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Abstract
The introduction of advanced communication infrastructure into the power grid raises a plethora of new opportunities to
tackle climate change. This paper is concerned with the security of energy management systems which are expected to be
implemented in the future smart grid. The existence of a novel class of false data injection attacks that are based on modifying
forecasted demand data is demonstrated, and the impact of the attacks on a typical system’s parameters is identified, using a
simulated scenario. Monitoring strategies that the utility company may employ in order to detect the attacks are proposed, and
a game-theoretic approach is used to support the utility company’s decision-making process for the allocation of their defence
resources. Informed by these findings, a generic security game is devised and solved, revealing the existence of several Nash
equilibrium strategies. The practical outcomes of these results for the utility company are discussed in detail, and a proposal
is made, suggesting how the generic model may be applied to other scenarios.

Keywords Cyber security · Game theory · Smart grid · False data injection · Defence strategies · Decision-making ·
Optimal resource allocation

1 Introduction

During the last decade, the rise of the smart grid has shown
significant potential to address not only the traditional grid
problems but also support the development of power gen-
eration from renewable sources. Indeed, since electricity
suppliers must meet customers’ demand during peak hours,
they traditionally invest in power generation capacity able
to sustain those high power consumption periods. This is
an expensive solution as some of those resources are only
exploited sporadically. On the other hand, with the increase
in greenhouse gases that impact negatively on the Earth’s
ecosystem, better exploitation of renewable energy sources
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is seen as away to reduce their emissions [29]. However, their
inherent intermittency and unpredictability make their inte-
gration into the power grid particularly difficult. Therefore,
management of consumption and production plays a crucial
role to facilitate power distribution as well as reduction in
cost for both suppliers and consumers [27].

Traditional Demand-Side Management has designed
strategies to change consumers’ consumption patterns so that
they better match energy generation profiles: these include
peak clipping, load shifting, and flattening consumers’ loads
[12]. Advancements in energy storage and renewable energy
generation provide further opportunities to devise smarter
and efficient power grids. For instance, storing energy dur-
ing off-peak times eases supply during peak hours where
there is high demand. Furthermore, local electricity genera-
tion reduces substantially power dissipation and transmission
costs. Accordingly, the concept of ‘microgrids’ was intro-
duced to facilitate distribution by dividing the power grid
into several smaller local grids [45]. Efficient management of
these microgrids requires a two-way communication system
between suppliers and consumers, so that those smart grids
can exploit distributed information for storage scheduling
and pricing purposes [16].
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Taking advantage of smart meters, energy storage, and
trading strategies, a variety of energy consumption schedul-
ing techniques aiming at optimally distributing daily power
consumption have been put forward to reduce a smart
grid’s peak-to-average ratio (PAR) of the aggregated load.
In particular, dynamic game-theoretic frameworks have been
proposed to optimise energy cost using their Nash equilib-
rium [25,26]. Some consider advanced battery models [32]
and integrate forecasting errors [31]. Alternatively, usage of a
Stackelberg game minimising both the PAR and the system
total cost has also proved promising [41]. More generally,
comprehensive reviews reveal the significant contribution
that game-theoretic solutions offer in terms of reducing con-
sumer costs and PAR values [10,13,30,37,40].

Although those solutions are becoming more sophisti-
cated, the smart grid can only be realised once appropriate
security measures are in place. None of these papers [25,26,
31,32,41] are concerned with the security of the respective
systems. Since smart grids rely on a communication network
and smart meters, they may be vulnerable to cyber attacks
[24]. As a result, appropriate defence strategies need to be put
in place [14,20,36,42,46,50]. The main issue is the robust-
ness and security of the communication channel between the
smart meter and the utility company. Typically, the smart
meter connects to the home Local Area Network (LAN) and
from there to theWideAreaNetwork (WAN). Recently, there
has been amove towards the systematic adoption of so-called
HomeArea Networks (HANs) for communication within the
end-user’s home.

HANs are based on wireless communication using Inter-
net of Things (IoT) technologies and protocols, and over
time, this will involve a more and more diverse and large
number of devices, appliances, vendors, and protocols, lack-
ing of compatibility and standards—in particular, in the area
of security. As mentioned in [6], there are two particularly
worrying trends in HANs: the increased usage of external
cloud providers in order to cope with the growing number of
data and the lack of security awareness and commitment on
behalf of end-users who opt for convenience rather than pre-
caution. We argue that all these phenomena lead to a rapidly
growing attack surface of the smart meter system, making
interception and modification of HAN traffic including fore-
casting data more realistic, easier, and probable. Thus, the
most pressing security attacks on a smart home environment
are typical examples of novel IoT security challenges that
require specific and novel security mitigation techniques. In
this paper, we propose the use of game theory in order to
address these attacks.

False data injection (FDI) is one of the most common
approaches to attack cyber-physical systems [21]. In gen-
eral, FDI attacks target data integrity breaches to make
profit or disturb a system. Since, in power grids, state
estimators are the main data sources used for monitoring

and controlling purposes, they are the target of data injec-
tion [19]. Such FDI attacks and possible defence strategies
have been investigated in several scenarios: (i) the ‘ideal’
undetectable attackwhere the attack vector is built from com-
plete knowledge of the state estimators’ parameters [20];
(ii) a more realistic attack relying on a probability distri-
bution function where only incomplete information about
the system’s parameters is available [35]; (iii) a stealth data
injection in which an attacker has complete information
about the system’s topology [15]. Detection of cyber attacks
and associated defence strategies is essential for a reliable
grid. For instance, a fast detection algorithm has been pro-
posed to deal with FDI and jamming attacks in smart grids
[17].

Since game theory has been successful to design cyber
security solutions [47], it has been applied in several scenar-
ios dealing with grid security. When attackers target either
a single or multiple state estimators, both Markovian and
static strategies have been investigated to defend against load
redistribution attacks by allocating optimal budgets to energy
suppliers [48]. If attackersmanipulate price information from
the utility companies, the resulting impact can be mitigated
exploiting a Stackelberg formulation [23]. Furthermore, it
has been proposed to defend against coalitional attacks by
multiple attackers using an iterated game-theoretic model
[51], where a probability of attack detection is considered in
each iteration: correlation between payoffs and penalty fac-
tors demonstrated the effectiveness of the defence system. A
defence system against switching attacks based on a zero-
determinant iterative game between controller and attacker
showed that transient stabilisation could be achieved over
time [11].

A different security game in [18] is proposed, which con-
siders a variety of risk assessment measures integrated to a
stochastic game to choose the best defence strategies. The
simulated results illustrate that a conditional value-at-risk
measure enables the defender to prioritise the most signifi-
cant attacks. Moreover, a scenario with multiple adversaries
and a single defender in smart grids is studied [38]. This
framework considers two Stackelberg games to analyse the
interaction between attackers and the defender. To solve the
hybrid Nash equilibrium game, a search-based algorithm is
introduced, showing that the defender can achieve the mini-
mal loss by protecting a limited number of parameters. Also,
the results indicate that multiple attackers can be destruc-
tive to each other leaving the smart grid unaffected. Another
hybrid model in [52] proposes a hybrid zero-sum differential
game and a stochastic zero-sum game for the physical layer
and cyber layer, respectively. On the other hand, a multi-
adversarial FDI attack is considered in [8] where the data are
manipulated in the network transmission layer. In this sce-
nario, the model is formulated by evolutionary game theory
to maximise the adversaries’ payoff in the grid. Although
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grid cyber security has been an active field of research, no
defence scheme has yet been proposed to protect forecasting
data in smart grids.

The contributions of this paper are as follows:

1. The design of a novel class of false data injection attacks,
preserving average daily load in a smart energy schedul-
ing system. The forecasted demand data are corrupted
by a single attacker, targeting one or several households.
Using extensive simulations, two families of attacks are
investigated. The impact on both the PAR of the aggre-
gated load and consumer bills as well as the resulting
benefit for the attacker is analysed.

2. The design and analysis of an augmented security game
for monitoring average-preserving false data injection
attacks, based on a detailed model with strategies and
payoff functions informed by the simulation findings.
The conditions under which a pure Nash equilibrium
exists are derived. This extends previous work by pro-
viding additional strategies and a more detailed payoff
design, informed by the various cost and benefit func-
tions of the utility company and the attacker.

3. To give practical guidelines to the utility company on
how to protect itself against such attacks. The recom-
mendations are based on combining a range ofmitigation
strategies and the results of the equilibrium analysis of
the game, to aid the utility company with the decision-
making process of investing in the security defence. The
given advice is motivated by the simulation scenario, but
can also be adapted to other situations. This is demon-
strated using a concrete example.

This paper is organised as follows. The underlying smart
grid management model is introduced in Sect. 2. Different
types of attacks are developed, and their impacts are anal-
ysed in Sect. 3. A game-theoretic defence strategy for the
utility company is proposed in Sect. 4. Finally, the paper is
concluded in Sect. 5.

2 Smart grid management model

This section focuses on the description of the game-theoretic
scheduling model used in a smart grid management model.
After specifying the smart grid scenario including the battery
model, cost function, and data specifications, the scheduling
game is presented. Note that a more detailed description can
be found in [31].

2.1 Scenario

The scenario of interest considers a residential neighbour-
hood comprised of M houses where each household is

equipped with a smart meter. The set of households that
participates in the demand-side management (DSM) pro-
gramme is denoted by N ⊂ M, where M is the set
of all households in the neighbourhood. The total num-
ber of participants is N = |N |. It is assumed that all
M households are served by the same utility company
(UC).

Each day is split into T discrete intervals, where the set
of all intervals is represented by T . The DSM protocol runs
as follows: the forecasted demand is sent to the UC where
demand data are aggregated and sent to each DSM partic-
ipant. Based on this input, the households play a dynamic
non-cooperative game (cf. Sect. 2.2). Its outcome is a set
of schedules, one for each household, that specify how they
can make best use of their battery system. The households
follow these schedules, even if their actual demand dif-
fers from the forecasted one. Instead of using a forecasting
algorithm, random errors were added to actual demands in
order to simulate a realistic average error of 8% in individ-
ual forecasted data as reported in [7]. More details about
the process used to simulate realistic forecasts are given in
Appendix 5.1.

Households that participate in the DSM scheme are
equipped with a lithium-ion battery. The battery model
includes charging, discharging, and self-discharging char-
acteristics of the battery (cf. [31,32]). The decision of the
player, i.e. how much they are charging or discharging the
battery, is denoted by a.

The demand dtm ≥ 0 of a household m ∈ M is defined as
the amount of electricity that is needed to run all its appliances
during the time interval t ∈ T . Let ltm denote the load, i.e. the
amount of energy drawn from the grid by householdm ∈ M
during the interval t ∈ T . For the participants of the scheme,
the load depends on the decision atn taken at that specific
interval. It combines the demand with the amount of energy
that is charged or discharged by the battery ltn = dtn + atn .

Thus, the grid total load during interval t is given by Lt

= ∑
m∈M ltm .

In order to incentivise a reduction in load at peak times, the
UC charges the DSM participants using a dynamic pricing
tariff: the cost per energy unit is based on the aggregated
load of all users and is calculated separately for each interval.
As in [26,49], this is expressed by a quadratic cost function
gt (y) = c2 · y2 + c1 · y+ c0 , where y is the aggregated load
at time t given by Lt and the coefficients are c2 > 0, c1 ≥ 0,
and c0 ≥ 0. The electricity bill Bn (cf. [26,32,41]) of each
participant is given by:

Bn = −Ωn

∑

t∈T
gt

(
Lt) ∀n ∈ N , (1)

where Ωn =
∑

t l
t
n∑

t
∑

k l
t
k

.
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2.2 The scheduling game

Formally, the game used to schedule battery usage is a dis-
crete time dynamic game, in which players, i.e. households,
have to decide how to use their battery during each individual
interval of the upcoming day. In this game, each household
has the objective to minimise their own costs as defined by
the electricity bill (1). As the electricity bill itself depends on
the aggregated load, the selfish behaviour of each individual
indirectly leads them tominimising the peak-to-average ratio
of the aggregated load (cf. [41]). It is defined as

PAR = T · maxt∈T Lt
∑

t∈T Lt
. (2)

The theoretically optimal result is a perfectly flat curvewith a
PAR value equal to 1.0. Since the mathematical details of the
game mechanics lie outside the scope of this manuscript, the
interested reader should refer to [31] for a thorough descrip-
tion. In the following, the scheduling game is treated as a
black box that takes forecasted demand data as an input and
then outputs schedules (one for each household) of ‘optimal’
battery usage for the upcoming day as defined by its Nash
equilibrium. A Nash equilibrium (NE) strategy has a local
maximum property: any single player deviating from the NE
strategy will suffer a reduced payoff. It is important to note
that only unilateral strategy changes are considered in this
concept. Hence, applying game theory for real-life scenarios
is only a valid and useful tool if all participants agree to adopt
it as a contract for strategic decision-making, in the modelled
scenario.

Figure 1 shows an example of the scheduling impact of the
game on the aggregated load for one day. Whereas the load
profile without playing the game shows the usual peaks in
the morning and evening, it is possible to obtain a relatively
flat profile by means of the scheduling game. The first row
of Fig. 9 (in Appendix 5.2) illustrates actual battery usage of
each household using a battery. As the dashed curve in the
last row of Fig. 9 shows, the higher the participation to the
game, the flatter the aggregated load.

2.3 Experimental setup

Throughout the paper, all simulations are performed for a
neighbourhood of M = 25 households over a period of
365 consecutive days to allow for statistical analysis of the
outcomes. Each day is split into T = 24 intervals. The
respective demand data are taken from [44]. Every partic-
ipant of the DSM scheme is equipped with the same type
of battery, i.e. the Tesla Powerwall 2 (cf. [43]). Battery
characteristics such as efficiency, capacity, charging and dis-
charging rates, and degeneration behaviour are read off its
data sheet. This setup is deliberately chosen to be similar to
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Fig. 1 Aggregated load comparison. The aggregated load of M = 25
households for a single day is shown for two scenarios: Without the
game, and after playing the game. Every household is equipped with
a battery. As players try to lower their electricity bill (1) (by means of
their battery usage), they directly affect the load profile. In this example,
the PAR value of the aggregated load (2) decreases from 1.69 to 1.04

the one investigated in [31,33] to allow for comparison of the
outcomes.

3 False data injection on forecasts

As motivated in Sect. 1, the security of a smart energy sys-
tem is of extreme importance and there is a lack of research
on possible attacks on forecasted data. This section describes
different types of potential attacks thatmay take advantage of
the game-theoretic smart grid management model presented
previously. Furthermore, outcomes of those attacks are anal-
ysed from the point of view of the attacker, the UC, and
the other players. Various defence strategies to detect those
attacks are proposed and analysed. Finally, attack mitigation
is discussed.

3.1 Description of attacks

All attack scenarios investigated in this section rely on the
following assumptions. First, the attacker (who is one of the
players) exploits the vulnerability of the smart grid commu-
nication network: they have the ability not only to intercept
forecasting data from all the other players, but also to replace
them. Second, after the game has been played based on the
tampereddata, i.e. reached an equilibrium, the attacker adapts
their storage schedule and takes advantage of the erroneous
schedules that the other players follow. Finally, in order to
limit the risk of having their attack detected, the attacker
makes sure that the average daily aggregated load is not
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Fig. 2 Example of a shift attack. The reference curve shows the fore-
casted load of an individual household for the upcoming day. When
the attacker applies the shift attack, they perform a circular shift of the
interval data. The result of a shift with σ = 4 is shown as an example

affected by their actions. Although there are many strategies
which can be applied to change forecasts whilemaintaining a
constant aggregated value of the load, this study investigates
two simple families of attacks: forecast shifting and scaling.

Shift Attack The shift attack replaces a given forecast with
the original forecast after having undergone a circular shift
of σ time intervals, where σ is an integer. Formally, we write
the injected demand forecast d̃ tn as:

d̃ tn = dt+σ
n .

Since experimental results have shown that a shift attack of
4 hours, see Fig. 2, produces the most dramatic impact for
the dataset of interest (cf. Sect. 2.3), that value is used for the
rest of the study.
Scale Attack The scale attack substitutes a given forecast
with a scaled version centred around its average value for the
day. To ensure that the day average is not affected, the scaling
parameter τ should be chosen such that no load becomes neg-
ative after scaling. Formally, we write the injected demand
forecast d̃ tn as:

d̃ tn = dtn + (τ − 1) · [dtn − mean] ,

where ‘mean’ is the average daily demand. Note that for
the dataset of interest (cf. Sect. 2.3), a value of τ = 2
remains acceptable: although a couple of values do become
negative, they are set to 0; the day average is slightly
increased, but it remains within a realistic forecast uncer-
tainty (cf. Appendix 5.1). Figure 3 illustrates the effect of
various scale attacks, i.e. τ = −1, τ = 0 and τ = 2. While
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Fig. 3 Example of scale attacks. The reference curve shows the fore-
casted load of an individual household for the upcoming day. It is
identical to the reference shown in Fig. 2. When the attacker applies
the scale attack, they scale the interval data with respect to the daily
average of the forecasted load. Scaling with a factor τ = 2 leads to
more severe troughs and peaks, while using τ = −1 results in a mir-
rored forecast. τ = 0 gives a perfectly flat load profile

τ = 1 returns the initial forecast, τ = 0 and τ = −1 pro-
duces a flat and mirrored forecast, respectively. In the rest
of the paper, these two different attacks are called flat and
mirror attack.

The outcome of an attack does not only depend on the type
of attack and its associated parameter, but also on the number
of forecasts which are replaced among all the players of a
game: the higher the percentage ρ of attacked households,
the more room for manoeuver the attacker has to profit from
their attack.

3.2 Attack outcomes

3.2.1 Outcome for the attacker

Figure 4 illustrates the resulting load curves of attacker and
victim in the case of a shift attack (σ = 4). The attacker
benefits by having a high load during the periods when the
victims have a low one and vice versa, so that the attacker’s
higher consumption takes place when the aggregated load,
and thus unit price, is low. This is exactly what the attacker
tried to achieve by manipulating the forecasting data and
thus the input to the scheduling game. More details about the
cost function model are discussed in Sect. 2.1 and [30,34].
In this attack example, there is a high inverse correlation,
i.e. ≈ −0.96, between the attacker’s load and the unit price.

Anattacker’s financial benefit depends not only on the type
of attack, but also the number of households using a battery,
i.e. the participation rate N/M, as well as the proportion of
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Fig. 4 Individual loads and unit price after scheduling. The top graph
displays load profiles for one day of a randomly picked victim and
the attacker for two different scenarios: with and without attack. While
both references show an almost flat profile (cf. Fig. 1), the load curves
after the attack differ considerably. This is a direct result of the attacker
taking advantage of the falsely injected data. The bottom graph displays
the change of price per unit during those two scenarios. As expected,
the attacker’s load has a high inverse correlation with the unit price
(≈ −0.96)

targeted households ρ whose forecasts have been changed. In
order to investigate this, attack simulations were conducted
on a smart grid comprisingM = 25 households for a duration
of one year. Compared to the non-attack scenario, Fig. 5
displays the percentage change on the attacker’s bill (yearly
median of the daily changes) according to those parameters
in the cases of shift (σ = 4), mirror (τ = −1) and scale
(τ = 2) attacks. Simulations have revealed that a flat attack
(τ = 0) results in benefits similar to those of the shift attack
(σ = 4) and is thus not shown.

Figure 5 reveals that for shift (σ = 4) andmirror (τ = −1)
attacks the attacker is never penalised by their action and their
gains increase with both participation rate and percentage of
targeted players. Bill reductions for the attacker reach up
to 25.5% and 35.7%, respectively. However, in the case of
the scale attack (τ = 2), the graph displays a different pic-
ture: up to a relatively high participation rate (N/M > 55%),
the attacker is financially penalised by their attack. Indeed,
while the other attacks lead players to charge their battery
at a wrong time, this scale attack tends to make players
charge their battery more than they need at a time when the
attacker would also need to charge their battery. As Fig. 9
(cf.Appendix 5.2) reveals,when the participation rate is high,
the aggregated load profile is inverted due to a large number
of players charging their battery excessively at a time that

was initially of low load and discharging their battery when
a peak was expected. As a consequence, the aggregated load
profile is now almost ideal for the attacker who can bene-
fit from low prices at their time of high needs. Thus, they
hardly need to use their battery and can gain up to 9.5% of
bill reduction.

3.2.2 Outcome for the utility company and the other
players

As mentioned in Sect. 2, for the utility company, the effi-
ciency of a microgrid is assessed by its PAR value. Since
attacks change the aggregated load, it is directly affected.
The effect of the previously introduced attacks on PARvalues
is presented in Fig. 6. The different attack types are associ-
ated with a different graph, which presents several curves,
each for a different percentage ρ of targeted players, show-
ing the relationship between participation rates N/M and PAR
values.

For the shift (σ = 4) and mirror (τ = −1) attacks, an
increase of ρ leads to a worsening of PAR values. Moreover,
as in the non-attack scenario, PAR values tend to improve
with an increase in participation rate. Note for the case of the
mirror attack: if a high percentage of players are targeted, an
increase in the participation rate contributes to the degrada-
tion of PAR values.

As analysed in the previous section, the outcomes of the
scale attack (τ = 2) are different from the others when the
participation rate is below N/M = 55%. In fact, Fig. 6 shows
an improvement in the PAR values compared to the non-
attack scenario when the percentage ρ of targeted players
increases. Figure 9 clearly shows that at low participation
rates the aggregated load is flatter than without an attack.
The explanation is that this positive scaling incentivises par-
ticipating households towork harder to flatten the load curve:
As seen in Fig. 9, charging takes place at the same time but
with a higher intensity. As a consequence, a 52% partici-
pation rate is sufficient to achieve a PAR that is similar to
the one resulting from a 100% participation rate without any
attack, i.e. PAR=1.11 and PAR=1.07, respectively. Par-
ticipants work twice harder, which has the same effect as
if everybody was working as they should. This extra work
leads to higher bills for those households. An improved PAR
value may suggest that the UC benefits from such attacks. In
practice, this is not the case because in those scenarios the
electricity bills of all players, including the attacker, increase
substantially (data not shown), which will eventually lead to
a loss of reputation and customers for the UC.

All attacks leading to the reduction in a single player’s (the
attacker) bill result in an increase in all the other players’ bills
by usually a comparable amount, seeTables 1 and2.As a con-
sequence, the aggregated bill for the whole neighbourhood
is significantly increased. For example, a mirror (τ = −1)
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Fig. 5 Financial benefit for the attacker. The median change (com-
pared to the non-attack scenario) over 365days of the energy bill for the
attacker is shown in per cent. The outcomes for three different attacks,
i.e. shift attack with σ = 4, mirror attack, and scale attack with τ = 2,

are presented. The simulations were performed for M = 25 using var-
ious participation rates and percentages of targeted players. While the
first two attacks display similar benefits, the third one indicates that for
specific scenarios the attacker also has an increased electricity bill
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Fig. 6 Peak-to-average ratio (PAR) of the aggregated load for different
attack scenarios. The median PAR value for a 365day simulation is
plotted together with the range between the first and third quartiles over
the participation rate. The outcomes for three different attacks, i.e. shift

attack with σ = 4, mirror attack, and scale attack with τ = 2, are
presented. For each attack, the individual graphs differ in their number
of attacked players (denoted by ρ). This also includes the reference
outcome of the scheduling game in which no player is attacked

attack targeting all players (ρ = 100%) rewards the attacker
with a 35.7% bill cut, while the other players must endure a
54.0% rise on average. Similarly, the attacker benefits from
a scale attack (τ = −2, ρ = 28%) with a bill reduction of
1%, penalising the other households by a 2.3% increase.

3.3 Attack detection strategies

All investigated attacks affect the utility company nega-
tively: when the participation rate is high, PAR values are
systematically degraded compared to the non-attack sce-
nario; otherwise, either PAR values become worse, or their
improvement is at the cost of higher electricity bills for the
average household. This is detrimental to theUC’s credibility

and competitiveness. Consequently, the UC needs to design
defence strategies to prevent attacks that affect the storage
scheduling process. In this study, the focus is on the detec-
tion of false data injection bymonitoring the forecasting data
that are transmitted every day on the smart grid communica-
tion system.

3.3.1 Attack detection through systemmonitoring

Forecast monitoring is considered at three different levels:

– Aggregated consumption forecast average, i.e. average
amount monitoring
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– Aggregated consumption forecast profile, i.e. deep aggre-
gated monitoring

– Household consumption forecast profiles, i.e. deep indi-
vidual monitoring

In each case, the UC would compare the received forecast
data with its own estimate. While monitoring the aggre-
gated consumption forecast total only requires the UC to
forecast the daily total electricity consumption of the smart
grid community as a whole, deep monitoring relies on pro-
ducing hourly consumption estimates for either the entire
community (deep aggregated monitoring) or each individual
household (deep individual monitoring). The more precise
the monitoring, the more resources are needed to implement
it.

Since an individual average hourly forecast error for a
24-hour period is expected to be lower than 8% [7], the
expectation is that the difference between two forecasts, i.e.
the forecast provided by the received forecast data and the
forecast estimated by the UC, to be lower than twice the 8%
error of a single forecast. As a consequence, it is reason-
able to assume that the UC could use a threshold of 20% to
identify an attack when using deep individual monitoring. In
the case of deep aggregated monitoring, the combination of
forecasts tends to lead to error reduction. As a consequence,
here a discrepancy of at least 10% is used to detect an attack.
Finally, since in the proposed attack scenarios, the attacker
always makes sure that their attack does not change the aver-
age daily aggregated forecast, a UC relying only on average
amount monitoring would not be able to detect any attack.
Eventually, the detection of a given attack depends not only
on the chosenmonitoring strategy, but also the type of attack,
the participation rate N/M, and the percentage ρ of targeted
players.

3.3.2 Attack impact analysis

Based on the three proposed monitoring strategies, the
consequences of undetected attacks are studied. These are
evaluated by estimating an attack’s impact in terms of
average bill change for the attacker and the other players,
bill revenue change for the UC and PAR values. Assum-
ing a participation rate of N/M = 100%, this set of
experiments considers, for each attack type of interest, i.e.
shift (σ = 4), flat (τ = 0), mirror (τ = −1) and
scale (τ = 2 and τ = 1.29), the most severe attack, in
terms of the highest percentage ρ of targeted players, that
has remained undetected according to the monitoring strat-
egy.

As Tables 1 and 2 show, all of those attacks prove ben-
eficial to the attacker in terms of reducing their bill, while
other players suffer a bill increase. Regarding the UC, it ben-
efits financially from the general bill rise, but sees its PAR

value degraded. Note that the impact of a scale (τ = 1.29)
attack is evaluated because it is the most powerful scale
attack which can target all players (ρ = 100%) without
being detected by any of the proposed monitoring strate-
gies.

Table 1 reports the impact of undetected attacks despite
average amount monitoring. As such monitoring is ineffec-
tive against the considered attacks, the attacker is able to carry
out their attack with maximum strength, i.e. (ρ = 100%),
without being detected. The mirror (τ = −1) attack is par-
ticularly efficient: the attacker’s bill is reduced by 35.7% at
the cost of the other players’ bills, i.e. 54.0%, and a large
increase in the PAR value to 2.06 from a non-attack value of
1.12.

Once deep aggregated monitoring is in place, the strength
of the attacks that remain undetectable is reduced signifi-
cantly. As Table 2 shows, the attacker’s bill is lowered by
1.9% at most. However, although, in this case, the other play-
ers are hardly affected—their bills only increase by 0.3%,
the UC suffers from a significant degradation of the PAR
to 1.23. One should note that although the scale (τ = 2)
attack with (ρ = 28%) produces a slightly better PAR value,
i.e. 1.11 instead of 1.12 from the non-attack scenario, this
is achieved by increasing the average electricity costs by
2.2%.

Finally, although the most stringent monitoring strategy,
i.e. deep individual monitoring, would detect most attacks
whatever ρ, i.e. shift (σ = 4), flat (τ = 0), mirror (τ =
−1) and scale (τ = 2), some limited scale attacks such as
(τ = 1.29, ρ = 100%) still cannot be discovered (cf. last
line of Table 2). Although none of the proposed monitoring
strategies can detect all attacks, they are able to recognise
the most severe ones. Moreover, they can detect false data
injection for a wide range of attacks.

3.4 Attackmitigation

Once an attack has been detected, some response needs to
be provided. For the most serious attacks, households may
be instructed not to follow the calculated battery schedule,
but use an alternative one. Several options are possible such
as keeping the same schedule as the previous day or recal-
culating their schedule only taking into account their own
data. In the latter case, scheduling is executed without using
the game-theoretic framework, but by performing a sim-
ple optimisation of battery usage for their own consumption
forecast.

Those options were evaluated in a previous study [33]. It
showed that, although both approaches lead to a PAR reduc-
tion, local scheduling should be the defence of choice since
it systematically outperforms previous day scheduling. Still,
thismitigating strategy has its own cost: at medium participa-
tion rates N/M, the PAR reduction can be up to ≈ 25% lower
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Table 1 Impact of undetected attacks despite average amount monitoring

Attack type ρ (%) Attacker bill change (%) Other players’ bill change (%) Utility company

Revenues change (%) PAR value

Shift (σ = 4) 100 − 25.5 (5.8) 28.3 (13.1) 26.3 (12.3) 1.67 (0.06)

Flat (τ = 0) 100 − 21.0 (6.6) 16.7 (4.3) 15.1 (4.0) 1.66 (0.09)

Mirror (τ = −1) 100 − 35.7 (12.5) 54.0 (11.1) 50.3 (10.5) 2.06 (0.14)

Scale (τ = 2) 100 − 9.5 (2.8) 21.4 (4.4) 20.1 (4.2) 1.37 (0.03)

Scale (τ = 1.29) 100 − 1.5 (0.8) 3.1 (0.8) 2.9 (0.7) 1.13 (0.03)

Results show median values over 365-day simulations together with their respective interquartile range. The participation rate is N/M = 100%

Table 2 Impact of undetected attacks despite deep aggregated monitoring

Attack type ρ (%) Attacker bill change (%) Other players’ bill change (%) Utility company

Revenues change (%) PAR value

Shift (σ = 4) 16 − 0.8 (0.7) 1.1 (0.5) 1.0 (0.5) 1.22 (0.11)

Flat (τ = 0) 28 − 1.9 (1.1) 0.3 (0.5) 0.2 (0.5) 1.23 (0.05)

Mirror (τ = −1) 16 − 1.7 (1.1) 0.9 (0.7) 0.8 (0.7) 1.25 (0.06)

Scale (τ = 2) 28 − 1.0 (0.7) 2.3 (0.7) 2.2 (0.7) 1.11 (0.04)

*Scale (τ = 1.29) 100 − 1.5 (0.8) 3.1 (0.8) 2.9 (0.7) 1.13 (0.03)

Results show median values over 365-day simulations together with their respective interquartile range. The participation rate is N/M = 100%
*Attack that remains undetected even when applying deep individual monitoring

than when the game is played. As Tables 1 and 2 show, only
the most powerful attacks have an impact on the PAR which
is higher than reverting to the local scheduling strategy. This
suggests that the best reaction to a low- impact attack would
be to let it happen. In terms of monitoring, only deep aggre-
gatedmonitoringwould prove useful, since it is able to detect
all attacks for which the proposed mitigation strategy is ben-
eficial. Therefore, a two-level detection system may be the
most suitable strategy for the UC: it should conduct either no
monitoring at all, or deep aggregated monitoring.

Before deciding on a complete defence strategy, which
includes detection and mitigation, all costs and benefits must
be taken into account by the UC, i.e. cost of monitoring, cost
of mitigating action, cost of reputation loss, and benefit of
increased consumption. The main challenge for the utility
company is to control the spending on their security mea-
sures, as organisations typically have a restricted budget. For
example, if the expected probability of an attack is low, a
low investment in security could be justified. On the other
hand, if an attacker is aware of such a strategy, they would
be more likely to attack as they would expect less resistance.
Finding a solution to this decision-making problem cannot be
achieved by optimisation alone, but instead non-cooperative
game theory helps in devising suitable models and advising
on the expected likelihood of attacks.

4 Game-theoretic defence strategy

When planning to defend against the false data injection
attacks described in the previous section, the need for the util-
ity company to allocate resources for the defence in the most
efficient way has been highlighted. This section proposes to
use game theory in order to support this decision-making
process. The game is motivated and introduced based on
detailing the payoff functions of the two players describing
the game normal form. This is followed by solving the game
using various assumptions. Finally, the solution is discussed
with respect to their implications for the simulated scenario
and potential alternatives.

4.1 Game theory for security

Game theory is increasingly being employed for modelling
attacker–defender scenarios in cyber security, for a broad
range of scenarios such as intrusion detection in network
security [1], managing the security of information in an
organisation [28], and predicting the likelihood of cyber
attacks [5].

Non-cooperative game theory is based on the assumption
that players are rational, i.e. they choose between actions
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such that they maximise their payoffs. The associated strate-
gies can be identified using the fundamental concept of the
Nash equilibrium (cf. Sect. 2.2). Although not all games have
Nash equilibrium, Nash’s theorem states that nonzero-sum
games always admit a mixed strategy equilibrium. However,
for practical applications it may not be easy to interpret [2].

In this paper, x and y denote a pure ormixed strategy of the
first and second player in a two-player game, and x∗ and y∗
are used for equilibrium strategies of these players.A strategy
profile s = (x, y) groups strategies of each player together. If
the grouped strategies are in equilibrium, this strategy profile
is written as s∗. A two-player nonzero-sum game can be
represented in normal form, based on the players’ payoff
matrices A and B [39].

An Nash equilibrium strategy profile is a strategy profile
s∗ = (x∗, y∗) satisfying

x∗Ay∗ ≥ x Ay∗ ∀x, x∗By∗ ≥ x∗By ∀y . (3)

Here, the strategies may be pure or mixed, and the corre-
sponding NE is referred to as pure or mixed. Furthermore, if
all of the inequalities in the above definition are strict, one
has a strict NE. Otherwise, the NE is non-strict.

4.2 Proposed security game

The proposed security game is a two-player nonzero-sum
complete information game [39] between the utility company
U and the attacker A. The game is inspired by the nonzero-
sum IntrusionDetection System (IDS) game of [1] which has
been thoroughly analysed in the literature and is well under-
stood. Table 3 illustrates the game where the two strategies
available to the defender are tomonitor or not, denoted by the
strategy space SD = {sDmon, s

D−mon}, and the attacker chooses
between attacking and not attacking: SA = {sAatt, sA−att}. The
positive parameters αc, α f , αm, βc and βs are used to denote
the payoffs corresponding to the various strategies. The main
characteristic of this game is the design of the payoff func-
tions in such a way that the monitoring defender only has
an incentive to defend in the presence of an attack. The
attacker is discouraged from attacking if there is defence
in place. This design leads to a circular path when consider-
ing payoff-incrementing unilateral changes of strategy, hence
prohibiting the existence of a pure Nash equilibrium.

Table 3 IDS game of [1] in normal form

D ↓ A → sAatt sA−att

sDmon αc, −βc −αf , 0

sD−mon −αm, βs 0, 0

4.2.1 Description of the game

Here, an augmented security game is introduced, extending
the IDS game described previously by an additional action.
The rationale behind this extended game model is twofold:
Sect. 3.3.1 demonstrates the existence of low-impact attacks
which cannot be detected by standardmonitoring techniques,
and it would be desirable to capture these in a more sophis-
ticated game model. Second, an extended game might better
match real-world scenarios and might lead to simpler solu-
tions, i.e. pure equilibria rather than mixed ones.

GameStrategiesSection 3 presents three possiblemonitoring
strategies for U : to monitor the daily average of forecasting
data, to inspect the daily profile of the aggregated forecast,
and to inspect the individual forecast data with the same
level of detail. In this work, the assumption is made that
the first and second monitoring strategies are most useful in
a realistic setting, as they have an observable impact on the
strength and outcome of successful attacks while the third
monitoring strategy merely eliminates attacks that are possi-
ble for weaker monitoring levels. Furthermore, as the data of
aggregated forecasts are readily available to the UC, the first
monitoring strategy is not costly and is identified with the

strategy sU−mon. The second monitoring strategy is denoted
as sUmon so that the strategy space for the defender U is as

in the previous game SU = {sUmon, s
U−mon}. The attacker A

has three different strategies: to attack strongly with high
impact, to perform a weaker attack with low impact, or
not to attack at all. This is denoted by the strategy space
SA = {sAatt◦ , sAatt, sA−att}.

The additional weak attack strategy sAatt◦ offers an alterna-
tive incentive of not monitoring to the UC, preferring to save
monitoring cost when facing a weak attack. No assumption
is made on the relationship between the attacker’s overall
payoff when choosing the two different attack types, and a
discussion of conditions clarifying this relationship is the
main subject of the game analysis in the next section.

Game Payoff Functions The following notations for the pay-
offs for U are introduced: cUmon is the cost for monitoring
the daily profile of the aggregated forecast (second monitor-
ing strategy), and cUdef is an additional cost for investing in
defencemechanisms such as actions discussed in Section 3.4.
Losses from weak and strong attacks are denoted by lUatt◦ and
lUatt, respectively. The payoff functions corresponding to A
are the benefits and costs associated with weak and strong
attacks, denoted by bAatt◦ , c

A
att◦ , and b

A
att and c

A
att, respectively.

The monitoring activity always leads to monitoring costs
for U . If there is no monitoring, U incurs losses lUatt◦ and
lUatt due to weak and strong attacks. Otherwise, despite mon-
itoring, weak attacks cannot be detected; hence, there is a
resulting loss lUatt◦ . Strong attacks, however, are detected and
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Table 4 Security game in
normal form U ↓ A → sAatt sAatt sA−att

sUmon −cUmon − lUatt , lUatt − cAatt −cUmon − cUdef , −cAatt −cUmon, 0

sU−mon −lUatt , lUatt − cAatt −lUatt, lUatt − cAatt 0, 0

mitigated against through some countermeasures, preventing
any losses but leading to a defence cost cUdef . Finally, if there
is no attack, then the only arising nonzero payoff function
involved is the monitoring cost for U . The attackerA obtains
a benefit bAatt◦ from a weak attack, but has to invest in attack
costs cAatt◦ . Similarly, the cost cAatt arises from a strong attack;
however, the model assumes the lack of a benefit for A due
to the UC’s defence mechanism. Using these notations, the
proposed security game G can be represented in normal form
as shown in Table 4.

4.2.2 Game assumptions

In this section, assumptions on the relationship of the various
cost and benefit functions, which are part of the game payoff
matrices, are listed and justified.

Assumptions from the IDS Game The cost for missing an
attack αm = lUatt > 0 is interpreted as losses from an
attack that is not mitigated against, the false alarm cost
α f = cUmon > 0 as an ongoing monitoring cost, and
the detection penalty βc = cAatt > 0 as the cost for the
attacker to conduct a strong attack. The gain from detection
αc = −cUmon − cUdef > 0 is reformulated as necessary cost to
monitor and to defend in order to prevent damage. In order to
preserve themixed equilibrium property of the security game
given by −αm < αc, it is then assumed that this attack pre-
vention cost is less than the actual incurring attack damage,
i.e. cUmon +cUdef < lUatt. This assumption is natural: in a typical
security game, the defender does not spend more on attack
prevention than what they potentially loose from an attack.
Finally, βs = lUatt − cAatt > 0 is the difference between the
benefit from an undetected attack and the attack effort. This
expresses a similar principle as above, but this time applied
to the attackerA who does not spend more on an attack than
the expected gain from it. These assumptions can be referred
to as the Security Game Assumptions.

Augmented Security Game The assumptions required for the
augmented security game are in parts inspired by those of
the IDS game and also motivated by the experimental results
presented in Sect. 3 which suggest that strong attacks require
targeting more victims, i.e. a bigger effort.

For a weak attack, the attacker receives a greater payoff
than the cost of the attack, implying

cAatt◦ < lUatt◦ . (4)

It can also be assumed that the cost for launching a strong
attack is higher than that for a weak attack since a higher
number of households have to be attacked

cAatt > cAatt◦ . (5)

Finally, a strong attack leads to higher losses for the utility
(cf. Sect. 3.2.1)

lUatt > lUatt◦ . (6)

Note that in order to aid the game analysis, an assumption
made in this game is that the benefit of the attacker is equal
to the loss of the defender, bAatt = lUatt and bAatt◦ = lUatt◦ .

4.3 Game analysis

In this section, analysis of the security game G reveals
existence of several NE strategies. Following the study of
practical examples, the relevance of these strategies is dis-
cussed so that they can be used to inform UC’s security
investments.

4.3.1 Nash equilibrium strategies

To solve the augmented security game, three distinct cases
are considered. This is based on discussing the second-order
difference that is defined here as:

Δ = qatt◦ − qatt , (7)

where qatt◦ = lUatt◦ − cAatt◦ and qatt = lUatt − cAatt describe the
net benefit for the attacker in the case of a weak and strong
attack, respectively.

Case 1 (Δ > 0) In this case, the existence of a unique pure
NE for the game G can be asserted. The corresponding NE
strategy is for the UC to not monitor and for the attacker to
carry out a weak attack.

Proposition 1 If lUatt◦ − cAatt◦ > lUatt − cAatt, the game G admits
a unique pure Nash equilibrium strategy profile of the form
s∗ = (sU−mon, s

A
att◦) and the corresponding payoffs are s∗

U
= −lUatt◦ and s∗

A = lUatt◦ − cAatt◦ .

Proof First, it needs to be verified that when choosing the

pure strategy profile (sU−mon, s
A
att◦), none of the two players

benefits from a unilateral change of pure strategy.
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Focusing on theUC, the change of strategy sU−mon → sUmon

diminishes its payoff since −lUatt◦ > −cUmon − lUatt◦ due to the
assumption of a positive monitoring cost. Considering the
attacker, the change sAatt◦ → sAatt is not beneficial because

of the main assumption Δ > 0 of this case. Finally, the
change of strategy sAatt◦ → sA−att reduces the payoff due to
Assumption (4). Second, a careful inspection of the payoff
functions of the remaining strategies of the game, together

with the fact that the assumption of Case 1 implies lUatt◦ −
cAatt◦ > −cAatt, shows that there is no other pure NE. 
�

Case 2 (Δ < 0) Similar to the IDS game, the augmented
security game has the same property of circular paths when
performing unilateral changes strategy with increasing pay-
offs, hence prohibiting the existence of any pure NE.

Proposition 2 If lUatt◦ − cAatt◦ < lUatt − cAatt, the game G admits
no pure NE.

Proof The proof of this proposition is done similar to that of
Proposition 1 by comparing the changes in payoff, following
a unilateral change of strategy. It is clear that there is no
pure NE in the game restricted to the attacker strategies sAatt
and sA−att, as the resulting subgame is identical to the IDS
game. When augmented by the weak attack strategy sA

att◦ ,
two cases may arise, depending on which of the strategy

changes sAatt → sA
att◦ or sA

att◦ → sAatt, starting from the initial

strategy profile (sUmon, s
A
att), lead to an increased payoff for

the attacker.
In the first case, one observes the additional sequence of

strategy changes sUmon → sU−mon, s
A
att◦ → sAatt and sU−mon →

sUmon leading back to the original strategy profile. These
changes entail increased payoffs due to the assumption of
positive monitoring cost, the conditionΔ < 0, and the Secu-
rity Game Assumptions. In the second case, the unilateral
payoff change joins the circular path of the IDS game, from
which the proof follows as shown earlier. 
�

Case 3 (Δ = 0) In this last case, one derives the inequality

lUatt◦ − cAatt◦ = lUatt − cAatt > −cAatt as in Case 1 and obtains
a similar but weaker result, as the pure NE is not strict. A
formal proof of the following proposition is omitted as it can
be done similarly as that of Proposition 1 since the same
payoff deviations are involved.

Proposition 3 If lUatt◦ − cAatt◦ = lUatt − cAatt, the game G admits

a unique pure non-strict Nash equilibrium strategy profile of

the form s∗ = (sU−mon, s
A
att◦) and the corresponding payoffs

are s∗
U = −lUatt◦ and s∗

A = lUatt◦ − cAatt◦ .

4.3.2 Quantitative examples

Attacks discussed in Sect. 3 are further analysed using the
proposed augmented security game. In order to establish
which case they correspond to, estimations of the sign of
Δ (7) are performed using previous simulation calculations.
More specifically, bAatt and b

A
att◦ are represented by the values

of the Àttacker bill change’ (γ and γ◦), reported in Tables 1
and 2, respectively, multiplied by the actual amount of the

bill λ, e.g. bAatt = lUatt = γ · λ. Moreover, assuming a linear
relationship between the number of attacked players and the

cost of an attack, cAatt and cAatt◦ can be expressed using the
values of percentage of targeted players (ρ and ρ◦ ) shown in

Tables 1 and 2, respectively, e.g. cAatt = ρ · κ . As a conse-
quence, an attack type corresponds to Case 2, i.e. (Δ < 0),
iff the following inequality is satisfied:

γ◦ − γ

ρ◦ − ρ
>

κ

λ
(8)

with Assumption (4) stating γ◦/ρ◦ > κ/λ .
Evaluations of attacks reported in Tables 1 and 2 show

that Case 2 applies to the shift (σ = 4), flat (τ = 0), mirror
(τ = −1), and scale (τ = 2) attacks. Hence, for none of
those attacks a pure NE exits and only mixed strategies can
be offered. Using the mirror attack as an example, Eq. (8)
requires 0.41 > κ/λ and Assumption (4) imposes 0.11 > κ/λ.

Since the scale (τ = 1.29) attack was especially designed
to be undetectable by the proposed monitoring solution, it
cannot be analysed by the game which assumes that a suc-
cessful monitoring strategy is available. On the other hand,
the best strategy for such attack is self-evident: since all
attacks result in gains for the attacker, they should attack,
while the UC should not waste any resources in ineffective
defence.

In order to investigate the mixed strategies associated
with those attacks, numeral values were selected so that
mixed strategies could be computed using an NE solver

[4]: λ = 100, κ = 10, cUmon = 10, and cUdef = 20.
Table 5 shows representative mixed strategy probabilities
associated with the investigated Case 2 attacks, here the
mirror attack. The attacker either performs a strong (63.7%
probability) or weak (36.3% probability) attack, while the
UC chooses to use monitoring with a 71.7% probability.

Table 5 Representative mixed strategy probabilities for Case 2 attacks
based on simulations (cf. Sect. 3.3.2)

patt◦ = 36.3% patt = 63.7% p−att = 0%

pmon = 71.7% 26.0% 45.7% 0%

p−mon = 28.3% 10.3% 18.0% 0%
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Note that the choice of numerical values is not critical. As
long as all the game assumptions are fulfilled, the prob-
ability for the monitoring action of the UC is at least
70%.

4.3.3 Discussion

Theoretical analysis of the proposed extended game model
has shown that according to the sign of Δ (7), three different
cases should be considered. While both Case 1 (Δ > 0) and
Case 3 (Δ = 0) are associated with a pure NE, only Case
1’s is strict. However, in both cases, the NE strategy for the
UC is the same: not to monitor. On the other hand, Case 2
(Δ < 0) only leads to mixed strategies. Practical analysis,
investigating the attack examples described in Sect. 3 based
on a 100% participation rate, revealed that only Case 2 was
practically relevant. This is consistent with expectations that
the net benefits, i.e. benefits minus costs, of strong attacks
are supposed to be higher than those of weak attacks. Note
that for the scale (τ = 2) attack, different cases could arise
at lower participation rates due to its specific behaviour as
shown in Figs. 5 and 9.

Regarding Case 2, for a UC, the practical applica-
tion of equilibrium strategies, as illustrated in Table 5, is
not straightforward. Actually many suggestions have been
made regarding possible interpretations of mixed strategies
[2,3,9]. In the specific context of this work, that proposed
by [9] is of particular interest: indeed, assuming that the
UC supplies a set of microgrids, where security strategy
is decided at the microgrid level, they, seen as a popula-
tion, would choose defence strategies following the mixed
probabilities. Alternatively, as suggested in [22,39], the prob-
ability associated with defence could be interpreted as an
index of security criticality which would inform the UC’s
decisions regarding its defence investments. Interestingly,
experiments (not shown) indicate that when the cost of
attacking a single player, i.e. κ , decreases, the mixed strat-
egy probability for monitoring grows, increasing defence
needs.

Finally, the undetectable scale (τ = 1.29) attack is a
reminder that no practical monitoring strategy is perfect
and the best defence strategy may be not to defend if
the losses associated with an attack can be considered as
acceptable.

5 Conclusion

Protecting smart grids from cyber attacks is essential for
them to deliver their promises. Investigating different classes
of false data injection attacks against the forecasts required
for smart energy scheduling, extensive simulations showed
the extent of damages that a single attacker can cause to

both the utility company (growth of PAR value by up to
84%) and its consumers (bill increase by up to 54%). The
need for mitigation having been established, monitoring and
defence strategies were proposed. In order to assess their
value and advise utility companies on their attack prevention
strategy, a novel and generic security game that consid-
ers low and high-impact attacks was designed. Its analysis
highlighted, in particular, conditions under which a Nash
equilibrium exists. Interestingly, in those cases, the best strat-
egy is for the utility company not to invest in any monitoring
and the attacker to conduct low-impact attacks. Numeri-
cal evaluations considering the previously studied classes
of attacks revealed that there is a type of attack where,
indeed, no monitoring is the best strategy. However, in all
the other cases, only mixed strategies can be offered. Their
practical interpretation by UCs was discussed. In conclu-
sion, the proposed security game offers utility companies
the ability to investigate the most appropriate monitoring
and defence strategies so that false data injection attacks
have only limited, if any, impact on smart energy schedul-
ing.
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Appendix

5.1 Simulating forecasting errors

Since forecasting electricity consumption is out of the scope
of this study, forecasts were simulated instead of produced by
a forecasting algorithm. However, in order to consider fore-
casts as realistic, they must show some deviation from the
actual consumption. As it has been reported that the aver-
age error in individual forecasted data is around 8% [7],
some random error is added to the actual consumption val-
ues to produce sufficiently inaccurate forecasts. Although
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Fig. 7 Individual forecast created by adding random errors. While the
dashed curve is the actual demand of an household, addition and sub-
traction of 10% are represented by the two dotted curves. The bold
curve is one example of simulated forecast produced using the described
method. Here, whereas the average error is 7.5%, there are some values
outside the 10% error area

errors could be added following a Gaussian law, the obtained
forecasted profile would prove unrealistic since it would
display random jumps. As a consequence, some smooth-

ing effect is added by linking successive values. More
specifically, for each value i , a random error is initially cal-
culated ei , and then, the actual error added to the value i
is the average of the corresponding ei and its neighbours,

i.e. Ei = ei−1+ei+ei+1
3 .

As seen in Fig. 7, with this approach, simulated forecast
is smoother and, as a consequence, more realistic. Due to the
relatively large number of players, despite the added errors,
the aggregated forecast remains quite similar to the aggre-
gated demand (an average error of around 2% was estimated
experimentally). As a consequence, game solutions based on
forecast with and without errors are close: drawing the his-
togram of the error per day during a whole year (not shown)
reveals an average error of 8% [31].

5.2 Supplementary material

Figure 8 shows a flow diagram of the augmented security
game which helps to understand the analysis in Sect. 4. Fig-
ure 9 provides details to the discussion in Sect. 3.2.1 about
individual household schedules and the influence of the scale
attack with τ = 2.

Fig. 8 Advanced security game flow diagram. This figure is a more
extensive representation of the game shown in Table 4, including the
relations between the respective quantities. The arrows indicate which
strategy would be more preferable in terms of the individual players’
utility function. As discussed in Sect. 4.3, the connection between the

IDS game (in green) and the proposed augmented security game is
defined by the second-order difference Δ (7) which is highlighted here
by the red dotted lines. Depending on the sign of Δ (7), the direction of
the arrows varies as illustrated in the three cases. Note that the double
line represents equality (color figure online)
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Fig. 9 Aggregated load and battery schedule without and under a scale
(τ = 2) attack targeting all players for different household partici-
pation rates (ρ). Each column corresponds to a different participation
rate, i.e. from left to right ρ = 28%, ρ = 52%, and ρ = 100%.
The first row shows battery schedules of each individual household;
the second row shows battery schedules of each individual household
under attack—note that the first household is the attacker; the third
row compares aggregated loads without—dashed curves—and with—

bold curves—attacks. Without attack, participation of all households,
i.e. ρ = 100%, is required to flatten the aggregated load (PAR = 1.07).
However, excessive battery usage by attacked households (the second
row shows stronger charges and discharges) leads to a relatively flat
(PAR = 1.11) aggregated load at ρ = 52%. However, at ρ = 100%
the aggregated load profile is almost inverted; in this case, the attacker
hardly needs to use their battery (color figure online)

References

1. Alpcan, T.,Basar, T.:NetworkSecurity:ADecision andGameThe-
oretic Approach. Cambridge University Press, Cambridge (2010)

2. Auman, R.J.:What is game theory trying to accomplish. In: Arrow,
K., Honkapohja, S. (eds.) Frontiers of Economics, pp. 5–46. Basil
Blackwell, Oxford (1985)

3. Aumann, R.: Epistemic conditions for Nash equilibrium. Econo-
metrica 65(5), 1161–1180 (1995)

4. Avis, D., Rosenberg, G., Savani, R., von Stengel, B.: Enumeration
of Nash equilibria for two-player games. Econ. Theory 42, 9–37
(2010)

5. Bao, T., Shoshitaishvili, Y., Wang, R., Kruegel, C., Vigna, G.,
Brumley, D.: How shall we play a game?: a game-theoreticalmodel
for cyber-warfare Games. In: Proceedings—IEEEComputer Secu-
rity Foundations Symposium (2017). https://doi.org/10.1109/CSF.
2017.34

6. Batalla, J.M., Vasilakos, A., Gajewski, M.: Secure smart homes:
opportunities and challenges. ACM Comput. Surv. 50(5), 75:1–
75:32 (2017). https://doi.org/10.1145/3122816

7. Bichpuriya, Y.K., Soman, S.A., Subramanyam, A.: Combining
forecasts in short term load forecasting: empirical analysis and
identification of robust forecaster. Sadhana 41(10), 1123–1133
(2016). https://doi.org/10.1007/s12046-016-0542-3

123

https://doi.org/10.1109/CSF.2017.34
https://doi.org/10.1109/CSF.2017.34
https://doi.org/10.1145/3122816
https://doi.org/10.1007/s12046-016-0542-3


442 M. Pilz et al.

8. Boudko, S., Abie, H.: An evolutionary game for integrity attacks
and defences for advanced metering infrastructure (September)
(2018). https://doi.org/10.1145/3241403.3241463

9. Chen, H., Ngan, H., Zhang, Y.: Power SystemOptimisation: Large-
Scale Complex Systems Approaches. Wiley, Hoboken (2017)

10. Fadlullah, Z.M., Nozaki, Y., Takeuchi, A., Kate, N.: A survey of
game theoretic approaches in smart grid. In: International Confer-
ence on Wireless Communications and Signal Processing, WCSP
(2011). https://doi.org/10.1109/WCSP.2011.6096962

11. Farraj, A., Hammad, E., Daoud, A.A., Kundur, D.: A game-
theoretic analysis of cyber switching attacks andmitigation in smart
grid systems. IEEE Trans. Smart Grid 7(4), 1846–1855 (2016).
https://doi.org/10.1109/TSG.2015.2440095

12. Gellings, C.W.: The concept of demand-side management for elec-
tric utilities. Proc. IEEE 73(10), 1468–1470 (1985). https://doi.org/
10.1109/PROC.1985.13318

13. Gupta, A., Yadav, A.: Challenges in demand side management in
smart power grid: a review. Int. J. Eng. Sci. Math. 6(8), 120–125
(2017)

14. He, H., Yan, J.: Cyber-physical attacks and defences in the smart
grid: a survey. IET Cyber-Phys. Syst. Theory Appl. 1(1), 13–27
(2016). https://doi.org/10.1049/iet-cps.2016.0019

15. Huang, Y., Esmalifalak, M., Nguyen, H., Zheng, R., Han, Z., Li,
H., Song, L.: Bad data injection in smart grid: attack and defense
mechanisms. IEEE Commun. Mag. 51(1), 27–33 (2013). https://
doi.org/10.1109/MCOM.2013.6400435

16. Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power
Energy Mag. 7(2), 52–62 (2009). https://doi.org/10.1109/MPE.
2008.931384

17. Kurt, M.N., Yilmaz, Y., Wang, X.: Real-time detection of hybrid
and stealthy cyber-attacks in smart grid. IEEE Trans. Inf. Forensics
Secur. 14(2), 498–513 (2018). https://doi.org/10.1109/TIFS.2018.
2854745

18. Law, Y.W., Alpcan, T., Member, S., Palaniswami, M.: Security
games for risk minimization in automatic generation control. IEEE
Tran. Power Syst. 30(1), 223–232 (2015). https://doi.org/10.1109/
TPWRS.2014.2326403

19. Liang, G., Zhao, J., Luo, F., Weller, S.R., Dong, Z.Y.: A review
of false data injection attacks against modern power systems.
IEEE Trans. Smart Grid 8(4), 1630–1638 (2017). https://doi.org/
10.1109/TSG.2015.2495133

20. Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against
state estimation in electric power grids. In: Proceedings of the 16th
ACMConference on Computer and Communications Security, pp.
21–32 (2009). https://doi.org/10.1145/1952982.1952995

21. Lun, Y.Z., D’Innocenzo, A., Malavolta, I., Di Benedetto, M.D.:
Cyber-physical systems security: a systematic mapping study, pp.
1–32 (2016)

22. Maghrabi, L., Pfluegel, E., Al-Fagih, L., Graf, R., Settanni, G.,
Skopik, F.: Improved software vulnerability patching techniques
using CVSS and game theory. In: International Conference on
Cyber Security And Protection Of Digital Services (Cyber Secu-
rity) (2017)

23. Maharjan, S., Zhu, Q., Zhang, Y., Gjessing, S., Basar, T.: Depend-
able demand responsemanagement in the smart grid: a Stackelberg
game approach. IEEE Trans. Smart Grid 4(1), 120–132 (2013).
https://doi.org/10.1109/TSG.2012.2223766

24. Mo, Y., Kim, T.H.J., Brancik, K., Dickinson, D., Lee, H., Perrig,
A., Sinopoli, B.: Cyber-physical security of a smart grid infrastruc-
ture. Proc. IEEE 100(1), 195–209 (2012). https://doi.org/10.1109/
JPROC.2011.2161428

25. Mohsenian-Rad, A.H., Wong, V.W.S., Jatskevich, J., Schober, R.:
Optimal and autonomous incentive-based energy consumption
scheduling algorithm for smart grid. In: Innovative Smart Grid
Technologies Conference, ISGT, pp. 1–6 (2010). https://doi.org/
10.1109/ISGT.2010.5434752

26. Mohsenian-Rad, A.H., Wong, V.W.S., Jatskevich, J., Schober, R.,
Leon-Garcia, A.: Autonomous demand-sidemanagement based on
game-theoretic energy consumption scheduling for the future smart
grid. IEEETrans. SmartGrid 1(3), 320–331 (2010). https://doi.org/
10.1109/TSG.2010.2089069

27. Palensky, P., Dietrich, D.: Demand side management: demand
response, intelligent energy systems, and smart loads. IEEE Trans.
Ind. Inform. 7(3), 381–388 (2011). https://doi.org/10.1109/TII.
2011.2158841

28. Panaousis, E., Fielder, A., Malacaria, P., Hankin, C., Smeraldi,
F.: Cybersecurity games and investments: a decision Support
approach, pp. 266–286 (2014). https://doi.org/10.1007/978-3-
319-12601-2_15

29. Panwar, N.L., Kaushik, S.C., Kothari, S.: Role of renewable energy
sources in environmental protection: a review. Renew. Sustain.
Energy Rev. 15(3), 1513–1524 (2011). https://doi.org/10.1016/j.
rser.2010.11.037

30. Pilz, M., Al-Fagih, L.: Recent advances in local energy trading in
the smart grid based on game-theoretic approaches. IEEE Trans.
Smart Grid (2017). https://doi.org/10.1109/TSG.2017.2764275

31. Pilz, M., Al-Fagih, L.: A dynamic game approach for demand-side
management: scheduling energy storage with forecasting errors.
Dyn. Games. Appl. (2019). https://doi.org/10.1007/s13235-019-
00309-z

32. Pilz,M., Al-Fagih, L., Pfluegel, E.: Energy storage scheduling with
an advanced battery model: a game-theoretic approach. Inventions
2(4), 30 (2017). https://doi.org/10.3390/inventions2040030

33. Pilz, M., Nebel, J.C., Al-Fagih, L.: A practical approach to energy
scheduling: a game worth playing? In: IEEE PES Innovative Smart
Grid Technologies Conference Europe (2018)

34. Rahbar, K., Xu, J., Zhang, R.: Real-time energy storage man-
agement for renewable integration in microgrid: an off-line opti-
mization approach. IEEE Trans. Smart Grid 6(1), 124–134 (2015).
https://doi.org/10.1109/TSG.2014.2359004

35. Rahman, M.A., Mohsenian-Rad, H.: False data injection attacks
with incomplete information against smart power grids. In: IEEE
Global Telecommunications Conference, pp. 3153–3158 (2012).
https://doi.org/10.1109/GLOCOM.2012.6503599

36. Rawat, D.B., Bajracharya, C.: Cyber security for smart grid sys-
tems: status, challenges and perspectives. SoutheastCon 2015, 1–6
(2015). https://doi.org/10.1109/SECON.2015.7132891

37. Saad, W., Han, Z., Poor, H.V., Başar, T.: Game-theoretic methods
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