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Abstract: Various ocular diseases, such as cataract, diabetic retinopathy, and glaucoma have affected a large proportion of the
population worldwide. In ophthalmology, fundus photography is used for the diagnosis of such retinal disorders. Nowadays, the
set-up of fundus image acquisition has changed from a fixed position to portable devices, making acquisition more vulnerable to
distortions. However, a trustworthy diagnosis solely relies upon the quality of the fundus image. In recent years, fundus image
quality assessment (IQA) has drawn much attention from researchers. This paper presents a detailed survey of the fundus IQA
research. The survey covers a comprehensive discussion on the factors affecting the fundus image quality and the real-time
distortions. The fundus IQA algorithms have been analyzed on the basis of the methodologies used and divided into three classes,
namely: (i) Similarity-based, (ii) Segmentation-based, and (iii) Machine learning based. In addition, limitations of state of the art in
this research field are also presented with the possible solutions. The objective of this paper is to provide a detailed information
about the fundus IQA research with its significance, present status, limitations, and future scope. To the best of our knowledge,
this is the first survey paper on the fundus IQA research.

1 Introduction

Image quality assessment (IQA) is the process of analyzing the
quality of an image. Subjective IQA and Objective IQA are the two
types of methods that are used for the IQA process. Subjective IQA
is performed by human observers and it is assumed to be the most
reliable method as humans are the end users in most of the multime-
dia applications. The types of subjective quality assessment methods
and their guidelines are provided by the International Telecommu-
nication Union (ITU) recommendation BT.500-13 [1] (although the
focus of this one is television pictures) and ITU-T P.912 [2], address-
ing video quality assessment methods for recognition tasks. For
medical images, a standard recommendation is still missing. For a
review on the methods used in the medical imaging area, the reader
can refer to [3].

Subjective IQA is a very costly and tedious process that makes
it unsuitable to implement in real time. To overcome these limita-
tions, objective IQA is being used. It is a process of predicting the
quality of an image by means of mathematical models with an inten-
tion to produce results similar to subjective IQA process. In order
to facilitate the challenge of developing an efficient IQA method,
many IQA data-sets [4–11] have been created. These data-sets con-
tain distorted images with their subjective ratings provided by human
subjects. These subjective quality ratings have been used to evaluate
the performance of IQA methods.

Types of objective IQA methods: Objective IQA methods can
be categorized into three categories: (i) Full-Reference (FR) IQA
methods, (ii) Reduced-Reference (RR) IQA methods, and (iii) No-
Reference (NR) IQA methods. FR-IQA: Under this category, the
unprocessed reference image is available and it is assumed to be of
best quality. FR-IQA methods are intended to evaluate the statisti-
cal dissimilarities between the pixel values of the input image (i.e.,
distorted) and the reference image. Such methods evaluate a num-
ber of parameters and finally combine all the evaluated results into a
single scalar value indicating the overall image quality. Peak signal-
to-noise ration (PSNR) is one of the most commonly used metrics
in different type of domains in multimedia (i.e., audio, image, and
video). Some of the popular FR-IQA methods are Structural Sim-
ilarity Index (SSIM) [12], Visual Information Fidelity (VIF) [13],
Most Apparent Distortion (MAD) [11], FSIM [14], and GMSD [15],

(a) (b)

Fig. 1: Advanced fundus image acquisition devices: (a) D-eye, (b)
Plenoptic Ophthalmoscope.

etc. Next, the RR-IQA methods are designed to predict the qual-
ity of an image with little information about the reference image.
RR-IQA methods are useful in evaluating the quality of multimedia
transmitted over a communication channel. Some RR-IQA methods
are WNISM [16], EPM [17], RIQMC [18], DNT-RR [19], SIRR
[20], SDM [21], and FTB [22]. In contrast to FR-IQA and RR-IQA,
the NR-IQA methods assess the image quality without any infor-
mation about the reference image. Most of the NR-IQA methods
are designed to predict the quality in presence of a specific distor-
tion, such as compression, blur, etc. BLIINDS-II [23], DIIVINE
[24], BRISQUE [25], NIQE [26], and CORNIA [27] are a few
popular and highly cited NR-IQA methods. In addition, recently
many convolutional neural network (CNN) based FR and NR IQA
methods [28–36] have been published, which have shown stand-
out performances over the data-sets mentioned above. The detailed
information about the state-of-the-art in IQA research can be found
in the following references [37–39].

Applications of IQA: Objectively assessing the visual qual-
ity of an image has been a research field of significant interest
for the researchers over the years. It is growing exponentially due
to its usefulness over a wide range of applications like perfor-
mance evaluation and standardization of image acquisition devices,
and various image processing algorithms like image restoration and
image enhancement for various type of images. Different IQA algo-
rithms are developed over a variety of images like natural [40, 41],
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screen-content [42], document [43], tone-mapped [44], 3D stereo-
scopic [45], Depth-image-based-rendering (DIBR) synthesized [46],
medical [47] images, etc.

Among all, ensuring the quality of medical images is one of the
most important application areas. The evolution of digital medical
imaging enables an easier and more reliable diagnosis process. At
the same time, it raises challenges like the selection of the required
display device, the compression level, the accuracy level, and the
reliability of computer-aided diagnosis. The overall focus of analyz-
ing the entire medical imaging system is to ensure that the image
quality enables diagnostic reliability. It is done either subjectively
or objectively, by analyzing the necessary pathological information
present in the image.

While in some cases IQA metrics developed for general purpose
images and video have been applied to medical images [48], specific
IQA algorithms have been developed so far for the different medical
image modalities like magnetic resonance imaging (MRI), computed
tomography (CT), ultrasound imaging, fundus images, etc. Fundus
imaging is one of the important medical imaging techniques, that is
used to monitor the health status of human eyes.

Fig. 2: Fundus Image

Fundus Image Quality Assessment: In the field of Ophthal-
mology, digital fundus photography is being used for early and
improved diagnosis of various ocular disorders. Diagnosis through
fundus images is done via inspection of morphological changes
in the optical disc, macula, and blood vessels, as shown in Fig.2.
Advancement in optics, computerized sensors, and picture han-
dling led to the invention of sophisticated imaging devices like
smartphone-based retinal imaging system D-EYE and the plenoptic
ophthalmoscope, shown in Fig. 1(a) and (b). It allows an affordable
way to capture, store and share the fundus images with minimum
effort. However, such set-up of ophthalmic imaging is more open
to quality impairments which may lead to false diagnosis. Further-
more, the effect of the deteriorating ratio of number-of-doctors to
number-of-patients, can also be addressed with the advent of digi-
tal imaging and computer aided diagnosis (CAD) system used for
various ocular diseases. CAD systems are very effective in dimin-
ishing the diagnostic oversights and consequently the false negative
rates of ophthalmologists. The indicative significance of a fundus
image relies on its visual quality perceived by an ophthalmologist.
Regardless of whether it is manual or mechanized, to guarantee a
dependable conclusion, the quality of the fundus images must be
guaranteed. However, while dealing with huge amount of patient’s
data, the subjective quality evaluation of fundus images is quite
tedious and hectic process. There is a certain need for objective qual-
ity evaluation of fundus images to mimic the quality prediction of the
medical experts. For the last two decades, many research work has
been published to automatically grade the fundus images.

This paper presents a detailed review of the fundus IQA algo-
rithms developed to date with the listing of existing challenges in
the field. The content of the paper is structured as follows: Section
2 discusses the comparison between the fundus images and natural
images; Section 3 contains a brief discussion on factors affecting the
retinal image quality, types of distortions, and the publicly available
retinal image data-sets used by the researchers; Section 4 consists of
a detailed survey of the retinal IQA algorithms; in Section 5 limita-
tions in the state of the art and future scope of retinal IQA research

(a) (b)

Fig. 3: Example of Natural and Fundus images taken from [9, 49]

(a) (b)

Fig. 4: Distribution of the naturalness values of the examples of
Natural and Fundus images given in Fig.3.

has been discussed; finally Section 6 summarizes the paper including
the important aspects and conclusions.

2 Need of new IQA methods for Fundus images

The only similarity between the fundus and natural images is that
both are acquired from a digital camera. However, the statistical
properties of fundus images vary largely from those of natural
images. As mentioned in [50], the statistical behaviour of a digital
image can be determined using its naturalness property. The natu-
ralness of an image is derived in [51]by calculating naturalness value
Î(i, j) for pixel I(i,j) of the image, as follows:

Î(i, j) =
I(i, j)− µ(i, j)
σ(i, j) + 1

(1)

with i ∈ {1, 2, ...m} and j ∈ {1, 2, ...n}, where m and n are the
horizontal and vertical dimensions of the image I; µ(i, j) and
σ(i, j), estimating the local mean and contrast, are derived as
follows:

µ(i, j) =

3∑
k=−3

3∑
l=−3

ωk,lI(i+ k, j + l) (2)

σ(i, j) =

√√√√ 3∑
k=−3

3∑
l=−3

ωk,l[I(i+ k, j + l)− µ(i, j)]2. (3)

Here ωk,l is a circularly-symmetric 2D Gaussian weighting func-
tion. We have evaluated the naturalness property of various natural
and fundus images. For illustration purpose, in Fig. 3 an example
of natural and fundus image and in Fig. 4 the respective distribution
of the naturalness values has been shown. It has been observed that
the distribution of the naturalness values of natural images follows a
Gaussian distribution. On the other hand, for fundus images the dis-
tribution curve is steep, indicating low naturalness. Hence, the IQA
algorithms developed for natural images might not work adequately
for the fundus images.
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3 Factors affecting the quality of fundus images

The quality of a medical image can be considered to be appropriate
if all the required pathological structures are clearly visible. The pri-
mary structures visible in fundus images of a healthy eye are optic
disc, macula, and blood vessels, as shown in Fig.2. Following are the
primary factors behind the degradation of the retinal image quality:
(i) event of haze, (ii) presence of dust and dirt in the camera, (iii)
dusty camera lenses, (iv) eye blink, and (v) event of occlusion by
eyelashes. Uneven illumination, low contrast, blur, and light flares
are the commonly seen distortions due to the above mentioned fac-
tors, as shown in Fig. 5. Artifacts generated by dust and dirt are
clearly visible light spots scattered throughout the image, shown in
Fig. 5(a). The event of total eye blink causes extremely poor qual-
ity fundus image as shown in Fig 5(b). An improper gamma and
flash adjustment lead to color distortions like over-exposure, under-
exposure, and uneven illumination, as shown in Fig. 5(c), (d) and (e),
respectively.

In addition, due to errors generated by light refraction, a red color
print occurs throughout the fundus image, which is also referred to as
“leopard print” fundus image, shown in Fig. 6(a). Next, an improper
cleaning of the camera lenses creates circular rings of light in the
center of the image, shown in Fig. 6(b). It is important to men-
tion that, although the visual appearance of both Fig. 6(a) and (b)
images indicates inadequate quality, experts consider it as an accept-
able quality image. In order to acquire an appropriate quality fundus
image, the following are the important constituents:

1. Proper space between camera and eyes;
2. Appropriate gamma and flash adjustment;
3. Quality of sensors;
4. Compression;
5. Image resolution;
6. Color, contrast, and saturation.

(a) (b)

(c) (d)

(e) (f)

Fig. 5: Samples of low quality fundus images with different distor-
tions [49]: (a) Light flares, (b) Total eye blink, (c) Overexposed, (d)
Underexposed, (e) Uneven illumination, (f) Blur.

(a) (b)

Fig. 6: Samples of fundus images with red color "leopard" print and
circular ring [49]: (a) Leopard Print, (b) Circular Ring.

A proper setting or choice of the above-mentioned factors will be
required for the desired quality of the image. Furthermore, in order
to assess the fundus image quality, many different quality parame-
ters are used, like illumination, blur, colour, contrast, and visibility
of structures present in the image. In addition, a study [52] at the
University of Wisconsin-Madison defined the following quality indi-
cators for retinal images: focus and clarity, field definition, visibility
of the macula, optical disc and blood vessels.

3.1 Fundus image data-sets

A concise details of eighteen(18) publicly available data-sets of reti-
nal fundus images used by researchers is provided in Table 1. The
table includes the following information about the data-sets: total
number of images, spatial resolution, storage format, and the pur-
pose of the data-set. It has been observed that most of the data-sets
are built to facilitate the challenges of computer based ocular dis-
ease classification and blood vessel segmentation. There exist only
one data-set, namely DRIMDB [53], for quality assessment purpose.
It contains fundus images with two categories of quality: Good and
Bad, without any detailed subjective quality score.

4 Survey of Fundus Image Quality Assessment
Algorithms

On the basis of methodologies used, retinal IQA algorithms can be
divided into three categories: (i) Similarity based methods, (ii) Seg-
mentation based methods, and (iii) Machine learning based methods,
as shown in Fig. 7. A concise information about these algorithms,
described below in chronological order, is provided in Tables 2, 3,
and 4.

4.1 Similarity Based Methods

A few algorithms [72, 73] reported in the literature use similarity
comparison of some of the attributes of the target image with those
of a set of good quality images. According to a thorough study of
the related literature, Lee and Wang [72] were the first to work on
objectively assessing the quality of fundus images (in 1999). Their
proposed algorithm calculates the similarity measure between the
intensity histogram of the target image and the template formed from
a set of reference images. In order to have the reference template,
the authors considered 20 high quality fundus images. The similar-
ity metric (C) is calculated by performing a convolution operation
between the intensity histograms of the reference template K and
the input image H:

C =

255∑
i=0

K(i) ∗ H(i). (4)

Here, K(i) is the coefficient of the ith kernel of the template his-
togram, and H(i) is the number of pixels with intensity value of i.
A higher value of C represents a higher correlation and similarity
between K and H. Since K is obtained from high quality fundus
images, a high value of C indicates high quality of the target image.
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Table 1 Fundus image data-sets. DM: Diabetic Macular-Edema, M-A: Micro-Aneurysm, OD: Optical Disc, AMD: Age-Related Macular Degeneration, DR: Diabetic
Retinopathy

Database Number Resolution Format Purpose
of Images

DRIMDB [53] 216 760 × 570 JPEG Quality Assessment
HRF-DB [54] 45 3504 × 2336 JPEG Vessel segmentation
DRIVE [55] 40 768 × 584 JPEG Vessel segmentation
VICAVR [56] 58 768 × 584 JPEG Vessel segmentation
STARE [57] 400 700 × 605 PPM Vessel segmentation
REVIEW[58] 14 2160 × 1440, JPEG Vessel segmentation

1360 × 1024, BMP
3584 × 2438

CHASE [59] 28 999 × 960 PNG Vessel segmentation
MESSIDOR[60] 1200 1440 × 960, TIFF DR classification

2240 × 1488,
2304 × 1536

ImageRet[61] [62] 219 1500 × 1152 PNG DR classification
DRiDB [63] 50 720 × 576 BMP DR classification
HEI-MED [64] 169 NA JPEG DM classification
ARIA [65] 212 768 × 576 TIFF AMD classification
E-Optha[66] 463 1440 × 960, JPEG M-A, Exudates

2048 × 1360, detection
2544 × 1696

ROC [67] 50 768 × 576, JPEG M-A detection
1389 × 1383

RIM ONE [68] 169 NA NA OD segmentation
DRIONS-DB [69] 110 600 × 400 JPEG OD segmentation
DRISHTI [70] 101 2896 × 1944 PNG OD segmentation
ORIGA [71] 650 NA NA Glaucoma Analysis

Similarity Based Segmentation Based Machine Learning Based

Fundus IQA algorithms

Fig. 7: Classification of fundus IQA algorithms

Since the histogram of an image is a global feature (it represents
the number of pixels in the image with a specific value), it does not
contain information about the location of the pixels. Hence, same
histograms can be found for different images. Fig. 9 shows the his-
togram of two different fundus images (shown in Fig.8) where one
is of good quality and the other one is of poor quality. Certainly, a
higher value of C may not always give a correct indication of the
quality of the target image.

To address this, M. Lalonde, L. Gagnon, and M.C. Boucher [73]
proposed (in 2001) a new similarity-based fundus IQA algorithm.
The authors measured the similarity between the reference template
and the target image on the basis of the following two parameters:
distribution of edge magnitudes and local intensity distribution. The
distribution of edge magnitude is derived by taking the squared dis-
tance between the edge magnitude histogram of the reference image
template and the target image. The local intensity distribution is
derived in four steps. The first step involves forming a reference
grey-scale image using the set of high quality images. Second, the
input image is sub-divided into uniform regions using a histogram
splitting algorithm. In the third step, the histogram features are cal-
culated for each sub-region in the target image as well as for the
same sub-regions in the reference image. Finally, the summation of
the squared difference between the respective mean of the histogram
of each sub-region is calculated. These two derived features are used
to determine the quality of the fundus image. For experiment pur-
pose a set of forty (40) fundus images has been used and divided
into three categories of quality: good, fair, and bad.

4.1.1 Advantages:

• This methodology resembles to the RR-IQA methods (a set of
features extracted from the reference image is used for the quality

estimation of target images) hence it can be useful in real time appli-
cations like telemedicine, where target fundus images have been
transmitted over wireless networks.
• More reliable and efficient than NR-IQA methods.

4.1.2 Limitations:

• It is difficult to create a universal set of good quality fundus
images as reference.
• It is difficult to derive an efficient and effective set of features to
represent the quality class.
• Such methods are sensitive towards different types of distortions.
• The histogram features that have been used in [72, 73] do not
include the structural characteristics of the fundus images.
• Such metrics do not effectively represent the Ophthalmologist’s
perception of fundus image quality.
• Less probability of efficient performance on cross data-set evalu-
ation.

4.2 Segmentation based methods

Similarity-based methods use histogram features that do not explic-
itly include structural information of the image. Since structural
information are of diagnostic importance, some work [74–78] have
been proposed based on the segmentation of the structures present in
the fundus image.

Segmentation based fundus IQA algorithms generally involve a
two step process. The first step is the segmentation of structures
and the second step involves its analysis, on the basis of certain
parameters, in order to estimate the fundus image quality. The first
segmentation based fundus IQA was proposed by D. Usher, M.
Himaga, M. Dumskyj, and J. Boyce [74], in 2003. The authors have
taken the pixel count of the blood vessels present in the image as
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Fig. 8: Sample fundus images; (a) Good Quality, (b) Poor Quality.

Fig. 9: Normalized histogram of both fundus images

the quality indicator; the larger the count the better the quality. In
this work, the blood vessel extraction is achieved using matched
filtering [79] followed by a region growing algorithm. In matched
filtering, the input image is processed with two Gaussian kernels.
One is intended to match regions of large blood vessels and another
is intended to match the regions of small vessels. Further, a region
growing algorithm is used over the results of these filtering pro-
cesses in order to extract the blood vessels. Finally, the summation of
the number of pixels belonging to the vessels is used as the quality
score. For the performance evaluation of the algorithm, specificity
and sensitivity, as given below, were used.

Specificity = a
a+c

Sensitivity = b
b+d

(5)

where a and b are the number of correctly classified good and poor
quality fundus images respectively, c and d are the the number of
wrongly classified good and poor quality fundus images respec-
tively. On the basis of segmentation results over the set of 1746
fundus images, 84.3% sensitivity and 95% specificity have been
reported. This was the first attempt in this direction with significant
results. However, some important issues have been addressed in the
subsequent research works.

Macula is an important part of fundus images and the blood ves-
sels around it carry significant diagnostic information. The size of
the vessels around the macula is comparatively very small and nar-
row. Hence, it has high chances of getting affected by any distortion.
In addition, the absolute and relative position of various structures
also play an important role while determining the fundus image qual-
ity. A. D. Fleming, S. Philip, K. A. Goatman, J. A. Olson, and P. F.

Sharp [75] addressed these issues, and presented a segmentation-
based algorithm in 2006. In this work, the overall image quality is
determined by the following two parameters: (i) clarity, and (ii) field
definition. The clarity feature is obtained on the basis of the visibility
of the blood vessels around the macula region. The authors have seg-
mented the blood vessels present around the macular region of the
image. Furthermore, algorithm also approximates the field definition
on the basis of the following parameters: location and diameter of the
optical disc and visibility of the region within the 2 disk diameters
(DD) around the fovea. The value of one DD is manually estimated
by analyzing the optic disk diameter in good quality images, and
set as 246 pixels. Overall 99.1% sensitivity, and 89.4% specificity is
reported over a set of 1039 images. Although the blood vessel den-
sity around the macula provide a sufficient indication for the quality
of fundus image, through this information it is difficult to capture the
presence of blur in the image, as blood vessels can be visible even if
they are blurred and may get added to the vessel pixel count.

Hunter, J. A. Lowell, M. Habib, et al. [76] addressed the diffi-
culties with the blurred image. The algorithm, visibility of blood
vessels near the fovea, that is in the macular region, is considered
as the primary quality indicator. In order to examine the presence
of blur, the contrast of the vessels with the background is calcu-
lated. The algorithm initially finds the location of the fovea by
using an algorithm proposed by C. Sinthanayothin, J. Boyce, H.
Cook, and T. Williamson [80]. Next, the segmentation of blood ves-
sels is performed using a non-linear filtering based method termed
as Tram-line algorithm [81]. A metric (v) quantifying the vascular
information is calculated using the number of blood vessel pixels,
their average distance from the fovea, and contrast with the local
background. Further, the information of contrast around the region
of the fovea is also quantified and used as second quality indica-
tor (k). Finally, the overall quality metric is derived by taking the
product of both v, and k metrics. The authors categorized the fundus
images into 5 categories of quality. The performance of the algorithm
is evaluated over a data-set of 200 images and 100% sensitivity and
93% specificity has been reported.

T. KÃűhler, A. Budai, M. F. Kraus, et al. [77] also presented a
quality evaluation algorithm for fundus images, in 2013, based on
an assessment of blur by tracking the blood vessels. As the first
step, the green channel of the fundus image is extracted and divided
into a number of fixed n× n size patches. In the next step, all the
anisotropic patches, discussed below, are selected and the singu-
lar value decomposition (SVD) of local gradient matrix from each
anisotropic patch is calculated. As mentioned in [82], a patch that
can be modeled as:

p(xk, yk) = a1(xk − xc)2 + a2(yk − yc)2 (6)

is called as a quadratic patch, where p(xk, yk) is the pixel value
of patch p at location k, (xc, yc) is the center point, and a1 and a2
decide the slope. A quadratic patch is called “anisotropic” patch only
when a1 6= a2. The probability of erroneous results while selecting
anisotropic patches is reduced by using a proposed metric termed
vesselness measure. This vesselness measure is derived by analyzing
the blood vessel with the help of the Hessian matrix that is calculated
for the green channel of the image. A local quality metric for each
anisotropic patch is derived using the singular values obtained from
the SVD. Finally, the global quality metric (Qv) is derived by tak-
ing the addition of all the local metrics. The authors have created
manually distorted fundus images from the DRIVE [55] data-set by
modeling two distortions: (i) zero mean Gaussian noise, and (ii) blur
using fixed size Gaussian filter. The two well known full-reference
(FR) image quality metrics peak-signal-to-noise ratio (PSNR) and
structural similarity index (SSIM) [12] are used to determine the
noise levels. The final results are shown by deriving the Spearman’s
rank order correlation of 0.89 and 0.91 between the Qv and both
PSNR and SSIM.

In 2014, H. A. Nugroho, T. Yulianti, N. A. Setiawan, and D. A.
Dharmawan [78] presented a contrast assessment method in order
to assess the fundus image quality. The algorithm calculates the
contrast of the blood vessels as a quality parameter. The proposed
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Table 2 Summary of Similarity based fundus IQA algorithms. NS: Not Specified
Work Year Quality Parameter Categories # Images Accuracy (%) Pros Cons

of quality
[72] 1999 Intensity histogram 2 NS NS Less complex; Achieves high specificity as it Intensity histogram does not speak

measures similarity between characteristics of about the structural and local
input image with good quality fundus image properties of the image.

[73] 2001 Edge magnitude and 3 40 NS Contains analysis of structural properties; Not robust to distortions like
local intensity distribution Achieves high specificity high compression and blur

algorithm starts with the pre-processing step which includes extrac-
tion of the green channel from the RGB image followed by image
enhancement. In the next step, it segments the blood vessel area
around the macular region using the match filtering method [83].
Finally, the algorithm calculates the proposed contrast metric by
using the difference between the intensity values of pixels of blood
vessels and background pixels using equation 7. In total 47 images
from the [64] database have been used for the experiment purpose.
The reported accuracy of the proposed work is 89.36%.

The proposed contrast metric is

C = | 1
x

x∑
i=1

Ivi −
1

y

y∑
i=1

Ibi| (7)

where Iv and Ib represent the blood vessel and background pixel
intensity value respectively. x and y are the total number of selected
pixels of blood vessels and background.

4.2.1 Advantages:

• These methods are based on the analysis of structural degrada-
tion in the image and effectively represent the doctor’s approach for
determining the fundus image quality.
• These methods can effectively perform over distortions like Color
(Overexposed and Underexposed), Uneven Illumination, Additive
Gaussian noise, and Blur.
• They achieves high specificity and sensitivity under fixed assump-
tions like fix shape, size, and location of the structures.

4.2.2 Limitations:

• The assumption behind segmentation based quality assessment
is that poor segmentation results reflect poor fundus image qual-
ity. Here, segmentation algorithms work under the fix assumptions
and criterion like fix shape, size, and location of the structures. Any
changes to these parameters may lead to the decreased performance
while cross-data set evaluation.
• Segmentation algorithms are expected to give good results even in
presence of different noises and this in turn results into an erroneous
quality assessment result. For example the Canny edge detection
algorithm used in [75] reduces the effect of Gaussian noise. There-
fore, it might not produce reliable and correct quality assessment
results in presence of Gaussian noise.

4.3 Machine learning based methods

Machine learning (ML) based fundus IQA algorithms classify the
fundus images into predefined categories of quality by learning from
the samples. The process involves the following three steps: (i)
Feature Extraction, (ii) Training and validation of the model, and
(iii) Testing. ML based fundus IQA methods can be further classi-
fied into three categories based on the type of features extraction
approach: (i) Feature Extraction Based on Structural Analysis, (ii)
Feature Extraction Based on Generic Image Statistics, and (iii) Fea-
ture Extraction Based on Convolutional Neural Networks (CNN)
Models. A brief introduction of these algorithms is provided in the
subsequent subsections.

4.3.1 Feature Extraction Based on Structural Analysis: In
2006, M. Niemeijer, M. D. Abramoff, and B. van Ginneken [84]

presented the first machine learning based framework for fundus
IQA by using the image structure clustering (ISC) method. The
ISC method identifies the primary structures present in the fundus
image by creating the clusters of the outputs received from a set
of multi-scale filters. The authors have used a set of five rotation
and translation invariant filter-bank at different scales to perform
the ISC in fundus images. A total of five clusters have been com-
puted with the input image using the filter-bank. Further, a set of
features that contains the histogram of the ISC clustered pixels and
the raw histogram of red R, G, and B planes was extracted from
each cluster. This feature set is used to train four different classi-
fiers: (i) support vector machines (SVM) with radial basis kernel,
(ii) quadratic discriminant classifier, (iii) linear discriminant classi-
fier, and (iv) k-nearest neighbor (k-NN) classifier. As mentioned in
the result section, most astounding precision is accomplished by the
SVM classification method with 99.68% accuracy. A total 1000 fun-
dus images, taken from a proprietary data-set, have been used for
both training and testing in order to divide the fundus images into
two categories of quality: poor and good.

In 2008, L. Giancardo, M. D. Abramoff, E. Chaum, et al. [85]
mentioned that one of the limitations of all the previously discussed
works is their running time. To overcome this issue, the authors
have presented a fast framework for fundus image quality estima-
tion. The proposed algorithm incorporates both the approaches of
segmentation and machine learning methodologies. Initially, the cir-
cular region of interest is localized and segmented from the fundus
image by using a circular mask. This circular mask is obtained from
the green channel of the image with the help of a region growing
algorithm. Further, the vessel segmentation process is implemented
by using a method based on mathematical morphology [86]. Fur-
ther, local vessel density is calculated from the obtained segmented
vessel area by dividing the image into local windows. A total of 18
local polar windows have been formed and the area of vessels for
each window is calculated. Vessel density feature obtained from all
the 18 local windows are used to train and test the classifiers in order
to classify the fundus images into two categories of quality: Good
and Poor. Classification is tested over two different classifiers: (i)
SVM, and (ii) k-NN and the results reported are more favorable in
case of SVM. The proposed system is tested over 82 fundus images
with 100% sensitivity and 92% specificity.

In 2010, Paulus, J. Meier, R. Bock, J. Hornegger, and G. Michel-
son [87] presented a system for retinal IQA by combining both
structural information and generic image quality statistics. The struc-
tural information includes visibility of optical disk and blood vessels,
and generic quality indicators contains information about the illumi-
nation and contrast. The final feature set consists of three features: (i)
clustering, (ii) sharpness, and (iii) Haralick texture features. Struc-
tural information is determined by the clustering method, in order
to compute the clear differentiation between structures present in
the image. It is determined by using the k-means clustering method.
Total ten manually segmented images of k clusters with fixed mean
values have been used for initialization of cluster centers. Now, for
each input image, the cluster size and difference between the values
of each cluster mean is calculated. Further, generic quality features
are quantified by the sharpness metric and Haralick features [88].
The sharpness metric is calculated by using the gradient magnitude
of the image. Haralick feature metrics are computed from the co-
occurrence matrix of the image that is intend to represent the texture
features of the image. To evaluate the illumination and contrast fea-
tures, the authors have utilized three Haralick metrics mostly known
as texture metrics. Finally, all the above-mentioned feature set is
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Table 3 Summary of Segmentation based fundus IQA algorithms. SN: Sensitivity, SP: Specificity, SC: Spearman’s Correlation
Work Year Quality Parameter Categories # Images Accuracy (%) Pros Cons

of quality
[74] 2003 Blood vessel density 2 1746 SN: 95, SP: 84.3 Matched Filtering is easy Effective only under pre-defined

and simple to implement, assumptions, not effective for smaller
gives adequate performance in or larger size blood vessels

presence of Gaussian noise

[75] 2006 Blood vessel pixel count 2 1039 SN: 99.1, SP: 89.4 Emphasis given to the Assumes fix parameters for the
and field definition Field definition and relative locations of the structures

positioning of the structures hence not effective for
present in the image cross data-set evaluation

[76] 2011 Visibility of blood vessels 5 200 SN: 100, SP: 93 Effective performance for blur Sensitive towards different type of
and field definition and gaussian noise distortions like uneven illumination

[77] 2013 Blood vessel pixel count NA 58 SC: 0.89 with PSNR Due to Patch-wise analysis Method is tested over only two
SC: 0.91 with SSIM this method is very effective distortions, the naturalness property

in presence of uneven distortions of images is low hence results obtained
additive Gaussian noise from SSIM and PSNR metrics

and Gaussian Blur may not be of much significance

[78] 2014 Contrast of 2 47 89.36 Effective for Color and Effective only under pre-defined
blood vessels Contrast distortions assumptions like size and shape

used to train the SVM classifier in order to classify the fundus images
into two classes: Good, and Poor. The proposed system is tested over
301 fundus images and achieves an accuracy of 95.3%.

Another work in this category was proposed by R. Pires, H. F.
Jelinek, J. Wainer, and A. Rocha [89] in 2012. The proposed work
is influenced by the work of Fleming et al. [75] that uses field
definition of the fundus image as a primary quality indicator. The
authors have inspected the quality of fundus images by analyzing
the field definition and the level of blur present in the image. A
set of 40 high quality fundus images have been selected as refer-
ence images. The verification of field definition is performed by
analyzing the structural similarity between the reference image and
the input image using the well-known SSIM method. Detection of
blur is achieved by calculating a set of features, namely: (i) area
descriptor, (ii) visual dictionary descriptor, (iii) blurring descriptor,
(iv) sharpening descriptor, and (v) concatenation of blur and sharp-
ness descriptor. Area descriptor estimates the area of blood vessels
within the image. It is calculated using the well known Canny edge
detection algorithm. Visual dictionary is built by detecting the stable
point of interests in the image using a well known method namely
Speeded Up Robust Feature (SURF) [90]. Further, in order to model
the blur and sharpness measure, the authors used the input image as
the reference image. The input image is blurred and sharpened pro-
gressively with different intensities and then the similarity measure
between the input image and its transformed versions is calculated.
The assumption behind the idea is that a poor quality image will be
more similar to its distorted version rather than a good quality image.
All the above derived set of feature vectors have been used to train
and test the SVM classifier for generating the final results. Extensive
experiments and results have been shown for the verification of field
definition and blur detection with 96% and 95.5% accuracy.

In 2012, H. Yu, S. Barriga, C. Agurto et al. [91] presented another
linear regression based retinal IQA method. In the proposed work
the authors extracted various statistical features in order to train the
regression model more efficiently. In addition, fundus images are
divided into four categories of quality. The algorithm consists of
two steps: (i) feature extraction and (ii) PLS regression. The fea-
ture extraction step involves the extraction of four different features:
(i) vessel density, (ii) histogram, (iii) texture features, and (iv) local
sharpness features. Vessel density feature is calculated by taking the
ratio of the area of blood vessels over the area of the field of view.
Blood vessels are segmented by using a method based on multi-
scale enhancement and second order entropy threshold [92]. Mean,
variance, skewness, and kurtosis features are extracted for determin-
ing the histogram features. The texture features are derived using
five Haralick texture features: (i) second order entropy, (ii) contrast,
(iii) correlation, (iv) energy, and (v) homogeneity. Local sharpness

features are determined by using a well-known method named cumu-
lative probability blur detection (CPBD). Each fundus image from
the training data-set is assigned a quality score by the retinal expert,
and graded into four categories of quality: high, medium, low, and
reject. A linear relation is assumed between the derived features and
the quality score. All the derived features are considered as the inde-
pendent variable and quality score as the dependent variable. Finally,
the PLS regression algorithm is implemented in order to estimate
the overall quality. The proposed algorithm is tested over a propri-
etary data-set of 1884 fundus images and achieved 95% performance
accuracy.

Another method proposed in this category consists of both seg-
mentation and machine learning G. J. Katuwal, J. Kerekes, R.
Ramchandran, C. Sisson, and N. Rao [93] proposed a retinal IQA
algorithm for fundus images by analyzing the symmetry of retinal
blood vessels. Initially, the stationary wavelet transform followed by
median filtering, dilation, and circular masking, is used to extract
the retinal blood vascular structure. Further, the image is horizon-
tally divided into two equal parts, followed by dividing both halves
into 10 equal size vertical windows. Now, with the help of segmented
vasculature, the following four features are calculated: (i) global ves-
sel density (GVD), (ii) local vessel density (LVD), (iii) difference
between LVDs of top and bottom local windows, and (iv) difference
between sum of LVDs in top half and bottom half. The GVD met-
ric is the ratio of the number of blood vessel pixels and the total
number of pixels present in the image. The LVD metric is similar
to GVD, calculated individually for each window. Finally, all the
derived feature vector set is used to train the SVM classifier. The pro-
posed system divides the fundus images into 5 classes with reported
performance accuracy of 60%. A proprietary data-set of 88 images
has been used for the experiment.

Most of the methods discussed in this category are intended to
divide the fundus images into two categories of quality. However,
a few of the methods [73, 76, 77] attempted to classify the fundus
images into more than two classes. The limitation of binary classifi-
cation based retinal IQA approach is that it is unable to effectively
model the doctor’s perception of fundus image quality, as it draws a
strict boundary between the two classes. An average quality fundus
image that can be used for the diagnosis and closer to the boundary
can be classified as poor quality image and vice versa. In both the
conditions, the performance of the CAD systems will degrade. An
IQA method that can provide a quality score via a number within a
fixed range can provide better insights into doctor’s judgment for the
retinal image quality. The next work in this category is one of the
few works that producea quality score for the fundus images rather
than simply classifying the fundus images into categories of qual-
ity. F. Yin, D. W. K. Wong, A. P. Yow et al. [94] presented a retinal
IQA algorithm named as automatic retinal interest evaluation system
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(ARIES). The proposed algorithm is divided into three steps: (i) reti-
nal image identification, (ii) confirmation of non-retinal images, and
(iii) quality assessment. The first step involves the identification of
the fundus images. Bag of visual words is used to train the SVM clas-
sifier to classify the fundus and non-fundus images. The second step
is intended to suppress the effects of wrong classification results, as
it is believed that a fundus image with bad quality might be wrongly
classified as a non-fundus image. A reference fundus image template
is created from a set of high-quality images. Then the SSIM val-
ues are calculated between each non-fundus image and the reference
image. All the images with higher SSIM values are considered as
fundus images. Next, the quality assessment process involves train-
ing of the SVM classifier with the following feature set: contrast
ratio, blur ratio, entropy, blood vessel density. Contrast is calculated
as the ratio of the mean intensity value and standard deviation of
pixels for each color channel (R, G, B) individually. The blur metric
is calculated by the method described in [95], that is based on the
intensity range of the pixels. Next, blood vessel density is derived
as the ratio of number of blood vessel pixels and total number of
pixels in the image. Blood vessel pixels are extracted by using bot-
tom hat filtering algorithm. The bottom-hat filtering method involves
performing the morphological closing operation in the image fol-
lowed by subtracting the original image from the result. Finally, all
the derived features are used to train the SVM classifier. Another
contribution of the work is that it does not directly usethe SVM clas-
sification results. Rather, the output of the SVM decision function is
normalized to generate a quality score named as retinal image quality
score (RQS). The value of RQS ranges from 0 to 1, where a higher
value reflects the higher fundus image quality. The proposed system
is trained and tested over 740 fundus images and achieved 95.4%
accuracy.

4.3.2 Feature Extraction Based on Generic Image Statistics:
To the best of our knowledge, H. Davis, S. Russell, E. Barriga,
M. Abramoff, and P. Soliz [96] represented the first retinal IQA
algorithm that includes human perception for the fundus image qual-
ity in the form of subjective quality scores. A total of 400 artificially
distorted images are created using Gaussian blur and intensity shift,
from the images taken from the Messidor [60] data-set. All images
are assigned a quality score by the ophthalmologists and divided
into two classes of quality: (i) good and (ii) poor. The first step of
the algorithm is to divide the image into seven equal size blocks
for each channel of the two color models: RGB and CIE L*a*b*
space. The CIE L*a*b space model is used because of its ability to
comprehend the relation between change in color values and visual
properties. Blur, overexposure, and underexposure are considered
the primary artifacts to be observed in the work. They are mathemati-
cally demonstrated by deriving a set of six statistical properties of the
pixels: mean, skewness, entropy, spatial frequency, and median. A
linear relation is assumed between the features and the quality score.
Features are considered to be as the independent variable and qual-
ity score as the dependent variable. Finally, the partial least square
(PLS) linear regression model is trained to estimate the fundus image
quality. The proposed system has reported an accuracy of 99.3%.

Based on four generic quality indicators: color, focus, contrast,
and illumination, J. M. P. Dias, C. M. Oliveira, and L. A. da Silva
Cruz [97] presented a retinal IQA algorithm (in 2014). The flow of
the algorithm is as follows: Pre-processing, feature extraction, and
fusion of features for final classification. The algorithm starts with
a pre-processing step to exclude redundant background informa-
tion and to retain only information of retinal structures by applying
masking and cropping operation over the image. Feature compu-
tation includes an individual assessment of color, focus, contrast,
and illumination features. Color assessment classifies the color of
a retinal image into three categories; bright, dark, and normal. It is
implemented by color indexing using the histogram back projection
method presented by Swain and Ballard [104]. Three color maps
for all three categories are obtained by the statistical analysis of 11
bright, 7 dark, and 232 normal images. Next, the focus assessment
step involves classifying the image into the blurred, borderline or
focused category. After converting the color image into grayscale,
the focus is quantified by applying ther Sobel operator to the retinal

image followed by a multi-level focus analysis algorithm. Further,
the contrast assessment algorithm classifies the retinal image into
two classes: low and high. It is implemented by using color indexing,
similar to the color assessment algorithm. Further, the illumination
assessment is achieved by using the mean and variance properties
present in the indexed image. Finally, all the extracted features are
used as input to train three classifiers: Feed-forward back propaga-
tion neural network, radial basis function networks, and k-Nearest
Neighbor. The most satisfactory results have been reported for the
feed-forward neural networks classification method. A set of 2032
retinal images has been used for the experiment, that achieved
sensitivity of 99.76%, and specificity of 99.49%.

Next, D. Veiga, C. Pereira, M. J. Ferreira, L. GonÃğalves, and
J. Monteiro [98] presented a fuzzy classification based retinal IQA
algorithm (also in 2014). The algorithm examines the image sharp-
ness and field of view (FOV) area in order to differentiate between
the low and good quality fundus images. Initially, the green channel
of the fundus image is used to derive the noise mask and FOV mask.
The noise mask determines the unevenly illuminated zones present
in the image. The FOV mask is used for the segmentation of the area
around the macula including optical disk. Next, both noise and FOV
masks are compared to substantiate if their common area is greater
than a predefined threshold. If the common area is less than the given
threshold, then the image is considered as a poor quality image and
the algorithm terminates. Otherwise, the process enters the next step
that is focus evaluation. Focus analysis is done with three prede-
fined focus operators: (i) wavelet-based, (ii) moment-based, and (iii)
statistics-based. The output generated from the focus operators is fed
as feature input to the fuzzy classifier to get the final result. A total
of 1454 number of fundus images have been used for the experi-
ment, out of which 1200 were taken from the [60] data-set and 254
from a proprietary data set. The reported accuracy of the proposed
algorithm is 98%.

Another statistical quality parameters based retinal IQA method
was proposed by the Z. Yao, Z. Zhang, L.-Q. Xu, Q. Fan, and
L. Xu [99] in 2016. Primarily two quality parameters have been
taken into consideration: (i) uneven illumination, and (ii) blur. In
order to quantify these parameters the following features have been
extracted: statistical characteristics of pixels, texture features, cen-
tral statistical characteristics, symmetry, wavelet features, and blur
metric features. Mean, standard deviation, skewness, kurtosis, and
entropy parameters are calculated and used as statistical character-
istics of the image. In order to model the texture features, first, the
co-occurrence matrix is derived from the image. With the help of the
co-occurrence matrix, the following features are derived: contrast,
correlation, energy, and homogeneity, and used as texture features.
A central region in the image containing the fovea part has been
selected and all the above-mentioned features are calculated, which
are termed as central statistical characteristics. The symmetry of
the image is predicted by calculating the mean values of 9 squared
regions selected in the image. Furthermore, the analysis of the blur
component in the image is based on the idea that the presence of blur
results in the loss of the high-frequency components in the image.
Using the Harr wavelet transform, low and high-frequency compo-
nents are separated from all the three color channels of the fundus
images. All the statistical features discussed above are derived for
each of the three high-frequency components. Finally, a well known
method based on the cumulative probability of blur detection is used
to extract the blur metric. The feature extraction step collectively
forms a 113-dimensional feature vector that is used to train the SVM
in order to classify the poor and good quality fundus images. The
overall accuracy reported is 91.38%. All the experiments are carried
out over a proprietary data-set of 3224 fundus images.

In the next work under this category the authors supported the
importance of retinal IQA research with the fact that the portable
and handy fundus imaging devices are more sensitive towards distor-
tions. Based on the theory of Human Visual System (HVS) frame-
work, in 2016 S. Wang, K. Jin, H. Lu et al. [100] presented a machine
learning approach for quality prediction of portable fundus images.
Initially, the quality scores are collected by the subjective evaluation
from three ophthalmologists for a dataset of 536 images. It is impor-
tant to note that the quality scores are collected for the following
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Table 4 Summary of Machine learning based fundus IQA algorithms divided on the basis of feature extraction approach. DT: Decision tree, FC: Fuzzy classification,
ANN: Artificial neural network, SP: Specificity, SN: Sensitivity, MF: Membersip function.

Work Year Method Quality Parameter Categories Images Accuracy (%) Pros Cons
of quality
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[84] 2006 SVM Image structure 2 2000 99.86 Features extracted are rotation Less effective for the detection of
clustering and translation invariant Color and Blur distortions

[85] 2008 SVM Blood vessel 2 84 SN: 100, SP: 92 Can effectively handle morphological Not effective for non-uniform distortions,
density changes in size blood vessels tested over very small data-set

[87] 2010 SVM Structural and 2 301 95.3 Method combines both structural and k-means clustering is sensitive to data-set
generic features generic properties, k-mean clustering any changes to the data-set will lead to

is computationally faster completely different results

[89] 2012 SVM Field definition 2 6696 96, 95.5 Canny edge detection algorithm used for Less efficient to assess the quality
and blur blood vessel segmentation is effective in of fundus image in presence of

presence of noise Gaussian noise

[91] 2012 PLS Vessel density 2 1884 96 Structural and generic properties are Method is not evaluated over the
histogram, texture evaluated separately, included artifacts generated due to

and sharpness the subjective quality scores high compression

[93] 2013 SVM Symmetry of 5 88 60 Stationary wavelet transform (SWT Evaluated over a very small
blood vessels used for the vessel segmentation data-set, not robust to color

is translation invariant and blur artifacts

[94] 2014 SVM Contrast, blur and 2 370 95.8 In comparison to other methods this The performance of Bottom hat filtering
blood vessel density method quantifies the image quality on a method used for the vessel segmentation

fix scale, computationally efficient relies upon the structuring element
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[96] 2009 PLS Statistical features 2 2000 SN: 100, SP: 96 CIE L*a*b space model is Not robust to distortions occurred
effective for the extraction due to compression and

of color information erroneous transmission

[97] 2014 ANN Color, focus,contrast 2 2032 99.87 Method analyzes the focus, color, Not robust to the artifacts
and illumination contrast, and illumination individually, generated due to high compression

tested over comparatively large data-set and erroneous transmission

[98] 2014 FC Uneven illumination 2 1454 98 Method efficiently fuses the generic and MF used in FC works with “If and else”
focus structural properties, FC works efficiently reasoning. However, it is not necessary

with imprecise and incomplete data that all the combined factors are
equally important

[99] 2016 SVM Uneven illumination 2 3224 91.3 Due to block-wise analysis method is effective Method is not efficient in
and blur in presence of non-uniform distortions presence of refractive errors

[100] 2016 DT Uneven illumination, color, 2 536 94.52 Data-set includes subjective evaluation, Method is not evaluated over high
and SVM blur and contrast method works on HVS based feature compression and transmission error

extraction methods distortions

[101] 2017 DT, DL Uneven illumination, 2 4372 92.39 Gabor filters used for the optic disk Classification accuracy is
and SVM naturalness property segmentation are rotation, translation not up to the expected

and structural information scale and illumination invariant satisfactory level
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[102] 2016 CNN High level features 2 101 99.87 Simple network architecture Evaluated over a very small data-set
extracted from CNN

[103] 2017 CNN Fusion of features extracted 2 5200 95.42 Unique feature extraction, No significant change in the performance
from CNN and saliency maps evaluated over real distorted images of the system while not using the features

significantly large data-set is used extracted from saliency maps

three quality parameters on a scale of two: (i) uneven illumination,
(ii) blur, and (iii) contrast. The proposed algorithm involves three
major steps: (i) Pre-processing, (ii) HVS based feature extractions,
and (iii) Machine learning. The pre-processing step separates the
extraneous background information from the image by using a circu-
lar mask. Next, the feature extraction step analyzes the presence of
the following three features in the image: (i) Multichannel sensation,
(ii) Just noticeable blur (JNB), and (iii) Contrast sensitivity function
(CSF). Multi-channel sensation parameter is modeled to discern the
illumination and color features. Initially, the image is transformed
from RGB space to HIS (H: hue, I: intensity, S: saturation) space.
Further, two masks: illumination (MI1), and color (MI2) are pro-
duced using the thresholding method and combined to produce a
single mask (MIROI). Finally, the multi-channel sensation parameter

is derived by taking the ratio of MIROI and MIs. Next, the JNB fea-
ture is derived for determining the level of blur present in the image
by combining a well known cumulative probability blur detection
(CPBD) method with a vessel density map feature. The vessel den-
sity map is derived using a morphological algorithm. Further, CSF
is used to quantify the level of contrast present in the image. The
final quality prediction is performed using two different methods:
decision tree based method and machine learning based using the
SVM. The decision tree-based structure simply compares the derived
values of all the three parameters with the ground truth data and
predicts the quality. In case of machine learning, all the extracted
features are used to train and test the images using the SVM. It is
reported that the SVM has achieved much better results in compar-
ison with decision tree method. Two proprietary data-sets, namely:
LOCAL1 and LOCAL2, and two public data-sets (DRIMDB and
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DRIVE [53, 55]) have been used for the 536 fundus images for the
experiment purpose.

F. Shao, Y. Yang, Q. Jiang, G. Jiang, and Y. S. Ho [101] presented
a retinal IQA method based on the idea similar to [100]. All the steps
involved in [100] and the proposed method are the same except that
the features are used as quality parameters. To assess the quality, the
authors have quantified three quality parameters: illumination, nat-
uralness, and structure. The illumination property is examined by
identifying three optimal threshold values in order to get the effects
of dark, bright, and uneven illuminations. Next, the naturalness fea-
ture is based on the assumption that an image must look natural. In
order to quantify the naturalness index (NI), the authors have trained
the multivariate Gaussian regression model with high-quality fundus
images. The NI of the input fundus image is determined by testing
the image over the trained regression model. Finally, the location of
the optical disc is used as structural information which is modeled
with the help of Gabor filters. Fundus images have been classified
into two classes: accept and reject. With the help of the above-
calculated features, the authors have experimented two strategies for
the quality prediction: (i) threshold based by using the decision tree,
and (ii) learning based by using SVM and dictionary learning (DL).
The results section reported that the algorithm performs best in the
case of SVM and least in case of DL. A total of 4372 fundus images
are used for the experiment, with reported sensitivity and specificity
of 94.69%, and 92.29%, respectively.

4.3.3 Feature Extraction Based on Convolutional Neural
Networks (CNN) Models: All the previously reported machine
learning based fundus IQA algorithms are based on the conventional
hand-crafted feature learning methods. In recent years, the convo-
lutional neural networks (CNN) based automated feature learning
method outperforms conventional feature learning methods by a
large performance gap. The automated feature learning has the
ability to learn highly optimized features, that increases prediction
accuracy. The literature shows that in recent years deep learning is
successfully applied to the IQA framework for natural color images
[105–107]. The first CNN based fundus IQA algorithm was pro-
posed by D. Mahapatra, P. K. Roy, S. Sedai, and R. Garnavi [102] in
2016. The proposed CNN architecture classifies the fundus images
into two classes: gradable, and ungradable. A CNN is trained with
101 fundus images obtained from Drishti data-set [70] and the
trained network is tested on different data-sets of fundus images to
divide the images. As 101 is a very limited sample to train a CNN, to
overcome the issue the authors have divided the images into multi-
ple overlapping patches of size 150x150 and labeled the same as the
original image. Due to unavailability of ungradable fundus images,
the authors manually created them by modeling three distortions: (i)
Gaussian noise with mean zero and varying variance, (ii) Salt and
pepper noise with varying noise density, and (iii) Speckle noise. In
the training phase, in the first layer of CNN architecture, each patch
is convolved with 20 kernels of size 7× 7 followed by max pool-
ing of 4× 4 to reduce each feature map into 36× 36. In the second
layer of the CNN, all 20 feature maps are convolved with 50 ker-
nels of size 5× 5 followed by again 4× 4 max pooling. It generates
1000 (50× 20) feature maps of size 8× 8. Finally, the last layer is
the logistic regression for generating the final output and stochas-
tic gradient descent is performed with negative log likelihood as
loss function. The proposed system achieved 100% sensitivity, and
99.8% specificity.

One major limitation that exists in the previously presented work
in this category is that it is modeled over a very small data-set.
Typically, a CNN models requires a large amount of data for learn-
ing. In view of this, F. Yu, J. Sun, A. Li et al. [103] presented
a new CNN model to classify the fundus images into two classes
of quality. The proposed model has two parallel steps for feature
extraction: (i) Feature extraction from Saliency maps and (ii) Fea-
ture extraction from CNN model. Initially, every fundus image is
resized to 256× 256 resolution. Thereafter the saliency maps are
obtained using the frequency-tuned salient region detection method
presented in [108]. Further the saliency maps are reduced to 32× 32
(1024× 1) blocks by taking the mean value from every 8× 8 non
overlapping block.Next, in CNN architecture contains a total of

five convolution layers and one fully connected layers. The resized
fundus image is processed through the five convolution layers to
generate a 4096× 1 features vector. Finally, the features obtained
from the saliency map (1024× 1) and CNN network (4096× 1) are
fused to create a new and unique feature vector of size 5120× 1.
The obtained feature vector is further used with multilevel kernel
SVM classifier to classify the fundus images into good and poor cat-
egories. A total of 5200 fundus images have been taken from the
Kaggle dataset [49] for the experiment purpose and achieved 95.42%
accuracy.

4.3.4 Advantages:

• Machine learning based fundus IQA methods can be modeled
easily with different data sources.
• Once a model is trained, it can produce fast and real-time predic-
tions.
• These models has ability to improve its accuracy and efficiency
over the time without any human intervention.
• CNN based models showed best performance for IQA [28–36]
and outperforms the conventional IQA methods.

4.3.5 Limitations:

• Most of the machine learning algorithms are data hungry.
• Finding a sufficiently large fundus image data-set for quality
assessment purpose is a big challenge.
• Difficult to train an efficient model in absence of required data-set.
Consequently, it reduces cross data-set performance.
• CNN based models are computationally expensive in comparison
to other machine learning algorithms.

Overall Observation: It is important to mention here that all
the quality parameters that are used in the development of the reti-
nal IQA methods can be divided into two categories: (i) generic
parameters, and (ii) structural parameters. Generic quality param-
eters determine the information regarding the illumination, contrast,
and colour properties of the fundus image. These parameters are
derived by analyzing the local and global properties of pixels in the
image like histogram, mean, variance, and skewness etc. In addi-
tion, the structural information that indicates the visibility of the
anatomical structures present in the fundus image is derived using
segmentation algorithms. In most of the segmentation based retinal
IQA methods, the authors have segmented the blood vessels and ana-
lyzed their properties like density, symmetry, or colour information.
One limiting factor of retrieving the structural information through
segmentation based methods is that it highly depends upon the accu-
racy of the segmentation algorithm. An error-prone segmentation
leads to the wrong quality prediction result.

5 Challenges & Future scope

A considerable effort has been made by the researchers towards the
development of fundus IQA algorithms. However, many fragments
of stones of unresolved challenges and unanswered questions exist
in the path, that need to be removed. In the subsequent sub-sections,
we discuss some of the challenges in this field.

5.1 Interpretation of ophthalmologist’s perception

Throughout the years of evolution of image acquisition and display
devices, one factor that has not been changed is the HVS. Here, the
expectation of ophthalmologists from a good quality fundus image
also remains the same. Due to its persistent structural property, oph-
thalmologists assess the quality of a fundus image on the basis of
some fixed quality parameters: visibility of blood vessels & optic
disc, blur, color information, etc. Therefore, an efficient retinal IQA
algorithm must incorporate the relation between the physical change
in the quality parameters and the respective perceptual changes. In
addition, this also gives rise to the challenge of determining the rela-
tive importance of the quality parameters. Here, relative importance
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Fig. 10: Analysis of fundus IQA algorithms.
(a) Pie chart showing the statistics of the fundus IQA algorithms on
the basis of methodologies used, (b) Pie chart showing the statistics
of fundus IQA algorithms based on machine learning methods.

indicates the contribution of a quality parameter while determining
the overall fundus image quality.

5.2 Number of classes

Another challenge is to determine the number of classes of fun-
dus image quality. It can be analyzed from Table 2, 3, and 4 that
most of the reported work divides the fundus images into binary
classes of quality: Good and Poor. For manual diagnosis, it is not
always required because quality prediction for the fundus image
highly depends upon the experience level of the ophthalmologist.
An experienced ophthalmologist may not always require the high-
quality image and can diagnose effectively from a comparatively
lower quality retinal image as well. For example, the image shown in
Fig. 5(k) may be suitable for diagnosis by an expert ophthalmologist
and might not be suitable for a relatively less experienced one. In
case of CAD, an average quality image might be classified as a poor
quality image causing an image recapturing. Definitely, it will lead to
a waste of effort and time. Hence, in order to ignore the unnecessary
wastage of efforts and resources there must exist one more category
indicating the average quality fundus images. Although, few of the
reported fundus IQA algorithms [73, 76, 77, 93] graded such images
into more than two classes. However, none of them found prevalent
in use due to the unavailability of comparative performance analysis.

5.3 Ground-truth information

As mentioned earlier, the main limitation in the field of fundus IQA
research is the unavailability of comparative performance analysis. It
is because no benchmark fundus image data-set exist for the quality
assessment purpose. In literature, retinal images used for experiment
purpose are mostly taken from different proprietary data-sets. As a
result, the comparative analysis of the performance of retinal IQA
algorithms is nearly missing in the literature. U. Sevik [53] presented
a retinal image database for quality assessment purpose which con-
tains two classes of retinal image quality: good and poor. However,
the importance of the proposed data-set would have been signifi-
cantly increased if it could include the subjective quality scores for
each image.

5.4 Distortion Identification and Image enhancement

In order to get improved segmentation and disease classification
results from fundus images, one viable solution is to use an appro-
priate image enhancement method. Image enhancement techniques
are used to achieve improved visual appearance of the anatomical
structures present in the fundus image. A fair amount of work has
been reported [109–116] to facilitate the fundus image enhancement
challenges. However, in an automated system, there is a need to have
a tailor-made fundus IQA algorithm to determine if the given image
needs enhancement. In contrast, from Fig. 10 it can be observed that
a large proportion of the retinal IQA research work consists of binary
classification systems using machine learning algorithms like SVM.

Fig. 11: Distortion generated due to erroneous transmission [49]

In case of only two classes of quality, if an image is classified as
poor by the IQA algorithm, the question remains about the need of
enhancement.

One challenge in the path of developing fundus image enhance-
ment algorithms is to identify the type of distortion present in the
image. It is because an image enhancement method is developed to
normalize the effects of a specific distortion in the image. Therefore,
an efficient method to identify the type of distortion present in the
fundus image is highly required. In addition, retinal IQA algorithms
developed to date have never been tested over the artifacts gener-
ated due to compression and erroneous transmission. One real time
example of a distorted fundus image due to erroneous transmission
is shown in Fig. 11. Such type of impaired fundus images greatly
affects the performance accuracy of the CAD systems. In the era
of telemedicine, the effects of the artifacts occurred due to compres-
sion and transmission must not be ignored while assessing the image
quality.

5.5 Suggestions

The previous subsections of this paper discuss the recent work and
challenges in fundus IQA research. In this subsection, few sugges-
tions to solve the challenges are provided. In order to address the
first three challenges, a fundus IQA data-set can be created with the
following peculiarities.

1. Collection of fundus images with all possible real time distor-
tions.
2. Subjective quality assessment (SQA) of the images by various
ophthalmologists with varying level of experiences.
3. Subjective quality scores collected for both structural and generic
quality parameters like visibility of blood vessels (F1), visibility of
optical disc (F2), color (F3), contrast (F4), and blur (F5).
4. In addition to the quality scores, a final grading of images should
be done by the doctor into three classes: (i) Good, (ii) Average, and
(iii) Bad.

In Fig. 12 we have shown an example of the suggested SQA
process. It can be observed here that for each image we have qual-
ity scores for the five above mentioned quality parameters and an
associated quality class provided by the doctors. In order to vali-
date the data, a classification model can be trained using the quality
scores obtained for the quality parameters (F1-F5) to classify the
fundus images into the given three quality classes. After obtaining
the optimally trained classification model, the associated coefficients
or weights of the respective features can be easily derived. These
coefficients will reflect the relative importance of quality parameters
while determining the overall fundus image quality. This whole pro-
cedure will help to understand the ophthalmologist’s perception of
fundus image quality. In addition to that, the “Average” class of fun-
dus image quality will lead a fundus IQA algorithm to automatically
determine the need for enhancement.

6 Conclusion

Objectively assessing the quality of fundus images is an emerging
research field. Nowadays, telemedicine is being widely used for pro-
viding the medical assistance to the ophthalmologists with minimum
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Fig. 12: Example of the quality scores obtained from the suggested
SQA process. Quality scores are assumed to be in the range [1,10],
where a high value represents high quality.

efforts. However, there are many factors that can affect the quality of
such images, including acquisition, compression, transmission, etc.
Therefore, an automated IQA of fundus images is a necessary and
important requirement for a reliable diagnosis. Through this paper,
a comprehensive discussion over the state of the art in retinal IQA
research is presented. In summary, most of the retinal IQA methods
are developed using machine learning algorithms and divide the reti-
nal images into two classes: good and poor. Overall, the retinal IQA
challenge is solved as a binary classification problem. In addition to
the binary classification, the IQA models have two types of quality
indicators: (i) generic quality indicators such as illumination, colour,
and contrast, and (ii) structural quality indicators that indicate the
visibility of the structures.

Furthermore, it has also been identified that the following limi-
tations exist in the path of retinal IQA research: (i)lack of under-
standing of ophthalmologist’s judging criteria, (ii) the absence of a
common data-set, and (iii) the shortcomings of binary classification
based approaches on the use of image enhancement methods. How-
ever, it is realized that the absence of a common benchmark retinal
IQA data-set is the root of all the limitations mentioned above. In
order to elevate the progress in this field, it is highly required to have
such data-set that can provide the ophthalmologist’s perception of
the quality of fundus images in terms of quality grading. Such data-
set will provide a ground for the comparative performance analysis
as well as a deciding criterion for the requirement of the enhance-
ment in the image. Conclusively, the development of an efficient
retinal IQA algorithm is a very important problem to be solved. A
fair amount of work is done to solve this challenge but still, it is far
from being solved.
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