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Highlight 

 High velocity impact behavior of  Autoclaved aerated concrete (AAC)  was studied. 

 An analytical model was presented to predict the residual velocity of projectile. 

 Four energy absorption mechanism considered to predict impact behavior accurately. 

 The model validated by comparison of model results with those of experiments. 

 The validated model was employed for parametric study and sensitivity analysis. 
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Abstract 

This paper presents an analytical model for the high-velocity impact behavior of autoclaved 

aerated concrete (AAC) blocks under flat-ended cylindrical projectile. This model employs an 

energy balance approach to derive the governing differential equations related to the process. 

The model considers four energy absorbing mechanisms including crushing, tensile fracture, 

plug kinetic, and friction loss. A closed-form solution was presented to the derived governing 

differential equations using singularity functions. Singularity functions were used to incorporate 

discontinuities due to various energy absorbing mechanisms. Results of the present model are 

reasonably in good agreement with presented experimental results. The effects of various impact 

parameters on the residual velocity and energy absorption were studied and the results are 

reported, discussed and commented upon.   
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1. Introduction 

Autoclaved aerated concrete (AAC) is a type of precast concrete materials and comparing to 

normal concrete has a low density and excellent insulation properties. The low density is 

achieved by the formation of air voids to produce a cellular structure. The advantages of cellular 

material (ie: foams[1, 2], honeycombs[3]) make them popular in automotive and aerospace 

industries and constructions because of having great impact energy absorption[4]. AACs 

composed of natural raw materials including cement, lime, water, sand and Aluminum powder 

which make the mixture to expand and have a porous structure due to producing hydrogen 

bubbles. Some of the benefits of using AAC include highly fire resistance, recyclability and low 

density which leads to easy handling and installation. The increased thermal efficiency of AAC 

makes it suitable for use in areas with extreme temperatures, as it eliminates the need for 

separate materials for construction and insulation, leading to faster construction and cost-saving. 

Mechanical behavior of different materials suited for construction purposes has been a common 

research subject. Cement-based materials as the most important group have a great proportion in 

these researches. Ficker [5] presented some analytical consequences which follow from the 

results published about the quasi-static compressive strength of cement-based materials. Costa et 

al [6] assessed the in-plane response of unreinforced AAC masonry panels through an 

experimental test campaign in order to obtain a reliable description of the lateral cyclic behavior. 

Jiang et al [7] investigated the preparation process and properties of high-porosity foamed 

concretes. It was shown that the insulation of humidity during the curing process increases the 

strength of foamed concretes. Mechanical response of textile-reinforced aerated concrete 

sandwich panels was investigated by Dey et al[8] using an instrumented three-point bending 

experiment under static and low-velocity dynamic loading. Modeling crack development in 

beams and deep-beams made of autoclaved aerated concrete performed by Ferretti et al[9]. 

Experimental investigation of dynamic behavior and damping ability of autoclaved aerated 

concrete subjected to a mechanical shock or blast, performed by Mespoulet et al [10]. 
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Some researchers conducted investigations on the impact behavior of cement-based materials 

[11-14]. Yankelevsky and Avnon [15] studied some of the dynamic characteristics of AAC walls 

under the localized high-intensity impact, such as the number of cracks and their dependence on 

the boundaries location. Verma et al [16] performed an analytical, numerical and experimental 

investigation of low energy impact behavior of Ultra-High-Performance Concrete (UHPC) and 

proposed an algorithm to calculate optimum thickness for UHPC panels. Impact Response of 

Autoclave Aerated Concrete/FRP Sandwich Structures was the subject of study of Nasim et 

al[17]. Evaluation of the response of AAC/CFRP sandwich structures to low-velocity impact was 

performed by Serrano-Perez et al [18], they also compared the experimental results to the 

predicted energy absorptions values given by an energy balance model. Dey et al [19] presented 

an impact response of fiber-reinforced aerated concrete under a three-point bending 

configuration based on the free-fall of an instrumented impact device. The performances of 

autoclaved aerated concrete masonry walls subjected to vented gas explosions were investigated 

by Li et al[20]. 

Using analytical modeling to predict the impact behavior of structures[21-23] reduces the costs 

of specimen fabrication and omits the need for  the long computational time of numerical 

methods. To the best knowledge of authors, the high-velocity impact response of AAC has not 

been yet studied analytically in literature. Therefore, the purpose of this paper is to present an 

analytical modeling of high-velocity impact behavior of autoclaved aerated concrete targets 

subjected to a rigid cylindrical projectile. An energy balance approach is employed to derive the 

governing differential equations of the impact behavior of AAC. A closed-form solution utilizing 

singularity function is presented for the obtained governing equation. The proposed 

mathematical model is validated with the gas gun test apparatus results. A parametric study is 

carried out to evaluate the role of thickness, projectile mass, and initial velocity in AAC 

mechanical behavior.   

 

2. Experimental procedure  

2.1 Preparation of Specimens  

Pre-produced AAC blocks manufactured by Parin Beton Amood Company were utilized to 

produce the impact test specimens. The 125×125×50 mm impact test specimens were cut from 

the initial blocks with dimensions of 600×200×250 mm. Figure1 shows the specimen before the 

test. Also, Table 1 shows the mechanical properties provided by the AAC blocks manufacturer.  
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Figure 1:(a) Manufactured AAC block and (b) specimen for impact tests. 

Table 1: Mechanical properties of AAC block. 

2.2 Through-thickness compressive strength of the AAC blocks 

Quasi-static punch test was carried out to determine the compressive strength of AAC blocks in 

thickness direction using Universal Testing Machine (UTM) of Impact Laboratory of the Tarbiat 

Modares University. To apply the clamped boundary condition, a hardened steel fixture (Figure 

2) was employed. Figure 3 illustrates the stress-displacement curve obtained by employing force-

displacement output data of UTM.  

 

Figure 2: Schematic diagram (a, b) and photograph (c) of clamping fixture. 

Figure 3: Stress- displacement curve obtained by quasi static experimental tests. 

 

Following bi-linear function incorporated in the curve fitting process to achieve Stress- 

displacement curve in  Figure 3. 

   0 0 0 1
x 0 x x xc e e e e e h ex x x x x x            

(1) 

where , ,c e h   are curve fitting constants. It is worth noting that <> indicates 

Macaulay's parentheses and defined as follows: 

( )

0

n
n x a x a

x a
x a

  
  


 

(2) 

 

2.3 High-velocity impact tests 

Figure 4 shows the gas gun apparatus in the Impact Laboratory of  Tarbiat Modares University 

used for impact tests to be performed. Specifications of the flat-nosed projectile are given in 

Table 2. Input and residual velocities measured using two chronographs placed before and after 

the target fixture. The employed chronograph can measure particle velocities between 9 to 2100 

m/s, according to datasheet. Utilizing the chronograph to measure the velocity of projectile in the 

wide range have been reported in some researches [24, 25]. Cardboard was placed before the last 

chronograph to eliminate the small flying particles separated from the target. Because these high-

velocity small particles can be detected by the chronograph and result in wrong exit veloctiy 

measurement. 

Table 2. The geometry of hardened projectile. 
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Figure 4: Gas gun apparatus used for experimental test (a) main structure, (b) high-pressure reservoir and solenoid 

valve[26]. 

 

3. Mathematical modeling  

3.1 Theoretical background 

In this study, a rectangular AAC thick plate or block subjected to the high-velocity impact 

caused by a flat-nosed projectile is modeled by the energy balance approach. Figure 5 

demonstrates a schematic diagram of impact initiation. 

 

Figure 5: Schematic diagram of AAC block subjected high-velocity projectile. 

 

It is assumed that the kinetic energy of the projectile 
kE will be absorbed by four different 

mechanisms:  AAC crushing
cE , tensile fracture energy

tE , plug kinetic energy 
mE  and friction 

loss
fE . Elastic deformation could be neglected in brittle materials compared to the failure 

modes observed in energy absorption processes [27, 28]. In order to take the strain rate effects on 

the strengths of AAC blocks into account, statically obtained strengths are multiplied by dynamic 

factor [29]. The dynamic factor for AAC blocks is 1.45 according to Mespoulet and et al[10]. A 

new model to predict the high-velocity impact of AAC including mentioned failure mechanisms 

are developed based on the model presented in [30]. 

k c t m fdE dE dE dE dE     (3) 

where differential energy terms can be determined as follows: 

 Kinetic energy of the projectile 

For the sake of simplification, instead of temporal integration, a spatial variable describing 

the position of the projectile (x), is used.  Differential energy loss between position x and 

x+dx is given by 

    21

2
k pdE x m d v x  

(4) 

where
pm and  v x denote mass and velocity of the projectile respectively. 

 Energy absorbed by AAC crushing 
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The out of plane shear stresses caused by normal contact of projectile create a cylindrical 

hole. The associated energy with the crushing process may be calculated by 

   c cdE x x Adx  (5) 

where  c x and A are the through-thickness compressive strength of the AAC and frontal 

area of the projectile, respectively. The function  c x was defined in section 2.2. 

 Tensile fracture energy 

Examining the impacted AAC blocks after sectioning shows another energy absorbing 

mechanism. The energy absorbed by this mechanism can be determined as: 

   t tdE x u d x   (6) 

where 
tu  denotes tensile fracture specific energy and  d x  is volume of the elastic wave 

affected region for increment dx . Due to the elastic behavior of AAC block under tensional 

stress, the specific energy can be calculated by  

1
2

2
t t fu f 

 
  

 
 

(7) 

where
tf  and 

f are ultimate tensile strength and failure strain of AAC block, respectively. It 

should be noted the multiplier 2 is considered to account for symmetrical in-plane biaxial 

stresses. Since the scalar expression in parentheses in Eq (7) ,  1/ 2 t ff  , is valid for uniaxial 

stress state, factor of two is considered to include the symmetrical in-plane biaxial stresses in the 

impacted target. 

Examining impacted blocks reveals the truncated conical shape of the tensile fracture zone 

(Figure6).  

 

Figure 6: Through section (a) view of theAAC specimen and (b) schematic of the truncated conical shape. 

 

The volume of the differential disk element can be determined as follows (See Figure 6): 

  
22

0 tandV R dx r x x dx       (8) 

where
0, ,R r x and  are element instant radius, projectile radius, the position of the tension 

fracture region and semi-angle of the tension affected zone, respectively. It should be noted that 
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0x and  are measured experimentally from impacted blocks which are  32  mm and 57 , 

respectively. Since the mechanism of tensile fracture occurs at the position interval
0x x h  , 

Cut off function  rC x  is defined as: 

 
0 0

0rC x x x x h     (9) 

 

 Plug kinetic energy 

Translational motion of the projectile accelerates the particles of the AAC block which 

are in front of the projectile. The kinetic energy of the mentioned section of the AAC 

block could be written as: 

     21

2
m ldE x Adx v x  

(10) 

where 
l denotes the dry density of the AAC. 

 Energy absorbed by Friction loss 

Maximum normal reaction force, 
rF  , applied to the outer curved surface area of the hole 

created by the projectile during penetration of the AAC block can be estimated by 

crushing strength  r cF x A  . Also, friction force,
fF , can be calculated based on the 

normal reaction force
f rF F . Therefore, energy absorption during increment dx can be 

estimated as: 

   f cdE x x A dx   (11) 

where A and  denote the surface area of the side of the projectile and sliding friction 

coefficient, respectively.This friction coefficient for concrete-steel contact surface is 

0.02[31]. 

 

3.2 Deriving the governing equations 

Substituting Eqs (4), (5), (6), (10) and (11)into (3) and rearranging it yields the governing 

equation of the problem as: 
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  
       

    

 

2

2

2

0

1 1

2 2

tan

0

p c l c

t t r

i

d v x
m x A A v x x A

dx

f r x x C x

v v

  

  

   

 



 

(12) 

Eq (12) is an initial value problem that can be solved numerically or analytically by the Runge-

Kutta method or singularity functions as described in Section 3.3. 

In order to simplify the parametric study, following non-dimensional variables are defined 

 
 

 
2

0

, , ,
c

c

i

xv x
v x x v

v h


 





          
(13) 

Substituting Eq (13)into (12) and doing some manipulation non-dimensional governing equation 

can be obtained. 

 

   
2

01 tan

(0) 1

c f t r m

xd h
R R R x C x R

dx r r


  




  





  
       

  



 

(14) 

where 

0

2

2
c

p i

hA
R

m v


  

(15-a) 

 

l
m

p

hA
R

m


  

(15-b) 

 

0

2
2f

p i

Ah
R

m v


  

(15-c) 

 

2

2

2 t t
t

p i

f r h
R

m v

 
  

(15-d) 

 

3.3 Closed form solution 

for the sake of simplicity Eq (14) rearranged in the following form, 
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 
          

2

2 1 3 4 0 tanc c r

d x
N x N x N x N r x x C x

dx


           

(16) 

where 

1

2

p

A
N

m
  

(17-a) 

2
l

p

A
N

m


  

(17-b) 

3 2

4

p

A
N

m r


  

(17-c) 

4

2 t t

p

f
N

m

 
  

(17-d) 

Eq (16) is a first order ODE, and its general solution can be written as: 

 
     1

1
( )x u x q x dx C

u x
   

   
(18) 

2

2

( )

( )

( )
P x dx N x

P x N

u x e e



 
 

(19) 

          

             

2

1 3 4 0

2

1 3 4 0

q tan

q tanm

c r

R x

c r

x N N x N r x x C x

u x x e N N x N r x x C x dx

 

 

     

      
 

(20) 

After some mathematical manipulations, the final form of non-dimensional   can be expressed 

as: 

         
0 0 0 0

0 1 2 0 3 1x 0 x ex f x f x x f x x x f x x h C           (21) 

where , 0 3if i    are given in Appendix A. <> denotes Macaulay's parentheses. It should be 

noted
1C , integration constant, is determined using the initial velocity of the projectile. 

 1 32

1 2

2

i e

N N
C v

N



   

(22) 

 

4. Results and discussion 

4.1 Validation 
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In this section, results obtained by the presented model are compared to those of experimental 

tests. as can be seen in Figure 7 there is a good agreement among results and this model can 

reasonably predict the accurate value of the ballistic limit velocity of the AAC block when 

subjected to the high-velocity impact of a rigid cylindrical projectile  

 

Figure 7: Comparison of residual velocity obtained by the proposed analytical model and those of experiment. 

 

4.2 Sensitivity analysis 

 To study the relative significance of various energy absorption mechanisms, a variation of non-

dimensional parameters, Eq (15), is considered. Figure 8 (a) depicts the variation of non-

dimensional parameters for the four above-mentioned mechanisms as a function of the initial 

velocity. As can be seen, the crushing and friction associated mechanisms are dominant slightly 

above the ballistic limit while in higher velocities the tensile fracture energy is almost negligible. 

Figure 8 (b) compares the fraction contributions value of different energy absorbing mechanisms 

in perforation energy for a wide range of input velocities. When input velocity increases, the 

fraction contributions value of the momentum mechanism rises. However, the crushing and 

tensile fracture mechanisms have not similar trends and the fraction contributions value of these 

mechanisms decreases as input velocity increases.  

 

Figure 8: Comparison of (a) non-dimensional parameters(b) relative importance of various energy absorption 

mechanisms for various input velocities obtained by the proposed analytical model. 

 

 

4.3 Parametric study 

In this section, the influence of various parameters such as projectile mass, projectile radius, 

input velocity and target thickness on high-velocity impact behavior of the AAC blocks is 

studied. 

 

4.3.1 Effect of projectile mass 

Figure 9 (a) demonstrates a comparison of the projectile velocity during the penetration process 

for four different projectile’s mass.  It should be noted that different masses obtained by 
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changing projectile density. In the meantime, the other parameters remained unchanged. As can 

be seen, increasing the mass leads to residual velocity to be increased. since higher mass 

corresponds to higher initial kinetic energy. Figure 9 (b) depicts the variation of the perforation 

of energy for different projectile mass with the same input velocity. The results show that the 

AAC blocks have more capacity of energy absorption for heavier projectiles. The findings are 

compatible with those reported for composite laminate[30]. 

 

Figure 9: (a) Variation of residual velocity for different projectile mass during the impact process. (b) Energy 

absorption vs. mass projectile. 

 

4.3.2 Effect of projectile radius 

Figure 10 (a) depicts the influence of the projectile radius on the variation of projectile velocity 

during the perforation process when other parameters such as velocity and mass are held 

constant. Four radii 
3

, r , , 2
2 2

r r
r and 8.94pm gr are assumed. The figure indicates that as 

projectile radius rises the residual velocity falls. Because increasing the projectile frontal area, A

, causes increasing of the energy absorption caused by crushing and momentum.  Furthermore, 

Figure 10 (b) shows the perforation energy for different radii. As can be seen, perforation energy 

increases while the projectile radius increases. But the increasing rate of perforation energy for 

large projectiles are lower than the small ones. 

 

Figure 10: (a) Variation of residual velocity vs. projectile position for different radii of projectiles. (b) Energy 

absorption vs. radius projectile. 

 

4.3.3 Effect of input velocity 

To evaluate the effect of input velocity on high-velocity impact behavior of the AAC blocks five 

initial velocities are chosen. As can be observed in Figure 11 (a) when the input velocity 

increases, the residual velocity rises. Figure 11 (b) illustrates the effect initial velocity on the 

perforation energy of the AAC blocks. The results show an increasing trend of perforation 

energy in terms of initial velocities. The above results indicate a similar trend to those reported 

by Ghalami and Sadighi [32] for the sandwich panel. 
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Figure 11: (a) Variation of residual velocity during the impact process for different input velocities of the projectile. 

(b) Energy absorption vs. Input velocity. 

 

 

4.3.4 Effect of target thickness 

Figure 12 (a) depicts a comparison of projectile velocities for targets with different thicknesses. 

When target thickness increases, residual velocity drops and finally becomes zero. For thick 

targets, the value of the energy absorption of the AAC block is greater than that of thinner ones 

while the rate of increase falls (see Figure 12 (b) ). It is shown that the residual velocity and 

therefore ballistic limit velocity will increase with target thickness. These results are compatible 

with those of [33]for concrete.  

 

Figure 12: (a) Variation of residual velocity vs. projectile position for the different thicknesses of targets. (b) Energy 

absorption vs. target thickness. 

 

5. Conclusions  

In this paper, an analytical model for the high-velocity impact behavior of autoclaved aerated 

concrete (AAC) blocks under flat-nosed cylindrical projectile was presented. A closed-form 

solution was presented using singularity functions. The results obtained by the present model are 

in good agreement with those of the experiment. The effects of the various factors such as target 

thickness, projectile mass, projectile radius, and initial velocity were examined on the variation 

of projectile velocity during the process. 

 Following conclusions could be mentioned: 

• The presented model provides an accurate prediction of high-velocity impact behavior of 

AAC blocks under study. 

• Momentum mechanism plays an important role in the prediction of the energy absorption 

in higher velocities. 

• Presented closed-form solution provides simple and efficient which could be employed in 

the primary design of AAC blocks 
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Figure Captions 

Figure 1: (a) Manufactured AAC block and (b) specimen for impact tests. 

Figure 2: Schematic diagram (a, b) and photograph (c) of clamping fixture. 

Figure 3: Stress- displacement curve obtained by quasi static experimental tests. 

Figure 4: Gas gun apparatus used for experimental test (a) main structure, (b) high pressure reservoir and solenoid 

valve. 

Figure 5: Schematic diagram of AAC block subjected high-velocity projectile. 

Figure 6: Through section (a) view of the AAC specimen and (b) schematic of the truncated conical shape. 

Figure 7: Comparison of residual velocity obtained by the proposed analytical model and those of experiment. 

Figure 8: Comparison of (a) non-dimensional parameters (b) relative importance of various energy absorption 

mechanisms for various input velocities obtained by the proposed analytical model.  

Figure 9: (a) Variation of residual velocity for different projectile mass during the impact process. (b) Energy 

absorption vs. mass projectile. 

Figure 10: (a) Variation of residual velocity vs. projectile position for different radii of projectiles. (b) Energy 

absorption vs. radius projectile. 

Figure 11: (a) Variation of residual velocity during the impact process for different of input velocities of projectile. 

(b) Energy absorption vs. Input velocity. 

Figure 12: (a) Variation of residual velocity vs. projectile position for different of thickness of targets. (b) Energy 

absorption vs. target thickness. 
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Figures 

 

Figure 1: (a) Manufactured AAC block and (b) specimen for impact tests. 

 

 

 

Figure 2: Schematic diagram (a, b) and photograph (c) of clamping fixture. 
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Figure 3: Stress- displacement curve obtained by quasi static experimental tests. 

 

 

Figure 4: Gas gun apparatus used for experimental test (a) main structure, (b) high pressure reservoir and solenoid 

valve. 

0

1

2

3

4

5

6

0 5 10 15 20 25 30 35 40 45 50

St
re

ss
 (

M
p

a)
 

Displacement (mm) 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

 

Figure 5: Schematic diagram of AAC block subjected high-velocity projectile. 

 

 

 

Figure 6: Through section (a) view of the AAC specimen and (b) schematic of the truncated conical shape. 
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Figure 7: Comparison of residual velocity obtained by the proposed analytical model and those of experiment. 
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Figure 8: Comparison of (a) non-dimensional parameters (b) relative importance of various energy absorption 

mechanisms for various input velocities obtained by the proposed analytical model. 
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Figure 9: (a) Variation of residual velocity for different projectile mass during the impact process. (b) Energy 

absorption vs. mass projectile. 
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Figure 10: (a) Variation of residual velocity vs. projectile position for different radii of projectiles. (b) Energy 

absorption vs. radius projectile. 
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Figure 11: (a) Variation of residual velocity during the impact process for different of input velocities of projectile. 

(b) Energy absorption vs. Input velocity. 
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Figure 12: (a) Variation of residual velocity vs. projectile position for different of thickness of targets. (b) Energy 

absorption vs. target thickness. 
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Tables 

Table 1: Mechanical properties of AAC block. 

Mechanical 

property 

Calculated 

density 

(kg/m3) 

Compressive 

yield stress 

(MPa) 

Compressive 

elastic modulus 

(MPa) 

Modulus of 

rupture 

(MPa) 

amount 550 3.5 2000 0.75 

 

Table 2. Geometry of hard projectile. 

Nose shape Diameter 

(mm) 

Height(mm) Weight(gr) 

Flat 

 

10 15 8.94  
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Graphical Abstract 
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Schematic of through section of truncated conical shape of AAC 

subjected by flat ended projectile 
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Four different mechanisms: AAC crushing , tensile fracture 

energy , plug kinetic energy  and friction loss . 


