. Mukai, K. Akiyoshi, H. Shiku, Nanogel-based immunologically stealth vaccine 
targets macrophages in the medulla of lymph node and induces potent antitumor immunity, ACS 

Nano. 8 (2014) 9209–9218. doi:10.1021/nn502975r. Copyright 2014 American Chemical 
Society. [183] 
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