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Highlights 

Diffusion NMR used to characterise molecular mass distribution of pyrolysis oil 

components. 

PSYCHE-iDOSY experiments acquired on pyrolysis oil for the first time. 

Semi-automatic characterisation of water-soluble components using Chenomx™ 

Abstract 

By combining diffusion-ordered NMR spectroscopy (DOSY) and pure shift NMR 

spectroscopy ((Pure Shift Yielded By Chirp Excitation (PSYCHE)) with 1D NMR 

metabolite assignment, we demonstrate an improved method for in situ analysis of pre 

and post-processed pyrolysis oil to quickly establish the most effective upgrading 
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procedure. These experiments use molecular mass estimations from DOSY and single 

component verification using PSYCHE to confirm the identity of metabolites and show 

how the mass pattern for pyrolysis oils varies depending on how it is upgraded.  

With the use of a semi-automatic approach for metabolite assignment, we have 

verified and quantified individual components, giving rise to a collection of potential 

‘marker compounds’; their changes in concentration being correlated to the upgrading 

process a pyrolysis oil undergoes.  

 

Keywords:  Complex mixture analysis, NMR, Pure shift  NMR,  Diffusion-Ordered  

Spectroscopy, PSYCHE-iDOSY 

 
1. Introduction 
 
1.1 Pyrolysis oil composition 

Previous studies have shown that by varying both the organic feedstock and pyrolysis  

conditions, the resultant oils can have vastly different properties. Predicated on their 

consisting of a wide range of compounds, including sugars,carbohydrates, furans, 

ketones, aldehydes and carboxylic acids in varying quantities.1-4 

 

The high levels of oxygenated hydrocarbons and water cause delayed ignition and low 

heating values.Due to the presence of carboxylic acids, bio-oils can be highly acidic 

and corrosive.5,6 

Pyrolysis oils are also very viscous and chemically unstable and have been found to 

degrade over time. Phase separation and reduced volatility are often observed as a 

result of the ageing of the oil.7,8,9 The instability of pyrolysis oils can  mainly be 

explained by the presence of aldehydes, ketones, and sugars of the feedstock. The 
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main factor however has been suggested to be high molecular weight lignin 

oligomers/derivatives produced from the pyrolysis process10  

 

It is, therefore, necessary for crude bio-oil to undergo upgrading prior to use as a fuel. 

Methods include hydrotreatment, hydrocracking, transesterification, and ketonisation. 

Depending on the upgrading process an oil undergoes, its chemical components and 

their relative concentrations will vary.11,12 Refinement techniques are usually aimed at 

reducing the oxygen and carboxylic acid content, whilst increasing the long chain 

hydrocarbon concentration to increase the volatility and energy density of the fuel.13 

Unstable compounds are primarily eliminated by conversion of aldehydes, ketones 

and sugars to alcohols through hydrogenation and methods used for separation of 

high molecular weight lignin derivatives from the oil.10 

 

Extensive research has been made into the effects of varying the pyrolysis 

temperature and the biomass feedstock on the composition of the resulting oils, 

however, there is limited data that compares the effects of different upgrading 

techniques on the pyrolysis oils. This is due to the difficulty in analysing these samples 

in situ. None of the standard techniques such as High Performance Liquid 

Chromatography (HPLC) or Liquid Chromatography-Mass Spectrometry (LC-MS) is 

particularly well suited, owing to the need to optimise extraction for each class of 

pyrolysis oil components and the characteristics of the oils requiring multiple extraction 

and purification steps to enable the successful use of a chromatographic separation 

technique.   

1.2 General NMR analysis of pyrolysis oils 
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Previous work by Hao et al. 5 and others,7,14 details the use of NMR spectroscopy to 

characterise pyrolysis oils using 1H,13C,31P,19F, and Heteronuclear Single Quantum 

Correlation spectroscopy (HSQC) experiments. Using 1D proton NMR alone to identify 

single compounds within a pyrolysis oil mixture is a challenging task.  

 

Due to some peaks appearing across a wide range of chemical shifts (hydrogen 

bonding in polar solvents can cause hydroxyl groups’ signal to shift widely), there are 

extensive limitations to analysing quantitatively bio-oils using 1H or 13C 

NMR alone. Previous literature details the successful identification of single sugars 

and aromatics such as xylose, guaiacol and stilbene using HSQC experiments.14 

 

HSQC is a helpful method for the separation of protons with very similar chemical 

shifts, which are bonded to different carbon atoms. However, when dealing with such 

complicated mixtures, poor resolution of peaks due to extensive overlapping can make 

even HSQC spectra of pyrolysis oils difficult to analyse.   

 

The main aim of this study was to investigate whether a combination of Diffusion 

Ordered Nuclear Magnetic Resonance Spectroscopy (DOSY) and Pure Shift Yielded 

by Chirp Excitation (PSYCHE) could be used as an improvement on existing methods 

for the NMR characterisation and quantitation of pyrolysis oils following various 

upgrading processes. The objectives of this project were to use a selection of one, two 

and three-dimensional NMR methodologies to give spectra which are characteristic of 

a particular upgrading procedure and elucidate the structures of single components 

present in the oils for comparative studies. 

1.3 DOSY NMR 
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DOSY NMR spectroscopy is a pseudo-2D technique that gives virtual separation of 

proton environments based on their diffusion coefficient. 

 

The size of the 2D contours in a DOSY spectrum reflects the standard error. In 

complex mixtures with poorly resolved proton spectrum, the DOSY spectrum can have 

multiple overlapping signals making separation poor in highly concentrated areas such 

as the aliphatic region of pyrolysis oils. High Signal to Noise (S/N) peaks in the proton 

dimension such as 3-(Trimethylsilyl)propionic acid-d4 sodium salt TSP (0ppm), and 

DMSO (2.5ppm) are very small contours on the DOSY spectrum, with minimal error in 

the diffusion coefficient.  

1.4 Pure Shift 

Pure Shift NMR spectroscopy, also known as broadband homodecoupling, is not new, 

but it has recently been gaining more focus and is currently being applied in an array 

of combined NMR methods.15 

The purpose of pure shift NMR is to suppress 1H -1H coupling and hence collapse all 

multiplets into singlets. Consequently, this leads to a large improvement in the 

resolution and vastly reduces signal overlap. This is a very attractive NMR method for 

the characterisation of complex mixtures with an abundance of peaks in the 1D  

1H spectra. Long experiment time and inconsistent coupling suppression have 

hindered the use of pure shift NMR in complex mixture analysis. 16, 17,18,19,20 

The most recent advance in pure shift NMR and the one that is implemented in this 

study is known as Pure Shift Yielded by Chirp Excitation (PSYCHE). Two small flip 

angle swept-frequency pulses are used in combination with a weak pulsed field 

gradient to achieve the homonuclear decoupling.21 
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PSYCHE NMR was chosen for this analysis as it is seen to be the most tolerant of 

strong coupling21 as well as being very easy to implement; two real advantages 

when it comes to the analysis of complex pyrolysis oils.  

The simple application of PSYCHE has led to its use in conjunction with other NMR 

techniques including PSYCHE-iTOCSY (TOtal Correlation SpectroscopY) and 

PSYCHE-iCOSY (Correlation Spectroscopy).21 In this study, we combined PSYCHE 

with the previously introduced DOSY NMR in a method known as PSYCHE-iDOSY. 

PSYCHE-iDOSY is a unique pseudo 3D method involving the combination of a 

diffusion dimension with PSYCHE pure shift.22, 23 

Despite being invented in 2016, PSYCHE-iDOSY has not yet been exploited for the 

analysis of pyrolysis oils.24  

Both  PSYCHE and DOSY experiments combined have the capability to verify signals 

from the 1D 1H spectrum as belonging to a specific component, which can then be 

quantified using software such as Chenomx NMR SuiteTM. Chenomx works by 

scanning the 1H NMR spectrum of the sample and matching the combination of peaks 

with those from a database of known compounds. With a known concentration of an 

internal standard, 3-trimethylsilyl(2,2,3,3-2H4)propionic acid sodium salt (TSP), their 

relative abundances can also be estimated. This methodology enables the 

identification of a small library of ‘marker’ compounds whose combination and 

concentrations could be specific to each upgraded oil, thus serving as an indicator as 

to the upgrading process undergone by the oil.  

 

This combined use of PSYCHE-iDOSY and Chenomx NMR SuiteTM aimed to provide 

a simple and improved way to analyse pyrolysis oil; but also serve as an example for 

potential applications in the analysis of other complex mixtures. 
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2. Materials and methods 

2.1 General  

Five samples of pyrolysis oil were supplied by Future Blends Ltd., a biofuel production 

company specialising in pyrolysis and upgrading procedures. The samples consist of 

one crude and four refined samples (Table 1). 

Pyrolysis Oil Upgrade Technique 

Crude Filtered Pyrolysis Oil 

Upgrade 1 Advanced Pyrolysis Oil (APO™) 

Upgrade 2 APO™ + Hydrodeoxygenation (HDO) 

Upgrade 3 Volume Reduction (VR) 

Upgrade 4 VR + Hydrodeoxygenation (HDO) 

 

Table 1. The description provided by Future Blends Ltd for each upgrade. 

The removal of the sugar components and retention of aromatic and phenolic based 

lignin fractions within the pyrolysis oil is used to give APOTM (Upgrade 2), as detailed 

by M. Bogarra-Macias 25.  

The pyrolysis oils (10-30mgs) were weighed into separate HPLC vials. A 100mM TSP 

standard was made by dissolving TSP (172.27gmol-1, 1.72mg) in D6-DMSO (100μL). 

D6-DMSO (580μL) was added to each vial along with 10μL of the TSP solution. The 

samples were then transferred to 5mm NMR tubes for analysis. Sonication was used 

for samples which did not dissolve easily. The same procedure was used in 3mm 

tubes for DOSY and PSYCHE-iDOSY experiments using only 160μL of D6-DMSO. 

The narrower tubes were employed to minimise the convection effects within our 

samples which could potentially affect the diffusion results.   
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D6-DMSO was used for the majority of experiments due to its ability to dissolve both 

polar and non-polar compounds. Samples were also prepared in 10% D2O/H2O in 

order to be analysed by ChenomxTM software. This solvent change was required as 

some chemical shift are particularly solvent dependent, and peak drifting needs to be 

minimised in order to allow accurate peak matching and identification by Chenomx. 

2.1 Parameters  

A summary of the most important parameters is given in supplementary material S6. 

 

All NMR spectroscopy experiments were conducted on a Bruker Avance III 600 MHz 

three-channel FT-NMR spectrometer, equipped with a TXI 1H/2D{13C, 15N} probehead. 

The NMR spectrometer is automated using Bruker IconNMR 5.0.7 and all spectra 

processed with Bruker TopSpin 3.5.7 as the control software and processing software 

and Dynamics Center 2.4.9 for DOSY and PSYCHE-iDOSY analysis. Acquisition 

parameters for standard experiments (1D 1H and 1H DOSY), was done with: P1 = 

7µs; flip angle = 90o; D1 = 10s, NS = 64. Acquisition parameters for pure shift 

experiments 1D 1H and 1H DOSY: P1 = 7µs; flip angle = 90o hard pulse;  D1 = 1s; NS 

= 512/32 respectively. Prior to processing by TopSpin, the 1D PSYCHE and 2D 

PSYCHE-iDOSY spectra needed to be reconstituted respectively from their pseudo 

2D and pseudo 3D acquired datasets. This was performed by running the automation 

program au_pshift_nD.mf as provided in the supplementary information to their 

original papers by Foroozandeh et al.22 ChenomxTM NMR Suite was also used as an 

NMR analysis software used for metabolite detection and biomarkers.  

The majority of experiments were run in automation apart from the PSYCHE and  

PSYCHE-iDOSY experiments which were set up manually. Phase adjustment, 

baseline correction and integration was carried out manually for all experiments. This 
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includes manual editing of the slope and bias of integrals as well as calibration of 

integrals for quantitation. 

Inversion Recovery experiments were run initially to identify the T1 relaxation with and 

without spiking by Chr(Ac)2. These experiments identified the relaxation time as below 

4 seconds for the entire sample without Chr(Ac)2 thus standard experiments with D1’s 

of 10s were sufficient. Samples undergoing pure shift experiments were spiked with 

Chr(Ac)2 to reduce the required D1 time and allowed for greater signal averaging per 

unit time. 

 

3. Results and Discussion 

3.1 Observations 

Visual comparison of the oils shows that crude pyrolysis oil and upgrades 2 and 4 

were viscous but pourable oils, whereas upgrades 1 and 3 are extremely solid and 

sticky oils. All were soluble in D6-DMSO but upgrades 1, 2 and 4 were less soluble in 

D2O. This suggests that the crude oil and upgrade 3 have a higher content of water-

soluble compounds. 

3.2 One-Dimensional Proton NMR 

The first approach in the NMR analysis of the oils was to replicate the work done by 

Hao et al.5 A one-dimensional solvent-suppressed 1H spectrum was acquired for the 

initial comparison. A standard NOESY-1D presaturation experiment was used to 

selectively remove the DMSO peak. Fig. 1 shows the resulting spectra stacked one 

on top of another,. The first notable observation is that upgrade 1 has the highest 

concentration of water (water peak is seen at ~3.4 ppm) and upgrade 2 the lowest.  
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Upgrade 3 looked very similar to the crude in the aliphatic region and most other 

regions. Upgrades 2 and 4 are less concentrated in carboxylic acid and aldehyde 

environments and upgrade 4 has significantly increased in aliphatic environments.  

 

FIGURE 1 

 

Due to the complexity of the mixtures, a simple proton spectrum of these oils is very 

difficult to analyse quantitatively. With extensive overlapping of peaks, identifying 

single components in the mixture using 1H NMR alone is near impossible. In 

previous studies, the 1H spectra have been analysed by regions of interest. 

The same approach was taken with this study and Table 2 shows how these regions 

have been allocated. A display of the oils regions is given in Fig. 1 (bottom).  

 

Chemical Shift Region (ppm) Functionality 

0.50 – 2.50 Aliphatic, aliphatic alcohols, allylic, benzylic, alkynyl 

2.50 – 4.40 Alcohols, ethers, methoxy, amines 

4.40 – 6.00 Methoxy, vinylic, alkenes, non-conjugated alkenes, 
phenols, amines, sugars 

6.00 – 8.40 Conjugated and non-conjugated alkenes, aromatics, 
phenols, amides, carbohydrates and sugars 

8.40 – 10.30 Carboxylic acids, aldehydes, amides 

 

Table 2. Regions of interest used for integration analysis across all oils 

The boundaries of these chemical shift regions are not clearly defined and regional 

overlap is inevitable. The complex constitution of the oil, as well as the choice of 

deuterated solvent, often leads to shifting of peaks. For this reason, the following 
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analyses have a significant margin of error associated with them. However, this 

approach of integrating by regions is merely reiterating what has already been carried 

out in previous literature in order to highlight the limitations of this method. 

 

3.3 Statistical procedures 

In addition to the error arising from regional overlap, the manual phasing and 

correction of the bias and slope of each integral introduces operator-derived intra-

sample variance. To account for this, 1D NMR measurements were done in triplicate, 

and relative standard deviations were calculated. These results are displayed in Fig 2. 

Integral regions were set and imported into each spectrum to ensure consistency.  

 

FIGURE 2 

 

Fig. 2 shows that for each oil, the most concentrated region is the aliphatic region 0.50 

–2.50ppm. The least concentrated region is the carboxylic acids and aldehydes region 

8.40 –10.30 and out of all the oils, upgrade 1 is the most concentrated in this region. 

Upgrades 2 and 4 have substantially increased in aliphatic protons compared with 

pyrolysis oil and both are also lower in oxygen-containing compounds and alkenes 

(2.50 - 6.00). Upgrade 3 is very similar to the crude oil in most regions and is actually 

seen to be higher in concentration in the oxygen-containing compounds.  

This method provides a good basis for the comparison of the pyrolysis oils, however, 

due to the overlap of these regions, these figures are not completely representative of 

functional group abundance. Also, the observations made from this line of analysis are 

not detailed enough to be able to distinguish one oil from another. 

3.4 Initial Conclusions 
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From the initial analysis using 1D 1H NMR, it appears that upgrades 2 and 4 have 

undergone the most effective refinement. They both appear to have increased in 

aliphatic environments and reduced in oxygen-containing and acidic compounds. 

From 1H NMR analysis thus far, upgrade 3 appears very similar to the crude pyrolysis 

oil. Upgrade 1 has improved marginally in some regions but overall is not too dissimilar 

to the crude pyrolysis oil. What is clear, is that it would be difficult to identify and 

quantify, with any degree of certainty individual components and so 1D 1H NMR lacks 

the dimensionality on its own to characterise accurately pyrolysis oil/upgrades. Direct 

application of Chenomx NMR suite fitting to 1D 1H Pyrolysis oil spectra would yield 

incorrect assignments owing to multiplet overlap and cannot take into account the size 

of the molecule that yields a set of 1D NMR signals and defaults to the smallest 

metabolic unit. This is useful in biological fluids, but could create vexatious results 

when dealing with complex composition products from pyrolysis.  

 

3.5 Diffusion-Ordered NMR Spectroscopy 

Diffusion-ordered spectroscopy can help in the virtual separation of overlapping peaks 

by plotting the chemical shift against the diffusion coefficient. Supplementary 

Information S2 shows the DOSY NMR of the pyrolysis oils. 

 

The DOSY spectra show good separation for the carboxylic acid and aldehyde proton 

region in crude oil. Upgrades 1 and 3 are very similar to the crude with a vast array of 

peaks throughout the spectrum, with upgrade 3 having almost identical peaks in the 

carboxylic acid region. Upgrades 2 and 4 appear completely diminished in this region 

– in line with the findings from the 1D NMR. 
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Upgrade 4 displays how peaks with a very similar chemical shift within the region of 3 

-5ppm have been clearly separated into different compounds. 

The processing of DOSY spectra requires manual peak picking for analysis in 

Dynamics Center. Large highly concentrated areas cause some baseline rolling which 

leads to some smaller peaks becoming masked. For instance, the regions of 0.5-2ppm 

and 6-7.5ppm are so concentrated that some small peaks either side of these would 

have fallen under the peak picking threshold and hence been missed in the data 

analysis. Baseline rolling can therefore lead to a loss of detail in the DOSY spectrum.  

3.6 Pure Shift NMR Spectroscopy – PSYCHE 

Although the upgrading techniques named APOTM and VR are proprietary, this  

information helps to explain some of the observations being made. The 1D proton and 

DOSY NMR conducted so far suggested that upgrades 2 and 4 are greatly reduced in 

oxygen containing compounds, carboxylic acids/aldehydes and have increased levels 

of aliphatic protons. Given they have both undergone hydrodeoxygenation (HDO), 

many of these observed trends can now be explained. There has been much research 

into the effects of HDO on complex mixtures.26 

As outlined before, the main limitation with using pyrolysis as a biofuel is the 

immiscibility with common fuels due to the high concentration of oxygen. 

The HDO of phenolics, furans and carboxylic acids have been investigated in previous 

studies.27, 28 During the hydrodeoxygenation process, alcohol, ether, ester, carboxylic 

acid and carbonyl groups are cleaved and hydrogenated along with the saturation of 

aromatics.29 This results in a complex set of reactions ultimately increasing alkane 

concentration and reducing oxygen content. 
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With this known, it is now possible to make more relevant comparisons between the 

oils. For instance, to compare the APOTM and VR procedures which give upgrades 1 

and 3 respectively and comment on the relative successes of these. 

 

PSYCHE-iDOSY gives us these fingerprint type spectra (Supplementary Information 

S3) which are individual to each upgrade. For instance, the crude pyrolysis oil has a 

large range of molecular weights present and multiple peaks within the carboxylic 

acid/aldehyde region. It is very concentrated in the aromatic region with some poorly 

resolved peaks even in the PSYCHE-iDOSY spectra. These acid peaks have been 

removed in upgrades 1 and 3 and the range of aromatic environments have decreased 

in both upgrades. The aliphatic region in upgrade 1 is better resolved with some clear 

peaks being identifiable from the cluster originally in the crude oil. 

The range of molecular weights has greatly reduced in upgrades 2 and 4. There is 

much less error in the diffusion dimension and peaks are well resolved. 

Overall, peaks in the PSYCHE-iDOSY spectra see greatly reduced error in the 

chemical shift dimension thanks to the elimination of multiplicity. However, when 

compared to the DOSY spectra, the error in the diffusion dimension appears to have 

increased with peaks being vertically elongated as seen in Fig. 3. This indicates that 

we sacrifice diffusion resolution for chemical shift resolution by moving from DOSY to 

PSYCHE-iDOSY. 

FIGURE 3 

 

Often, systematic errors in diffusion coefficient arise from spatial non-uniformity of the 

pulsed field gradients, sample convection or disturbance of the field frequency lock as 
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extensively detailed by Kiraly et al.30 The use of transverse pulsed field gradients could 

help to eliminate these sources of error. 

It is worthy of note that by taking a slices from the PSYCHE-iDOSY, we were able to 

visualise the decoupling of multiplets far more clearly than by using the 1D PSYCHE 

experiment alone (Fig. 4). 

 

FIGURE 4 

 

 This simplification of the pyrolysis oil spectra coupled with the estimation of RMM for 

components 3.7.6 served to confirm the identity of specific components in the pyrolysis 

oil and upgrades for their quantification by ChenomxTM. 

 

3.7   Single Component Detection with ChenomxTM 

3.7.1 Principles 

The next step in the analysis of these pyrolysis oils was to identify single components 

within the spectra and attempt to compare their relative concentrations across the 

upgrades. With the identification of a few compounds of known molecular weights, a 

calibration curve which related the diffusion coefficient to the molecular mass was 

constructed. Given that the TSP and DMSO peaks are easily identifiable in each of 

the PSYCHE-iDOSY spectra, these served as the first two data points.31,32 

Metabolite detection software, ChenomxTM, was used to provisionally identify other 

compounds present in the oils. The software is aimed at the analysis of complex 

mixtures and works by matching the patterns of peaks of known substances with those 

found in the 1H spectra of the sample. Given that TSP is present in all samples at a 

known concentration, ChenomxTM can approximate the concentration of any 
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successfully identified compounds. Due to the primary function of the software as a 

metabolite detection aid and its intended use for food, blood plasma, cell culture 

mixtures etc., the samples must be in an aqueous medium. NMR samples of the oils 

were therefore prepared in D2O for this section of the analysis. It is also important to 

note that this method of component assignment is unproven in pyrolysis oils, hence 

the use of PSYCHE and DOSY experiments to confirm the ChenomxTM assignment.  

Supplementary information S4, for example shows the four peaks of highest intensity 

in upgrade 4, appearing at δ 0.9ppm, 1.35ppm, 1.42ppm and 3.41ppm with relative 

integrals of 3:2:2:2 respectively. Chenomx identified these peaks as valerate (at 

~100mM) by matching three out of these four peaks as shown in Fig. 5.  

  

FIGURE 5 

 

The triplet arising from the CH2 group adjacent to the carboxylate was predicted to 

appear at 2.31ppm (Fig. 5), however, on further inspection it was found shifted 

downfield at 3.41ppm. This led to the suggestion that this CH2 group lay closer to an 

electronegative atom, for instance, the hydroxyl group on C1 of 1-butanol 

(Supplementary Information, S5). The predicted spectrum of 1-butanol was found to 

show that indeed these protons do appear downfield at 3.3ppm.  

 

 

 

In an attempt to validate this proposal, a search for these peaks in the PSYCHE-

iDOSY spectrum of upgrade 4 concluded that these four peaks had very similar 

diffusion coefficients; implying they belong to the same compound (Fig. 6). 
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They have a larger diffusion coefficient than TSP and DMSO but smaller than ethylene 

glycol which, given the RMM’s of these compounds and their corresponding order of 

diffusion coefficients supports the positive identification of butanol. 

FIGURE 6 

3.7.6 Calibration Curve for RMM Determination 

Relative molecular mass (RMM) prediction of compounds was achieved through the 

method introduced by Li et al 33, which allows for prediction of RMM by the use of 

internal references where small molecule prediction has been shown to give excellent 

results. If viscosity change of the solutions and density changes are kept to a minimum 

we can accurately predict the RMM and derive information on the solution state, 

aggregation number and improve the interpretation of reaction pathways. 

Upgrade 4 has four known compounds present, TSP, DMSO, butanol and ethylene 

glycol (Supplementary materials (S7) shows corresponding molecular masses and 

diffusion coefficients of these). These peaks were identified in the DOSY spectrum 

and a calibration curve was constructed which compared diffusion coefficient with 

molecular weight as shown in the supplementary material (S6). 

 

This calibration curve now allows for the identification of the molecular mass of 

compounds giving rise to unidentified peaks.  

 

 

The R2 value of 0.904 represents a satisfactory standard deviation of data points from 

the trendline, however, the error in its linear fitting can be reduced by increasing the 

number of data points. Given that the following eight compounds (Table 3) have been 

identified in crude pyrolysis oil, a much more accurate calibration curve should be able 
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to enhance analysis. However, they first need to be identified in the 1D 1H spectrum, 

and subsequently in the DOSY spectrum. 
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Compound RMM 
(gmol-1) 1H NMR d (ppm) Diffusion 

Coefficient (m2s-1) 

Methanol 32.04 3.34  

Ethylene Glycol 62.07 3.65 6.48 x 10-10 

Hydroxyacetone 74.08 2.13, 4.35  

Butanol 74.12 0.87, 1.39, 1.67, 3.30 4.40 x 10-10 

DMSO 78.13 2.55 3.56 x 10-10 

Catechol 110.10 6.83,6.91  

TSP 127.27 0.00 2.38 x 10-10 

Levoglucosan 162.14 3.51, 3.67, 3.74, 4.07, 4.61, 5.43  

 

Table 3: The 8 compounds successfully identified in pyrolysis oil by Chenomx, their 

molecular mass and PSYCHE diffusion coefficients. 

On this basis characteristic compounds and their relative concentrations could be 

identified in each of the oils; these could potentially act as indicators as to which 

upgrading process has taken place for an unknown pyrolysis oil. For instance, if 

upgrades 2 and 4 show complete loss of a certain compound which is present in all 

other oils, this could be accounted for by the HDO process. If an unknown sample of 

oil was analysed and found to be depleted in that substance, it could suggest it had 

also undergone HDO. 

 

3.7.2 Hydroxyacetone 

The most common compound in the raw pyrolysis oil was found to be hydroxyacetone 

at ~70mM. It is a common metabolite of many sugars with both a carbonyl and an 

alcohol group making it water soluble and polar. For this reason, we can expect the 
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HDO to effectively eliminate this compound from upgrades 2 and 4. Fig. 5 shows how 

the theoretical peaks are matched to those found in the pyrolysis oil. The relative 

concentrations of this compound in all samples is displayed in fig. 7.  

 

3.7.3 The five indicator compounds chosen for pyrolysis oil characterisation 

Using the same peak matching methodology as for hydroxyacetone, the 

concentrations of four additional compounds were estimated in crude oil and four 

upgraded oil samples. 

 

FIGURE 7 

From figure 7 we can see that upgrade 1 has the lowest levels of all five compounds. 

Following this, upgrade 2 is just as depleted in hydroxyacetone and levoglucosan, 

however levels of ethylene glycol, methanol and catechol were, in fact, higher than 

those seen in upgrade 1. This indicates the HDO of upgrade 2 results in an increase 

in methanol and catechol, i.e. they are by-products of the hydrogenation or 

deoxygenation of other compounds present in upgrade 1. Upgrade 3 is the most 

concentrated in three of the five indicators amongst the upgraded oils, whilst upgrade 

2 is the highest in methanol and catechol. Upgrade 4 is always lower in concentration 

than upgrade 3 in all five compounds. This suggests that the hydrodeoxygenation of 

upgrade 3 removes the majority of these compounds. The APO™ refinement to give 

upgrade 1 has notably reduced the concentration of hydroxyacetone and the VR 

upgrading process leading to upgrade 3 is not as efficient at reducing hydroxyacetone 

as the APO™ process. As expected, upgrades 2 and 4 have low levels of 

hydroxyacetone. 
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3.7.4 Limitations of Chenomx™ 

Although the above observations are extremely usefully when it came to the 

characterisation of these oils, there are many limitations associated with this method 

of analysis. Firstly, Chenomx only works with aqueous solutions; meaning that the oil 

samples can only be analysed for the water-soluble compounds and the information 

concerning the hydrophobic components is in fact lost.  

Secondly, although concentrations appeared relatively high in the D2O samples, 

identification of the same peaks in the corresponding DMSO samples was difficult; 

with many peaks being lost in the noise and/or shifted from the frequency range where 

they were found in aqueous media. This rendered their identification within the DOSY 

spectra difficult. 

Chenomx™ has a detailed database of compounds (>300) and functions well in its 

intended use as a metabolite detector, detecting sugars and alcohols without any 

problem. However, Chenomx™ doesn’t detect many compounds which are expected 

to be present in pyrolysis oils; such as lignins and other long chain hydrocarbons. This 

presented the greatest limitation, as some of the most intense peaks present were 

unidentifiable with Chenomx. This was illustrated by the false attribution of peaks to 

valerate; which was correctly attributed to butanol, a known concentrated compound 

in pyrolysis oils and fuels. 

Conclusion 

Given the difficulty of analysing pyrolysis oils by a large range of analytical techniques 

such as MS, HPLC and GCMS, the use of NMR methodologies has proven to be very 

valuable, however, the majority of NMR analysis of pyrolysis oil until this point has 

focused on identifying general classes of components. In this paper, we report, for the 

first time, the use of PSYCHE and PSYCHE-iDOSY experiments to verify signals for 
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components that could then be quantified with ChenomxTM Software.  Proton NMR 

provided a reasonable overview of the oils composition and allowed for the 

comparison of oils by regions of interest. Given that the oxygen content of the oils is 

the main limitation with fuel miscibility, PSYCHE-iDOSY enabled the simplification of 

the NMR spectrum and validation of 5 oxygen containing components, provisionally 

assigned by ChenomxTM despite the limitations of ChenomxTM as a metabolite 

identifier. Whilst, PSYCHE-iDOSY NMR is a relatively new technique and has never 

been implemented in the analysis of pyrolysis oils before, the data collected during 

this study sets a precedent for the establishment of a PSYCHE database for complex 

mixtures to better enable the assignment of components in unknown samples.34 This 

technique, in tandem with the building of a database of fuels like ChenomxTM would 

allow attribution of compounds through separation of structurally similar compounds 

by their RMM and chemical shifts. With the combination of certain statistical analytical 

methods, PSYCHE-iDOSY NMR shows great potential in the analysis of complex 

mixtures and by simplifying 1H spectra using PSYCHE and by adding the additional 

dimension of diffusion and estimation of RMM, work is currently underway to combine 

these techniques to afford a multivariate (PCA) map to group pyrolysis oil upgrades 

by the type of upgrading procedure and also the duration of said treatment. This would 

potentially enable a clear, unambiguous, non-destructive fingerprinting of different 

pyrolysis oil/upgrade types, without the need for protracted, costly separation 

techniques.  
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Glossary 

APOTM = Advanced Pyrolysis Oil 

BASH = Band Selective homodecoupling 

BIRD = Bilinear Rotation Decoupling 

COSY = Correlation Spectroscopy 

Cr(AcAc)3 = Chromium Acetylacetonate 

D2O = Deuterated Water 

D6-DMSO = Deuterated Dimethyl Sulfoxide-d6 

DOSY = Diffusion Ordered Spectroscopy 

GCMS = Gas Chromatography – Mass Spectrometry 

HDO = Hydrodeoxygenation 

HPLC = High Performance Liquid Chromatography 

HSQC = Heteronuclear Single Quantum Correlation 

NMR = Nuclear Magnetic Resonance 

NOE = Nuclear Overhauser Effect 

NOESY = Nuclear Overhauser Effect Spectroscopy 

NUS = Non-Uniform Sampling 

PCA = Principle Component Analysis 

PSYCHE = Pure Shift Yielded by Chirp Excitation 
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RMM = Relative Molecular Mass 

S/N = Signal-to-Noise 

TOCSY = Total Correlation Spectroscopy 

TSP = Trimethylsilylpropanoic Acid 

VR = Volume Reduction 
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Figure Captions 
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Figure 1. Comparison of all samples 1H NMR spectra. (a) crude pyrolysis oil (b) 

upgrade 1 (c) upgrade 2 (d) upgrade 3 (e) upgrade 4. Regions of interest highlighted 

below spectra. 

 

 

Figure 2: The comparison between the concentration of protons within regions of 

interest with relative standard deviation. From left to right: Crude oil, upgrade 1, 

upgrade 2, upgrade 3, upgrade 4. 

 

 

Figure 3: Comparison of the DOSY (top) and PSYCHE-iDOSY (bottom) of crude 

pyrolysis oil. 

 

Figure 4. 1D slices taken from PSYCHE-iDOSY experiments for Upgrades 1 (a)  and 

2 (b).  

 

 

Figure 5 .Valerate ion was detected by Chenomx according to these three peaks at  

0.89ppm, 1.33ppm and 1.51ppm; later identified as butanol  

 

 

Figure 6: PSYCHE-iDOSY spectrum of upgrade 4 identifying four known compounds 

with the 1D 1H PSYCHE spectra above. 
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Figure 7: Diagram showing the concentration of five indicator compounds in crude oil 

(orange), upgrade 1 (purple), upgrade 2 (yellow), upgrade 3 (blue), upgrade 4 (green). 

 


