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Equitable location of facilities in a region with probabilistic barriers to travel

Abstract

This paper studies a planar multi-facility location problem that considers the presence of a restricted region

with probabilistic position. This problem seeks to locate facilities in an equitable manner by minimizing the

maximum expected distance traveled from demand points to access a facility, as well as distances between

locations of new facilities. We propose a heuristic to solve this problem that combines a bounding approach

with a split-divide-and-conquer strategy. Computational study shows that this heuristic produces high-quality

solutions in reasonable run-times. We report �ndings from a case-study involving locating police facilities in

Kingston-Upon-Thames.

Keywords: facility location; fairness criterion; probabilistic line barrier; relaxation-based heuristic

1. Introduction

The problem of locating facilities to enable the e�cient provision of services or products to individuals is a

classical and long-studied problem. Facilities that serve a common or public good (such as an ambulance

or a police station) and are to be located in an urban setting bring additional complexities to this location

problem (Heizer and Render, 2011). In this context, achieving an appropriate response time (or distance) while

considering fairness is a crucial factor for emergency service providers (Zhang et al., 2016). For example,

a decision maker may face the challenges of siting a set of emergency service centers such that each person

experience equitable distribution of response times. From a practical point of view, the e�ect of emergency

facility location is dependent to its distance to the people utilizing it.

In many supply chain and logistics settings it is common to use an objective that seeks to minimize the sum

of all distances traveled to/from facilities and individual demand sites. However, for locating emergency-related

facilities (�re, ambulance, and police stations, etc.) such an objective is often inappropriate, as equity is often

a consideration in such decisions. As such, an objective that rewards an equitable location of facilities with

respect to individual demand sites is often used.

A variety of metrics for addressing equity, especially in the public sector, has been studied in the literature

(Marsh and Schilling, 1994). We applied the maximum distance metric as an explicit consideration of fairness

or equitability for the sake of computational tractability and managerial appropriateness. This measure is �rst

used in Hakimi (1965). One such measure is to minimize not the sum of all distances but the maximum distance

from a facility to an individual demand site. We use such an objective (sometimes called a minimax objective)

in the research presented in this paper to address the equitable access to public emergency services (Marsh and

Schilling, 1994). This objective has long been considered as a more equitable alternative comparing to the

minisum problem which minimizes total travelled distance, since the minimax objective seeks to improve as

much as possible providing services to those who are farthest from a service center, (Richard et al. 1990). More

precisely, theminimax objective minimizes the maximum travelled distance from the nearset facilities to demand
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points. Equity can be regarded from di�erent perspectives and therefore particular de�nition and perception

may be used for each perspective. For example, in emergency context, equity from patient's perspective is

totally di�erent from the emergency service provider. A complete range equity de�nitions and formulations are

proposed in McLay and Mayorga, (2013) and Bélanger et al., (2019).

Locational decisions should also recognize geographical or physical restrictions to travel. Such contexts could

be studied under the discrete location framework, by de�ning the appropriate location-routing problem (Laporte

and Dejax, 1989), location-transportation problem (Klibi et al., 2010), urban freight transportation problem

(Marcucci and Gatta, 2014), or service network design problem (Lium et al., 2009) depending on the type of

freight, the decisional level and the stakeholders involved. However, in several real-life cases, the approximations

and aggregations employed in these models to capture the essence of the problem have not considered realistic

geographical or physical restrictions. In such situations, predetermined allocated areas to each facility may no

longer be the optimal one. For instance, while reaching a�ected areas in the shortest possible distance (or time)

is crucial, the presence of barriers (i.e., obstructions) in city areas can a�ect the relief services. In an urban area,

barriers may have probabilistic nature, with random presence, random size, random shape, or random location.

Thus, the existence of barriers and their stochastic nature, should be taken into account when modeling the

location problem.

Turning to locating facilities in urban settings, many (if not most) location models assume movements

between located facilities or a facility and an individual's site are unrestricted. However, in many settings such

an assumption is not realistic; instead an organization must locate facilities in a region that contains restricted

areas. Such restricted areas can be placed into one of three categories: (1) forbidden regions (Batta et al.

1989), (2) congested regions (Sarkar et al. 2007), and (3) barrier regions (Hamacher and Nickel 1998). A

forbidden region is one where a facility cannot be located but moving through is permitted (e.g. college campus,

downtowns in large urban areas, etc.). A congested region is like a forbidden region, in that a facility may not

be located in such a region but moving through is permitted. However, a congested region is di�erent in that

movement through such a region comes at additional cost or di�culty (e.g. tropical and subtropical deserts,

forests, lakes, etc.). Finally, a barrier region is one where a facility cannot be located and movement through is

not permitted, except for at some pre-de�ned passages. The impact of the presence of barrier in urban service

facility location problems, in both practice and theory, has been extensively studied in Zanjirani Farahani et

al., (2019). Our results also emphasize the fact that considering barriers has signi�cant impact on the location

of facilities in urban areas and that ignoring them may mislead the urban planners and city logistic managers.

When locating facilities in areas that contain barrier regions, point-to-point distances are inaccurate, as

the barrier can impact both transportation times and distances. Thus, methods that locate facilities based

on point-to-point distance measurements are likely to yield sub-optimal locations. Instead, one should use a

distance function that measures the distance from facilities to individual demand sites while recognizing the

location and size of the barrier. Such functions are often based on the calculation of shortest paths between

individual demand sites and facilities in the presence of a barrier. In problems where multiple facilities must

be located and close proximity between them is also desired, such functions should also be used to measure the

distance between pairs of facilities.

In this paper, we present a method for locating multiple facilities when barrier regions are present and, as
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the facilities are located in an urban area wherein streets often form a grid, distance is measured on a rectilinear

(Manhattan) basis. As we will see in the next section, the academic literature on location problems wherein

barrier regions are present can be categorized by the nature of the barrier (e.g. polyhedral-shaped, arbitrarily-

shaped, linear, etc.) as well as by whether the barrier has a �xed location that is known a priori. We propose a

method for when the barrier is linear, and its presence and location are not known a priori and with certainty

(i.e. a probabilistic line barrier).

At the heart of this method is a mixed integer nonlinear program that seeks to minimize the expected

longest distance traveled, either from a facility to an individual demand site or between facilities. Considering

the expected distance between facilities brings additional complexity to the problem we seek to solve. Many of

the related problems that only consider distances from facilities to demand sites can be modeled as a convex

optimization problem. Problems of this class are easier to solve, computationally-speaking, than general non-

linear programs, in part because they are known to have a globally optimal solution and there are tests for

assessing whether a solution is optimal. The optimization problem we seek to solve, that consider both the

distance between facilities and from facilities to individuals, has an objective and constraints that can not be

guaranteed to be convex.

As such, we propose a heuristic algorithm that combines a bounding approach with a split-divide-and-

conquer strategy that can produce high-quality solutions to real-sized instances of the optimization problem in

reasonable run-times. The bounding approach is based on a new type of relaxation for this type of problem,

one based on presuming the barrier is �xed at its expected position. We analytically show that assuming the

barrier is �xed at its expected position yields a relaxation that can be formulated as a mixed integer linear

program. We computationally show that this relaxation is very tight, as solving it yields e�cient lower bounds

that are very close to the objective function value of known high-quality solutions.

While the model presented is relevant to many urban environments, in which accidents or construction (or

reconstruction) projects, as inevitable events, may obstruct part of a road network and consequently cause

interruption (detours and delays) in transportation distance or time (Sayarshad and Chow, 2017), and facility

types (ambulances, �re stations, etc.), it has not yet been studied in the literature. Speci�cally, locating

multiple facilities in the presence of a probabilistic barrier with the use of a minimax objective has not yet

been addressed. Thus we believe that the model, as well as the computationally e�ective solution technique

described in this paper, present two major contributions to the literature on facility location problems. As a

�nal contribution, we illustrate the use of this method in practice with a case study based on locating police

stations in Kingston Upon Thames. The method we propose is relevant to this speci�c problem as there is an

overground rail line that runs through this area, which we model as a probabilistic line barrier. We analyze

solutions produced by our method, which recognizes the barrier, as well as a method that does not, in order to

assess how recognizing the barrier impacts the location of facilities and the expected longest distance travelled.

We observe that recognizing the potential presence of this rail line can signi�cantly reduce the expected longest

distance traveled.

The reminder of the paper is organized as follows: The next section describes the academic literature

relevant to this problem. Section 3 describes how the problem is modelled, whereas Section 4 presents our

solution procedure. Section 5 then studies computationally the e�ectiveness of the solution procedure proposed
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and provides for an illustrative case the insights from the solution produced. Finally, Section 6 brings the paper

to a conclusion, highlighting the strengths and weaknesses of the research presented and suggesting future

research topics.

2. Literature review

A recent survey of the emergency facility location literature can be found in Bélanger et al., (2019) in which,

minimax objective function, as the most often used equity measures in the emergency facility location problems,

have been exhaustively studied. Zanjirani Farahani et al., (2019) has also reviewed service facility location

problems in urban area and highlighted the importance of utilizing the minimax objective function in the

emergency context to achieve equitability. As such, we focus our literature review on papers relevant to the

problem we study, which is an equitable facility location problem with a barrier region in the continuous space.

We �rst consider those that optimize a minisum objective and then those that optimize a minimax objective.

We �nish the section with a discussion of the contributions of this paper.

This paragraph reviews papers that optimize a minisum objective location problem with a �xed barrier. For

the �rst time, Larson and Sadiq (1983) followed by Batta et al. (1989) studied the discretization properties of

the planar Weber problem with the rectilinear distance function in the presence of polyhedral shaped barriers

and showed that this problem can be reformulated as a p-median problem. Applying the same approach,

Aneja and Parlar (1994) studied an Euclidean Weber problem with barrier regions to construct a visibility

graph and to evaluate the shortest path between any candidate point for new facility and demand points using

the simulated annealing (SA) algorithm. Hamacher and Klamroth (2000) developed a similar discretization

for a general class of distance functions. Klamroth (2001a) proposed a reduction methodology for the same

problem, in which the non-convex barrier location problem reduced to a set of convex location problems. Then,

they presented an exact and a heuristic algorithm to solve the location problem with barriers. Klamroth

(2001b) considered Weber location problems in the presence of a line barrier with a �nite number of passages

and presented a solution algorithm with exponential time complexity with respect to the number of passages.

Klamroth and Wiecek (2002) proposed an algorithm for multi-criteria location problems with a �xed position

line barrier. Dearing and Segars (2002a,b) extended a rectilinear distances facility location problem to a more

general class of location problems, developed a decomposition approach on which the objective function of a

location problem with barriers is convex, and then optimized the problem using convex optimization methods.

Pfei�er and Klamroth (2005) worked on a p-norm distance Weber problem in the continuous space and some

intermediate points that combines the continuous location models and network location models. Considering

such barriers, Bischo� et al. (2009) presented the Euclidean multi-facility location-allocation problem and

proposed two heuristics to solve the problem. Relevant literature studied the Weber location problem with

minisum objective function and used a solution space discretization approach to solve the problem, while we

keep the solution space continuous as in- the original problem when proposing the solution approach.

In the presence of �nite-sized facilities and polyhedral/arbitrary shaped barriers, Sava³ et al. (2002)

�rst considered a single �nite-sized facility location problem with rectilinear distance metric. Wang et al.,

(2002) formulated a mathematical programming model with minisum objective function where facilities are

�nite-sized or point and barriers are rectangular. Kelachankuttu et al. (2007) presented a single �nite-sized
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facility location problem applying a contour line. Klamroth (2004) divided the feasible region into some convex

regions, in which the number of these convex regions is bounded by O(N 2) where N is the number of demand

points. Bischo� and Klamroth (2007) solved that problem using the Weiszfeld technique and genetic algorithm

(GA). These works considered the �nite-size facility location problems in the presence of �xed position arbitrary

shaped barriers. The related literature studied the Weber location problem in the presence of a �xed-position

barrier. In this paper, we focus on a minimax location problem with a barrier which has a probabilistic position.

Miyagawa (2010) provided an analytical study on the rectilinear deviation distance from preplanned distance

to visit a facility on a continuous plane with random pattern. Miyagawa (2012, 2017) studied the presence of

a square and rectangular barrier in the probabilistic rectilinear distance Weber location problem, respectively,

and showed that how the location and the size of the barrier a�ect the barrier distance and consequently the

new facility location. Canbolat and Wesolowsky (2010) formulated a rectilinear distance single facility Weber

location problem in the presence of a barrier, which randomly a�ects the distance between pairs of existing-

new facilities; as such, an expected barrier distance function is computed. Proposing an exact algorithm, they

proved that the expected barrier distance in each subspace is a convex function and that the Weber problem

with a probabilistic line barrier is a convex optimization problem knowing that sum of a number of convex

functions is a convex function. Considering this property, Shiripour et al. (2012) extended a multi-Weber

location problem with a probabilistic line barrier and formulated a mixed integer quadratic programming model

in the convex solution space. Amiri-Aref et al. (2013a) developed an exact algorithm to solve a generic model

with a polyhedral-shaped barrier. Javadian et al. (2014) proposed a mixed-integer nonlinear programming

(MINLP) model for the minisum location relocation problem with barrier and solved the problem in various

sizes by implementing two meta-heuristics, GA and imperialist competitive algorithm (ICA). O§uz et al.

(2016) formulated a general mathematical model for facility location problems with restricted regions and O§uz

et al. (2018) proposed the Benders decomposition algorithm to solve the continuous location problem with

restricted regions. While the existing research work mentioned above have shown the impact of randomness in

the restricted location problem, the minimax objective function has not been studied in that context.

For the special case of minimax objective location problem, Nandikonda et al. (2003) considered the

rectilinear distance location problem with arbitrary shaped barriers. Dearing et al. (2005) studied the minimax

facility location problem with polyhedral barriers using the block norm distances and derived a �nite dominating

set for the problem. Then, Frieÿ et al. (2005) considered the minimax location problems in the presence of

polyhedral barriers with the Euclidean distance. They proposed a solution approach based on propagation of

circular wavefronts. Sarkar et al. (2007) extended that problem to a �nite facility location problem with only

new-exising interactions. These works considered the minimax location problems with �xed-position polyhedral

barriers. Amiri-Aref et al. (2013b) took the advantage of the convexity of the expected barrier distance function

in a multi-period planning horizon since the expected barrier distance was the summation of barrier distances

over periods and as such, the summation function over period was convex. Considering that, they generated a

convex multi-period rectilinear distance minimax location-dependent relocation problem that was sensitive to

not only the demand but also the location of demand points during the planning horizon. Amiri-Aref et al.

(2016) generalized the shape of barrier to polyhedral and proposed a threshold of the barrier size to be e�ective

in the distance and a lower bound problem based on the forbidden region. We observe that all above-mentioned
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works consider the single facility minimax location problem, while we study a multi-facility minimax location

problem in which the maximum distance between demand sites and facilities, as well as between facilities, is

minimized. We note that while travel between facilities is common, this distance is usually not modelled in

objective functions proposed in the literature.

We also summarize each reviewed article in this paper according to the general facility location problem clas-

si�cation, introduced by Hamacher and Nickel (1998), in Table 1, in which the �rst column outlines the related

research works in the literature review, the second column represents the problem classi�cation scheme, and the

third column indicates the solution approach proposed for solving the corresponding problem. Notation used

for problem classi�cation scheme and solution approaches are listed at the bottom of Table 1. The classi�cation

is based on a �ve-position code as Pos1/Pos2/Pos3/Pos4/Pos5. Pos1 indicates the number of new facilities that

Table 1: Literature review in facility location problems with barriers.

Reference Problem classi�cation scheme∗ Solution approach∗∗

minisum location problems with barriers

Larson and Sadiq (1983) 1/<2/B=Ph/dB1 /
∑

Discretization heuristic

Batta et al. (1989) 1/<2/B=Ar/dB2 /
∑

Discretization heuristic

Aneja and Parlar (1994) 1/<2/B=Ph/dB2 /
∑

DA and SA

Hamacher and Klamroth (2000) 1/<2/B=Ph/dBp /
∑

Discretization heuristic

Klamroth (2001a) 1/<2/B=Ph/dB2 /
∑

Reduction heuristic

Klamroth (2001b) 1/<2/B=Lp/dB2 /
∑

Decomposition approach

Wang et al., (2002) 1/<2/B=Re,fs/dB1 /
∑

Heuristic

Sava³ et al. (2002) 1/<2/B=Ph,fs/dB1 /
∑

Heuristic

Klamroth and Wiecek (2002) 1/<2/B=Lp/dBLB
/
∑

Decomposition approach

Dearing and Segars (2002a) 1/<2/B=Ph/dB1 /
∑

Decomposition approach

Dearing and Segars (2002b) 1/<2/B=Ph/dB1 /
∑

Partitioning heuristic

McGarvey and Cavalier (2003) 1/<2/B=Ph/dB2 /
∑

BSSS

Klamroth (2004) 1/<2/B=C/dB2 /
∑

Heuristic

Pfei�er and Klamroth (2005) N/<2/B=Lp/dBLB
/
∑

par Discretization heuristic

Bischo� and Klamroth (2007) 1/<2/B=Ph/dB2 /
∑

Weiszfeld technique and GA

Kelachankuttu et al. (2007) 1/<2/B=Re,fs/dB1 /
∑

Heuristic

Bischo� et al. (2009) N/<2/B=Ph/dB2 /
∑

Hybrid heuristic

Miyagawa (2010) 1/<2/B=Re/dB1 /
∑

prob ϑ↑ Analytical approach

Canbolat and Wesolowsky (2010) 1/<2/B=L/dB1 /
∑

prob ϑ↑ Exact algorithm

Shiripour et al. (2012) N/<2/B=L/dB1 /
∑

prob ϑ↑ ICA and GA

Miyagawa (2012) 1/<2/B=S/dB1 /
∑

prob ϑ↑ Analytical approach

Amiri-Aref et al. (2013a) 1/<2/B=Ph/dB1 /
∑

prob ϑ↑ Exact algorithm

Javadian et al. (2014) 1/<2/B=L/dB1 /
∑

prob ϑ↑ ICA and GA

O§uz et al. (2016) N/<2/B=Ar/dBp /
∑

ϑ↑ CPLEX

Miyagawa (2017) 1/<2/B=Re/dB1 /
∑

par ϑ↑ Analytical approach

O§uz et al. (2018) N/<2/B=Ar/dBp /
∑

ϑ↑ BD

minimax location problems with barrier

Nandikonda et al. (2003) 1/<2/B=Ar/dB1 / max Discretization heuristic

Dearing et al. (2005) 1/<2/B=Ph/dB2 /
∑

or max Decomposition approach

Frieÿ et al. (2005) 1/<2/B=Ph/dB2 /max Circular wave-front approach

Sarkar et al. (2007) 1/<2/B=Ar,fs/dB1 /max Discretization heuristic

Amiri-Aref et al. (2013b) 1/<2/B=L, reloc/dB1 /maxprob ϑ↑ ICA and GA

Amiri-Aref et al. (2016) 1/<2/B=L/dB1 / maxprob ϑ↑ Decomposition approach

This paper N/<2/B=L/dB1 /maxprob ϑ↑ ϑ↓ Split-divide-and-conquer algorithm

∗1: single facility, N :multi-facility, <2:two-dimentional continuous space, B: barrier shape, C: circular, Ph: polyhedral,

Re: rectangular, S: square, Ar: arbitrary, L: line, Lp; line with passages, fs: �nite size facility, par: Pareto locations,

prob: probabilistic, ϑ↑: convex objective function ϑ↓: concave objective function
∗∗ BSSS: big square small square, DA: dijkstra's algorithm, GA: genetic algorithm, ICA: imperialist competitive

algorithm, SA: simulated annealing, BD: Benders decomposition,
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should be located; Pos2 shows the solution space that can be on the plane, discrete or network. Pos3 refers to

the special features of location problems (e.g., restricted region or relocation). Pos4 displays the information

about the interaction between the new facilities and the demand points such as distance or cost. Pos5 contains

the objective function. The problem studied in this paper is represented by N/<2/B=L/dB1 /maxprob ϑ↑ ϑ↓

stating that a planar multi-facility Weber location problem in a two-dimensional continuous space, i.e., <2, is

concerned. The special feature of this problem is the existence of a line-shaped barrier which has a probabilistic

position on its route. The latter has been shown in Pos3 the problem classi�cation scheme (B=L). The rec-

tilinear (Manhattan) distance function in the presence of the probabilistic line barrier is used in the problem

formulation, shown in Pos4 as dB1 . The objective function is the minimization of the maximum expected barrier

distance (dB1 ) between any pairs of existing demand site and facilities as well as between the facility locations

themselves, which is represented in the �fth position (maxprob). The convexity of the objective function cannot

be determined, therefore both signs ϑ↑ and ϑ↓ are used.

Overall, this paper makes the following contributions. First, this paper models a problem that is of particular

relevance to the location of emergency service facilities serving urban areas, yet has not been studied in the

literature. While much of the literature has addressed minisum location problems, as underlined in Table 1,

this paper integrates the notion of fairness by modeling a minimax location problem. Secondly, this paper is

the �rst attempt to model a planar multi-facility minimax location problem that recognizes the presence of a

line barrier with probabilistic location. The resulting model is both non-linear and non-convex, which makes it

harder to solve than the relevant problems studied in the literature (Table 1). As a result, the third contribution

of this paper is a new solution method for the proposed model, which employs a split-divide-conquer resolution

strategy. The main feature of this solution method is a new relaxation for the problem, that computational

experiments indicate is often able to produce a strong lower bound. These contributions are supported by a

case study involving the location of police facilities in Kingston upon Thames. This case study illustrates the

value in the proposed model and managerial insights that can be gained from its solutions.

3. Problem modeling approach

In this section, we �rst describe some of the constructs we use to formulate the problem we study; a facility

location problem wherein the presence of a recurrent (and sometimes irregular) line barrier must be recognized

and locations are measured by a function that evaluates the longest distance from a facility to an individual

demand site. After reviewing these constructs, we present the formulation itself.

3.1. Background

We let I =
{
Pi ∈ <2 : i =1, . . .,I

}
be a �nite set of demand points where I is the number of demand points

and J =
{
Xj ∈ <2 : j =1, . . .,J

}
be the �nite set of new facilities that should be located (J is the number of

new facilities). We let Pi = (ai, bi) denote the coordinates of the demand point i and Xj = (xj , yj) denote the

coordinates of the new facility j. Both are de�ned in a feasible region of the plane. Let B be a set of nonempty

barrier regions in <2. As such, facilities may only be located and travel may only occur in F=<2\
∫

(B) , where∫
(B) is the interior region of the barrier. We let Dp(X,Y ) denote the p-norm distance between X,Y ∈ F ,

which is calculated as Dp (X,Y ) = p

√∑
[|X − Y |p]. We let DB

p (Pi, Xj) denote the p-norm barrier distance

from Pi to Xj in the presence of barriers and call this the p-norm barrier distance.
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Figure 1: A line barrier.

We next use these distance functions to classify pairs of points based on the impact of the barrier on

the distance between them. For points X,Y ∈ F , we calculate DB
p (X,Y ) = inf {l(PX−Y ):PX−Y is feasible

X-Y path}, where l(PX−Y ) is the length of the feasible X-Y path. We say the points X and Y ∈ F are

p-visible if DB
p (X,Y ) = Dp(X,Y ), i.e. the barrier does not impact the p-norm distance between them.

For X ∈ F we de�ne the set of visible points as visiblep(X) =
{
Y ∈ F : DB

p (X,Y ) = Dp(X,Y )
}
. On the

other hand, we say the points X,Y ∈ F are p-shadow if DB
p (X,Y ) > Dp (X,Y ) , i.e. the barrier does

a�ect the p-norm distance between them. For X ∈ F we de�ne the set of shadow points as Shadowp(X) ={
Y ∈ F : DB

p (X,Y ) > Dp(X,Y )
}
. While we de�ne these concepts generally, in this paper we focus on rectilinear

distance metric (i.e., p=1).

We illustrate these concepts in Figure 1. There we illustrate a horizontal line barrier, (·, β) ∈ <2, with

starting point Xs and ending point Xe (when the line barrier has a known length l, the ending point of the

line barrier can be calculated as Xs+l). The dashed lines between pairs of points ((Xj , Ri), (Xj , Qi), (Xj , Pi))

represent feasible paths when the line barrier is not present. We see in Figure 1 that when the line barrier is

�xed in this position it does not a�ect the distance between either Xj and Qi or Xj and Ri; hence, the points

are 1-visible to each other and have regular rectilinear distances (indicated by blue dashed-lines). However, in

this position the line barrier does a�ect the distance between points Xj and Pi (indicated by a red dashed-line).

So those are shadow points. In this case the barrier distance, DB
p (Xj , Pi) > Dp (Xj , Pi) , should be used,

wherein DB
p (Xj , Pi) measures the length of the grey solid line. A more detailed description and discussion of

line barriers can be found in Klamroth (2002).

In the problem we consider, we do not assume that the position of the line barrier is �xed and known a

priori. As a result, we use a probabilistic model of the starting point of the line barrier (and in turn the location

of the end point is also random). Canbolat and Wesolowsky (2010) consider a similar situation, which they

model with a continuous uniform distribution for the starting point of the line barrier, Xs ∼ U(L1, L2) with

density function f (Xs) = 1
L2−L1

, L1 ≤ Xs ≤ L2. As the length of the line is known, the end point of the line

will also follow a continuous uniform distribution. We let r represent the di�erence between upper and lower

limits of Xs, i.e. r = L2 − L1. The expected barrier distance between points x, ai can be calculated as follows

(Canbolat and Wesolowsky 2010):

E
[
DB

1 (x, ai)
]

=


(l−|x−ai|)2

2r + |x− ai| ; |x− ai| < l

|x− ai| ; |x− ai| ≥ l

 ∀ i (1)

3.2. Formulation

To formulate the model we assume I predetermined demand points located at (ai, bi) ∈ <2, i = 1, . . . , I and

J new facilities whose location we represent with (xj , yj) ∈ <2, j = 1, . . . , J . We assume a line barrier with

length l and a starting point that is randomly distributed on the horizontal route (·, β) ∈ <2, · ∈ [L1, L2]. We

weight the distances between facilities and demand points with the scalar wij . This weight can represent the
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number of customers or volume of demand in location i that can be served by facility j. Similarly, our problem

setting also involves travel between facilities and thus we assume a weight parameter, vjk for that distance as

well.

We �rst describe the objective of the model. We focus on the location of emergency service facilities. In this

context, equitable accessibility is an important criteria. One meausre of equitability is the furthest distance an

individual would have to travel to reach the facility. In our model we choose to minimize this furthest distance

using what is often referred to as a minimax objective.

Given the notation just described, the maximum weighted rectilinear barrier distance between new facility

j and demand point i is calculated as:

f1 ((x1, y1) , . . . , (xJ , yJ)) = max
1≤i≤I,1≤j≤J

{
wij .D

B
1 (Pi, Xj)

}
, (2)

where DB
1 (Pi, Xj) is the rectilinear barrier distance between new facility j and demand point i. Similarly, the

maximum weighted rectilinear barrier distance function between new facilities j and k is:

f2 ((x1, y1) , . . . , (xJ , yJ)) = max
1≤j<k≤J

{
vjk.D

B
1 (Xj , Xk)

}
, (3)

In summary, the maximum rectilinear barrier distance among all demand points and new facilities is as

follows:

f ((x1, y1) , . . . , (xJ , yJ)) = max

{
max

1≤i≤I,1≤j≤J

{
wij .D

B
1 (Pi, Xj)

}
, max
1≤j<k≤J

{
vjk.D

B
1 (Xj , Xk)

} }
(4)

Because the location of the barrier is random we will optimize the expected barrier distance between any

pairs of points based on the following calculation:

E [f ((x1, y1) , . . . , (xJ , yJ))] = max

{
max

1≤i≤I,1≤j≤J

{
wij .E

[
DB

1 (Pi, Xj)
]}

, max
1≤j<k≤J

{
vjk.E

[
DB

1 (Xj , Xk)
]} }

(5)

As the barrier moves along a horizontal route it does not impact the distance traveled along the y-axis. As

such, our optimization problem seeks to

min(xj ,yj)∈<2,j∈J {E [f ((x1, y1) , . . . , (xJ , yJ))] =

max{ max
1≤i≤I,1≤j≤J

{
wij .

(
E
[
DB

1 (ai, xj)
]

+ |bi − yj |
)}
, max
1≤j<k≤J

{
vjk.

(
E
[
DB

1 (xj , xk)
]

+ |yj − yk|
)
}
}
} (6)

For the model to determine whether or not the barrier distance should be used to measure the distance

between a demand point and a facility or between two facilities we de�ne variables and constraints associated

with each dimension in the plane (<2). Recalling that Pi = (ai, bi) denote the coordinates of the demand point

i and Xj = (xj , yj) denote the coordinates of the facility j we next describe these two sets of variables and

constraints.

3.2.1. Visibility constraints

These variables and constraints examine the x-coordinate of the demand point (or facility) and a facility to

determine whether the barrier may be in e�ect. Speci�cally, these constraints are based on the observation that

when demand point i and new facility j are such that |xj − ai| < l, the barrier may a�ect the distance between

the two points Pi and Xj (and thus DB
1 (Pi, Xj) should be used). Because this set of constraints deals with the
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visible points properties described earlier, we hereafter called them "visibility constraints". To model this we

de�ne the variables pij ∈ {0, 1}, which should satisfy constraints (7).

pij =

 1; |xj − ai| < l

0; |xj − ai| ≥ l

 , 1 ≤ i ≤ I, 1 ≤ j ≤ J (7)

Similarly, we de�ne the variable tjk to represent when a barrier may impact the distance between the facilities

j and k; these variables should satisfy constraints (8).

tjk =

 1; |xj − xk| < l

0; |xj − xk| ≥ l

 , 1 ≤ j < k ≤ J (8)

3.2.2. No-�attening constraints

The next set of variables and constraints examines the y-coordinates of a demand point and facility (or two

facilities) to determine whether the barrier may be in e�ect. Given that the y-coordinate of the barrier is known,

we divide the plane into two half-planes: 1) the half-plane under the barrier route and 2) the half-plane above

the barrier route. When two arbitrary points are located in opposite half-planes, then the barrier may be in

e�ect (see Xj and Pi in Figure 1), which is called "no-�attening condition". On the other hand, when two

arbitrary points are in the same half-plane, the barrier does not a�ect the distance between them (see Xj and

Ri in Figure 1). To model this, for each pair of demand point iand facility location j, we de�ne the variables

qij ∈ {0, 1} which should satisfy constraints (9).

qij =

 1; (bi > β ∧ yj > β ) ∨ (bi ≤ β ∧ yj ≤ β)

0; otherwise

 , 1 ≤ i ≤ I, 1 ≤ j ≤ J (9)

As with the x-dimension, we also de�ne the variable ujk ∈ {0, 1} for the pair of facility locations j and k.

This variable should satisfy constraints (10).

ujk =

 1; (yj > β ∧ yk > β) ∨ (yj ≤ β ∧ yk ≤ β)

0; otherwise

 , 1 ≤ j < k ≤ J, (10)

3.2.3. Barrier constraints

The previous variables, appropriately de�ned and constrained, enable us to model when the barrier distance

must be used to measure the distance between two points. To that e�ect, we de�ne the binary variables cij and

c
′

jk to represent when the barrier distance function should be used to measure the distance between demand

point i and facility j or facilities j and k. We relate these new variables to the dimension-speci�c variables with

constraints (11) and (12).

cij=

 1; pij + qij = 2

0; pij + qij ∈ {0, 1}

 , 1 ≤ i ≤ I, 1 ≤ j ≤ J (11)

c
′

jk =

 1; tjk + ujk = 2

0; tjk + ujk ∈ {0, 1}

 , 1 ≤ j < k ≤ J, (12)

According to Canbolat and Wesolowsky (2010), the barrier conditions are only dependent on the x-

coordinate and y-coordinate constraints aforementioned; however, Amiri-Aref et al. (2016) showed that
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the barrier condition is also sensitive to the length of the barrier and proposed a threshold of the length of

barrier that may impact the barrier constraints. If the length of the barrier is long enough and the x-coordinate

and y-coordinate constraints are met, the barrier distance will be greater than the regular distance, otherwise

the regular rectilinear distance should be computed. Suppose x and x
′
be the solution of the problem with

barrier and without barrier, respectively. When the x-coordinate and y-coordinate conditions are true and the

length of the barrier is long enough, the threshold of the length of barrier lT is de�ned as follows (for more

information refer to Amiri-Aref et al. (2016)):

lT = min
i

{√
2r (|x′ − xi| − |x− xi| ) + |x− xi|

}
(13)

3.2.4. Expected barrier distance computation

Our model builds on the work presented in Canbolat and Wesolowsky (2010) wherein the expected value of the

barrier distance is minimized when there is only one new facility. In particular, we expand their calculation to

cases where there is more than one new facility. Constraints (14) state the conditions, given the starting point

of the barrier Xs, when it impacts the distance between a facility j and a demand point i that are in di�erent

half-planes de�ned by the barrier route. We let ϕ represent the value for Xs that satisfy these conditions and

ρ (xj)the probability that

ρ (xj) = Pr (max {xj − l, ai − l} ≤ Xs ≤ min {xj , ai}) , 1 ≤ i ≤ I, 1 ≤ j ≤ J (14)

Considering the x-coordinates of facility j and demand points i (again we presume they are in di�erent

half-planes de�ned by barrier route), there are two possible cases, (1) xj > ai and (2) xj ≤ ai. For the �rst

case, the barrier distance should be used when Xs ∈ (xj − l, (xj + ai − l) /2 ] and Xs ∈ [ (xj + ai − l) /2, ai) .

In the second, the barrier should be used when Xs ∈ (ai − l, (xj + ai − l) /2 ] and Xs ∈ [ (xj + ai − l) /2, xj) .

As such, the expected barrier distance, conditioned on Xs ∈ ϕ is given in equation (15).

E
[
DB

1 (xj , ai)
∣∣Xs ∈ ϕ

]
=
l + |xj − ai|

2
, 1 ≤ i ≤ I, 1 ≤ j ≤ J (15)

The other factor should be taken into account in the possibility of being in-e�ect of barrier occurrence on

its route is its speed δ. In fact the more speed the barrier has on its route, the less likely the barrier happens

(i.e., ρ (xj) ∝ 1
δ ). Therefore, the expected value of the distance between xj and ai, when the barrier is in e�ect,

is calculated in equation (16) .

E
[
DB

1 (xj , ai)
]

=
l + |xj − ai|

2
ρ (xj) + |xj − ai| (1− ρ (xj)) (16)

=
(l − |xj − ai| )2

2r
+ |xj − ai| , i ∈ I, j ∈ J

The general expected barrier distance between xj and ai is presented in equation (17).

E
[
DB

1 (xj , ai)
]

=


(l−|xj−ai|)2

2rδ + |xj − ai| ; |xj − ai| < l

|xj − ai| ; |xj − ai| ≥ l

 , 1 ≤ i ≤ I, 1 ≤ j ≤ J (17)
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Similarly, the expected barrier distance between pairs of the new facilities, i.e., E
[
DB

1 (xj , xk)
]
, can be

computed in equation (18).

E
[
DB

1 (xj , xk)
]

=


(l−|xj−xk|)2

2rδ + |xj − xk| ; |xj − xk| < l

|xj − xk| ; |xj − xk| ≥ l

 , 1 ≤ j < k ≤ J (18)

To sum up, the minimization of the objective function (6) is reformulated to objective function (19) using

the above mentioned equations:

min
(x1,y1),. . . ,(xJ ,yJ )

{
max

{
E
[
DB

1 (xj , ai)
]
, E
[
DB

1 (xj , xk)
]}}

(19)

where:

E
[
DB

1 (xj , ai)
]

= max
1≤i≤I
1≤j≤J

{
wij .

(
(l − |xj − ai| )2

2rδ
.cij + |xj − ai| + |yj − bi|

)}
(20)

E
[
DB

1 (xj , xk)
]

= max
1≤j<k≤J

{
vjk.

(
(l − |xj − xk| )2

2rδ
.c
′

jk + |xj − xk| + |yj − yk|

)}
(21)

subject to constraints (7)-(12).

We let zB represents the objective function (19). We then write the proposed problem as below:

min
(x1,y1),. . . ,(xJ ,yJ )

zB (22)

where

wij .

(
(l − |xj − ai| )2

2rδ
.cij + |xj − ai| + |yj − bi|

)
≤ zB , i ∈ I, j ∈ J (23)

vjk.

(
(l − |xj − xk| )2

2rδ
.c
′

jk + |xj − xk| + |yj − yk|

)
≤ zB , 1 ≤ j < k ≤ J (24)

subject to constraints (7)-(12).

4. Solution approach

As mentioned, this location problem with barrier is formulated as a nonlinear program, which can be di�cult to

solve, computationally-speaking. To overcome the computational challenge associated with solving this problem,

we employ a solution method that �rst solves a relaxation of the problem wherein the barrier region is instead

treated as forbidden. While a relaxation of the problem we seek to solve can be formed by simply ignoring

the barrier region, a solution to this relaxation may locate a facility in such a region and thus be infeasible

for the original problem. Instead, we formulate an optimization model wherein the barrier region is modeled

as a forbidden region. As facilities are not allowed in forbidden regions, doing so implies that solutions to

this model are feasible for the original problem. However, recall that traversing a forbidden region is allowed,

while traversing a barrier region is not. Thus, distances in this model are underestimates of those incurred

in the original problem. As a result, this model is a relaxation of the original problem. A formal proof that

this model is a relaxation can be found in Klamroth (2002).After solving this relaxation the algorithm then

evaluates the actual, expected, distances traveled from the locations it suggests when the probabilistic barrier

is in place. If, in fact, the barrier does not impact these expected distances then the locations are optimal and

the algorithm terminates. Conversely, if the barrier does impact the expected distances, the algorithm then
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proceeds to divide the multi-facility location problem into a series of single-facility location with a probabilistic

barrier problems, where the solution space of each single-facility location problem is splitted into two subspaces.

Finally, it conquers the best solutions from the subproblems. Figure 2 illustrates the algorithm.

In this section we �rst describe the steps taken by the algorithm in detail. We �nish with a discussion of an

alternate optimization problem we solve in order to benchmark the performance of the algorithm.

4.1. Pre-processing step

As stated before, establishing a facility in a forbidden region is prohibited but passing through is permitted.

Accordingly, we present a relaxation of the multi-facility minimax location problem with a probabilistic line

barrier based on considering a forbidden region along the barrier route. Klamroth (2002) �rst introduced this

restricted location problem involving a forbidden region. Empirically-speaking, this has been known to yield a

strong lower bound on the original problem. We present this lower bound problem below:

zR = min
(x1,y1),. . . ,(xJ ,yJ )

z (25)

Subject to:

wij . (|xj − ai| + |yj − bi| ) ≤ z, i ∈ I, j ∈ J (26)

vjk. (|xj − xk| + |yj − yk| ) ≤ z, j, k ∈ J, j < k (27)

xj , yj , z ≥ 0, yj 6= β, j ∈ J (28)

As the barrier region is a line the likelihood of an optimal solution requiring a facility to be located in the barrier

region is extremely low. As such, we treat the constraint yj 6= β heuristically by �rst solving the forbidden

region problem without that constraint and then slightly perturbing the location of the facility if in fact it is

located in the barrier region.

As the location problem with forbidden region is a relaxation, it under-estimates the barrier distances

associated with the locations it prescribes. Thus, after solving the lower bound problem to get the location

coordinates X∗R = {(x∗j , y∗j ), j = 1, . . . , J}, we solve the optimization problem given by the objective function

(22) and constraints (7)-(12) and (23) and (24) with the location coordinate variables �xed to the coordinates

indicated by X∗R (e.g. we �x xj = x∗j , yj = y∗j ∀j ∈ J). We label the objective function value of this problem

zB(X∗R). This latter objective function value represents the original problem evaluation with a non-optimal

solution X∗R, which can be considered as an upper bound value for the original problem.

As the forbidden region problem is a relaxation, when zB(X∗R) = zR, we can conclude that the solution X∗R

is in fact optimal for the problem with a probabilistic barrier and the algorithm can terminate. When instead

zB(X∗R) > zR the algorithm proceeds by decomposing the multiple-facility location problem into a series of

single-facility location problems, as represented in Figure 2.

4.2. Split-divide-and-conquer strategy

We next discuss the split-divide-and-conquer portion of the algorithm. The proposed heuristic algorithm, which

is based on a split-divide-and-conquer strategy, works in principle recursively and not iteratively, by breaking

down the feasible set of the problem to optimize into several sub-problems of the main problem. It evaluates

each subproblem to obtain e�cient bounds on the subproblem objective value. The split-divide-and-conquer
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strategy with an implicit enumeration principle is a powerful tool for solving complex problems. For the

considered minimax multi-facility location problem in the presence of a probablistic line barrier, this strategy

�rst splits the whole solution space by the barrier route into two subspaces and then divides the original problem

into a �nite number of single-facility location sub-problems. The reason for which we adopted this heuristic

algorithm is that the existing solution algorithms for solving the minimax multi-facility location problem with

barrier are mostly based on the discretization approaches by applying continuous relaxation to discrete location

problems. In contrast, the solution algorithm proposed in this paper maintains the continuity of the original

problem and optimaly solves each sub-problem. This enables us to solve real-life sized problems.

The objective function (6) of the problem is composed of two terms: (1) the maximum expected barrier

distance between facility locations and demand points, and, (2) the maximum expected barrier distance between

facility locations. As such, for a given set of locations, one can calculate these two terms independently, with

the objective function taking on the greater of the two.

In that spirit, when dividing the multi-facility location problem into a series of single-facility location prob-

lems, our algorithm solves a series of convex optimization problems that only consider the �rst term in the

objective function (the expected barrier distance between the facility location and demand points). Then, after

the location of all facilities has been determined, the maximum barrier distance between facilities is calculated.

We de�ne z1 below to represent the maximum expected barrier distance between facilities and demand points,

z2 to represent the maximum expected barrier distance between facilities, and zB the greater of the two.

z1 = min
(xj ,yj)

{
max
i,j

{
wij .E

[
DB

1 (Pi, Xj)
]}}

, subject to (7), (9), (11), and(17). (29)

z2 = min
(xj ,yj)

{
max

1≤j<k≤J

{
vjk.E

[
DB

1 (Xj , Xk)
]}}

(30)

zB = min
{
z1, z2

}
(31)

In this step, we divide the main optimization problem given by (32) into J single-facility minimax location in

the presence of a probabilistic line barrier problems. Speci�cally, we can formulate these single-facility location

problems as (Further details regarding this reformulation can be found in A.1 in Appendix):

z1 = max
j

{
z1j
}

where z1j = min
(xj ,yj)

{
max
i

{
wij .E

[
DB

1 (Pi, Xj)
]}}

, j ∈ J (32)

However, even solving this single-facility location problem may be computationally challenging due to the

presence of a probabilistic line barrier. As such, we decompose this problem further, splitting the solution space

into two subspaces; one is where the facility is located in the half-plane below the barrier region given by (33)

- (35) (labeled P1 in the �ow chart) and one is where the facility is located in the half-plane above the barrier

region given by (36) - (38) (labeled P2 in the �ow chart).

This strategy is based on the observation that the barrier will only impact the distance between a facility

and the demand points in the opposite half-plane from where the facility is located. To make this discussion

more precise, let PiL = (aiL , biL) , iL = 1, . . . , IL be the coordinates of demand points in the lower half-

plane and PiU = (aiU , biU ) , iU = 1, . . . , IU be the coordinates of demand points in the upper half-plane. Let
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IL =
{
PiL ∈ <2|biL < β : iL = 1, . . ., IL

}
be a �nite set of demand points in the lower half-plane and let

IU = {PiU ∈ <2|biU > β : iU = 1, . . ., IU} be a �nite set of demand points in the upper half-plane.

To motivate splitting the solution space of this single-facility location problem into two subspaces, let X∗j =

(x∗j , y
∗
j ) be the optimal location of j-th new facility. There are two possibilities for X∗j , i.e., either y

∗
j < β (it is

in the half-plane below the barrier) or y∗j > β (it is in the half-plane above the barrier). We next examine these

two cases.

Case 1: when y∗j < β, the actual distance between X∗j and PiL is the regular rectilinear distance and the actual

distance between X∗j and PiU is the barrier distance. To model this case, we de�ne problem P1 (for more details

see A.2 in Appendix):

z1j = max
iL,iU

{
z1jiU , z

1
jiL

}
, j ∈ J |y∗j < β (33)

where

z1jiU = min
(xj ,yj)

{
max
iL
{wiLj . (|aiL − xj | + |biL − yj | )}

}
, j ∈ J, iL ∈ IL (34)

z1jiL = min
(xj ,yj)

{
max
iU

{
wiU j .

(
E
[
DB

1 (aiU , xj)
]

+ |biU − yj |
)}}

, j ∈ J, iU ∈ IU (35)

Case 2: Conversely, when y∗j > β, the actual distance between X∗j and PiU is the regular rectilinear distance

and the actual distance between X∗j and PiL is the barrier distance. To model this case, we de�ne problem P2

(for more details see A.3 in Appendix):

z1j = max
iL,iU

{
z1jiL , z

1
jiU

}
, j ∈ J |y∗j > β (36)

where

z1jiL = min
(xj ,yj)

{
max
iU
{wiU j . (|aiU − xj | + |biU − yj | )}

}
(37)

z1jiU = min
(xj ,yj)

{
max
iL

{
wiLj .

(
E
[
DB

1 (aiL , xj)
]

+ |biL − yj |
)}}

(38)

We then calculate the location of facility j ∈ J with X∗j = argmin
{

z1j
}
Finally, the expected barrier distances

between these facilities can be evaluated with the following:

Z2 = min

{
max

1≤j<k≤J

{
vjk.E

[
DB

1 (X∗j , X
∗
k)
]}}

(39)

We present a formal description of the algorithm below.

�����������������������������������

Algorithm

Inputs:

Coordinates of demand points and a probabilistic line-shaped barrier with known parameters

1. Find z∗R and determine X∗R = argmin {z∗R}

2. Evaluate zB (X∗R)

3. If z∗R = zB (X∗R) then

X∗=X∗R

Go to End

Else

For j = 1 to J
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z1j = max
{
z1jiLz

1
jiU

}
z1j = max

{
z1jiL , z

1
jiU

}
z1j = min

{
z1j , z

1
j

}
X∗j = argmin

{
z1j
}

Next j

4. z1 = maxj{z1j }

For j = 1 to J − 1

For k = j + 1 to J

Evaluate z2jk(X∗j , X
∗
k)

Next j, k

5. Find z2 = maxj,k{z2jk}

6. zB = max
{
z1, z2

}
End

Outputs:

Location of J new facilities that minimize the maximum expected travel distance in the presence of a probabilistic

line barrier.

�����������������������������������

The most time-consuming steps in the proposed algorithm are steps 4 and 5. Assume that runtime of each

sub-problem in the algorithm is almost the same and equal T . Step 4 of the algorithm has time complexity of

O(4JT ), because four sub-problems should be solved to �nd z1jiL , z
1
jiU
, z1jiL and z1jiU for each j. In step 5, z2jk

should be evaluated J(J−1)
2 times; therefore, the time complexity of step 5 will be O(J(J−1)2 T ). To sum up, the

time complexity of the algorithm in the worst case is O(J2T ) where T is the computational time for solving

each sub-problem.

4.3. Benchmark problem

One of the challenges associated with solving the problem we study is the probabilistic nature of the location

of the barrier. As such, to benchmark the computational performance of the proposed algorithm, we also

compare it to the performance of solving a problem that removes this uncertainty by assuming the barrier is

always located at its expected position. This is analogous to replacing a representation of the variability of a

probability distribution with a point estimate that is its expected value. By assuming the line barrier is �xed

at its expected position reduces the main problem to an optimization problem that is computationally easier to

solve. To formulate this optimization problem we rely on the following two lemmas:

Lemma 1. The expected value of start point of the line barrier is as follows:

xs =
L2 + L1 − l

2
(40)

Proof. See the Appendix.�

Lemma 2. Consider a line barrier at its expected position. When both visibility and no-�attening conditions

are satis�ed, the shortest path through two ends of the �xed line barrier computes the barrier distance.
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Proof. See the Appendix.�

With these lemmas and shortest paths in hand, we have the following optimization problem:

zRP = min z
′

(41)

Subject to:

wij .d
′

ij ≤ z
′

(42)

vjk.d
′

jk ≤ z
′

(43)

d
′

ij =

 SP ij x̄s ≤ xj ≤ x̄e and x̄s ≤ ai ≤ x̄e
|ai − xj | + |bi − yj | otherwise

i ∈ I, j ∈ J (44)

d
′′

jk =

 SP jk x̄s ≤ xj ≤ x̄e and x̄s ≤ xk ≤ x̄e
|xj − xk| + |yj − yk| otherwise

. j, k ∈ J, j < k (45)

where x̄e , SP ijand SP jk are formulated in equations (A.4), (A.5) and (A.6) in the Appendix, respectively.

We further reformulate this nonlinear programming model to a mixed integer linear programming (MILP)

model by linearization of the absolute value functions, multiplying binary variables, and multiplying binary to

nonnegative variables. We note that this optimization problem, with the barrier �xed at its expected location,

is also a reduction of the original problem wherein the location of the barrier is not known. This reduction

consists of computing the distances SP ij and SP jk based on the expected location of barrier instead of the

expected distance function.

5. Computational results

This section outlines the results of the computational performance of the algorithm. We study two dimensions of

algorithm performance: (1) solution quality, and, (2) the time needed to produce a solution of that quality. We

benchmark the algorithm on these metrics against three alternative methods: (1) solving the original problem

with a non-linear solver (LINGO 14.0), (2) solving the MILP presented in Section 4.3 wherein the barrier is

�xed at its expected location, and, (3) solving the relaxation problem wherein the barrier region is modeled

as a forbidden region. The results consistently show that the algorithm proposed above is able to produce

high-quality solutions in run-times that are comparable to what is necessary to solve the relaxation problems.

We �rst discuss the setting and design for our experiments and then discuss the results.

5.1. Experimental design and setting

All models and algorithms were implemented on a computer with 2 GB RAM and 2.00 GHz processor running on

Microsoft Windows 7. All non-linear programs (NLP) were solved with LINGO 14.0. Preliminary experiments

indicated that the SLP (successive linear programming) directions strategy of LINGO was the best-performing

and thus was used when solving NLP in this computational study. When solving NLPs the solver was given a

time limit of three hours (10,800 seconds). If the optimal solution is not found at the end of the termination

criterion, the software reports the best solutions found within the limit or the problem is considered non-solvable.

The MILP presented in Section 4.3 was solved by CPLEX.
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We randomly generated instances that have one of 5, 10, 20, 50, 100, 200, 500 demand points for the

computational study. For instances with no more than 20 demand points, we considered values from 2 to 5

facilities to open. For instances with at least 50 demand points, we tested values of 2, 4, 6 and 8 facilities to

open. We also assume that starting point of the line barrier falls within a uniform distribution U (0,12) and the

y-coordinate of the line barrier is �xed at a horizontal barrier route, β=8. We also assume that the length of

the line barrier is equal to 4. In total, 26 sample problems were generated. All runtimes reported are in seconds.

5.2. Results

We present detailed results of our experiments, by instance, in Table 2. The table reports for each instance

the objective function value (OFV) of the solution along with the time required to produce that solution.

The column labeled by �I � indicates the number of demand points in the instance and the column labeled by

�J � indicates the number of facilities to locate. We let zB and tB denote the objective function value and

LINGO solver runtime, respectively, associated with the solution produced by solving the original problem

with LINGO; zAlgB and tAlgB denote the objective function value and algorithm runtime, respectively, associated

with the solution produced by the proposed algorithm; zR and tR denote the objective function value and

solver runtime, respectively, associated with the solution produced by solving the relaxation that treats the

barrier region as forbidden; and zRP and zRP denote the objective function value and CPLEX solver runtime,

respectively, associated with the solution produced by solving the relaxation that treats the barrier as �xed

at its expected position. For both the original problem and the relaxation that treats the barrier �xed at its

expected position, LINGO may terminate with a solution that is only provably locally optimal. Columns Z∗R

and ZB (X∗R) indicate the objective function value of the optimal solution to the lower bound problem and

the objective function value of the solution to the lower bound problem when evaluated by the real problem,

respectively. Equality (or inequality) of these columns proves the globally (or locally) optimal solution of

the results obtained from the lower bound problem. As such, in the column �G/L� we indicate whether the

algorithm is able to prove that the solution produced by solving the the problem with forbidden is globally

optimal (indicated by �G�) or locally optimal (indicated by �L�). It is observed that for 14 of the 26 instances

the algorithm was able to immediately converge to the optimal solution by solving the relaxation where the

barrier region is treated as forbidden, before decomposing the problem into a series of single-facility location

problems. For example, if we take the instance with I = 50 and J = 2, the equality of the objective function

shows the globally optimal solution, although the location of new facilities obtained from each model is di�erent.

Regarding the solution produced by the proposed algorithm, column z1 maximum barrier distance between new

facilities and demand points and column z2 represents the maximum barrier distance between facilities. To

benchmark the performance of the algorithms we calculate three gaps:

1. Gap-exact:
zB−zAlg

B

zB
which measures the relative gap between the solution produced solving the original

with LINGO and solution produced by the proposed algorithm. Note that LINGO can terminate at a

locally optimal solution that is not globally optimal. As such, the proposed algorithm can (and in fact

often does) produce a better solution.

2. Gap-�xed-barrier: zB−zRP

zB
which measures the relative gap between the best solution produced by solving

the original and solving the relaxation where the barrier is �xed at its expected position.
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3. Gap-forbidden: zB−zR
zB

which measures the relative gap between the solution produced by solving the

original and solving the relaxation where the barrier region is modeled as a forbidden region.

Note that instances whose the relative gap is 0%, indicating globally optimal solution, are represented in bold

face.
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The last line of the Table 2 demonstrates the performance of the algorithms studied in this paper in terms

of the algorithm/solver runtime and relative gaps, on average. We see that the proposed algorithm is able

to produce, on average, higher quality solutions than those that can be achieved by solving the original with

LINGO, and in far less time. Let us recall that the results for the gaps of the proposed algorithm are to be

found under the label "Gap-Exact". Similarly, the gaps with the relaxations (Gap-forbidden, Gap-barrier-�xed)

indicate that the proposed algorithm is producing solutions that are near-optimal. We next illustrate in Figures

3 and 4 these two metrics by instance size, measured in terms of number of demand points (I ) and number of

facilities to locate (J ). What is clear from the Gaps chart is that the performance of the proposed algorithm

is fairly robust with respect to instance size; the relative gap never exceeds 1.21%. And of course there is no

reason to believe that the bound yielded by solving the relaxation problem equals the objective function value

of the optimal solution. We also see that the bound produced by solving the relaxation that assumes the barrier

is �xed at its expected position is typically stronger than the problem with forbidden region, suggesting that it

could be a better procedure for producing a lower bound for the location problem with barrier region than was

proposed in Klamroth (2001b). We also see from Figure 4 that the time required to solve the original problem

with LINGO grows quickly with respect to instance size; for nearly all instances with 200 or more demand

points the full 10,800 seconds is required. While the time required by the proposed algorithm also grows, it

does so at a much slower rate.
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Figure 3: Gaps by instance size
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Figure 4: Solution time by instance size
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5.3. Case study

We next illustrate the impact of considering a line barrier when locating facilities with a case study in an urban

setting. We choose such a setting as it is one where rectilinear distances on a continuous plane have been

shown to provide a suitable approximation for travel distances (Love et al., 1988). We consider the location of

seven police departments (as new facilities) in Kingston Upon Thames, England, whose purpose is to respond

to calls regarding potential criminal activities in the region. That there are seven departments to be located is

based upon the premise that they have di�erent departments for (seven) di�erent types of activities. Kingston

contains 16 local areas (Figure 5) that are referred to as wards; in terms of our model, we model these wards

as demand points.

That said, as the data regarding reported o�ences is at the ward level, we model the location of each

demand point based on a tansformation of latitude and longitude data regarding postal codes to Cartesian

coordinates. We report the resulting cartesian coordinates for each demand point in Table A.1. Speci�cally, we

report Easting, which refers to the horizontal-measured distance (toward the east), and Northing, which refers

to the vertical-measured distance (toward the north), We generated �demand� for each location based on the

number of reported o�ences over a 12 month period ending in February, 2013, which we report in Table A.2.

We generated demand regarding the interactions between pairs of facilities based on the number of common

o�ences investigated (Branches of the Metropolitan Police Service 2013), which we report in Table A.3.

There is also an overground rail line that runs through Kingston (between Surrbiton and Beverley), and is

illustrated by the dashed line in Figure 5a. We model the movement of this train across a road, which blocks

tra�c, as a probabilistic line barrier. Speci�cally, the uncertainty regarding the location of this train is modeled

with two random variables, with the �rst representing the location of either the front or back of the train,

depending on the direction in which the train is traveling. We presume this random variable (the location of

the start of the barrier) is uniformly distributed over the length of the track. We believe that the Uniform

probability distribution function can be a reasonable approximation of the randomness of barrier position on its

track, as the train departure time over a course of day is approximately uniformly distributed and the speed of

the train in the route is almost constant.The second random variable represents the end of the barrier (which

can also be either the front or back of the train), and is a function of the length of the train, which we presume

is known. We also presume there are no disconnections in the track and that the train repeatedly travels from

one end to the next, passing through all stations on the line.

We consider two scenarios in this setting. In the �rst, the seven departments are located without recognizing

the train line. These locations are determined using the classical planar multi-facility location model of Love et

al., (1988). In the second, the departments are located with the model proposed in this paper that recognizes

the train line. We present in Table 3 information regarding these two solutions. First, we present the ward each

department is located in, as well as its Cartesian coordinate. Second, we report the objective function value of

each set of locations when evaluated with the proposed model, and thus the probabilistic barrier is recognized.

We observe that ignoring the presence of the train increases the expected maximum weighted distance by over

20%.

Finally, we assessed the equitability of the (police department location) solutions obtained by implementing

the proposed methods for the considered scenarios to understand how the location decisions and traveled

23



 

(a) with line barrier

 

(b) without line barrier

Figure 5: Graphical representation of police departments. Original source of the map: wikimedia

distances would be impacted when responding to an emergency call. Considering the two sets of department

locations, we observe that the seven departments are located in di�erent wards in the two solutions. Results

suggest that the model that does not recognize the train line locates departments in only three wards (�ve in

Grove and one in Norbiton in the upper side of the train line and only one in Berrylands in the lower side of

the train line), whereas the model that does recognize the train line locates departments in �ve wards (three

in Grove, one in St. Marks, and one in Norbiton in the upper side of the train line and one in Berrylands and

one in Alexandra in the lower side of the train line). It should be noted that department locations include

overlapping. These results are depicted in Figure 5.

We underline that when the model ignores the presence of the train line the maximum expected weighted

distance, when locating departments in only three wards, is 267,184 which is nearly 10.2% less than when the

model recognizes the presence of train line and locates them in �ve wards (297,470). This result may mislead

practitioners while o�ering apparently more interesting solution. However, when the solution produced by the

model without barrier (i.e., the scenario in which departments are located in only three wards) is evaluated

with our multi-facility model considering the presence of the barrier, we observe that the maximum expected

weighted distance is equal to 390,244, resulting in 23.77% saving in the weighted travelled distance. This reveals

that considering the presence of line barrier in strategic facility location decisions contributes to a remarkable

saving in travelled distance, especially in providing equitable services. Finally, we observe that the model that

does recognize the train line locates two departments south of the train line whereas the model that does not

only locates one. We conclude from this study that explicitly recognizing the line barrier leads to a more

24



Table 3: Location of new police departments.

Problem with barrier Problem without barrier

Police departments Easting Northing Based in Easting Northing Based in

Specialist and economic crime 519,811 166,346 Norbiton 518,297 168,824 Berrylands

Child abuse investigation 518,228 168,454 Grove 519,347 167,539 Grove

Drugs directorate 519,130 168,884 Alexandra 518,297 168,824 Grove

Directorate of forensic services 518,147 168,876 Grove 518,279 168,310 Grove

Homicide and serious crime 518,450 168,560 Grove 519,619 168,664 Norbiton

Serious and organized crime 519,048 167,072 Berrylands 518,544 168,736 Grove

Specialist crime & operations 519,004 168,381 ST Marks 518,297 168,824 Grove

Expected maximum weighted 297,470 267,184

distance with barrier

robust set of locations for the police departments, which in turn leads to a signi�cant decrease in the maximum

expected travel distance.

6. Conclusion and further research

This paper studied a multi-facility location problem with an equitability consideration where minimizes the

longest distance traveled to demand points (a minimax objective function). We formulated a mixed integer

quadratic-constrained programming model of a multiple facility location problem in the presence of a line-

shaped barrier and observed that convexity of this model cannot be determined. We then proposed a heuristic

that relies on relaxation and split-divide-and-conquer strategy. We computationally studied the performance

of the proposed heuristic with an extensive computational study and realized that it produces high-quality

solutions in reasonable run-times across all instance sizes. We also presented an e�cient lower bound to the

current literature. Results reveal that the presence of a barrier has signi�cant impact on the traveled distance

to demand points. On the other hand, ignoring the presence of barriers when modeling for strategic facility

location may mislead decision-makers to inappropriate solutions. The proposed distance-based model, whose

practical application has been discussed in Heizer and Render, (2011), Zanjirani Farahani et al., (2019), and

Bélanger et al., (2019), is suitable at the national and regional scope, as it considers some critical factors

such as attractiveness of region (e.g. tax incentives and grants related to land cost), ecological regulations (e.g.

natural and environmental law), geographical and constructional obstacles (e.g. rivers, parks, utilities, and

buildings), and transportation infrastructures, in�uencing location of several service and emergency facilities

(ex: ambulances, �re stations, medical services . . . ). Deciding upon the location of other facilities that provide

emergency services, such as �re stations or hospitals, could also be assisted with this model. Such facilities are

often found in urban environments where physical barriers exist.

This paper focused on a rectilinear distance (p = 1), which is applicable for urban planning. However, for

other settings, such as oceans or deserts, the euclidian measure of distance (p = 2) is more applicable. Similarly,

in material handling situations, a Tchebychev distance (p =∞) may be more applicable. This problem can also

be extended in the innovative urban context such as electric vehicles (EV) transportation Liu and Wang (2017)
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and seaport yard management for moving the empty and laden container (Park and Seo, 2010). Unlike the

problem studied in this paper, in those cases both the x and y-coordinates can impact the distance between two

points. Similarly, this paper only considered one line barrier. Many settings may involve more than one line

barrier and those barriers may have arbitrary shape. In addition, the problem studied in this paper assumed

no cuts or disconnections along the barrier route. Clearly, considering a larger geographical area would likely

lead to a non-straight, and likely curved, barrier with a properly de�ned distribution of the line barrier. In

this paper, we applied the distance-based location modeling approach for the service and emergency facilities

as we focus on a strategic decision-making problem at the regional geographical scope under the existence of

barriers. Our model use travel distance as a proxy for travel time. However, �uctuations in travel time (say due

to tra�c) can impact the service an emergency facility provides. As such, one further extension is to extend

the model to also recognize travel times, and that there is uncertainty in those travel times.
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A. Appendix

A.1. Proofs and mathematical details

Details of equation (32):

z1 = min
(xj ,yj)

{
max
i,j

{
wij .E

[
DB

1 (Pi, Xj)
]}}

= min
(xj ,yj)

{
max
j

{
max
i

{
wij .E

[
DB

1 (Pi, Xj)
]}}}

= max
j

{
min

(xj ,yj)

{
max
i

{
wij .E

[
DB

1 (Pi, Xj)
]}}}

= max
j

{
z1j
}

(A.1)
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Proof of lemma 1.

When we �x the line barrier at its expected position, �rst we should compute the E [Xs] = L2+L1

2 that is

the middle point of interval (L1, L2). Since the barrier has length of l, the expected value of the start point of

the barrier should be x̄s = L2+L1

2 − l
2 (see Figure A.1). Therefore, the start point happens at X̄s = (x̄s, β) and

the end point of the line barrier with the length of l occurs at X̄e = (x̄e, β) where x̄e = x̄s + l = L2+L1+l
2 .

xe = xs + l =
L2 + L1 + l

2
(A.4)
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Figure A.1: A line barrier at its expected position.

Proof of lemma 2

Let us consider the shortest path between Pi and Xj . When Pi and Xj are located in di�erent half-planes

and x̄s ≤ xj ≤ x̄e and x̄s ≤ ai ≤ x̄e, then the distance between Pi and Xj becomes the barrier distance and

therefore the barrier is in e�ect. In this case travelling is possible through two ends of the line barrier when

barrier conditions are met. The shortest path between Pi and Xj , called SP ij , includes one of end points of

line barrier either X̄s or X̄e, equation (A.5). Note that when the barrier conditions are not met, the barrier

distance becomes regular rectilinear distance between Pi and Xj .

SP ij = min
{
d1
(
Xi, X̄s

)
+ d1

(
X̄s, Xj

)
, d1
(
Xi, X̄e

)
+ d1

(
X̄e, Xj

)}
= min{|ai − x̄s|+ |bi − β|+ |x̄s − xj |+ |β − yj | , |ai − x̄e|+ |bi − β|+ |x̄e − xj |+ |β − yj |}

= min {ai + xj − 2x̄s, 2x̄e − ai − xj}+ |bi − β| + |β − yj | , i ∈ I, j ∈ J (A.5)

Similarly, the shortest path between Xj and Xk should be mentioned. If the barrier conditions mentioned

above are met, then the barrier is in e�ect and the barrier distance between Xj and Xk is the shortest path

between Xj and Xk through two ends of the line barrier, equation (A.6). On the other hand, the barrier distance

becomes regular rectilinear distance between new facilities when the barrier conditions are dissatis�ed. On the

other hand, the barrier distance becomes regular rectilinear distance between new facilities when the barrier

conditions are dissatis�ed.

SP jk = min
{
d1
(
Xj , X̄s

)
+ d1

(
X̄s, Xk

)
, d1
(
Xj , X̄e

)
+ d1

(
X̄e, Xk

)}
= min{|xj − x̄s|+ |yj − β|+ |x̄s − xk|+ |β − yk| , |xj − x̄e|+ |yj − β|+ |x̄e − xk|+ |β − yk|}
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=min
{
xj+xk − 2xs, 2xe − xj − xk

}
+ |yj − β|+ |β − yk| , j, k ∈ J, j < k (A.6)

A.2. Case study input data

Table A.1: Data for location of wards in Kingston Upon Thames.

Wards (demand points) Cartesian coordinates

Easting Northing

1 Alexandra 519,944 166,409

2 Berrylands 518,818 167,270

3 Beverley 521,405 168,286

4 Canbury 518,777 169,950.5

5 Chessington North & Hook 518,033 164,812

6 Chessington South 518,118 163,673

7 Coombe Hill 520,268 170,346

8 Coombe Vale 520,728.5 169,131

9 Grove 518,036.5 168,857.5

10 Norbiton 519,141 168,788

11 Old Malden 521,455 166,539

12 St. James 521,497 167,628

13 St. Mark's 518,104 167,608

14 Surbiton Hill 518,293 166,553

15 Tolworth and Hook Rise 518,897 165,540

16 Tudor 518,155 1709,69.5

Start point of the barrier route 517,500 167,000

End point of the barrier route 521,700 169,000
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Table A.2: The interactions between the demand points and new police departments in Kingston Upon Thames.

Police departments

D1 D2 D3 D4 D5 D6 D7
Wards (demand

points)

Tudor 26.8 1.2 24.7 18.6 7.4 39.5 26.8

Coombe Hill 35 1.5 31.5 23.2 11.5 46.9 35

Canbury 34.3 1.1 31.7 22.8 10.2 50.8 34.3

Coombe Vale 20.4 0.6 18.9 15.9 5.7 34.6 20.4

Norbiton 50.6 2.4 48.1 35.4 21.8 71.2 50.6

Grove 36.7 0.98 35.48 11.19 8.61 40.5 36.69

Beverley 53 1.9 49.8 32.1 15.2 73.9 53

St James 24.9 0.8 23 21.3 9.3 39.3 24.9

St Marks 44.4 1.3 41.8 20.6 11.9 55.1 44.4

Berrylands 20.7 1.3 19.3 15.3 8.2 30 20.7

Surbiton Hill 22.6 1.3 21.1 15.9 7.7 33.7 22.6

Alexandra 30.5 1.1 28 18.7 8.4 43.9 30.5

Old Malden 24.4 1.4 22.5 20.3 10.3 37.2 24.4

Tolworth and Hook Rise 34.9 1.8 32 28.8 13.3 54.9 34.9

Chessington North and Hook 27.3 0.9 25.9 21.2 9.2 47.6 27.3

Chessington South 31 1.1 28.4 21.8 12.4 42.8 31
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