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ABSTRACT 

Sometimes choice is followed by outcome feedback and other times it is not. It remains unknown 

whether humans prefer gambling when they expect feedback to be revealed. Regarding this question, 

decision-making theories make alternative predictions. Some theories have proposed that choice is 

influenced by whether one expects to be disappointed in the future. Given that feedback is sometimes 

disappointing, these theories predict increased aversion towards gambling when feedback is expected 

compared to when feedback is not expected. The opposite effect is predicted by theories of curiosity, 

which postulate reduction of uncertainty as an important behavioural drive. Given that feedback 

reduces uncertainty, these theories predict that gambling will be favoured when feedback is expected. 

To examine whether expecting feedback influences gambling behaviour, we recorded functional 

neuroimaging data while participants performed a novel decision-making task requiring to chose 

between a sure option and a gamble. Crucially, participants expected to receive feedback in some 

trials but not in other trials. Consistent with theories of curiosity, we found that expecting feedback 

increased gambling propensity. At the neural level, at option presentation the increased value of 

gambling during feedback was reflected in activity in the ventral striatum. This suggests that, together 

with its established role in signalling reward, the ventral striatum also processes a form of epistemic 

value. Our study demonstrates that gambling becomes more attractive when feedback is expected 

and suggests that striatal activity could signal the value of feedback information.  

 

 

 

 

 

 

 

 

1. INTRODUCTION 
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Sometimes choice is followed by outcome feedback and other times it is not. Playing slot machines is 

an example of the former case, because each individual decision is followed immediately by a clear 

outcome feedback. Conversely, consider a company engaged in a door-to-door flyer marketing 

campaign. Although the global effect of the campaign can be estimated, the outcome obtained by 

each single flyer (e.g., whether it has encouraged people to buy the product or not) will remain 

unknown. An open question is whether decision-making changes when humans expect to receive 

feedback after choice compared to when feedback is not expected. Answering this question is 

important because understanding the role of expecting feedback can arbitrate between influential 

decision-making theories. It has been proposed that expecting feedback evokes anticipatory feelings 

of disappointment, and that these influence choice (Bell, 1985; Camille et al., 2004; Coricelli et al., 

2005; 2007; Loomes & Sugden, 1986). Given that feedback is sometimes disappointing, this proposal 

implicates an increased avoidance of gambling when feedback is expected. The opposite prediction 

arises from perspectives emphasizing curiosity as an important behavioural drive (Baldassarre & 

Mirolli, 2013; Friston et al., 2015; Gottlieb, 2012; Gottlieb et al., 2014; Kidd & Hayden, 2015). 

According to this view, feedback is associated with epistemic value because it reduces uncertainty, 

and thus expecting feedback should enhance gambling.  

Motivated by this reasoning, our study examined the cognitive and neural processes underlying the 

impact of expecting feedback on decision-making under risk. We recorded functional magnetic 

resonance imaging (fMRI) data while participants performed a new gambling task (fig. 1A) in which, 

on each trial, they chose between a sure monetary gain or loss and a 50-50 gamble. The two options 

always had equivalent expected value (EV; i.e., the sum of possible outcomes multiplied by their 

probability – here always 0.5 for the gamble). Across trials, we manipulated orthogonally the EV of 

options and the range associated with the possible outcomes of the gamble (gamble range, GR). For 

example, trials characterized by -£8 EV comprise of an option associated with a sure £8 loss and a 

gamble that may be associated with either -£4 and -£12 (implying a £8 GR) or with -£6 and -£10 

(implying a £4 GR). Crucially, in different blocks, outcome feedback was either provided or not. The 
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two conditions were equally consequential, as participants were instructed that an outcome was 

collected immediately after choice independent of whether it was shown to them or not (see 

Methods). Our behavioural analyses were based on comparing choice during feedback versus no-

feedback trials. 

Previous research has focused on how outcome experience drives learning (Barron & Erev, 2003; 

FitzGerald et al., 2010; Glaser et al., 2012; Hertwig et al., 2004; Jessup et al., 2008; Ludvig & Spetch, 

2011; Lejarraga & Gonzalez, 2011; Wu et al., 2011; Wulff et al., 2018). Here we were not interested in 

learning, and we minimized any learning influence by explicitly informing participants about option 

amounts and probabilities. Our focus was on the role of an expectation about whether feedback will 

be provided or not. Hence, before each new block, participants were explicitly informed about 

whether feedback was given. In addition, in the task feedback was totally irrelevant for reward 

maximization, because each trial was independent and because the gamble probability was always 

50-50 (and participants were explicitly informed about this). This allowed us to probe the role of 

expecting feedback per se, independent of whether feedback is also helpful for reward maximization 

in the future.  

A critical aim of our study was to elucidate the neural processes underlying the influence of expecting 

feedback on choice. In the context of our task, theories of curiosity suggest that feedback reduces 

uncertainty and hence it is associated with epistemic value (Baldassarre & Mirolli, 2013; Friston et al., 

2015; Gottlieb, 2012; Gottlieb et al., 2014; Kidd & Hayden, 2015). A possibility is that such epistemic 

value is reflected in activity within regions known to reflect the value of options. One of the key regions 

for evaluation and choice processes is the ventral striatum of the basal ganglia (for a review, see Bartra 

et al., 2013). An important observation is that, when a set of options is presented, activity in ventral 

striatum correlates with the EV of the chosen option (Bartra et al., 2013). This evidence can be 

integrated with theories of curiosity, inspiring the prediction that,  in our task, at option presentation 
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when a gamble is chosen the ventral striatum would respond more during feedback compared to no-

feedback trials, reflecting an increased attraction for gambling during feedback trials.  

Contrary to many previous studies, our design independently manipulates EV and GR. Standard 

models of choice would predict that the influence of EV and GR can be explained by a unique 

underlying factor, such as a non-linear value function as in expected utility theory (Von Neumann & 

Morgenstern, 1945) and prospect theory (Kahneman & Tversky, 1979), or a risk sensitivity as in risk-

return accounts (Markowitz, 1952; Sarin & Weber, 1993; Weber et al., 2004). For example, expected 

utility theory proposes that the mapping from reward amount to subjective value follows a concave 

function, an aspect proposed to be sufficient for explaining the combined influence of EV and GR on 

choice (Von Neumann & Morgenstern, 1945).  By independently manipulating EV and GR, we tested 

whether, in line with these models, a single factor was sufficient to characterize the combined 

influence of EV and GR, or whether an explanation based on multiple factors was necessary. This 

allowed us to probe the specific neural substrates associated with the influence of EV and GR on 

choice. We examined whether the EV component was processed in the ventral striatum and 

ventromedial prefrontal cortex (vmPFC), two main regions implicated in processing the value of 

options (Bartra et al., 2013; Boorman et al., 2009; 2013; Fitzgerald et al., 2009; Hunt et al., 2012; Rigoli 

et al., 2016a; Strait el al., 2014). The GR component was predicted to be associated with activity in 

anterior insula. According to prior research, anterior insula is a key region for processing aspects of 

risk (Mohr et al., 2010; Payzan-LeNestour et al., 2013; Paulus et al., 2003; Preuschoff et al., 2008; Rigoli 

et al., 2016a; Rudorf et al., 2012). Given that, according to influential economic models (Markowitz, 

1952; Sarin & Weber, 1993; Weber et al., 2004), measures of gambling variability such as GR capture 

the notion of risk, we predicted that GR was associated with activity in anterior insula. 

2. MATERIAL METHODS 

2.1 Participants 
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Twenty-three healthy right-handed adults (13 females; aged 20-60, mean: 37, SD: 5) provided written 

consent to participate in the experiment. All participants had normal or corrected-to-normal vision. 

None had history of head injury, a diagnosis of any neurological or psychiatric condition (including any 

form of pathological gambling disorder, impulse control disorder or behavioural addiction), or were 

currently on medication affecting the central nervous system. The study was approved by the King’s 

College London Research Ethics Committee.  

 

2.2 Experimental paradigm and procedure 

During MRI scan, participants performed a computer-based task lasting approximately 40 minutes. On 

each trial (384 trials were run in total), a single monetary amount was presented on one side of the 

screen together with two different monetary amounts (one above the other) on the other side (sides 

were counterbalanced across trials). The single amount indicated a sure option and the pair of 

amounts indicated the two possible outcomes of a gamble. The two options always had equivalent 

EV. The EV was either a gain or loss (the text on the screen was coloured green and red during gain 

and loss trials, respectively) within the £5-£10 range (in £1 steps), with different EVs having equal 

frequency. The two possible outcomes of the gamble had always 0.5 probability. The difference 

between the two possible outcomes of the gamble (gamble range; GR) varied within the £1-£4 range 

(in £1 steps), with different GRs having equal frequency. EV and GR were manipulated orthogonally. 

After option presentation, participants chose either option by pressing the corresponding left or right 

button on a keypad. In some trials (feedback condition), the outcome was presented for one second 

immediately after choice, followed by an intertrial interval of one second. In other trials (no-feedback 

condition) the outcome was not revealed, but a question mark was presented for one second 

immediately after choice. EV and GR varied pseudorandomly trial by trial, while feedback and no-

feedback trials were grouped in alternating blocks (each including 24 trials; whether the starting block 

was associated with feedback or no-feedback was counterbalanced across subjects). Note that EV, GR 
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and feedback/no-feedback were orthogonal by design. We decided to organize the feedback and no-

feedback trials in blocks as we reasoned this would help participants to remember whether a trial was 

followed by feedback or not. Before a transition from feedback to no-feedback condition (or vice 

versa) occurred, a panel on screen explicitly informed participants on whether outcome was provided 

or not in the upcoming block.   

Before playing the task, participants received a £30 monetary endowment. At the end of the 

experiment, one single trial was randomly selected and the associated outcome was either added to 

(for gains) or subtracted from (for losses) the endowment. Crucially, the trial could be selected from 

both feedback or no-feedback trials, implying these conditions were equally consequential.  

Data were collected at the Institute of Psychiatry, Psychology and Neuroscience at King’s College 

London. Participants were first explicitly instructed about the task, the gamble probability, the 

difference between feedback and no-feedback conditions, and on how payment was derived. Inside 

the MRI scanner, a high-resolution structural brain scan was first recorded, followed by functional 

acquisition during task performance (organized in four different runs, each lasting about 10 minutes). 

Subjects were paid after the scanning was completed. 

 

2.3 Behavioural analysis and computational modelling 

The main goal of our behavioural analyses was to establish whether gambling varies when comparing 

conditions where feedback is expected versus condition where feedback is not expected. This question 

can also arbitrate between different theories of choice. According to theories of anticipatory affect 

(Bell, 1985; Camille et al., 2004; Coricelli et al., 2005; 2007; Loomes & Sugden, 1986), participants 

expect that one of two contrasting feelings will be elicited by feedback, namely disappointment 

(elicited when an outcome is worse than expected) or elation (elicited when an outcome is better than 

expected). This view implies that such anticipatory feelings are evoked only during feedback trials, and 
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not during no-feedback trials. It has been postulated that anticipatory disappointment and 

anticipatory elation have equal weight (Loomes & Sugden, 1986). In other words, according to this 

view, during choice an agent anticipates a feeling of disappointment as much as a feeling of elation, 

with the result that these two anticipatory feelings cancel each other out. In our task, this predicts 

that choice will not vary during feedback versus no-feedback trials. However, another proposal is that 

anticipation of disappointment usually prevails over anticipation of elation (Bell, 1985). This predicts 

that, in our task, individuals will gamble less during feedback compared to no-feedback trials, because 

expecting feedback would elicit anticipatory disappointment. An alternative perspective is endorsed 

by theories of curiosity (Baldassarre & Mirolli, 2013; Friston et al., 2015; Gottlieb, 2012; Gottlieb et al., 

2014; Kidd & Hayden, 2015). These predict that gambling will increase during feedback trials, because 

feedback resolves uncertainty about which outcome has occurred in that trial.  

We were also interested in exploring an aspect of decision-making which is independent of the 

feedback manipulation, exploiting the fact that in or task EV and GR varied independently. Previous 

research which has manipulated these variables (Christopoulos et al., 2009; Tobler et al., 2009) has 

relied on standard choice models. These predict that the influence of EV and GR can be explained by 

a unique underlying factor, such as a non-linear value function as in expected utility theory (Von 

Neumann & Morgenstern, 1945) and prospect theory (Kahneman & Tversky, 1979), or risk sensitivity 

as in risk-return accounts (Markowitz, 1952; Sarin & Weber, 1993; Weber et al., 2004). By adopting a 

novel analysis approach (see below), we tested whether, in line with these models, a single factor was 

enough to characterize the combined influence of EV and GR, or whether an explanation based on 

multiple factors was necessary. 

To address these questions, we adopted a model-based approach by fitting several alternative models 

of choice behaviour and compering them. We first estimated the following logistic regression model 

of choice (gambling was coded as one and no gambling was coded as zero), which we will refer to as 

Model one:  
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𝑙𝑜𝑔 (
𝑃(𝑔𝑎𝑚𝑏𝑙𝑖𝑛𝑔)

1−𝑃(𝑔𝑎𝑚𝑏𝑙𝑖𝑛𝑔)
) = µ + 𝛽𝐸𝑉𝐸𝑉 + 𝛽𝐺𝑅𝐺𝑅 + 𝛽𝑓𝑒𝑒𝑑𝑓𝑒𝑒𝑑                (1) 

Where µ is an intercept parameter, 𝛽𝐸𝑉 captures the effect of the trial EV, 𝛽𝐺𝑅 captures the effect of 

the GR (this variable was rescaled to the mean), and 𝛽𝑓𝑒𝑒𝑑 captures the effect of the feedback/no-

feedback condition (feed; coded assigning one to feedback and minus one to no-feedback). Note that 

EV, GR and feedback/no-feedback were orthogonal by design. To address some of our research 

questions and to perform some control analyses, Model one was compared against simpler models 

(i.e., where one or more parameters were fixed) as well as against more complex models (i.e., where 

additional parameters were included) (see Results, tab. 1 and tab. S1).  

Model one describes choice as arising from multiple factors, because EV and GR exert independent 

influences on choice, and because choice is also characterized by a baseline gambling tendency 

(captured by the intercept μ) which is independent of EV and GR. This contrasts with accounts based 

on either a non-linear value function or on risk-return models, which are based on the notion that a 

single factor drives choice. This raises the question of whether, in our task, choice was better 

characterised by Model one or by non-linear value function or risk-return models. To define these 

non-linear value function or risk-return models, let us consider an option x associated with a set of 

possible outcomes, each defined by a monetary amount 𝐴𝑘 that can be a gain (𝐴𝑔) or a loss (𝐴𝑔), and 

by its probability 𝑝𝑘 (either 𝑝𝑔 or 𝑝𝑙  for gains and losses, respectively). We considered models of choice 

based on a non-linear value function (Kahneman & Tversky, 1979; Rutledge et al., 2015; Sokol-Hessner 

et al., 2009), in which each option value 𝑉𝑥 is obtained as: 

𝑉𝑥 =  ∑ 𝑝𝑔 𝐴𝑔
𝛼 − 𝜆 ∑ 𝑝𝑙 (−𝐴𝑙)𝛼             (2) 

Where α is a free parameter capturing the curvature of the value function and λ is a free parameter 

capturing the weight of losses compared to gains (both parameters are larger than zero). A value of α 

< 1 describes a concave value function, while α > 1 describes a convex function. For λ < 1 and λ > 1, 
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losses are weighted less and more than gains, respectively. We also considered models of choice based 

on risk-return (Markowitz, 1952; Sarin & Weber, 1993), in which 𝑉𝑥 corresponds to: 

𝑉𝑥 =  ∑ 𝑝𝑘 𝐴𝑘 + 𝜂 𝑉𝐴𝑅𝑥            (3) 

Where 𝑉𝐴𝑅𝑥 indicates the variance across outcomes of an option x, and η is a free parameter 

capturing whether (and how much) variance is attractive (and can be positive or negative, indicating 

variance is attractive or repulsive, respectively). We assessed also other risk-return accounts that 

follow equation 3 except that they use the coefficient of variation (Weber et al., 2004) or GR instead 

of variance.  

Models based on value function or risk-return prescribe that, after the value of the gamble 𝑉𝑔𝑎𝑚𝑏 and 

the value of the sure option 𝑉𝑠𝑢𝑟𝑒 are computed, the probability of gambling is obtained using logistic 

regression as: 

𝑙𝑜𝑔 (
𝑃(𝑔𝑎𝑚𝑏𝑙𝑖𝑛𝑔)

1−𝑃(𝑔𝑎𝑚𝑏𝑙𝑖𝑛𝑔)
) = 𝑉𝑔𝑎𝑚𝑏 − 𝑉𝑠𝑢𝑟𝑒         (4) 

Note that, in our task, risk-return accounts are mathematically equivalent to logistic regression models 

having the variability of the gamble as single predictor. This is because, according to equation 3, the 

value of the sure option is 𝑉𝑠𝑢𝑟𝑒 = 𝐸𝑉, the value of the gamble is 𝑉𝑔𝑎𝑚𝑏 = 𝐸𝑉 + 𝜂 𝑉𝐴𝑅𝑔𝑎𝑚𝑏, and 

hence the value difference is 𝑉𝑔𝑎𝑚𝑏 − 𝑉𝑠𝑢𝑟𝑒 = 𝜂 𝑉𝐴𝑅𝑔𝑎𝑚𝑏. From this, it is evident that the parameter 

𝜂 is equivalent to the parameter 𝛽𝑉𝐴𝑅 in logistic regression. 

We fitted multiple models based on value function or risk-return accounts (for some, the parameter 

α or η was estimated separately for gain and loss trials) (tab. 2). These were compared with Model 

one. In some versions, we also included an extra parameter to account for previous literature 

suggesting that gambling may exert an attraction or repulsion which is independent of the money at 

stake (Rigoli et al., 2016a; 2016b). If, for example, we consider a non-linear value function model, this 

extra parameter ω operates during estimation of 𝑉𝑔𝑎𝑚𝑏 as follows: 
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𝑉𝑔𝑎𝑚𝑏 =  ∑ 𝑝𝑔 𝐴𝑔
𝛼 − 𝜆 ∑ 𝑝𝑙 (−𝐴𝑙)𝛼 + 𝜔                  (5) 

An important question is whether, like models relying on value function and risk-return, Model one 

can be formulated in terms of option evaluation, and here we offer such formulation. Let us assume 

that agents estimate the value of the sure option as 𝑉𝑠𝑢𝑟𝑒 =  𝐸𝑉, and the value of the gamble as:  

𝑉𝑔𝑎𝑚𝑏 = µ + 𝜑𝐸𝑉 + 𝛽𝐺𝑅𝐺𝑅 + 𝛽𝑓𝑒𝑒𝑑𝑓𝑒𝑒𝑑                (6) 

The parameter 𝛽𝑓𝑒𝑒𝑑 captures the effect of feedback versus no-feedback condition. The parameter µ 

captures a gambling bias which is independent of EV and GR (higher value of µ boost the value of 

gambling). The parameter 𝛽𝐺𝑅 is analogous to the parameter η in risk-return accounts, and reports an 

attraction or repulsion for GR. The parameter 𝜑 reflects how much one relies on EV when calculating 

𝑉𝑔𝑎𝑚𝑏 compared to 𝑉𝑐𝑒𝑟𝑡, and we can assume it is bounded between zero and two. If 𝜑 < 1, EV is 

weighted less when estimating 𝑉𝑔𝑎𝑚𝑏 compared to 𝑉𝑠𝑢𝑟𝑒; if 𝜑 > 1, EV is weighted more when 

estimating 𝑉𝑔𝑎𝑚𝑏 compared to 𝑉𝑐𝑒𝑟𝑡 (if 𝜑 = 1, EV is weighted equally). We can write the value 

difference between the two options as follows: 

𝑉𝑔𝑎𝑚𝑏 − 𝑉𝑐𝑒𝑟𝑡 =  µ + (𝜑 − 1)𝐸𝑉 + 𝛽𝐺𝑅𝐺𝑅 + 𝛽𝑓𝑒𝑒𝑑𝑓𝑒𝑒𝑑                      (7) 

This is equivalent to equation one if we set 𝛽𝐸𝑉 = 𝜑 − 1. Note that 𝛽𝐸𝑉 can be positive or negative, 

and can be interpreted as reflecting whether one weights more EV when computing 𝑉𝑔𝑎𝑚𝑏 (𝛽𝐸𝑉 > 1) 

or when computing 𝑉𝑐𝑒𝑟𝑡 (𝛽𝐸𝑉 < 1). 

Models were fitted separately for each participant. Parameters were estimated with Matlab, and 

specifically using the glmfit function for logistic regression models, and the fminsearchbound function 

for models based on value function or on risk return accounts. Parameter estimation was 

unconstrained except for the non-linear value function parameter α and the loss weight parameter λ, 

which were bounded to be positive. After parameters were estimated, the log-likelihood of the data 

given the model was calculated and summed across participants. This was used to derive the Bayesian 
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Information Criterion (BIC), which approximates the posterior probability of the model given the data 

(the better the model the lower the BIC score).  

 

2.4 fMRI scanning and analysis 

The task was programmed using the Cogent toolbox (Wellcome Trust Centre for Neuroimaging) in 

Matlab. Visual stimuli were back projected onto a translucent screen positioned behind the bore of 

the magnet and viewed via an angled mirror. Blood oxygenation level dependent (BOLD) contrast 

functional images were acquired with echo-planar T2*-weighted (EPI) imaging using a Siemens Trio 3-

Tesla MR system with a 16 channel head coil. The whole brain was covered by images comprising 40 

interleaved 3-mm-thick sagittal slices (in-plane resolution = 3 x 3 mm; time to echo = 30 ms; repetition 

time = 2 s; flip angle = 75°; field of view = 240mm). The first six volumes were discarded to allow for 

T1 equilibration effects. T1-weighted structural images were acquired at a 1 x 1 x 1 mm resolution 

(time to echo = 3.016 ms; repetition time = 7.312 ms; flip angle = 11°; field of view = 270mm). 

Functional MRI data were analysed using Statistical Parametric Mapping (SPM) version 12 (Wellcome 

Trust Centre for Neuroimaging). Data preprocessing included spatial realignment, slice timing 

correction, normalization and smoothing. Specifically, functional volumes were realigned to the mean 

volume, were spatially normalized to the standard Montreal Neurological Institute (MNI) template 

with a 3 x 3 x 3 voxel size, and were smoothed with 8 mm Gaussian kernel. High-pass filtering with a 

cut-off of 128 s and AR(1)-model were applied.  

Blood oxygenation level dependent (BOLD) response was modelled with a canonical hemodynamic 

response function and a general linear model (GLM) including, when options were presented, one 

stick function regressor modulated by (i) choice (a binary variable assigning one to gambling and minus 

one to sure choices), (ii) EV, (iii) GR, (iv) feedback (a binary variable assigning one to feedback and 

minus one to no-feedback condition), (v) the EV-choice interaction, (vi) the GR-choice interaction, (vii) 
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the choice-feedback interaction, (viii) the GR-feedback interaction, and (ix) RTs (as effect of no 

interest). For feedback trials, two stick function regressors were also included at the time of outcome, 

the first for choices of the gamble (modulated by a RPE; i.e., the difference between outcome and EV), 

the second for choices of the sure option. The GLM also included six motion parameters as nuisance 

regressors. Please see SI for arguments ruling out any potential collinearity among regressors, for 

example among regressors at the time of option presentation and regressors at the time of outcome. 

SI also describes additional fMRI analyses based on a different GLM to explore on the feedback-EV and 

feedback-GR interaction. 

Contrasts of interest were computed subject by subject, and used for second-level (between subjects) 

one-sample t-tests and Pearson correlations using standard summary statistic approach (in analyses 

reported below, age and gender were not adopted as covariates; however, similar results were 

obtained when age and gender were also included as covariates – results not shown). All analyses 

below examine the time of option presentation (the time of feedback was not the focus of the study). 

Statistical (small volume corrected – SVC) tests focused on the ventral striatum, vmPFC and anterior 

insula as ROIs. The ventral striatum and vmPFC are two primary structures involved in processing the 

value of options (Bartra et al., 2013; Boorman et al., 2009; 2013; Fitzgerald et al., 2009; Hunt et al., 

2012; Rigoli et al., 2016a; Strait el al., 2014), while anterior insula is a key region for processing aspects 

of risk (Mohr et al., 2010; Payzan-LeNestour et al., 2013; Paulus et al., 2003; Preuschoff et al., 2008; 

Rigoli et al., 2016a; Rudorf et al., 2012). ROIs were defined a spheres having 10mm radius, and were 

centred on coordinates derived from previous literature (note this produced ROIs including only grey 

matter voxels). We were interested in examining striatum and vmPFC, given their central role in 

processing EV (Bartra et al., 2013). Hence, for striatum (coordinates: 12, 10, -6 and -12, 12, -6) and 

vmPFC (coordinates: 2, 46, -8), prior centre coordinates were extracted from a recent metanalysis on 

fMRI and EV encoding (see tab. 1 in Bartra et al., 2013). We were also interested in examining the role 

of anterior insula in processing risk. At present a metanalysis about risk processing in this region is not 

available in the literature. Hence, prior centre coordinates (coordinates: 30, 26, -2 and -30, 29, 1) were 
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extracted from a recent study that used a similar design to examine aspects of decision-making under 

risk (Rigoli et al., 2016a). For striatum and insula, a separate ROI was considered for each hemisphere. 

Statistics of ROIs were SVC using a voxel-wise approach (i.e., considering each single voxel 

individually). In order to obtain a total family wise error (FWE) rate of p < 0.05 among all five ROIs 

combined, a Bonferroni correction was adopted by using p < 0.01 SVC as significance threshold applied 

to each ROI individually. For exploratory purposes, we also report data for other brain regions with 

statistics having p < 0.001 uncorrected significance (tab. S3). 

 

3. RESULTS 

3.1 Behaviour 

We first assessed whether participants were risk seeking or risk averse in the different conditions (see 

SI for analyses of reaction times (RTs)). Gambling percentage was not different from 50% during 

feedback trials (mean = 52%, t(22) = 0.66, p = 0.515; two-tailed p < 0.05 was used as significance 

criterion for behavioural analyses), while a significance trend toward gambling less than 50% emerged 

during no-feedback trials (mean = 42%; t(22) = -1.82, p = 0.082). Gambling percentage was not 

different from 50% during gain trials (mean = 53%; t(22) = 0.68, p = 0.506) and was lower than 50% 

during loss trials (mean = 41%; t(22) = -2.15, p = 0.043). We analysed differences across conditions 

performing an ANOVA of gambling percentage with feedback/no-feedback and gain/loss as factors 

(fig. 1B). This showed a higher gambling for feedback versus no-feedback trials (F(1,22) = 17.61, p < 

0.001) and for gain versus loss (F(1,22) = 5.54, p = 0.028), with no interaction (F(1,22) = 0.21, p = 0.653). 

The observation of a higher gambling during feedback trials is consistent with predictions derived from 

curiosity theories (Baldassarre & Mirolli, 2013; Friston et al., 2015; Gottlieb, 2012; Gottlieb et al., 2014; 

Kidd & Hayden, 2015), but does not fit with theories emphasising the role of expected disappointment 

(Bell, 1985). 
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An increased gambling for gains compared to losses, a lack of risk aversion for gains, and risk aversion 

for losses are observations which do not fit with prevailing choice models (Kahneman & Tversky, 1979; 

Von Neumann & Morgenstern, 1945). However, these results are consistent with studies adopting 

similar task designs (for an enhanced gambling for gains compared to losses, see Ludvig & Spetch, 

2011; Rutledge et al., 2015; for a lack of risk aversion for gains, see Rigoli et al., 2016a; 2016b; for risk 

aversion for losses, see Ludvig & Spetch, 2011; Rutledge et al., 2015). A possibility is that this pattern 

emerges when small monetary amounts are at stake as potential gains or losses (Prelec & 

Loewenstein, 1991). 

To probe further our data, we fitted alternative models of choice and compared them (see Methods). 

Model one (see Methods) showed a lower BIC score compared to simpler models in which one or 

more parameters were set to zero (tab. 1). Furthermore, Model one was compared with more 

complex versions which included also a gain/loss factor (coded assigning one to gains and zero to 

losses), which in some models interacted with EV, GR, or feedback/no feedback (tab. 1), and models 

where feedback/no feedback interacted with EV or GR. These more complex models had larger BIC 

(tab. 1). This model comparison analysis supports Model one over alternative accounts. Note that 

Model one implements 𝛽𝑓𝑒𝑒𝑑 as free parameter, which indicates that participants’ choice varied based 

on feedback condition. Consistent with the ANOVA above, the parameter 𝛽𝑓𝑒𝑒𝑑 was significantly larger 

than zero (mean = 0.31; t(22) = 4.34, p < 0.001), reflecting an increased gambling for feedback versus 

no-feedback condition.  

Model one characterizes the effect of feedback condition using a binary variable, which describes the 

belief of whether feedback is expected or not. However, because feedback and no-feedback 

conditions were organized in blocks, the feedback effect could potentially result from an influence of 

outcomes collected before (and not from expectations about feedback). We considered this analysing 

the influence of the outcome collected at the previous trial, focusing on its associated value or on its 

associated reward prediction error (RPE; i.e., the outcome value minus the EV). We estimated logistic 
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regression models of choice similar to Model one in which either the value or RPE of the previous 

outcome was included as additional predictor (note that this predictor has a value of zero for no-

feedback trials) or replaced the feedback/no-feedback binary predictor (tab. S1). In some models, we 

assumed different influences for gains and losses or for positive and negative RPEs. For example, in 

one model the previous outcome value was set to zero when it was a loss. Other models used the 

unsigned value or unsigned RPE associated to the previous outcome. Finally, we assessed models 

implementing the interaction between the value of the previous outcome (considering, for some 

models, its absolute value and, for other models, considering exclusively either losses or gains) and 

choice, the latter indicating whether a sure option or a gamble was chosen at the previous trial (note 

that the interaction between RPE and choice cannot be modelled, because RPE is always zero when 

the sure option is selected). All models implementing an influence of the previous outcome reported 

a BIC score larger than Model one (tab. S1), indicating it is unlikely that participants were influenced 

by the previous outcome. To ascertain further that the effect of feedback condition was not 

confounded by any influence of the previous outcome, we tested 𝛽𝑓𝑒𝑒𝑑 (the regressor associated with 

feedback condition) also for models implementing the role of outcome, and results confirmed that 

this parameter remained significant (e.g., for the model implementing RPE at previous trial: t(22) = 

4.22, p < 0.001; results not shown for other models). Altogether, analyses on the influence of previous 

outcome support the notion that the effect of feedback condition depends on an expectation about 

whether feedback will be available or not, and it is not confounded by learning.  

Next, we compared Model one against value function (Kahneman & Tversky, 1979; Von Neumann & 

Morgenstern, 1945) or risk-return accounts (Markowitz, 1952; Sarin & Weber, 1993; Weber et al., 

2004) (see Methods). Different versions of these accounts were considered during model comparison 

(see Methods and tab. 2). These showed a BIC score higher than Model one, suggesting they provide 

a worse explanation of our data (tab. 2; see SI and tab. S2 for an analysis of simulated data which 

clarifies why non-linear value function or risk-return models poorly explain choice in our task). This 
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suggests that, contrary to value function or risk-return accounts, a single factor is not enough to 

explain choice in our task, but that multiple factors are at play (as implicated by Model one). 

Overall, Model one emerged as the best account of choice behaviour. This shows that gambling 

resulted from four independent components, namely a gambling bias (captured by the intercept µ), a 

component dependent on EV, one dependent on GR, and one reflecting the presence or absence of 

feedback. Note that the observation that choice behaviour was affected by these different variables 

characterising the different trials indicates that participants overall felt that their choices were 

consequential, in other words that participants were (at least to some degree) motivated during the 

task. Note also that the gambling bias is formally equivalent to the total gambling proportion, as 

confirmed by the almost perfect correlation between the two (r(21) = 0.9956; p < 0.001). Consistent 

with the notion that EV and GR exerted an independent influence on choice, the associated 

parameters 𝛽𝐸𝑉 and 𝛽𝐺𝑅 were uncorrelated across participants (fig. 1C; r(21) = -0.058, p = 793). Also, 

these parameters were not correlated with a baseline gambling bias µ (fig. S1; 𝛽𝐸𝑉: r(21) = 0.231, p = 

0.288; 𝛽𝐺𝑅: r(21) = -0.125, p = 0.573), nor with the effect of feedback 𝛽𝑓𝑒𝑒𝑑 (fig. S1; 𝛽𝐸𝑉: r(21) = 0.168, 

p = 0.445; 𝛽𝐺𝑅 : r(21) = 0.064, p = 0.772). A significance trend emerged when exploring the relationship 

between µ and 𝛽𝑓𝑒𝑒𝑑 (fig. S1; r(21) = -0.354, p = 0.098).  

An important question is whether the parameters estimated for Model one are reliable. For example, 

can we reliably infer that a participant is less affected by feedback compared to another participant? 

To assess this, for each participant we randomly split trials in two groups, and Model one was 

estimated from each trial group. All parameters estimated from the two trial groups were correlated 

across participants (fig. S2; µ: r(21) = 0.959 , p < 0.001; 𝛽𝐸𝑉: r(21) = 0.955 , p < 0.001; 𝛽𝐺𝑅:  r(21) = 

0.956, p < 0.001; 𝛽𝑓𝑒𝑒𝑑: r(21) = 0.776 , p < 0.001), indicating that the parameters were reliable, and 

that the individual differences across participants were meaningful and not due to chance.  

To assess whether the effects exerted by the different factors were similar across participants (e.g., 

whether participants on average gambled more for larger EVs), we performed one-sample t-tests on 
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the estimated parameters (see above for this test regarding 𝛽𝑓𝑒𝑒𝑑). We did not find any difference 

from zero for µ (mean = -0.22; t(22) = -1.06, p = 0.321) nor for 𝛽𝐺𝑅 (fig 1D; mean = -0.06; t(22) = -0.42, 

p = 0.689). An average parameter larger than zero was observed for 𝛽𝐸𝑉 (fig. 1E; mean = 0.04; t(22) = 

2.25, p = 0.035), indicating an increased gambling for higher EVs (consistent with the effect of gain 

versus loss found in the ANOVA). In sum, our behavioural results highlight an increased gambling when 

feedback is provided, and show that both the EV and the GR each exert an independent influence in 

our gambling task. 

 

3.2 Neuroimaging 

Our computational model-based analysis allowed us to estimate, for each subject, different 

components driving choice behaviour in our task, namely a baseline propensity component, an EV-

related component, a GR-related component, and a feedback-related component. We characterized 

the neural processes associated with these. To this aim, we probed the relationship between 

individual differences in gambling behaviour and BOLD response. Identifying a relationship in a certain 

brain region for a specific component of gambling would suggest the region is involved in that 

component. 

We fitted a GLM to BOLD data (see Methods) having one stick function regressor at the time of option 

presentation modulated by (i) choice (a binary variable assigning one to gambling and minus one to 

sure choices), (ii) EV, (iii) GR, (iv) feedback (a binary variable assigning one to feedback and minus one 

to no-feedback), (v) the EV-choice interaction, (vi) the GR-choice interaction, (vii) the choice-feedback 

interaction, and (viii) RTs (as effect of no interest). For feedback trials, two stick function regressors 

were also included at the time of outcome, the first for choices of the gamble (modulated by a RPE), 

the second for choices of the sure option (see SI for considerations ruling out any potential collinearity 
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among regressors). All our analyses below examine the time of option presentation (the time of 

feedback was not the focus of the study). 

We first probed the neural processes implicated in an increased gambling during feedback trials. 

Previous research has shown that, when options are presented, response in ventral striatum encodes 

the value of the chosen option (Bartra et al., 2013). This raises the possibility of a stronger striatal 

response during feedback compared to no-feedback trials when a gamble is chosen, given that 

(according to our behavioural results) gambling is more attractive when feedback is provided. 

Specifically, during feedback compared to no-feedback trials, we predicted a stronger striatal response 

at option presentation for gambling compared to sure choices. This was assessed considering the 

choice-feedback interaction term of the BOLD GLM (i.e., the term of the GLM numbered as vii). Data 

confirmed our predictions, indicating that, comparing feedback and no-feedback trials, response for 

gambling versus sure choices increased in bilateral ventral striatum (fig. 2A; left: -12, 8, -2; Z = 4.71; p 

< 0.001 SVC; right: 9, 8, 1; Z = 4.21; p = 0.001 SVC). Moreover, a trend towards a positive correlation 

emerged between the behavioural effect of feedback condition (captured by the parameter 𝛽𝐹𝑒𝑒𝑑 in 

the logistic regression model of choice) and this neural effect in right, but not left (p > 0.01 SVC), 

ventral striatum (fig. 2B; 15, 17, -2; Z = 3.04; r(21) = 0.614; p = 0.039 SVC). Although this emerged only 

as a trend, this results suggests that the more a participant gambled for feedback compared to no 

feedback trials, the more striatal response for gambling versus sure choices increased during feedback 

compared to no-feedback trials. Note this effect occurs at option presentation and is not confounded 

by the outcome, since the GLM adopted includes specific regressors at outcome presentation (see SI 

for further analyses on this point).    

To investigate the neural processes underlying an EV-dependent gambling preference, we focused on 

ventral striatum and vmPFC. While, when options are presented, response in ventral striatum encodes 

the EV of the chosen option (Bartra et al., 2013), previous research suggests that vmPFC signals a 

difference in EV across options (Bartra et al., 2013; Boorman et al., 2009; 2013; Fitzgerald et al., 2009; 
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Hunt et al., 2012; Rigoli et al., 2016a; Strait el al., 2014). The model of choice outlined above (Model 

one) can be formulated in such a way that the EV-dependent gambling preference emerges from 

subtracting the value of the sure option from the value of the gamble (see Methods). This is a form of 

value difference similar to the signal expressed in vmPFC, predicting the latter region could be involved 

in establishing an EV-related gambling preference. Consistent with previous reports (Bartra et al., 

2013), we found a positive relationship between EV and activity in ventral striatum (left: -9, 8, -8; Z = 

4.43; p < 0.001 SVC; right: 9, 20, -2; Z = 4.10; p = 0.002 SVC; Montreal Neurological Institute coordinates 

were used), but not in vmPFC (p > 0.01 SVC). We analysed the correlation across individuals between 

this brain effect and the effect of EV on gambling preference 𝛽𝐸𝑉. We found a trend towards a negative 

relationship in vmPFC (fig. 3; 12, 41, -11; Z = 3.13; r(21) = -0.616; p = 0.033 SVC). Although this emerges 

only as a trend, this result indicates that, for participants who gambled more for positive EVs, activity 

in vmPFC increased for negative compared to positive EVs; for participants who gambled more for 

negative EVs, activity in vmPFC increased for positive compared to negative EVs (fig. 3C). No 

relationship was observed in ventral striatum (p > 0.01 SVC). Previous literature suggests that, at 

option presentation, vmPFC response reflects the value difference between the chosen and the 

unchosen option (Bartra et al., 2013; Boorman et al., 2009; 2013; Fitzgerald et al., 2009; Hunt et al., 

2012; Rigoli et al., 2016a; Strait el al., 2014). In our task, this predicts that, for participants who gamble 

more for negative EVs, the relationship between EV and vmPFC activity should be positive during sure 

choices, and negative during gambling. Vice versa, for participants who gamble more for positive EVs, 

the relationship between EV and vmPFC activity should be negative during sure choices, and positive 

during gambling. We investigated this analysing the EV-choice interaction term of the BOLD GLM (i.e., 

the term of the GLM numbered as v). Contrary to predictions based on previous literature (Bartra et 

al., 2013; Boorman et al., 2009; 2013; Fitzgerald et al., 2009; Hunt et al., 2012; Rigoli et al., 2016a; 

Strait el al., 2014), in vmPFC this interaction term was not significantly different from zero and was 

not correlated with an EV-related gambling propensity 𝛽𝐸𝑉 (p > 0.01 SVC). No effect emerged in 

ventral striatum too (p > 0.01 SVC).  
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Evidence indicates that, in humans, anterior insula appears as one of the main brain regions implicated 

in processing aspects of risk (Mohr et al., 2010; Payzan-LeNestour et al., 2013; Paulus et al., 2003; 

Preuschoff et al., 2008; Rigoli et al., 2016a; Rudorf et al., 2012). Specifically, an association has been 

reported between activity in this region and measures of risk linked with the probability of future 

outcomes (Mohr et al., 2010; Payzan-LeNestour et al., 2013; Paulus et al., 2003; Preuschoff et al., 

2008; Rigoli et al., 2016a; Rudorf et al., 2012). However, so far fMRI studies on risky decision-making 

have operationalized risk in terms of outcome probability only (note that, as in our study, also in 

previous studies on risk outcomes were irrelevant for learning). The role of other components of risk, 

such as GR or similar measures of outcome variability, remains poorly understood. Our design allowed 

us to investigate this question. We considered the hypothesis that insula reflects the total level of 

expected risk, which, according to influential economic models (Markowitz, 1952; Sarin & Weber, 

1993; Weber et al., 2004), increases (i) during gambling choices, (ii) when options have higher GR, and 

(iii) when a gamble characterized by higher GR is chosen. To test this, we first compared insula 

response for gambling versus sure choices, and, consistent with previous reports (Rigoli et al., 2016a), 

we observed an increase (fig. 4A; left: -33, 17, -8; Z = 3.59; p = 0.009 SVC; right: 33, 20, -5; Z = 4.71; p 

< 0.001). Second, we analysed the relationship between insula response and GR, and found a positive 

correlation (fig 4; left: -33, 23, -5; Z = 3.66; p = 0.008 SVC; right: 42, 20, -5; Z = 3.68; p = 0.008 SVC). 

Third, we considered the GR-choice interaction term of the BOLD GLM (i.e., the term of the GLM 

numbered as vi). This was larger than zero in insula (fig. 4; left: -30, 26, -8; Z = 3.64; p = 0.008 SVC; on 

the right side this emerged only as a trend: 45, 32, -2; Z = 3.03; p = 0.042 SVC), implying that the 

relationship between GR and insula response was stronger during gambling compared to sure choices. 

Altogether, these results support the hypothesis that insula integrates multiple elements of risk, in 

particular about whether a selected option is probabilistic or not and about the variability of its 

possible outcomes.  

Previous research has reported a link between gambling preferences and insula activity (Rudorf et al., 

2012). However, in previous studies insula was not recorded during task performance. Therefore, an 
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open question is whether the risk signal found in insula during task performance is implicated in 

gambling preferences. To address this question, we first asked whether insula response for gambling 

versus sure choices is related with a baseline gambling propensity, captured by the intercept of the 

logistic regression model of choice µ. Across participants, we found a negative correlation (fig. 5A-B; 

right: 39, 17, -8; Z = 3.94; r(21) = -0.728; p = 0.003 SVC; a trend towards significance emerged in left 

insula: -33, 20, -5; Z = 2.80; r(21) = -0.563 p = 0.074 SVC), implying insula response for gambling 

compared to sure choices was larger for individuals who exhibited lower baseline gambling 

propensity. Second, we examined the relationship between response to GR in insula and the GR-

related gambling propensity 𝛽𝐺𝑅, but no correlation emerged (p > 0.01 SVC). Third, we explored the 

relationship between the GR-choice interaction effect in insula and the GR-related gambling 

propensity 𝛽𝐺𝑅 (as estimated from choice behaviour). A trend towards significance for a negative 

correlation emerged (fig. 5A-C; left: -33, 29, -5; Z = 3.39; r(21) = -0.655; p = 0.016 SVC; right: 42, 29, -

2; Z = 3.35; r(21) = -0.649; p = 0.018 SVC). This suggests that, when comparing gambling and sure 

choices, the association between GR and insula response was stronger for participants who, at the 

behavioural level, preferred gambling for smaller GRs. Altogether, these results highlight a link 

between risk signalling in insula and risk preferences. They indicate that insula response to a specific 

aspect of risk (e.g., when a gamble is selected) is amplified if that aspect is perceived as aversive (e.g., 

if gambling is usually avoided). 

In summary, our fMRI analyses identify specific neural substrates associated with the different 

components of gambling that guide choice behaviour in our task. When a gamble is chosen (compared 

to sure choices), striatal activation at option presentation was higher during feedback compared to 

no-feedback trials. A preference to gamble dependent on EV was related with an effect of EV on 

vmPFC activity. Insula response increased for gamble compared to sure choices and was associated 

with GR, an association that was stronger during gambling compared to sure choices. In addition, 

effects on insula were linked with individual gambling preferences, as the increase in insula activity 

for gamble compared to sure choices was stronger in participants who gambled less, and the 
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association between GR and insula response was stronger during gambling for participants who 

preferred gambling with small GR. 

 

4. DISCUSSION 

We examined the role of expecting feedback, and we found this increased gambling. At option 

presentation, expecting feedback was associated with increased striatal activity when a gamble was 

being selected. EV and GR exerted independent influences on gambling in a way that was inconsistent 

with both non-linear value function (Kahneman & Tversky, 1979; Von Neumann & Morgenstern, 1945) 

and risk-return accounts (Markowitz, 1952; Sarin & Weber, 1993; Weber et al., 2004). The effects of 

EV and GR on choice mapped to distinct neural processes reflected in vmPFC and in anterior insula 

activity at option presentation, respectively.  

Our observation of an increased gambling during feedback trials is hard to explain as being the 

consequence of anticipatory disappointment (Bell, 1985). However, this finding fits with current 

models of curiosity (Baldassarre & Mirolli, 2013; Friston et al., 2015; Gottlieb, 2012; Gottlieb et al., 

2014; Kidd & Hayden, 2015). Epistemic value is a central concept of curiosity theories (e.g., Friston et 

al., 2015) and corresponds to a form of value which favours information seeking (and hence 

uncertainty reduction) even when this is not helpful for reward collection. A critical aspect of our task 

is that feedback was not instrumental, in other words it did not facilitate reward collection in the 

future. Hence, our findings suggest that epistemic value associated with expecting feedback facilitates 

gambling. 

Previous research has examined decision-making under risk in contexts where agents are not explicitly 

informed about possible outcomes and probabilities, but have to learn these from their past 

experience (Barron & Erev, 2003; FitzGerald et al., 2010; Glaser et al., 2012; Hertwig et al., 2004; 

Jessup et al., 2008; Ludvig & Spetch, 2011; Lejarraga & Gonzalez, 2011; Wu et al., 2011; Wulff et al., 
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2018). Crucially, in this research feedback was instrumental for learning and for reward maximization, 

as it allowed participants to acquire knowledge about outcomes and probabilities. The fact that 

learning was engaged implies that previous studies were unable to assess whether individuals are 

attracted by feedback information even when this information is irrelevant for performance. On the 

contrary, given that participants were explicitly informed about outcomes and probabilities, our task 

does not involve any learning (this is supported by analyses demonstrating that the previous outcomes 

did not influence choice). This allowed us to show that individuals are attracted by feedback 

information even when this information is irrelevant. Our findings also help in interpreting previous 

observations (Ludvig & Spetch, 2011). Comparing decisions from experience (i.e., based on learning) 

versus decisions from instruction (the latter occurring when option consequences are described 

explicitly), an increased gambling has been reported in a task analogous to the one used here (Ludvig 

& Spetch, 2011). Our study raises the possibility that this previous observation could be explained by 

an attractiveness of feedback, irrespective of any learning. 

Recording fMRI data during task performance allowed us to shed light on the neural mechanisms 

underlying the effect of expecting feedback on choice. Increased gambling during feedback trials 

reflected a higher value placed on gambling in this condition. This increased value was expressed in 

the ventral striatal response at option presentation – at a time when this region encodes the value of 

the chosen option (Bartra et al., 2013). Previous literature has asked whether the ventral striatum is 

implicated in processing the value of information. An indirect evidence of this is the observation that, 

when an individual is waiting for an answer to a question about general knowledge, activity in ventral 

striatum increases with the reported level of curiosity (Kang et al., 2009). However, given that this 

previous study did not require any choice behaviour, it remains unclear whether reported curiosity 

reflects subjective value. By adopting a choice task, our study provides direct evidence that the ventral 

striatum processes a value of information which motivates choice behaviour. Another study found the 

striatum to encode a novelty value signal, which favours exploration of newly presented options in a 

decision-making task (Wittmann et al., 2008). However, in that study exploration was instrumental to 
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reward maximization, as it allowed participants to familiarize with novel options and hence to 

maximize reward collection in the long run. On the contrary, our study relies on a task where feedback 

information was unhelpful for obtaining more reward in the future. Hence our findings highlight an 

involvement of the ventral striatum in processing a value of information in conditions where 

information is irrelevant for reward maximization. This signal in the striatum fits with the notion of 

epistemic value (e.g., Friston et al., 2015), corresponding to a form of value which favours information 

seeking even when this is not helpful for reward collection. 

Classical theories of decision-making under risk based on value function (Kahneman & Tversky, 1979; 

Von Neumann & Morgenstern, 1945) or risk-return accounts (Markowitz, 1952; Sarin & Weber, 1993; 

Weber et al., 2004) offered a relatively poor explanation of the choice data in our task. First, as already 

highlighted by previous research using similar paradigms (Rigoli et al, 2016a; 2016b), these models 

were unable to capture a baseline gambling preference (corresponding to the intercept of the logistic 

regression model) independent of EV or GR. Second, they were unable to account for the fact that EV 

and GR each exerted an independent influence on gambling. To our knowledge, this is the first 

demonstration that, at least in selected tasks, the models based on value function or risk return fail to 

describe the impact of EV and GR (or similar indexes of risk). The data were better explained by a 

simple logistic regression account comprising a gambling bias, an EV-related influence, and a GR-

related influence as factors (in addition to the effect of feedback condition). This model is analogous 

to previous accounts of multi-attribute decisions (EV and GR corresponding to two distinct attributes) 

in which each attribute contributes independently to choice (Tsetsos et al., 2016).  

Activity in vmPFC correlated positively with EV for participants who gambled more for negative EVs, 

and correlated negatively with EV for participants who gambled more for positive EVs. Previous 

research suggests that vmPFC response signals the value difference between the chosen and 

unchosen option (Bartra et al., 2013; Boorman et al., 2009; 2013; Fitzgerald et al., 2009; Hunt et al., 

2012; Rigoli et al., 2016a; Strait el al., 2014). Contrary to this, in our task the relationship between the 
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effect of EV on vmPFC response and an EV-related gambling preference did not differ during gambling 

and sure choices. Instead, our results suggest vmPFC signalled a difference between the sure option 

and the gamble, independent of which option was eventually chosen. Note that, contrary to most 

previous studies, in our task sure options and gambles represent two clear distinct option categories. 

A possibility is that, when clear option categories can be identified, vmPFC activity anchors to one 

category, in our case the sure option. As a result, independent of the option eventually selected, 

activity in vmPFC would signal the difference between the reference option category and other 

categories, in our case corresponding to the difference between the sure option and the gamble. This 

offers a testable hypothesis of vmPFC activity that could be explored in the future. 

Our study contributes to shedding light on the neural processes underlying decision-making under risk 

(Christopoulos et al., 2009; D’Acremont & Bossaerts, 2008; Mohr et al., 2010; Paulus et al., 2003; 

Payzan-LeNestour et al., 2013; Preuschoff et al., 2006; 2008; Rigoli et al., 2016a; Rudorf et al., 2012; 

Rushworth & Behrens, 2008; Symmonds et al., 2010; Tobler et al., 2009). Specifically, it extends 

research on the role of the anterior insula in this domain (Mohr et al., 2010; Payzan-LeNestour et al., 

2013; Paulus et al., 2003; Preuschoff et al., 2008; Rigoli et al., 2016a; Rudorf et al., 2012). Our results 

contribute to clarify which aspects of risk are reflected in insula activity, demonstrating a connection 

between insula activation and individual risk preferences. Consistent with previous reports (Rigoli et 

al., 2016a), higher insula activity was observed during gambling compared to sure choices. Moreover, 

response in this region correlated with GR, and this effect was stronger during gambling compared to 

sure choices. In addition to encoding aspects of risk related with outcome probability (Mohr et al., 

2010; Payzan-LeNestour et al., 2013; Paulus et al., 2003; Preuschoff et al., 2008; Rigoli et al., 2016a; 

Rudorf et al., 2012), this demonstrates that insula also processes information about outcome 

variability. In summary, these findings show that insula signals an overall risk expectancy integrating 

information about whether an option is probabilistic or not and about the variability of its possible 

outcomes. Although previous research has shown a link between individual risk preferences and insula 

response (Rudorf et al., 2012), this region was not recorded directly during decision-making. 
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Therefore, previous research has left open the question whether insula activity during a gambling task 

is linked with individual strategies adopted in that task. We investigated this question and found that 

participants with a low gambling propensity showed a stronger insula response when comparing 

gambling and sure choices. Moreover, when comparing gambling and sure choices, participants who 

preferred gambling with low GR exhibited a stronger relationship between insula response and GR. 

Altogether, these results highlight a connection between insula response during task performance and 

gambling preferences. They indicate that the insula response to a specific aspect of risk (e.g., when a 

gamble is selected) is amplified if that aspect is perceived as aversive (e.g., if gambling is usually 

avoided). For example, participants who gamble less (i.e., those exhibiting a decreased average 

gambling propensity) may avoid gambling because they perceive it as an aversive option. According 

to our data, these participants also tend to show stronger insula response during gambling, which is 

putatively aversive. Hence, insula activity may reflect aspects of risk especially when these aspects are 

perceived as aversive. 

In summary, our study shows that EV and GR each exerted an independent impact on gambling. This 

observation is difficult to reconcile with traditional value function and risk-return models of choice. 

Signalling of EV and GR was segregated in the brain, as these quantities were associated with activity 

in vmPFC and insula, respectively. These results supports the notion that, at least in certain decision 

contexts, EV and GR are evaluated independently to form choice. A central finding of our study is that 

gambling increases when feedback is provided, an effect associated with increased striatal response 

during gambling when comparing feedback and no-feedback trials.  
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Model Free parameters Neg log-lik BIC Exp(Log lik/n trials) 

1** µ, 𝛽𝐸𝑉 , 𝛽𝐺𝑅 , 𝛽𝑓𝑒𝑒𝑑   4550 9647 0.5933 

2 Random 6042 12083 0.5000 

3 µ 5479 11095 0.5333 

4 𝛽𝐸𝑉 5706 11548 0.5196 

5 𝛽𝐺𝑅  5517 11171 0.5310 

6 𝛽𝑓𝑒𝑒𝑑  5943 12022 0.5057 

7 µ, 𝛽𝐸𝑉 5111 10496 0.5563 

8 µ, 𝛽𝐺𝑅  5078 10430 0.5584 

9 µ, 𝛽𝑓𝑒𝑒𝑑  5358 10990 0.5408 

10 𝛽𝐸𝑉 , 𝛽𝐺𝑅  5158 10588 0.5533 

11 𝛽𝐸𝑉 , 𝛽𝑓𝑒𝑒𝑑  5602 11478 0.5259 

12 𝛽𝐺𝑅 , 𝛽𝑓𝑒𝑒𝑑  5400 11072 0.5382 
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13 µ, 𝛽𝐸𝑉 , 𝛽𝐺𝑅  4687 9784 0.5841 

14 µ, 𝛽𝐸𝑉 , 𝛽𝑓𝑒𝑒𝑑  4984 10377 0.5645 

15 µ, 𝛽𝐺𝑅 , 𝛽𝑓𝑒𝑒𝑑  4950 10311 0.5667 

16 𝛽𝐸𝑉 , 𝛽𝐺𝑅 , 𝛽𝑓𝑒𝑒𝑑  5032 10474 0.5614 

17 µ, 𝛽𝐸𝑉 , 𝛽𝐺𝑅 , 𝛽𝑓𝑒𝑒𝑑 , 𝛽𝐺𝐿  4506 9695 0.5963 

18 µ, 𝛽𝐸𝑉 , 𝛽𝐺𝑅 , 𝛽𝑓𝑒𝑒𝑑 , 𝛽𝐺𝐿,𝐸𝑉 4530 9742 0.5947 

19 µ, 𝛽𝐸𝑉 , 𝛽𝐺𝑅 , 𝛽𝑓𝑒𝑒𝑑 , 𝛽𝐺𝐿,𝐺𝑅  4521 9725 0.5953 

20 µ, 𝛽𝐸𝑉 , 𝛽𝐺𝑅 , 𝛽𝑓𝑒𝑒𝑑 , 𝛽𝐺𝐿,𝑓𝑒𝑒𝑑  4512 9706 0.5959 

21 µ, 𝛽𝐸𝑉 , 𝛽𝐺𝑅 , 𝛽𝑓𝑒𝑒𝑑 , 𝛽𝐸𝑉,𝑓𝑒𝑒𝑑  4518 9719 0.5955 

22 µ, 𝛽𝐸𝑉 , 𝛽𝐺𝑅 , 𝛽𝑓𝑒𝑒𝑑 , 𝛽𝐺𝑅,𝑓𝑒𝑒𝑑  4533 9750 0.5945 

 

Tab. 1. Model comparison analysis of logistic regression models. Free parameters are reported in column two 
and can include, in addition to an intercept µ, coefficients associated with EV ( 𝛽𝐸𝑉), GR ( 𝛽𝐺𝑅), with binary 
predictors feedback/no-feedback ( 𝛽𝑓𝑒𝑒𝑑) or gain/loss (𝛽𝐺𝐿), with the interaction between gain/loss and EV 

(𝛽𝐺𝐿,𝐸𝑉), GR (𝛽𝐺𝐿,𝐺𝑅), or feedback/no-feedback (𝛽𝐺𝐿,𝑓𝑒𝑒𝑑), and with the interaction between feedback/no-

feedback and EV (𝛽𝐸𝑉,𝑓𝑒𝑒𝑑) or GR (𝛽𝐺𝑅,𝑓𝑒𝑒𝑑). The third and fourth columns report the negative log-likelihood and 

BIC score summed across participants, respectively. The fifth column reports the exponential of the log-
likelihood divided by the total number of trials across participants. This quantity can be interpreted as the 
proportion of trials correctly predicted by the model. The model with lowest BIC score (Model one) is marked 
with asterisks. 

 

Model Free parameters Neg log-lik BIC Exp(Log lik/n trials) 

1** µ, 𝛽𝐸𝑉 , 𝛽𝐺𝑅 , 𝛽𝑓𝑒𝑒𝑑   4550 9647 0.5933 

2 𝛼 5955 12046 0.5050 

3 α, λ 5707 11686 0.5196 

4 𝛼𝐿,𝛼𝐺 , λ 5440 11490 0.5296 

5 𝛼𝐿,𝛼𝐺 , λ, 𝜔 5112 10771 0.5563 

6 𝛼𝐿,𝛼𝐺 , λ, 𝜔, 𝛽𝑓𝑒𝑒𝑑  4992 10666 0.5640 

7 𝜂 (VAR) 5563 11263 0.5282 

8 𝜂𝐿,𝜂𝐺  (VAR) 5262 10799 0.5468 

9 𝜂𝐿,𝜂𝐺 , 𝜔 (VAR) 4807 10024 0.5761 

10 𝜂𝐿,𝜂𝐺 , 𝜔, 𝛽𝑓𝑒𝑒𝑑  (VAR) 4689 9924 0.5839 

11 𝜂  (CVAR) 5773 11683 0.5156 
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12 𝜂𝐿,𝜂𝐺  (CVAR) 5273 10819 0.5461 

13 𝜂𝐿,𝜂𝐺 , 𝜔 (CVAR) 4988 10385 0.5642 

14 𝜂𝐿,𝜂𝐺 , 𝜔, 𝛽𝑓𝑒𝑒𝑑  (CVAR) 4871 10288 0.5719 

15 𝜂  (GR) 5517 11171 0.5310 

16 𝜂𝐿,𝜂𝐺  (GR) 5165 10603 0.5529 

17 𝜂𝐿,𝜂𝐺 , 𝜔 (GR) 4770 9950 0.5785 

18 𝜂𝐿,𝜂𝐺 , 𝜔, 𝛽𝑓𝑒𝑒𝑑  (GR) 4648 9841 0.5867 

 

Tab. 2. Model comparison analysis of models based on a non-linear value function or on risk-return accounts. 
These models are compared to Model one, which is based on logistic regression. Free parameters are reported 
in column two and can include a value function parameter 𝛼 (that can be estimated separately for losses and 
gains, resulting in 𝛼𝐿  and 𝛼𝐺, respectively), a loss weight parameter λ, a risk weight parameter 𝜂 (that can be 
estimated separately for losses and gains, resulting in 𝜂𝐿 and 𝜂𝐺 , respectively), a gambling bias parameter 𝜔, 
and a coefficient associated with the feedback/no-feedback condition ( 𝛽𝑓𝑒𝑒𝑑). For risk-return models, column 

two reports whether variance (VAR), coefficient of variation (CVAR) or gambling range (GR) is considered. The 
third and fourth columns report the negative log-likelihood and BIC score summed across participants, 
respectively. The fifth column reports the exponential of the log-likelihood divided by the total number of trials 
across participants. This quantity can be interpreted as the proportion of trials correctly predicted by the model. 
The model with lowest BIC score (Model one) is marked with asterisks. 

 
 
 
 
 

 

Fig 1. Task paradigm and behavioural results. A: Description of the task, illustrating an example of two 
consecutive trials. After an intertrial interval (ITI) of one second, a sure option (e.g., £6) and a 50-50 gamble (e.g., 
having either £10 or £2 as possible outcomes) are presented. In some blocks (as in the example illustrated here), 
outcome feedback is provided (e.g., £6) for one second after choice, while in other blocks outcome feedback is 
not provided and a new trial starts immediately after choice. The figure illustrates also the following trial, in this 
instance offering a choice between a sure £7 loss and a gamble associated with either a £9 or £5 loss. Note the 
text is coloured green and red for trials involving gains and losses, respectively. Across trials, we manipulated 
the expected value (EV; note the two options always had equivalent EV), corresponding to £6 and -£7, 
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respectively, for the two trials in the example. We also manipulated orthogonally the gambling range (GR), 
corresponding to £8 and £4, respectively, for the two trials in the example. B: Gambling proportion for the 
different experimental conditions. Statistical tests indicate a higher gambling for feedback versus no-feedback 
(F(1,22) = 17.61, p < 0.001) and for gain versus loss (F(1,22) = 5.54, p = 0.028), with no interaction (F(1,22) = 0.21, 
p = 0.653). C: Relationship between the EV-related gambling parameter 𝛽𝐸𝑉  and the GR-related gambling 
parameter 𝛽𝐺𝑅  across participants, which is not statistically significant (r(21) = -0.058, p = 793). D: Gambling 
proportion for trials characterized by small GR (in which GR = 2), medium GR (in which GR = 4 or GR = 6), and 
large GR (in which GR = 8), plotted separately for participants having a positive GR-related gambling parameter 
𝛽𝐺𝑅  (n = 13; in yellow) and participants having a negative GR-related gambling parameter 𝛽𝐺𝑅  (n = 10; in cyan). 
E: Gambling proportion for trials characterized by large losses (in which EV = -10, EV = -9, or EV = -8), small losses 
(in which EV = -7, EV = -6, or EV = -5), small gains (in which EV = 5, EV = 6, or EV = 7), and large gains (in which EV 
= 8, EV = 9, or EV = 10), plotted separately for participants having a positive EV-related gambling parameter 𝛽𝐸𝑉  
(n = 18; in blue) and participants having a negative EV-related gambling parameter 𝛽𝐸𝑉  (n = 5; in red). 

 

 

 

 

 

 

 

 

Fig 2. Relationship between response in ventral striatum at option presentation and the effect of feedback on 
choice. A: In red, voxels within ventral striatum in which activity for gambling versus sure choices was larger 
during feedback compared to no-feedback trials. (left: -12, 8, -2; Z = 4.71; p < 0.001 SVC; right: 9, 8, 1; Z = 4.21; 
p = 0.001 SVC). For display purposes, voxels characterized by a statistic associated with p < 0.001 uncorrected 
are highlighted. B: The relationship between the effect of gambling versus sure choices during feedback 
compared to no-feedback (a feedback-choice interaction) in BOLD activity and the individual effect of feedback 
on choice (𝛽𝐹𝑒𝑒𝑑) is plotted for the peak activation voxel within striatum, ,where a trend towards a positive 
correlation emerges (15, 17, -2; Z = 3.04; r(21) = 0.614; p = 0.039 SVC). 
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Fig 3. Relationship between vmPFC activity at option presentation and EV-related preference. A: Voxels within 
vmPFC in which, across participants, the effect of EV on BOLD response correlated negatively with the EV-related 
gambling parameter 𝛽𝐸𝑉. For display purposes, voxels characterized by a statistic associated with p < 0.001 
uncorrected are highlighted in red. B: The relationship between the effect of EV on BOLD response and the EV-
related gambling parameter 𝛽𝐸𝑉  is plotted for the peak activation voxel within vmPFC, where a trend towards a 
negative correlation emerges (12, 41, -11; Z = 3.13; r(21) = -0.616; p = 0.033 SVC). C: BOLD response in vmPFC 
(12, 41, -11) for trials characterized by large losses (in which EV = -10, EV = -9, or EV = -8), small losses (in which 
EV = -7, EV = -6, or EV = -5), small gains (in which EV = 5, EV = 6, or EV = 7), and large gains (in which EV = 8, EV = 
9, or EV = 10), plotted separately for participants having an EV-related gambling parameter 𝛽𝐸𝑉  larger than 0.1, 
(n = 7; in blue), participants having a EV-related gambling parameter 𝛽𝐸𝑉  larger than zero and smaller than 0.1 
(n = 9; in cyan), and participants having a EV-related gambling parameter 𝛽𝐸𝑉  smaller than zero (n = 5; in red). 
The BOLD response corresponds to the beta weight of a GLM including specific regressors for each EV bin. This 
GLM was estimated for display purposes. 
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Fig 4. Relationship between anterior insula response at option presentation and risk. A: In red, voxels within 
insula in which activity increased for gambling compared to sure choices (left: -33, 17, -8; Z = 3.59; p = 0.010 SVC; 
right: 33, 20, -5; Z = 4.71; p < 0.001). In yellow, voxels within insula in which activity correlated with GR (left: -
33, 23, -5; Z = 3.66; p = 0.008 SVC; right: 42, 20, -5; Z = 3.68; p = 0.008 SVC). In green, voxels within insula in 
which the effect of GR on BOLD activity was stronger during gambling compared to sure choices (left: -30, 26, -
8; Z = 3.64; p = 0.008 SVC; a trend emerged on the right hemisphere: 45, 32, -2; Z = 3.03; p = 0.042 SVC). In 
orange, voxels in which these effects overlap. For display purposes, voxels characterized by a statistic associated 
with p < 0.001 uncorrected are highlighted. B: BOLD response in anterior insula (-30, 26, -8) for trials 
characterized by small GR (in which GR = 2), medium GR (in which GR = 4 or GR = 6), and large GR (in which GR 
= 8), plotted separately for gambling (in green) and sure choices (in orange). The BOLD response corresponds to 
the beta weight of a GLM including specific regressors for each GR bin. This GLM was estimated for display 
purposes. 
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Fig 5. Relationship between anterior insula response at option presentation and individual risk preferences. A: 
In red, voxels within insula in which activity for gambling versus sure choices correlated negatively with a 
baseline gambling bias µ across participants. In green, voxels within insula in which, when comparing gambling 
and sure choices, the association between GR and insula response correlated inversely with the GR-related 
gambling propensity 𝛽𝐺𝑅. In dark green, voxels in which these effects overlap. For display purposes, voxels 
characterized by a statistic associated with p < 0.001 uncorrected are highlighted. B: The relationship between 
the effect of gambling versus sure choices on BOLD response and a baseline gambling bias µ is plotted for the 
peak activation voxel within insula (39, 17, -8; Z = 3.94; r(21) = -0.728; p = 0.003 SVC). C: The relationship between 
the effect of GR during gambling versus sure choices (GR-choice interaction) on BOLD response and a GR-related 
gambling propensity 𝛽𝐺𝑅  is plotted for the peak activation voxel within insula, where a trend towards significance 
emerges (-33, 29, -5; Z = 3.39; r(21) = -0.655; p = 0.016 SVC). 
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