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Abstract: Terrestrial hydrocarbon spills have the potential to cause significant soil degradation across
large areas. Identification and remedial measures taken at an early stage are therefore important.
Reflectance spectroscopy is a rapid remote sensing method that has proven capable of characterizing
hydrocarbon-contaminated soils. In this paper, we develop a deep learning approach to estimate the
amount of Hydrocarbon (HC) mixed with different soil samples using a three-term backpropagation
algorithm with dropout. The dropout was used to avoid overfitting and reduce computational
complexity. A Hyspex SWIR 384 m camera measured the reflectance of the samples obtained by
mixing and homogenizing four different soil types with four different HC substances, respectively.
The datasets were fed into the proposed deep learning neural network to quantify the amount of
HCs in each dataset. Individual validation of all the dataset shows excellent prediction estimation
of the HC content with an average mean square error of ~2.2 × 10−4. The results with remote
sensed data captured by an airborne system validate the approach. This demonstrates that a deep
learning approach coupled with hyperspectral imaging techniques can be used for rapid identification
and estimation of HCs in soils, which could be useful in estimating the quantity of HC spills at
an early stage.
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1. Introduction

Hydrocarbons refer to chemical substances formed exclusively from carbon and hydrogen.
Naturally occurring hydrocarbon (HC) substances, depending on the length of the carbon chain,
occur in different forms; solid, liquid, and gas [1]. Liquid HCs found in nature consist of a complex
mixture of various molecular weights; in addition nitrogen, sulfur, and oxygen exist in small
quantities [2].

While the economic significance of HCs is attributed to its primary use as fuel and then versatile
application in downstream industries, they can have detrimental environmental consequences [1,3].
Oil exploration, production, and processing represent potential environmental exposure to HCs
resulting in accidental terrestrial spillage thereby altering the physical and chemical properties of
soils. HCs may therefore be environmentally harmful, causing toxicity, and limiting soil quality [4].

Knowledge about the concentration and nature of a spill is important in order to track their
propagation in the environment, assess their risk and propose remediation strategies [5,6]. To effectively
protect communities affected by a spill, fast and accurate determination of the area impacted is
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needed, particularly if monitoring large regions affected by an oil spill or where aged oil transporting
facilities are involved [7]. Traditional methods employed to track and detect oil spills and the
concentration of HCs in soils often involve processes which are expensive and time consuming as they
require field sampling, chemical analysis, and geostatistical interpolation [8,9]. Imaging spectroscopy
has been recognized as a reliable alternative method for detecting HCs in soils and is rapid and
cost-effective [6,10].

Imaging spectroscopy (hyperspectral imaging) can be described as the combination of digital
imaging and spectroscopy. A hyperspectral camera captures the light intensity for a large number of
spectral bands, providing much more information about a scene when compared to a standard camera
which only covers the visible wide bandwidth portion of the electromagnetic spectrum [6]. Due to
the rich information content in hyperspectral imagery, it is well suited to a range of applications such
as crop/vegetation classification, disaster monitoring, oil spill detection, etc. There are several uses
of imaging spectroscopy for oil spills, such as the enforcement of ship discharge laws, surveillance
and general slick detection, mapping of spills, and direction of spills [11], due to its high spectral and
spatial capabilities [12].

More specifically, Near- and Shortwave Infrared (NIR-SWIR) spectroscopes have been popular
methods for detecting, mapping, quantifying, and characterizing HCs in contaminated soils with
reasonable accuracy [6,13,14]. Moreover, NIR-SWIR spectra provide good information on soils organic
and inorganic material content [13]. HCs demonstrate good absorption in spectral bands 1200 nm,
1725 nm, and 2310 nm [5,8,15]. Therefore, spectral information obtained in the NIR-SWIR range is
excellent for both the quantitative and qualitative analysis of HCs in soils [13]. Recent works have also
successfully demonstrated the use of Longwave Infrared (LWIR) for Petroleum HC detection [16].

Different methods have been used to analyze reflectance spectroscopy data to detect HCs in soils;
the authors of [5] used regression analysis and spectral preprocessing to generate statistical models
to identify different HC products mixed with a mineral substrate. The authors of [15] used Diffuse
Reflectance Infrared Fourier-Transform (DRIFT) spectroscopy which is a hand held spectrometer for
the prediction of total petroleum hydrocarbons in contaminated soils. It uses Partial Least Square
(PLS) regression analysis, which is a multivariate method and includes correlation between spectral
information and corresponding analytical data to rapidly predict the concentration of HCs in soil.
Other researchers show the robustness of visible and infrared spectroscopy for the rapid estimation of
HCs [17,18].

However, state-of-the art methods for estimating HC concentration in soils mainly concentrate on
the quantification of large spills [19]. For instance, the authors of [6] report the estimation of 30% of
HC contamination in soils. Recently, the authors of [20] presented regression models based on HC
absorption bands in order to estimate the pollution level of different HC. They were able to observe
changes in the spectral response, in some cases, for 2% of contaminant and successfully applied
their models to identify soils contaminated with just 3% of heavy oil and 14% of diesel. However,
the spectrum of soils contaminated with gasoline showed only subtle changes for pollution levels
higher than 8%. Thus, they concluded that it would be difficult to detect soils contaminated with
gasoline by assessing the VNIR–SWIR interval.

One of the characteristics of hyperspectral remotely sensed data is that the recorded reflectance
is the result of multiple interactions of the electromagnetic radiation with the constituents of the
soil creating mixed pixels. Numerous studies address the mixing problem and propose analysis
techniques [19]. Spectral Unmixing (SU) is the process of identifying spectral signatures of materials,
often referred to as endmembers, and then estimate their relative abundance to the measured
spectra within a pixel [21]. Endmembers play an important role in exploring spectral information
of a hyperspectral image [22,23], as usually the extraction of endmembers, which is the process of
obtaining pure signatures of different features present in an image, is the first step in the unmixing
algorithms [24–26]. SU often requires the definition of the mixing model underlying the observations
as presented on the data. A mixing model describes how the endmembers combine to form the mixed
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spectrum as measured by the sensor [27]. Given the mixing model, SU then estimates the inverse of
the formation process to infer the quantity of interest, specifically the endmembers, and abundance
from the collected spectra [28–30]. This could be achieved through a radiative transfer model that
accurately describes light-scattering by the materials in the observed scene by a sensor [27,31]. The two
main approaches to spectral unmixing are linear and nonlinear models [21,22,25,26,28].

Different methods utilizing both linear and nonlinear models have been demonstrated in the
literature for the analysis of different hydrocarbon types. In a work by the authors of [13,15], Principal
Component Analysis (PCA) and PLS regression are used. The authors used PCA to differentiate the
types and density of HCs in soils while they used PLS to predict the concentration of oils and fuels
in soil samples. The authors of [18] used Spectral Angular Mapper (SAM) to classify oil spills on an
image and also used signature matching to distinguish oils from other features. However, most of
these methods adopt a linear model and smoothing threshold function for feature extraction. Other
approaches such as a Kernel-based transformation [32] and manifold learning algorithm [33] are based
on nonlinear models.

In the work by the authors of [34], we proved experimentally that HCs abundance in soils was
estimated with higher accuracy when non linear unmixing models were applied. Nevertheless, spectral
unmixing and specifically the abundance estimation of HCs such as gasoline, can be challenging [20],
and may require more advanced techniques such as deep learning. Deep learning network can be
considered a powerful technique to solve nonlinear problems, which can be fast, accurate and does
not rely on any assumptions to estimate the abundances in a given dataset. However, to the best of our
knowledge, there is no study that uses spectral data and deep learning methods to detect and estimate
the percentage of HCs in soils. While the value and application of these two techniques have been
presented in independent research activities, the techniques have not yet been combined. Therefore,
in this paper, a deep learning approach is developed to estimate the amount of HC contamination in
soil samples using SWIR imaging spectroscopy. The remainder of the paper is organized as follows.
Section 2 describes the data acquisition process including the materials used, sample preparation
and the hyperspectral sensor used. Section 3 discusses the methodology, including the parameters
used in training the network, the architecture of the deep learning approach, as well as the validation
method. Results are presented in Section 4 and discussed in Section 5. Finally, conclusions are drawn
in Section 6.

2. Data Acquisition

2.1. Materials

The hyperspectral imaging sensor used for this experiment covers the Shortwave Infrared
(SWIR) range (930–2500 nm), which has been found suitable for the detection of HCs [5,6,13,35,36],
mineral identification and mapping [36], rock mapping [37], and mapping of mafic and ultramafic
units in the Cape Smith Belt [38].

The soils and HC types selected here have been used extensively in the literature for assessments of
HC contamination in different soil types [8,13,17,18,39]. Different HC types, namely Diesel, Bio-diesel,
Ethanol, and Petroleum were used. These are the most commonly used HCs in the literature. Soil types
include typical mixtures of clay (<0.002 mm in diameter), silt (0.002–0.05 mm in diameter), and sand
(0.05–1 mm in diameter). In particular, we used mixtures with different grain size ranging from
medium to coarse as follows; Clay, Clay Loam , Sand Clay Loam, and Sand Loam [40].

2.2. Sample Preparation

The preparation of the samples consisted of the following steps.

• Each soil type was air-dried, and therefore all samples contained similar levels of moisture.
• Fifty grams of a soil sample type was added to a petri dish (12 cm in diameter)
• The sample was scanned with a Hyspex SWIR 384 m camera under constant illumination.
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• In the same sample, initially, 2 mL of the HC were added to the soil using a syringe (to clay and
clayloam), which was subsequently changed to 5 mL of the HC to the other soil types.

• A disposable plastic spoon was used to homogenize the mixture and to flatten its surface in order
to have even surfaces, except for some soil samples containing clay which tends to be sticky and
difficult to flatten due to the characteristics of the soil type, e.g., Figure 1b.

• The sample was scanned with a Hyspex SWIR 384 m camera under constant illumination.
• In the same sample, a further 5 mL of HC was added to the mixture.
• The disposable spoon was used to homogenize the mixture and another scan was taken.
• The procedure was repeated with increments of 5 mL of HCs until the mixture was saturated and

formed a shallow local pool (see Figure 1).

Figure 1. Sample preparation of the experiment combining sandy-clay-loam with diesel. Photos show
the HC contaminant being increasingly added to the same soil sample until saturated. From left;
addition of 5 mL , followed by 10 mL, 15 mL, 20 mL, and 25 mL of the HC.

The procedure was repeated on all the soil samples contaminated with all the different
hydrocarbon types.

A calibration panel was used as white reference, the acquired images were calibrated from
radiance to reflectance using HYSPEX REF software which normalizes the images to an area of known
reflectance. A total of 15 combinations (see Table 1) were produced with four mixtures each for
clay–loamy, sandy–clay–loam, and sandy–loam soil types, while clay had three mixtures. The complete
data set used here consisted of 96 spectral images.

Table 1. Samples created for each combination made in the experiment and their corresponding
absolute HC and soil quantities, respectively.

Sample Combination HC (mL) Soil (gr) Sample Combination HC (mL) Soil (gr)

Clay - Diesel 0 0 50 Clay - Bio- diesel 0 0 50
Clay - Diesel 1 2 50 Clay - Bio- diesel 1 2 50
Clay - Diesel 2 4 50 Clay - Bio- diesel 2 4 50
Clay - Diesel 3 5 50 Clay - Bio- diesel 3 5 50
Clay - Diesel 4 10 50 Clay - Bio- diesel 4 10 50
Clay - Diesel 5 15 50 Clay - Bio- diesel 5 15 50
Clay - Diesel 6 20 50 Clay - Bio- diesel 6 20 50
Clay - Diesel 7 25 50 Clay - Bio- diesel 7 25 50

Clay - Ethanol 0 0 50 Clay Loam - Ethanol 0 0 50
Clay - Ethanol 1 2 50 Clay Loam - Ethanol 1 2 50
Clay - Ethanol 2 4 50 Clay Loam - Ethanol 2 4 50
Clay - Ethanol 3 5 50 Clay Loam - Ethanol 3 5 50
Clay - Ethanol 4 10 50 Clay Loam - Ethanol 4 10 50
Clay - Ethanol 5 15 50 Clay Loam - Ethanol 5 15 50
Clay - Ethanol 6 20 50 Clay Loam - Ethanol 6 20 50
Clay - Ethanol 7 25 50 Clay Loam - Ethanol 7 25 50
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Table 1. Cont.

Sample Combination HC (mL) Soil (gr) Sample Combination HC (mL) Soil (gr)

Clay Loam - Diesel 0 0 50 Clay Loam - Bio- diesel 0 0 50
Clay Loam - Diesel 1 2 50 Clay Loam - Bio- diesel 1 2 50
Clay Loam - Diesel 2 4 50 Clay Loam - Bio- diesel 2 4 50
Clay Loam - Diesel 3 5 50 Clay Loam - Bio- diesel 3 5 50
Clay Loam - Diesel 4 10 50 Clay Loam - Bio- diesel 4 10 50
Clay Loam - Diesel 5 15 50 Clay Loam - Bio- diesel 5 15 50
Clay Loam - Diesel 6 20 50 Clay Loam - Bio- diesel 6 20 50

Clay Loam - Petrol 0 0 50
Clay Loam - Petrol 1 2 50
Clay Loam - Petrol 2 4 50 Sand Loam - Petrol 0 0 50
Clay Loam - Petrol 3 5 50 Sand Loam - Petrol 1 5 50
Clay Loam - Petrol 4 10 50 Sand Loam - Petrol 2 10 50
Clay Loam - Petrol 5 15 50 Sand Loam - Petrol 3 15 50
Clay Loam - Petrol 6 20 50 Sand Loam - Petrol 4 20 50
Clay Loam - Petrol 7 25 50 Sand Loam - Petrol 5 25 50
Clay Loam - Petrol 8 30 50 Sand Loam - Petrol 6 30 50
Clay Loam - Petrol 9 35 50 Sand Loam - Petrol 7 35 50

Clay Loam - Petrol 10 40 50 Sand Loam - Petrol 8 40 50
Clay Loam - Petrol 11 45 50 Sand Loam - Petrol 9 45 50

Sand Clay Loam - Diesel 0 0 50 Sand Clay Loam - Bio- diesel 0 0 50
Sand Clay Loam - Diesel 1 5 50 Sand Clay Loam - Bio- diesel 1 5 50
Sand Clay Loam - Diesel 2 10 50 Sand Clay Loam - Bio- diesel 2 10 50
Sand Clay Loam - Diesel 3 15 50 Sand Clay Loam - Bio- diesel 3 15 50
Sand Clay Loam - Diesel 4 20 50 Sand Clay Loam - Bio- diesel 4 20 50
Sand Clay Loam - Diesel 5 25 50 Sand Clay Loam - Bio- diesel 5 25 50

Sand Clay Loam - Ethanol 0 0 50 Sand Clay Loam - Petrol 0 0 50
Sand Clay Loam - Ethanol 1 5 50 Sand Clay Loam - Petrol 1 5 50
Sand Clay Loam - Ethanol 2 10 50 Sand Clay Loam - Petrol 2 10 50
Sand Clay Loam - Ethanol 3 15 50 Sand Clay Loam - Petrol 3 15 50
Sand Clay Loam - Ethanol 4 20 50 Sand Clay Loam - Petrol 4 20 50
Sand Clay Loam - Ethanol 5 25 50 Sand Clay Loam - Petrol 5 25 50
Sand Clay Loam - Ethanol 6 30 50 Sand Clay Loam - Petrol 6 30 50

Sand Clay Loam - Petrol 7 35 50

Sand Loam - Diesel 0 0 50 Sand Loam - Bio- diesel 0 0 50
Sand Loam - Diesel 1 5 50 Sand Loam - Bio- diesel 1 5 50
Sand Loam - Diesel 2 10 50 Sand Loam - Bio- diesel 2 10 50
Sand Loam - Diesel 3 15 50 Sand Loam - Bio- diesel 3 15 50
Sand Loam - Diesel 4 20 50 Sand Loam - Bio- diesel 4 20 50

Sand Loam - Ethanol 0 0 50
Sand Loam - Ethanol 1 5 50
Sand Loam - Ethanol 2 10 50
Sand Loam - Ethanol 3 15 50
Sand Loam - Ethanol 4 20 50

2.3. Hyperspectral Imaging

The spectral data was obtained using a Hyspex SWIR 384 m line-scan hyperspectral camera
and is equipped with a Mercury Cadmium Telluride (MCT) detector array. For this experiment,
a user friendly table-top laboratory set-up with translation stage, SWIR light source, and close-up
lenses were used during the scanning stage to scan the sample and build a hyperspectral data cube
(see Figure 2). The camera simultaneously captured a full SWIR spectrum, with a spectral sample
interval of 5.45 nm between 930 and 2500 nm, each along a line of 384 pixels for 288 bands with
a radiometric resolution of 16 bit [41]. The 384 columns of the detector array formed one line of
the hyperspectral image in the x-axis. The hyperspectral image was obtained line by line using the
so-called “pushbroom” scanning mode, where the platform holding the sample was translated onto the
y-axis at constant speed (see Figure 3). The scanning speed was automatically controlled by the data
acquisition unit based on the selected lens option. The images produced had a spatial resolution of
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0.22 mm/pixel. Radiometric calibration was performed using the vendor’s software package. A more
detailed specification of the system is given in Table 2.

Figure 2. Scanning process of the dataset.

Table 2. Hyspex 384 m main specifications.

Specification HySpex SWIR-384 m

Spectral Range (nm) 930–2500
Spatial Pixels (pixels) 384

Spectral Channels 288
Spectral Sampling (nm) 5.45

FOV (degrees) 16◦

Pixel FOV across/along (mrad) 0.73/0.73
Bit resolution (raw data)/Digitization 16

Noise floor (e·) 150
Dynamic range 7500

Peak SNR (at full resolution) >1100
Max speed (at full resolution)(fps) 400

Full Width Half Maximum ∼1 pixel
Power consumption (W) 30
Dimensions (l-w-h) (cm) 38-12-17.5

Weight (kg) 5.7

Figure 3. HySpex 384 m line scan acquisition process. The camera (nadir) acquires hyperspectral lines
of pixels. The hyperspectral image is obtained by translation of the object under constant illumination.
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The resultant reflectance spectra were used to estimate the percentages of the HCs using the
abundances calculated based on the different mixture types as shown in Table 3.

Table 3. Size of datasets and target class.

Dataset Size Number of Mixtures

Clay biodiesel 8000× 288 8
Clay diesel 8000× 288 8

Clay ethanol 8000× 288 8
Clay loam biodiesel 7000× 288 7

Clay loam diesel 7000× 288 7
Clay loam ethanol 8000× 288 8
Clay loam petrol 12, 000× 288 12

Sandy loam biodiesel 5000× 288 5
Sandy loam diesel 5000× 288 5

Sandy loam ethanol 5000× 288 5
Sandy loam petrol 10, 000× 288 10

Sandy clay loam biodiesel 6000× 288 6
Sandy clay loam diesel 6000× 288 6

Sandy clay loam ethanol 7000× 288 7
Sandy clay loam petrol 8000× 288 8

3. Methodology

3.1. Workflow

Spectral information was obtained from the controlled dataset and used with ground truth
abundances to evaluate the performance of the proposed deep learning model for estimating the
abundance of HCs in each dataset. The workflow of the study is as follows.

• Obtaining the dataset via a controlled experiment by mixing and homogenizing different
Hydrocarbon (HC) types with soil samples and scanning them with a Hyspex Shortwave Infrared
(SWIR) 384 m camera.

• Applying the Deep Learning (DL) model trained using a three-term backpropagation algorithm
with dropout for the abundance estimation of the HCs.

• Structuring the DL model with different dropout ratios to determine the most efficient DL setting.
• Testing and validating the performance of the proposed method for abundance estimation of the

different HCs by using the same network structure and hyperparameters.
• Comparing the accuracy and performance of the DL model with a hybrid spectral unmixing

method [21] and DL models trained using a standard backpropagation algorithm with and
without dropout (to prove the generalization ability of dropout), respectively.

The description and experimental results of this workflow are organized in the following sections.
Further explanation and discussion regarding abundance estimation of the HCs by the DL model as
well as the other methods can be found in the data acquisition, results, and discussion sections.

3.2. Deep Learning

Deep learning has been shown to outperform other machine learning and neural networks
techniques. Deep learning can be categorized as a subfield of machine learning, which learns high level
abstractions in data by utilizing hierarchical architectures [42]. Deep learning can also be described as
the final product of machine learning where the learning rule becomes the algorithm that generates
the model from the training data. It typically involves modeling, which hierarchically learn features
of input data using Artificial Neural Networks (ANN) and usually has more than three layers [43].
The main advantage of deep learning is that these layers of features are not designed by an operator;
they are learned from the input data using learning procedures. A deep neural network can simply be
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referred to as a network of sufficient complexity in order to interpret raw data without human derived
explanatory variables [44,45]. Deep learning models provide excellent results with the ability to extract
stronger features, but in turn lead to vanishing gradient, overfitting, and computational load [46].
These problems can be addressed and improved by employing dropout, three-term backpropagation
and a Rectified Linear Unit (ReLU) activation function which is known to transmit error better when
compared to other functions.

There are many types of deep learning architectures whose application have been proven to
yield excellent results, the most common are Deep Believe Network (DBN), Convolutional Neural
Network (CNN), Deep Convolutional Generative Adversarial Networks (DCGAN), Recurrent Neural
Networks (RNN), etc. [47,48]. The application of deep learning techniques to hyperspectral data is
relatively recent, for instance, in the work by the authors of [49], deep belief networks, and a novel
texture enhancement algorithm were investigated for their suitability and practical application to
hyperspectral image classification. The authors of [50] utilized high-resolution remote sensing imagery
and deep learning techniques to extract buildings in urban districts using guided filters. In the work
of the authors of [51], a 3D full convolutional neural network model was used for spatial-spectral
resolution of hyperspectral images by learning end-to-end, with full mapping between low and high
spatial resolution hyperspectral images at high accuracy. Transfer learning with a deep convolutional
neural network was reported in the work by the authors of [52]; in this research, a large amount
of unlabeled SAR scene data was transferred to SAR target recognition tasks with feedback of the
construction loss to the classification pathway. Others, such as the authors of [53,54], used a deep
learning approach to classify hyperspectral images. Most of the aforementioned methods used the
standard backpropagation algorithm to train the network which has been characterized as having low
convergence rates especially when used to train a network with more than one hidden layer. Thus,
in this paper, the main aim of using the three-term backpropagation algorithm with dropout to train
the network is to increase the convergence rate and the ability to generalize to unseen data with good
prediction accuracy compared to existing methods.

3.3. Dropout

Dropout allows neurons to randomly drop out of the network during training, while other neurons
can step in and handle the representation required to make predictions for the missing neurons [55].
This simply means removing neurons from the network along with all its incoming and out going
connections. By applying dropout to a deep neural network, a thinned network often results. This thinned
network consists of all the units that survive dropout [56] as shown in Figure 4. The dropout effect is that
the network becomes less sensitive to the specific weights of neurons. This in turn results in a network
that is capable of better generalization and is less likely to overfit the training data.

Figure 4. (a) A typical network before and (b) after applying dropout (adapted from the work by the
authors of [55]).
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In this paper, dropout on hidden layers and on the visible layer are developed. Dropout on hidden
layers is applied to hidden neurons in the hidden layers and between the last hidden layer and the
output layer of the body of the deep networks’ model. Dropout on the visible layer is applied between
the input and the first hidden layer. Since deep neural networks consist of multiple nonlinear hidden
layers, this makes them expressive models that can learn complex relationships between the input and
output nodes which often results in overfitting.

3.4. Backpropagation

Backpropagation is carried out to train multilayer architectures to minimize the cost function of
the model. It is also used to adjust the free parameters weights (ω) and biases in order to attain the
desired network output. Traditionally, the learning rate and momentum factors are used to control
the weight adjustments and damping oscillations. This is a popular training algorithm in many
applications, however the main limitation is its slow convergence especially when used to train a deep
neural network with multiple hidden layers. Therefore, the three-term backpropagation algorithm
with dropout tend to improve the accuracy of the trained model.

3.5. Three-Term Backpropagation

The backpropagation algorithm has been modified by different researchers to improve the
efficiency and convergence rate of the algorithm. One such method is the three-term backpropagation
algorithm proposed by the authors of [57], shown in Algorithm 1. This algorithm uses an extra term
called the Proportional Factor (PF) to the standard backpropagation algorithm. This PF speeds up the
weight adjustment process by increasing the convergence rate and decreasing learning stalls while
maintaining the simplicity and efficiency of the standard backpropagation algorithm [58].

Algorithm 1: Learning method using the three-term backpropagation with dropout used in
training the DNN model.

Data: α, β, γ, ω, δ, e
DNN weights, ω, are randomly initialized ω11 ... ... ... ωij

initialize the learning rate, α ; momentum factor, β; and proportional factor, γ

for Number of epochs (k) do
for Number of data samples = 1, 2 ..... n do

for Number of hidden layers = 1, 2 ..... f do
/* Calculate the errors and the delta, δ, of the output nodes
e = d− y
δ = φ

′
(ν) e

/* compute the nodes’ output yij

yij = yij ∗ Dropout (yij, ratio)
/* propagate the network output yz backwards, and calculate the delta, δ

ep = WT δ

δp = φ
′

(νp) ep

/* update and adjust the weights according to δ

∆ ωij(k) = α δi xj + β ∆ ωij(k− 1)+γ ei xj

ωij ← ωij + ∆ ωij

end
end

end
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A stability analysis of the three-term backpropagation was studied in the work by the authors
of [58] to test the convergence rate and stability of the algorithm. This training algorithm has proven to
be effective in training a network with good prediction accuracy and a high convergence rate [58,59].

A deep learning model with dropout can be trained using the stochastic gradient descent which
can be similar to a standard neural network, the only difference here is the random dropping of units
in the network’s hidden layers. Different methods have been used to improve the standard gradient
descent algorithm such as momentum, annealed learning rates, as well as L2 weight decay [55]. Here,
the effectiveness of the dropout trained method using the three-term backpropagation algorithm
is demonstrated. The three-term backpropagation algorithm speeds up weight space adjustment
compared to a conventional backpropagation algorithm. The dropout has proven to be successful for
computer vision tasks as it helps to avoid overfitting and improve generalization [60,61].

3.6. Hyperparameters

A deep learning model requires the modification of various hyperparameters in order to improve
the results, and these largely depend on the dataset and other hyperparameters. The backpropagation
algorithm involves two parameters in updating the weights during training which are: the learning
rate (α) and momentum factor (β).

The initial learning rate α is one of the most important hyperparameters; too small a learning rate
makes the network learn slowly, and too large a learning rate possibly leads to oscillation preventing
the error falling below a certain value.

The momentum factor β is believed to make the learning procedure more stable and accelerate
convergence in shallow regions of the error function, which in practice does not always happen [62].

The extra term introduced by the three-term back propagation algorithm, called the proportional
factor (γ), speeds up the weight adjustment process by increasing the convergence rate and decreasing
learning stalls of the algorithm.

The best choice of these parameters depends on the problem which often requires a trial and error
process before a suitable choice is found [63]. Having run the experiments a number of times based on
trial an error, the optimum values of the parameters were achieved which trained the network and
output good results.

3.7. Architecture of the Deep Learning Model

The deep learning model was designed using the 288 bands as input to the network. Each pixel
is taken as an independent input to the network. In this research study, we do not consider the
spatial information. The network has four hidden layers each containing 30 nodes and one output
corresponding to the abundance of hydrocarbon. The network was trained using the ground truth
abundances for the different mixtures, as detailed in Table 4.

The data was randomly divided into 3 categories, namely: training, validation, and test sets.
The training set is used to fit the parameters of the deep learning model, the test set (unseen data)
is used to investigate the predictive power of the model while the validation set is used to avoid
overfitting using the cross-validation algorithm.

The cross-validation algorithm avoids overfitting because the training sample is independent of
the validation sample [64]. The size of the data sets depended on the soils’ absorption level during
the experiment (i.e., when a local shallow pool was formed). Only image pixels corresponding to
data from inside the Petri dish were considered. Moreover, for each scanned image, 1000 pixels were
randomly selected. Thus the data sets ranged between 5000 pixels × 288 bands (where five mixture
types were available) to 10,000 pixels × 288 bands (for samples with ten possible mixtures). The size
of the data sets and number of mixtures used for the experiments (see Table 1) are summarized in
Table 3. Subsets of the hyperspectral data were fed into the network as follows: 80% of the data were
randomly selected for training the network, 10% were used to test the network and 10% were used for
cross-validation.
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We compared two neural network architectures one with and another without dropout, respectively.
This is to prove the dropout’s efficiency to improve the generalization capabilities of the neural network.

The network used a sigmoid activation function which was applied to the hidden and
output nodes.

The deep learning abundance estimation experiments were conducted to obtain optimum
hyperparameters in order to achieve maximum accuracy in estimating the amount of HCs in each soil
mixture type. The ground truth, or known abundances from the sample preparation, were used as class
labels (targets) to train the network for the abundance estimation. These ground truth abundances were
estimated based on the HC type in each data set as detailed in Table 4 and depend on the density of each HC.

Table 4. Ground truth abundances (expressed in wt%) for the different mixtures corresponding to
2 mL, 4 mL, 5 mL, 10 mL, 15 mL, 20 mL, 25 mL, 30 mL, 35 mL, 40 mL, and 45 mL of HC , respectively.

Corresponding mixtures (mL) Petrol Diesel Biodiesel Ethanol

2.0 0.02 0.023 0.034 0.029
4.0 0.055 0.063 0.065 0.059
5.0 0.068 0.08 0.08 0.073

10.0 0.128 0.148 0.149 0.136
15.0 0.181 0.206 0.208 0.191
20.0 0.227 0.258 0.260 0.240
25.0 0.269 0.303 0.305 0.283
30.0 0.340 0.342 0.345 0.321
35.0 38.1 – – –
40.0 42.0 – – –
45.0 46.2 – – –

All the experiments were conducted with the learning rate of α set to 0.01, β set to 0.5, and γ set
to 0.1, which allowed convergence of the objective function at a high rate. The algorithm was run
iteratively with 20 epochs.

Moreover, in order to find the optimum level of dropout, the models were trained using the
three-term backpropagation algorithm with different ranges of dropout (10–50%).

4. Results

In this section, we present the results obtained from the deep learning model demonstrating the
abundance estimation of the different HCs. Results are presented to demonstrate the effectiveness of
dropout in the model in terms of generalization capabilities. We also show the accuracy of the proposed
method compared to the hybrid spectral unmixing method and DL models trained with conventional
backpropagation with and without dropout, respectively. Results with laboratory and remote sensed
data are presented. The algorithms were implemented using MatLab 2018b. The experiments were
carried out on an LG desktop with Intel (R) core (TM)2 Duo CPU 3.00 GHZ processor 8.00 GB RAM.

4.1. Experiment with Laboratory Data

The reflectance spectra of different soil samples with 15% hydrocarbon concentration mixture are
shown in Figure 5 showing specific absorption at around 1700 µm and 2300 µm, respectively
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Figure 5. Spectral reflectance of different soils and 15% hydrocarbon concentration mixtures.

The ground truth abundances in Table 4 were used to estimate the amount of hydrocarbon used
in the experiment. The abundances were calculated based on the density of the different hydrocarbon
types. The aim is to quantify the percentage or amount of HC in each pixel using deep learning and
hybrid spectral unmixing method (using abundance estimation). This was calculated based on the
saturation level of the different hydrocarbons as shown in Table 1.

To demonstrate the ability of the proposed deep learning model to generalize on unseen data,
Table 5 displays the results obtained from the test sets with and without dropout, respectively.

Table 5. Mean square error of the deep learning model on unseen data with and without dropout,
respectively.

Dataset Test Set with Dropout Test Set without Dropout

Clay biodiesel 7.11× 10−3 9.1× 10−3

Clay diesel 1.16× 10−3 6.9× 10−3

Clay ethanol 8.26× 10−4 6.2× 10−3

Clay loam biodiesel 7.62× 10−4 1.4× 10−3

Clay loam diesel 2.20× 10−3 3.3× 10−3

Clay loam ethanol 8.80× 10−4 7.1× 10−3

Clay loam petrol 2.50× 10−3 8.1× 10−3

Sandy loam biodiesel 8.00× 10−4 1.2× 10−3

Sandy loam diesel 1.20× 10−3 9.8× 10−3

Sandy loam ethanol 4.01× 10−3 8.4× 10−3

Sandy loam petrol 6.71× 10−3 9.3× 10−3

Sandy clay loam biodiesel 8.25× 10−4 3.5× 10−3

Sandy clay loam diesel 8.84× 10−4 9.8× 10−3

Sandy clay loam ethanol 2.10× 10−3 7.5× 10−3

Sandy clay loam petrol 5.13× 10−3 6.1× 10−3

The experimental process was repeated with different dropout ratios on the hidden layers of 10%,
20%, 30%, 40%, and 50% respectively. Results demonstrate both the training and validation accuracy
of the network. Tables 6–9 illustrate the mean square error of the proposed method with the different
dropout ratios. It is noted that in all cases the error is 10 times lower for dropout ratio of 40% than for 50%.
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Then again when the error drops significantly for dropout ratio 20%. However, when it is further reduced
to 10%, the error increases. The 20% dropout is adopted subsequently in the rest of the experiments.

Table 6. Mean Square Error (MSE) of the deep learning model for Clay Loam datasets with different
hydrocarbon types and different Dropout (DO) ratios.

HC Types DO 10% DO 20% DO 30% DO 40% DO 50%

Bio-diesel
MSE 3.5× 10−4 0.22× 10−4 0.69× 10−4 6.5× 10−4 72× 10−4

Diesel
MSE 0.31× 10−4 0.25× 10−4 0.52× 10−4 7.3× 10−4 59× 10−4

Ethanol
MSE 3.1× 10−4 0.21× 10−4 5.6× 10−4 74× 10−4 76× 10−4

Petrol
MSE 2.9× 10−4 0.22× 10−4 0.73× 10−4 6.7× 10−4 72× 10−4

Table 7. Mean square error of the deep learning model for Clay datasets with different hydrocarbon
types and different Dropout (DO) ratios.

HC Types DO 10% DO 20% DO 30% DO 40% DO 50%

Bio-diesel
MSE 2.7× 10−4 2.3× 10−4 1.9× 10−4 5.1× 10−4 77× 10−4

Diesel
MSE 1.7× 10−4 0.35× 10−4 1.7× 10−4 3.2× 10−4 76× 10−4

Ethanol
MSE 1.6× 10−4 2.2× 10−4 2.8× 10−4 4.3× 10−4 83× 10−4

Table 8. Mean square error of the deep learning model for Sandy Clay Loam datasets with different
hydrocarbon types and different Dropout (DO) ratios.

HC Types DO 10% DO 20% DO 30% DO 40% DO 50%

Bio-diesel
MSE 2.7× 10−4 0.33× 10−4 0.61× 10−4 3.4× 10−4 86× 10−4

Diesel
MSE 2.7× 10−4 2.0× 10−4 5.3× 10−4 6.6× 10−4 94× 10−4

Ethanol
MSE 3.4× 10−4 2.2× 10−4 4.3× 10−4 7.2× 10−4 88× 10−4

Petrol
MSE 2.2× 10−4 1.3× 10−4 3.6× 10−4 4.7× 10−4 83× 10−4

Table 9. Mean square error of the deep learning model for Sandy Loam datasets with different
hydrocarbon types and different Dropout (DO) ratios.

HC Types DO 10% DO 20% DO 30% DO 40% DO 50%

Bio-diesel
MSE 3.6× 10−4 3.4× 10−4 1.6× 10−4 7.3× 10−4 72× 10−4

Diesel
MSE 2.7× 10−4 0.2× 10−4 0.66× 10−4 3.1× 10−4 68× 10−4

Ethanol
MSE 2.5× 10−4 0.2× 10−4 7.3× 10−4 5.8× 10−4 86× 10−4

Petrol
MSE 0.68× 10−4 1.5× 10−4 2.7× 10−4 6.8× 10−4 81× 10−4
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Results of the experiments are shown in Figures 6 and 7 for individual soil types contaminated
with different HCs to confirm the accuracy of the method. Figure 6 shows the mean square error
during training, and demonstrates the network’s ability to converge rapidly with low numbers of
epochs. The plots in Figure 7 show the model’s estimated output and target output for 4 different
combinations. It is observed that the DL model quantifies correctly all the different HC abundances
with low error.
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Figure 6. Mean square error of different soils contaminated with different HC contents.
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Figure 7. Neural network estimated output and target output of different soils contaminated with
different HC contents.

From the results obtained, it is noted that the proposed method was able to generalize on unseen
testing and validation data with high prediction accuracy. We observed a similar trend on all the datasets
used for the experiment which indicates a reduction in the error rate and a high convergence rate.
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To demonstrate the effectiveness of the proposed method, a deep learning model trained with
a conventional backpropagation algorithm was similarly used to quantify the HC abundances;
first without dropout, and then with 20 % dropout to train the networks. For fair comparison, the same
network structure was used and these include: number of layers, number of nodes for each layer,
range of initial values, and learning rate. Another comparison was conducted with the hybrid spectral
unmixing method for switching between linear and nonlinear methods [21]. Hybrid spectral unmixing
uses a neural network to determine the most appropriate method among a set of linear and non
linear unmixing method for each pixel in the scene. Specifically, we used Vertex Component Analysis
(VCA) [65], Fully Constrained Least Square Method (FCLS) [66], Generalized Bilinear Mixing Model
(GBM) [67], and the Polynomial Post Nonlinear Mixing Model (PPNMM) [68]. This means that the
hybrid switch method selects the best of these four methods for each pixel.

From the results obtained, it may be observed that our proposed method outperforms the hybrid
switch method and conventionally trained networks with the closest estimate from the ground truth
values as demonstrated in Tables 10 and 11.

4.2. Soil Continuity Experiments

In this research, four different mixtures of soil were created and HC were added in discrete
steps. However, in real life situations, both HC and soil levels of given samples are continuous
rather than discrete. Therefore, in order to simulate a more realistic scenario, several strategies were
explored. The first strategy was to create a generic model with all soils combined as opposed to
separate models for each soil as in the previous experiments. It is noted that the soils were prepared
and mixed manually and contained grains of different size (e.g., clay and sand mixture). By feeding
the DL network with all types of soils, differences in the soil composition would appear from pixel to
pixel. DLs were created including all four different soil mixtures (Clay, Clay–loam, Sandy loam, and
Sandy clay–loam) rather than individually. Using the same architecture of the deep learning model,
80% of the resultant data was used to train the model, 10% was used as test sample and the remaining
10% was used for cross-validation. This was conducted to validate the network’s ability to estimate
the amount of HC regardless of the soil type and allowing for different soil types. The results were
in the same range as for the different HC. Table 11 summarizes the results obtained for biodiesel.
It is noted the training MSE was in the same range as the individual model although the number of
epochs required increased to 178. Average MSE for the individual models are shown in brackets for
comparison purposes. The generalization MSE on the training data is higher than in the individual
models. However, it is noticed that this data is more complex as the individual models as it contains
four different soil types. In the work of the authors of [16], an individual model per soil type was
recommended as the generic models degraded the responses. We believe that with further tuning of
the hyperparameters, improved results could have been achieved. However, this is out of the scope of
this paper.

In order to simulate a more realistic scenario, and following a similar approach presented in
the work by the authors of [16], noise was added to the data to simulate continuous spectra values
instead of discrete and also to evaluate the noise rejection of the models. Here, the datasets were
corrupted with Random Gaussian noise with signal-to-noise ratio (SNR) ranging from 10 to 40 dB.
The model shows similar performance even with low SNR, showing good noise rejection and accurate
prediction at different ranges of SNR. For SNR lower than 20 dB, the generalization error deteriorates
slightly. Initially, we added noise to the test data but not to the training, to simulate training with
discrete samples and testing with continuous samples. The performance deteriorates for SNR = 10 dB,
while for higher SNR, it is very stable showing good adaptation of the model to continuous spectra.
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Table 10. Estimated hydrocarbon abundance predicted by the proposed method, compared with the hybrid switch method, conventional neural network, and
conventional neural network with dropout (DO) for Clay and Clay Loam (CL) mixtures. A comparative summary showing the average estimation error in percentage
is included for each mixture type.

Mixtures Reference Proposed Method Hybrid Switch Method Conventionally Trained NN with DO (0.2) Conventionally Trained NN

Clay–biodiesel 0 0.002 0.03 0.61 0.69
Clay–biodiesel 3 3.4 3.7 3.9 4.5
Clay–biodiesel 6 6.5 6.9 7.3 7.9
Clay–biodiesel 8 8.4 9.4 9.8 9.9
Clay–biodiesel 14.9 15.3 16.9 18.0 18.9
Clay–biodiesel 20.8 21.4 22.6 17.3 17.9
Clay–biodiesel 26.0 26.8 28.3 29.9 30.3
Clay–biodiesel 30.5 31.9 32.2 35.1 38.6

Average error (%) 2 10 17 20

Clay–diesel 0 0.003 0.04 1.06 1.79
Clay–diesel 3 3.3 3.7 4.6 4.9
Clay–diesel 6 6.5 6.3 6.9 7.21
Clay–diesel 8 8.1 7.6 4.8 3.7
Clay–diesel 14.8 15.3 13.0 19.1 19.8
Clay–diesel 20.6 21.4 18.5 23.8 25.5
Clay–diesel 25.8 25.6 23.6 29.1 29.4
Clay–diesel 30.3 30.6 32.2 36.1 37.7

Average error (%) 2 14 20 24

Clay–ethanol 0 0.004 0.05 1.41 2.04
Clay–ethanol 2 2.7 2.3 3.4 3.9
Clay–ethanol 5 5.5 5.3 6.01 6.63
Clay–ethanol 7.3 7.6 8.2 4.9 4.1
Clay–ethanol 13.6 14.1 15.6 10.4 9.9
Clay–ethanol 19.1 19.6 18.1 22.7 22.9
Clay–ethanol 24 24.9 22.9 27.7 28.3
Clay–ethanol 28.3 28.9 27.7 32.8 33.7

Average error (%) 3 9 19 23

CL–biodiesel 0 0.002 0.16 0.90 1.63
CL–biodiesel 3 3.2 3.6 4.5 4.9
CL–biodiesel 6 6.4 6.6 7.1 7.8
CL-biodiesel 8 8.5 7.7 9.9 10.8
CL-biodiesel 14.9 15.5 13.6 17.9 18.3
CL-biodiesel 20.8 21.6 18.7 24.6 24.9
CL-biodiesel 26.0 26.4 24.1 29.6 29.9

Average error (%) 2 11 17 21
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Table 10. Cont.

Mixtures Reference Proposed Method Hybrid Switch Method Conventionally Trained NN with DO (0.2) Conventionally Trained NN

CL-diesel 0 0.003 0.001 0.76 1.88
CL-diesel 3 3.3 3.1 3.7 4.3
CL-diesel 6 5.8 6.6 7.2 7.8
CL-diesel 8 8.4 10.4 11.6 11.9
CL-diesel 14.8 14.3 12.8 18.7 19.0
CL-diesel 20.6 21.1 22.1 24.4 25.3
CL-diesel 25.8 26.8 27.7 28.2 30.7

Average error (%) 3 13 26 31

CL-ethanol 0 0.002 0.05 1.22 1.79
CL-ethanol 2 2.4 2.7 3.6 3.9
CL-ethanol 5 5.2 5.4 5.9 6.4
CL-ethanol 7.3 7.6 6.7 9.6 9.9
CL-ethanol 13.6 14.4 11.6 16.7 17.0
CL-ethanol 19.1 19.7 18.5 22.6 22.9
CL-ethanol 24 24.6 25.9 26.7 27.5
CL-ethanol 28.3 28.7 29.9 30.7 31.2

Average error (%) 2 11 17 21

CL-petrol 0 0.002 0.006 0.36 1.40
CL-petrol 2 2.4 2.2 2.9 3.3
CL-petrol 5 5.1 5.5 6.3 6.9
CL-petrol 6.8 5.9 7.9 8.4 8.9
CL-petrol 12.8 12.9 13.0 11.0 9.9
CL-petrol 18.1 18.4 17.4 16.8 15.6
CL-petrol 22.7 23.1 24.4 19.8 18.5
CL-petrol 26.9 27.4 27.8 24.6 23.9
CL-petrol 34 34.9 35.6 29.7 29.8
CL-petrol 38.1 38.5 39.6 36.6 36.9
CL-petrol 42 42.4 44.4 38.3 36.1
CL-petrol 46.2 46.9 45.2 43.5 43.7

Average error (%) 1 5 13 16
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Table 11. Soil continuity experiments. Mean square error of the bio-diesel deep learning model using
generic models and individual models with added noise. Training and testing results are shown.

Dataset Traning Data Test Data

Biodiesel with generic model 7.2238 ×10−4 (1.525× 10−4) 6.8× 10−3 (2.374× 10−3)

Biodiesel with added noise

SNR (dB) Traning data Test data

40 8.2117× 10−4 8.9821× 10−4

30 8.2594× 10−4 8.9333× 10−4

20 9.393× 10−4 0.001
10 9.671× 10−4 0.001

Biodiesel with added noise on testing data

SNR (dB) Training data Test data

40 6.9997× 10−4 9.3811× 10−4

30 6.9997× 10−4 9.0321× 10−4

20 6.9997× 10−4 9.0657× 10−4

10 6.9997× 10−4 0.0012

4.3. Experiment with Remote Sensed Data

A remote sensed data captured by an airborne system, adjusted to work under stationary condition
in the field, was used to validate our proposed method. This dataset contains soils contaminated
with different levels of hydrocarbon (between 0 to 10 wt% in steps of 1 wt%) that were acquired at
three different locations (Hamra, Kokhav, and Evrona) with a Hyper-Cam LW instrument. Each pixel
responses are captured by 88 spectral bands in the spectral range of 8 to 12 µm with spectral resolution
of 0.25 cm−1. The experimental protocol, data capturing, and preprocessing of these datasets are fully
described in the work by the authors of [16].

Each one of the 3 datasets was independently trained with a DL network. For each network, 75% of
the samples were randomly selected for training and 25% were used for testing. These parameters were
selected similar to the work by the authors of [16] in order to provide a fair comparison to the results
they presented. A dropout ratio of 20% was used and all other hyperparameters were left as in our
previous configuration. Results are presented as MSE for each dataset in Table 12. It was noted that our
results surpassed in term of prediction accuracy the ones presented in the literature for these datasets.
Moreover, the results show good generalization capabilities.

Table 12. Summary of the evaluation on the 3 different soils using the deep learning model trained
with and without dropout.

Soil Type MSE on Training Set MSE on the Test Set

Hamra 0.48× 10−4 1× 10−4

Evona 0.78× 10−4 3.5× 10−4

Kokhav 2× 10−4 3× 10−4

Results on all 3 datasets shows that our proposed DL method achieved acceptable results with
consistent MSE values as shown in Figure 8c for both training and generalization.
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Figure 8. Mean square error of the 3 different soils contaminated with different HC contents.

5. Discussion

In this study, controlled hyperspectral datasets were used to assess the capabilities of the
deep learning model to predict and quantify the amount of HC spills on different soil types.
The deep learning approach was trained using a three-term backpropagation algorithm with dropout
technique. The deep learning model designed for this experiment utilizes a sigmoid activation
function and dropout of 20% in all the hidden layers of the architecture in order to avoid overfitting.
Another advantage of utilizing dropout is its ability to generalize.

The main aim of the three-term backpropagation algorithm was to reduce the number of training
epochs and maintain the system’s stability during training. Our proposed method was able to estimate
the amount of HCs in each dataset with high accuracy using a low number of epochs. The network
was able to achieve an average of 2.2× 10−4 mean square error on an average of 18 epochs as shown
in Tables 5–8 and Figure 6.

Dropout plays an important role in the architecture of the proposed deep learning model by
improving the performance of the model and avoided overfitting on the training data. This can be
proven from Table 5, where the results show the ability of the model to generalize on unseen data with
good accuracy.

From the results obtained, it may be observed that hydrocarbon can be estimated even at low
levels as shown in Tables 10 and 11.

Tables 10 and 11 summarize the abundance estimation of the quantity of HCs in the different
mixture types using our proposed method, the hybrid spectral unmixing method, and the
conventionally trained NN with and without dropout. For instance, if we observe the first mixture
from Table 10 (biodiesel mixed with clay), it is noted that for pure clay sample (reference 0% HC),
all methods provide very close estimate. The second raw presents the results for the same mixture
with 8% of biodiesel, 92% of clay. Our proposed method estimated 8.4% of biodiesel with the hybrid
switch method at 9.4%, while the neural network trained with a standard backpropagation algorithm
with and without dropout estimated at 9.8% and 9.9%, respectively. Similar results were obtained for
all the different samples as shown in Tables 10 and 11.

In addition, the soil’s properties such as grain size and texture can lead to a variation in
the absorption level, and thus the difference in detection of the different hydrocarbon types.
The hybrid switch method was also able to estimate the amount of hydrocarbon spills with reasonable
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accuracy unlike the conventionally trained neural network which has low accuracy compared to the
proposed method.

In the work by the authors of [69], it was revealed that deep learning requires large amounts of
training data to achieve optimal performance and good generalization with minimum error. However,
despite the size of the datasets used, the training process is faster with our proposed method, attributed
to the use of the three-term backpropagation algorithm for training and the use of cross-validation
with dropout. The authors of [55] reported that large neural networks trained in the standard way tend
to overfit on small datasets. To see if dropout can improve this condition, we ran the experiment on all
the datasets and varied the dropout ratio as shown in Tables 6–9. From the results obtained, the error
rate is relatively low when the dropout ratio is between 10% and 30%, with a slight increase when
the ratio is set above 50%. Therefore, it can be concluded that dropout ratio between 10% and 30%
provides an acceptable prediction estimation and could be used in any dataset for estimation analysis.

The proposed deep learning method was further validated on field datasets. In particular,
the Hamra soils produced a better results with lower MSE of 0.48× 10−4 compared to the Kokhav and
Evrona soils as shown in Figure 8c. This shows a similar trend to what was obtained in the work by the
authors of [16]. Although the deep learning model did not estimate well abundances between 1 and
3 wt%, this could be attributed to the fact that the data was obtained within the Longwave Infrared
Region (LWIR), which has a different spectral range with the laboratory controlled data used in this
research. Nevertheless, our proposed deep learning model perform better with all 3 datasets in terms
of MSE accuracy.

Recent research in deep learning suggests that a large dataset is required for training remote
sensing data, which is a major drawback. This was not the case for our proposed model because the
three-term backpropagation algorithm allows it to train faster using a minimum number of epochs to
converge. The training process was relatively fast compared to standard networks where parameter
updates are noisy in architectures with dropout. Learning takes an average of 28.16 seconds with
our proposed deep learning model compared to the conventionally trained neural networks which
takes an average of 300.68 seconds to learn. The data processing-to-end-product time of our proposed
method is relatively more time-consuming compared to traditional spectral unmixing method, which
is approximately 35.45 seconds compared to the hybrid spectral unmixing method which has an
average of 24.64 seconds. This could be attributed to the number of parameters and training in the
deep learning method compared to the spectral unmixing method.

However, we anticipate that including a wider range of data such as field HC leaks, will require
larger datasets and longer training to account for the variability of the data. Nevertheless, the proposed
methodology has proven to decrease significantly both the learning time and sample data required to
achieve accurate generalization.

6. Conclusions

In this paper, we developed a deep learning approach to accurately estimate hydrocarbon spills
on different soil samples measured using imaging spectroscopy. The deep learning model was trained
using a three-term backpropagation algorithm with dropout. The aim was to improve the accuracy of
the model, avoid overfitting, and converge faster.

Standard backpropagation algorithms build co-adaptation, which work well on training data
but the network does not generalize to unseen data. Dropout neutralizes these co-adaptations by
improving the network’s performance, thus enabling it to generalize. The choice of dropout ratio used
in any neural network depends on the type of dataset and application.

The three-term backpropagation algorithm improves the network’s ability to train faster and
overcome local minima when compared to conventional backpropagation algorithms. The effectiveness
of the deep learning model was verified when tested on the datasets containing different soil samples
mixed with different hydrocarbon types to estimate the amount of hydrocarbon spills in each
dataset. The datasets were acquired using a Hyspex 384 SWIR camera under laboratory conditions.



Remote Sens. 2019, 11, 1938 21 of 24

Many studies have shown the ability to detect HC using spectroscopy in the SWIR region. The results
of the experiments consistently show that the proposed method provides high prediction accuracy with
low error even for amounts of HC as low as 6.8%. Therefore, it can be concluded that the three-term
backpropagation algorithm with dropout significantly improves the model’s operation.

The deep learning model was further applied on three datasets acquired with an airborne LWIR
camera in field conditions which proved the effectiveness of the proposed method and its applicability
in real world scenarios.

Satellite and airborne hyperspectral data with ground truth are expensive, thus making it
difficult to obtain; but with the emergence of new lightweight sensors mounted on Unmanned
Aerial Vehicles (UAV), the potential application of this research is very large. It is noted that data
acquired in field conditions could be affected by several limitations such as variable illumination,
atmospheric conditions, and sensor sampling distance which could affect the accuracy in using such
dataset. However, in the work by the authors of [70], the correlation between datasets obtained under
laboratory and outdoor conditions was demonstrated. Thus, a neural network could be trained with
laboratory data and validated using remote UAV or airborne data. The information provided in this
research study can be used as a guide to understand the potential and limitations of a hyperspectral
sensor for HC abundance estimation.

Future work will develop networks that are able to classify and identify different types of HC
incorporating also spatial information using convolutional neural networks.
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