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     ABSTRACT  

We compare the forecasting performance of univariate and multivariate models for 

BRICS and OPEC economies. For the univariate models, we produce forecasts using 

ARIMAX models that have a deterministic component to account for structural breaks 

over the full sample period and different ARIMA specifications over a reduced sample 

period that avoids the modelling structural breaks. The univariate ARIMA models that 

we develop over the reduced sample period are, first, a seasonal ARIMA specification 

identified using the Box-Jenkins method, second, a seasonal ARIMA model identified 

using EView’s automatic model selection tool and third, a non-seasonal ARIMA model 

identified using EView’s automatic model selection tool applied to seasonally adjusted 

data. The other univariate model we considered include the regime shift threshold 

Autoregressive model (over the full sample and reduced sample) and the naïve model 

which added as a benchmark. Multivariate models are estimated over the reduced 

sample period to avoid modelling structural breaks and are based upon Vector 

Autoregression (VAR) models that utilise differencing and cointegrating restrictions to 

ensure the stationarity of the data. In particular, we consider the unrestricted VAR 

model with differenced (stationary) data, the (unrestricted) Vector Error Correction 

Model (VECM) that assumes cointegration without imposing cointegrating restrictions 

and the restricted VEC that imposes a single cointegrating equation on the VECM. Our 

study shows that the benchmark models (naïve) were never favoured over the best 

selected univariate and multivariate model. The univariate EView’s automatic non-

seasonal ARIMA model is generally favoured for the BRICS countries (the exception is 

South Africa). However, the results are mixed between univariate and multivariate 

methods for OPEC countries. For OPEC countries that have a history of moderate 

inflation, for example, Saudi Arabia, the univariate automatic non-seasonal ARIMA 

model outperforms the multivariate model. In contrast, multivariate models generally 

outperform univariate automatically selected ARIMA models for countries with high 

inflation (e.g Angola and Algeria).  
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INTRODUCTION 

 

1.1 Background and Motivation  

There is no doubt that accurate forecasts of inflation have an important effect on 

achieving macroeconomic objectives (price stability, full employment, balance of 

payments equilibrium and economic growth). Any decision based on wrong inflation 

forecasts could result in poor allocation of resources and worse economic performance 

in achieving the goal of macroeconomic objectives. In avoidance of poor economic 

performance, many academics and policy makers have extensively researched the best 

inflation model to be used in forecasting inflation (De Brouwer and Ericsson 1998 and 

Stock and Watson 1999). The evidence remains that none of these researchers has 

agreed on any best model to forecast inflation. Carlson and Parkin (1975) and Mitra and 

Rashid (1996) observed that economic agents select different forecasting models in 

different inflationary environments. When inflation is high and volatile they use 

sophisticated models whereas simple models are employed during mild and stable 

inflation periods. Buelens (2012) and Stock and Watson (2008) stated that the accuracy 

of a forecasting model depends on the sample period in which they are estimated and 

evaluated. For example, the appropriate forecasting model to be used prior to the 

economic crisis may be different from that during the economic crisis. Further, some 

explanatory variables may be good predictors during an economic recession but not in 

expansion.  

Stock and Watson (1999) argued that the Phillips curve model has been more 

accurate in forecasting US inflation than models involving other macroeconomic 

variables such as interest rates, money supply and commodity prices. They further 

revealed that the Phillips curve produced a better forecast when estimated with real 

economic variables (GDP) than when estimating the Phillips curve with unemployment. 

That is, the Phillips curve estimated with real economic activity can provide forecasts 

with smaller mean squared errors than those from unemployment based Phillips curve 

models. Atkeson and Ohanian (2001) found the Naive model as the most effective in 

forecasting US inflation for the past fifteen years, when compared with the Phillips 

curve. Thus, this thesis identifies the following as potential factors that influence the 

accuracy of inflation forecasts: (i) the type of model in use; (ii) the variables included in 
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the model; (iii) the transformations applied to the data for stationarity, seasonality and 

strutural breaks (iv) the economic environment (v) the sample period used to estimate 

the parameters of the model and (vi) the  length of the forecasting horizon.  

Many researchers have based their inflation forecasting analysis on the study of 

European countries and the United States. They have often compared inflation 

forecasting accuracy during periods when inflation targeting policies were adopted with 

periods when there were no inflation targeting policies in operation.1 As far as we know, 

no studies have compared the predictive performance of alternative inflation 

forecasting models for OPEC and BRICS countries, despite their growing importance in 

the global economy.2 This study extends the existing literature by forecasting inflation 

in these economies that cover sample periods of both high inflation and moderate 

inflation.3 In particular, we compare the forecasting performance of univariate and 

multivariate models for BRICS and OPEC countries with the aim of identifying the most 

accurate inflation forecasting model for the different economies. Our univariate models 

are based on ARIMAX, ARIMA specifications, regimes shift threshold autoregressive 

(TAR) models and Naïve model is added as a benchmark. While the multivariate models 

are based upon Vector Autoregression (VAR) models that utilise differencing and 

cointegrating restrictions to ensure the stationarity of the data. In particular, we 

consider the unrestricted VAR model with differenced (stationary) data, the 

(unrestricted) Vector Error Correction Model (VECM) that assumes cointegration 

without imposing cointegrating restrictions and the restricted VECM (or VEC) that 

imposes a single cointegrating equation on the VECM. 

 

  

                                                           
1 For instance, see Nadal-De Simone (2000), Alles and Horton (2000), Guncavadi et al (2000), Stock and 
Watson (2007), Lee (2012) and Buelens (2012). 
2 BRICS nations control 43 percent of global foreign exchange reserves and 25 percent of global GDP. 
OPEC countries account for 81% of the world’s crude oil reserves and have a high dependence on oil 
revenues. See Antoine (2012), Rahman (2004) and World Oil outlook (2012). 
3Lo and Granato (2008) argue that high inflation hurts growth over the long term. While, Narayan et al 
(2009) documents that monetary authorities’ policies can often be misguided during periods of high 
inflation. The presence of high inflation has compelled us to examine whether high inflation affects 
inflation forecasting performance. 
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1.2 Outline of chapters 

 

We organise the thesis into different inter-linked chapters. Chapter One outlines the 

background and motivation of the study, research objectives, an overview of BRICS and 

OPEC countries, that discusses the similarities and differences between OPEC and BRICS 

countries and contributions of this research. In this chapter, we are able to identify 

different characteristics of BRICS and OPEC economies that will be later considered 

when forecasting inflation. In particular, we categorised OPEC countries as an oil 

exporting economies and BRICS countries (excluding Russia) as an oil importing 

countries.  For instance, all OPEC countries produce crude oil for exportation, and this 

has contributed to the higher percentage of their export earnings. For example, Nigeria 

earned 70 percent of its total export revenue from crude oil; Kuwait derived almost 60 

percent of its gross domestic product and 93 percent of export revenue from crude oil; 

Libya acquired almost 95 percent of its government revenues.4  In contrast, all the BRICS 

countries except Russia are heavily dependent on oil imports to produce their 

manufactured products. For example, China is the second largest oil consuming nation 

in the world and second largest oil importing country from OPEC after the United States 

in 2010 (Economic Analysis Division, 2004). In addition, BRICS economies are ranked 

among the G-20 advanced industrial countries in the world whereas the OPEC economic 

system is classified as a traditional economy where goods and services produced are 

influenced by traditional beliefs, customs and religion.  

 

Chapter Two discusses the various theoretical models that are commonly used to model 

and forecast inflation and considers the policies implemented by the central bank to 

control inflation for BRICS and OPEC countries. This chapter demonstrates that most of 

the policies implemented by the central bank to regulate inflation focus on the interest 

rate (for example, via Inflation targeting and Taylor rules as well as through the exchange 

rate). According to the Taylor rule, the central bank assumes inflation and the interest 

rate are directly related, especially in the short term. When inflation is above the target 

rate, the central bank will increase the interest rate to reduce inflation and if inflation is 

                                                           
4 See: Organization of petroleum exporting countries member, available at 
http://www.opec.org/opec_web/en/index.htm. 

http://www.opec.org/opec_web/en/index.htm
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below the target rate, the central bank will decrease the interest rate to raise the rate 

of inflation (Taylor 2008).  For the exchange rate, the government may allow the value 

of the domestic currency to be fixed at the value of a selected foreign currency to control 

inflation. In particular, if the government experiences a balance of payments deficit the 

central bank may be tempted to reduce capital outflows to improve the balance of 

payments. In this case, the central bank may decide to increase the interest rate to 

technically increase the cost of borrowing to discourage people from borrowing and 

decrease consumer spending. However, the use of the interest rate to control inflation 

is limited in OPEC countries and most of the oil exporting nations. This is due to reasons 

of religion, social beliefs, the usury activities of financial institutions and the sovereignty 

of many of these countries that independently regulate their financial institutions.  

Chapter Three provides an empirical literature review. The literature is divided into two 

sections. The first section discusses the various factors that have been considered as 

determinants of inflation in developed and developing countries.  While the second 

section analyses the empirical literature on inflation forecasting models. This literature 

suggests a growing consensus that economic relationships change in different inflation 

environments. The factors that determine inflation in developed countries may be 

different from the factors that determine inflation in developing countries.  For example, 

the factors that determine inflation in low inflation economies may be different from 

those in higher inflation economies. In particular, inflation in many developing countries 

is mostly caused by the external influence of import prices, the foreign interest rate and 

the exchange rate (Frisch 1977, Dhakal and Kandil 1993, Boujelbene and Thouraya 

2010). While the interest rate, money growth and financial assets determine the rate of 

inflation in developed countries (Tillmann, 2008 Cologni and Manera, 2008). The 

empirical literature on inflation forecasting suggests the following: (i) theoretical model 

most especially Phillips curve, are more accurate to forecast inflation when the economy 

is weak most especially during the economic crises when compared with the univariate 

ARIMA model (Pretorious and Rensburg 1996, Dotsey et al. 2011 and Buelens, 2012). (ii) 

ARIMA models outperform other multivariate models (Phillips curve and VAR) during 

periods of stable and low inflation (Pretorious and Rensburg,1996; Mitra and Rashed, 

1996; Nadal – De Simone, 2000 and Dotsey et al. 2011). (iii) When comparing the 

forecast performance of three and five quarters ahead, the VAR and VECM specifications 

perform better than the naïve model (Onder, 2004). When comparing VAR models with 
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VEC models, the VEC models outperform the VAR models over the longer horizon 

(Fanchon and Wendel, 1999). (iv) The model that account for stochastic volatility and 

time-varying coefficients (e.g Markov switching models, Dynamic stochastic general 

equilibrium modelling, Self-exciting TAR models) provide more accurate forecast than 

those models that do not (D’Agostino et al. (2013), Barnett et al. (2014), Bel and Paap, 

(2016), Cross and Poon (2016) and Mandalinci, (2017)). 

 

Chapter Four consists of two sections. The first section analyses the graphical features 

of the quarterly price data and its transformations to assess issues of seasonality, 

stationarity and structural breaks for each country. While the second section outlines 

the Box Jenkins ARIMA and ARIMAX methods of univariate modelling employed in this 

thesis. From the first section, a mixture of visual inspection of the data, autocorrelation 

functions (ACFs) and unit root test showed that the log of the price is nonstationary in 

all the growing inflationary economies under consideration. The standard quarterly (one 

period) difference is generally insufficient to induce stationarity because of seasonal unit 

roots. Conversely, the annual (four period) difference is generally sufficient to induce 

stationarity, although only after structural breaks have been accounted for in modelling. 

For example, a downward shift in the intercept (seasonal indicator variables) coinciding 

with a move from high to low inflation eras may give a process that is only stationary 

around a shifting mean. As widely observed from the literature, for instance, Perron 

(1989), Lee and Chang (2005) and Fernandez and Fernandez (2008), a failure to account 

for seasonality and structural breaks can lead to model misspecification and make unit 

root tests biased towards non-rejection of the unit root null hypothesis.  

Chapter Five develops the analysis presented in Chapter four and builds ARIMAX models 

to the annual rate of inflation. We applied the Bai (1997) and Bai and Perron (1998, 

2003) tests to a deterministic model of the annual difference of the log of prices to 

identify structural breaks for each country. Based upon these tests, we used shifting 

dummy variables to build the deterministic component of an ARIMAX model that 

accounts for any identified structural breaks in each country. This is achieved by applying 

the Box-Jenkins method to identify an ARIMA specification to the residuals of the 

identified deterministic component of the ARIMAX model that accounts for structural 

shifts. In addition, we develop ARIMA models to inflation using a reduced sample period 
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that avoids the modelling of structural breaks (with at least 39 observations). The 

following different procedures for developing ARIMA specifications on the reduced 

sample are employed. First, the Box Jenkins method using the modeller’s identification 

of seasonal ARIMA specifications based upon ACFs and partial (PACFs) is employed. 

Second, EViews automatic seasonal ARIMA model identification method is used. Third, 

the data is seasonally adjusted using the Census X11 or X12 program that allows for 

time-varying seasonality and EViews automatic non-seasonal ARIMA model 

identification method is used. Forecasts based on the nonseasonal models are 

reseasonalised using the seasonal indices in 2012 identified by the seasonal adjustment 

process. The contribution of this chapter is to determine whether using the full sample 

that generally requires the modelling of structural breaks with an ARIMAX specification 

produces superior forecasting accuracy to ARIMA models built using a reduced sample 

with less data that avoids the modelling of structural shifts. Regarding the reduced 

sample modelling, we compare the forecasting accuracy of ARIMA specifications built 

using the modeller’s judgement and those identified using EViews automatic model 

selection procedure.  The reduced sample models also allow a comparison of ARIMA 

models built using seasonally adjusted data (with re-seasonalised forecasts) and those 

using unadjusted data.  Further, we estimated the threshold autoregressive (TAR) 

models over the full sample and reduced sample and compared its forecast performance 

with the best forecasting model produced by the class of univariate ARIMA 

specifications. From our results, the TAR models indicate evidence of more than one 

regime in all selected economies (excluding China) which support the need to for 

modelling breaks. In terms of forecasting, the nonlinear TAR models (for both full sample 

and reduced sample) were not favoured over the best selected linear ARIMA models 

except for China (over all forecasting horizons), Nigeria (over 1 to 4-step ahead horizons) 

and Saudi Arabia (over 1 to 3 steps ahead horizons) where the TAR model estimated 

over a reduced sample produced the best forecast. The forecast performance of the TAR 

model over a few horizons is consistent with the previous study that documents the 

good performance of the TAR model over linear ARIMA models for the longer horizons 

(Montgomery et al. (1998)). 
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Chapter Six discusses the data used in multivariate modelling. We identify the variables 

that are most commonly employed to model and forecast inflation in the literature and 

identify the data availability of these series for each country under study. Whilst we give 

priority to variables available at the quarterly frequency, we also consider the addition 

of variables that are available only at the annual frequency to ameliorate omitted 

variable issues. We use frequency conversion tools to generate quarterly series from 

annual series. The main explanatory variables that we consider for each country are the 

money supply, real exchange rate, interest rate, output gap, unemployment rate and 

the oil price. 

In Chapter Seven, we considered all variables identified in chapter six for each country 

and estimated multivariate models (VAR, VECM and VEC) over the reduced sample to 

avoid the modelling of structural breaks and to use seasonally adjusted data to preclude 

issues involving seasonal unit roots.5 The motivation for this chapter is guided by the 

following principle. Models involving series that are nonstationary may lead to problems 

of spurious regression that can adversely affect forecasting accuracy. We, therefore, use 

differencing and cointegration restrictions to transform nonstationary series into 

stationary variables. VARs estimated with cointegrated data will be misspecified if all of 

the data are differenced because long-run information will be omitted and will have 

omitted stationarity inducing constraints if all of the data are used in levels. Therefore, 

we test for the orders of integration of all variables considered as well as for 

cointegration. Based on this analysis, we compared the forecasting performance of the 

following multivariate models: unrestricted stationary VAR, VECM and VEC. Our result 

shows that including long-run information in the form of a specified cointegrating 

equation generally improves the forecasting performance compared with VARs and 

VECMs for BRICS countries. This is consistent with previous findings that stated that 

                                                           
5 For each of the multivariate model (VAR, VECM and VEC) in each country, we estimate four equations. 
The first equation includes all available variables as endogenous except unemployment (which is 
excluded). The second equation includes all available variables as endogenous except for the output gap 
(which is excluded). The remaining two equations are the same as the first two equations except the oil 
price is treated as exogenous. The aim is to test whether inclusion of the oil price as exogenous or 
endogenous will have effect on performance of inflation forecast for oil exporting OPEC and oil 
importing BRICS countries.  
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forecasts are most likely to be improved by applying error-correction techniques if the 

data strongly supports the cointegration hypothesis (see, Timothy and Thomas, 1998).  

Further, we investigate whether the multivariate models (VAR, VECM and VEC) are 

structurally stable in the sense that the regression coefficients are constant. If not, what 

are the implications of the instability for forecasting future inflation or what forecast 

methods work well in the face of instability? For instability tests, we perform two 

different parameter shifts tests that are available in EViews (the CUSUM and Bai and 

Perron (2003) tests). For the CUSUM test, we apply the CUSUM test that is based on the 

cumulative sum of the recursive residuals. The condition is that, if the line of the CUSUM 

test statistics fluctuates within the two 5% critical lines, the estimated models are said 

to be stable. In contrast, the models are said to be unstable if the line of the CUSUM 

goes outside the area between the 5% critical lines. For the BRICS countries, the CUSUM 

test and Bai and Perron (2003) test suggest evidence of instability for all models except 

all VECMs and VARs specification for India (the exception is the VAR estimated over the 

full sample that includes all variables as endogenous). The other exceptions are the 

VECM model that contains all variables as endogenous except unemployment for South 

Africa; the two valid VECM specifications for Brazil, all four VECMs and the VAR model 

that includes all variables as endogenous except output gap that excluded for Russia.  

For OPEC countries, all models also show evidence of instability except the VAR and 

VECM model that includes all variables as endogenous for Saudi Arabia, the VECM model 

that specified oil price as exogenous for Angola, the two valid VAR models and two valid 

VECM specifications for Algeria as well as the VAR model that include oil price as 

exogenous and other variables as endogenous excluding unemployment for Nigeria. 

We also examine whether the instabilities in multivariate models (VAR, VECM and VEC) 

affects the performance of the inflation forecasting. In our study, the application of the 

two stability tests (the CUSUM and Bai Perron tests) provide evidence that the stability 

of the model can enhance the forecasting performance of inflation for few countries. 

For example, all the favoured forecasting model for the OPEC countries are stable (the 

exception is for Angola). In general, the VECM specification is stable and produce the 

best forecasting results over all horizons for Saudi Arabia and the unrestricted VAR 

model is stable and produce the best forecasting result over all horizon for Nigeria and 

Algeria. In contrast, all the favoured forecasting models are not stable for BRICS 
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countries according CUSUM and Bai Peron tests. The performance of the favoured 

forecasting models that are not stable are consistent with the study of (Stock and 

Watson, 2003, and Rossi 2012) who argued that instability of the theoretical model can 

be misleading for favoured out-of-sample forecasting.  

Moreover, whether the inclusion of oil prices as exogenous or endogenous will improve 

forecasting performance differs substantially according to the form of the model 

employed and the country being considered. For BRICS and OPEC countries, the model 

that includes the oil price as endogenous generally appears to secure better forecasting 

performance than the model that includes the oil price as exogenous, except for Algeria.  

In Chapter Eight, we estimate naïve model as a benchmark model and compare its 

performance with the best forecasting performance of the multivariate (VAR, VECM and 

VEC) and univariate models (TAR model, ARIMAX, ARIMAs and EViews automatic 

selection procedure) to identify the most accurate inflation forecasting model for BRICS 

and OPEC economies. In our study, naïve models were inferior to the best selected 

univariate model for all selected countries. The univariate model is generally favoured 

over the multivariate models for the BRICS countries (except South Africa). However, 

the results are mixed between univariate and multivariate methods for OPEC countries. 

For OPEC countries that have a history of moderate inflation, for example, Saudi Arabia, 

the univariate automatic non-seasonal ARIMA model generally outperforms the 

multivariate models over the longer horizons (4, 6, 7 and 8). While the TAR model 

outperforms other selected models over the shorter horizons (1 and 2-steps ahead). In 

contrast, multivariate models generally outperform univariate automatically selected 

ARIMA models for the countries with high inflation (e.g Angola and Algeria). 

Chapter Nine is the summary and conclusion of this research and includes the discussion 

on the limitations of this study and identifies some possible areas for future research. 
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1.3 Aims and Objectives  

The performance of inflation forecasting can vary in different economic environments. 

The factors that influence inflation forecasting in developed countries may be different 

from developing countries; and the factors that affect inflation forecasting in oil 

exporting OPEC economies may be different from predominantly oil importing countries 

such as the BRICS economies.6 The OPEC economic system can be classified as a 

traditional economy where goods and services produced are influenced by traditional 

beliefs, customs and religion whereas BRICS economies are ranked among the G-20 

advanced industrial economies in the world. Developed countries have a history of low 

inflation, stable macroeconomic policies and have control over both monetary and fiscal 

policies while developing countries are known for higher inflation and unstable 

macroeconomic policies (Ghazanfar and Sevcik 2008). In our research, we consider the 

characteristics of oil importing and oil exporting economies when evaluating the 

forecasting performance of univariate and multivariate models of inflation for BRICS and 

selected OPEC countries. In our empirical analysis, we address the following issues: 

 

(i) How can we make the price data stationary for each country? In particular, is 

seasonal differencing required, do structural breaks need to be accounted for 

and is the logarithmic approximation a valid measure of annual inflation (𝐼𝑁𝐹𝑡= 

𝑃𝑡− 𝑃𝑡−4

𝑃𝑡−4
)?  

(ii) Can ARIMAX models that pass diagnostic checks be obtained for each country?  

(iii) Do ARIMAX models built using the full sample of data (with the benefit of more 

information) produce superior forecasts to ARIMA models developed using a 

reduced sample that avoids the modelling of structural breaks (with the 

disadvantage of less data)?  

(iv) Where we applied EViews 9’s automatic ARIMA model selection procedure 

using a reduced sample that avoids modelling breaks, can specifications that 

pass the diagnostic checks be obtained for all countries? 

                                                           
6 Ozkan and Yazgan (2015) suggest that the success of inflation forecasts is different in the different 
monetary-policy regimes that have been implemented in different periods of time. 
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(v) Does the more time-consuming Box-Jenkins ARIMA model building method that 

requires modelling skill produce superior forecasts to the quicker automatic 

ARIMA model selection procedure?  

(vi) Do ARIMA specifications that explicitly model seasonality produce superior 

forecasts to those that apply non-seasonal models to seasonally adjusted data 

followed by re-seasonalising the forecasts? 

(vii) Does regime shift threshold autoregressive model (TAR model) produce 

superior forecasts over univariate ARIMA model selection? 

(viii) Can valid VARs, VECMs and VECs be obtained for each country? Which of these 

models produces the best forecasting performance for each country? Is there a 

generally best performing specification across countries and/or for different 

forecasting horizons? 

(ix) When valid VEC models can be found are the coefficients of the long-run 

equation consistent with theoretical economic expectations?   

(x) Is it better to treat the oil price as endogenous or exogenous in multivariate 

models? Are models that use unemployment to capture the Phillips Curve effect 

preferred to those that employ the output gap (when both variables are 

available)? 

(xi) Has the multivariate model stable over time? If not, what are the implications 

of the instability of forecasting inflation? 

(xii) Of all the models considered (both univariate and multivariate) which model 

produces the best forecasting performance over the benchmark model (naïve) 

across countries and/or for different forecasting horizons? 
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1.4  Overview of BRICS countries 

In recent times, Brazil, Russia, India, China and South Africa (BRICS) have emerged to 

form an international organization body that will influence global financial trade and 

form a serious competitor to western economies. Accordingly, many common features 

exist among the BRICS nations. They share a common thread that they are fast 

developing nations and one of the largest economies in their regions. For example, China 

has the largest economy in Asia and is second only to  America in the world. Russia is a 

member of the G8 advanced leading countries in the world, and India has the third-

largest economy in Asia. South Africa has the largest economy in Africa, while Brazil has 

the largest economy in South America. Global Sherpa (2014) reported that BRICS 

countries ranked among the world’s largest and most influential economies in the 21st 

century. BRICS countries accounted for 25% of world GDP, over one-quarter of the 

world's land area and more than 40% of the global population.7 They control almost 43% 

of global foreign exchange reserves, and their share keeps rising (See Goldman Sachs, 

2007, Antoine 2012 and Global Sherpa, 2014). Toloraya (2014) stated that BRICS 

economies have shown tremendous development in recent decades. The economy has 

increased by almost two times to reach $300 billion within five years and acquire 30 to 

60 percent of the world’s most valuable mineral resources.   

 BRICS countries are heavily dependent on oil imports to produce their 

manufactured products, and many of these countries have diverse economies 

particularly about natural resources, higher inflation, as well as exporters of electronics 

goods.  In areas of oil importing and oil consumption, BRICS countries have been playing 

a leading role in the world.8 For example, China is the second largest oil consuming 

nation in the world and second largest oil importing country from OPEC after the United 

States in 2010 (Economic Analysis Division, 2004). China's oil consumption growth 

accounted for one-third of the world's oil consumption growth in 2013, and its 

consumption is increasing by 0.37 million bbl/d 3.5% (EIA, 2014). South Africa has the 

highest energy consumption in Africa; accounting for about 30% of total primary energy 

                                                           
7 China and Indian have remarkable population of 1.351 billion and 1.244 billion respectively (World 
Bank 2012). 
8 Most of BRICS countries are heavily dependent on oil importing and they rank among the highest oil 
consuming nations in the world apart from Russia.  Russia has tremendous oil reserves and is the third 
largest producer of oil in the world after Saudi Arabia and United states, and most of oil consumption in 
Russia is producing locally. 



13 
 

consumption in Africa in 2012. Central Intelligence Agency (2010) ranked India as the 

world's fourth-largest oil-importing and oil consuming nation in the world. India spent $ 

15 billion, equivalent to 3% of its GDP on oil importing in 2003 that is 16% higher in 2001 

(Economic Analysis Division, 2004). EIA projected that oil consumption in India would 

grow at an annual average of 1.5% for the next six years. In the case of Brazil, the country 

is ranked as the 8th largest energy consuming nation in the world. EIA ranked Russia as 

the second-largest producer of natural gas, second to the United States and the third-

largest generator of nuclear power in the world. 

In politics and finance, BRICS countries aim to convert their growing economic 

strength into political power.9 They believe that by working together, they could carve 

out the future economic order among themselves. They project that China will continue 

to dominate in areas of manufacturing goods; India will be providing services; Russia and 

Brazil will influence in areas of natural resources for the raw materials and providing 

agriculture inputs. In addition to this plan, they propose to achieve sustainable economic 

growth and establish an industrial development environment through the launch of the 

Development Bank. The bank will serve many emerging markets for the development of 

infrastructure projects and reduce numbers of many countries dependent on the World 

Bank and the International Monetary Fund (IMF). All the members will provide the total 

sum of $100bn. China is expected to contribute the highest amount of ($41bn), followed 

by Brazil, Russia and India contributing $18bn each, and South Africa adding at least 

$5bn (Wood, 2014). As a result, China won the bid for the bank headquarters which is 

set to be located in Shanghai and India will provide the New Development Bank’s first 

president. Nataraj and Sekhani (2014) reported that the new BRICS bank would be based 

on equality and fairness where individual members will be able to vote and grant loans 

with fewer restrictions and shorter delays.  

 

  

                                                           

9 This action will bring new development for Russia and China to achieve their foreign and political 
objectives; In particular, there is no sign that ties between Russia and the Western countries may 
improve any time soon. As a result, Russia and China would not be totally isolated and forcefully give 
away their political interest to the Western countries demands. 
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1.5 BRICS Economies and Their Limitations 

Research by Goldman Sachs found that economic growth in South Africa’s will increase 

from an average 3.3% over the last 20 years to 6.7% per annum in 2050 which will 

produce a region the size of $14tm (Coleman, 2013). The Economist Intelligence Unit 

predicts that Brazil’s economy will be larger than any European country’s economy by 

2020 and exceed Germany’s economy to become the world’s fifth biggest global 

economy (Daly 2013). China’s GDP growth is proposed to overtake the United States’ 

GDP before 2030, and the total GDP of the BRICS countries will be more than the 

combined GDP of the seven largest developed economies by 2050 (see Antoine, 2012 

and Kangarlou, 2013).  

To achieve this economic plan, BRICS countries need to improve in technology, 

security, create more jobs, establish good financial institutions, invest in human 

development, stable political structures and improve on social and economic reforms 

that will establish sustainable growth. As a result, BRICS countries like India, Brazil, China 

and South Africa have announced their commitments to the reality of these objectives. 

For example, China is currently focusing on its 12th five-year plan for building many new 

airports and creating an additional 45 million new jobs (Jason, 2012). India’s is advancing 

on its 12th five-year plan to invest $1 trillion in infrastructures, with the aim of funding 

half of it through private sector involvement in public-private partnerships (PPPs). Brazil 

launched a growth acceleration program in 2007 to provide tax incentives, reduce 

energy costs, strengthen its investment through foreign participation and restructure its 

oil royalty payments to increase revenue and provide more capital to the private sector. 

Moreover, South Africa has engaged in the construction of 56,000 new classrooms; 

construction of 1,700 new clinics across the country. The country found two million free 

housing units for low-income families, rehabilitation of 6,000 km of national roads and 

building of 15,000 km of provincial roads. 

Despite these reforms, many studies have questioned the reality of this group 

becoming a leading economy in 2050. Western analysts and media have criticised the 

existence of the BRICS nations; they argued that BRICS countries were too different from 

each other to agree on a common goal (Stuenkel 2014). Consequently, BRICS economies 

witnessed economic setbacks during the 2007 financial crisis; although its impact varies 

from one country to another. For example, in the area of financial markets, the toxic 
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assets owned by domestic banks in Brazil and Russia during the 2007 financial crisis was 

greater than the toxic assets held by India and China. During this period, Brazil owned 

almost 25%, and Russia owned 12% of toxic assets compared to 0.4% owned by China 

and 4% belonging to India (Vashisht and Banerjee 2010).10  Vashisht and Banerjee (2010) 

also documented that non-performing loans experienced in Brazil and Russia showed 

the negative impact of the financial crisis in 1997 compared to non-performing loans in 

India and China. The Non-performing liquidity ratio increased in Russia and Brazil while 

it decreased in India and China from 4.4% to 2.4% and 8.6% to 1.2% respectively.11   

World Bank (2014) documents that Russia’s GDP growth reduced to 1.3% in 2013 

from 3.4 % in 2012 due to inadequate structural reforms. The recent Ukraine Crimea 

annexation by Russia has been drawing international condemnation and pushed down 

industrial and investment activities in Russia. The crisis has eroded domestic businesses 

and consumers’ confidence. Russia was accused of supplying heavy weapons to pro-

Russian forces in the eastern part of Ukraine. As a consequence, the past United States 

president (Barack Obama) instigated the G8 economic group to isolate Russia. The 

European Union and the United States imposed economic sanctions on various Russian 

financial institutions, imposed asset freezes and visa bans on many Russian politicians. 

The sanctions restricted access of Russian state-owned banks to obtain funds from 

Western capital markets, which Russia could turn to and access capital to finance its 

long-term investment. Consecutively, EU and U.S firms were barred from providing 

capital for more than 90 days to Russia's key state-owned banks. Recknagel (2014) 

disclosed that $75 billion of capital has been pulled out from Russia since the crisis 

started in February 2014 to August 2014. However, this sanction does not target Russian 

natural gas supplying to the European Union but aimed at the Russian financial industry, 

whose contribution has powered Russia's economy.  

In South Africa, the influence of the previous apartheid political system is 

another important point to be considered. In the past, the South African population was 

divided by race; the act was passed to segregate the black race from the white race.  As 

                                                           
10  The toxic asset is an indicator used to measure the soundness of the financial sector. The higher the 
value of the toxic assets the higher the negative impact of financial crises in selected countries. The 
lower the value of toxic assets the lesser the impact of financial crises in the selected countries. 
11 Non–performing liquidity ratio is used to determine the ability of financial institution to pay off its 
short- terms debt obligations. Similarly, the higher the value of non-performing loan ratio, the higher 
the risk and less safe for the financial institution to cover short- term debts. 
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a result, many investors believe that the growing population of black races that ought 

to have provided a good economic market were excluded from the South African 

economy circuit (Coleman, 2013).  

China’s economy has been criticised for currency manipulation, economics 

"dumping" and caters less for the immediate needs of its population. Aziz (2007) stated 

China's rapid growth may not be sustainable because many Chinese companies process 

high cost imported inputs resource into cheap consumer goods for exporting. As a result, 

when inputs become more expensive, this may undermine China’s economy and 

investor confidence in achieving sustainable growth. For instance, the competition from 

other producing countries will make it more difficult for many Chinese companies to 

increase their market shares. In addition, the growing population of China is another 

issue to be considered. Overpopulation in China could impede both economic 

development and economic growth. For instance, an increase in population will increase 

government expenditure by allocating more resources to social welfare rather than a 

development of infrastructure. Patel (2013) documented that China’s growing 

population has increased its environmental pressures and makes the current economic 

situation in China unstable. For example, agriculture activities in coastal regions of the 

South China Sea, which should feed fewer people now, cater for more than 300 million 

persons.  The year 2000, more than 11 million tons of fish were eaten in this area, even 

though, fish stocks in the North East have fallen drastically since the 1990s (Patel 2013). 

The introduction of the one-child policy in 1979, to curb the rapid growing population, 

could also reduce the long-run labour force. Currently, 16.6 percent of the total Chinese 

population is 14-year-old children, whilst 13 percent are over 65 years. If current 

conditions remain, China will face a shortage of 140 million workers in 2020, and over a 

quarter of the Chinese will be above 65 years old in 2050 (Patel 2013). 

Consequently, corruption remains a threat to the economic growth of the BRICS 

countries. BRICS countries business environment may not be favourable for many 

legitimate multinational companies to function.  Although the BRICS nations have the 

potential of being a leading economy, corruption can jeopardize their growth targets. 

The transparency International civil society organisation scored most of the countries in 

the world based on their level  of corruption in 2014. The group constructed a corruption 

scale of 0-100, where 0 means that a country is perceived as highly corrupt, and 100 
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means a very decent country. The table below indicates the level of corruption in BRICS 

countries.  

 

Table1.1 Corruption ranking table for BRICS countries 

Rank Country Score 

67 South Africa 44 

69 Brazil 43 

100 China 36 

85 India 38 

136 Russia 27 

Source: Corruption perception index (2014). 

From the above table, all the BRICS countries scored less than 50 out of 100 and were 

ranked above 65. This indicates a serious problem of corruption that exists among the 

BRICS nations. The Corruption activities in many of these countries include abuse of 

power, secret dealings, bribery, abuse of human rights and financial violations.  

  



18 
 

1.6 Overview of OPEC countries   

In the late 1950s, the quantities of oil produced in many of the oil producing countries 

were greater than the global demand for oil. During this period, the oil production sector 

was dominated by a few individuals, companies and countries. Each of them produced 

oil and regulated prices independently in the international market until September 14, 

1960, when the Organization of Petroleum Exporting Countries (OPEC) was established. 

This organisation was established in 1960 with five founding members: Iran, Iraq, 

Kuwait, Saudi Arabia and Venezuela. By the end of 1971, six other nations had joined 

the group: Qatar, Indonesia, Libya, United Arab Emirates, Algeria and Nigeria. OPEC has 

a rich diversity of cultures, languages, religions and united by their shared status as oil-

producing developing countries. Many of these countries heavily depend on the 

exportation of petroleum, and this has contributed to the higher percentage of their 

export earnings. For example, Nigeria earned 70 percent of its total export revenue from 

crude oil; Kuwait derived almost 60 percent of its gross domestic product and 93 percent 

of export revenue from crude oil; Libya acquired almost 95 percent of its government 

revenues.  In Qatar, oil and natural gas accounted for 60 percent of the country’s gross 

domestic product and around 85 per cent of export earnings. In Saudi Arabia, the oil and 

gas sector contributed to 50 percent of the gross domestic product and 90 percent of 

export earnings and, in Venezuela, oil revenues accounted for about 95 percent of 

export earnings and 25 percent of the gross domestic product.12 In total, the OPEC 

members produce almost 40% of the world's crude oil, which represents almost 60 

percent of the total petroleum traded internationally, produces about a third of the 

world’s daily consumption of 90m barrels of crude oil, and controls 78% of the world’s 

crude oil reserves (Energy Inflation Administration, 2013).  Apart from petroleum oil, the 

organization provides other natural resources that include natural gas, tin, iron ore, coal 

limestone, niobium, lead and zinc.13 

                                                           
12 See: Organization of petroleum exporting countries member, available at 
http://www.opec.org/opec_web/en/index.htm. 
13  Sala-i Martin and Subramanian (2003) documented that countries that depend heavily on the export 
of natural resources are liable to various challenges, which include: authoritarian governance, political 
instabilities, civil wars, high corruption levels, high poverty rates. 
 

http://www.opec.org/opec_web/en/index.htm
http://www.sciencedirect.com.ezproxy.kingston.ac.uk/science/article/pii/S0140988311002969#bb0165
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The group has the responsibilities of coordinating and unifying petroleum policies, 

promoting stability and regulating the oil price in the international market. In 2005, the 

acting general secretary of the organisation (Adnan Shihab-Eldin) emphasised that OPEC 

is committed to market stability and supplying petroleum products at reasonable prices 

to both producers and investors.14 OPEC has responsibilites to safeguard the interests 

of its members and ensure the stability of the global oil price. For instance, in 1968, 

OPEC issued a declaratory statement of petroleum policy to protect its members and 

caution the United Nations on the right expressed by the United Nations that all 

countries should exercise permanent independent rights over their natural resources 

for the development of their economy. Accordingly, OPEC maintained that OPEC’s 

resources should benefit the whole OPEC members rather than individual countries by 

setting a reasonable global oil price. OPEC often regulates the production of  the crude 

oil to set the global oil price and improve the balance of payments. The organization will 

increases production to increase supply and keep prices low.15 In contrast, OPEC will 

decrease oil production to reduce supply of oil and increase oil prices. The first notable 

example was in October 1973 when the Arab nations in OPEC cut their oil production by 

5% per month. The organisation put a supply oil embargo on the United States because 

of its support for Israel during the Yom Kippur war. The action of the Arab countries led 

to an increase in global oil prices that increased inflation across the world. A similar 

example was during the Gulf War, when former Iraqi President (Saddam Hussein) 

advocated that OPEC should increase the oil price to help Iraq and other member states 

to generate more revenue and service their debts. However, the aggression and invasion 

of Iraq on Kuwait did not allow all members of the organization to support the proposal 

of Saddam Hussein (Basil Ajith, 2011).   

  

                                                           
14 A speech delivered by Adnan Shihab-Eldin, Acting for the Secretary General, to the 31st Pio Manzù 
Conference, Rimini, Italy, 28-30 October 2005. Available at: 
http://www.opec.org/opec_web/en/883.htm. Accessed on 23 September 2013. 
15An increase in oil production may leads to excess supply or oversupply and the quantity supply will be 

greater than the quantity demanded in the equilibrium market. The effect of excess supply of the oil will 

reduces the price of the oil to encourage consumers to purchase more and suppliers to produce less. 

 

http://www.opec.org/opec_web/en/883.htm
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1.7 The similarities and difference between OPEC and BRICS countries 

The BRICS and OPEC countries are made of both developed and developing countries. 

The BRICS economies are ranked among the G-20 advanced industrial countries in the 

world whereas the OPEC economic system is classified as a traditional economy where 

goods and services produced are influenced by traditional beliefs, customs and religion. 

There is evidence that developed countries experienced low inflation and stable 

macroeconomic policies while higher inflation, unstable macroeconomic policies are 

attributed to developing countries (Ghazanfar and Sevcik 2008). In developing countries, 

the analysis of monetary policy is hindered by the absence of a good monetary policy. 

The developed countries have control over their monetary and fiscal policies and good 

monetary experts manage their economies. 

 Many of the BRICS countries are oil importers and high oil consuming nations compared 

with OPEC countries that are major oil exporters in the world. The majority of OPEC 

countries are dependent on crude oil and natural resources to generate revenue and 

import many consumer goods. Therefore, they are more exposed to international trade 

with crude oil and increases or decreases in the oil price will directly affect their 

government expenditure. In contrast, incomes for many of the BRICS countries are not 

only from natural resources but taxes and the financial sector. In addition, BRICS 

countries are more advanced in technology, and many of them have the ability to 

process their natural resources for exports.  

1.8 Research Contributions  

This thesis makes the following contributions to the existing inflation forecasting 

literature, especially on the empirical front. The most recent literature focuses on 

developed countries, although some of them focus on developing countries, none of 

them focuses on BRICS and OPEC economies despite their growing contribution to the 

global economy. Therefore, this study contributes to the literature by offering evidence 

that leads to following conclusions in terms of modelling and forecasting inflation for 

BRICS and selected OPEC countries.  We are not aware of any previous study of inflation 

that draws such conclusions for these countries. 
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(i) The annual (four periods) difference of the log of prices is a poor approximation 

of inflation during periods of high inflation. However, the annual (four periods) 

difference of the log of prices is a reasonable approximation of inflation during 

periods of low inflation. Given that many BRICS and OPEC countries exhibit 

periods of both relatively high and moderate inflation this suggests researchers 

should not automatically assume that the difference of the log of price data can 

be used as a valid approximation of inflation for modelling in these countries. 

Further, when using quarterly unadjusted data, it is most appropriate to use the 

growth rate of prices based on the annual difference rather than the quarterly 

(one period) difference to obtain stationary data. 

 

(ii) When forecasting with univariate specifications, reducing the sample to avoid 

modelling large structural breaks improves forecasting performance compared 

to using the full sample and modelling structural breaks. This implies that the 

potential benefits of having more data from using the full sample are generally 

outweighed by being able to avoid modelling structural breaks (even at the cost 

of a reduced sample for estimation).  

 

(iii)  The quick EViews 9 automatic ARIMA model selection procedure is sometimes 

favoured over the time-consuming Box-Jenkins ARIMA model building method 

(that requires modelling skill). This is especially the case for the BRICS countries 

that have a history of moderate inflation. This suggests that automatic selection 

methods not only have the benefit of saving time they can also produce superior 

forecasts.  

 

(iv)  Utilising the Bai and Perron (2003a and 2003b) test to identify any structural 

breaks within the ARIMAX modelling context to model inflation is a novelty of 

our work. 

 

(v) Building ARIMA models to seasonally adjusted data and re-seasonalising the 

forecasts often yields superior forecasting performance than constructing 

seasonal ARIMA models to unadjusted series. 
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(vi) The results from the threshold autoregressive models (TAR model) provides 

empirical evidence for multiple regimes for inflation in the selected economies. 

However, our studies revealed that the forecasts from the TAR models were 

considerably less accurate than the best selected ARIMA specification (EView 

automatic selection procedure) in all selected countries except in China (all 

forecasting horizons), Nigeria (over 1 to 4-step ahead horizons) and Saudi Arabia 

(over 1 to 3 steps ahead horizons). In general, our study provides evidence that 

modelling of breaks or incorporation of the model that accounts for two or more 

regimes shifts contributes to improved forecast performance of inflation in few 

countries. 

(vii) Generally, the multivariate models that include the oil price as 

endogenous appears to secure better forecasting performance than those that 

include the oil price as exogenous for BRICS and OPEC countries, except for 

Algeria over all forecasting horizons, Brazil over 1 to 6-steps, Russia over 5 to 6-

steps ahead and over 1 to 2-step for South Africa and Nigeria. The exogenous 

impact of the oil price for few countries implies that inflation may not always be 

determined by the global effect of the oil price. This may be because of the 

recent impact of the oil price reductions on inflation.16  Further, new technology 

development may have helped many of these countries to reduce the cost of 

producing oil. This may also be because many of these countries have embarked 

on different economic policies to diversify their economies from predominantly 

oil producing states to manufacturing economies. We note that unemployment, 

money supply, exchange rate, oil price and the interest rate have the highest 

theoretical consistency rating at 100%, 85%, 75%, 33.3% and 16.6% respectively 

for OPEC and BRICS countries. For example, an increase in money supply will 

cause a significant increase in inflation in all countries except China.17 Further, a 

rise in unemployment decreases inflation in Brazil and an increase in the 

exchange rate will raise inflation in Russia, China, South Africa, Nigeria, and 

                                                           
16 Since 2008, the oil price has traded below $120 per barrel and reached a 12-years low of $27 in 

January 2016. There is a link between low oil price and economic growth. For instance, low oil prices 

reduce the cost of production and encourage producers to increase their output. 

17 In general, our study concludes that money supply remains the most effective monetary policy to 
control inflation in OPEC and selected BRICS countries. 
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Algeria (see Table 7.1.F2 and 7.1.H2). In contrast, the interest rate has the lowest 

consistency rating at 16.6% across the countries.18 This may be because the use 

of the interest rate to control inflation is limited in OPEC countries and most of 

the oil exporting nations. This is due to reasons of religion, social beliefs, the 

usury activities of financial institutions and the sovereignty of many of these 

countries that independently regulate their financial institutions. This result 

contrasts with the findings of Hendry (2001) who indicates that the short-long 

interest-rate spread is an important determinant of inflation in Uk but consistent 

with the findings of Al-Shammari and Al-Sabaey (2012) who suggest that the 

interest rate does not significantly affect the general price level for 59 developing 

countries. 

 

(viii) The VEC specifications often outperform VECMs in terms of forecasting 

accuracy of the inflation and the oil price. This means that the incorporation of 

long-run information in the form of specifying a single cointegrating equation is 

generally beneficial in terms of securing superior forecasting performance. This 

result is consistent with Timothy and Thomas (1998) who claimed that forecasts 

are most likely to be improved by applying error-correction techniques if the 

data strongly supports the cointegration hypothesis. 

 

(ix) The application of the two stability tests (the CUSUM and Bai Perron tests) show 

that stability of the model can enhance the forecasting performance of inflation. 

For OPEC countries, the VECM specifications are stable and produce the best 

forecasts results over all horizons for Saudi Arabia. The VAR model that includes 

all variables as endogenous except unemployment is stable and produces the 

best forecast results for Algeria, and the VAR models that specified oil price as 

exogenous and includes all other variables as endogenous except 

unemployment is stable and favoured for Nigeria. In contrast, all the favoured 

forecasting multivariate models for BRICS countries are not stable. The forecast 

performance of the favoured forecasting models that are not stable is consistent 

with the study of (Stock and Watson, 2003, and Rossi (2012)) who argued that 

                                                           
18 Note that the interest rate variable is not available in Saudi Arabia. 
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instability of the theoretical model can be misleading for out-of-sample 

forecasting. This may also be because our forecasting comparison is based on 

out-of-sample forecast instead of the in-sample comparison. Rossi (2012) 

documents that out-of-sample forecasts comparison are robust to model 

instabilities because their procedures can minimize the effect of structural 

breaks on forecasting model. In particular, they re-estimate their parameters 

over time by either rolling or recursive estimation process. 

 

(x) When comparing forecast performance of the benchmark model (naïve) with the 

best selecting univariate model regime shift TAR model, (Eview automatic ARIMA 

selection) and multivariate models (VAR, VECM and VEC).  Our study shows that 

the benchmark models (naïve) were never favoured over the best selected 

univariate and multivariate model. The univariate EView’s automatic non-

seasonal ARIMA model is generally favoured for the BRICS countries. However, 

the results are mixed between univariate and multivariate methods for OPEC 

countries. For OPEC countries that have a history of moderate inflation, for 

example, Saudi Arabia, the univariate automatic non-seasonal ARIMA model 

generally performs better than the multivariate model. In contrast, multivariate 

models generally outperform univariate automatically selected ARIMA models 

for countries with high inflation (e.g Angola and Algeria).  
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CHAPTER 2 

THEORIES OF INFLATION DETERMINATION AND CENTRAL BANK POLICIES 

TO CONTROL INFLATION  

2.0. Introduction.  

This chapter discusses the various theoretical models that are commonly used to model 

and forecast inflation and considers the policies implemented by the central bank to 

control inflation for BRICS and OPEC countries. This chapter demonstrates that most of 

the policies implemented by the central bank to regulate inflation focus on the interest 

rate (for example, via Inflation targeting and Taylor rules as well as through the exchange 

rate). According to the Taylor rule, the central bank assumes inflation and the interest 

rate are directly related, especially in the short term. When inflation is above the target 

rate, the central bank will increase the interest rate to reduce inflation and if inflation is 

below the target rate, the central bank will decrease the interest rate to raise the rate 

of inflation (Taylor 2008).  For the exchange rate, the government may allow the value 

of the domestic currency to be fixed at the value of a selected foreign currency to control 

inflation. In particular, if the government experiences a balance of payments deficit. The 

central bank may be tempted to reduce capital outflows to improve the balance of 

payments. In this case, the central bank may decide to increase the interest rate to 

technically increase the cost of borrowing to discourage people from borrowing and 

decrease consumer spending. However, the use of the interest rate to control inflation 

is limited in OPEC countries and most of the oil exporting nations. This is due to reasons 

of religion, social beliefs, the usury activities of financial institutions and the sovereignty 

of many of these countries that independently regulate their financial institutions.  
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2.1 The theory of inflation (Phillips curve) 

The Phillips curve theory relates the unemployment rate or aggregate economic activity 

to the rate of inflation. The theory described the relationship between unemployment 

and wage inflation to be an inverse relation (William Phillips, 1958).19 In other words, 

low levels of unemployment could be achieved at a high level of inflation, and a high 

unemployment rate that is achieved at a low inflation rate. In the principle of the Phillips 

curve, when demand for labour is increasing, unemployment will be decreasing and 

employers are expected to increase the wages of the workers to attract the best labour 

from the labour force. Therefore, an increase in wages will increase the cost of 

production.  

Later, economists substituted price inflation for wage inflation to follow a 

contemporary relationship between output and demand.20 Price inflation assumes 

inflation is caused by excess supply capacity. That is, an increase in output will cause 

inflation to increase. Specifically, when output is above potential demand there is 

upward pressure on inflation. However, when output is below potential, this exerts a 

negative influence or downward pressure on the inflation rate. Consequently, an 

increase in economic production (economic activity) will increase the demand for labour 

and decrease the unemployment rate. While a decrease in economic activity will 

increase the unemployment rate. The effect of the Phillips curve is that employers will 

employ more labour during the period of economic growth than a period of economic 

recession. The original Phillips curve is referred to as a short term Phillips curve or 

expectation augmented Phillips curve. 

In practise, an inverse relationship between inflation and unemployment may 

contradict the macroeconomic objectives of simultaneously achieving full employment 

and the lowest possible inflation rate.21 Friedman (1968) argued that the government 

could not permanently trade higher inflation for lower unemployment and 

                                                           
19 Phillips investigates the annual relationship between wage inflation and the unemployment rate in 

the United Kingdom between the period 1860 and 1957, by plotting a scatter graph. 

20 The source of disagreement between the wages inflation and price inflation are: The wages inflation 

assumes that; the cost of labour will adjust prices. While the price inflation assumed that, prices are 

sticky and firms’ activities or output will adjust the prices.  

21  The outbreak of stagflation in many countries resulted in the simultaneous occurrence of high levels 
of inflation and high levels of unemployment.  
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differentiated between short–run and long–run Phillips curves. He further stated that 

the inverse relationship between unemployment and inflation was only a short-run 

phenomenon; and if the government targeted the natural rate of unemployment and 

allowed real wages to respond to the demand and supply of labour, there would be no 

trade-off between inflation and unemployment.22 Accordingly, if unemployment is 

below the ‘’natural rate’’ there will be an increase in the excess demand for wages and 

costs of production will be increased and so will inflation. Due to the higher inflation, 

the real wages that the workers receive will be decreased; purchasing power will be 

reduced to allow the unemployment rate to return to the natural rate. The condition is 

that, if the worker realised that inflation has increased more than expected, the real 

wages have been reduced, and their real purchasing power have been diminished. The 

worker will agitate for more wages to increase their real purchasing power; the rise in 

wages will increase the cost of labour and decrease the output profits. As the profit 

decreased, some workers will be let go to increase the rate of unemployment.23  

   Consequently, the natural rate of unemployment can be described as an 

equilibrium rate of unemployment i.e. where the supply of labour is equal to demand of 

labour – this is also known as the natural stability rate.24 Nevertheless, this theory has 

two important contributions to the modern-day economy. Firstly, the theory specifies 

that there is a minimum level of unemployment that the economy can absorb in the 

long run. Therefore, it could be difficult for any nation to push unemployment below the 

natural rate for a long period without an upward spiral of wage and price inflation that 

brings unemployment back to the natural rate. Secondly, the natural rate has made it 

                                                           
22 The classical economists argue that the long run Phillips curve is vertical and unemployment will 
always return to its natural rate. This type of Phillips curve can be also described as the non-accelerating 
rate of unemployment (NAIRU). That is, the level of unemployment that exists in an economy that does 
not cause inflation to increase.  
23 This also illustrates how the theory of adaptive expectations forecasts operate, that is, there are no 

long run trade-offs between unemployment and inflation. In the short run, it is possible to lower 

unemployment at the cost of higher inflation, but, eventually, worker expectations will catch up, and the 

economy will correct itself to the natural rate of unemployment with higher inflation.  However, rational 

expectations theory predicts that expectation of the worker to catch up and the economy correcting 

itself to the natural rate of unemployment with higher inflation will undermine the effort of the rational 

workers. Because, the workers could act rationally to protect their interests. This especially cancels out 

any intending economic policy that could increase unemployment and increase inflation. 

24 There are several factors that determine the natural rate of employment: employment insurance, 
availability of unemployment benefits and the desire and ability of the unemployed to search for a job. 
For example, if unemployment benefits are high enough to cater for unemployed person, this may 
discourage unemployed person to work or take available jobs. 
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possible for many nations to handle the short run Phillips curve and allow the temporary 

combination of low inflation and low unemployment rate. Also, Atkeson and Ohanian 

(2000) initiated an argument on the stability of the Phillips curve. They examined 

whether the statistical relationship between unemployment and inflation is stable over 

time. They found that the relationship between unemployment and inflation is not 

stable. They suggest that the relationship between the current unemployment rate and 

future inflation varies and changes with inflation expectations. Since the theory suggests 

that expectations about inflation may affect the current unemployment rate. Our views 

support the notion that future inflation forecasts based on the Phillips curve may be 

influenced by the economic environment or change as the economic environment 

changes. 25 

 

                                                           
25 In our study, we do not produce direct forecasts for the Phillips curve; instead, we explore the 

performance of two major indicators of the Phillips curve (unemployment and the output gap) and 

other selected macroeconomic variables by means of multivariate models to forecast inflation.  
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2.2 Quantity Theory of money 

The quantity theory of money explains the relationship between the money supply, 

money demand, velocity of money and the real general price level of transactions. The 

theory defines money supply as the total monetary assets available in the economy at a 

particular period. Monetarists believe that an increase in the money supply will increase 

the price and increase inflation as well as reduce the value of money in circulation.  

In practise, the reality of how money is created and supplied today is slightly 

different from the description of the traditional economy. Most of the money in 

circulation is supplied, not by direct printing of the money by the central bank alone, but 

by the commercial bank’s activities. The commercial banks create money whenever they 

lend to someone in the economy or buy an asset from consumers. The central bank does 

not directly control the quantity of money in circulation. Nevertheless, the authority is 

still able to influence the amount of money in the economy. It does so in normal times 

by setting monetary policy — through the interest rate that it pays on reserves held by 

commercial banks. For example, the government often supplies money through 

commercial banks by making loans. In this case, commercial banks receive deposits from 

households and the deposit is lent out to the customer inform of loan by the bank to 

charge interest. As a result, commercial banks simultaneously accept deposits and 

create new money. 

In addition, the loan given out by the commercial bank does not usually come by 

giving borrowers thousands of pounds’ worth of banknotes. Instead, its credit in their 

bank account with a bank deposit of the actual value.26  To ensure that money supplied 

by commercial banks are consistent and conforms to stable inflation the Central Bank 

usually sets the interest rate on the commercial bank reserve deposits or central bank 

deposit. Central bank can also buy government securities, assets, or quantitative easing 

(QE). 27 The quantitative easing is an unconventional monetary policy adopted by a 

                                                           
26 However, commercial Banks are limited in how much they can lend if they are to remain profitable in 
a competitive banking system. 
27 QE policy is usually implemented when interest rates are almost at zero; in this case, central banks 

need to adopt different tactics - such as pumping money directly into the economy. On other hand, 

central banks could also swap their bank reserves into currency, which would pay a higher interest rate 

to commercial bank.  
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central bank to stimulate economic activity, such as increasing consumer spending. The 

policy aims to purchase government securities or other securities with money it has 

"printed" - or created electronically. In general, the relationship between deposits and 

loans and the relationship between reserves and loans given by commercial banks are 

typically controlled and regulated by the central bank. The central banks decide how 

much to lend the commercial bank, which depends on the profitable lending 

opportunities available to them and the interest rate set by central banks. In addition, 

any decision made by a commercial bank to give out a loan will also influence how the 

central bank will set interest rates for banking reserve ratio (to meet withdrawals by the 

public and meet regulatory liquidity requirements). 

Traditionally, the quantity of money equation can be stated as follow: 

 

𝑀𝑡𝑉𝑡 =𝑃𝑡𝑌𝑡          2.0 

 

Where 𝑌𝑡  is the level of output (real GDP) in period 𝑡, 𝑃𝑡 is the general price level, 𝑀𝑡  is 

the stock of money/money supply and 𝑉𝑡 is the velocity of money (the rate at which 

money passes from hand to hand).  

To generate an inflation equation from the quantity demand for money 

We rewrite the equation (2.0) as: 

𝑃𝑡 = 
𝑀𝑡 𝑉𝑡

𝑌𝑡
          2.1 

We take natural logarithms of equation (2.1) 

𝑝𝑡 = 𝑚𝑡 + 𝑣𝑡 - 𝑦𝑡         2.2 

We make 𝑣𝑡 the subject of the formula.  

𝑣𝑡 = 𝑦𝑡 + 𝑝𝑡- 𝑚𝑡         2.3 
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We followed the approached of Hallman et al. (1991) and write 𝑝𝑡 in the form of 𝑝𝑡
∗, 

where 𝑝𝑡
∗denotes the long run price equilibrium. 

𝑝𝑡
∗ = 𝑚𝑡  + 𝑣𝑡

∗ - 𝑦𝑡
∗         2.4 

We avoid the long-run money supply (𝑚𝑡
∗) and estimate the price gap by subtracting 

equation (2.4) from (2.2)28 

Therefore:  𝑝𝑡
∗- 𝑝𝑡  = 𝑣𝑡

∗ - 𝑣𝑡 + 𝑦𝑡 - 𝑦𝑡
∗  

𝑝𝑡
∗ - 𝑝𝑡 = (𝑣𝑡

∗ -  𝑣𝑡 ) + (𝑦𝑡 -𝑦𝑡
∗ )        2.5 

We substitute the equation (2.3) in the equation (2.5)  

𝑝𝑡
∗ - 𝑝𝑡 = (𝑣𝑡

∗- (𝑦𝑡 + 𝑝𝑡 -  𝑚𝑡) + (𝑦𝑡 -𝑦𝑡
∗) 

𝑝𝑡
∗ - 𝑝𝑡= 𝑣𝑡

∗- 𝑝𝑡- 𝑦𝑡+ 𝑚𝑡 +  𝑦𝑡 -𝑦𝑡
∗ 

𝑝𝑡
∗ - 𝑝𝑡= 𝑣𝑡

∗- 𝑝𝑡- 𝑦𝑡+ 𝑦𝑡 + 𝑚𝑡 - 𝑦𝑡
∗ 

𝑝𝑡
∗ - 𝑝𝑡= (𝑚𝑡 + 𝑣𝑡

∗-𝑝𝑡) -  𝑦𝑡
∗        2.6 

Where (𝑦𝑡 -𝑦𝑡
∗ ) represents the output gap, (𝑝𝑡

∗- 𝑝𝑡) denotes the price gap and (𝑣𝑡
∗- 𝑣𝑡) 

stands for the liquidity gap. In equation (2.5), the price gap is directly proportional to 

output 𝑦𝑡 and inversely related to velocity 𝑣𝑡 . Hence, the price gap is expected to 

increase after the increase in output (𝑦𝑡) above its equilibrium value ( 𝑦𝑡
∗). In equation 

(2.6), the price gap is directly proportional to the money supply 𝑚𝑡,  which serves as an 

important factor to determine the rate of the inflation. 

 

  

                                                           
28  The money supply is assumed to be controlled in both long run and short run by the monetary 

authority 
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 2.3  Money Demand.  

Monetarist economists believe that money is primarily demanded for transactions 

purposes (for its use as a medium of exchange, store of value and unit of account). The 

demand for real cash ( 𝑀𝑡
𝑃𝑡

⁄ )d is typically theorised to be positively related to economic 

output (𝑌𝑡) and negatively related to the real interest rate (𝑅𝑡). 

Theoretically, the traditional demand for money equation is; 

(
𝑀𝑡

𝑃𝑡
⁄ )d  =  𝑓 (  +

𝑌𝑡,
   −

𝑅𝑡
 )        2.7

    

Where  𝑀𝑡 is the money demand,  𝑃𝑡 is the general price level, 𝑌𝑡 is the income level, 

and 𝑅𝑡 = (𝑅𝐿 − 𝑅𝐷)𝑡, where 𝑅𝐿 is an interest rate that reflects the opportunity cost of 

holding money and 𝑅𝐷 is the interest rate that reflects the yield of the deposit. 

Thus,  
𝑀𝑡

𝑃𝑡 
 = 𝑓 (  +

𝑌
   −

𝑅𝑡
 )         2.8 

Transform the equation (2.8) into natural logarithms  

𝑚𝑡 -  𝑝𝑡 = 𝑦𝑡 - (𝑟𝑙 − 𝑟𝑑)𝑡         2.9 

𝑝𝑡 = 𝑚𝑡 - 𝑦𝑡 + (𝑟𝑙 − 𝑟𝑑)𝑡        2.10 

In this context, the general price level depends on the actual money stock, the 

opportunity cost of holding money and real income.29 Similarly, an increase in the 

opportunity cost of holding money will increase the general price level and reduce the 

public demand for money.  

 

                                                           
29 This assumes that money demand is equal to money supply. 
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2.4 Central Bank characteristics and its monetary policies  

A central bank is a financial institution that coordinates the monetary actives of a 

country. The role and functions of a central bank are similar from one country to 

another. The institution has the power to fix and adjust the interest rate, print money, 

set a reserve requirement, purchase and sell government securities and act as a lender 

of last resort to commercial banks or any financial institution during a financial crisis. In 

addition, the central bank is designed to be independent of any political interference.30 

However, central bank independence has been a major challenge to both developing 

and developed countries in managing and coordinating its activities. The International 

Monetary Fund (IMF 1996) observed that central bank independence does not influence 

inflation performance in industrialized countries (Kumar et al., 2011). Cukierman et al. 

(2002) also observed that central bank independence does not control price inflation. 

Gutierrez (2003) reveals that countries with higher independence of central banks tend 

to have better inflation performance.  While Berger et al. (2000) indicate that higher 

government independence is related to lower inflation in industrialized countries but 

not in developing countries. 

2.5  Central Bank and Inflation Targeting  

The history of inflation targeting started from New Zealand in 1990, where the 

finance minister and the governor of the central bank were jointly set a numerical target 

value of inflation, with the aim of stabilizing the inflation rate. The plan was adopted by 

many western countries, including the United Kingdom, Canada, Australia, etc.  The 

policy was later adopted in many developing countries including Brazil, South Africa, 

Mexico, Philippines, Chile, and Ghana etc. The numerical value of the target rate usually 

ranges from zero to three percent for most developed countries. Theoretically, inflation 

and the interest rate are directly related to this policy.  When inflation is above the target 

rate, the central bank will increase the interest rate to decrease inflation and if inflation 

is below the target rate, the central bank will decrease the interest rate to stimulate the 

                                                           
30 If the central bank is independent, the institution will be able to implement its own monetary policy 
and achieve its inflation target without government interference. For example: control its own balance 
sheet, accountability and transparency, 
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economy and increase the rate of inflation.31 Under this system, the central bank’s policy 

intentions become transparent and investors know what would happen to interest rates 

when inflation is increasing or decreasing. The procedure allows the central bank to 

react to inflation shocks and provides proper coordination for inflation expectations.32 

Johan (2012) identified two possible requirements for a country to adopt an inflation 

targeting policy. Firstly, central banks should be able to conduct monetary policy with 

some degree of independence, policy transparency and accountability. Secondly, the 

willingness and ability of the central bank to not simultaneously target other indicators, 

such higher wages, higher employment, or the exchange rate stability. 33 

 Consequently, the policy has been more effective than other alternative 

monetary policies to regulate inflation in developing countries.34 The performance of 

macroeconomic variables have improved  under this policy (Johan, 2012, Johnson, 1990 

and Batini et al. 2006). However, inflation targeting could be difficult to implement in 

developing countries when compared to developed countries. Firstly, the rates of 

inflation in developing countries are relatively high and difficult to calculate. Secondly, 

the large exchange rate movements because of high levels of imports may have adverse 

effects on inflation. Thirdly, the poor co-ordination of financial institutions and political 

instabilities in many of these countries may not guarantee the independence of the 

central bank.  

                                                           
31 Increase in an interest rate will reduce supply of money by increasing the cost of borrowing, 
discouraging consumers from borrowing and spending, attracting more saving, reducing the disposable 
income of those with mortgages and increase the value of the exchange rate. 
32 Batini and Laxton (2006) identified various advantages of inflation targeting, evidence reveals that 

interest rates and exchange rates are less volatile, and the risk of currency crises is smaller under this 

monetary policy. 

33 The condition is that central banks may be inefficient if the authority is pursuing multiple goals, such 
as low inflation and low unemployment, with only one basic instrument. 
34  Rio de Janeiro (2006) studies the Brazilian experience with inflation targeting between 1999 and 

2006. The evidence revealed that inflation targeting policy was successful in reducing inflation in Brazil. 

However, the policy was affected by the crises caused by an increase in global risk aversion  between  

2001 and 2002.  

Roger (2010)  examines performance of inflation targeting for the 26 countries that adopted inflation 

targeting policy since 1991. He graphically compares the inflation and output performance in these 

countries with non-inflation-targeting  countries over the same period. The evidence revealed that those 

countries that adopted inflation targeting experienced a larger reduction in inflation volatilities and 

growing macroeconomic output compared with non-inflation targeting countries.   
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The lists of 28 countries that have been using inflation targeting policy since 1990 are 

given in the table below (2.1). Finland, the Slovak Republic and Spain adopted the policy 

but abandoned it when they started using the euro as their national currency. 35 

  

                                                           
35 Note that all the Euro member countries are subject to European wide inflation targeting policy. 
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Table 2.1   Countries that have adopted inflation targeting policy 

 
 
 
Country 

 
Inflation-
targeting 
adoption    
date  

Inflation rate at  
 Adoption date (%) 
  

Targeted inflation rate (%)  

New Zealand 1990 3.30 1 – 3 
Canada 1991 6.90 2 +/- 1 
United Kingdom 1992 4.00 2 
Australia 1993 2.00 2 – 3 
Sweden 1993 1.80 2 
Czech Republic 1997 6.80 3 +/- 1 
Israel 1997 8.10 2 +/- 1 
Poland 1998 10.60 2.5 +/- 1 
Brazil 1999 3.30 4.5 +/- 1 
Chile 1999 3.20 3 +/- 1 
Colombia 1999 9.30 2 – 4 
South Africa 2000 2.60 3 – 6 
Thailand 2000 0.80 0.5 – 3 
Hungary 2001 10.80 3 +/- 1 
Mexico 2001 9.00 3 +/- 1 
Iceland 2001 4.10 2.5 +/- 1.5 
 Korea  2001 2.90 3 +/- 1 
Norway 2001 3.60 2.5 +/- 1 
Peru 2002 –0.10 2 +/- 1 
Philippines 2002 4.50 4 +/- 1 
Guatemala 2005 9.20 5 +/- 1 
Indonesia 2005 7.40 5 +/- 1 
Romania 2005 9.30 3 +/- 1 
Serbia 2006 10.80 4 – 8 
Turkey 2006 7.70 5.5 +/- 2 
Armenia 2006 5.20 4.5 +/- 1.5 
Ghana 2007 10.50 8.5 +/- 2 
Albania 2009 3.70 3 +/- 1 
 

Source: International Monetary Fund (IMF) staff publications (Batini et al. 2006 and Johan, 

2012) 

Empirically, various literatures have shown that the existence inflation targeting has 

reduced inflation, output shocks and interest rate volatilities (Bernanke et al. 1999; 

Kamil, 2012; Goncalves and Salles, 2008 and  Sikklos, 1999). Others argue that inflation 

targeting has no effect in reducing inflation, and if it does, the policy only contributes 

very little to lower inflation and variability (Honda, 2000; Byrne, 2012; Ye Haichun, 2007; 

George, 2009; Angeriz and Arestis, 2006; Johnson, 2002; Ball and Sheridan, 2003). 

Hence, the success of inflation targeting may be difficult to measure in both developing 

and developed countries because many of the developed countries that had adopted 
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inflation targeting had a history of stable and low inflation before the introduction of 

this policy (for example, New Zealand, Canada and United Kingdom). Therefore, they did 

not observe recent low inflation as evidence of the success of inflation targeting because 

inflation also falls in many non-inflations targeting countries (for example, Japan and 

USA). 

2.6 Central Banks and Taylor rules 

A Taylor rule can be described as a monetary-policy that defines the rate at which the 

government should modify the nominal interest rate in response to changes in inflation, 

output and other macroeconomic variables. The theory gives a guide on how monetary 

rules should be applied to foster price stability, full employment and achieve other 

macroeconomic goals. Practically, the central bank will increase interest rates when 

inflationary pressures appear to be increased and lower interest rates when inflationary 

pressures are declined. Following Taylor (1993), the below equation is postulated to be 

used by central banks:36   

 

𝑖𝑡   = 𝜋𝑡 + 𝑟𝑡
∗ + 𝑎𝜋 (𝜋𝑡 − 𝜋𝑡

∗) + 𝑎𝑦 (𝑦𝑡 – 𝑦𝑡̅)         2.11 

In this equation, 𝑖𝑡  is the target short-term nominal interest rate (e.g. the federal funds 

rate), 𝜋𝑡  is the rate of inflation,  𝜋𝑡
∗ is the inflation target,   𝑟𝑡

∗ is the assumed 

equilibrium real interest rate, 𝑦𝑡 is the logarithm of real GDP, and  𝑦𝑡̅  is the logarithm of 

potential output as determined by the output gap.  In addition, 𝑎𝜋  and 𝑎𝑦 are proposed 

to be positive (as a rule of thumb) and they were set to be 𝑎𝜋= 𝑎𝑦 = 0.5 (Nikolsko and 

Papell, 2012).  

To what rate do we need to change the nominal interest rate? According to the Taylor 

rule, the central bank should raise the nominal interest rate for the short-term, if 

inflation rises above its desired level or if the output is above potential output, i.e., 𝑎𝑦 >

 0. Thus, an increase in inflation by 1% should prompt the central bank to increase the 

nominal interest rate by more than one percentage point (i.e by 1 +𝑎𝑦).  If inflation rises 

by say 1 percentage point, the central bank should increase the interest rate by 1.5 

                                                           
36 The equation is available in Taylor (1993) page 202 and expand by (Nikolsko – Rzhevskyy and 
Papell,2012) 
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percentage points (Taylor 2008). He added that the interest rate does not always need 

to be exactly 1.5%, but it is essential to increase the interest rate by more than 1% if 

inflation increased by 1% to bring inflation down.  If GDP starts to fall or inflation is 

reduced, say by one percentage point, the rule says that the interest rate should be 

reduced by 0.5 percentage points (Taylor 2008). 

2.7 Central Bank and Exchange Rates  

An exchange rate is a rate at which the currency of one country is being exchanged for 

that of another country or the relative price that indicates the price of one currency in 

terms of another currency.  There are three types of exchange rate systems: (i) the gold 

standard - the process by which countries define its national currencies in term of the 

weight of gold. (II) Fixed exchange rate system- this process by exchange rate value is 

determined by the interaction of the government and market forces and (III) floating 

exchange rate - this a process by which a country’s foreign exchange rate is entirely 

determined by supply and demand market forces without visible government 

intervention. Each  exchange rate system has different advantages and implications for 

the conduct of the monetary policy.   

2.8 The fixed exchange rate system 

A fixed exchange rate, sometimes called a pegged exchange rate, is a process by which 

government interventions and market forces interact to determine the level of 

exchange rates. The procedure allows the value of the domestic currency to be fixed at 

the value of a selected foreign currency. The policy encourages cross-border trade 

investment, promotes sound macroeconomic policies, reduces uncertainty in 

transactions costs and controls inflation. However, a fixed exchange rate may limit the 

government from using other domestic monetary policy to achieve macroeconomic 

stability.37 In addition, the lack of credibility may be more destructive under fixed 

exchange rates than under flexible rates because countries with fixed exchange rates 

are prone to currency speculation crises (Toulaboe and Terry, 2013 and Guisinger and 

Andrew, 2010). 

                                                           
37Under the fixed exchange rates, the domestic money stock is under the full control of monetary 
authorities, which means they may help the country to overcome external shocks, such as an unusual 
inflow of capital but have little influence on domestic shocks. 
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2.9 The regulation of inflation under the fixed exchange rate regime 

When a government experiences a balance of payments deficit, the government usually 

increases the tax to generate more revenue. Sometimes, governments increase interest 

rates to mobilise savings from the public. In this regard, an increase in tax, to generate 

additional revenue, may have extensive implications on economic growth; i.e. 

technically, increase in government corporate tax will increase the firm’s cost of 

production and decreases the consumers saving and income.38 In avoidance of this 

impact, the government may decide to obtain a bond from the central bank. In the 

process, the central bank will create a bond by printing new money. The printing of the 

new currency will increase the domestic money supply, reduce short-term interest rates 

and increase the supply of domestic currency in the foreign exchange market that will 

likely cause a temporary balance of payments surplus.  As a result, the increase in money 

supply in the foreign exchange market will depreciate the relative value of the domestic 

currency and keep inflation high if domestic growth does not increase to keep up with 

the increase in the money supply. To keep the rate of inflation low and prevent further 

depreciation of the domestic currency under this regime, the increase in the money 

supply by the domestic investors to the foreign exchange market will be moderated by 

a government. In this case, the central bank will avoid excess supply of domestic 

currency by operating a balance of payments deficit where the deficit will be allowed to 

soak up the excess money created through the printing of additional money. 

Specifically, the fixed exchange rate has been used to control inflation and its 

impact on inflation has been compared with the impact of flexible exchange rates on 

inflation. For example, Corckett and Goldstein (1976) reported that flexible exchange 

rates generate more uncertainty than fixed exchange rates. Bleaney (1999) found that 

a fixed exchange rate is 10 percent less inflationary than a flexible exchange rate regime. 

Bleaney and Fielding, 2002; Ghosh et al. 2002; McKinnon and Schnabl, 2004 and Bleaney 

and Francisco, 2005  observed that exchange rate rigidity reduces inflation. Toulaboe 

and Terry (2013) argue that fixed exchange rates are less inflationary and the anti-

inflationary benefit is heavily dependent on the monetary stability and credibility of the 

regime, which needs to be carefully built in a stable economy. Kiguel (2002) expressed 

                                                           
38 Poulson and Kaplan (2008) explore the impact of tax policy on economic growth. The analysis 
supports the hypothesis that higher marginal tax reduces the rate economic growth. 
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that fixed exchange policy implemented in Argentina in the 1990s reduced the rate of 

inflation, improved the efficiency of privatization, reduced unemployment and 

increased GDP in Argentia during the period. Domac and Soledad (2000) argue that a 

fixed exchange regime minimizes the possibility of a banking crisis in developed 

countries. Calvo and Mishkin (2003) argue that strong institutions are the best 

mechanism to achieve macroeconomic success than any exchange rate regime. Jackson 

and Miles (2008) found that institutional quality and exchange rates reduce the rate of 

inflation. 

2.10 The exchange rate policy in Oil exporting countries 

Many of the OPEC countries derive their revenue from oil production; to sustain this 

revenue, many of these countries have obligations to minimize the cost of production. 

Consequently, the choice of exchange rate regime is crucial to both oil importing and oil 

exporting nations because the selection of the appropriate exchange rate regime could 

guarantee oil price stability and macroeconomic stabilities.39 Keeping the exchange rate 

stable, the governments of many of these countries have played various significant roles 

in the establishment of oil reserves and controlling foreign transactions. In particular, 

many of the oil importing and oil exporting countries have been avoiding operating 

flexible exchange rates and focus on fixed exchange rates because of the vulnerability 

of the global oil price.40 For example, in 1973, Iraq and Libya pegged their currencies to 

the US dollar. In 1975, the Kuwait central bank adopted an exchange rate policy pegging 

the Kuwait dinar to the average weight of currencies of its major suppliers (i.e., United 

States, Europe and Japan).41 Since 1975, Qatar, Saudi Arabia and the United Arab 

Emirates have pegged their exchange rate to the SDR (Special Drawing Rights) to boost 

                                                           
39 One country’s export is another country’s import. Increase in oil price of an exporting country will 
affect the price level of oil importing nation. 
40 The condition is that, exchange rates are influenced by supply and demand of goods and services 
through the import and export. If the price of oil reduces in the international market, the export and the 
revenue of oil exporting countries may be reduced to devalue currency of the oil exporting nations 
against value of the currency of oil importing countries. On the other hand, if the price of oil increase in 
international market, the revenue of oil exporting countries will be increased to increase the value of 
the currency of the oil exporting countries and decrease the value of the oil importing country’s 
currency.  
41 The process is called international currency basket - the value of Kuwait currency was used to set the 
market value of other countries. In this case, the value of the Kuwait currency was used to construct a 
currency basket of 40% Euro, 25% British pounds and 35% of the US dollars. The currency basket is a 
mutual  way used to peg a currency without overexposing it to the fluctuations of a single currency. 
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the confidence and stability of their local currency. Ecuador and Gabon pegged their 

currencies to the US Dollar and French franc, respectively (see Amuzegar, 1983). The list 

of BRICS and OPEC countries with fixed exchange rates and the year of adoptions are 

stated below:  

Table 2.2 OPEC countries with fixed exchange rate 

Country The Pagged 

Currency 

Domestic 

currency 

Date 

Brazil US dollar Brazilian Real 1967 to 1990 

Ecuador Us dollar Abandon its local 

currency 

Dollarization  since 2000 to 

present 

Libya US dollar Dinar 1973-1986 

Saudi Arabia US dollar Riyal 2003 to present 

Venezuela US dollar Bolivar 2013 to present 

Qatar  US dollar Riyal 2001 to present 

United Arab 

Emirates 

 US dolar Dirham 1997 to present  

Kuwaiti  US dollar Dinar 2003 till 2007 and later replaced 

with basket currency  
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2.11  Central Bank and Fiscal Policy  

Fiscal policy involves the use of budget and taxation by governments to stabilise the 

economy and allocate resources. A budget reflects government planned expenditure in 

a period and a source of the revenue that will be used to finance the budget. The Budget 

can be classified into three categories: surplus, deficits and a balanced budget. When 

the government is running a budget deficit; it means that total government expenditure 

exceeds its income for a particular period. On the other hand, a budget surplus occurs 

when all taxes and other government revenues exceed government expenditures. The 

balanced budget equates the cost and revenue together. Traditionally, when a 

government is experiencing a budget deficit, the central bank will either print money or 

borrow from the public to pay the debt and finance government activities. However, the 

printing of excess money by central banks could cause inflation and have a direct 

consequence on economic growth. To avoid this economic consequence, the 

government could use fiscal policy to regulate the economy. The fiscal policy uses tax to 

mobilise savings, promote investment and reduce income inequality. For example, if the 

economic system is threatened with higher inflation; the government may decide to 

increase income tax, reduce expenditure and reduce the money supply. In this regard, 

personal income will be reduced, and individual expenditure will also reduce and 

decrease the aggregate demand for goods and services. However, the direct use of the 

tax to regulate inflation in developing countries may not be efficient; because it is 

generally accepted that the developing countries have less efficient tax collection, 

limited access to external borrowing and political instability (Catao and Terrones, 2005). 

Tariq et al. (2014) documented that the costs of imposing a tax in many developing 

countries are high and its effects may harm the living standards and purchasing power 

of the society. 

Furthermore, the relationship between the tax increase and inflation are subject 

to an academic debate. Researchers have not provided reliable statistical evidence that 

supports the positive relationship between tax and inflation. For example, recent studies 

show a positive relationship between the fiscal deficit and inflation in developing 

countries (Domac and Yucel 2004; Catao and Terrones, 2005; Chukwu, 2013; Tariq et al. 

2014). While Haan and Zelhorst (1990) do not provide support for the hypothesis that 

deficits influence money growth but give evidence of a positive relationship between 
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budget deficits and inflation during high inflation periods. Lin and Chu, (2013) added 

that the fiscal deficit is strongly related to inflation in high inflation economies and a 

weak impact on inflation in low inflation economies. Komulainen and Pirttila (2002) 

show that fiscal deficits increased inflation. While John, 1998; Tekin-Koru and Ozmen, 

2003 argue that there was no evidence of a direct relationship between inflation and 

the budget deficit.     

 2.12 Interest rates and monetary regulation in OPEC countries 

Monetary policy affects economic activities by providing liquidity and credit to the 

domestic market. The decision to regulate money and inject credit into the economy 

depends on government initiatives. Governments inject money through public 

expenditure under the exclusive control of the central bank. In most cases, Central bank 

uses the interest rate, money supply and the minimum reserve ratio to control inflation. 

However, the use of the interest rate to control inflation is limited in OPEC countries and 

most of the oil exporting nations. This is due to reasons of religion, social beliefs, the 

usury activities of financial institutions and the sovereignty of many of these countries 

that independently regulate their financial institutions.  In many of these countries, 

religious beliefs are against financial institutions charging interest and when interest 

rates are charged, they were charged at unreasonably high price to encourage saving. 

For instance, Islamic law forbids the use of interest as an instrument of monetary policy 

in Saudi Arabia. In Nigeria, interest rates have not played a significant role in monetary 

policy due to low incomes. Instead, they use credit control of private firms, statutory 

reserve requirements and moral suasion as alternative methods to control inflation and 

regulate monetary policy. For example, in early 1970 before the rise in the price of oil, 

the annual growth rates in money supply in most of the oil exporting countries were low 

and estimated at 20% (see: Amuzega, 1983  pg. 49). Following the rise in the oil price; 

most of the oil exporting countries experienced a rapid increase in domestic liquidity as 

a result of government expansion in expenditure into the private sectors and the 

establishment of development banking institutions (see: Amuzega, 1983  pg. 49). 

Similarly, Algeria established a Development Bank to finance private company 

investment and supervised the operation of many of the private companies. Iraq created 

several credit institutions to give loans to private institutions at very low-interest rates. 
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Nigeria and Venezuela established financial institutions and channelled their credit 

resources into the agriculture and industrial sectors.42  

 

2.13. Chapter summary  

In this chapter, we have discussed the various theoretical models that are commonly 

used to model and forecast inflation and considers the policies implemented by the 

central bank to control inflation for BRICS and OPEC countries. This chapter 

demonstrates that most of the policies implemented by the central bank to regulate 

inflation focus more on the interest rate (for example, via Inflation targeting and Taylor 

rules as well as through the exchange rate). According to the Taylor rule, the central 

bank assumes inflation and the interest rate are directly related, especially in the short 

term. When inflation is above the target rate, the central bank will increase the interest 

rate to reduce inflation and, if inflation is below the target rate, the central bank will 

decrease the interest rate to raise the rate of inflation (Taylor 2008).  For the exchange 

rate, the government may allow the value of the domestic currency to be fixed at the 

value of a selected foreign currency to control inflation. In particular, if the government 

experiences a balance of payments deficit the central bank may be tempted to reduce 

capital outflows to improve the balance of payments. In this case, the central bank may 

decide to increase the interest rate to technically increase the cost of borrowing to 

discourage people from borrowing and decrease consumer spending. However, the use 

of the interest rate to control inflation is limited in OPEC countries and most of the oil 

exporting nations. This is due to reasons of religion, social beliefs, the usury activities of 

financial institutions and the sovereignty of many of these countries that independently 

regulate their financial institutions. Instead, central bank use credit control of private 

firms, statutory reserve requirements and moral suasion as alternative methods to 

control inflation and regulate monetary policy. The main conclusion of this chapter is 

that the injection of liquidity into the private sector and direct price control remain the 

most effective monetary policies to control inflation in many developing countries that 

include OPEC countries. 

                                                           
42 In summary, injection of liquidity in to private sector and direct price control remain the most 

effective monetary policies to control inflation in many OPEC countries. 
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CHAPTER 3 

EMPIRICAL LITERATURE REVIEW  

3.0 Introduction  

 

This chapter is divided into two sections. The first section discusses the various factors 

that have been considered as determinants of inflation for both developed and 

developing countries. While the second section analyses the empirical literature on 

inflation forecasting models. This literature suggests a growing consensus that economic 

relationships change in different inflation environments. The factors that determine 

inflation in developed countries may be different from the factors that determine 

inflation in developing countries (that have different economic environments to 

developed nations). For instance, inflation in many developing countries is high and 

mostly caused by the external influence of import prices, the foreign interest rate and 

the exchange rate (Frisch 1977, Dhakal and Kandil 1993, Boujelbene and Thouraya 2010 

Ciccarelli and Mojon, 2010). While money growth, financial assets and interest rate 

determine the rate of inflation in developed countries (Tillmann, 2008 Cologni and 

Manera, 2008).43 Further, oil shocks have direct influences on inflation for both 

developed and developing countries. For example, oil price shocks affect import prices 

through international trade, exchange rates, production cost, and an increase or 

decrease in government expenditure (Bloch et al.2006a, LeBlance and Chinn, 2004, 

Aljebrin 2006 and Mandal et al.2012). Empirical literature on inflation forecasting 

suggests the following: (i) theoretical model most especially Phillips curve, are more 

accurate to forecast inflation when the economy is weak most especially during the 

economic crises when compared with the univariate ARIMA model (Pretorious and 

Rensburg 1996, Dotsey et al. 2011 and Buelens, 2012). (ii) ARIMA models outperform 

other multivariate models (Phillips curve and VAR) during periods of stable and low 

inflation (Pretorious and Rensburg,1996; Mitra and Rashed, 1996; Nadal – De Simone, 

                                                           
43 This section is important to our study because BRICS and OPEC countries have mixed characteristics of 
both developed and developing economies and we believe knowing various factors that determine 
inflation in different economic enviroments will improve our models’ forecasting performance. 
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2000 and Dotsey et al. 2011). (iii) When comparing the forecast performance of three 

and five quarters ahead, the VAR and VECM specifications perform better than the naïve 

model (Onder, 2004). When comparing VAR models with VEC models, the VEC models 

outperform the VAR models over the longer horizon (Fanchon and Wendel, 1999). (iv) 

The model that account for stochastic volatility and time varying coefficients (e.g 

Markov switching models, Dynamic stochastic general equilibrium modelling, Self-

exciting TAR models) provide more accurate forecast than those models that do not 

(D’Agostino et al. (2013), Barnett et al. (2014), Bel and Paap, (2016), Cross and Poon 

(2016) and Mandalinci, (2017)). (Vi) The literature also reveals that the forecast 

combination by means of several weights leads to a reduction in forecast error 

compared to an individual model (Bjornland et al.2008 and Ogunc et al.2013). 

 

3.1. The empirical literature on determinants of inflation for developed 

and developing countries  

Over the years, different policies that include targeting inflation, fiscal policy and pegged 

exchange rate have been implemented to regulate inflation in both developed and 

developing countries. Many of these policies have been effective to control inflation in 

many countries at different periods.44 In contrast, many of these policies may not be 

effective to control inflation for developing countries that have a history of high 

inflation. As a result, it is important for policymakers to know the sources of inflation in 

many of these countries to address the reasons why many of these policies have not 

been effective to regulate inflation.  

  

                                                           
44 Rio de Janeiro (2006) studies the Brazilian experience with inflation targeting between 1999 and 2006. 

The evidence revealed that inflation targeting policy was successful in reducing inflation in Brazil. Domac 

and Soledad (2000) argue that a fixed exchange regime reduces the possibility of a banking crisis in 

developing countries, while Levy-Yeyati (2002) found evidence that countries with more flexible 

exchange rate regimes tend to grow faster. 
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3.2 Literature Review on determinants of inflation   

Over the past few decades, different studies have investigated the determinants of 

inflation across countries. The variables that are reportedly taken by researchers to be 

the determinants of inflation in many of these countries include: depreciation of the 

exchange rate, import inflation, government borrowing, money supply, interest rate, 

output gap, wages, crude oil price, fiscal deficit and Gross domestic product (GDP). Kia 

(2006) classified many of these variables into two factors: internal and external factors. 

The external factors are activities from other countries that cause inflation to increase. 

These factors include: the foreign interest rate, import price, trade, economic sanctions 

and war.  The internal factors are activities within the economic system that causes 

inflation to increase or factors that shift the aggregate demand curve toward the right 

side.45 For example: the nominal exchange rate, money supply, deficits, and debt 

financing.  

Similarly, inflation determinants can also be classified under two categories: Monetarist 

and Structuralist (Adu George and Marbuah 2011 and Tavakkoli 1996). Monetarists 

associated inflation to the monetary causes and suggested monetary measures to 

control it.  The dominant view is that money supply is exogenous and can only be 

controlled by the monetary authority, and the demand for money. In contrast, 

structuralists assume that monetary factors are not the only factors that cause inflation 

or control it. They pointed out that most measures put forward by the monetarists to 

control inflation can only be effective in the short run or offer temporary relief but 

increase the inflationary pressures in the long run.  The structuralist recognised the 

importance of political wills such as tax reforms and drastic cuts in fiscal expenditure 

when combating inflation. Consequently, structural factors tend to be treated as a short-

run phenomenon and their effects are closely linked to the cost push inflation (See 

Parkin, 1991 pg 9). Empirical literature highlighted that increases in the cost of 

production increase the rate of inflation (Gali et al. (2001), LeBlanc and Chinn (2004), 

Primiceri (2005), Sims and Zha (2006), and Canova, et al. (2007)). For instance, Gali et al. 

(2001) examined the impact of marginal cost, labour productivity and real wages on 

inflation in UK, Australia, U.S and other OECD countries between 1970:1 – 1998:1. The 

                                                           
45 This type of inflation is also known as demand pull inflation 
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evidence revealed that an increase in real wages generated from union pressures placed 

consistent upward pressure on real marginal cost to increase inflation in all considered 

countries. Similarly, Wachter’s (1979) result showed that increases in the cost of 

agricultural inputs increased the rate of inflation in South American.  

According to monetarist theory, money supply is positively linked with inflation. The 

empirical studies that are consistent with this theory include: Bairam (1990), Ghura 

(1995), Boschi and Girardi (2007), Bonato (2007), Mosayeb and Mohammad (2009), 

Korhonen and Mehrotra (2010), Oladipo et al. (2013). For instance, Ghura (1995) stated 

that an increase in the money stock increases inflation most especially in the long run. 

That is; a one percent increases in the money stock causes inflation to increase by 0.8 

percent in 33 sub-Saharan African countries between the period of 1970 – 1987. 

Similarly, Bairam (1990) affirms that one percentage point increases in the growth of 

domestic money supply leads to a 0.20 point increase in domestic inflation in the UK, 

0.24 points in Canada and 0.41 points the US.  Luca (2005) and Makin (2017) reveal that 

the relationship between money supply and inflation varies over time. In particular, the 

rate at which money growth influences inflation during the period of high inflation is 

different from the period of low inflation or during the period of stable inflation. For 

example, Luca (2005) shows that correlation between inflation and money growth is 

weak during the of low inflation of the 1990s (inflation targeting period in the UK) when 

compared with the period of high inflation in 1970s.  This finding is supported by Makin 

et al.  (2017) who found the same relationship between money growth and inflation in 

Australia during the period of the target and non-targeting inflation.46 In summary, the 

conclusion of many of these studies is that money supply determines the rate of inflation 

in both high inflation and low inflation period. However, the rate at which money supply 

affects inflation varies, the influence of the money supply on inflation during the period 

of high inflation is greater than the influence of money supply on inflation during the 

period of low inflation.   

 

                                                           
46   Makin et. al.  (2017) document that excess money is the main determinant of the inflation in 

Australia's, although excess money growth became less important during the inflation targeting era. 

 



49 
 

Regarding interest rates, there is a strong relationship between inflation and interest 

rates and monetarists often use interest rates to control inflation. For instance, they 

increase the interest rate to reduce inflation and decrease the interest rate to increase 

inflation. Empirically, the relationship between interest rate and inflation has been 

frequently explored by the Fisher’s hypothesis via cointegration. That is, there is a long-

run relationship between the nominal interest rate and expected inflation. The nominal 

interest rate consists of the real rate plus an expected inflation rate. According to the 

Fisher’s hypothesis, the real rate is constant over time; therefore, the nominal rate must 

change – point-for- point when expected inflation increase or decrease.47 Different 

empirical studies have provided support for the Fisher’s hypothesis (see Fama 1975., 

Fama and Schwert 1977., Granville and Mallick, 2004., Gul and Acikalin,2007., Taker 

et.al.2012 and Ozean and Ari ,2015). This implies interest rate has a direct influence on 

inflation.  In contrast, few studies have argued against the Fisher hypothesis theory (see 

Ghazali and Ramlee,2003., Bhanumurthy and Agarwal 2003., Abubakar and Sivagnanam 

(2017)). From those studies that have argued against the theory, there is a consensus 

that the rejections of the Fisher hypothesis were mainly due to econometric issues and 

the conduct of the monetary policies.  For instance, most of the previous studies do not 

account for heteroskedasticity and structural breaks to justify their conclusion. 

Considering the impact of the oil price on inflation, it is widely accepted that raising the 

oil price increases the rate of inflation (Shioji and Uchino 2010, Shahiden et al. 2012).  

Accordingly, if the oil price increases by 10% inflation will increases by 0.4% on average 

(see: Zahid Ali and Anwar 2013). LeBlanc and Chinn (2004) examine the effect of oil price 

changes on inflation in the United States, United Kingdom, France, Germany and Japan 

using an augmented Phillips curve model for the period of 1980:q1 – 2001:q4. The 

evidence reveals that increases in the oil price increase inflation moderately in all 

countries. In other words, a 10% increase in the oil price leads to 0.1-0.8 % rise in 

inflation in the United States and other countries. Alvarez et al. (2010) reveal that the 

direct impact of oil prices on inflation depends on several factors and varies in different 

countries. For instance, the effect of oil price shocks on Spanish inflation is found to be 

                                                           
47 The constant interest rate mean that the interest rate must be independent of changes in inflation 

and monetary shocks at any given time., i.e. neutrality of monetary policy and independent of central 

bank.  



50 
 

higher than other European countries. Oil price changes account for more than 50% of 

the variance of Spanish inflation and 45% of the variance in other European countries. 

Similarly, Barrell et al. (2011) argue that effects of oil price on inflation depend on the 

country’s relative position in the oil market, i.e. whether the country is a net-importer 

or net-exporter of oil. The condition is that if one country is exporting another country 

will be importing.  Therefore, increase in the oil price of an exporting country will affect 

the price level of oil importing nation because all related production costs of oil 

exporting countries will directly increase, leading to high cost of living and high inflation 

in oil importing countries. 

A few studies also show that an increase in oil prices have a weak effect on 

macroeconomic variables, most especially inflation, and its impact has been 

deteriorating relative to the past for most economies. For instance, Hooker (2002) found 

that oil price affects the US economy and the effect of the oil price has been gradually 

reducing since the early 1980s. Whilst Chen (2009) obtained similar results for 19 

industrialized countries between the period of 1970:q1 -2006:q4. Chen’s empirical 

results reveal that the effect of the oil price on inflation declines through time for most 

of the countries studied. That is; the impact of the oil price in increasing inflation in the 

2000s was weaker than impact in the 1970s. He argues that the appreciation of the 

domestic currency; active monetary policies and a higher degree of trade openness are 

the major causes of the decline in the effect of oil price on inflation in the 2000s. The 

conclusion is similar to the study of Mohanty and John (2014) when examining the 

determinants of inflation in developing countries (India) between the period of 1996 – 

2013.  The results show that oil price shocks have a strong influence on inflation during 

2009 -2011 and that the influence was moderated in 2012 -2013 when inflation is 

relatively stable.  They conclude that inflation dynamics in India have changed over time 

with various determinants showing significant time variation in recent years, particularly 

after the global financial crisis. The main conclusion from this section is that the oil price 

has a direct relationship with inflation, where an increase in the oil price increases 

inflation in both developed and developing countries (LeBlanc and Chinn,2004., and 

Zahid Ali and Anwar 2013). However, the impact of oil prices on inflation has weakened 

over time.  The impact of the oil prices on inflation is relatively small between the period 

of the 1980s and 1990s than they were in the 1960s and 1970s (Hooker, 2002, Chen 
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2009, and   Mohanty and John, 2014).  The reason for the lower inflation in recent years 

may be because of the higher energy efficiency of production processes and good 

conduct of monetary policies that have been implemented by policymakers.  

3.3 Literature Review on the Performance of inflation forecasting 

Most of the empirical literature found that theoretical models are more accurate in 

forecasting when the economy is weak, most especially during periods of economic 

crises, when compared with ARIMA, naïve and VAR models (Onder, 2004; Dotsey et al. 

2011 and Buelens(2012). For example, Onder (2004) used quarterly data between 

1987:q1 and 1999:q4 to forecast Turkish inflation with the Phillips curve, ARIMA, Vector 

Autoregression (VAR), VECM and Naive models. The evidence revealed that the Phillips 

curve model outperformed the other models for one-quarter ahead forecasts and the 

prediction of the 2001 financial crisis. Similarly, Dotsey et al. (2011) compared the 

predictive performance of the Phillips curve model, an integrated moving average IMA 

(1, 1) specification and a naïve model in the United States for the period of 1975 - 2010. 

The evidence suggests that the Phillips curve is more accurate to forecast when the 

economy is weak and less accurate when the economy is stable.  This result is similar to 

the study of Pretorious and Rensburg (1996)  who forecast South African inflation and 

compared the forecasting abilities of different theoretical models (Phillips curve model, 

Traditional monetarist and money demand specifications) with time series model 

(ARIMA) for the period of 1991:q1 - 1995:q3. The estimation period was divided into 

two different samples to reflect periods of stable inflation and higher inflation. The study 

found that during periods of higher inflation, the forecast produced by the money 

demand, Phillips curve and Traditional monetarist forecast models generated the lowest 

RMSE and MAE when compared to the ARIMA model.  Fisher et al. (2002) examine the 

predictive performance of the Phillips curve with the naïve model for the different 

sample periods of 1977-84, 1985-1992, 1993-2000 and 1977-2000. These samples 

described different periods of monetary policy in the United States such as: a high 

inflation volatility period, the general period of economic turbulence associated with a 

new monetary policy regime, a period of stable monetary policy and the whole sample 

period respectively. Evidence reveals that Phillips curve models produced better 

inflation forecast than the naïve model during the period of higher inflation volatilities 

(1977-1984). However, different studies have argued against theoretical models most 
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especially the Phillips curve when forecasting inflation. The most famous critics of the 

Phillips curve are Atkeson and Ohanian (2001) who claimed that for the last 15 years, 

policymakers had not produced a version of the Philips curve that produced a better 

inflation forecast than the naïve model. Atkeson and Ohanian argued that economic 

theory might not predict a stable relationship between current unemployment and 

future inflation because the historical data changes as a result of changes in the 

economic environment.48 Fischer et al. (2002), Sims (2002), Orphanides and Van Norden 

(2005) and Stock and Watson (2007) also confirm Atkeson and Ohanian’ findings. They 

added that the result of Atkeson and Ohanian depends on the sample period and the 

forecast horizons. In particular, the Phillips curve forecasts are episodic: there are times, 

such as the late 1990s, when the Phillips curve forecasts improved upon using univariate 

forecasts, but there are other times (such as the mid-1990s) when a forecaster would 

have been better off using a univariate model to forecast. This result is similar to the 

findings of Fisher, Liu, and Zhou (2002) who suggest that Phillips curve forecasts do 

relatively poorly in periods of low inflation and after a regime shift. In contrast, this 

conclusion has been challenged by Sim and Zha (2006) who argued that most of the 

previous studies that revealed the poor performance of the Phillips curve over the 

period of low inflation did not account for heteroskedasticity and failure not to account 

for heteroskedasticity can strongly statistical bias tests in favour of finding significant 

shifts in the coefficients.49 Similarly, Stock and Watson (2007)  argued that what have 

changed in the inflation modelling process led to the poor performance of the Phillips 

curve during the period of low inflation. For instance, there have been substantial 

changes in the spectra of inflation which led to the apparent changes in the forecast 

produced by the Phillips curve. Similarly, Giannone (2008) attributed the poor 

performance of the Phillips curve to changes in the multivariate covariance of the data.  

                                                           
48 Atkeson and Ohanian (2001) asked whether the Phillips curves capture the stable relationship 

between unemployment y and future inflation. Atkeson and Ohanian, compared the accuracy of 

different specification of the Phillips curve (textbook NAIRU Phillips curve, unemployment rate and 

other measure of economic activates) at a one-year forecast horizon to a naive model that makes a 

simple prediction: at any date, the inflation rate over the next 12 months will be equal to inflation over 

the previous 12 months between 1984 - 1999. The result revealed that the forecasts from the all Phillips 

curve were considerably less accurate than those from the naive models.   

49 Heteroskedasticity occurs when the variance of the error terms differs across observations 
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 In summary, there has been mixed evidence on the accuracy of forecasts from the 

Phillips curve in different inflation environments. For instance, many of the empirical 

literatures agree that Phillips curve is more accurate in forecasting inflation when the 

economy is weak, most especially during periods of the economic crises, when 

compared with ARIMA, naïve and VAR models (Pretorious and Rensburg, 1996.,  Fisher 

et al. 2002., Onder, 2004., Dotsey et al. 2011., and Buelens,2012). In contrast, the Phillips 

curve performs poorly during periods of stable inflation (Fisher et. al. 2002). Literatures 

also suggest that when Phillips curve does not account for major econometric problems 

(e.g heteroskedasticity and changes in covariance) the forecast produced by the Phillips 

curve is less accurate when compared with naïve and other model (Sim and Zha,2006., 

Stock and Watson, 2007, and Giannone, 2008).  

For the univariate ARIMA model, the model performs better than alternative models 

(Naive model and multivariate VAR models) during periods of low and stable inflation. 

For example, Mitra and Rashed (1996) forecast Canadian inflation for one and four 

quarters ahead and compared the predictive performance of VAR, ARIMA and Static 

expectation models between 1972:q1 and 1986:q4. The series were divided into 

different samples to reflect different periods of stable inflation and higher inflation. The 

evidence revealed that the ARIMA model performed better than the other two models 

during the period of stable inflation for one- quarter ahead forecasts. For the period of 

higher inflation and four-quarter ahead forecasts, the VAR model performed better than 

the ARIMA and Static model. Similarly, Lee (2012) compares the predictive performance 

of the ARIMA model, Phillips curve and naïve model for twenty-six countries that had 

adopted a policy of inflation targeting since 1990. The period before the adoption of the 

policy and the period after the inflation targeting policy were considered. The results 

specified that inflation forecasts generated by the ARIMA model performed better than 

inflation forecasts generated by the naïve and Phillips curve models for most countries, 

especially for the period following the adoption of the inflation targeting policy. The 

main conclusion from this section is that the univariate ARIMA model produces a better 

forecast in a period of low inflation volatility than a period of high inflation volatility.  
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 A few studies also found that Multivariate VAR models produce a better forecast than 

alternative models over the long horizon (Fanchon and Wendel 1992., Fritzer et al. 

2002., Onder 2004., Canova 2007). Canova (2007), argued that when the forecast length 

increases the VAR models improved their forecast performance compared to the 

univariate ARIMA model.  For example, Fritzer et al. (2002) used ARIMA and VAR models 

to predict Austrian inflation between 1987:q1 and 2001: q1. The results indicate that 

the VAR model outperformed the univariate ARIMA specifications over a longer 

forecasting horizon. Similarly, Fanchon and Wendel (1992) specified different 

multivariate VAR models (Vector error correction (VEC), VAR and Bayesian VAR models) 

to forecast cattle prices between the period of 1970 and 1989. The (VEC) model 

differenced the data to achieve stationary and used an error correction term to model 

the long-run information. The performance of all the estimated models were compared. 

The evidence revealed that the VAR model generated the lowest mean square error for 

the 58 - month horizon forecast. The VEC model outperformed the VAR model for 13 

and 11-month horizons. The VAR and VEC models outperformed the Bayesian VAR 

models. They concluded that the predictive performance of VAR and VEC models 

depend on the length of the forecast horizon. 

We now discuss the relative forecasting performance of the survey forecasts.  The 

survey forecast can be described as a forecast view of different professional forecasters 

on major macroeconomic variables. The forecasters are asked to give projections on 

each variable over various time horizons. According to Sill (2014), they consisted of 40 

to 100 professionals who regularly forecast inflation. Each participant uses their 

experience to predict quarterly values of major macroeconomic variables for up to five 

quarters, including the current quarter, and annual projections up to three years ahead. 

Examples of these type of forecasts include the Federal Reserve Board’s Greenbook, 

Data Resource, the Michigan Survey of Consumer Sentiment, the Philadelphia Fed’s 

Livingston Survey, and Blue Chip Survey Professional forecaster. Empirically, there is 

growing evidence that survey forecasts are among the most accurate forecasts of 

inflation.  The survey forecast performs better than the structural models, ARIMA 

models and  Phillips curve (Sims, 2002., Ang et al.2007., Moreno and Gracia, 2012., and 

Faust and Wright, 2013). For example, Ang et al. (2007) examine three inflation 

expectation surveys: the Livingston survey, the Survey of Professional Forecasters (SPF), 
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and the Michigan survey. These are compared with the ARIMA model, the Phillips curve, 

a structural model (that includes linear, non-linear and an arbitrage-free specification) 

for post 1985 and post 1995 samples. The results indicate that the survey forecast 

always performs better than the term structure model, ARIMA model, Phillips curve, and 

the combined forecast. Similarly, Caralho and Minella (2012) compare the survey 

forecast with the ARIMA, VAR and BVAR models in Brazil between the period of 1994-

2008.  Evidence revealed that the survey forecast produces better forecasts than the 

ARIMA, VAR and BVAR models in all estimated periods. This study suggests that survey 

forecasts are using more quality information than alternative estimate. Stock and 

Watson (2009) added that the relatively good performance of the survey forecasts might 

be due to the ability of professional forecasters to recognize structural change more 

quickly than automated regression-based forecasts.  Giacomini (2015) also  documents 

that survey forecasts perform better than other forecasting models and its forecast has 

ability to capture information about the current state of the economy. However, some 

literature that include Thomas (1999), Mehra (2002) and Samuelson (2009) have 

documented that survey forecasts are biased and exaggerated. Accordingly, in low 

inflation period, the surveys inflation forecasts are under-predicted and at high levels of 

inflation the surveys forecasts are over-predicted inflation. Mehra (2002) argued that 

survey forecasts are not efficient because their projections did not account for past 

information in making their predictions.50 The conclusion from this section is that the 

survey forecasts improved over time when comapared with other forecasting models 

(such as: structure models,multivariate VAR models, ARIMA models and  Phillips curve).  

The survey forecasts have a higher accuracy than those based on alternative models. 

One possibility is that the survey forecast generated information from different sources 

that are captured by a single model (Ang. al. at 2007). However, forecasts produced by 

this method may be easily undermined by the over predcition (during periods high 

inflation) and under prediction (during periods of low inflation). 

An alternative forecast, so far unmentioned is the time series models that allow for time 

- varying coefficients and volatilities. This type of model has ability to capture the effects 

of parameter changes and predict the erratic components of inflation. The model can 

                                                           
50 Due to these disagreements, we do not include survey forcast in our research.  
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exist in the inform of univariate, multivariate and nonlinear models to build upon a 

modern dynamic macroeconomic theory that emphasizes the current state of the 

economy and the role of expectation (Del Negro and Schorfheide, 2012).  Also  focus on 

describing the transformation of macroeconomic dynamics or changes in the monetary 

policy. For example, the Markov switching model is motivated by a regime-switching 

process, in which inflation shifts from a low regime to high inflation and vice versa. 

Similarly, the smooth threshold model describes the switching process between two 

distinct regimes that smoothly move from one regime to another rather than the 

threshold autoregressive model that suddenly from one regime to another. The 

empiricial literature on macroeconomic forecasts that incorporate the time-varying 

regime shift include: Bradley and Jansen (2004), Sims and Zha (2006), Ang et al. (2007), 

Groen and Mumtaz (2008), Yuan, (2011).,Barnett et al.(2014) and  Hou, (2017).   For 

example, Sim and Zha (2006) argue that a model that incorporates regime switching 

dynamics has better forecasting performance for United States. Groen and Mumtaz 

(2008) and Barnett et al.(2014) provide a similar result for the United Kingdom, and 

show that a regime switching model is useful for describing the change in inflation 

persistence. For instance, Barnett et. al (2014) used quarterly data between 1976: q1 - 

2007: q4 to forecast UK inflation with different regime switching models (Threshold and 

smooth transition VARs, regime switching VAR, Time- varying VAR, Time-varying factor 

augmented VAR and unobserved component model with stochastic volatility) and 

Autoregressive model (AR). The study found that all the regime shift models generated 

the lowest RMSE when compared to the AR model.  Bradley and Jansen (2004) 

compared the forecasting performance of stock returns and industrial production in the 

United States using linear (ARIMA model) and nonlinear models’ logistic smooth 

transition autoregressive (LSTAR) between January 1934 to October 2002. The result 

shows the superiority of the nonlinear models (LSTAR) against linear ARIMA model to 

forecast industrial production. Montgomery et al (1998) compared the forecasting 

performance of unemployment rate in the United States using linear (seasonal ARIMA 

model and bivariate VAR) and nonlinear models (Threshold autoregressive model and 

Markov switching autoregressive model) as well as combined forecast method using a 

quarterly data between 1948 and 1993. This period covered the period higher and lower 

unemployment rate. The study reveals that MSA and TAR model outperform seasonal 

ARIMA during the rapid increase and decline in unemployment in early 1980. This 
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conclusion also similar to the recent study of (Gupta et al. 2013, 2015 and Diebold et al. 

2017) who estimate a Dynamic stochastic general equilibrium (DSGE) models that 

account for expectation and regular structural changes in many developed and emerging 

market economies.  DSGE is widely used by the central bank to forecast inflation and 

analyse relevant economic issues. According to Tovar (2008), DSGE model can identify 

sources of fluctuation, predict the effect of policy changes and answer question about 

structural changes as well as establishes a link between structural features of the 

economy and reduced form parameters, something that was not always possible with 

large scale macroeconomic variables. Empirically, Gupta et al. (2015) estimate DSGE and 

AR model for South Africa economies using a sample period between 1971q2 to 1999q4 

and generate a recursive forecast for inflation over 2000q1 to 2011q4. The study shows 

that the DSGE model performs better than the AR model during the estimated period. 

The study of Alpanda et al. (2011) also indicate that DSGE-based inflation forecasts 

generated the lowest forecast errors compared to forecasts obtained from BVAR and 

VAR models. Diebold et al. (2017) estimated DSGE models with and without stochastic 

volatility between 1962:q2 to 2011:q1. The DSGE model that estimated with stochastic-

volatility produces superior forecast than the DSGE estimated without stochastic 

volatility versions during the estimated period. The conclusion from this section is that 

a model that accounts for regime shifts or time varying coefficients provide accurate 

forecast than those models that do not (D’Agostino et al. (2013)., Barnett et al. (2014), 

Bel and Paap, 2016), Cross and Poon (2016) and Mandalinci, (2017)). 

 

A few studies focus exclusively on combined forecasts. A forecast combination is the 

combination of two or more individual forecasts to produce a single prediction. The 

empirical success of this model has been demonstrated in a variety of studies during the 

last decades (see: Stock and Watson (1999, 2003)., Clark and McCracken (2006)., Canova 

(2007)., Ang, et al. (2007)., Samuelson (2009)., Altavilla and DeGrauw (2010)., Taylor 

(2010) and Baumeister and Kilian (2015)).  The major conclusion from all these studies 

is that combined forecasts can produce more accurate forecast than individual 

forecasting models. For example, Garcia et al. (2017) compare the combined forecast 

model with a Bayesian VAR model in a higher inflation country (Brazil) using monthly 

data between January 2003 to December 2015. The results show that that the combined 

forecast produces the best forecasts in the higher inflation environment when 
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compared with the alternative Bayesian VAR model. Similarly,  Stock and Watson (2003) 

show that the combined forecast of aggregate indices of many real activity variables 

produces better inflation forecasting than individual variables. Samuelson (2009) 

documents that combined forecasts have a long history of success in an economic 

application and are less likely to be influenced by structural breaks.  The conclusion from 

this section is that forecasts produce by the combined methods are better than those 

based on alternative models in the presence of model uncertainty (Samuelson, 2009 and 

Li and Chen, 2014). 
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3.4 The chapter summary and conclusion  

The empirical literature on the determinants of inflation and forecasting inflation can be 

grouped into studies that investigate developed and developing economies. Developed 

economies have well-established institutions that are committed to low inflation. In 

contrast, developing economies are known for higher inflation, unstable 

macroeconomic environments and depend heavily on exporting capital (Catao and 

Terrones, (2005), and Ghazanfar and Sevcik (2008).  In developing countries, inflation is 

mostly caused by the external influence of import prices, the foreign interest rate and 

the exchange rate (Frisch 1977, Dhakal and Kandil 1993, Boujelbene and Thouraya 

2010). Whereas, money growth, financial assets and interest rates determine the rate 

inflation in developed countries (Hendry 2001, Tillmann, 2008 Cologni and Manera, 

2008).  For instance, when firms borrow from financial institutions to pay for their 

production factors. The cost of the interest paid to the financial institution will be added 

to the production factors to increase inflation. Evidence also revealed that the 

correlation between money growth and inflation is stronger during periods of high 

inflation whereas the correlation between inflation and money growth is weaker during 

periods of stable inflation (Luca, 2005). Besides, there is a direct relationship between 

the oil price and inflation in both developed and developing countries (LeBlanc and 

Chinn, 2004 and Cavalcanti and Jalles 2013). For example, oil price shocks affect both 

the import price and export price through the exchange rate, to increase or decrease 

the cost of production (Nielsen and Bowdler, 2006 and Bloch et al.2006a). A large 

amount of the literature suggests that the effect of oil price shocks on macroeconomic 

variables varies considerably over time (see Burbidge and Harrison, 1984; Chen, 2009; 

Alvarez et al. 2010 and Mohanty and John, 2014). The impact of the oil price on inflation 

is typically higher during periods of economic crisis when compared to periods of 

economic stability. The impact of the oil shock on inflation is considerably lower in 

developed countries when compared to developing countries (Chen, 2009). This may be 

because of good financial institutions, active monetary policies, and a higher degree of 

trade openness in many developed countries, which may have helped to reduce the 

effect of  the oil shocks on inflation when comppared with developing countries.   

Regarding the empirical literature on inflation forecasting, many studies suggest the 

following conclusions: 
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(i), Phillips curve-based models are more accurate in forecasting when the economy is 

weak, most especially during periods of the economic crisis, when compared with 

ARIMA, naïve and VAR models (Onder, 2004; Dotsey et al. 2011 and Buelens 2012).  

(ii) During periods of low inflation, univariate ARIMA models outperform the 

multivariate VAR model (Pretorious and Rensburg,1996; Mitra and Rashed, 1996 and 

Alles and Hotton, 2000). 

 (iii) When the forecast length increases the VAR and VECM specifications exhibit 

improved forecast performance when compared to the Phillips curve, Naïve and ARIMA 

models (Fanchon and Wendel, 1992 and Onder, 2004).  

(iv) Literature also shows that there some gains (in term of forecasting performance) 

from allowing time variation in the model parameters and from exploiting a large 

information set. As a result, the model that accounts for stochastic volatility and time 

varying coefficients (e.g DSGE, Markov switching models and Threshold and smooth 

transition model) provide more accurate forecast than those models that do not 

(D’Agostino et al. (2013)., Barnett et al. (2014)., Bel and Paap, 2016)., Cross and Poon 

(2016) and Mandalinci, (2017)).  

(Vi) The survey forecasts improved over time when compared with an individual 

forecasting model (such as: structure models, multivariate VAR models,  ARIMA models 

and  Phillips curve).  One possible explanation is that the surveys extract information 

from different sources, not obtained by a single model or captured by other models. 

(VII) Evidence also reveals that the forecast combination using several weights leads to 

a reduction in forecast error compared to individual models (Bjornland et al.,2008 and 

Ogunc et al.2013). 
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CHAPTER 4  

FEATURES OF CONSUMER PRICE DATA AND ITS TRANSFORMATIONS 

4.0 Introduction 

In this chapter, we analyse the feature of the quarterly price data and its 

transformations to assess issues of seasonality, stationarity and structural breaks. 

Further, we outline the Box Jenkins ARIMA and ARIMAX methods of univariate 

modelling employed in this thesis (section 4.4). To identify the main features of the 

quarterly price, we consider various transformations of the natural logarithm of price 

data for each country to inform modelling and forecasting. The natural logarithm is used 

to linearize the exponential trend that is typically expected in price series. It is 

anticipated that the log of prices will need to be differenced to induce stationarity 

because in growing inflationary economies this series will not have a mean that is 

converging to a constant.51 However, the question is what type of differencing will be 

required. The two main issues that may need addressing are the potential presence of 

seasonality in the quarterly data and structural breaks. The presence of seasonality may 

mean that the standard quarterly (one period) difference may be insufficient to induce 

stationarity because of seasonal unit roots. Hence, an annual (four period) difference, 

or other seasonal filters, may be required. It is considered quite possible that an annual 

difference on its own (instead of a quarterly difference) will be sufficient to induce 

stationarity. However, the presence of structural breaks may mean that unit root tests 

indicate that the annual difference is nonstationary because, for example, a downward 

shift in the intercept (seasonal indices), coinciding with a move from high to low inflation 

eras, gives a non-constant mean across the whole sample period. Hence, we consider 

the inspection of sub-samples to determine whether the annual difference is constant 

around shifting means. If this is not the case it may be necessary to consider the 

quarterly difference of the annual differenced data, however, our prior belief is that this 

                                                           
51 In many developed countries that move from a relatively high inflation era in the 1970s and 1980s to a 
lower inflation era from the 1990s (with smooth transition) may appear like a damped trend that is 
converging to a constant mean rather than a split trend that simply predicts prices rising at a lower rate 
in the second era. In terms of unit root testing this split trend can give the inference that the log of 
prices are stationary. We reject any such inference upon the basis that the log of prices are intrinsically 
nonstationary and therefore focus our attention on what type of differencing is required to induce 
stationary. 
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will represent over-differencing of the data that may reduce our ability to effectively 

model and forecast the data. 

A further issue that we consider is the validity of the (quarterly or annual) difference of 

the log of prices as a valid approximation of inflation. This approximation is only valid 

for relatively small rates of inflation (perhaps below 30%). We therefore, compare these 

approximations to more accurate measures of inflation to determine whether we need 

to employ the more accurate measures for modelling and forecasting. 

Anticipating the graphical features of the data below we discuss the data with the 

following modelling strategies in mind. We do not use unit root tests that account for 

seasonality and structural breaks because the currently available tests allow for only one 

structural break and there is more than one structural break in the data for many 

countries. Instead, we consider using Box-Jenkins rules of thumb to identify the order of 

seasonal and non-seasonal differencing in an ARIMAX modelling framework that seeks 

to first model multiple structural shifts in the data and second models the residuals as 

an ARMA process. We will apply this to annual differenced data over the full sample of 

data and use the Bai and Perron (2003a and 2003b) test to identify any structural breaks. 

Utilising the Bai and Perron (2003a and 2003b) test to identify any structural breaks 

within the ARIMAX modelling context to model inflation is a novelty of our work. With 

these issues in mind we analyse various transformations of each country’s price series 

below: 
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4.1 Data Analysis for the ARIMAX model 

For ARIMAX modelling, we considered the consumer price index that is quarterly and 

available from International Financial Statistics (IFS) published by the International 

Monetary Fund (IMF) for all selected countries. The availability of the series for each 

country is summarised below and graphs of various transformations of this data for each 

country are given in the figures below. 

 

Table 4.1 Consumer price index availability 

Country Period 

South Africa 1958q1- 2014q4 

Indian  1953q1- 2014q4 

Brazil 1980q1 -2014q4 

China 1988q1- 2014q4 

Russia 1992q1- 2014q4 

Nigeria 1960q1- 2014q4 

Kuwaiti  1974q1- 2014q4 

Algeria 1975q1- 2014q4 

Ecuador 1958q1- 2014q4 

Saudi Arabia 1971q1 – 2014q4 

Angola  1992q4- 2014q4 

 

Source: IMF and IFS  
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 Figure 4.1 Graphs of various transformations of consumer prices for Brazil. 
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Figure 4.2 Graphs of various transformations of consumer prices for Russia 
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Figure 4.3 Graphs of various transformations of consumer prices for India 
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Figure 4.4 Graphs of various transformations of consumer prices for China 
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Figure 4.5 Graphs of various transformations of consumer prices for South Africa 
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Figure 4.6 Graphs of various transformations of consumer prices for Algeria 
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Figure 4.7 Graphs of various transformations of consumer prices for Angola 
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Figure 4.8 Graphs of various transformations of consumer prices for Ecuador  
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Figure 4.9 Graphs of various transformations of consumer prices for Kuwait 

2.8

3.2

3.6

4.0

4.4

4.8

1975 1980 1985 1990 1995 2000 2005 2010

LOG(PKUW)

  -.04

.00

.04

.08

.12

.16

1975 1980 1985 1990 1995 2000 2005 2010

DLOG(PKUW)

 

(A)                                                               (B) 

-.04

.00

.04

.08

.12

.16

1975 1980 1985 1990 1995 2000 2005 2010

DLOG(PKUW,0,4)

   -.15

-.10

-.05

.00

.05

.10

.15

1975 1980 1985 1990 1995 2000 2005 2010

DLOG(PKUW,1,4)

 

(B)                                         (D) 

Figure 4.10 Graphs of various transformations of consumer prices for Nigeria 
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Figure 4.11 Graphs of various transformations of consumer prices for Saudi Arabia 
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4.2 The following are the main features of the above graphs 

For all countries, the natural logarithm of the consumer prices (given by graph A for each 

country) has an upward trend and is likely to be nonstationary. For quarterly series 

seasonality may be expected in price data even if it is not visible in all the log price plots 

because of the dominant trend; seasonality may be revealed once the trend is removed 

through differencing.  The log of price exhibits a range of trend shifts between 1970s 

and 2000s that suggest structural breaks for most countries. The breaks between these 

periods reflect different periods of relatively high inflation and more moderate inflation 

that may have occurred as a result of the global oil price volatilities, political instabilities 

and financial crisis across different countries. For example, oil price production was 

volatile in the early 1970s as a result of the Arab oil Embargo. The oil price increased 

tremendously during the Iran-Iraq war in the early 1980s and fell back in 1985. The trend 

in oil prices changed after 1985 and slightly increased and later decreased until 

beginning of the 1990 when Iraq invades Kuwait. In the middle of 1990s, the price of oil 

increased until 2007 and fell back in 2008 as a result of the global financial crisis. In 2011, 
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the price of oil picked up and increased until the first quarter of 2014.  In the last quarter 

of 2014, the increase in production of American oil shale drives down the global market 

price of oil below 50 dollars per barrel (See the graph in Appendix 4). 

For Brazil (Graph A  figure 4.1), the log of consumer prices shows that the trend is steep 

up to around 1994q3 (corresponding to a high inflation period) and becomes flattered 

after 1994q3 (corresponding to a lower inflation period).52 This suggests that the trend 

that existed prior 1994q3 does not continue after this time. For Russia, (Graph A from 

figure 4.2), the graph indicated a trend shift between 1996q1 and 1999q2, slope changes 

around 1997q1 and a step-shift in 1998q4.53 Similarly, (Graph A from Figure 4.3) shows 

a few possible outliers around 1974/1975 for India and two change in slopes around 

1997q3 and 2004q3 with some outliers in 2008 for China (see Graph A figure 4.4).54  The 

graph for South Africa (Graph A from figure 4.5) shows an S-shaped pattern exhibited by 

many developed countries between the period of 1970s and 1980s. For instance, there 

is a shift around 1973 (corresponding to the oil shock) when this slope becomes steeper. 

Another slope shift occurs around 1991 and becomes flatter. During the 1970s and 

1980s inflation was relatively high when compared with the post-1990 period. There is 

also a possible downward step shift around 2012. For Algeria (Graph A from figure 4.6), 

two slope shifts appear to have occurred around 1990q4 and 1996q2 with a possible 

outlier in 1975q1. Similarly, the log of price indicates slow transition (slope shifts) around 

1996q3 and 2003q3 for Angola (see Graph A from figure 4.7).  For Ecuador (Graph A 

from figure 4.8), there is a sequence of step shifts with constant prices prior to 1983 and 

the series appears to be generated by a completely different policy regime to the post-

                                                           
52 The graph reflects double-digit annual inflation of the 1970s that turned to triple digits by the 1980s. 

As a result, the election of Fernando Henrique Cardoso in 1994 (a former finance minister) implemented 

many successful stabilization programs, such as: introduction of new currency and privatization that are 

suggested to have helped to stabilize the inflation rate around 1994 (Ito, 1999). 

53 This could be a result of post-Soviet Union economic reforms implemented to reduce inflation. During 
this period, the Russian government was committed to fiscal policy, privatization, and establishment of 
various arbitration courts to resolve different economic disputes. As a result, Russia’s inflation was 
brought under control. However, the 1998 global financial crisis contributed to a sharp decline in the 
Russian economy. 
54 Due to the role of free markets and different economic reforms, China's economy gained momentum 

in the early 1990s. During this period, Chinese output increased tremendously with low inflation. 

However, the influenced of the Asian financial crisis slowed the economy down in 1997 and increased 

inflation. 
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1983 data. Hence, using data up to 1983 may be of little value for forecasting data after 

2012 and we will therefore not use data in this period for modelling and forecasting 

Ecuador. Hence, all other graphs for this country (B, C and D) will be for the post 1983 

period.55 After 1983 the data trend upwards with a slope shift around 2001 suggesting 

a structural break. The log of price has a shift around 1965 for Nigeria and step shift in 

1983q1 and 1992q2 for Kuwait.  The graphs also suggest a slope shift around 2007 for 

Kuwait and 1978 and 2008 for Saudi Arabia (see graph A figure 4.9, 4.10 and 4.11 for 

Kuwait, Nigeria and Saudi Arabia respectively). 

B. First differencing of the log price DLOG(P) 

We next consider first differencing the log of prices (denoted DLOG(P***) where *** 

represents the first three letters of each country (BRA, RUS, IND, CHI, SOU, ALG, ANG, 

KUW, NIG, ECU and SAU). The first difference of the log of price approximates inflation 

between adjacent periods (quarters), the quarterly inflation rate. In all countries, the 

first differencing has removed the trend and transformed the structural breaks from 

slope shifts into an approximate step-shifts with high inflation prior to the break and 

lower inflation after the break.   

For example, in Brazil (see Graph B from figure 4.1), the first differencing has 

transformed the structural break from a trend (slope) shift in the log of prices into an 

approximate step-shift in the differenced data with high inflation prior to 1994q3 and 

lower inflation after 1994q3.  For Russia, the breaks between 1996q1 and 1999q2 in the 

log of prices have also transformed into two sets of outliers in the differenced data with 

peaks around 1995q1 (approximately a 40% quarterly inflation rate) and 1998q3 (34%)  

(see Graph B from figure 4.2). Similarly, the slope shifts in 1997q3 and 2004q3 have 

transformed into step shifts for China with an outlier peak in 2005q1 and a trough in 

1998q1 (see Graph B from figure 4.3). For India (see Graph B from figure 4.4), the first 

difference reveals a peak and trough around 1974 with the highest inflation rate 

recorded at 9.5% (corresponding to the oil shock). In the case of South Africa, the shifts 

in the differenced data are roughly divided into step shifts around 1973 and 1991. 

                                                           
55 This suggests that different economic policies were implemented around this period to control 
inflation in Ecuador. 
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However, the shifts do not appear to take place in one period; rather there is a transition 

over a few periods (see Graph B from figure 4.5). 

In Algeria, the first differencing transformed the changes in the slope of the log of prices 

that occur around 1990q4 and 1996q2 into mean step shifts. The quarterly inflation rate 

peaks in 1991q4 at approximately 11.6% which is moderately high when compared with 

after 1996q1 when inflation is much lower and in single digits, averaging approximately 

3% (see Graph B from figure 4.6). For Angola, the first differencing transformed the 

structural breaks from slope shifts in the log of prices into approximate step-shifts (with 

the slow transition) with high inflation prior to 1996q3 and lower inflation after 2003q3 

(see Graph B from figure 4.7). For Ecuador, the slope shifts around 1983q3, 1987q4, 

1998q4 and 2000q4 in the log of prices have transformed into outliers and an 

approximate step-shift with high inflation in 2001q1 and lower inflation around 2004q1 

at approximated rates of 28% and -0.3% respectively (see Graph B from figure 4.8). For 

Kuwait, the step shifts in the log of prices around 1983q1 and 2007 become step shifts 

in the differenced data. The step shift around 1992q2 in the log of prices becomes a 

small number of outliers in the differenced data that peaks at 13.9% (see Graph B from 

figure 4.9).  In Nigeria, the slope shift around 1996 in the log of prices is transformed 

into a possible downward step-shift in the differenced data (the variability of inflation 

appears to decline from 1996 onwards). The left-hand scale suggests that the quarterly 

inflation rate peaked at about 20% in around 1995. After 1996 quarterly inflation is 

generally below 10% which implies that only using data from 1996 onwards for 

modelling and forecasting may be a strategy worth consideration (see Graph B from 

figure 4.10). For Saudi Arabia, the first differencing transformed the slope shifts in the 

log of prices around 1978 and 2008 into approximate step-shifts. The left-hand scale 

suggests that the quarterly inflation rate peaked at about 16% before 1978 and peaked 

at 4% in the post 1978 (see Graph B from figure 4.11). This implies that inflation in Saudi 

Arabia is high before 1978 and moderate after 1978. Additionally, there are clear cycles 

that appear to have a fixed length in all estimated countries that most likely reflects 

seasonality. 
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C. Annual differencing of the log price DLOG (P,0 ,4) 

The fourth difference of the log of prices approximates the annual rate of inflation due 

to the differencing of the logarithm of consumer prices across four quarters. This is a 

widely used transformation to approximate annual inflation. In all countries except 

India, the fourth difference transformation has transformed the data into relatively 

constant mean processes around step shifts (structural breaks). Typically, each country’s 

data is split into approximately two samples: one of high inflation and one of relatively 

moderate inflation. The period of high inflation is volatile compared to the period of 

moderate inflation. The annual difference also gives a series that is less cyclical 

compared to the first differenced data and any seasonality has been substantially 

reduced. For most countries, the difference of the log approximation of inflation is not 

appropriate given the relatively high level of inflation during some point in the sample. 

For consistency across countries we suggest that annual inflation should be measured 

as: 𝐼𝑁𝐹𝑡= 
𝑃𝑡− 𝑃𝑡−4

𝑃𝑡−4
. 

D. First annual differencing of the log price DLOG (P,1 ,4) 

This approximates the first difference of annual inflation. For all countries, the 

transformation has no trend and gives a relatively constant mean process, although the 

approximation remains volatile for all countries except Brazil, Russia and Angola.  

Evidence of volatilities in many of these countries may reflect over differencing that 

could be avoided by modelling the step shifts in the annual or quarterly differenced data.  

That is, since both the annual and quarterly differenced series appear to have constant 

means around step shifts there is no need for both a seasonal and nonseasonal 

difference to induce stationarity.  

4.3 The Summary of the log of price transformations 

For all countries, the log of price does not have a constant mean and is therefore 

intrinsically nonstationary and we will therefore not apply unit root tests to this form of 

the data as this conclusion is clear. The first (quarterly) differencing and annual 

differencing of the log price are poor measures of quarterly and annual inflation due to 

the generally high inflation rate (at least at some point in the sample) for most countries. 

Therefore, we will not accept these measures for quarterly and annual inflation and we 
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will use the real measures of inflation being: 𝑄𝐼𝑁𝐹𝑡 =
𝑃𝑡− 𝑃𝑡−1

𝑃𝑡−1
   and 𝐼𝑁𝐹𝑡= 

𝑃𝑡− 𝑃𝑡−4

𝑃𝑡−4
  for each 

country (where 𝑄𝐼𝑁𝐹𝑡 and 𝐼𝑁𝐹𝑡 represent quarterly and annual rates of inflation 

respectively). For all countries, the quarterly and annual rates of inflation appear to be 

constant around their means or constant around shifting means. This implies that once 

mean shifts are accounted for the data are likely to be stationary. We also observed that 

quarterly inflation is far more seasonal than annual inflation and this may mean that the 

former contains some form of seasonal unit root that requires further transformation 

while the latter does not.56 Hence, we believe that modelling annual inflation, 𝐼𝑁𝐹𝑡= 

𝑃𝑡− 𝑃𝑡−4

𝑃𝑡−4
  , will be appropriate for most countries and this is our a priori belief. If this is not 

the case ARIMAX models built to such data will reject the diagnostic checks for 

stationarity (and invertibility). 

Table 4.3 Descriptive statistics for annual inflation between 1994q1 

2014q4 
 

Brazil Russia Indian China  South 
Africa  

Angola Algeria Ecuador  Nigeria Kuwait  Saudi 
Arabia 

 Mean 1.697 0.508 0.074 0.031 0.066 4.942 0.074 0.203 0.182 0.030 0.021 

 Median 0.063 0.137 0.0713 0.034 0.065 0.853 0.047 0.095 0.122 0.030 0.009 

 Maximum 44.861 7.056 0.179 0.029 0.169 75.344 0.374 1.048 0.881 0.113 0.108 

 Minimum 0.018 0.038 0.005 0.029 -0.042 0.095 -0.013 0.015 -0.019 -0.01 -0.018 

 Std. Dev. 7.189 1.081 0.0341 0.0434 0.037 11.619 0.089 0.236 0.182 0.030 0.030 

 Skewness 4.752 4.061 0.527 -0.754 -0.056 3.902 1.976 1.884 2.296 1.262 0.992 

 Kurtosis 25.098 21.815 3.123 1.974 3.601 20.75 6.102 6.419 7.727 5.329 3.366 

 Jarque-
Bera 

1832.292 1329.775 3.561 10.544 1.181 1190.527 79.927 81.955 137.532 37.347 12.888 

 Probability 0.000 0.000 0.169 0.005 0.554 0.000 0.000 0.000 0.000 0.000 0.002 

 

To provide additional evidence for the existence of various features of inflation 

identified in the previous section, statistically, this study employed the Jarque-Bera test, 

Kurtosis, skewness, mean and standard deviation to describe the rate of annual 

inflation.  The Jarque -Bera test is a test of whether sample data have the skewness and 

kurtosis matching a normal distribution. Skewness measures the asymmetry of the 

distribution of a series around its mean. The Kurtosis measures the peakedness or 

flatness of the distribution of the series. Mean is the average value of the series, 

obtained by adding up the series and dividing by the number of observations and the 

                                                           
56 Note that we do not report comparison graphs of quarterly and annual inflation in this paper to save 

space. 
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standard deviation is used to measure a dispersion or spread of the series.57 From Table 

4.3, the mean and the standard deviation of annual inflation different across countries.  

Angola has the highest mean of 494.2% followed by Brazil 169.7% and Russia 50.8%. In 

contrast, Saudi Arabia has the lowest mean value of 2.1%, followed by Kuwait at 3.0% 

and China 3.1%.  For standard deviation (the rate of volatilities), the country that has the 

highest mean has the highest deviation value with the rate of 1161.9% for Angola, 

718.9% for Brazil, 108.1% for Russia, 23.6% for Ecuador,18.2% for Nigeria, 8.9% for 

Algeria, 4% for China and South Africa and 3% for both Kuwait and Saudi Arabia. The 

maximum (minimum) rate of inflation is 4490%(2%) for Brazil, 710% (4%) for Russia, 

18%(0.5%) for Indian, 3%(3%) for China and 17%(-4%) for South Africa.  In addition, 

Angola has the maximum (minimum) value of 7500%(9.5%), 40%(-1) for Algeria, 

105%(2%) for Ecuador, 90%(-2) for Nigeria, 11%(1%) for Kuwait and 11%(-2%) for Saudi 

Arabia. In general, the countries that previously known as high inflation has an 

approximately mean and standard deviation value that is above 10% (see Brazil, Russia, 

Angola, Ecuador, Nigeria). Whereas, countries with moderate inflation have the mean 

value that is less than 10% (India, China, South Africa, Kuwait and Saudi Arabia). The 

skewness values are positive in all selected countries except for China and South Africa, 

indicating that the asymmetric tail extends more towards positive values than the 

negative ones. Furthermore, the kurtosis statistics is greater than 3 in all selected 

countries except China indicating that the rate of inflation for all selected countries are 

leptokurtic (more peakedness, heavy tails, weak shoulders).  This implies that the 

growth rate of the price display more extreme movements than would be estimated or 

predicted by a normal distribution. The Jarque–Bera statistics clearly reject the null 

hypothesis of a normal distribution for inflation in all selected countries except South 

Africa and India. This suggests that the observed data are mostly inconsistent with the 

assumption of normality in the selected countries. To help model the non-normality of 

the data we will utilise specifications that account for structural breaks.   

  

                                                           
57 The details and the formula on how we estimate Jarque-Bera test, Kurtosis, skewness, mean and 
standard deviation are available in Eviews 9 Help guide.  
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4.4 ARIMA Modelling  

Autoregressive integrated moving average (ARIMA) is a univariate time series model. 

ARIMA models were developed by George Box and Gwilym Jenkins in 1976. The models 

were often referred to as Box- Jenkins model procedures. ARIMA  models have been 

used to forecast inflation in the past, and it has performed well when compared with 

other inflation forecasting models (see: Stock and Watson 2007, Ang, Bekaert, and Wei 

2007 and Hafer & Hein 1990). In predicting inflation, the model does not need other 

variables than inflation to forecast. It is expressed in terms of past values of itself (the 

autoregressive component) plus current and lagged values of the error term (the moving 

average component) as well as an integrated component (which refers to the number 

of times a series is differenced to induce stationarity).  

Modelling and forecasting with ARIMA models involve five stages: (i) identification (ii) 

estimation (iii) diagnostic checking (iv) model selection, and (v) forecasting. There are 

two forms of ARIMA model: Non-seasonal and Seasonal Autoregressive Integrated 

Moving Average models. A seasonal ARIMA model is used when the time series data 

show seasonal patterns. While the non-seasonal ARIMA model is used to forecast when 

there is no evidence of seasonality. The non-seasonal ARIMA model is denoted as  

ARIMA (p,d,q). The parameter p, d, and q are the autoregressive process of order of p, 

AR(p), an order of integration of order d, I(d) and moving average (MA) process of order 

q, MA(q), respectively.  

The general non-seasonal ARIMA (p,d,q) equation is specified below: 

 

∆d 𝑌𝑡  = ø1∆d𝑌𝑡−1 + ⋯ …. + ø𝑝∆d𝑌𝑡−𝑝 + 𝑢𝑡 − θ1𝑢𝑡−1 -........ - θ𝑝𝑢𝑡−𝑞      4.1 

 

∆d 𝑌𝑡 = ∑ ø1
𝑝 
𝑖=1 ∆d𝑌𝑡−𝑖  + 𝑢𝑡  - ∑ θ1𝑢𝑡−𝐽

𝑞 

𝑖=1
      4.2

       

Where 𝑢𝑡   is the error term, ∆d indicates the difference (d) times, θ is the coefficients of 

the moving average term58.The value of ø denotes the coefficient of autoregressive 

                                                           
58 The sign in front of θ1, … …, θ𝑞  varies from one text book to another. In some text books the MA(q) 

model is written as 𝑌𝑡  =   𝑢𝑡𝑢𝑡−1  + θ2𝑢𝑡−2   + θ1+.................... + θ𝑞𝑢𝑡−𝑞   = 𝑢𝑡   + ∑ θ1𝑢𝑡−𝐽
𝑞 

𝐽=1
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terms. In addition, 𝑢𝑡 is assumed to be white noise, that is, (E(𝑢𝑡) = O, E(𝑢𝑡
2) = б2u  and 

E(𝑢𝑡 𝑢𝑡+𝑘) =  E(𝑢𝑡 𝑢𝑡−𝑘) = 0).   

ARIMA modelling can only be applied to a stationary time series. If a series is not 

stationary, steps must be taken to convert the series into a stationary one before ARIMA 

models can be applied. A non-stationary time series can be converted into a stationary 

one by differencing and the differencing of a series can be denoted using the backward 

shift or lag operator. For example, the first difference is stated (d = 1) as: 

 

∆𝑌𝑡=𝑌𝑡 - 𝑌𝑡−1        4.3 

The equivalent back shift notation will be  

𝑌𝑡 – B1𝑌𝑡 = 𝑌𝑡 – B𝑌𝑡= (1-B)𝑌         

 

The general dth difference can be stated as:  

∆d𝑌𝑡 = (1-B)d𝑌𝑡           4.5 

The traditional ARIMA model also uses the autocorrelation function (ACF) called the 

correlogram to examine the stationarity of the data. The correlogram of the stationary 

series is used to determine the existence of an AR process and order of MA process.59  

                                                           
59 The correlogram can also be described as an autocorrelation plot, i.e., the plotting of the sample 

autocorrelations versus the time lags. It measures the correlation between the current value of a process 

and the lagged values up to a kth lag displacement.  Consequently, the theoretical autocorrelation 

coefficient, 𝜌𝑘  , for a kth lag displacement can be expressed as: 𝜌𝑘   = 
 𝐶𝑜𝑣 (𝑌𝑡𝑌𝑡+𝑘)

𝑠(𝑌𝑡)𝑠(𝑌𝑡+𝑘)
 . Where, 𝐶𝑜𝑣 (𝑌𝑡𝑌𝑡+𝑘) is 

the covariance between the current value of  (𝑌𝑡) and the lagged value of k lag displacement (𝑌𝑡+𝑘). The 

value 𝑠(𝑌𝑡+𝑘) denotes the standard deviation of 𝑌𝑡+𝑘, 𝑠(𝑌𝑡) represent the standard deviation of (𝑌𝑡).  If 

the variance and standard deviation is constant, s(𝑌𝑡) = 𝑠(𝑌𝑡+𝑘).  Therefore, we replace 𝑠(𝑌𝑡+𝑘) with the 

value s(𝑌𝑡)  i.e  𝜌𝑘   = 
 𝐶𝑜𝑣 (𝑌𝑡𝑌𝑡+𝑘)

𝑠(𝑌𝑡)𝑠(𝑌𝑡+𝑘)
 =    

 𝐶𝑜𝑣 (𝑌𝑡𝑌𝑡+𝑘)

𝑠(𝑌𝑡)𝑠(𝑌𝑡)
 = 𝜌𝑘   = 

 𝐶𝑜𝑣 (𝑌𝑡𝑌𝑡+𝑘)

[𝑠(𝑌𝑡)]2  = 
 𝐶𝑜𝑣 (𝑌𝑡𝑌𝑡+𝑘)

𝑉𝑎𝑟(𝑌𝑡)
. Note that the variance of 

a process is equal to the covariance of a variable with itself, i.e., 𝐶𝑜𝑣 (𝑌𝑡𝑌𝑡) = Var (𝑌𝑡). Thus, 
 𝐶𝑜𝑣 (𝑌𝑡𝑌𝑡+𝑘)

𝑉𝑎𝑟(𝑌𝑡)
 = 

 𝐶𝑜𝑣 (𝑌𝑡𝑌𝑡+𝑘)

𝐶𝑜𝑣(𝑌𝑡𝑌𝑡)
  . The maximum covariance a series can have is the covariance with itself (𝑌𝑡  will vary in exactly 

the same way as (𝑌𝑡)). Hence,  𝐶𝑜𝑣 (𝑌𝑡𝑌𝑡+𝑘) will always be less than  𝐶𝑜𝑣 (𝑌𝑡𝑌𝑡) .., i.e.,  𝐶𝑜𝑣 (𝑌𝑡𝑌𝑡+𝑘) ≤ 

𝐶𝑜𝑣 (𝑌𝑡𝑌𝑡) which implies that -1 ≤ 𝜌𝑘  ≤ 1.  Hence, the theoretical autocorrelation coefficient,  𝜌𝑘  ranges 

from the value of -1 to +1. The value of -1 means perfect negative correlation and a value of +1 means 

perfect positive correlation. If 𝜌𝑘  = 0 then 𝑌𝑡+𝑘   and 𝑌𝑡 are not correlated at all in available data. In this 

research, the tests of whether the autocorrelation coefficients are significantly different from zero will be 

determined under the null hypothesis of stationarity and the confidence interval will be constructed for 

to test this hypothesis. Lastly, the theoretical sample autocorrelation coefficient is estimated as: 𝑟𝑘  

= 
∑ (𝑌𝑡− 𝑌 ̅)

𝑇−𝐾
𝑡=1  (𝑌𝑡+𝑘− 𝑌̅)

∑  (𝑌𝑡− 𝑌  ̅)
2𝑇

𝑡=1
   where 𝑌̅ =  

∑  𝑇
𝑡=1 𝑌𝑡

𝑇
 . The value of 𝑌𝑡 is assumed to be stationary, 𝑇 is the number of 

the observations and the maximum number of the useful estimated autocorrelations is suggested to be 

n/4 (Pankratz 1983).   
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The PACF is used to identify the order of AR process and existence of MA process.60  

 

4.4.1 Seasonal ARIMA Modelling 

When series are quarterly, it is possible that the series will exhibit seasonality, and 

modelling of such series requires the non-seasonal ARIMA model to be extended to 

accommodate additional features of seasonality. Seasonality can be dealt with in two 

different ways: direct seasonal modelling of unadjusted data and by using seasonal 

adjustment procedure. The adjusted seasonal method will seasonally adjust the data 

through, for example, the X-13 or X-12 procedures and a non-seasonal ARIMA model 

can be used to forecast the adjusted data. After which the identified seasonal indices 

are used to re-introduce the seasonality into the forecasts. The unadjusted data method 

directly extends the non-seasonal ARIMA model to capture the seasonal component of 

the series. In general, the seasonal ARIMA model can be expressed as ARIMA 

(p,d,q)(P,D,Q)s. That  is, there is a combination of two polynomials generated by (p,d,q) 

and (P, D,Q)s, where P is the seasonal order of the autoregressive component, D denotes 

the seasonal order of integration and Q represents the seasonal order of moving the 

average component. The parameter p, d, and q are the corresponding non- seasonal 

orders of processes. The multiplicative seasonal ARIMA model can be expressed as 

follows: 61 

 

ø𝑝(𝐵)ø𝑃(𝐵𝑠)(1 − 𝐵)𝑑 (1 − 𝐵𝑠)𝐷𝑌𝑡 = θ𝑞(𝐵)θ𝑄(𝐵𝑠)𝑢𝑡      4.6

  

Where B is the standard backward shift operator defined by BK𝑦𝑡 = 𝑦𝑡−𝑘 ,  ø𝑝(𝐵) denotes 

the nonseasonal autoregressive model, ø𝑃(𝐵𝑠) represents the seasonal autoregressive 

model, θ𝑞(𝐵) describes the nonseasonal moving average process, θ𝑄(𝐵𝑠) denotes 

seasonal moving average process,  and  𝑢𝑡 is a sequence of white noise errors that are 

                                                           
60 The partial autocorrelation function (PACF) is the correlation between the lagged variable and the 
current value after accounting for the correlation with other variables, i.e., it is measure of correlation 
between 𝑌𝑡 and 𝑌𝑡−𝑝 after the effects of 𝑌𝑡−1,  𝑌𝑡−2,……, 𝑌𝑡−𝑝+1  has been taken into account.  The 

theoretical partial autocorrelation coefficient is expressed in the form of an  𝐴𝑅𝑝 process i.e.,  

 𝑌𝑡  = ∅1𝑌𝑡−1+ ∅2𝑌𝑡−2 + ⋯ + ∅𝑝𝑌𝑡−𝑝
 where ø𝑝  is the partial autocorrelation coefficient that estimates the 

relationship between 𝑌𝑡   and 𝑌𝑡−𝑝.  By including ∅1, ∅2,....... , ∅𝑝−1
 in this regression we are accounting 

for their effects on  𝑌𝑡 while estimating ø𝑝  

61 Tseng and Tzeng, 2002; Zhang and Qi, 2005; Wang et al. 2012 
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assumed to have zero mean and constant variance. (1 − 𝐵)𝑑  and (1 − 𝐵𝑠)𝐷 are the 

nonseasonal and seasonal differencing operators, respectively. Finally, 𝑠 denotes the 

number of periods in the seasonal cycle. 

 

Therefore: 

 

ø𝑝(𝐵) = (1 - ø1𝐵 -   ø2𝐵2 - ø3𝐵3 -...........− ø𝑝𝐵𝑝)     4.7

  

ø𝑃(𝐵𝑠) = (1- ø1𝑆𝐵𝑠 – ø2𝑆𝐵2𝑆 – ø3𝑆𝐵3𝑆 - ........- ø𝑃𝑆𝐵𝑃𝑆) 4.8

  

θ𝑞(𝐵) = (1 - θ1𝐵 -   θ2𝐵2 - θ3𝐵3 -...........− θ𝑞𝐵𝑞) 4.9

  

θ𝑄(𝐵𝑠) = (1- θ1𝑆𝐵𝑠 – θ2𝑆𝐵2𝑆 – θ3𝑆𝐵3𝑆 - ........- θQ𝑆𝐵Q𝑆) 4.10

  

Furthermore, an ARIMA model can be amended to incorporate independent exogenous 

variables to account for outliers and/or structural breaks. This could be referred to as an 

ARIMAX model.62 The modelling of the outliers/breaks can take different forms such as: 

step-shift, pulse, split trend or slope- shift.  

In this case, the ARIMAX model can be specified as:  

 

 𝑌𝑡 = 𝛽0 + ∑ 𝛽𝑖
𝑘−1 
𝑖=1 𝐷𝑖𝑡𝑋𝑖𝑡  + 𝑢𝑡              4.11 

 

(1 - ø1𝐵 -  ø2𝐵2 - ø3𝐵3 - …… - ø𝑃𝐵𝑃) 𝑢𝑡 = (1 - θ1𝐵 - θ2𝐵2 - θ2𝐵3- …. - θ𝑞𝐵𝑞) e𝑡   

         4.12 

 

The equation (4.12) can be rearranged as: 𝑢𝑡 
(1 − θ1𝐵 − θ2𝐵2 − θ2𝐵3 ….− θ𝑞𝐵𝑞) e𝑡  

(1 − ø1𝐵 −  ø2𝐵2 − ø3𝐵3 − …… − ø𝑃𝐵𝑃)
 

 

                                                           
62 Akal (2004) documents that ARIMAX modelling corrects the deficiencies of the econometric causal-
effect technique by using dynamic filters to explain the variations in endogenous variables. 
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Hence 𝑢𝑡 = 
Θ(𝐵)

∅(𝐵)
e𝑡, where Θ(𝐵) = (1 - θ1𝐵 - θ2𝐵2 - θ2𝐵3- …. - θ𝑞𝐵𝑞) and ∅(𝐵) =  (1 - 

ø1𝐵 -  ø2𝐵2 - ø3𝐵3 - …… - ø𝑃𝐵𝑃)          

  

 

 Therefore, the ARIMAX model could be expressed as: 

 

 𝑌𝑡  = 𝛽0 + 𝛽1𝐷𝑖𝑡𝑋𝑖𝑡 + 𝛽2𝐷2𝑡𝑋2𝑡 + ⋯ + 𝛽(𝐾−1)𝐷(𝐾−1)𝑡𝑋(𝐾−1)𝑡 +
Θ(𝐵)

∅(𝐵)
e𝑡.    4.13 

Where 𝑌𝑡 is the dependent variable,  𝑘 − 1  is the intervention variable, 𝐷𝑖𝑡 is the dummy 

variable, 𝛽0 and 𝛽𝑖 are the coefficients, 𝑋𝑖𝑡
  are the explanatory variables, 𝑢𝑡 is the error 

term that is modelled by a univariate ARIMA(p,d,q) structure – this can be easily 

extended to a seasonal ARIMA specification (as above). The equation (4.11) is the 

explanatory component of the ARIMAX model and equation (4.12) specifies the ARIMA 

model of the error term 𝑢𝑡  part of the ARIMAX model. The equation (4.12) is strictly an 

ARMA(p,q) because it is typically assumed that 𝑢𝑡 is stationary (although this can be 

extended to account for seasonal AR and MA components too). In our models, we focus 

on modelling outliers and structural shifts using the dummy variables, 𝐷𝑖𝑡, and we do 

not add any explanatory variables, 𝑋𝑖𝑡. 

The ARIMAX model involves dummy variables to model the outliers and structural 

breaks and, take the values of 0 or 1. For example, the pulse intervention specifies the 

dummy variables as: 

𝐷𝑖𝑡 = {
0
1

    
𝑖𝑓 𝑡 ≠  𝑡𝑖

𝑖𝑓 𝑡 =  𝑡𝑖
 

 

Where 𝑋𝑖𝑡
  = 1 (one outlier or break) 

And the step intervention allocates dummy variables as follows: 

 

𝐷𝑖𝑡 = {
0
1

    
𝑖𝑓 𝑡 ≤  𝑡𝑖

𝑖𝑓 𝑡 >  𝑡𝑖
 

 

where 𝑋𝑖𝑡
  = 1 (one outlier or break) 63 

                                                           
63 The step intervention analysis is associated with permanent changes in the mean of the series while 
the pusle intervention is associated with a temporary shift in the mean of the series that eventually 
returns to its stable position. 
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4.4.2 The identification of AR and MA orders using the ACF and PACF 

A stationary autocorrelogram graph is expected to decay geometrically from its initial 

value and expected to drop to zero within four or five lags. The very slow decaying of 

the autocorrelation function (ACF) suggests non-stationary. If the ACF sample decays 

slowly, more differencing is needed to remove non-stationarity. However, over 

differences should be avoided.64  Although, the consequences of over differencing is less 

important in the estimation of AR and MA orders than under differencing the series. 

When the series is stationary, it becomes possible to use the ACF and partial 

autocorrelation function (PACF) to identify the order q and p of an ARIMA model. A 

stationary autoregressive AR process exists when the ACF declines slowly toward zero 

as 𝑘 increases. The slow decay of the PACF indicates the existence of an MA process. In 

the case of seasonal ARIMA models the identification of AR(P) and MA(Q) processess is 

similar to that of non-seasonal AR(p) and MA(q) procedures except for the displacement  

lags of the autocorrelation coefficients ocure at  every multiple of four, i.e  4, 8 12,16…., 

instead of 1, 2, 3, 4….., as for non-seasonal components.65 The order of MA(Q) and 

MA(q) are indicated by the number of consecutive significant sample autocorrelation 

coefficients at seasonal and non-seasonal lags, respectively, while the order of AR(P) and 

AR(p) are identified by the number of consecutive signifcant sample of partial 

autocorrelation coefficients at seasonal and non-seasonal lags, respectively.  However, 

the PACF is employed to identify the order of an AR process while the ACF is employed 

to identify the order of an MA process. Note that the number of statistically significant 

ACF and PACF coefficents do not always indicate the correct specification of ARIMA 

model due to the sampling error. 

 

Lastly, the ARIMA models will be checked for invertibility stationarity and the absence 

of residual autocorrelation in the diagnostic checking stage.66 The ARIMA model 

                                                           
64  Over differencing can create artificial patterns in data series (spurious MA processes) and can reduce 
forecast accuracy (Pankratz 1983). 
65 In most cases, the displacement lags of seasonal ARIMA models is denoted as S, 2S, 3S, 4S….,  with the 
requirement that S = 4 for quarterly data. 
66 According to the Wold decomposition theorem, the invertibility rule stated that the MA(1) process is 
equivalent to an infinite order autoregressive process AR (∞).  
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favoured for forecasting will be chosen by the lowest value of Schwarz’s (1978) Bayesian 

information criterion (SBIC). 

 

4.5 The chapter summary and conclusion 

This chapter consists of two sections. The first section analyses the graphical features of 

the quarterly price data (its transformations) and annual inflation with the descriptive 

statistics to assess issues of seasonality, stationarity and structural breaks for each 

country. While the second section outlines the Box Jenkins ARIMA and ARIMAX methods 

of univariate modelling employed in this thesis. From the first section, a mixture of visual 

inspection of the data and the result of the descriptive statistics test showed that the 

log of the price is nonstationary in all the growing inflationary economies under 

consideration. The standard quarterly (one period) difference is generally insufficient to 

induce stationarity because of seasonal unit roots. Conversely, the annual (four periods) 

difference is generally sufficient to induce stationarity, although only after structural 

breaks have been accounted for in modelling. However, the graphical analysis indicates 

that annual inflation is stationary around a constant mean or around step-shifts in the 

mean.67 In our study, we use annual inflation, 𝐼𝑁𝐹𝑡= 
𝑃𝑡− 𝑃𝑡−4

𝑃𝑡−4
   to estimate ARIMAX/ARIMA 

and TAR model for all countries. Our expectation follows that if annual inflation is not 

stationary the ARIMAX/ARIMA estimate with such data will be rejected by the diagnostic 

checks for stationarity and invertibility.  

 

                                                           
 
67 Although, the Jarque–Bera statistics clearly reject the null hypothesis of a normal distribution for 
annual inflation in all selected countries except South Africa and India. This suggests that the observed 
data are mostly inconsistent with the assumption of normality in the selected countries. 
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CHAPTER 5 

BOX- JENKINS BASED ARIMAX MODELLING OF ANNUAL INFLATION  

5.0 Introduction   

In this chapter, we develop on the analysis presented in Chapter four and build ARIMAX, 

different ARIMA specifications and TAR models to the annual difference of inflation, 

INF_*, where * denotes the three-letter country identifier (section 5.1 to 5.5).68 Further, 

we produce forecast for the best selected ARIMAX, different ARIMA specifications and 

TAR model that passes the standard diagnostic tests (residual autocorrelation, 

stationarity and invertibility for ARIMAs/ARIMAX and serial autocorrelation for TAR 

model) and choose the best forecasting model with the lowest value of RMSE, MAPE 

and U-statistics (section 5.6). For stationarity, our graphical analysis indicates that 

annual inflation will be stationary around a constant mean or around step-shifts in the 

mean. Whilst there may be some seasonality our graphical analysis suggests that this 

will not require transformations to deal with seasonal (unit) roots although it might 

require seasonal dummy variables (that shift for some countries) and seasonal ARMA 

components. We use the Bai and Perron (2003a and 2003b) test to help identify 

potential multiple shifts in the seasonal dummy variables to build a deterministic model 

of these shifts. Using graphical analysis of the actual and fitted values, we check that this 

deterministic model has appropriately captured the breaks in the data and make any 

necessary modifications. The structural breaks are then summarised by a single indicator 

variable. We then build a potentially seasonal ARMA model (based on the Box-Jenkins 

method) to the residuals of the deterministic model. The ARIMAX model is the combined 

deterministic and ARMA model. For each country, we model the full sample of available 

                                                           
68 TAR model is the threshold autoregressive model estimated over the full sample and reduced sample 

that avoid modelling structural breaks. ARIMAX is the ARIMA models that have a deterministic 

component to account for structural breaks over the full sample period. Different ARIMA specifications 

are estimated over a reduced sample period that avoids the modelling structural breaks.  

For different ARIMA specifications, we estimate the followings: first, a seasonal ARIMA specification 

identified using the Box-Jenkins method, second, a seasonal ARIMA model identified using EView’s 

automatic model selection tool and, third, a non-seasonal ARIMA model identified using EView’s 

automatic model selection tool applied to seasonally adjusted data. 
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data (with a couple of minor exceptions). The modelling of each country is considered 

in turn below. We provide a detailed discussion of the ARIMAX model developed for 

Brazil and summarise the results of the ARIMAX modelling process that was applied to 

the other countries under consideration.  
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5.1 ARIMAX modelling of annual inflation for Brazil 

The maximum available sample period is 1980q1 to 2012q4. To allow for lags, 

transformations and have a consistent estimation period for all models we specify an 

initialization period of four years and estimate all models over the period 1984q1 – 

2012q4. Forecasts (to be discussed in later chapters) will be produced over the period 

2013q1 – 2014q4 using this model. The first sub-section discusses the development of 

the deterministic component of the model that allows for structural breaks (shifts in the 

seasonal means). The second sub-section identifies the ARMA component to the 

residuals of this model and hence discusses the development of the final ARIMAX model. 

Table 5.1.1: Bai and Perron tests for structural breaks in Brazilian annual inflation 

Break 

Hypothesis 

Scaled F-statistic  Critical Value Sequential  Repartition 

0 vs 1 48.440 16.19 1995q1 1989q3 

1 vs 2 69.432 18.11 1989q3 1995q1 

2 vs 3 0.0518 18.93   

 

In Table 5.1.2 we report various deterministic models of annual inflation. The model 

reported in the column labelled 1 is the benchmark model that includes the 4 seasonal 

dummy variables denoted, 𝐷𝑠𝑡 where 𝑠 = 1, 2, 3, 4, and does not model any structural 

breaks. Three of the four seasonal dummy variables are significant according to the t-

ratios (reported in brackets below the dummy variables’ coefficients) and the model’s 

Schwarz criterion (SC) is 7.637.  

Table 5.1.1 reports the Bai and Perron scaled F-statistics with the associated 5% critical 

values for the benchmark model reported in the column labelled 1 in Table 5.1.2. The 

test results indicate that there are two significant breakpoints because the scaled F-

statistic is greater than the corresponding critical value for the null hypothesis of no 

breaks (denoted 0 vs 1) and the null hypothesis of one break (1 vs 2). However, the 

scaled F-statistic is less than the critical value for the null hypothesis of 2 breaks (2 vs 3). 

The sequential and repartition methods indicate the same break point dates of 1995q1 

and 1989q3. 
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Based on the Bai and Perron test results we specify shift dummy variables (that are zero 

prior to the break date and unity from the break date onwards) interacted with the 

seasonal dummy variables that give shifts in the seasonal means in 1989q3, denoted 

𝐷(1989𝑞3)𝑠𝑡, and 1995q1, denoted 𝐷(1995𝑞1)1𝑡. The model including the seasonal 

dummy variables and the shift dummy variables is given in the column headed 2 of Table 

5.1.2. All of the shift dummy variables are significant suggesting significant changes in 

the seasonal means at the identified break points although all 4 of the original seasonal 

dummy variables are insignificant. The significance of these shift dummy variables and 

that this model’s SC falls to 7.083 supports the need to model the identified breaks. 

Figure 5.1.1 plots the actual and fitted values of the model reported in column 2 of Table 

5.1.2. Visual inspection of this graph suggests that this deterministic model based on the 

Bai and Perron test results does not capture all of the mean shifts in the actual data. The 

graph suggests two more mean shifts in 1991q1 and 1992q3 and, we therefore add 

interaction dummy variables, denoted 𝐷(1991𝑞1)𝑠𝑡 and 𝐷(1992𝑞3)𝑠𝑡, to the model 

reported in column 2 to capture these shifts. The estimation results of this model are 

reported in column 3 of Table 5.1.2. All of the shift dummy variables are significant 

suggesting significant changes in the seasonal means at the identified break points and 

3 of the original seasonal dummy variables are significant. The significance of these shift 

dummy variables and that this model’s SC falls to 6.022 supports the inclusion of all of 

these interaction terms in the model. 

Figure 5.1.2 plots the actual and fitted values of the model reported in column 3 of Table 

5.1.2. Visual inspection of this graph suggests that this deterministic model better 

captures the main mean shifts in the actual data than did model 2 (note the relative left-

hand scales for the residuals in these two figures and how the fitted values are much 

closer to the actuals for model 3). We regard model 3 from Table 5.1.2 as capturing the 

main mean shifts in the data and use this as the basis of the deterministic component of 

our ARIMAX model of Brazil’s annual inflation. 
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Table 5.1.2: Deterministic component of ARIMAX models for Brazil 

Sample/Observation  1984q1 – 2012q4 (116)  

 1 2 3 4 

𝐷1𝑡 4.531 
(2.362) 

3.733 
(1.326) 

3.733 
(2.551) 

 

𝐷2𝑡 5.447 
(2.839) 

3.579 
(1.271) 

3.579 
(2.446) 

 

𝐷3𝑡 4.380 
(2.283) 

2.743 
(0.889) 

2.743 
(1.711) 

 

𝐷4𝑡 3.689 
(1.923) 

3.499 
(1.134) 

3.499 
(2.182) 

 

𝐷(1989𝑞3)1𝑡  17.010 
(4.072) 

39.369 
(10.167) 

 

𝐷(1989𝑞3)2𝑡  23.318 
(5.583) 

56.806 
(14.670) 

 

𝐷(1989𝑞3)3𝑡  15.908 
(3.809) 

22.513 
(7.506) 

 

𝐷(1989𝑞3)4𝑡  11.191 
(2.679) 

15.1446 
(5.049) 

 

𝐷(1991𝑞1)𝑖𝑡   -38.445 
(-8.756) 

 

𝐷(1991𝑞1)2𝑡   -56.014 
(-12.758) 

 

𝐷(1991𝑞1)3𝑡   -21.456 
(-4.887) 

 

𝐷(1991𝑞1)4𝑡   -14.169 
(-3.227) 

 

𝐷(1992𝑞3)1𝑡   20.993 
(5.856) 

 

𝐷(1992𝑞3)2𝑡   28.309 
(7.897) 

 

𝐷(1992𝑞3)3𝑡   15.400 
(3.720) 

 

𝐷(1992𝑞3)4𝑡   10.984 
(2.653) 

 

𝐷(1995𝑞1)1𝑡  -20.449 
(-5.864) 

-25.356 
(-9.489) 

 

𝐷(1995𝑞1)2𝑡  -26.786 
(-7.681) 

-32.569 
(-12.189) 

 

𝐷(1995𝑞1)3𝑡  -18.574 
(-5.712) 

-19.122 
(-8.554) 

 

𝐷(1995𝑞1)4𝑡  -14.615 
(-4.494) 

-15.384 
(-6.881) 

 

I_BRA    1.000 
(34.979) 

Adj 𝑅2 -0.023 0.544 0.877 0.897 

SC 7.637 7.083 6.022 5.243 

S.E 10.331 6.898 3.585 3.276 
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Figure 5.1.1: the actual and fitted values of model 2 reported in Table 5.1.2 

 

 

Figure 5.1.2: the actual and fitted values of model 3 reported in Table 5.1.2 
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Following Hendry (2001), Hendry and Santos (2005) and Caporale et. al. (2012) we 

construct an index of indicator variables to summarise the deterministic terms reported 

in column 3 of Table 5.1.2 in a single variable to enhance the efficiency of estimation of 

the ARIMAX model. We therefore define the index of indicator variable, denoted I_BRA, 

as the fitted value of the model reported in column 3 of Table 5.1.2 and report the 

regression of annual inflation on this indicator variable in column 4 of Table 5.1.2. The 

index is significant and has a unit coefficient as is expected. This model’s SC is 5.243 

which provides a benchmark for comparison with potential ARIMAX models to be 

developed from this deterministic specification that are discussed below. 

 

5.1.2 Developing the ARIMAX model for Brazil 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

residuals of the deterministic model reported in column 4 of Table 5.1.2 is plotted in 

Figure 5.1.3. From the ACF the non-seasonal autocorrelation coefficients (ACs) are 

significant at lag 1 and insignificant at lags 2, 3, 5 and 6. This implies that there is no need 

for further non-seasonal differencing because no more than the first 5 non-seasonal ACs 

are significant. It also implies that the maximum order of non-seasonal moving average 

(MA) component is probably 1.  Further, the seasonal ACs are significant at lags 4 and 8 

and insignificant at lags 12, 16, 20, 24 and 28.69 This suggests that there is no need for 

further seasonal differencing because no more than the first 5 seasonal ACs (at the 

seasonal lags 4, 8, 12, 16 and 20) are significant. It also indicates the maximum order of 

seasonal MA component is probably equal to 2 given the significant seasonal lags of 4 

and 8. 

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lag 1 and insignificant at lags 2 and 3. This suggests the maximum order of 

non-seasonal autoregressive (AR) component is probably 1. The seasonal PACs are 

                                                           
69 In seasonal ARIMA modelling the ACF is expected to have insignificant autocorrelation coefficients by 

the fifth or sixth seasonal lag to require no seasonal differencing. The first, second, third, fourth and fifth 

seasonal lags are represented by the autocorrelation coefficients at the following lag displacements: 4, 

8, 12, 16 and 20 respectively. If the ACF sample decays very slowly at the seasonal lags (that is, the first 5 

or so seasonal lags are significant) further seasonal differencing is needed. 
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significant at lags 4, 8 and 16 and insignificant at lags 12, 20, 24 and 28. Therefore, the 

maximum order of seasonal AR process is probably be equal to 2 (because the PAC at 

lag 12 is insignificant) although could be 4 (given the significance of the PAC at lag 16). 

Therefore, the maximum seasonal ARMA specification that we initially identify to the 

residuals of the deterministic model is 𝐴𝑅𝑀𝐴(1, 1)(2, 2)4.  

Figure 5.1.3: the ACF and PACF of the residuals of model 4 reported in Table 5.1.2 
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We report the multiplicative 𝐴𝑅𝑀𝐴(1, 1)(2, 2)4 specification that includes I_BRA plus 4 

seasonal dummy variables as our initial ARIMAX model in the column headed 5 of Table 

5.1.3. In this model the SC falls to 4.805 suggesting that the addition of ARMA terms has 

improved the specification. I_BRA is significant whereas all 4 seasonal dummy variables 

are insignificant. The latter is confirmed by the joint test for the exclusion of all 4 

seasonal dummy variables, denoted LR (SEA DUM), which has a probability value of 

0.687 (given in squared brackets below the reported test statistic). Because this exceeds 

0.05 these 4 dummy variables are jointly insignificant. The first non-seasonal 

autoregressive variable’s coefficient, denoted AR(1), is significant as is the first seasonal 

AR variable’s coefficient, denoted SAR(4), however, the second seasonal AR variable’s 

coefficient, denoted SAR(8), is insignificant. The first non-seasonal moving average 

variable’s coefficient, denoted MA(1), is insignificant as is the first seasonal MA 

variable’s coefficient, denoted SMA(4), however, the second seasonal MA variable’s 

coefficient, denoted SMA(8), is significant. These results suggest that the specification 

can be improved by the exclusion of some combination of deterministic and ARMA 

terms.  
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Table 5.1.3: The ARIMAX table for Brazil 

Sample/Observations 1984q1 – 2012q4 (116)   

 5 6 7 8 

I_BRA 1.021 
(73.407) 

1.021 
(77.081) 

  

I_BRA2    1.043 
(73.462) 

  1.046 
(95.933) 

𝐷1 0.080 
(0.956) 

0.081 
(1.022) 

-0.471 
(-6.435) 

-0.494 
(-9.628) 

𝐷2 0.064 
(0.670) 

0.064 
(0.702) 

-0.362 
(-4.449) 

-0.392 
(-6.887) 

𝐷3 0.094 
(1.098) 

0.092 
(1.115) 

-0.544 
(-8.159) 

-0.569 
(-11.900) 

𝐷4 0.026 
(0.337) 

0.027 
(0.368) 

-0.520 
(6.163) 

-0.472 
(-11.089) 

AR(1) 0.474 
(2.052) 

0.366  
(4.026) 

0.520 
(6.163) 

0.622 
(7.955) 

SAR(4) -0.777 
(-7.803) 

-0.825 
(-18.477) 

-0.841 
(-17.111) 

-0.145 
(-1.511) 

SAR(8) 0.052 
(0.545) 

  -0.297 
(-3.180) 

MA(1) -0.128 
(-0.492) 

   

SMA(4) 0.023 
(1.000) 

0.024 
(0.962) 

-0.000 
(-0.008) 

-0.100 
(-26.029) 

SMA(8) -0.977 
(-42.532) 

-0.977 
(-39.905) 

-1.000 
(-30.695) 

 

Adj 𝑅2 0.952 0.952 0.958 0.956 

SC 4.805   4.730  4.607 4.645 

S.E 2.243 2.230 2.100 2.137 

AR Root 0.957 
0.499 
0.474 

0.953 
0.366 

0.958 
0.520 

0.859 
0.622 

MA Root 0.999 
0.994 
0.128 

1.00070 
0.994 

0.999 0.999 

P[QLB(11)] 0.281  0.447 0.009 0.402 

LR (SEA DUM) 2.265 
[0.687] 

2.378 
[0.667] 

29.439 
[0.000] 

29.138 
[0.000] 

LR (SEA DUM, CON)    36.093 
[0.000] 

𝐿𝑅(1989𝑞3) 4.888 
[0.299] 

9.734 
[0.045] 

  0.632 
[0.959] 

1.153 
[0.886] 

𝐿𝑅(1991𝑞1) 4.483 
[0.345] 

-0.08571 0.376 
[0.984] 

1.536 
[0.820] 

𝐿𝑅(1992𝑞3) 6.794 
[0.147] 

  13.985 
[0.007] 

  0.095 
[0.999] 

2.191 
[0.701] 

𝐿𝑅(1995𝑞1) 3.360 
[0.500] 

12.717 
[0.013] 

0.621 
[0.961] 

0.305 
[0.990] 

Where:   I_BRA = the fitted value of the model reported in column 3 of Table 5.1.2, S E = S E of regression, MA = the maximum order 
of non-seasonal moving average component, SMA = the maximum order of seasonal moving average component, AR = the maximum 
order of non- seasonal autocorrelation component, SAR = the maximum order of seasonal moving average component , 𝐷𝑠𝑡  = the 
seasonal dummy variables, denoted as 𝐷1𝑡, 𝐷2𝑡, 𝐷3𝑡  and 𝐷4𝑡, P[QLB(11)] =  Probability value of the Ljung-Box Q-statistic at the 11th 

lag - based on the square root of the sample size ( √116), Adj 𝑅2 = Adjusted R – square , SC = Schwarz criterion, AR Roots = Stationary 
Autoregressive average , MA Roots = Stationary Moving average, LR(SEA DUM) = the joint test for the seasonal dummy variables; 
𝐿𝑅(1989𝑞3),𝐿𝑅(1991𝑞1), 𝐿𝑅(1992𝑞3) and 𝐿𝑅(1995𝑞1) = Joint shift significance of each break date, Rounded Bracket = T – Ratios 
and Square Bracket = Probability value. 

                                                           
70 The value is rounded up to one, however, it is less than one which means that invertibility is not violated. 

71  The test statistic has a negative value and therefore no p-value. However, the test statistic is clearly very small 
and therefore is highly insignificant.  
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We also conduct variable addition tests for the shift dummy variables included in the 

I_BRA variable to assess whether the coefficients on these terms embodied in this index 

have changed significantly with the addition of ARMA terms. A test of whether the 4 

shift dummy variables corresponding to the 1989q3 break can be added to the model 

with joint significance is reported in the row labelled 𝐿𝑅(1989𝑞3). Since the probability 

value (given in square brackets below the test statistic, being 0.299) exceeds 0.050 these 

variables cannot be added with joint significance. Similarly, the probability values of the 

joint tests of the 4 shift dummy variables corresponding to the break dates 1991q1, 

1992q3 and 1995q1, reported in the rows labelled 𝐿𝑅(1991𝑞1), 𝐿𝑅(1992𝑞3) and 

𝐿𝑅(1995𝑞1) respectively; all exceed 0.050 indicating that no shift variables for these 

dates can be added with joint significance. This suggests that the coefficients embodied 

in I_BRA have not significantly changed with the addition of ARMA terms and therefore 

remains an adequate specification of the deterministic component of the model. 

For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 11th lag, denoted P[QLB(11)], exceeds 0.050 indicating no evident residual 

autocorrelation – we choose lag 11 based on the square root of the sample size (in this 

case √116). The inverse roots of the AR process, denoted AR Root, are all less than one 

indicating that the model is consistent with a stationary process. The inverse roots of 

the MA process, denoted MA Root, are all less than one indicating that the model is 

invertible. Hence, the model is valid for forecasting in the sense that there is no evidence 

of misspecification according to the standard tests.  

However, as indicated above the specification can be improved with the removal of 

insignificant ARMA variables. The coefficients on the MA(1), SMA(4) and SAR(8) terms 

are not significant and are candidates for exclusion. Since the SMA(8) term is significant 

we do not remove the SMA(4) term to retain the full second-order seasonal MA 

component. Therefore, we remove the MA(1) and SAR(8) terms from the model 

reported in the column headed 5 from Table 5.1.3 and report the resulting 

𝐴𝑅𝑀𝐴𝑋(1, 0)(1, 2)4 specification in the column headed 6 of Table 5.1.3. This model 

cannot be rejected by the diagnostic checks for residual autocorrelation, stationarity 

and invertibility. In terms of specification, all variables are significant except for the 



94 
 

SMA(4) term, which we would not exclude because the SMA(8) term is significant. The 

seasonal dummy variables are jointly insignificant according to LR(SEA DUM) because its 

probability value is greater than 0.05. However, the tests 𝐿𝑅(1989𝑞3), 𝐿𝑅(1992𝑞3) 

and 𝐿𝑅(1995𝑞1) indicate that the seasonal shift coefficients embodied in I_BRA have 

changed significantly. We therefore add the seasonal shift dummy variables 

corresponding to these dates to the model reported in the column headed 6 of Table 

5.1.3 and use the estimated coefficients on these terms to adjust I_BRA. The new index 

of an indicator variable, I_BRA2, is defined as: 

I_ BRA2 = I_BRA + 2.483 [S1*S1989Q3] + 1.264 [S2*S1989Q3] - 0.488 [S3*S1989Q3] + 

1.323 [S4*S1989Q3] - 3.987 [S1*S1992Q3] - 3.791 [S2*S1992Q3] + 1.002 [S3*S1992Q3] 

- 2.270 [S4*S1992Q3] + 1.865 [S1*S1995Q1] + 2.970 [S2*S1995Q1] + 0.113 

[S3*S1995Q1] + 1.433 [S4*S1995Q1]. 

We re-estimate the model reported in the column headed 6 of Table 5.1.3 with I_BRA 

being replaced with I_BRA2. The resulting model is reported in the column headed 7 of 

Table 5.1.3. Although this model does not fail the diagnostic checks for invertibility and 

stationarity, there is evidence of autocorrelation suggesting unmodelled systematic 

variation in the dependent variable and the need to adjust the model. Experimentation 

with the ARMA terms demonstrates that an SAR(8) term is significant when included 

instead of the SMA(8) term included in model 7. Hence, we estimate the 

𝐴𝑅𝑀𝐴𝑋(1, 0)(2, 1)4 model reported in the column headed 8 of Table 5.1.3.  

This model cannot be rejected according to the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. Therefore, it is valid for forecasting. All 

variables are significant except for the SAR(4) term, which we would not remove 

because the SAR(8) term is significant. Notably, the seasonal dummy variables are now 

individually and jointly significant (see LR(SEA DUM)). 

The tests for the addition of the 4 sets of shift dummy variables, 𝐿𝑅(1989𝑞3), 

𝐿𝑅(1991𝑞1), 𝐿𝑅(1992𝑞3) and 𝐿𝑅(1995𝑞1), all have probability values that exceed 

0.050 indicating that the coefficients embodied in I_BRA2 have not significantly changed 

as the ARMA specification is amended.   
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We test the null hypothesis of whether the coefficients of the seasonal dummy 

variables, 𝐷1𝑡, 𝐷2𝑡 , 𝐷3𝑡 and 𝐷4𝑡, are the same using a Wald test. This test is reported in 

the row labelled LR (SEA DUM, CON) of column 8 and the probability value is 0.000. Since 

this value is less than 0.050, we reject the null hypothesis (of no seasonality) and accept 

the alternative hypothesis. This suggests a significant difference in the coefficients of 

the individual seasonal dummy variables indicating significant deterministic seasonality. 

Hence, these seasonal dummy variables cannot be replaced by a single deterministic 

intercept.  Further, this model cannot be rejected according to the standard diagnostic 

checks for residual autocorrelation, stationarity, invertibility and the coefficients 

embodied in I_BRA2 have not significantly changed as the ARMA specification is 

amended.  Therefore, model 8 in Table 5.1.3 is considered the best model to forecast 

Brazil’s annual inflation. Visual inspection of the actual and fitted values graph of this 

model suggests that the time paths of the actual and fitted values capture all of the 

mean shifts in the actual data and any unmodelled seasonality is within the confidence 

limits and diminishes toward zero. 

Figure 5.1.4: the actual and fitted values of model 8 reported in Table 5.1.3 
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Therefore, we regard model 8 from Table 5.1.3 as the best ARIMAX model for 

forecasting Brazilian annual inflation because it has the minimum SC from those that 

cannot be rejected according to the diagnostic checks and the included deterministic 

adequately captures the identified structural breaks (according to the conducted 

variable addition tests). A similar procedure was applied for all countries and (to save 
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space) the discussion for all countries is available in Appendix (Section 5.1, page 285 -

393). The table below summarises the favoured ARIMAX specifications for all BRICS and 

OPEC countries. These are the ARIMAX specifications used to forecast each country’s 

inflation over the period 2013q1 to 2014q4. We note that all countries’ favoured models 

pass the diagnostic checks and are therefore valid for forecasting. Further, the favoured 

ARIMAX models include an indicator dummy variable to capture structural breaks for all 

countries except India. 
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5.1.5 Summary of the ARIMAX specification for BRICS countries  

Countries Brazil Russia India China South Africa 

Start 1984q1 1996q1 1961q1 1992q1 1961q1 

 End 2012Q4 2012q4 2012q4 2012q4 2012q1 

Observations 116 68 208 84 208 

ARMAX 
Specifications 

(1,0) (2,1) (0,5) (4,3) (2, 3) (1,1) (1,0) 

I_(P)   1.046 
(95.933) 
 

1.016 
(14.421) 

 1.037 
(5.778) 

-0.040 
(-6.425) 

𝐷1 -0.494 
(-9.628) 

-0.009 
(-0.443) 

 0.080 
(8.732) 

-0.027 
(-1.600) 

 

𝐷2 -0.392 
(-6.887) 

-0.009 
(-0.434) 

0.079 
(8.717) 

-0.023 
(--1.382) 

 

𝐷3 -0.569 
(-11.900) 

-0.004 
(-0.198) 

0.079 
(8.709) 

-0.020 
(-1.246) 

 

𝐷4 -0.472 
(-11.089) 

-0.007 
(-0.339) 

0.079 
(8.728) 

-0.015 
(-0.959) 

 

AR(1) 0.622 
(7.955) 

 0.489 
(6.973) 

0.378 
(2..953) 

0.993 
(113.433) 

AR(2)   0.126 
(1.600) 

0.341 
(2.789) 

 

AR(3)   0.112 
(1.435) 

  

AR(4)   -0.186 
(-2.669) 

  

SAR(4) -0.145 
(-1.511) 

   -0.605 
(-9.042) 

SAR(8) -0.297 
(-3.180) 

    

MA(1)  0.184 
(1.403) 

1.005 
(61.557) 

  0.904 
(10.427) 

0.465 
(7.259)  

MA(2)  0.511 
(4.432) 

1.000 
(61.251) 

0.773 
(7.692) 

 

MA(3)  0.468 
(3.633) 

0.980 
(88.145) 

0.868 
(11.057) 

 

MA(4)  -0.431 
(-3.397) 

   

SMA(4) -0.100 
(-26.029) 

    

MA(5)  0.428 
(2.981) 

   

Adj 𝑅2 0.956 0.932 0.926 0.943 0.945 

SC 4.645 -2.278 -5.307 -5.902 -5.951 

S.E 2.137 0.062 0.015 0.010 0.012 

AR Root 0.859 
0.622 

 0.695 
0.621 

0.803 
0.425 

0.993 
0.882 

MA Root 0.999  0.999 
0.992 
0.659 

0.994 
0.992 

0.999 
0.932 

0.465 

P[QLB] 0.402[11]  0.519[8] 0.163 [14] 0.163[9] 0.178[14] 
LR (SEA DUM) 29.138 

[0.000] 
9.425 
[0.051] 

29.925 
[0.000] 

3.120 
[0.540] 

 

LR (SEA DUM, 
CON) 

36.093 
[0.000] 

12513.370 
[0.000] 

12.580 
[0.000] 

10.986 
[0.000] 

312.016 
[0.000] 
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MA = the maximum order of non-seasonal moving average component, SMA = the maximum order of 

seasonal moving average component, AR = the maximum order of non- seasonal autocorrelation 

component, SAR = the maximum order of seasonal moving average component , 𝐷𝑠𝑡  = the seasonal 

dummy variables, denoted as 𝐷1𝑡 , 𝐷2𝑡 , 𝐷3𝑡  and 𝐷4𝑡, P[QLB]=  Probability value of the Ljung-Box Q-statistic 

at that based on the square root of the sample size, Adj 𝑅2 = Adjusted R – square , SC = Schwarz criterion, 

AR Roots = Stationary Autoregressive average , MA Roots = Stationary Moving average, LR(SEA DUM) = 

the joint test for the seasonal dummy variables, Rounded Bracket = T – Ratios and Square Bracket = 

Probability value. I_(P ) =  is an index indicator variable for seasonal shifts embodied as the deterministic 

terms, i.e Brazil is estimated at I_ BRA2, Russia at I_ RUS, China is estimated at  I_ CHI4 and South Africa 

is estimated at I_ SOU. However, India does not have an index indicator variable because the Bai Perron 

test did not specify any break for this country.  For South Africa, the seasonal dummy variables are jointly 

insignificant. Therefore, we exclude the seasonal dummy variables from the model. After the exclusion of 

these dummies the model passes all the required diagnostic tests for stationarity, invertibility and 

autocorrelation. 
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5.1.6 Summary of ARIMAX specification for selected OPEC countries  

 MA = the maximum order of non-seasonal moving average component, SMA = the maximum order of 
seasonal moving average component, AR = the maximum order of non- seasonal autocorrelation 
component, SAR = the maximum order of seasonal moving average component , 𝐷𝑠𝑡  = the seasonal 
dummy variables, denoted as 𝐷1𝑡 , 𝐷2𝑡 , 𝐷3𝑡  and 𝐷4𝑡, P[QLB]=  Probability value of the Ljung-Box Q-statistic 
at that based on the square root of the sample size, Adj 𝑅2 = Adjusted R – square , SC = Schwarz criterion, 
AR Roots = Stationary Autoregressive average , MA Roots = Stationary Moving average, LR(SEA DUM) = 

Countries Algeria Angola Ecuador Kuwait Nigeria Saudi 
Arabia 

Start 1978q1 1996q1 1987q1 1977q1 1964q1 1975q1 

 End 2012Q4 2012q4 2012q4 2012q4 2012q1 2012q1 

Observations 140 68 104 140 196 152 

ARMAX 
Specifications 

(4,4) (1, 2) (0,2) (0,1) (1,3) (1,2) (0,1) (1,4)(1,0) 

I_(P) 0.931 
(22.883) 

0.219 
(65.172) 

0.250 
(6.677)  

0.566 
(21.047) 

0.413 
(6.740) 

0.593 
(10.889) 

𝐷1  -111.109 
(-63.171) 

-0.138 
(-0.515) 

0.016 
(4.383) 

 0.105 
(3.402) 

 

𝐷2  -1.893 
(-4.146) 

-0.139 
(-0.518) 

0.021 
(5.968) 

0.105 
(3.363) 

 

𝐷3   33.137 
(48.401) 

-0.138 
(-0.513) 

0.019 
(5.150) 

0.106 
(3.389) 

 

𝐷4  0.806 
(1.747) 

-0.139 
(-0.517) 

0.018 
(5.102) 

0.104 
(3.327) 

 

AR(1) -0.482 
(-5.905) 

0.701 
(37.589) 

 0.355 
(4.131) 

  0.982 
(53.154) 

-0.578 
(-8.389) 

AR(2) 0.288 
(3.025) 

     

AR(3) -0.214 
(-2.367) 

     

AR(4)  -0.648 
(-8.371) 

     

SAR(4)      0.293 
(4.148) 

MA(1)  1.148 
(17.226) 

-0.352 
(-8.927) 

0.696 
(7.667) 

0.861 
(20.914) 

0.259 
(3.478) 

1.747 
(173.159) 

MA(2) 0.546 
(4.587) 

0.999 
(979.039) 

0.485 
(5.238) 

0.762 
(13.532) 

0.219 
(2.974) 

1.590 
(86.922) 

MA(3) 0.814 
(7.323) 

  0.882 
(22.003) 

 1.719 
(130.153) 

MA(4)  0.785 
(13.321) 

     0.977 
(137.423) 

SMA(4)   -0.999 
(-32.316) 

 -0.969 
(-63.398) 

 

Adj 𝑅2  0.893 0.997 0.980 0.949 0.911 0.960 

SC -3.929 2.360 -3.449 -6.646 -2.887 -5.296 

S.E 0.029 0.654 0.037 0.008 0.052 0.016 

AR Root 0.933 
0.863 

0.701 0.986 0.355 0.982 0.735 
0.578 

MA Root 0.986 
0.898 

0.999 0.999 
0.696 

0.991 
0.943 

0.992 
0.468 

0.996 
0.993 

P[QLB] 0.061[12] 0.111[8] 0.116[10] 0.330[12] 0.184[14] 0.145[12] 
LR (SEA DUM)  298.100 

[0.000] 
11.295 
[0.023] 

88.095 
[0.000] 

18.313 
[0.001] 

 

LR (SEA DUM, 
CON) 

439.,689 
[0.000] 

 1487.189 
[0.000] 

6.969 
[0.000] 

647622.300 
[0.000] 

8.948 
[0.000] 

499.119 
[0.000] 
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the joint test for the seasonal dummy variables, Rounded Bracket = T – Ratios and Square Bracket = 
Probability value. I_(P ) =  is an index indicator variable for seasonal shifts embodied as the deterministic 
terms, i.e Algeria is significant at I_ ALG, Angola at I_ ANG3, Ecuador at  I_ ECU3, Kuwait at I_KUW4, Nigeria 
at I_NIG3 and Saudi Arabia is significant at I_ SAU. For Saudi Arabia and Algeria, the seasonal dummy 
variables are jointly insignificant. Therefore, we exclude the seasonal dummy variables from these 
models. After the exclusion of these dummies the model passes all the required diagnostic tests for 
stationarity, invertibility and autocorrelation. 
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5.2.0 Box-Jenkins based ARIMA modelling of annual inflation on reduced 

samples without structural breaks 

In this section, we will build ARIMA models to the countries’ annual inflation using a 

reduced sample period that avoids structural breaks. We use the break dates identified 

in the above full sample modelling and provided a minimum of 39 observations for 

estimation and we develop seasonal ARIMA models. Although there may be some 

seasonality our analysis in Chapter 4 suggests that the annual rate of inflation (based on 

a 4-period difference) will not require further transformations to deal with seasonal (or 

nonseasonal) unit roots. Hence, it is this variable that we build seasonal ARIMA models 

to in all countries. However, we include seasonal dummy variables as the deterministic 

component of our model which combined with an ARMA specification to the residuals 

yields our ARIMA model. The purpose of this is to consider whether forecast accuracy is 

improved by using a shorter sample (reducing efficiency of estimation) to avoid the 

modelling of structural breaks. The latter entails problems associated with accurately 

identifying and characterising the breaks (we have typically approximated breaks with 

an abrupt sample shift which may not be ideal if the break occurs over several periods). 

Therefore, we consider those countries that meet our minimum requirements. In this 

study, we consider countries that exhibit structural breaks (we therefore do not model 

India without a structural break again) and a minimum of 39 observations without 

structural breaks at the end of their samples. This may be justified by the notion that 

the end-of-sample period is more relevant for forecasting the future than older samples.  

The available countries that meet up with our minimum requirements in the BRICS and 

selected OPEC countries are summarised below: 

Table 5.2 

Country Sample 

Brazil 1995q2- 2012q4 

Russia 2001q2- 2012q4 

South Africa 1993q2- 2012q4 

Nigeria 1996q4- 2012q4 

Algeria 1997q1- 2012q4 

Saudi Arabia 1977q3- 2012q4 

Angola  1998q4- 2012q4  
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5.2.1 Box-Jenkins ARIMA modelling of annual inflation for Brazil 

In the full sample ARIMAX model developed for Brazil in section 5.1 we identified the 

last structural break date as 1995q1.  Hence, the maximum available estimation period 

that avoids structural breaks is 1995q2 to 2012q4.To allow for lags, transformations and 

have a consistent estimation period for all models we specify an initialization period of 

two years and estimate all models over the period 1997q2 – 2012q4 (63 observations). 

First, we regress inflation on the 4 seasonal dummy variables denoted 𝐷𝑠𝑡 where 𝑠 =

1, 2, 3, 4, to yield the benchmark deterministic specification. Second, we identify the 

ARMA components to the residuals of this model and discuss the development of the 

final seasonal ARIMA model. 

Table 5.2.1 reports the benchmark deterministic specification and various seasonal 

ARIMA models.  The model reported in the column labelled 1 is the benchmark 

deterministic model. The results indicate that all of the seasonal dummy variables’ 

coefficients are significant and the model’s Schwarz criterion (SC) is -4.055. 

Figure 5.2.1 plots the autocorrelation function (ACF) of the residuals of the model 

reported in the column headed 1 in Table 5.2.1. The non-seasonal autocorrelation 

coefficients (ACs) from the ACF are significant at lags 1, 2 and 3 and insignificant at lags 

4, 5 and 6. This implies that there is no need for further non-seasonal differencing 

because no more than the first 5 non-seasonal ACs are significant. It also implies that 

the maximum order of non-seasonal moving average (MA) component is probably 3. 

Further, the seasonal ACs are significant at lags 16 and 20 and insignificant at lags 4, 8, 

12, 16, 20, 24 and 28. This suggests that there is no need for further seasonal 

differencing because no more than the first 5 seasonal ACs (at the seasonal lags 4, 8, 12, 

16 and 20) are significant. It also indicates the maximum order of seasonal MA 

component is probably equal to 0. 

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lags 1 and 2 and insignificant at lags 3 and 4. This suggests the maximum 

order of non-seasonal autoregressive (AR) component is probably 2. The seasonal PACs 

are insignificant at lags 4, 8, 12 16, 20, 24 and 28. Therefore, the maximum order of 

seasonal AR process could be 0. Hence, the maximum seasonal ARMA specification that 

we initially identify to the residuals of the deterministic model is a seasonal 
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𝐴𝑅𝑀𝐴(2, 3)(0, 0)4, which is equivalent to the non-seasonal 𝐴𝑅𝑀𝐴(2, 3) specification. 

We report an ARIMA specification that includes 4 seasonal dummy variables and an 

𝐴𝑅𝑀𝐴(2, 3) model of the residuals in the column headed 2 of Table 5.2.1. 
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Figure 5.2.1: the ACF and PACF of the residuals of model 1 reported in Table 5.2.1 

 

In this model, the SC falls to -5.981 suggesting that the addition of ARMA terms has 

improved the specification. All four seasonal dummy variables are significant. The latter 

is confirmed by the joint test for the exclusion of all 4 seasonal dummy variables, 

denoted LR(SEA DUM), which has a probability value of 0.022 (given in square brackets 

below the reported test statistic). However, all the ARMA components are insignificant. 

These results suggest that the specification can be improved by the removal of some of 

the ARMA terms. 
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Table 5.2.1: The ARIMA table for Brazil 

Observations 1997q2 2012q4 (63) 

 1 2 3 

𝐷1 0.063 
(8.421) 

0.063 
(8.693) 

0.056 
(46.188) 

𝐷2 0.063 
(8.774) 

0.063 
(8.596) 

0.056 
(41.780) 

𝐷3 0.062 
(8.617) 

0.063 
(8.442) 

0.056 
(41.403) 

𝐷4 0.063 
(8.686) 

0.063 
(8.548) 

0.056 
(46.139) 

AR(1)  1.115 
(1.442) 

 

AR(2)  -0.371 
(0.727) 

 

MA(1)  0.597 
(0.765) 

2.029 
(22.789) 

MA(2)  -0.250 
(-0.288) 

2.046 
(16.104) 

MA(3)  0.152 
(0.660) 

1.986 
(20.354) 

MA(4)   0.969 
(15.567) 

Adj 𝑅2 -0.051 0.892 0.930 
SC -4.055 -5.981 -6.577 
S.E 0.028 0.009 0.007 
AR Root  0.609  

 
MA Root  0.999 

0.390 
0.995 
0.989 

P[QLB(7)]  0.016 0.355 
LR (SEA DUM)  11.413 

[0.022] 
65.826 
[0.000] 

LR (SEA DUM, CON)   169.279 
[0.000] 

 

For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 7th lag, denoted P[QLB(7)], is less than 0.050 indicating evident of residual 

autocorrelation that suggests unmodelled systematic variation in the dependent 

variable and the need to adjust the model – we choose lag 8 based on the square root 

of the sample size (in this case √63). The inverse roots of the AR process, denoted AR 

Root, are all less than one indicating that the model is consistent with a stationary 

process. The inverse roots of the MA process, denoted MA Root, are all less than one 
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indicating that the model is invertible. Hence, the model is not valid for forecasting 

because there is evident autocorrelation.  

After experimentation, we find that a non-seasonal 𝐴𝑅𝑀𝐴(0, 4) specification is an 

improved model. The results of this 𝐴𝑅𝑀𝐴(0, 4) model is reported in the column 

headed 3 of Table 5.2.1. The coefficients on the four dummy variables and all of the 

moving average components are significant. A Wald test for the null hypothesis that all 

of the seasonal dummies’ coefficients are equal is reported in the row denoted LR (SEA 

DUM, CON). Since the probability value, being 0.000, is less than 0.050 this suggests a 

significant difference in the coefficients of the individual seasonal dummy variables 

(significant seasonality) and that they cannot be replaced by a single (non-seasonal) 

intercept. This model’s SC decreases to -6.577. This model cannot be rejected by the 

diagnostic checks for residual autocorrelation, stationarity and invertibility. Therefore, 

it is valid for forecasting.  

 

Figure 5.2.2: the actual and fitted values reported in Table 5.2.1 column 3 
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Visual inspection of the actual and fitted values (Figure 5.2.2) of this model suggests that 

the time path of the fitted values capture the movements in the actual data well. In 

terms of model fit the adjusted 𝑅2 of this ARIMA model on the reduced sample is 0.930 

which is slightly less than the specification estimated using the full sample that model’s 
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structural breaks (Section 5.1), being 0.956. It will be interesting to see if the 

comparative fit of these two models is indicative of their relative forecasting 

performance.  

A similar procedure was applied for all countries and (to save space) the discussion is 

available in Appendix. Section 5.2 page 394 - 425. The table below summarises the 

seasonal ARIMA specifications for both BRICS and OPEC countries. These are the 

seasonal ARIMA specifications used to forecast each country’s inflation over the period 

2013q1 to 2014q4. We note that all countries’ favoured models pass the diagnostic 

checks and are therefore valid for forecasting. 
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Table 5.2.3 Summary of seasonal ARIMA specification for BRICS and selected OPEC 

countries72 

Note see Table 5.1 6 for details and P_(D) = index pulse dummy variable indicator  

                                                           
72 Note that we only consider those countries that identified with breaks in the previous section with the 
minimum of 39 observations after the last break and initialization period of two years. Therefore, we did 
not consider Ecuador, Kuwait and China in this section because they did not meet our minimum 
requirement. 

Countries Brazil Russia South 
Africa 

Algeria Angola Nigeria Saudi 
Arabia 

Start 1997q2 2003q2  1995Q2 1999Q2 2000q3 1998q4 1979q3 

 End 2012q4 2012q4  2012q4 2012q4  2012q4 2012q4  2012q4 

Observations 63 39 71 55 49 57 134 

P_(D)   -0.032 
(-6.965) 

  -0.045 
(-2.446) 

 

ARMA 
Specifications 

(0, 4) (1, 3) 
(1, 1)(0,1) 

(1, 0)(1,0) (1, 3) 
(2, 0)(1,0) (2,1) (1,0) 

𝐷1 0.056 
(46.188) 

0.096 
(13.229) 

  0.207 
(1.845) 

0.121 
(10.226) 

0.038 
(0.587) 

𝐷2 0.056 
(41.780) 

0.096 
(13.389) 

  0.215 
(1.910) 

0.118 
(9.889) 

0.038 
(0.583) 

𝐷3 0.056 
(41.403) 

0.096 
(13.509) 

  0.207 
(1.879) 

0.117 
(9.796) 

0.038 
(0.588) 

𝐷4 0.056 
(46.139) 

0.096 
(13.508) 

  0.202 
(1.802) 

0.122 
(10.340) 

0.038 
(0.588) 

AR(1)  0.821 
(10.849) 

0.996 
(112.894) 

0.999 
(32.465) 

0.809 
(25.825) 

1.192 
(8.762) 

1.867 
(21.453) 

AR(2)      -0.427 
(-2.994) 

-0.868 
(-9.845) 

SAR(4)    -0.580 
(-4.760) 

 -0.427 
(-3.000) 

-0.970 
(-81.718) 

MA(1) 2.029 
(22.789) 

0.777 
(8.869) 

0.764 
(8.761) 

 0.287 
(3.450) 

 -0.618 
(-4.710) 

MA(2) 2.046 
(16.104) 

0.693 
(13.154) 

  0.132 
(1.317) 

  

MA(3) 1.986 
(20.354) 

0.916 
(11.488) 

  0.844 
(9.552) 

  

MA(4) 0.969 
(15.567) 

      

SMA(4)   -0.899 
(-30.058) 

    

Adj 𝑅2 0.930 0.956 0.897 0.712 0.990 0.711 0.906 

SC -6.577 -6.728 -5.809 -5.551 -2.306 -3.829 -6.366 

S. E 0.007 0.001 0.012 0.014 0.061  0.009 

AR Root  0.821 0.996 
0.974 
0.764 

0.999 
0.873 

0.809 
 
 

0.808 
0.654 

0.983 
0.883 

MA Root 0.995 
0.989 

0.999 
0.957 

0.974 
0.763 

 0.999 
0.918 

 0.992 
0.618 

P[QLB] 0.355 0.084 0.103 0.432 0.053 0.406 0.103 

LR (SEA DUM) 65.826 
[0.000] 

19.493 
[0.001] 

  2.584 
[0.407] 

 2.829 
[0.034] 

1.949 
[0.106] 

LR (SEA DUM, 
CON) 

169.279 
[0.000] 

 36.149 
[0.000] 

  7.581 
[0.000] 

18.751 
[0.000] 

66.771 
[0.000] 
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In summary, Table 5.2.3 summaries seasonal ARIMA models for both BRICS and selected 

OPEC countries using a reduced sample period that avoids structural breaks for the 

following countries:  Brazil, Russia, South Africa, Algeria, Angola, Nigeria and Saudi 

Arabia.  We only built models for countries where the reduced sample had at least 39 

observations. This will allow us to assess whether forecast accuracy is generally better 

for seasonal ARIMA specifications using a shorter sample that avoids the modelling of 

structural breaks or models developed on the full sample where structural breaks are 

modelled. For Russia, the in-sample fit (according to the 𝑅̅2) is superior using the 

reduced sample specification while for the following countries the in-sample fit is better 

for the ARIMAX specifications based on the full sample: Brazil, South Africa, Algeria, 

Angola, Nigeria and Saudi Arabia.73 For the following countries, there is no in-sample fit 

comparison because models were not developed on the reduced sample: India, China, 

Ecuador and Kuwait. It will be interesting to see if the comparative fit of these two 

models is indicative of their relative forecasting performance. 

                                                           
73 See Table 5.4.6 for details.  
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5.3.0 Modelling annual inflation using Eviews 9’s automatic seasonal 

ARIMA model selection tool on reduced samples without structural 

breaks  

In this section, we conduct a further ARIMA modelling experiment to provide an 

additional model formulation for comparative purposes. We develop seasonal ARIMA 

models to forecast unadjusted annual inflation variables over the reduced sub-samples 

(without structural breaks) identified in section 5.2. This is done for the countries where 

the sub-sample contains at least 39 observations.74 The difference between these 

models and those developed in section 5.2 is that we utilise EViews 9’s automatic ARMA 

model selection procedure. This procedure selects seasonal models that minimise the 

Schwarz (SC) criterion of all ARMA specifications nested within the assumed maximum 

order of non-seasonal AR and MA components of 3 and maximum seasonal AR and MA 

components of order 2.  A maximum order of 3 for the non-seasonal components is 

specified because the seasonal terms will capture lag 4 and, in multiplicative 

specifications, will capture lag 5 (provided a corresponding non-seasonal ARMA 

component is included). We do not consider the automatic selection of logarithmic or 

differencing transformations that are also available because we believe that the annual 

inflation data is stationary. We also include deterministic seasonal dummy variables in 

the model as exogenous variables when the automatic ARMA selection takes place to 

yield automatically selected seasonal ARIMA specifications. Whilst we report diagnostic 

checks (for residual autocorrelation, stationarity and invertibility) for the selected 

models we do not reject automatically selected models for forecasting that fail these 

checks because this is not intended in real world applications (it is a cost that needs to 

be offset against the time saving benefit of the method). However, we will consider 

whether the forecasting performance of the models that fail these checks notably 

deteriorates relative to models that do not fail these checks. We will also assess whether 

EViews 9’s automatic ARMA selection procedure leads to the inclusion of statistically 

insignificant variables. 

                                                           
74 We include China in this section because the period after the structural breaks are less than 39 

observations and relative step shifts for this period also appear to be small which mean that inference 

regarding unit roots may not be too adversely affected when using the full sample. Hence, the full 

sample is used for these models for this country. 
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Table 5.3.1. Automatic Eviews seasonal ARMA specifications: BRICS countries  

Where:  MA = the maximum order of non-seasonal moving average component, AR = the maximum order 

of non- seasonal autocorrelation component, 𝐷𝑠𝑡  = the seasonal dummy variables, denoted as 

𝐷1𝑡 , 𝐷2𝑡 , 𝐷3𝑡  and 𝐷4𝑡, P[QLB] =  Probability value of the Ljung-Box Q-statistic where the number of ACs 

included in the ACF is indicated in brackets, Adj 𝑅2 = Adjusted R – square , SC = Schwarz criterion, AR Roots 

= Stationary Autoregressive average , MA Roots = Stationary Moving average, LR(SEA DUM) = the test for 

the joint significance of the seasonal dummy variables and LR (SEA DUM, CON) is the Wald test for the 

null hypothesis that all of the seasonal dummies’ coefficients are equal. 

Countries Brazil Russia India China  South Africa 

Start 1997Q2 2003Q2 1961Q1 1992Q1 1995Q2 

 End 2012Q4 2012Q4 2012Q4 2012Q4 2012Q4 

Observations 63 39 208 84 71 

 ARMA 
Specifications 

(1,1)(0,1) (2,2)(2, 2,) (1,3)(0,0)  (3,2)(0,1) (1, 1)(0,1) 

𝐷1  0.064 
(10.263) 

0.105 
(9.451) 

0.077 
(7.149) 

0.030 
(2.857) 

0.063 
(30.375) 

𝐷2 0.064 
(10.276) 

0.106 
(9.486) 

0.077 
(7.139) 

0.030 
(2.835) 

0.062 
(26.257) 

𝐷3 0.064 
(9.986) 

0.106 
(9.572) 

0.077 
(7.145) 

0.029 
(2.810) 

0.062 
(28.628) 

𝐷4 0.064 
(10.054) 

0.106 
(9.541) 

0.077 
(7.138) 

0.029 
(2.783) 

0.063 
(32.350) 

AR(1) 0.928 
(8.247) 

1.930 
(5.267) 

0.569 
(12.018) 

1.017 
(3.118) 

0.791 
(9.032) 

AR(2)  -0.951 
(-2.778) 

 0.835 
(1.358) 

 

AR(3)    -0.870 
(-2.814) 

 

SAR(4)  -0.951 
(-1.252) 

   

SAR(8)  -0.624 
(-2.427) 

   

MA(1) 0.999 
(0.000) 

-0.360 
(-0.211) 

0.983 
(0.010) 

0.310 
(0.005) 

0.761 
(8.526) 

MA(2)  0.989 
(0.095) 

0.983 
(0.010) 

-0.699 
(-0.015) 

 

MA(3)   0.999 
(0.006) 

  

SMA(4) -0.999 
(-0.001) 

-1.908 
(-0.000) 

 -0.999 
(-0.006) 

-1.000 
(-0.001) 

SMA(8)  0.999 
(0.000) 

   

Adj 𝑅2 0.928 0.983 0.925 0.944 0.856 

SC -6.236 -6.094 -5.257 -5.669 -5.138 

S.E 0.003 0.003 0.015 0.010 0.013 

AR Root 0.952 0.975 
0.942 

0.569 0.972 
0.919 

 
0.791 

MA Root 0.999 0.999 
0.995 

0.999 0.999 1.000 
0.761 

P[QLB] 0.544 [8] 0.000 [6] 0.043 [14] 0.213 [9] 0.606 [8] 

LR (SEA DUM) 7.501 
[0.000] 

36.775 
[0.000] 

9.737 
[0.000] 

2.640 
[0.041] 

3.049 
[0.023] 

LR (SEA 
DUM,CON) 

213760.000 
[0.000] 

16.825 
[0.000] 

32.493 
[0.000] 

3.392 
[0.022] 

28.252 
[0.000] 
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Table 5.3.2 Automatic Eviews seasonal ARMA specifications: OPEC countries  

See notes to Table 5.3.1 
 

  

                                                           
75 The value is rounded up to one, however, it is less than one indicating that invertibility is not violated. 

Countries Algeria Angola Nigeria Saudi Arabia 

Start 1999Q2 2000Q4 1998Q4 1979Q3 

 End 2012Q4 2012Q4 2012Q4 2012Q4 

Observations 55 49 57 134 

 ARMA Specifications (1,0)(0,1) (3,0)(0,1) (1,1)(0,1) (2,1)(0,1) 

𝐷1 0.037 
(2.786) 

1.541 
(0.662) 

0.123 
(19.261) 

0.012 
(2.615) 

𝐷2 0.038 
(2.840) 

1.534 
(0.661) 

0.119 
(16.645) 

0.012 
(2.577) 

𝐷3 0.040 
(3.018) 

1.536 
(0.662) 

0.121 
(18.260) 

0.012 
(2.616) 

𝐷4 0.038 
(2.809) 

1.540 
(0.663) 

0.122 
(21.520) 

0.012 
(2.582) 

AR(1) 0.986 
(4.091) 

1.683 
(14.890) 

0.767 
(6.360) 

1.962 
(33.246) 

AR(2)  -0.384 
(-2.012) 

 -0.967 
(-15.973) 

AR(3)  -0.303 
(-3.409) 

  

MA(1)   0.426 
(2.452) 

-0.813 
(-5.887) 

SMA(4) -0.999 
(-0.001) 

-1.000 
(-0.000) 

-1.000 
(-0001) 

-0.999 
(-0.021) 

Adj 𝑅2 0.755 0.987 0.787 0.908 
SC -5.295 -1.648 -3.929 -6.249 
S.E 0.013 0.069 0.024 0.008 
AR Root 0.986 0.996 0.767 0.983 
MA Root 0.999 1.00075 1.000 

0.426 
0.999 
0.812 

P[QLB] 0.725 [7] 0.068 [7] 0.967 [8] 0.082 [12] 
LR (SEA DUM) 4.089 

[0.006] 
3.207 
[0.023] 

5.498 
[0.001] 

4.276 
[0.003] 

LR (SEA DUM,CON) 16.117 
[0.000] 

0.069 
[0.976] 

5.497 
[0.001] 

333.029 
[0.000] 
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Table 5.3.3 Automatic Eviews seasonal ARMA specifications for Angola 

See notes to table 5.3.1. Note that 𝐶 denotes the intercept and LR(C, DUM) denotes the test for the 

significance of the intercept that replaced the 4 seasonal dummy variables. 

The seasonal ARIMA models automatically selected for the seasonally unadjusted data 

are reported in Table 5.3.1 (BRICS countries) and Table 5.3.2 (OPEC countries) above. 

Three of the 5 BRICS countries’ automatically selected models fail the standard 

diagnostic checks for autocorrelation (Russia and India) and invertibility (South Africa). 

Only Nigeria failed the standard diagnostic checks (for invertibility) in the selected OPEC 

countries. Hence, 5 of the 9 countries’ selected models are valid for forecasting, in the 

sense that they are not rejected by the diagnostic checks, while there are 4 countries 

where the automatically selected models are rejected by these diagnostic checks. We 

therefore might expect that the forecasting performance of the automatically selected 

models for these 4 countries will be adversely affected relative to those where the 

checks are not failed. We will see whether this is the case when assessing the ex post 

forecasting performance of these models.  

Regarding the statistical significance of the models’ coefficients, we note the following. 

The seasonal dummy variables are jointly significant in all 9 models indicating the need 

to include seasonal dummy variables – see LR(SEA DUM). Further, the seasonal dummy 

Countries Angola 
Start 2000Q4 

 End 2012Q4 

Observations 49 

 ARMA Specifications (3,0)(0,1) 

𝐶  1.501 
(0.833) 

AR(1) 1.681 
(19.990) 

AR(2) -0.383 
(-2.527) 

AR(3) -0.302 
(-3.890) 

SMA(4) -0.999 
(-0.013) 

Adj 𝑅2  0.987 

SC -1.800 

S.E 0.068 

AR Root 0.986 

MA Root 0.995 
0.305 

P[QLB] 0.038 [ 7] 

LR (C, DUM) 8.854 
[0.005] 
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variables are significantly different from each other for 8 of the 9 countries (Angola is 

the exception) suggesting significant deterministic seasonality in these countries’ 

models – see LR(SEA DUM, CON). For Angola, where the seasonal dummy variables are 

not significantly different, we replace the 4 seasonal dummy variables with a single 

intercept because seasonality is not significant. This model is reported in the Table 5.3.3 

and represents our favoured automatically selected seasonal model for Angola.  In all 9 

countries, the automatic selection procedure yields models where several ARMA 

coefficients are statistically insignificant (including the highest order AR or MA terms). 

This suggests that the automatic selection procedure generally selects models with 

variables that would be considered for exclusion by a modeller. It will be interesting to 

see whether this has an impact on the forecasting performance of these models 
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5.4.0 Modelling annual inflation using Eviews 9’s automatic non-seasonal 

ARIMA model selection tool on reduced samples without structural 

breaks  

In this section, we conduct a further ARIMA modelling experiment to provide an 

additional model formulation for comparative purposes for chapter 5. These ARIMA 

models’ forecasting performance will be compared to those developed in section 5.1, 

5.2 and 5.3. We modify the methodology applied in section 5.3 in the following two 

ways. First, we seasonally adjust the data on annual inflation prior to developing a non-

seasonal ARIMA model using the census X13 method of (multiplicative) seasonal 

adjustment.76 This method allows the seasonal indices to vary over time and captures 

any stochastic seasonality in the data. The non-seasonal ARMA model is used to forecast 

the seasonally adjusted data for 2013 and 2014 and the four seasonal indices used to 

adjust the data in 2012 are used to reintroduce seasonality into these forecasts yielding 

predictions of the original (unadjusted) series. These seasonal forecasts can therefore 

be compared with those produced by the models developed in section 5.1, 5.2 and 5.3 

– these forecasts are compared in later chapters. To ameliorate the impact of the 

(sometimes very large) structural breaks on the seasonal adjustment procedure we use 

the reduced sub-samples without structural breaks identified in chapter 5.2 for 

countries where the sub-sample contains at least 39 observations.   

Second, we utilise EViews 9’s automatic ARMA model selection procedure that 

minimises the Schwarz (SC) criterion of all ARMA specifications nested within the 

assumed maximum non-seasonal ARMA (5, 5) specification. We do not consider the 

automatic selection of logarithmic or differencing transformations that are also 

available because we believe that the annual inflation data is stationary (as discussed 

above). We also include deterministic seasonal dummy variables in the model as 

exogenous terms when the automatic ARMA selection takes place to yield automatically 

selected non-seasonal ARIMA specifications. Whilst we report diagnostic checks (for 

                                                           
76 All the countries are seasonal adjusted with the census X13 multiplicative method except for India, 

China, South Africa, Algeria, Nigeria and Saudi Arabia that are seasonally adjusted with the census X12 

method of (additive) seasonal adjustment. We use the census X- 12 to adjust annual inflation in these 

countries because the census X13 method of (multiplicative and additive) cannot be implemented with a 

series with zero or negative values.  
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residual autocorrelation, stationarity and invertibility) for the selected models we do not 

reject automatically selected models for forecasting that fail these checks because this 

is not intended in real world applications (it is a cost that needs to be offset against the 

time saving benefit of the automatic selection method). However, we will consider 

whether the forecasting performance of the models that fail these checks notably 

deteriorates relative to models that do not fail these checks. We will also assess whether 

EViews 9’s automatic non-seasonal ARMA selection procedure leads to the inclusion of 

statistically insignificant variables. The seasonal factors used in the seasonal adjustment 

of each country’s data for 2012 are presented in Table 5.4.1 (BRICS countries) and Table 

5.4.2 (OPEC countries) below.77  

Table 5.4 .1 

Observations INF_BRA 
(M) 

INF_RUS 
(M) 

INF_IND (A) 
 

INF_CHI (A) 
 

INF_SOU (A) 

2012Q1 0.999689 0.988775 0.002035 0.001556 -0.00119 

2012Q2 0.993315 0.966174 -0.0001 0.000148 -0.00336 

2012Q3 1.003945 1.006558 -0.00012 -0.00114 -0.00547 

2012Q4 1.003383 
 

1.040168 -0.00205 -0.00055 0.010634 

 

Table 5.4.2 

Observations INF_ALG (A) INF_ANG (M) INF_NIG (A) INF_SAU (A) 

2012Q1 -0.00108 0.997064 0.004994 -0.00100 

2012Q2 0.001466 1.00181 0.001509 0.000761 

2012Q3 -0.00054 0.996738 -0.00588 4.37E-05 

2012Q4 -0.00011 1.00440 -0.00117 0.000229 

 

The non-seasonal ARMA models automatically selected for the seasonally adjusted data 

are reported in Table 5.4.3 (BRICS countries) and Table 5.4.4 (OPEC countries) below. 

None of the automatically selected models could be rejected according to the standard 

diagnostic checks that we conduct for the 5 BRICS countries. However, for 2 of the 4 

selected OPEC countries the automatically selected models failed the diagnostic checks 

for autocorrelation (Angola) and invertibility (Nigeria). Hence, while 7 of the 9 countries’ 

                                                           
77 Where INF_* denotes inflation, * denotes the first three letters of each country, (M) denotes 

multiplicative indices and (A) denotes additive indices. 
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selected models are valid for forecasting, in the sense that they are not rejected by the 

diagnostic checks, there are 2 countries where the automatically selected models are 

rejected by these checks. We, therefore, might expect that the forecasting performance 

of the automatically selected models for these 2 countries will be adversely affected. 

We will see whether this is the case when assessing the ex-post forecasting performance 

of these models.  

Regarding the statistical significance of the models’ coefficients, we note the following. 

The seasonal dummy variables are jointly significant in all 9 models indicating the need 

to include seasonal dummies – see LR(SEA DUM). Further, the seasonal dummy variables 

are significantly different from each other for 7 of the 9 countries suggesting significant 

deterministic seasonality in these countries’ models – see LR(SEA DUM, CON). In the 2 

countries (Brazil and Angola) where the seasonal dummy variables are not significantly 

different we replace the 4 seasonal dummy variables with a single intercept because 

deterministic seasonality is not significant. These models are reported in Table 5.4.5 for 

Brazil and Angola and they represent the automatically selected non-seasonal models 

that are favoured for forecasting for these countries. For 8 of the 9 countries (the 

exception is India) the automatic selection procedure yields models where several 

ARMA coefficients are statistically insignificant (including the highest order AR or MA 

term). This suggests that the automatic selection procedure generally selects models 

with variables that would be considered for exclusion by a modeller. It will be interesting 

to see whether this has an impact on the forecasting performance of these models.   
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Table 5.4.3 Automatic Eviews non-seasonal ARMA specifications: BRICS countries  

Where:  MA = the maximum order of non-seasonal moving average component, AR = the maximum order 

of non- seasonal autocorrelation component, 𝐷𝑠𝑡  = the seasonal dummy variables, denoted as 

𝐷1𝑡 , 𝐷2𝑡 , 𝐷3𝑡  and 𝐷4𝑡, P[QLB] =  Probability value of the Ljung-Box Q-statistic where the number of ACs 

included in the ACF is indicated in brackets, Adj 𝑅2 = Adjusted R – square , SC = Schwarz criterion, AR Roots 

= Stationary Autoregressive average , MA Roots = Stationary Moving average, LR(SEA DUM) = the test for 

the joint significance of the seasonal dummy variables and LR (SEA DUM, CON) is the Wald test for the 

null hypothesis that all of the seasonal dummies’ coefficients are equal. 

 

 

Countries Brazil Russia India China  South Africa 

Start 1997Q2 2003Q2 1961Q1 1992Q1 1995Q2 

 End 2012Q4 2012Q4 2012Q4 2012Q4 2012Q4 

Observations 63 39 208 84 71 

 ARMA(p,q) 
Specifications 

(0,4) (1,3) (1,3) (1, 4) (2,2) 

𝐷1 0.064 
(6.185) 

0.102 
(8.357) 

0.077 
(6.298) 

 0.041 
(1.670) 

 0.067 
(8.556) 

𝐷2 0.064 
(6.023) 

0.010 
(8.468) 

0.077 
(6.412) 

0.041 
(1.711) 

0.065 
(7.702) 

𝐷3 0.063 
(5.983) 

0.102 
(8.432) 

0.077 
(6.449) 

0.042 
(1.723) 

0.065 
(8.383) 

𝐷4 0.063 
(6.104) 

0.099 
(8.320) 

0.077 
(6.288) 

0.041 
(1.669) 

0.065 
(7.838) 

AR(1)  0.643 
(3.003) 

0.632 
(13.628) 

0.903 
(10.732) 

1.187 
(11.307) 

AR(2)     -0.736 
(-6.307) 

MA(1) 1.571 
(0.004) 

0.974 
(0.002) 

0.758 
(13.325) 

0.353 
(1.971) 

-0.085 
(-0.038) 

MA(2) 1.656 
(0.002) 

0.974 
(0.001) 

0.720 
(12.623) 

0.544 
(0.386) 

0.999 
(0.019) 

MA(3) 1.564 
(0.001) 

0.999 
(0.001) 

0.721 
(13.589) 

0.332 
(0.670) 

 

MA(4) 0.629 
(0.001) 

  -0.455 
(-0.731) 

 

Adj 𝑅2 0.896 0.924 0.901 0.930 0.830 
SC -5.993 -5.889 -5.033 -5.579 -4.988 
S.E 0.009 0.008 0.017 0.012 0.015 
AR Root  0.643 

 
 0.632 0.903 0.857 

MA Root 0.999 
0.793 

0.999 
 

0.907 
0.876 

0.998 
0.866 
0.528 

0.999 

P[QLB] 0.626 [8] 0.293 [6] 0.269 [14] 0.662 [9] 0.335 [8] 
LR (SEA DUM) 23.548 

[0.000] 
6.399 
[0.001] 

6.769 
[0.000] 

3.398 
[0.013] 

16.153 
[0.000] 

LR (SEA DUM,CON) 0.658 
[0.581] 

8.762 
[0.000] 

663 
[0.000] 

36.026 
[0.000] 

40.752 
[0.000] 
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Table 5.4.4 Automatic Eviews non-seasonal ARMA specifications:  selected OPEC 

countries  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

See the notes to Table 5.4.3 
  

                                                           
78 This value is rounded up to one, however, it is less than one and therefore does not reject invertibility 
for this model. 

Countries Algeria Angola Nigeria Saudi Arabia 

Start 1999Q2 2000Q4 1998Q4 1979Q3 

 End 2012Q4 2012Q4 2012Q4 2012Q4 

Observations 55 49 57 134 

 ARMA(p,q) 
Specifications 

(0, 3) (1, 3) (0, 3) (1, 4) 

𝐷1  0.037 
(4.543) 

 1.202 
(0.800) 

 0.121 
(7.493) 

 0.016 
(1.196) 

𝐷2 0.037 
(4.708) 

1.190 
(0.792) 

0.118 
(7.195) 

0.017 
(1.258) 

𝐷3 0.041 
(5.122) 

1.198 
(0.799) 

0.124 
(7.747) 

0.017 
(1.241) 

𝐷4 0.037 
(4.485) 

1.190 
(0.789) 

0.117 
(7.776) 

0.016 
(1.221) 

AR(1)  0.982 
(9.502) 

 0.912 
(10.520) 

MA(1) 0.972 
(0.088) 

0.537 
(0.001) 

0.999 
(0.001) 

0.247 
(1.198) 

MA(2) 0.971 
(0.100) 

0.938 
(0.000) 

0.999 
(0.000) 

0.401 
(0.048) 

MA(3) 0.999 
(0.068) 

0.635 
(0.000) 

1.000 
(0.000) 

0.190 
(0.117) 

MA(4)    -0.607 
(-0.122) 

Adj 𝑅2 0.748 0.982 0.750 0.900 
SC -5.187 -1.395 -3.808 -6.172 
S.E 0.013 0.083 0.026 0.009 
AR Root  0.981  0.912 
MA Root 0.999 1.00078  

0.635 
1.000 0.999 

0.892 
0.680 

P[QLB] 0.612 [7] 0.025 [7] 0.286 [8] 0.092 [12] 
LR (SEA DUM) 12.803 

[0.000] 
5.428 
[0.001] 

26.451 
[0.000] 

3.280 
[0.014] 

LR (SEA DUM,CON) 6.322 
[0.001] 

2.443 
[0.078] 

4.487 
[0.007] 

34.607 
[0.000] 
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Table 5.4.5 Automatic Eviews non-seasonal ARMA specifications for Brazil and Angola 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

See notes to table 8.6. Note that  𝐶 denotes intercept and LR(C, DUM) denotes the test for the significance 
of the intercept that replaced the 4 seasonal dummy variables. 

 

 

 

 

  

Countries Brazil Angola 

Start 1997Q2 2000Q4 

 End 2012Q4 2012Q4 

Observations 63 49 

 ARMA(p,q) Specifications (0,4) (1, 3) 

C 0.064 
(7.201) 

1.196 
(0.802)  

AR(1)  0.983 
(8.900) 

MA(1) 1.590 
(17.895) 

0.477 
(0.013) 

MA(2) 1.631 
(10.161) 

0.916 
(0.002) 

MA(3) 1.467 
(6.503) 

0.614 
(0.003) 

MA(4) 0.600 
(5.864) 

 

Adj 𝑅2 0.889 0.982 
SC -6.116 -1.586 
S.E 0.009 0.082 
AR Root  0.983 
MA Root 0.964 

0.804 
0.999 
0.614 

P[QLB] 0.774 [8] 0.019 [7] 
LR (C, DUM) 9.023 

[0.000] 
20.202 
[0.000] 
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Table 5.4.6 Comparison of in-sample fit (adjusted R–square) of different ARIMA 

models  

Countries Chapter 5.1 
ARIMAX full 
sample 
modelling  

Chapter 5.2 
seasonal 
ARIMA reduced 
sample 
modelling 
without breaks  

Chapter 5.3 
EViews 9’s 
reduced sample 
automatic ARIMA 
seasonal 
modelling 

Chapter 5.4 
EViews 9’s 
reduced sample 
automatic 
ARIMA non-
seasonal 
modelling 

Brazil 0.956 0.930 0.928 0.889 

Russia 0.932 0.956 0.983 0.924 

India 0.926  0.925 0.901 

China 0.943  0.944 0.930 

South Africa 0.939 0.897  0.856 0.830 

Algeria 0.893 0.712 0.755 0.748 

Angola 0.997 0.990 0.987 0.982  

Ecuador  0.980    

Kuwait 0.949    

Nigeria 0.911 0.711 0.787 0.750 

Saudi Arabia 0.960 0.906 0.908 0.900 

 

Table 5.4.6 reports the adjusted R-squares of the favoured ARIMAX/ARIMA models 

developed in chapters 5.1 and 5.2 with those obtained by Eviews 9’s automatic 

selections procedure. The automatically selected non-seasonal ARIMA models have the 

lowest R-squares for all countries except Algeria and Nigeria (where the fit is the third 

best out of the 4 models in both cases).79 For 7 of the 9 countries (the exception is Russia 

and China) the adjusted R-squares of the ARIMAX models developed on the full sample 

that model structural breaks are greater than those of the other models. Whether the 

generally superior fit to modelling the full sample is due to overfitting the sample 

(especially overfitting structural breaks in the full sample) or will be reflected in the out-

of-sample forecasting performance will be considered in the chapter when the 

forecasting performance of the models of the different countries is compared.80 

                                                           
79 This may be because the dependent variable is seasonally adjusted for these models whereas they are 
unadjusted for the other models. 
80 This difference in fit may also be because the models developed in section 5.1 generally use a larger 
sample than the other models. 
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5.5.0  Forecast performance and evaluation for Univariate model  

In this section, we compare the forecasting performance of ARIMAX models estimated 

over the full sample and different ARIMA specifications estimated on a reduced sample 

(with a minimum of 39 observations). When using the full sample, there may be 

structural breaks that the ARIMAX model accommodates using dummy variables and 

seasonality that is modelled using seasonal dummy variables and seasonal AR and MA 

terms. The reduced sample modelling was designed to avoid structural breaks such that 

there is no need for deterministic terms to model such shifts. Hence, the first set of 

ARIMA models developed using the reduced sample only include seasonal dummy 

variables and seasonal AR and MA components. A second set of ARIMA models 

developed for the reduced sample employ EViews 9’s automatic seasonal ARIMA model 

specification routine. A third set of ARIMA models were developed for the reduced 

sample where the data are first seasonally adjusted and EViews 9’s automatic non-

seasonal ARIMA model specification routine is employed. In this latter case forecasts are 

re-seasonalised using the 2012 seasonal indices obtained from the seasonal adjustment 

procedure.  

 We seek to assess the following. First, whether superior forecasts can be obtained by 

using the full sample (with the benefit of more information) and explicitly modelling the 

structural breaks (with the possibility of overfitting and difficulty in adequately capturing 

such effects) or whether using reduced samples (with the disadvantage of fewer data 

points) is compensated by the avoidance of having to model any structural breaks. 

Second, whether quick automatic ARIMA selection procedures can produce as good 

forecasts as specifications produced using more time-consuming model building 

techniques. Third, whether ARIMA specifications that explicitly model seasonality are 

superior to specifications that apply non-seasonal models to seasonally adjusted data 

followed by reseasonalising the forecasts. Each model was estimated over a period that 

ended in 2012q4 (the start of the estimation period varies across models and countries). 

These models are used to produce forecasts over the ex-post forecasting period 2013q1 

– 2014q4. These produce 1-step ahead forecasts for 2013q1, 2-step ahead forecasts for 

2013q2 and so on up to 8-step ahead forecasts for 2014q4.81 The identified models were 

                                                           
81 Due to the sample variation (different sample for different country), our forecast comparison is based 
on out-sample and we did not consider in-sample comparison.  It is well known that in-sample 
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then re-estimated by adding one observation to the end of the sample, hence the 

models are estimated over a period ending in 2013q1. These estimated models are used 

to produce 1-step ahead forecasts for 2013q2, 2-step ahead forecasts for 2013q3 and 

so on up to 7-step ahead forecasts for 2014q4. This process is then repeated with one 

observation being added to the estimation period (with the last rolling regression’s 

sample period ending in 2014q3), and m-step ahead forecasts produced up to the end 

of the forecast period. These rolling regressions produce eight 1-step ahead forecasts, 

seven 2-step ahead forecasts, six 3-step ahead forecasts, five 4-step ahead forecasts and 

so on up to one 8-step ahead forecast for each estimated model.  

Second, we compare the forecasting performance of each model over the different 

number of step ahead forecasting horizons using the Root Mean Squared Error (RMSE), 

Mean Absolute Percentage Error (MAPE) and Theil’s inequality coefficient (U). The best 

forecasting model, on average, over any particular horizon will have the lowest value of 

forecasting performance measures. The RMSE and U have a quadratic loss function that 

gives more weight to extreme errors than smaller errors (e.g the square error of 50 is 

disproportionately more than the square error of 25) while the MAPE has a proportional 

loss function where small and large errors are weighted similarly. These forecasting 

performance measures can be classified into two categories: relative measures (MAPE 

and Theil’s U-statistic) and absolute measures (RMSE).82The difference between the two 

types of measure is that relative measures are not determined by the units of 

measurement of the data and can be used to compare the forecasting performance of 

different series (including across different countries) while the value of absolute 

measures are determined by the unit of measurement of the data and only provide valid 

comparisons of models applied to the same data (for the same country). 

                                                           
comparison does not guarantee good forecasting performance. A general problem is that in-sample 
estimation error usually increases with the sample size, and if the forecast sample increase the forecast 
error may increase.  

82The root mean squared error (RMSE) =  √
∑ 𝑒𝑡

2

𝑛
 = √

∑(𝑋𝑡− 𝐹𝑡)2

𝑛
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100, Mean absolute percentage error is (MAPE) = 
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 , Where 𝑋𝑡,  is the actual observation for time period 𝑡,  𝐹𝑡 

is the forecast for the same period with 𝑒𝑡, = 𝑋𝑡, - 𝐹𝑡 and n is the number of forecast periods used in the 

calculation.  
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5.5.1 Brazil Forecast performance and evaluation 

We compare the forecasting performance of the full sample ARIMAX and the reduced 

sample ARIMA models. The full sample specification includes deterministic dummy 

variables to model structural breaks and seasonality as discussed in section 5.1 (Table 

5.1.3). The reduced sample models that avoid structural breaks are estimated over the 

period 1997q2 to 2012q4. The following ARIMA models estimated over the reduced 

sample are used for forecasting: seasonal Box-Jenkins ARIMA model discussed in section 

5.2 (Table 5.2.1), EViews 9’s automatically selected seasonal ARIMA model discussed in 

section 5.3 (Table 5.3.1) and EViews 9’s automatically selected non-seasonal ARIMA 

model discussed in section 5.4 (Table 5.4.5). The forecast performance measures of 

these models are given in Table 5.5.1.  

Table. 5.5.1: Forecast performance of Univariate models for Brazil 

 A 
Full sample seasonal ARIMAX 
model with modelling 
structural breaks  

B 
Reduced sample seasonal 
ARIMA model without 
modelling structural breaks 

C 
Reduced sample EView9 
Automatic seasonal ARIMA 
model without modelling 
breaks 

D 
Reduced sample EView9 
Automatic’s non-seasonal 
ARIMA model without 
modelling structural breaks 

 RMSE MAPE U RMSE MAPE U RMSE MAPE U RMSE MAPE U 

1-
step  

21.2100 14.2420 0.9960 0.0050 6.3580 0.0360 0.0050* 5.0690* 0.0360* 0.0060 7.8950 0.0490 

2-
step 

24.3500 21.4800 0.9960 0.0060 8.9510 0.0490 0.0060* 8.0390* 0.0470* 0.0070 9.5170 0.0560 

3-
step 

26.4200 25.4060 0.9960 0.0080 10.4100 0.0640 0.0060 10.1500 0.0560 0.0060* 8.2540* 0.0480* 

4-
step 

28.9400 30.4640 0.9960 0.0060 7.1580 0.0460 0.0060 8.6970 0.0500 0.0030* 3.7780* 0.0220* 

5-
step 

32.3600 38.0500 0.9970 0.0040 5.8330 0.0300 0.0070 9.3930 0.0520 0.0002* 0.1580* 0.0010* 

6-
step 

37.3600 50.6330 0.9970 0.0050 7.3880 0.0430 0.0060 7.2460 0.0430 0.0004* 0.5880* 0.0040* 

7-
step 

19.1300 30.0090 0.9940 0.0100 15.7600 0.0790 0.0060 8.2260 0.0490 0.0004* 0.7080* 0.0040* 

8-
step 

14.9000 25.7580 0.9920 0.0020 3.3460 0.0170 0.0090 15.4300 0.0720 0.0004* 0.3390* 0.0020* 

 An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for each 

forecasting horizon. 

The reduced sample univariate model that employs the automatic non-seasonal ARIMA 

technique, see column D, has the lowest RMSE, MAPE and U-statistics over all 

forecasting horizons except for the 1 and 2 step-ahead horizons. However, the reduced 

sample ARIMA model that employs Eviews 9’s automatic seasonal selection procedure 

has the lowest RMSE, MAPE and U values for 1 and 2-step-ahead horizons (Table 5.5.1 

column C). Hence, the reduced sample specifications that employ the EView’s 9 

automatic model selection process produces the best forecasts over all horizons. We 
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note that the univariate ARIMA specification that employs the Box-Jenkins method for 

the full sample ARIMAX (Table. 5.5.1 column A) and the reduced sample ARIMA (Table. 

5.5.1 column B) methods were never favoured. These results imply the following for the 

univariate modelling on Brazilian data. First, the potential difficulties in explicitly 

modelling the structural breaks outweighed the benefits of being able to use more data 

in estimation. Given the extra time and modeller expertise required to model such 

breaks, this suggests that using reduced samples to avoid structural breaks is the 

preferred strategy. Second, the quick automatic ARIMA selection procedures produce 

superior forecasts compared to using more time-consuming Box-Jenkins ARIMA 

modelling techniques. Third, the benefits of seasonally adjusting the data and re-

seasonalising the forecasts generally outperforms the method of modelling seasonality 

in ARIMA forecasting (although not always). Finally, note that the MAPE of the favoured 

ARIMA model is always less than 10 percentage points suggesting a relatively good 

forecasting performance for this class of models for Brazilian inflation. A similar 

procedure was applied for all countries and a summary of the favoured methods is given 

below in the Table 5.5.2 and 5.5.3. The detailed results and discussion are available in 

Appendix. Section 5.3 page 426 – 443. 
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Table 5.5.2 Summary of the best forecasting univariate models for BRICS countries 

Best forecasting Univariate model for Brazil 

 RMSE U –statistics MAPE 

Horizon Type  Type Type Range 

1-to 2-steps R_A _SARIMA R_A_SARIMA R_A_SARIMA  5.0690 – 8.0390 

3 to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA  0.3390 -8.2540 

Best forecasting univariate model for Russia 

 RMSE U –statistics MAPE 

Horizon Type Type Type  Range 

1 to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA   6.3660 – 20.6300 

Best forecasting univariate model for India 

 RMSE U –statistics MAPE 

Horizon Type Type Type Range 

1 to 8- steps F_SARIMA F_SARIMA F_SARIMA 13.5200 -63.4600 

Best forecasting univariate model for China 

 RMSE U –statistics MAPE 

1 to 2-steps F_A_SARIMA F_A_SARIMA F_A_SARIMA  7.1980 – 14.0000 

3 to 8- steps  F_A_ARIMA F_A_ARIMA F_A_ARIMA 14.5800 -19.5400 

Best forecasting univariate model for South Africa 

 RMSE U –statistics MAPE 

Horizon Type Type Type Range 

1 to 4 –steps R_A_SARIMA R_A_SARIMA R_A_SARIMA 14.2800 -20.9900  

5-step R_SARIMA R_A_SARIMA R_SARIMA 17.2600 

6 to 7-steps R_A_SARIMA R_A_SARIMA R_A_SARIMA  12.3600- 13.3600  

8-step R_SARIMA R_SARIMA R_SARIMA 10.2000 

The best univariate forecasting model is identified by each measure (RMSE, MAPE and U) for each 

forecasting horizon (1, 2…, 8 steps ahead). The full sample univariate model that employs seasonal Box-

Jenkins ARIMA techniques and model’s structural breaks is denoted as F_SARIMAX, the full sample 

univariate model that employs Box-Jenkins ARIMA techniques without modelling structural breaks is 

denoted as F_SARIMA (this model type is exclusive to India because there were no significant structural 

breaks to model over the full sample). The full sample specifications that employ EViews 9’s automatic 

seasonal and non-seasonal ARIMA model without modelling breaks are denoted as F_A_SARIMA and 

F_A_ARIMA respectively (these models are exclusively designed for China because the period after the 

structural breaks are less than 39 observations and relative step shifts for this period also appear to be 

small which mean that inference regarding unit roots may not be too adversely affected when using the 

full sample. Hence, the full sample is used for these models for this country). The reduced sample model 

that employs seasonal ARIMA technique’s without modelling structural breaks is denoted as R_SARIMA. 

The reduced sample model that employs EViews 9’s automatic seasonal ARIMA model selection 

procedure without modelling breaks is denoted as R_A_SARIMA and the reduced sample model that 

employs EViews 9’s automatic non-seasonal ARIMA model selection method without modelling breaks is 

represented by R_A_ARIMA. Range gives the range of values for the MAPE for models favoured according 

to this forecasting measure over the specified horizon.  
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Table 5.5.3 Summary of the best forecasting univariate models for OPEC countries 

Best forecasting univariate model for Angola 

 RMSE U –statistics MAPE 

Horizon Type  Type Type Range 

1 to 8-steps R_SARIMA R_SARIMA R_SARIMA  2.0590 – 13.3300 

Best forecasting univariate model for Algeria 

 RMSE U –statistics MAPE 
Horizon Type Type Type  Range 

1 –step F_SARIMAX F_SARIMAX R_A_SARIMA  61.6300 

2 –step R_A_ARIMA R_A_ARIMA R_A_ARIMA  82.6100 

3 to 7-steps F_SARIMAX  F_SARIMAX F_SARIMAX  27.3800- 136.0000 

8-step F_SARIMAX R_SARIMA F_SARIMAX  28.7700 

Best forecasting univariate model for Ecuador 

 RMSE U- statistics MAPE 

Horizon Type Type Type Range 
1 to 8-steps F_SARIMAX F_SARIMAX F_SARIMAX 15.4500 -42.9100 

Best forecasting univariate model for Saudi Arabia 

 RMSE U –statistics MAPE 

Horizon Type Type Type Range 

1 to 2-steps R_SARIMA R_SARIMA R_SARIMA 8.3720 -14.8500 
3 to 8-step R_A_ARIMA R_A_ARIMA R_A_ARIMA  1.0100 – 15.1400 

Best forecasting univariate model for Nigeria 

 RMSE U –statistics MAPE 

 Horizon  Type  Type  Type  Range 

1-step R_SARIMA R_SARIMA R_SARIMA  19.2400 

2-step R_A_ARIMA R_A_ARIMA R_A_ARIMA  22.8700 

3-step R_SARIMA R_SARIMA R_A_ARIMA  38.1200 

4 to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA  40.7200 – 46.5100 

Best forecasting univariate model for Kuwait 

 RMSE U-statistics MAPE 

Horizon Type Type Type Rage 

1 to 8-steps F_SARIMAX F_SARIMAX F_SARIMAX 11.2100 – 38.5900 

See note in the Table 5.5.2  
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For BRICS countries, see Table 5.5.2, the EViews 9 automatic model selection procedure 

is virtually always favoured for all countries except India. The reduced sample automatic 

seasonal method is favoured for Brazil over the 1 and 2 steps ahead horizons and for 

South Africa over the 1 to 4 and 6 to 7-step ahead horizons. The full sample automatic 

seasonal model is only favoured at the 1 and 2-step ahead horizons for China. The 

reduced sample automatic non-seasonal method is favoured for Brazil over the 3 to 8 

step horizons and for Russia over all horizons.  While the full sample automatic non-

seasonal method is favoured for China over the 3 to 8 step horizons. The seasonal ARIMA 

model (without modelling structural breaks) is favoured for India over all horizons (using 

the full sample) and is preferred for South Africa over the 5 and 8 step horizons (using a 

reduced sample). For Brazil, Russia, China and South Africa, the MAPE values of all the 

favoured EViews 9 automatic selection models are always less than 21 percentage 

points. The MAPE value of the favoured automatic seasonal method is between 5.0690 

– 8.0390 for Brazil, 7.1980 – 14.0000 for China and 12.3600- 20.9900 for South Africa. 

The MAPE values of the automatic non-seasonal method is between 0.3390- 8.2540 for 

Brazil, 6.3660 – 20.6300 for Russia and 14.5800 -19.5400 for China. The MAPE value for 

the seasonal ARIMA model (without modelling structural breaks) is between 13.5200 

and 63.4600 for India and 10.2000 for South Africa. However, the ARIMAX model was 

never favoured for any BRICS country. 

For OPEC countries, see Table 5.5.3, the EViews 9 automatic model selection procedure 

applied to the reduced sample is only occasionally favoured and the automatic seasonal 

method is never favoured for any horizon according to all the 3 forecasting performance 

measures (which contrasts with the results for BRICS countries). The automatic non-

seasonal method is favoured for Algeria over the 2-step horizon, for Saudi Arabia over 

the 3 to 8 steps ahead horizons and for Nigeria over the 2 (possibly 3) and 4 to 8 step 

horizons. The seasonal ARIMA model (without modelling structural breaks) is favoured 

for Angola over all horizons, for Algeria possibly over the 8-step horizon, for Saudi Arabia 

over the 1 and 2 step horizons and Nigeria over the 1 (and possibly 3) step horizon. The 

ARIMAX model being the only valid model for Ecuador and Kuwait performs 

comparatively well for this class of model and produces the best forecast for Algeria over 

the 3 to 7 (and possibly 1 and 8) step horizons. The MAPE value for the seasonal ARIMA 

model (without modelling structural breaks) is between 2.0590 – 13.3300 for Angola, 
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28.7700 for Algeria, 8.3720 -14.8500 for Saudi Arabia and 19.2400 for Nigeria. While the 

MAPE value for the best automatic non-seasonal model is 82.6100 for Algeria, and 

1.0100 – 15.1400 for Saudi Arabia as well as 22.8700 – 46.5100 for Nigeria. The 

corresponding ARIMAX value for the MAPE is between 11.2100 – 38.5900 for Kuwait, 

15.4500 -42.9100 for Ecuador and 27.3800- 136.0000 for Algeria. 

When comparing ARIMAX/ARIMA models for BRICS and OPEC countries, the ARIMAX 

model applied to the full sample is rarely favoured in the class of univariate models 

(except where it is the only valid model). This suggests that the potential benefits of 

using a full sample and explicitly modelling the structural breaks are generally 

outweighed by the benefits of being able to avoid modelling structural breaks at the cost 

of a reduced sample for estimation. Given the extra time and modeller expertise 

required to model such breaks suggests that using reduced samples to avoid structural 

breaks is typically the preferred strategy.  EViews 9’s automatic model selection 

procedure applied to the reduced sample is often favoured (especially for the BRICS 

countries) although seasonal ARIMA modelling without using automatic model selection 

is sometimes favoured. Hence, the quick automatic ARIMA selection procedures often 

(though not always) produce superior forecasts compared to more time-consuming Box-

Jenkins ARIMA modelling techniques. Of the two automatic ARIMA model selection 

procedures considered the non-seasonal method applied to seasonally adjusted data 

was more generally favoured than the seasonal method applied to unadjusted data. This 

suggests that the benefit of seasonally adjusting the data and re-seasonalising the 

forecasts generally outperforms the method of explicitly modelling seasonality.  
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5.6.0. Nonlinear model 

In the previous section, we have seen remarkable success in the application of linear 

time series models (ARIMA and ARIMAX) to forecast inflation. One of the main 

conclusions from this section is that, linear time model (ARIMA and ARIMAX) yield 

specifications that are valid for forecasting. This is in the sense that they are not rejected 

by the diagnostic checks for residual autocorrelation, stationarity and invertibility. 

However, different studies have document poor performance of linear ARIMA model 

over the nonlinear model most especially when to describe the transformation of 

macroeconomic dynamics or changes in the monetary policy (Bradley and Jansen (2004), 

Song et. al. (2003), Teräsvirta et al (2005)). They argue that linear model may not be 

used to capture features of the data that exist not to be stable. Instead, they argued in 

favour of nonlinear model. For example, the empirical studies (Tong, 1990, Granger and 

Terasvirta, 1993) document that the nonlinear model has ability to capture 

asymmetries, structural breaks that showed in many time series data. In this section, we 

investigate the forecast performance of nonlinear time series (threshold autoregressive 

models) and compared its forecasting performance with the best selected 

ARIMA/ARIMAX models estimated the previous chapter. The threshold autoregressive 

models (TAR model) is estimated over the full sample that identified with breaks and 

the reduced sub-samples (without structural breaks) identified in section 5.2. 
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5.6.1 Threshold Autoregressive model 

The threshold autoregressive model (TAR model) was first proposed by Tong (1978) and 

discussed in detail by Tong and Lim (1980) and Tong (1983). The model is often classified 

as a nonlinear model that is typically designed to accommodate features of the data that 

cannot be captured by the linear models. It is used to describe the features of time series 

variables in two or more different regimes.  For several decades, numerous works have 

been published regarding the application of the threshold model for modelling and 

forecasting macroeconomic variables. This model has proved successful in describing 

different economic environments that include periods of high and low inflation (Tiao 

and Tsay, (1991), Clements and Smith (1997)., Pippenger and Goering, (1998)). For 

instance, Tiao and Tsay (1991) compare the forecast performance of an AR(2) 

specification to  two- regime Self- Exciting Threshold Autoregressive  (SETAR) model for 

real US quarterly GNP. Evidence reveals that the SETAR model performs better than the 

AR model during the period of economic recession. This conclusion is similar to the 

studies of Clement and Smith (1997, 1999) who used the same approach to forecast UK 

GDP. Montgomery, et al. (1998) also compare the empirical forecasting performance of 

a set of time-series models for the U.S. unemployment rate. The time series models 

considered include linear univariate autoregressive integrated moving average (ARIMA) 

models, bivariate vector autoregressive moving average (VARMA) models, threshold 

autoregressive (TAR) models, Markov switching autoregressive (MSA), combined 

forecast and survey forecast method. Evidence reveals that the TAR and MSA models 

outperform other selected linear models during periods of economic contraction or 

period of rapidly rising unemployment. For example, the TAR model yields up to a 28% 

reduction in mean-squared forecast error for longer term forecasts relative to all linear 

models. The recent literature on inflation forecasting that apply a threshold framework 

is very rare. Although, the model has been recently used in other field for forecasting, 

most especially in Science and Engineering.  For example, Amiri (2015) compared 

forecasting performance of 5 different nonlinear time series models, namely Threshold 

Autoregressive (TAR), Smooth Transition Autoregressive (STAR), Exponential 

Autoregressive (EXPAR), Bilinear Model (BL) and Markov Switching Autoregressive 

(MSAR) to forecast daily river flow at Colorado River in U.S.A., from 1/01/2000 to 

12/31/2011.  The results show that a self-exciting TAR (SETAR) model performs better 
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than other four competing models. Similarly, Tongal and Booij (2016) examine the 

forecasting performance of two different nonlinear models (SETAR, and a chaotic k-

nearest neighbour(k-nn) model) for nine flowing rivers that characterised as low, 

medium, and high flows in the western United States. Evidence reveals that the SETAR 

model is superior to the k-nn model for various forecast horizons. In our study, we 

examine whether the use of the threshold autoregressive model that accounts for 

different economic environments will improve the forecasting performance for inflation 

compared to the other models that we consider.  

TAR is considered as the self-exciting threshold autoregressive (SETAR) model when the 

threshold variable is taken as the lagged value of the time series being modelled.  The 

SETAR assumes that a variable  𝑦𝑡 is a linear autoregression within a regime but may 

move between regimes depending on the value taken by a lag of   𝑦𝑡 ,  say,  𝑦𝑡−𝑑  where 

𝑑 is the length of the delay.  

The simple AR(𝑝) model for a time series  {𝑦𝑡} follow the process: 

  𝑦𝑡 = ∅0 + ∅1𝑦𝑡−1 +….+ ∅𝑝𝑦𝑡−𝑝 +  𝜎𝜀𝑡         (5.0) 

Where ∅𝑖 (𝑖 = 1,2,…, 𝑝) are the AR coefficients,  𝜀𝑡 ˷ 𝑁(0,1) and 𝜎 > 0 is the standard 

deviation of the disturbance term.  The model parameters ∅ = (∅0, ∅1, ∅2, … . . , ∅𝑝) and 

𝜎 are independent of time 𝑡 and remain constant.  To capture nonlinear dynamics, TAR 

models can be estimated as follow: 

𝑦𝑡 = ∅𝑜
(𝑗) + ∅1

(𝑗)𝑦𝑡−1 +…...+ ∅𝑝
(𝑗)𝑦𝑡−𝑝 + 𝜀𝑡

(𝑗) if 𝑟𝑗−1 < 𝑧𝑡 ≤ 𝑟𝑗 ,    (5.1) 

Where 𝑗 = 1, 2, … . , 𝑘,  𝑧𝑡 = 𝑦𝑡−𝑑,.  The threshold is - ∞ = 𝑟0 < 𝑟1 < … < 𝑟𝑘 = ∞.; for 𝑗.  

𝑘 is the number of regimes separated by 𝑘 − 1 nontrivial thresholds, {𝜀𝑡
(𝑗)} are 

independent identical distributed sequences with zero mean and variance  𝜎𝑗
2  and are 

mutually independent for different  𝑗 . The parameter 𝑑 is the delay parameter, 𝑟𝑗 are 

thresholds, 𝑝  is denotes the AR order and ∅𝑝  are the autoregressive coefficients. An 

interesting feature of SETAR model is that, the stationarity of  𝑦𝑡 does not require the 

model to be stationary in each regime.  In this study, we use EViews to apply the Bai and 

Perron test to determine the number of the regimes and threshold parameter.  

Terasvirta and Anderson (1992) and Granger and Terasvirta (1993) estimate a time 

varying SETAR where parameters are allowed to change smoothly over time. This 
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resulting model is called a smooth threshold autoregressive model (STAR) and has the 

following general expression.  

𝑦𝑡 =  𝜋0 + 𝜋1́𝑥1 + (𝜃0 + 𝜃1́𝑥1) 𝐹(𝑦𝑡−𝑑) + 𝑢𝑡       (5.2) 

Where the error is assumed to be n.i.d (0,𝜎2), 𝑥𝑡 = (𝑦𝑡−1,..…,𝑦𝑡−𝑝)′, 𝜋1=  

(𝜋11,.  .  .  ,𝜋1𝑝)′and 𝜃1  =  (𝜃1𝐼,.  .  .  ,𝜃1𝑝)′, and  =  𝐹(. ) is the transition function.  

The most common specifications for the transition function are the logistic and the 

exponential: 

𝐹(𝑦𝑡−𝑑) = {1 + exp [−𝛾(𝑦𝑡−𝑑  −  𝑟)]} −1      (5.3) 

 

𝐹(𝑦𝑡−𝑑) = 1 − exp [−𝛾(𝑦𝑡−𝑑  −  𝑟)]2       (5.4) 

In the logistic STAR (LSTAR) model the parameters change monotonically with 𝑦𝑡−𝑑 . 

When 𝛾 trends to infinity, 𝐹(𝑦𝑡−𝑑) becomes a Heaviside function which assumes the 

value 0 if the threshold variable is equal or smaller than 𝑟 and the value 1 if is greater 

than 𝑟; in this case the model becomes a SETAR model. On the other hand, if 𝛾 tends to 

zero, the STAR reduces to a linear AR(𝑝) model. 
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5.6.2 Specification and Modelling of threshold Autoregressive model  

In this section, we describe the process of modelling the threshold autoregressive model 

(TAR model). In estimating the TAR model, we broadly follow the procedure presented 

in Terasvirta and Anderson (1992).83  According to this study, the procedure to estimate 

a TAR model involves three steps. First, select the AR order 𝑝  for threshold lags. In the 

second step, we test for the number of regimes and if there is more than one regime we 

assume a TAR model. However, we do not allow smooth transition between regimes 

that is estimated in the third procedure of Terasvirta and Anderson (1992). As already 

indicated, modelling of the TAR models first required to choose an appropriate lag 

length for linear AR order 𝑝. A standard procedure requires to choose appropriate lag 

length on the basis of a goodness of fit criteria. In practise, different methods can be 

used to decide the appropriate lag length (e.g Schwarz Information Criteria (SIC) or 

Akaike Information Criteria and partial autocorrelation function (PACF)). In our study, 

we use available in EViews (Automatic ARMA model selection procedure) that select 

Akaike Information Criteria to estimate the lag of the AR. In this method, we estimate 

the maximum possible AR lags that free from autocorrelation. This procedure selects 

the maximum 8 lags for non- seasonal AR components and 0 for other ARMA 

components.  We specified maximum order of 8 lags for non-seasonal AR components 

to capture any possible seasonal AR terms that may occur at lag 4 or 8 lags. Second step 

is to test for the number of regimes and assuming a TAR model if the regimes are more 

than one.84 For each model, we conduct a diagnostic test to the residual of the estimated 

model for serial correlation using Breusch Godfrey’s LM test. If there is no evidence of 

autocorrelation (of orders 1, 2, … 4) this initial lag length is selected. However, if there 

is evidence of autocorrelation, we re-estimate the TAR model using a lag length of P*+1 

((where P* = initial lag length). The process is repeated until the model cannot reject the 

                                                           
83 Our technique is slightly different from procedure presented by Terasvirta and Anderson (1992) in two 
ways. First, Terasvirta and Anderson (1992) adopts Information Criteria to select AR lag length. In 
contrast, we apply EVIew automatic ARIMA selection to select AR lag length. Second, Terasvirta and 
Anderson (1992) tests for linearity before estimating TAR model. In our study, we did not test for 
linearity before estimating TAR model because evidence suggest that testing linearity may not be 
relevant when estimating threshold model, but carefully selecting the lag order and delay parameter are 
important (Terasvirta et al. 2005).  
84 In our study, we did not test for linearity because we only estimate TAR models. The linearity test is to 
determine whether the TAR specification or STAR specification are appropriate. Preliminary experiment 
revealed that the STAR model cannot be estimated for most of the selected countries due to the stated 
error in EViews “specification leads to singular matrix in at least one sub-sample”.    
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hypothesis of no- autocorrelation at the 5% level.  For step 3, the TAR model can be 

examined as long as the model pass the diagnostic test for autocorrelation. 85 

 

5.6.3. Modelling TAR Models for Brazil 

In this section, we construct a TAR model for Brazil over the full sample estimated for 

ARIMAX for model in section 5.1.2.  To identify the lag length in the linear AR of annual 

inflation, we use the EViews automatic ARIMA selection procedure (without MA terms). 

First, we select the maximum 8 lags for non- seasonal AR components and 0 for the 

other ARMA components (such as the MA components). We do not consider the 

automatic selection of logarithmic or differencing transformations that are available in 

EViews because we believe that the annual inflation data is stationary following our 

previous analysis.  The automatic ARIMA selection indicates that 3 lags are appropriate 

for annual inflation. These results are summarized in Table 5.6.1 column 1. Second, we 

estimate a TAR model using the suggested 3 lags length and 𝑑 element.86 The result 

shows two distinct regimes of the threshold value of 9.658904.  This implies that that 

value of annual inflation in the first regime is less than 965%. While the value of annual 

inflation in the second regime is more than 965% for Brazil. All the coefficients of the AR 

terms are significant except AR(3) for the second regime. In contrast, only AR(1) is 

significant in the first regime (see Table 5.6.1 column 2). The coefficient value of the 

intercept is also not significant for the first regime and significant in the second regime. 

The result of the Bai and Perron test associated 5% critical value indicates that there is 

only one significant breakpoint because the scaled F-statistic is greater than the 

corresponding critical value for the null hypothesis of no breaks (denoted 0 vs 1). 

However, the scaled F-statistic is less than critical value for the null hypothesis of 1 break 

(1 vs 2). For the model to be valid we apply the standard diagnostic checks for serial 

autocorrelation. Our result shows that 3 out of the 4 of the probability values of the 

residual autocorrelation at the 4th lag, denoted LM[RESID(4)], are less than 0.050 

indicating evident of serial autocorrelation up to order four.  The probability value of the 

                                                           
85 In this research, we will not pay more attention into insignificant value of AR coefficients instead we 

focus on diagnostic test for Autocorrelation because, literature suggests that insignificant value of AR 

coefficients is not informative when estimating threshold models (Tsay 1989). 

86In our study, we estimate  𝑑 = 1 because annual inflation is stationary at level. 
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LM (Obs*R-squared) also indicates that residuals are serially correlated, and the 

equation should be re-specified before using for forecasting. These results are 

summarized in Table 5.6.1 column 2. To maximize the chance of selecting an appropriate 

lag length that will be free from autocorrelation. We consider models with higher lags 

for Brazil and re-estimate the TAR model using lag lengths 4 (where P*+ 1= lag length, 

and P* is the initial lag specified by EView automatic selection) and test the validity of 

this model. The results of the TAR model with 4 lags is reported in the column headed 

3 of Table 5.6.1. This equation also specified the two distinct regimes for the TAR model 

with the same threshold value of 9.658904 for Brazil. In term of specification, the 

coefficients of all AR components are not significant for the both regimes except AR (1) 

and AR(2) for the second regime. The result of the Bai and Perron test associated 5% 

critical value indicates that there is only one significant breakpoint because the scaled 

F-statistic is greater than the corresponding critical value for the null hypothesis of no 

breaks (denoted 0 vs 1). However, the scaled F-statistic is less than critical value for the 

null hypothesis of 1 break (1 vs 2). For the model to be valid we apply the standard 

diagnostic checks for serial autocorrelation. At least more than two of the probability 

value of the residual autocorrelation at the 4th lag, denoted LM[RESID(4)], is less than 

0.050 indicating evident of serial autocorrelation up to order four.  The probability value 

of the LM (Obs*R-squared) also indicate that residuals are serially correlated, and the 

equation should be re-specified before using for forecasting. After experimentation with 

all possible lower and higher lag lengths, we find that a TAR model estimated with 3 lags 

without intercept passed diagnostic test for serial autocorrelation. The results of this 

TAR model with 3 lags without intercept is reported in the column headed 4 of Table 

5.6.1. Therefore, the TAR model with 3 lags without intercept is valid for forecasting. 

From the favoured model, the TAR specification reveals that inflation is characterized by 

only one regime of higher inflation for Brazil between 1984q1 2012q4. A similar 

procedure was applied for all countries and a summary of the favoured TAR models is 

given in Table 5.6.2 and 5.6.3 for BRICS and OPEC countries respectively.  For both BRICS 

and selected OPEC countries, we note that TAR specification identified at least two 

regimes for each country except for Brazil, China and Angola that the TAR model 

specified only 1 regime. This implies that inflation is characterized by the nonlinearity 

with at least two distinct regimes for all selected countries except Brazil, China and 

Angola.  
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Table 5.6.1. Modelling of the TAR model for Brazil  

Where Adj 𝑅2 = Adjusted R – square, SC = Schwarz criterion, {} is the critical values for Bai- Perron test, () 

is the probability value of the coefficient of the TAR model, LM[RESID()]  = p value of the residual,  LM 

(Obs*R-squared) = probability value of Breusch- Godfrey LM test. Obs = number of the observations. 

 

 

 

  

 1 2 3 4 
Countries AR automatic 

selections 
TAR Specifications  TAR Specifications TAR specifications 

Lags values 3 3 4 3 

Number of regimes chosen 
by Selection Criteria 

 2 2 1 

Threshold value for 1   9.658904 (99) 9.658904 (99)  

C 0.012186  
(-0.03231) 

-0.00698 
(-0.01840) 

0.052305 
(0.1519) 

 

Inf_BRA (-1) 1.4767 
(3.7804) 

1.5001 
(3.6066) 

1.0988 
(1.9655) 

1.5648 
(17.89374) 

Inf_BRA(-2) -0.3315 
(-0.4916) 

-0.4071 
(-0.5030) 

-0.3449 
(-0.4755) 

-1.0345 
(-7.3436) 

Inf_Bra(-3) 0.0091 
(0.0348) 

0.1008 
(0.1679) 

0.14728 
(0.2736) 

0.3685 
(4.2136) 

Inf_Bra(-4)   -0.0549 
(-0.2802) 

 

Threshold value for 2  9.658904 (17) 9.658904 (17)  

C  13.3197 
(7.0078) 

26.22902 
(8.8387) 

 

Inf_Bra(-1)  1.1266 
(10.5001) 

1.0130 
(10.3225) 

 

Inf_Bra(-2)  -0.7814 
(-4.5167) 

-0.8925 
(-5.72663) 

 

Inf_Bra(-3)  -0.1442 
(0.5510) 

0.1284 
(0.5366) 

 

Inf_Bra(-4)   -0.2770 
(-1.0528) 

 

Adj 𝑅2 0.8971 10.2149 0.9176 -0.0344 

SC 5.4670 5.5359 5.3717 5.8180 

LM[RESID(1)]  0.2737 0.0386  0.1033 

LM[RESID(2)]  0.9055 0.0168 0.7496 

LM[RESID(3)]  0.0000 0.1880 0.4015 

LM[RESID(4)]  0.0000 0.9456 0.0931 

   LM (Obs*R-squared)  0.0000 0.0000  0.4592 

Bai- Perron test     

0 vs 1  30.9804 
{18.23} 

45.2648 
{20.08} 

2.9871 
{13.98} 

1 vs 2  2.0375 
{19.91} 

4.0461 
{22.11} 
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Table 5.6.2. Modelling of the TAR models for BRICS 

 

 

 

 

C Brazil Russia India China South Africa 
Sample 1984Q4 -2012q4 1996Q1-2012q4 1961Q1-2012q4 1992Q1-2012q4 1961q1-2012q4 

Lags values 3 6 5 10 6 

Number of regime 
chosen by Selection 
Criteria 

1 2 2 1 2 

Threshold value for 1  0.24422(57) 
 

 0.11375[166]  0.84756(160) 

C  0.000357 
(0.0149) 

0.0093 
(0.0021) 

0.0030 
(0.0916) 

-0.00258 
(2.8966) 

Inf_Inflation(-1) 1.5648 
(17.89374) 

3.3516 
(10.4292) 

1.1860 
(0.0000) 

1.1258 
(0.0000) 

0.12435 
(7.2658) 

Inf_Inflation(-2) -1.0345 
(-7.3436) 

-3.7823 
(-5.4582) 

-0.2492 
(0.0400) 

0.0345 
(0.8485) 

0.05411 
(-2.3203) 

Inf_Inflation(-3) 0.3685 
(4.2136) 

1.9502 
(2.5846) 

0.2677 
(0.0342) 

-0.0922 
(0.5862) 

0.32112 
(0.8475) 

Inf_Inflation(-4)  -0.5762 
(-1.5505) 

-0.8055 
(0.0000) 

-0.1155 
(-0.2850) 

-0.1524 
(-2.1494) 

Inf_Inflation(-5)  0.1568 
(0.6781) 

0.49022 
(6.9147) 

0.6105 
(0.0064) 

-0.51326 
(2.0098) 

Inf_Inflation(-6)  -0.04433 
(-0.4694) 

 0.3948 
(0.2498) 

1.4567 
(4.2117) 

Inf_Inflation(-7)    1.2610 
(0.0641)  

Inf_Inflation(-8)    0.1263 
(-3.1027)  

Inf_Inflation(-9)    0.3075 
(2.8442)  

Inf_Inflation(-10)     0.0436 
(0.2225)  

Threshold value for 2  0.24433 (11) 0.11375[42]  0.84756 (48) 

C  -0.0094 
(-0.1408) 

 0.03216 
(0.0001) 

 0.043222 
(5.72189) 

Inf_Inflation(-1)  1.6492 
(11.9724) 

1.4184 
(0.0000) 

 1.765502 
(12.78504) 

Inf_Inflation(-2)  -1.07198 
(-5.3124) 

-0.3499 
(0.0457) 

 -1.74365 
(-6.17347) 

Inf_Inflation(-3)  0.5727 
(2.3572) 

-0.2459 
(0.1750) 

 0.997681 
(2.95944) 

Inf_Inflation(-4)  -0.5693 
(-2.3898) 

-0.1122 
(0.5687) 

 -0.74486 
(-2.01695) 

Inf_Inflation(-5)  0.5258 
(2.6518) 

0.0082 
(0.9477) 

 0.432142 
(1.25310) 

Inf_Inflation(-6)  -0.1860 
(-1.5696) 

  0.246243 
(0.75410) 

Adj 𝑅2  0.9421 0.9072 0.9177 0.9450 

SC -0.0344 -2.2685 -5.2469 -5.5347 -6.6892 

S.E 5.8180 0.0565 0.0171 0.05150 0.0234 

LM[RESID(1)]  0.1033 0.3601 0.4704 1.4736 0.4346 

LM[RESID(2)] 0.7496 
0.1076 0.1161 0.269391 0.21344 

LM[RESID(3)] 0.4015 0.4200 0.2825 0.2108 0.2306 

LM[RESID(4)] 0.0931 0.0810 0.0563 0.1879 0.13455 

   LM (Obs*R-squared)  0.4592 0.2682 8.7239 
 

3.4229 
 2.5669 

Bai- Perron test      

0 vs 1 2.9871 
{13.98} 

30.5087 
{21.87} 

40.7161 
{27.03} 
 

21.2577 
{27.03} 

20.6788 
{22.0567} 

1 vs 2  12.3041 
{24.17} 

28.7211 
{29.7211} 

 14.5300 
{28.7234} 
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Table 5.6.3. Modelling of the TAR model for selected OPEC countries 
C Algeria Angola Nigeria Saudi Arabia Kuwait Ecuador  

Sample 1978Q1-
2012q4 

1996q1 
2012q4 

1964q1-
2012q4 

1975Q1-
2012q4 

1977q1 2012q4 1987q1 2012q4 

Lags values 7 3 15 10 5 3 

Number of 
regime chosen 
by Selection 
Criteria 

3 1 2 2 2 3 

Threshold value 
for 1 

0.09372(83)  0.37499(165) 0.0594776(130) 0.06870(115) 
 

 0.438485(72) 

C 0.006123 
(0.91779) 

0.454768 
(0.468309) 

0.026648 
(3.316294) 

0.00138 
(0.8273) 

0.0070 
(1.11723) 

-0.00236 
(-1.11769) 

Inf_Inflation(-1) 0.777401 
(0.9177) 

0.577528 
(4.839734) 

1.202501 
(13.34657) 

1.229157 
(9.1675) 

0.538022 
(2.192908) 

1.38968 
(4.07459) 

Inf_Inflation(-2) 0.199435 
(0.9177) 

0.199171 
(1.448596) 

-0.1434 
(-1.0616) 

-0.37044 
(-1.7940) 

1.463869 
(-3.34909) 

-0.27517 
(0.749685) 

Inf_Inflation(-3) -0.01111 
(-0.0743) 

-0.02292 
(-0.19502) 

-0.13016 
(-1.06744) 

0.103592 
(0.5046) 

-2.07862 
(4.628368) 

 

Inf_Inflation(-4) -0.8886 
(-6.7429) 

 -0.68105 
(-6.10123) 

-0.4276 
(-2.2533) 

2.303215 
(-1.65001) 

 

Inf_Inflation(-5) 0.83497 
(4.40641) 

 0.801916 0.594925 
(3.19800) 

-1.00916 
(1.46386) 

 

Inf_Inflation(-6) 0.0144 
(0.0824) 

 -0.11533 
(6.392716) 

-0.2916 
(-1.4997) 

  

Inf_Inflation(-7) -0.0619 
(-0.4965) 

 0.087161 
(0.707849) 

0.15430 
(0.81186) 

  

Inf_Inflation(-8)   -0.72106 
(-6.65902) 

-0.3048 
(-1.7546) 

  

Inf_Inflation(-9)   0.719952 
(5.816971) 

0.3425 
(2.1814) 

  

Inf_Inflation(-
10) 

  -0.15098 
(-1.10264) 

-0.1312 
(-1.5358) 

  

Inf_Inflation(-
11) 

  0.066229 
(0.564039) 

   

Inf_Inflation(-
12) 

  -0.47435 
(-4.4386) 

   

Inf_Inflation(-
13) 

  0.578215 
(4.967618) 

   

Inf_Inflation(-
14) 

  -0.19689 
(1.57349) 

   

Inf_Inflation(-
15) 

  -0.02775 
(-0.3670) 

   

Threshold value 
for 2 

0.093723(24)   0.37499(28) 0.0594776(22) 0.06870(29)  0.4384858(15) 

C 0.135891 
(2.836803 

 0.072 
(1.35613) 

0.011738 
(1.4409) 

0.004981 
(1.049287) 

-1.11769 
(-4.52669) 

Inf_Inflation(-1) -0.32878 
(-0.6567) 

 1.673 
(9.759833) 

1.235227 
(11.2408) 

0.99674 
(10.16356) 

4.074599 
(5.98994) 

Inf_Inflation(-2) 0.365933 
(1.6358) 

 -1.155 
(4.21423) 

-0.37266 
(-2.6137) 

-0.07437 
(0.51907) 

0.749685 
(1.128554) 

Inf_Inflation(-3) 0.0056 
(0.0269) 

 0.432 
(1.524301) 

-0.3659 
(-2.47621) 

0.140046 
(0.950018) 

-1.74153 
(-2.78238) 

Inf_Inflation(-4) -0.3060 
(-1.2225) 

 -0.68217 
(-2.54981) 

0.5141 
(2.9287) 

-1.00346 
(0.950018) 

 

Inf_Inflation(-5) -0.02255 
(-0.1283) 

 0.658429 
(1.940667) 

1.1008 
(7.6260) 

0.68131 
(3.268875) 

 

Inf_Inflation(-6) -0.04376 
(-0.2096) 
 

 0.322021 
(0.759652) 

-0.76787 
(-4.2113) 

  

Inf_Inflation(-7) -0.05943 
(-0.4185) 

 -1.44667 
(-3.01114) 

-0.68419 
(-4.85632) 

  

Inf_Inflation(-8)   1.625617 
(3.070437) 

0.25619 
(1.41498) 

  

Inf_Inflation(-9)   -0.71065 
(-1.29662) 

0.9819 
(1.4149) 

  

Inf_Inflation(-
10) 

  0.400739 
(0.801632) 

-1.2179 
(-5.6619) 

  

Inf_Inflation(-
11) 

  -0.09806 
(-0.26301) 
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Where Adj 𝑅2 = Adjusted R – square, SC = Schwarz criterion, {} is the critical values for Bai- Perron test, () 

is the probability value of the coefficient of the TAR model, LM[RESID()]  = p value of the residual,  LM 

(Obs*R-squared) = probability value of Breusch- Godfrey LM test. Obs = number of the observations 

  

Inf_Inflation(-
12) 

  -0.66393 
(-2.54661) 

   

Inf_Inflation(-
13) 

  0.925057 
(3.461555) 

   

Inf_Inflation(-
14) 

  -0.61483 
(-2.00118) 

   

Inf_Inflation(-
15) 

  0.258236 
(1.349004) 

   

Threshold value 
for 3 

0.15275(33)     0.53901(17) 

C -0.00209 
(-0.08217) 

    0.12946 
(2.544994) 

Inf_Inflation(-1) 1.270973 
(8.481038) 

  
 

 1.5361 
(15.2291) 

Inf_Inflation(-2) 0.077223 
(0.4020) 

  
 

 -0.5439 
(-3.36705) 

Inf_Inflation(-3) -0.57528 
(-3.15919) 

  
 

 -0.4262 
(-2.51298) 

Inf_Inflation(-4) -0.19653 
(-1.0505) 

  
 

  

Inf_Inflation(-5) 0.2987 
(1.3162) 

  
 

  

Inf_Inflation(-6) 0.5339 
(2.3218) 

  
 

  

Inf_Inflation(-7) -0.44118 
(-2.9190) 

  
 

  

Adj 𝑅2 0.8978 0.8750 0.9154  0.9546  0.8310 0.9837 

SC -3.5725 -5.232 -2.4417 -4.7809 -5.1979 -3.2559 

LM[RESID(1)] 0.3942 0.1209 0.409307 0.18574 0.5614 0.3098 

LM[RESID(2)] 
0.5833 

0.6689 0.15378 
0.18446 

0.8699 0.202 

LM[RESID(3)] 0.0561 0.122 0.68687 0.16792 0.2108 0.4093 

LM[RESID(4)] 0.3275 0.1029 0.25734 0.16918 0.1879 0.9739 

   LM (Obs*R-
squared) 

0.2000 0.0841 0.9501 
0.1164 

0.2754 0.5555 

Bai- Perron test       

0 vs 1 3.0927 
{23.70} 

 0.4477 
(16.19) 

50.2290 
{27.3}  

90.6243 
{27.0}  
 

46.1241 
{20.08} 

47.0812 
{16.7} 

1 vs 2 3.2856 
{25.75} 

 26.3329 
{29.24} 

10.9373 
{29.24} 

20.0098 
{22.11} 

27.2727 
{18.93} 

2 vs 3 0.7421 
{26.81} 

    2.6458 
(18.13) 
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5.6.4. Modelling TAR Models for Brazil 

In this section, we use the same sample period used in section 5.2 and 5.3. In particular, 

we construct TAR models to the countries’ annual inflation using a reduced sample 

period that avoids structural breaks for Brazil. The difference between the TAR model 

estimated in this section and previous section (5.6.3) is that, we estimate TAR model 

over a full sample that identify with different multiple breaks in the previous section 

(5.6.3) and estimate TAR model over a reduced sample that avoid multiple breaks in this 

section. In particular, we use the Bai Perron tests to identify the number of the possible 

breaks over the full sample and estimate TAR model on the end of the sample that has 

no breaks with the minimum of 39 observations.87  To identify the lag length in the linear 

AR of annual inflation, we use the EViews automatic ARIMA selection procedure 

(without MA terms). First, we select the maximum 8 lags for non- seasonal AR 

components and 0 for the other ARMA components (such as the MA components). We 

do not consider the automatic selection of logarithmic or differencing transformations 

that are available in EViews because we believe that the annual inflation data is 

stationary following our previous analysis.  The automatic ARIMA selection indicates 

that 6 lags are appropriate for annual inflation. These results are summarized in Table 

5.6.4 column 1. Second, we estimate a TAR model using the suggested 6 lags length and 

𝑑 element.88 The result shows two distinct regimes of the threshold value of 

0.07492098.  The value of annual inflation in the first regime is less than 0. 07492098 

while the value of annual inflation in the second regime is more than 0.07492098 for 

Brazil. All the AR coefficients are not significant for two regimes. The result of the Bai 

and Perron test associated 5% critical value indicates that there is only one significant 

breakpoint because the scaled F-statistic is greater than the corresponding critical value 

for the null hypothesis of no breaks (denoted 0 vs 1). However, the scaled F-statistic is 

less than critical value for the null hypothesis of 1 break (1 vs 2). For the model to be 

valid we apply the standard diagnostic checks for serial autocorrelation. At least one of 

the probability value of the residual autocorrelation at the 4th lag, denoted 

LM[RESID(4)], is less than 0.050 indicating evident of serial autocorrelation up to order 

four.  The probability value of the LM (Obs*R-squared) also indicate that residuals are 

                                                           
87 See section 5.2.0 for the details 
88In our study, we estimate  𝑑 = 1 because annual inflation is stationary at level. 
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serially correlated, and the equation should be re-specified before using for forecasting. 

These results are summarized in Table 5.6.4 column 2. To maximize the chance of 

selecting an appropriate lag length that will be free from autocorrelation. We consider 

models with higher lags for Brazil and re-estimate the TAR model using lag lengths 7 

(where P*+ 1= lag length) and test the validity of this model. The TAR models with 7 lags 

also indicates evidence of autocorrelation – see column 3 of Table 5.6.4. Therefore, this 

model is not valid to forecast. After experimentation with valid higher and lower lags, 

we find that a TAR model estimated with 3 lags and annual inflation passed diagnostic 

test for serial autocorrelation.89 The results of this TAR model with 3 lags is reported in 

the column headed 4 of Table 5.6.4. Therefore, the TAR model with 3 lags is valid for 

forecasting. From the favoured model, the TAR specification reveals that inflation are 

characterized by the two distinct regimes for Brazil. For the first regime, the value of 

annual inflation is less than 6.75% while the value of annual inflation in the second 

regime is more than 6.75% for Brazil.  We categorised the first regime where the value 

of annual inflation is less than 6.75% as a period of low inflation and the second regime 

where annual is more than 6.75% as period of high inflation.  We also note that the TAR 

model allocates more observations to the first regime (41 observations) than the second 

regime (21 observations). This implies that period of economy crisis is less than the 

period of economic stability for Brazil. This finding is consistent with economic views 

that duration of economic booms (period lower inflation) tends to be longer than those 

of economic slumps (period of higher inflation).  A similar procedure was applied for all 

countries and a summary of the favoured TAR models is given in Table 5.6.5 and 5.6.6 

for BRICS and OPEC countries respectively.  For both BRICS and selected OPEC countries, 

we noticed that TAR specification identified two regimes for each country except Saudi 

Arabia that the TAR model specified 3 regimes.90 This implies that inflation is 

characterized by the nonlinear with at least two distinct regimes for all selected 

countries over a reduced sample identified without breaks.91  

                                                           
89Note that   𝑑 = 1 because annual inflation is stationary at level. 
90 The available countries that meet up with our minimum requirements in the BRICS and selected OPEC countries 

are summarised below: Brazil, Russia, South Africa, Nigeria, Algeria, Saudi Arabia and Angola.  

91 The possibility of two regimes mean that inflation parameter in many of these countries is nonlinear. 
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Table 5.6.4. Modelling of the TAR model for Brazil  

Where Adj 𝑅2 = Adjusted R – square, SC = Schwarz criterion, {} is the critical values for Bai- Perron test, 

() is the probability value of the coefficient of the TAR model, LM[RESID()]  = p value of the residual,  LM 

(Obs*R-squared) = probability value of Breusch- Godfrey LM test. Obs = number of the observations. 

 
 

 

 

 1 2 3 4 
Countries AR automatic 

selections 
TAR Specifications  TAR Specifications TAR specifications 

Lags values 6 6 7 3 

Number of regimes chosen 
by Selection Criteria 

 2 2 2 

Threshold value for 1  0.07492098 [47 Obs] 0.07252098 [47 Obs] 0.06753 [41 Obs] 

C  0.0666 
(4.9538) 

0.01241 
(0.0155) 

0.0118 
(0.0263) 

0.0175 
(0.0040) 

Inf_BRA (-1) 1.5613 
(17.0160) 

1.4982 
(0.0000) 

1.4445 
(0.0000) 

1.6682 
(0.0000) 

Inf_BRA(-2) -0.9431 
(-4.0581) 

-0.9886 
(0.0019) 

-0.9404 
(0.0044) 

-1.2603 
(0.000) 

Inf_Bra(-3) 0.4343 
(1.2666) 

0.5470 
(0.0560) 

0.4956 
(0.0965) 

0.2844) 
(0.0234) 

Inf_Bra(-4) -0.6202 
(-2.0044) 

-0.7518 
(0.0048) 

-0.5417 
(0.0294) 

 

Inf_Bra(-5) 0.7419 
(2.9123) 

0.6826 
(0.0048) 

0.2985 
(0.0167) 

 

Inf_Bra(-6) -0.3171 
(-2.2669) 

-0.2289 
(0.0617) 

-0.0462 
(-0.1651) 

 

Inf_Bra(-7)   -0.1569 
(-1.1318) 

 

Threshold value for 2  0.07492098[16 Obs] 0.072592098[16 Obs] 0.06753[22 Obs] 

C   0.04309 
(0.0000) 

0.0452 
(0.0000) 

0.0296 
(0.0001) 

Inf_Bra(-1)  1.8115 
(0.0000) 

1.7609 
(0.0000) 

1.6623 
(0.0000) 

Inf_Bra(-2)  -1.7549 
(0.0000) 

-1.6506 
(0.0000) 

-0.6623 
(0.0000) 

Inf_Bra(-3)  0.8854 
(0.0151) 

0.6478 
(0.0678) 

-0.0513 
(0.8024) 

Inf_Bra(-4)  -0.5612 
(0.1561) 

-0.0991 
(0.7653) 

 

Inf_Bra(-5)  0.48115 
(0.1554) 

-0.1023 
(0.5134) 

 

Inf_Bra(-6)  -0.2895 
(0.0567) 

0.2462 
(0.7541) 

 

Inf_Bra(-7)   -0.3700 
(-2.2398) 

 

Adj 𝑅2 0.8865  0.9317 0.9043 0.8927 

SC -5.8305 -6.0816 -6.3189 -6.1436 

LM[RESID(1)]   0.9910  0.0078 
 

0.9677 

LM[RESID(2)]  0.1452 0.3759 
 

0.9079 

LM[RESID(3)]  0.0183 0.0700 0.9056 

LM[RESID(4)]  0.1016 0.0407 0.9976 

   LM (Obs*R-squared)  0.0200 0.0334 0.0831 

Bai- Perron test     

0 vs 1   29.1165 
{21.87} 

 32.6372 
{ 20.08} 

22.3885 
{16.56} 

1 vs 2  9.8978 
{24.17} 

1.7984 
{22.11} 

7.8445 
{18.11} 
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Table 5.6.5. Modelling of the TAR models for BRICS 

 

 

  

C Brazil Russia South Africa 

Sample 1997Q2 -2012q4 2003Q2-2012q4 1995q2-2012q4 

Lags values 3 2 6 

Number of regimes chosen 
by Selection Criteria 

2 2 2 

Threshold value for 1 0.06753[41]  0.08882[7]  0.1041456[60] 

C 0.0175 
(0.0040) 

-0.0176 
(0.1292) 

0.01091 

Inf_Inflation(-1) 1.6682 
(0.0000) 

1.844 8 
(0.0000) 

1.76445 
(0.0000) 

Inf_Inflation(-2) -1.2603 
(0.000) 

-0.7512 
(0.0052) 

-0.9218 
(0.0000) 

Inf_Inflation(-3) 0.2844) 
(0.0234) 

 0.1061 
(0.6246) 

Inf_Inflation(-4)   -0.6236 
(0.0080) 

Inf_Inflation(-5)   0.9907 
(0.0000) 

Inf_Inflation(-6)   -0.0922 
(0.5862) 

Threshold value for 2 0.06753[22] 0.08882[32] 0.1041456[11] 

C 0.0296 
(0.0001) 

0.005749 
(0.0000) 

0.11977 
(0.0217) 

Inf_Inflation(-1) 1.6623 
(0.0000) 

1.4510 
(0.0000) 

0.6328 
(0.0147) 

Inf_Inflation(-2) -0.6623 
(0.0000) 

-0.6962 
(0.0000) 

-0.8331 
(0.0694) 

Inf_Inflation(-3) -0.0513 
(0.8024) 

 0.5035 
(0.2592) 

Inf_Inflation(-4)   -0.6236 
(0.0080) 

Inf_Inflation(-5)   0.9907 
(0.0000) 

Inf_Inflation(-6)   -0.4709 
(0.0007) 

Adj 𝑅2 0.8927 0.9193 0.9209 

SC -6.1436 -6.3006 -5.4734 

S.E 0.0092 0.00850 0.0115 
LM[RESID(1)] 0.9677 0.4561 0.7941 
LM[RESID(2)] 0.9079 0.9976 0.1848 
LM[RESID(3)] 0.9056 0.8773 0.4713 
LM[RESID(4)] 0.9976 0.3977 0.7744 
   LM (Obs*R-squared) 8.2426 

[0.0831] 
2.1696 
[0.7048] 

 3.6922 
(0.4493) 

Bai- Perron test    
0 vs 1 22.3885 

{16.56} 
18.3894 
{14.12} 
 

64.2068 
{39.1724} 
 

1 vs 2 7.8445 
{18.11} 

4.7870 
{1.5959} 
 

1.5054 
{10.5381} 
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 Table 5.6.6. Modelling of the TAR model for selected OPEC countries 
C Algeria Angola Nigeria Saudi Arabia 

Sample 1999Q2-2012q4 2000Q4-
2012q4 

1998Q4-2012q4 1979Q3-2012q4 

Lags values 5 2 6 8 

Number of regimes 
chosen by Selection 
Criteria 

2. 2 2 3 

Threshold value for 1 0.00902987[25]  1.11950{19] 0.1507519[24]  0.0040835[51] 

C 0.0068 
(0.1438) 

0.01333 
(0.2848) 

0.0225 
(0.1025) 

0.00102 
(0.5735) 

Inf_Inflation(-1) 1.0076 
(0.0000) 

1.5088 
(0.0000) 

1.4140 
(0.0000) 

1.0695 
(0.0000) 

Inf_Inflation(-2) -0.1219 
(0.4872) 

-0.6042 
(0.0005) 

-0.5406 
(0.0323) 

-0.3495 
(0.0000) 

Inf_Inflation(-3) 0.1125 
(0.5242) 

 -0.1649 
(0.4461) 

0.4034 
(0.0000) 

Inf_Inflation(-4) -0.6605 
(0.0005) 

 -0.3952 
(0.0211) 

-0.8675 
(0.0000) 

Inf_Inflation(-5) 0.4945 
(0.0008) 

 0.5968 
(0.0006) 

1.0053 
(0.0000) 

Inf_Inflation(-6)   -0.1227 
(0.3277) 

-0.4215 
(0.1620) 

Inf_Inflation(-7)    0.6420 
(0.0146) 

Inf_Inflation(-8)    -0.5930 
(0.0000) 

Threshold value for 2 0.00902987[30] 
 

1.11950[30] 0.1507519[33]  0.0040835[63] 

C 0.541 
(0.592) 

0.33120 
(0.0000) 

0.27416 
(0.0019) 

-0.001034 

(0.6215) 

Inf_Inflation(-1) -0.447 
(-0.1470) 

0.4012  
(0.0014) 

0.2494 
(0.2797) 

1.4227 

(0.0000) 

Inf_Inflation(-2) -0.476 
(-0.3529) 

-0.6042 
(0.0005) 

-0.3294 
(0.1704) 

-0.3105 

(0.1533) 

Inf_Inflation(-3) -0.229 
(-0.3945) 

 -0.2923 
(0.3802) 

-0.0541 
(0.7466) 

Inf_Inflation(-4) -0.124 
(-0.7531) 

 -0.5076 
(0.2968) 

0.0499 

(0.7306) 

Inf_Inflation(-5) 0.934 
(0.6902) 

 0.7282 
(0.1533) 

0.0580 

(0.6565) 

Inf_Inflation(-6)   -0.6508 
(0.0190) 

-0.0928 

(0.4560) 

Inf_Inflation(-7)    0.0112 
(0.9306) 

Inf_Inflation(-8)    0.0055 
(0.0055) 

Threshold value for 3     0.04761904[20] 

C    -0.0129 
(0.1234) 

Inf_Inflation(-1)    0.9655 
(0.0000) 

Inf_Inflation(-2)    0.1838 
(0.3742) 

Inf_Inflation(-3)    -0.1206 
(0.6057) 

Inf_Inflation(-4)    -0.7086 
(0.0050) 

Inf_Inflation(-5)    1.0370 
(0.0002) 

Inf_Inflation(-6)    -0.7635 
(0.1432) 

Inf_Inflation(-7)    0.1634 
(0.8033) 
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Where Adj 𝑅2 = Adjusted R – square, SC = Schwarz criterion, {} is the critical values for Bai- Perron test, 

() is the probability value of the coefficient of the TAR model, LM[RESID()]  = p value of the residual,  LM 

(Obs*R-squared) = probability value of Breusch- Godfrey LM test. Obs = number of the observations 

  

Inf_Inflation(-8)    0.4544 
(0.1875) 

Adj 𝑅2 0.7107 0.9914 0.8051 0.9158 

SC -5.3230 -2.5734 -3.9300 -5.9484 
LM[RESID(1)] 0.8255 0.5092 0.9908 0.2258 
LM[RESID(2)] 

0.3374 0.1112 0.4948 0.2343 
LM[RESID(3)] 0.7580 0.4036 0.6544 0.9313 
LM[RESID(4)] 0.1673 0.0581 0.3919 0.3132 
   LM (Obs*R-squared)  4.4505 

(0.3485) 
9.2801 
(0.0545) 

 1.6069 
(0.8076) 

 5.3362 
(0.2545) 

Bai- Perron test     
0 vs 1 1.1571 

(6.9423) 

 23.3253 
{69.9760} 

 5.5717 
{39.0019} 

 4.3041 
{38.7376} 

1 vs 2  0.4739 
{1.4217} 

2.4028 
{16.8200} 

4.9224 
{44.3022} 

1 vs 3    1.3739 
{12.3658} 
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5.7.1  Forecast performance and evaluation for Threshold Models for 

Brazil annual inflation 

In this section, we follow the rolling regression technique discussed in section 5.5.0 and 

produce out-of-sample forecasts for two different estimated TAR models given in table 

5.6.1 and 5.6.4. The first TAR model is estimated over a full sample with different 

multiple breaks between the period 1984q1 to 2012q4.  The second TAR model is 

estimated over a reduced sample between the period 1997q2 to 2012q4. The reduced 

sample are designed to avoid modelling structural breaks. The forecast performance of 

the two non-linear TAR models for Brazil are given below in Table 5.7.1.   

Table 5.7.1. Forecast performance of the nonlinear TAR model for Brazil 

 A. Non-linear TAR models estimated over the 
full sample 

B. Non-linear TAR models estimated on a reduced sample that 
avoid breaks 

 RMSE MAPE U RMSE MAPE U 
7 0.0070 9.8180 0.0600 0.0050* 6.0080* 0.0360* 

2-step 0.0170 25.6600 0.1580 0.0080* 10.9700* 0.0690* 

3-step 0.0260 41.1200 0.2640 0.0100* 13.1200* 0.0910* 

4-step 0.0310 50.8800 0.3450 0.0110* 13.4300* 0.0990* 

5-step 0.0360 57.5300 0.4050 0.0080* 11.1900* 0.0690* 

6-step 0.0390 62.300 0.4560 0.0040* 4.8800* 0.0310* 

7-step 0.0420 66.7500 0.5070 0.0070* 10.6200* 0.0530* 

8-step 0.0420 71.8700 0.5610 0.0060* 10.1600* 0.0480* 

An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for 

 From Table 5.7.1, the nonlinear TAR model estimated over the reduced sample without 

multiple breaks (Table 5.7.1 column B) has the lowest RMSE, MAPE and U-statistics over 

all forecasting horizons. This implies that the TAR model estimated over a reduce sample 

that avoid modelling breaks is unambiguous outperforms the TAR model estimated over 

the full sample with different multiple breaks. This result is consistent with our previous 

findings (in section 5.5.1) that stated that reduced samples to avoid structural breaks is 

the preferred strategy when modelling and forecasting inflation. A similar procedure 

was applied to all countries. In summary, for BRICS and selected OPEC countries. The 

TAR model estimated over a reduce sample that avoid modelling breaks produce 

superior forecast than the TAR model estimated over a full sample with different 

multiple breaks except for Saudi Arabia (over 1 to 3-steps ahead horizons). Note that, 

we did not estimate TAR model over a reduced sample for China, India, Kuwait and 

Ecuador because the multiple Bai Peron test does not identified breaks over the full 

sample for China and India. For Kuwait and Ecuador, the end of the sample identified 

without multiple breaks are less than 39 observations.  



148 
 

5.7.2 Brazil Forecast performance and evaluation 

In this section, we compare the forecasting performance of the best selected linear 

univariate ARIMA model in section 5.5.1 and best selected nonlinear TAR model in 

section 5.7.1 for Brazil to choose the best univariate model that forecast inflation. The 

forecast performance of the best selected univariate model for Brazil are given below in 

Table 5.7.2.   

 

Table. 5.7.2: Comparison of the best performance of the nonlinear TAR model and best 

selected ARIMA model for Brazil. 

 A. Non-linear TAR models 
estimated on a reduced 
sample that avoid 
breaks 

B. Reduced sample EView9 Automatic seasonal 
ARIMA model without modelling breaks 

C. Reduced sample EView9 Automatic’s non-
seasonal ARIMA model without modelling 
structural breaks 

 RMSE MAPE U RMSE MAPE U RMSE MAPE U 
1 0.0050 6.0080 0.0360 0.0050* 5.0690* 0.0360* 0.0060 7.8950 0.0490 

2-step 0.0080 10.9700 0.0690 0.0060* 8.0390* 0.0470* 0.0070 9.5170 0.0560 

3-step 0.0100 13.1200 0.0910 0.0060 10.1500 0.0560 0.0060* 8.2540* 0.0480* 

4-step 0.0110 13.4300 0.0990 0.0060 8.6970 0.0500 0.0030* 3.7780* 0.0220* 

5-step 0.0080 11.1900 0.0690 0.0070 9.3930 0.0520 0.0002* 0.1580* 0.0010* 

6-step 0.0040 4.8800 0.0310 0.0060 7.2460 0.0430 0.0004* 0.5880* 0.0040* 

7-step 0.0070 10.6200 0.0530 0.0060 8.2260 0.0490 0.0004* 0.7080* 0.0040* 

8-step 0.0060 10.1600 0.0480 0.0090 15.4300 0.0720 0.0004* 0.3390* 0.0020* 

An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for 

each.  

From Table 5.7.2, we compare the forecasting performance of the best selected 

univariate ARIMA model (automatic non-seasonal ARIMA technique) in section 5.5.1 

and best selected nonlinear TAR model in section 5.7.2 (Non-linear TAR models 

estimated on a reduced sample that avoid breaks). From our study, the linear ARIMA 

model (reduced sample automatic non-seasonal ARIMA technique without modelling 

breaks) in Table 5.7.2 column C, has the lowest RMSE, MAPE and U-statistics over all 

forecasting horizons except 1 and 2- step ahead horizons. Similarly, the reduced sample 

EViews automatic seasonal ARIMA technique without modelling breaks in Table 5.7.2 

column B has the lowest RMSE, MAPE and U-statistics values for 1 and 2-step ahead 

horizon.  In contrast, the nonlinear TAR model estimated over the reduced sample that 

avoid modelling breaks were never favoured for Brazil when compared with other 

forecasting models.  A similar procedure was applied to all countries. In summary, for 

BRICS and selected OPEC countries. The nonlinear TAR models were not favoured over 

the best selected linear ARIMA models in Table 5.5.2 and 5.5.3 except for China (over all 

forecasting horizons), Nigeria (over 1 to 4-steps ahead horizons) and Saudi Arabia (over 

1 to 3- steps ahead). Hence, there are 3 countries where the TAR model produces the 
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better forecasts than the best selected ARIMA models over at least some horizons (see 

table 5.7.3 and 5.7.4 below for details). 

Table 5.7.3 Summary of the best forecasting univariate models for BRICS countries 

Best forecasting Univariate model for Brazil 

 RMSE U –statistics MAPE 

Horizon Type  Type Type Range 

1-to 2-steps R_A _SARIMA R_A_SARIMA R_A_SARIMA  5.0690 – 8.0390 

3 to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA  0.3390 -8.2540 

Best forecasting univariate model for Russia 

 RMSE U –statistics MAPE 

Horizon Type Type Type  Range 

1 to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA   6.3660 – 20.6300 

Best forecasting univariate model for India 

 RMSE U –statistics MAPE 

Horizon Type Type Type Range 

1 to 8- steps F_SARIMA F_SARIMA F_SARIMA 13.5200 -63.4600 

Best forecasting univariate model for China 

 RMSE U –statistics MAPE 

1 to 8-steps F_TAR Model F_TAR Model F_TAR model  6.1940 – 10.0800 

Best forecasting univariate model for South Africa 

 RMSE U –statistics MAPE 

Horizon Type Type Type Range 

1 to 4 –steps R_A_SARIMA R_A_SARIMA R_A_SARIMA 14.2800 -20.9900  

5-step R_SARIMA R_A_SARIMA R_SARIMA 17.2600 

6 to 7-steps R_A_SARIMA R_A_SARIMA R_A_SARIMA  12.3600- 13.3600  

8-step R_SARIMA R_SARIMA R_SARIMA 10.2000 

The best univariate forecasting model is identified by each measure (RMSE, MAPE and U) for each 

forecasting horizon (1, 2…, 8 steps ahead). The full sample univariate model that employs seasonal Box-

Jenkins ARIMA techniques and model’s structural breaks is denoted as F_SARIMAX, the full sample 

univariate model that employs Box-Jenkins ARIMA techniques without modelling structural breaks is 

denoted as F_SARIMA (this model type is exclusive to India because there were no significant structural 

breaks to model over the full sample). The full sample specifications that employ EViews 9’s automatic 

seasonal and non-seasonal ARIMA model without modelling breaks are denoted as F_A_SARIMA and 

F_A_ARIMA respectively (these models are exclusively designed for China because the period after the 

structural breaks are less than 39 observations and relative step shifts for this period also appear to be 

small which mean that inference regarding unit roots may not be too adversely affected when using the 

full sample. Hence, the full sample is used for these models for this country). The reduced sample model 

that employs seasonal ARIMA technique’s without modelling structural breaks is denoted as R_SARIMA. 

The reduced sample model that employs EViews 9’s automatic seasonal ARIMA model selection 

procedure without modelling breaks is denoted as R_A_SARIMA and the reduced sample model that 

employs EViews 9’s automatic non-seasonal ARIMA model selection method without modelling breaks is 

represented by R_A_ARIMA. F_TAR Model is denoted as threshold autoregressive model estimated over 

the full sample and R_TAR model is denoted as the threshold autoregressive model estimated over the 

reduced sample that avoid modelling breaks. The range gives the range of values for the MAPE for models 

favoured according to this forecasting measure over the specified horizon.  
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Table 5.7.4 Summary of the best forecasting univariate models for OPEC countries 

Best forecasting univariate model for Angola 

 RMSE U –statistics MAPE 

Horizon Type  Type Type Range 

1 to 8-steps R_SARIMA R_SARIMA R_SARIMA  2.0590 – 13.3300 

Best forecasting univariate model for Algeria 

 RMSE U –statistics MAPE 
Horizon Type Type Type  Range 

1 –step F_SARIMAX F_SARIMAX R_A_SARIMA  61.6300 

2 –step R_A_ARIMA R_A_ARIMA R_A_ARIMA  82.6100 

3 to 7-steps F_SARIMAX  F_SARIMAX F_SARIMAX  27.3800- 136.0000 

8-step F_SARIMAX R_SARIMA F_SARIMAX  28.7700 

Best forecasting univariate model for Ecuador 

 RMSE U- statistics MAPE 

Horizon Type Type Type Range 
1 to 8-steps F_SARIMAX F_SARIMAX F_SARIMAX 15.4500 -42.9100 

Best forecasting univariate model for Saudi Arabia 

 RMSE U –statistics MAPE 

Horizon Type Type Type Range 

1 to 3-steps F_TAR Model F_TAR Model F_TAR Model 4.3720 -8.4800 
4 to 8-step R_A_ARIMA R_A_ARIMA R_A_ARIMA  1.0100 – 15.1400 

Best forecasting univariate model for Nigeria 

 RMSE U –statistics MAPE 

 Horizon  Type  Type  Type  Range 

1 to 4-steps R_TAR Model R_TAR Model R_TAR Model 15.9000- 19.360 

5 to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA  40.7200 – 46.5100 

Best forecasting univariate model for Kuwait 

 RMSE U-statistics MAPE 

Horizon Type Type Type Rage 

1 to 8-steps F_SARIMAX F_SARIMAX F_SARIMAX 11.2100 – 38.5900 

See note in the Table 5.5.2  
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5.7.3 The chapter summary and conclusion 

 This chapter is divided into two sections, first we discussed the procedure of modelling 

ARIMAX models that have a deterministic component to account for structural breaks 

over the full sample period and different ARIMA specifications over a reduced sample 

period that avoids the modelling structural breaks. The univariate ARIMA models that 

we develop over the reduced sample period are, first, a seasonal ARIMA specification 

identified using the Box-Jenkins method, second, a seasonal ARIMA model identified 

using EView’s automatic model selection tool and third, a non-seasonal ARIMA model 

identified using EView’s automatic model selection tool applied to seasonally adjusted 

data. The other model we considered in this chapter also include the regime shift 

threshold Autoregressive model estimated over the full sample and reduced sample. 

Second, we compare the forecasting performance of each valid model over 8-steps 

ahead forecasting horizons using the Root Mean Squared Error (RMSE), Mean Absolute 

Percentage Error (MAPE) and Theil’s inequality coefficient (U) to choose appropriate 

model with the lowest error. The aim of this chapter is to determine whether the valid 

ARIMA/ARIMAX and TAR models that passes the standard diagnostic test (stationarity 

and autocorrelation) can be obtained for each country. We also examine whether 

superior forecasts can be obtained by using the full sample (with the benefit of more 

information) and explicitly modelling the structural breaks (with the possibility of 

overfitting and difficulty in adequately capturing such effects) or whether using reduced 

samples (with the disadvantage of fewer data points) is compensated by the avoidance 

of having to model any structural breaks.  In our study, a valid ARIMA/ARMAX and TAR 

model can be obtained to forecast inflation for BRICS and selected OPEC countries.  To 

choose the best selected univariate model for both BRICS and OPEC countries. In our 

study, we observed that the nonlinear TAR models were not favoured over the best 

selected linear ARIMA/ ARIMAX models except for China (over all forecasting horizons), 

Nigeria (over 1 to 4-steps ahead horizons) and Saudi Arabia (over 1 to 3- steps ahead). 

When comparing performance of model estimated over the full sample (ARIMAX and 

TAR model) to the model estimated over a reduce sample (ARIMAs models and reduced 

sample TAR model).  The ARIMAX and TAR applied to the full sample is rarely favoured 

when compared with all model estimated over the reduce sample (except where it is 

the only valid model). This suggests that the potential benefits of using a full sample and 
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explicitly modelling the structural breaks are generally outweighed by the benefits of 

being able to avoid modelling structural breaks at the cost of a reduced sample for 

estimation. Given the extra time and modeller expertise required to model such breaks 

suggests that using reduced samples to avoid structural breaks is typically the preferred 

strategy. 
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CHAPER 6 

SELECTION OF VARIABLES FOR MULTIVARIATE ANALYSIS 

6.0 Introduction 

In this chapter, we discuss the data used in multivariate modelling. We identify the 

variables that are most commonly employed to model and forecast inflation in the 

literature and identify the data availability of these series for each country under study. 

Whilst we give priority to variables available at quarterly frequency we also consider the 

addition of variables that are available only at annual frequency to ameliorate omitted 

variable issues. We use frequency conversion tools to generate quarterly series from 

annual series. The main explanatory variables that we consider for each country are the 

money supply, real exchange rate, interest rate, output gap, unemployment rate and 

the oil price. The periods where data are available on most of these variables for each 

country are given below: 

 

Table 6.1 The summary of available data for multivariate analysis in each country 

 

To allow for lags and transformations we use data up to 3 years prior to the start of the 

estimation period (2 years for lags and one year for the four-period seasonal difference 

used to construct inflation from prices). Hence, the sample periods over which 

multivariate models can be estimated for each country are given in the table below: 

 

Table 6.2. The summary of the estimated samples for each country 

 

 

Countries Brazil Russia India China  South Africa 

Start 1994Q2 2000Q2 1957Q1 1989Q1 1992Q2 

 End 2014Q4 2014Q4 2014Q4 2014Q4 2014Q4 

Countries Algeria Angola Nigeria Saudi Arabia 

Start 1996Q2 1997Q4 1995Q4 1976Q3 

 End 2014Q4 2014Q4 2014Q4 2014Q4 

Countries Brazil Russia India China  South Africa 

Start 1997Q2 2003Q2 1960Q1 1992Q1 1995Q2 

 End 2012Q4 2012Q4 2012Q4 2012Q4 2012Q4 

Countries Algeria Angola Nigeria Saudi Arabia 

Start 1999Q2 2000Q4 1998Q4 1979Q3 

 End 2012Q4 2012Q4 2012Q4 2012Q4 
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Table 6.3.  Data availability for Brazil 

Variables Quarterly Annually Source 

Consumer Price Index 
(CPI) 

1980q1 – 2014q4 1970 – 2008 IMF/IFS & UN DATA 

Broad Money 
Liabilities (Millions of 
national currency) 

2001q4 2014q4  IMF/IFS 

Broad Money 
Liabilities seasonal 
adjusted (Millions of 
national currency) 

2001q4 2014q4  IMF/IFS 

Money Supply (M1) in 
Million national 
currency 

1971q1 2014q4  IMF/IFS 

Money and quasi 
money (M2) (current 
LCU) 

 1990 2014 World Bank 

GDP (current) US $  1961 2014 World Bank 

Real GDP  1992 2011 Penn World Table 

Unemployment rate 
% 

1960q4- 2014q4  IMF/IFS 

Industrial production 1975q1 2015q3  OECD 

lending interest rate 1997q1 – 2014q4  IMF/IFS 

Money market rate  1957q1 2014q4  IMF/IFS 

Real interest rate 1997q1 – 2014q4  World Bank 

Treasury bill rates % 1995q1 -2014q4  IMF/IFS 

Discount rate end of 
period (% per annum) 
 

1999q2 2014q4  IMF/IFS 

Real effective 
Exchange rate (CPI 
BASED) 

1980q1 2014q4  IMF/IFS 

Unemployment (% of 
total labour force) 
(modelled ILO 
estimate) 

 1991 -2013 World Bank 

GDP DEFLATOR 
(2000=100) index 

1995q1 2014q4  IMF/IFS 

Oil price 1980q1 – 2014q4  FRED database92 

 

The above table summarises the availability of data for Brazil. For Brazil, we would 

ideally like to collect data over the period 1994q2 – 2014q4. We implement a VAR 

analysis using data available over this period involving the following variables: consumer 

                                                           
92 In this study, we employ quarterly seasonal unadjusted data for the oil price rather than the seasonal 
adjusted oil price earlier mentioned by external supervisor simply because the graph of the partial 
autocorrelation for the quarterly oil price shows that oil price does not has the feature of seasonality 
between the period of 1980q1 to 2014q4. 
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price index, nominal money supply M1, the money market short-term interest rate, the 

real effective exchange rate, oil price and unemployment. Quarterly data on industrial 

production is also available over this sample period which means that the output gap 

can also be constructed. We will use the EViews frequency conversion tool to generate 

quarterly versions of these series to additionally use in our VAR analysis. A similar data 

selection procedure was applied to all countries and (to save space) the full discussion 

for each country is made available in appendix section 6.1 page 444 – 456.  The table 

below summarises the data availability for each country. 

 

Table 6.4. Summary of data availability for all the countries 

Countries Sample Variables 

Brazil 1999q4 2012q4  P, M, R, REE, 𝑈𝑁, GAP and Oilp 

Russia 2003Q2 2012q4 P, M, R, REE, 𝑈𝑁, GAP and Oilp  

India 1963q1 2012q4 P, M, R,  GAP and Oilp 

China  1992q1 2012q4 P, M, R, REE, GAP and Oilp   

South Africa 1995q2 -2012q4 P, M, R, REE, GAP and Oilp  

Algeria 1999q2 2012q4  P, M, R, REE, GAP and Oilp   

Angola 2002q4 2012q4 P, M, R, GAP and Oilp   

Nigeria 1998q4 2012q4  P, M, R, REE  GAP and Oilp    

Saudi Arabia 1983q1 2012q4  P, M  REE, GAP and Oilp 

Where P= consumer price, M =money supply, REE= real exchange rate, GAP = output gap, R = interest 
rate, UN =unemployment and Oilp = oil price.  The invalid models indicate the VAR model that do not pass 
diagnoses test for autocorrelation with all suggesting lags length. 
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6.1 Phillips Curve  

In this section, we utilise the available variables discussed in the previous section to 

construct the output gap that is based on the Phillips curve. The Phillips curve is a widely 

used economic model to forecast inflation.93  The model is based on measures of 

economic activity such as the unemployment rate or the output gap. The output gap 

measures the difference between current economic activity (actual output) and the 

potential output level that could be sustained while keeping inflation stable.94 

The unemployment rate is calculated as a percentage by dividing the number 

of unemployed individuals by all individuals currently in the labour force.95 There are 

many different methods for estimating the output gap. The methods are either based 

on pure statistical procedures or economic theories. Some statistical procedures are the 

univariate Hodrick-Prescott (HP) method, multivariate HP method, linear trend method, 

quadratic time trend, Baxter-King (BK) method, the state-space framework using the 

Kalman filter etc. The theoretical methods include structural VAR, the Cobb-Douglas 

production function etc. In practice, each method has advantages and disadvantages 

and none is unambiguously better than the alternatives.96 Therefore, we seek to use an 

appropriate method that is relevant to our research and can be constructed with the 

available data.97  Since our focus is on forecasting and comparison, we consider two 

                                                           
93 See Stock and Watson (1999, 2008), Onder (2004), Faust and Wright (2011) and Ogunc et al. (2013) 
among others. 
94 See: Office for Budget Responsibility (2011) Estimating the output gap Briefing paper no.2; available 

on http://budgetresponsibility.org.uk/wordpress/docs/briefing%20paper%20No2%20FINAL.pdf  

[accessed] on 28 February  2015. 

95 The concept of the output gap is often used to maintain low inflation and stable economic growth. 

Accordingly, when aggregate demand exceeds potential output, the economy is subject to inflationary 

pressures and inflation should be expected to increase. Under these circumstances, policymakers will 

control inflation by restricting aggregate demand. Similarly, when aggregate demand falls short of 

potential supply, inflation is expected to fall. To maintain stable inflation, the monetary authority aims 

to adopt expansionary policies.  

96 For example, the Hodrick-Prescott method has the merit of simplicity, but it does not generally exploit 
additional relevant information apart from information on the variable of interest. Burns et al (2014) 
suggest that the output gap estimated with a production function and multivariate methods are 
superior to the Hodrick-Prescott filter and other single variable estimation methods of the output gap. 
Hendry (2001) argues that the linear trend method can be misleading if the trend-growth changes or 
becomes inconsistent, especially during periods of economic instability and economic recession.  
97 See Ince and Papell, 2013 on how to estimate different types of output gap.  

http://budgetresponsibility.org.uk/wordpress/docs/briefing%20paper%20No2%20FINAL.pdf
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measures of the output gap when considering the Phillips curve. One uses the 

unemployment rate and the other uses a version of Stock and Watson’s activity index.98  

                                                           
98 See: Stock and Watson (1999) and Atkeson and Ohanian (2001) for a similar methodology. However, 
Stock and Watson (1999) noted that the Phillips curve estimated with real economic activity provides 
the best forecast when compared with unemployment-based Phillips curves. They conclude that “the 
unemployment rate Phillips curve can play a useful role in forecasting inflation, but that relying on it to 
the exclusion of other forecasts is a mistake”. Stock and Watson (2003) document that the ability of 
output gap models to forecast inflation in Europe is more limited than in the U.S 
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6.2. Inflation forecasts based on measures of aggregate real activity and 

unemployment rate 

The Phillips curve model that we base our research on is the same as the methodology 

used by Stock and Watson (1999, 2003), Clark and McCracken (2006) and Nnanna 

(2007). Their models can be written as: 

 

 𝜋𝑡+ℎ- 𝜋𝑡 = 𝜇 + 𝛽(𝐿)𝑥t  +  𝛾(𝐿)∆𝜋𝑡  + 𝑣t       6.1

  

 

Where 𝑣t is the random disturbance, 𝜇 is a constant, 𝜋𝑡 denotes the inflation rate, 𝑥t  is 

an indicator for the activity index or unemployment rate, 𝛾(𝐿) and 𝛽(𝐿) are polynomials 

in lag operators 𝐿 and 𝑡 is the time period. We consider two measures of aggregate 

activity that are suggested by Stock and Watson (2003) – the index of industrial 

production and real output measured by real GDP – and utilise the measure where data 

is most available.99 We also consider the unemployment rate as measure by 

International Labour Organization.  

 

In this study we follow Stock and Watson (1999) and estimate 𝑥t  in equation 6.1 based 

on the one-sided version of the Hodrick-Prescott (HP) filter.100 This method is convenient 

and preserves the temporal ordering of the data.101  The one–sided HP trend is 

constructed as the Kalman filter estimate of 𝜏𝑡 in the model: 

  

𝑦𝑡 = 𝜏𝑡 + 𝜀𝑡,              6.2 

 

∆2 𝜏𝑡 =  𝜂𝑡            6.3 

       

                                                           
99 Due to the limited data, we use different indicators of the real activity variable for different countries. 
The industrial production index is available for Brazil, India, Russia, Nigeria and Saudi Arabia while the 
real output variable measure, real GDP, is estimated by adjusting nominal GDP with the GDP deflator for 
all the remaining countries. 
100  We use the one-side version because the future value of the observed series (𝑦𝑡) would not be used 
in the detrending operation. 
101 See: Stock and Watson (1999, 2003), Clark and McCracken (2006) and Nnanna (2007) for a similar 

methodology. 
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Where 𝑦𝑡 is the logarithm of the series (the observed series), 𝜏𝑡 is the unobserved trend 

component and 𝜀𝑡 and 𝜂𝑡  are mutually uncorrelated white noise sequences with relative 

variance 𝑞=var(𝜂𝑡)/var(𝜀𝑡).  Accordingly, 𝑞 = 0.00625, which corresponds to the usual 

value of the HP smoothing parameter (∆2 = Lambda = 1600). The HP technique 

computes the smoothed series of the trend component (𝜏𝑡 ) of the log of the real activity 

variable (𝑦𝑡) to minimize the variance of the log of this real activity variable around it 

trend. That is, the output gap is calculated by minimizing the loss-function:  

 

 Minimise {𝜏𝑡}𝜏
𝑡=−1

    { ∑  𝜀𝑡
2𝜏

𝑡=1  + 𝜆 ∑ [𝜏
𝑡=1 (𝜏𝑡- 𝜏𝑡−1) – (𝜏𝑡−1 - 𝜏𝑡−2)]2 }   6.4  

 

where  𝜀𝑡 =  𝑦𝑡 - 𝜏𝑡, 𝜆 is the relative multiplier and the parameter is a positive number. 

The smoothness parameter 𝜆 punishes the variability in the trend component smoother. 

The larger the value of 𝜆 the smoother is the trend component and when 𝜆 approaches 

infinity the trend component becomes a linear trend (Ince and Papell, 2013).102  

 

 

  

                                                           
102  The value of ∆2 is conventionally set at 100 for annual data, 1600 for quarterly data and 14,400 for 
monthly series (see: Van Norden Simone 1995, Ceo and McDermott, 1996, Ince and Papell, 2013 and E-
views 8 guidelines for estimating the Hodrick-Prescott (HP) filter). 
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6.3.  Multivariate Cointegration Forecast 

Our multivariate time series model is based on the VAR method. A standard VAR is used 

to capture the linear interdependencies of multivariate time series and capture the 

dynamic behaviours and structural relationship among the variables. That is, it consists 

of linear relationships among the different variables in which each variable is explained 

by its own lags, as well as the current and past values of the remaining variables. In 

estimating a VAR, we face different decisions, namely: the variables to be included and 

how to deal with the non-stationarity variables. 

With regard to nonstationarity, we test for the orders of integration of variables and for 

those that are nonstationary we consider whether they are cointegrated.103 We note 

that modelling and forecasting any series that is not stationary may lead to spurious 

results. Engle and Granger (1987) establish that a cointegrating equation can be 

represented as an error correction model which incorporates both changes and levels 

of variables such that all of the elements are stationary. However, ‟VARs estimated with 

cointegrated data will be misspecified if all of the data are differenced because long-run 

information will be omitted and will have omitted stationarity inducing constraints if all 

of the data are used in levels. Further, including variables in both levels and differences 

should satisfy stationarity requirements, however, they will omit cointegrating 

restrictions that may improve the model. Of course, these constraints will be satisfied 

asymptotically but efficiency gains and improved multi-step forecasts may be achieved 

by imposing the constraintsˮ (Engle Granger 1987, p. 259). Therefore, we distinguish 

between different techniques in modelling using differencing and cointegrating 

restrictions via an error-correction model to ensure stationary.104 We focus on the 

following approaches, three of which are discussed by Timothy and Thomas (1998). The 

first approach is to construct a VAR model in pure differences (stationary form) to 

forecast inflation.105 The second approach is to construct a VECM without imposing 

                                                           
103 The linear combination of two series which are stationary only after differencing may be cointegrated 
without differencing (Granger, 1986). 
104 The literature on forecasting variables in cointegrated models that are similar to our approach 
includes: Engle et al. (1989), Engle and Yoo (1987), Hall et al. (1992), Fanchon and Wendel (1992), 
Timothy and Thomas (1998) and Sa-ngasoongsong et al. (2012). 
105 As a necessary requirement for this method, all the variables must integrate in the same order, 
therefore, all the variables will be seasonal adjusted by using census x- 12 or x- 13 and Augmented 
Dickey-Fuller (ADF) test statistics will be used to test whether each variable has a unit root. The 
condition is that, the series must be stationary before applying this method. 
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cointegrating restrictions. The third approach is to construct a VEC that imposes 

cointegrating restrictions on the VECM. This will allow us to consider whether imposing 

cointegrating restrictions via an vector error-correction model improves long-run 

forecasts.106 

In selecting variables to use we focus on those variables that are commonly and mostly 

used in explaining and forecasting inflation in the literature and on which we have data. 

Because there are data constraints we take an eclectic theoretical approach in the sense 

of combining variables from different economic theories in our VAR specification. Our 

approach is as follows. We first specify our core VAR model, based on variables that are 

available at quarterly frequency across the whole sample for any particular country, for 

example this may include the three variables: money supply, interest rates and prices 

(from which inflation can be generated). We examine the ability of VARs based on these 

variables to forecast inflation. To avoid model misspecification (in particular omitted 

variable issues), we examine whether the inflation forecasting model can be improved 

by incorporating additional information. In this case we add variables that are available 

only annually over the available sample and use frequency conversion tools to generate 

quarterly series and/or variables that are only available quarterly over a reduced sub-

sample. In this case, VAR models including all available inflation determinants for each 

country are considered. In particular, the VARs will be based on (a subset of) consumer 

prices, money supply, interest rates, real effective exchange rates, the output gap (or, 

alternatively the unemployment rate) as well as the world oil price (see Table 6.4).107   

  

                                                           
106 We could use weak/strong exogeneity tests to eliminate irrelevant endogenous variables in the 

VAR/VECM/VEC, however, this would mean that some variables would not be forecasted by the VAR 

and would require separate forecasting equations. To avoid this, we will not impose any exogeneity 

restrictions and therefore do not apply exogeneity tests. The maximum eigenvalue and trace tests will 

be applied to guide us on whether there is co-integration. 

107 Given the variety of indicators that have been suggested to influence inflation in our literature 

chapter, we include many of these variables and observe whether incorporation of these variables 

would provide additional useful information about future inflation as compared to our previous 

univariate modelling. 
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6.4 Seasonal adjustment for selected macroeconomic variables  

In this section, we identify the general features of selected macroeconomic variables 

identified in Table (6.4) in each country by mainly focusing on seasonality and stationary 

characteristics to avoid the issue of seasonal integration.108 We seasonally adjust each 

series and compare the adjusted and unadjusted series. If the variances of these series 

are not significantly different, we regard the data as nonseasonal and utilise the 

unadjusted data. However, if the variances are significantly different we regard the data 

as seasonal and use the seasonally adjusted series. We also plot the autocorrelation 

functions of the series and if these indicate seasonality we will consider seasonally 

adjusting the data (even if the variances are not significantly different). Anticipating that 

prices / inflation will be seasonal we will save the seasonal indices in 2012 and use these 

to reintroduce seasonality into the forecasts that we produce. Using nonseasonal 

(seasonally adjusted) data will allow us to model using nonseasonal integration and 

cointegration techniques. For comparison purposes, we plot the graph of the level of 

the series, the seasonally adjusted data and other transformations of these series. These 

graphs are discussed for each country below. 

 

  

                                                           
108 We seasonal adjusted these series because seasonal adjusted data are not available from 
international Financial Statistics/IMF for most of our selected data. 
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6.5. The graphical features of selected macroeconomic variables for Brazil 

In Brazil, we amend the reduced sample identified in chapter 5 from 1994q2- 2014q4 to 

1996q4 -2014q4 to avoid an outlier that occurred at the start of this sample.109 The 

graphs below depict the following variables. The Brazilian consumer price (denoted 

PBRA), the seasonally adjusted PBRA series (PBRA_d11) and D_PBRA = PBRA - 

PBRA_d11, the first (nonseasonal) difference of LPBRA (DLPBRA), the seasonally 

adjusted LPBRA series (LPBRA_d11) and D_LPBRA = LPBRA - LPBRA_d11 (where LPBRA 

is the log of PBRA). The seasonally adjusted series PBRA_d11 is obtained using the 

Census X13 procedure in EViews. Tables 1D and 1G report various tests of the null 

hypothesis of equality of variance for PBRA and PBRA_d11 as well as DLPBRA and 

DLPBRA_d11. We expect equal variances for both tests if the data are nonseasonal. In 

contrast, if the data are seasonal we expect the equal variances null hypothesis to be 

rejected. However, if the data are nonstationary the variances may have equal variances 

in levels even if they are seasonal. Hence, for the data to be deemed seasonal and 

require seasonal adjustment we only require the equal variance null to be rejected for 

the stationary (differenced) form of the data. As a further check, we plot the ACF of 

LPBRA and DLPBRA. If the seasonal lag (4, 8, 12, 16 and 20) autocorrelation coefficients 

are significant in the stationary form of the series, we will use the seasonally adjusted 

data (even if the variance equality null hypothesis is not rejected). 

  

                                                           
109  From the preliminary plot of the linear graph of PBRA within 1994q2 – 2014q4, we observed a shift 
outlier at the beginning of the sample that becomes more visible after the samples were reduced. 
Although, we do not expect this to be a structural break because the Bai Peron test does not suggest 
this shift as a break in chapter 5, Table 5.1.1. 
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6.5.1. The graphs and table of equality test for consumer price in Brazil 
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As shown in Fig. 1A, the graph of consumer prices for Brazil (PBRA) exhibits an upward 

trend suggesting non-stationarity and a need to apply stationarity inducing 

transformations. Although seasonality may be expected in price data it is not visible in 

the price plot because of the dominant trend; seasonality may be revealed once the 

trend is removed through differencing. The time paths of PBRA and PBRA_d11 (see 

Figure 1B) follow each other closely and it is difficult to discern whether the difference 

between them reflects seasonality. Therefore, the differences between PBRA and 

PBRA_d11 (denoted D_PBRA) is plotted in Figure 1C. The difference has revealed a 

cyclical fluctuation that ranges between -0.37 and 0.41.   Whilst this may indicate time-

varying seasonality we need to ascertain whether this seasonality is significant. To do 

this we refer to a variety of tests for the equality of variance between PBRA and 

PBRA_d11 that are reported in table 1D. The reported tests are the: F-, Siegel Turkey, 

Bartlett, Levene and Brown Forsythe tests. For all tests the null hypothesis is that the 

variances are equal. Hence, if the p-value exceeds 0.05 we cannot reject the null 

hypothesis of equal variances and therefore infer that there is no significant seasonality. 

Whereas if the p-value is below 0.05 we reject the null hypothesis and conclude that the 

difference in the series’ variances are statistically significant and there is significant 

seasonality. Since the p-values of all of our tests is greater than 0.05, we cannot reject 

the null hypothesis and find that there is no significant difference in the variances of 

PBRA and PBRA_d11. Hence, we find that seasonality is not significant in the price level. 

However, because this result may be influenced by the nonstationarity of the data we 

compare the differences of the logs of the adjusted (DLPBRA_d11) and unadjusted 

(DLPBRA) data. 

The time paths of DLPBRA and DLPBRA_d11 (see Figure 1E) follow each other closely. 

The trend has been removed and the series broadly fluctuates around a constant mean 

as expected after first differencing. The variation in DLPBRA is greater than that of 

DLPBRA_d11 suggesting seasonality in DLPBRA while DLPBRA_d11 is smoother. This 

suggests that DLPBRA_ d11 exhibits reduced seasonality as expected. The difference 

between DLPBRA and DLPBRA_d11 (denoted D_DLPBRA) is plotted in Figure 1F. The 

difference has revealed a regular fluctuation around a relatively constant mean that 

ranges between -0.006 and 0.005. Whilst this may indicate time-varying seasonality we 

need to ascertain whether this seasonality is significant. To do this we refer to tests for 
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the equality of variance between DLPBRA and DLPBRA_d11 that are reported in table 

1G. Since the p-values of all of our tests are greater than 0.05 we cannot reject the null 

hypothesis and find that there is no significant difference in the variances of DLPBRA and 

DLPBRA_d11. Hence, we find that seasonality is not significant in the difference of the 

log prices for Brazil. 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of PBRA and DLPBRA in figure 1H and 1I. Shown in Fig. 1H is the ACF for 

PBRA. All autocorrelation coefficients (ACs) are significant (and not just at the seasonal 

lags) which suggests nonstationarity and not necessarily seasonality. The ACF for 

DLPBRA (see fig. 1I) has no significant ACs at seasonal lags. This implies that seasonality 

is not significant in the price data and confirms the results of the variance equality tests. 

Hence, we use the unadjusted data PBRA in our VAR analysis. 

 

6.5.2. The seasonality features of money supply in Brazil  

The graphs below depict the following variables. The Brazilian money supply (denoted 

MBRA), the seasonally adjusted MBRA series (MBRA_d11) and D_MBRA = MBRA - 

MBRA_d11, as well as the first (nonseasonal) difference of LMBRA (DLMBRA), the 

seasonally adjusted LMBRA series (LMBRA_d11) and D_LMBRA = LMBRA - LMBRA_d11 

(where LMBRA is the log of MBRA). The seasonally adjusted series MBRA_d11 is 

obtained using the Census X13 procedure in EViews. Tables 2D and 2G report various 

tests of the null hypothesis of equality of variance for MBRA and MBRA_d11 as well as 

DLMBRA and DLMBRA_d11. 
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2C.            2D. 
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2G. Test for equality of variance between DLMBRA and DLMBRA_D11 

Method Df Value Probability 

F-test (71, 72) 5.141913 0.0000 

Siegel 
Turkey 

 4.786866 0.0000 

Bartlett 1 42.92244 0.0000 

Levene (1,143) 35.65966 0.0000 

Brown-
Forsythe 

(1,143) 34,91378 0.0000 

 

2H.        2I. 

              

 

As shown in Fig. 2A, the graph of money supply in Brazil (MBRA) exhibits an upward trend 

suggesting non-stationarity and a need to apply stationarity inducing transformations. There 

are clear cycles that probably reflect seasonality. Therefore, MBRA may need to be 

seasonally adjusted. 

The time paths of MBRA and MBRA_d11 (see Figure 2B) follow each other. It is obvious 

that the variation in MBRA is greater than that of MBRA_d11 and the plot of MBRA_d11 

is smoother than the plot of MBRA. The difference between MBRA and MBRA_d11 
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(denoted D_MBRA) is plotted in Figure 2C. The difference reveals a regular cyclical 

fluctuation that may indicate time-varying seasonality.  To ascertain whether the 

seasonality is significant we refer to a variety of tests for the equality of variance 

between MBRA and MBRA_d11 that are reported in table 2D. Since the p-values of all 

tests are greater than 0.05, we cannot reject the null hypothesis and find that there is 

no significant difference in the variances of MBRA and MBRA_d11. This suggests that 

seasonality is not significant in the level of the data. However, because this result may 

be influenced by the nonstationarity of the data we compare the differences of the 

adjusted (DLMBRA_d11) and unadjusted (DLMBRA) data. 

The time paths of DLMBRA and DLMBRA_d11 (see Figure 2E) follow each other closely. 

The trend has been removed and the series broadly fluctuate around a constant mean 

as expected after first differencing. The variation in DLMBRA is greater than that of 

DLMBRA_d11. Therefore, there is seasonality in the DLMBRA series while DLMBRA_d11 

is smoother suggesting that DLMBRA_ d11 exhibits reduced seasonality. The difference 

between DLMBRA and DLMBRA_d11 (denoted D_DLMBRA) is plotted in Figure 2F. The 

difference reveals a regular fluctuation around a relatively constant mean that ranges 

between -0.178 and 0.17. Whilst this may indicate time-varying seasonality we need to 

ascertain whether this seasonality is significant. To do this we refer to tests for the 

equality of variance between DLMBRA and DLMBRA_d11 that are reported in table 2G. 

Since the p-values of all of our tests is less than 0.05 we reject the null hypothesis and 

find that there is a significant difference in the variances of DLMBRA and DLMBRA_d11. 

Hence, seasonality is significant in the difference of the log of the money supply in Brazil. 

As a check, we plot the ACFs of MBRA and DLMBRA in figure 2H and 2I. Shown in Fig. 2H 

is the ACF for MBRA. All autocorrelation coefficients (ACs) are significant (and not just 

at the seasonal lags) which suggests nonstationarity and not necessarily seasonality. The 

ACF for DLMBRA (see fig. 2I) has significant ACs at all seasonal lags. This implies that 

seasonality is significant in the money supply data and confirms the results of the 

variance equality tests. Hence, we will use the seasonally adjusted data MBRA_d11 in 

our VAR analysis. 
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6.5.3. The seasonality features of interest rate in Brazil  

The graphs below depict the following variables. The Brazilian interest rate (denoted 

RBRA), the seasonally adjusted RBRA series (RBRA_d11), D_RBRA = RBRA - RBRA_d11, 

and the first (nonseasonal) difference of RBRA (DRBRA), the seasonally adjusted DRBRA 

series (DRBRA_d11) and D_DRBRA = DRBRA – DRBRA_d11. The seasonally adjusted 

series RBRA_d11 is obtained using the Census X13 procedure in EViews. Table 3D reports 

various variance equality tests for RBRA and RBRA_d11 while Table 3G reports these 

tests for variance equality for DRBRA  
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3I. 

 

As shown in Fig. 3A, the graph of RBRA exhibits a downward trend. Seasonality is not 

clearly visible in the Brazilian interest rate plot because of the dominant trend. 

The time paths of RBRA and RBRA_d11 (see Figure 3B) follow each other closely with 

the largest difference occurring in 1997q4 when RBRA_d11 is 31.20% and RBRA is 

35.80%. While RBRA_d11 is smoother than RBRA this is primarily due to two large cycles 

at the start of the sample which do not appear to be a year in length. Hence, the 

difference may not reflect seasonality. We plot the difference between RBRA and 

RBRA_d11 (denoted D_RBRA) in Figure 3C to further assess whether RBRA is seasonal. 

The difference indicates time-varying cycles that substantially decline.  We refer to a 

variety of tests for the equality of variance between RBRA and RBRA_d11 that are 

reported in table 3D. Since the p-values of all of our tests are greater than 0.05, we 

cannot reject the null hypothesis and find that there is no significant difference in the 

variances of RBRA and RBRA_d11 and hence we find that seasonality is not significant in 

the level of the data.  However, because this result may be influenced by the 

nonstationarity of the data we compare the differences of the adjusted (DRBRA_d11) 

and unadjusted (DRBRA) data. 

The time paths of DRBRA and DRBRA_d11 (see Figure 3E) follow each other closely if the 

variation in DRBRA is greater than that of DRBRA_d11 at the start of the sample – if not 

the end. Therefore, seasonality is not obvious. The difference between DRBRA and 

DRBRA_d11 (denoted D_DRBRA) is plotted in Figure 3F. The difference has revealed a 

regular fluctuation around a relatively constant mean that ranges between -4.90% and 

8.30% that substantially declines through time. Variance equality tests between DRBRA 

and DRBRA_d11 are reported in Table 3G. The p-values for Siegel Turkey, Levene and 

Brown Forsythe tests are greater than 0.05 indicating equal variances while the p-values 
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of the F-test and Bartlett test are less than 0.05 which reject the null hypothesis of equal 

variance. Hence, the results regarding equality of variance are ambiguous. 

To explore the issue further we plot the ACFs of RBRA and DRBRA in figure 3H and 3I, 

respectively. Shown in Fig. 3H is the ACF for RBRA. All autocorrelation coefficients (ACs) 

are significant (and not just at the seasonal lags) which suggests nonstationarity and not 

necessarily seasonality. The ACF for DRBRA (see fig. 3I) has a marginally significant AC at 

the first seasonal lag (lag 4) and all other ACs at seasonal lags are insignificant. This 

provides some evidence that seasonality is significant in the interest rate data.  

However, because the ACF evidence is not strong, the variance equality tests give 

ambiguous conclusions, the graphs do not convincingly suggest one-year cycles and 

seasonality is not expected in interest rates we take the view that RBRA probably is not 

seasonal. Hence, we use the unadjusted data RBRA in our VAR analysis. 
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6.5.4. The seasonality features the real effective exchange rate in Brazil  

The graphs below depict the following variables. The Brazilian real effective exchange 

(denoted REEBRA), the seasonally adjusted REEBRA series (REEBRA_d11) and D_REEBRA 

= REEBRA - REEBRA_d11, as well as the first (nonseasonal) difference of LREEBRA 

(DLREEBRA), the seasonally adjusted DLREEBRA series (DLREEBRA_d11) and 

D_DLREEBRA = DLREEBRA - DLREEBRA_d11 (where LREEBRA is the log of REEBRA). The 

seasonally adjusted series (REEBRA_d11) is obtained using the Census X13 procedure in 

EViews. Tables 4D and 4G report various tests of the null hypothesis of equality of 

variance for REEBRA and REEBRA_d11 as well as DLREEBRA and DLREEBRA_d11.  
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             4I 

        
 

As shown in Fig. 4A, the graph of real effective exchange rate fluctuates around a 

relatively constant mean. There are large cycles that do not appear to be a year in length.  

The time paths of REEBRA and REEBRA_d11 (see Figure 4B) follow each other closely 

and it is difficult to discern whether the difference between them reflects seasonality. 

Therefore, the differences between REEBRA and REEBRA_d11 (denoted D_REEBRA) is 

plotted in Figure 4C. The difference has revealed a cyclical fluctuation that ranges 

between -2.40 and 1.70. Whilst this may indicate time-varying seasonality we need to 

ascertain whether this seasonality is significant. To do this we refer to a variety of tests 

for the equality of variance between REEBRA and REEBRA_d11 that are reported in table 

4D. Since the p-values of all tests is greater than 0.05, we cannot reject the null 

hypothesis and find that there is no significant difference in the variances of REEBRA and 

REEBRA_d11 and hence find that seasonality is not significant in the level of the real 

effective exchange rate.  However, because this result may be influenced by the 

nonstationarity of the data we compare the differences of the adjusted (DLREEBRA_d11) 

and unadjusted (DLREEBRA) data. 

The time paths of DLREEBRA and DLREEBRA_d11 (see Figure 4E) follow each other 

closely. The variation in DLREEBRA is slightly greater than that of DLREEBRA_D11 

suggesting possible seasonality in DLREEBRA while DLREEBRA_D11 is smoother. This 

suggests that DLREEBRA_D11 exhibits reduced seasonality as expected. The difference 

between DLREEBRA and DLREEBRA_d11 (denoted D_DLREEBRA) is plotted in Figure 4F. 

The difference revealed a regular fluctuation around a relatively constant mean that 
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ranges between -0.045 and 0.038. Whilst this may indicate time-varying seasonality we 

need to ascertain whether this seasonality is significant. To do this we refer to tests for 

the equality of variance between DLREEBRA and DLREEBRA_d11 that are reported in 

table 4G. Since the p-values of all of our tests is greater than 0.05, we cannot reject the 

null hypothesis and find that there is no significant difference in the variances of 

DLREEBRA and DLREEBRA_d11 and hence find that seasonality is not significant in the 

difference of the log of the real effective exchange rate data for Brazil. 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of REEBRA and DLREEBRA in figure 4H and 4I. Shown in Fig. 4H is the 

ACF for REEBRA. The first 14 autocorrelation coefficients (ACs) are significant (and not 

just at the seasonal lags) which suggests nonstationarity and not seasonality. The ACF 

for DLREEBRA has no significant ACs at seasonal lags (see fig. 4I). This implies that 

seasonality is not significant in the real effective exchange rate and confirms the results 

of the variance equality tests. Hence, we will use the unadjusted data REEBRA our VAR 

analysis. 
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6.5.5. Seasonality and the Brazilian unemployment rate  

The graphs below depict the following variables. The Brazilian unemployment rate 

(denoted UBRA), the seasonally adjusted UBRA series (UBRA_d11) and D_UBRA = UBRA 

- UBRA_d11, as well as the first (nonseasonal) difference of UBRA (DUBRA), the 

seasonally adjusted DUBRA series (DUBRA_d11) and D_DUBRA – DUBRA_d11. The 

seasonally adjusted series (UBRA_d11) is obtained using the Census X13 procedure in 

EViews. Tables 5D and 5G report various tests of the null hypothesis of equality of 

variance for UBRA and UBRA_d11 as well as DUBRA and DUBRA_d11.  
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5G. 

Test for equality of variance between DUBRA and DUBRA_D11 

Method Df Value Probability 

F-test  (71, 72) 1.125242 0.6188 

Siegel 
Turkey 

 0.164110 0.8696 

Bartlett 1 0.246932 0.6192 

Levene (1, 143) 0.025760 0.8727 

Brown- 
Foresythe 

(1,143) 0.029663 0.8635 
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As shown in Fig. 5A, the graph of unemployment (UBRA) follows a downward trend. 

Seasonality is not clearly visible in the unemployment plot because of the dominant 

trend – although this downward trend could not continue indefinitely because 

unemployment cannot fall below 0%. 

The time paths of UBRA and UBRA_d11 (see Figure 5B) follow each other closely and it 

is difficult to discern whether the difference between them reflects seasonality. 

Therefore, the differences between UBRA and UBRA_d11 (denoted D_UBRA) is plotted 

in Figure 5C. The difference has revealed cyclical fluctuation that ranges between -0.161 

% and 0.182%. Whilst this may indicate time-varying seasonality we need to ascertain 

whether this seasonality is significant. To do this we refer to a variety of tests for the 

equality of variance between UBRA and UBRA_d11 that are reported in table 5D.  Since 

the p-values of all of our tests is greater than 0.05, we cannot reject the null hypothesis 

and find that there is no significant difference in the variances of UBRA and UBRA_d11.  

Hence, we find that seasonality is not significant in the level of unemployment data. 

However, because this result may be influenced by the nonstationarity of the data we 

compare the differences of the adjusted (DUBRA_d11) and unadjusted (DUBRA) data. 

The time paths of DUBRA and DUBRA_d11 (see Figure 5E) follow each other closely. The 

trend has been removed and the series broadly fluctuates around a constant mean, as 
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expected after first differencing. The variation in DUBRA is greater than that of 

DUBRA_d11 suggesting seasonality in DUBRA while DUBRA_D11 is smoother. This 

suggests that DUBRA_D11 exhibits reduced seasonality as expected.  The difference 

between DUBRA and DUBRA_d11 (denoted D_DUBRA) is plotted in Figure 5F. The 

difference has revealed cyclical fluctuations that range between -0.30% and 0.32%. 

Whilst this may indicate time-varying seasonality we need to ascertain whether this 

seasonality is significant. To do this we refer to tests for the equality of variance between 

DUBRA and DUBRA_d11 that are reported in table 5G. Since the p-values of all of our 

tests is greater than 0.05, we cannot reject the null hypothesis and find that there is no 

significant difference in the variances of DUBRA and DUBRA_d11 and hence find that 

seasonality is not significant in the difference of the unemployment rate for Brazil. 

To check that we have not missed any significant seasonality we plot the ACFs of UBRA 

and DUBRA in figure 5H and 5I. In Fig. 5H all ACs are significant (and not just at the 

seasonal lags) which suggest nonstationary and not necessarily seasonality. The ACF for 

DUBRA has no significant ACs at seasonal lags (see fig. 5I). This implies that seasonality 

is not significant in UBRA and confirms the results of the variance equality tests. Hence, 

we will use the unadjusted data UBRA in our VAR analysis. 
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6.5.6. The seasonality features of output gap in Brazil  

The graphs below depict the following variables. The Brazilian output gap (denoted 

GAPBRA), the seasonally adjusted GAPBRA series (GAPBRA_d11) and D_GAPBRA = 

GAPBRA - GAPBRA_d11, as well as the first (nonseasonal) difference of GAPBRA 

(DGAPBRA), the DGAPBRA seasonally adjusted (DGAPBRA_d11) and D_DGAPBRA 

=DGAPBRA – DGAPBRA_d11. The seasonally adjusted series (GAPBRA_d11) is obtained 

using the Census X13 procedure in EViews.  Tables 6D and 6G report various tests of the 

null hypothesis of equality of variance for GAPBRA and GAPBRA_d11 as well as 

DGAPBRA and DGAPBRA_d11.             
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6I. 

 

From Figure 6A the output gap fluctuates around a relatively constant mean. There are 

clear cycles however they do not appear to fixed at one-year in length and unlikely 

reflect seasonality.  

The time paths of GAPBRA and GAPBRA_d11 (see Figure 6B) follow each other closely 

and it is difficult to discern whether the difference between them reflects seasonality. 

Therefore, the differences between GAPBRA and GAPBRA_d11 (denoted D_GAPBRA) is 

plotted in Figure 6C. The difference reveals regular cyclical fluctuations that range 

between -0.0082 and 0.0079. Whilst this may indicate time-varying seasonality we need 

to ascertain whether this seasonality is significant. To do this we refer to a variety of 

tests for the equality of variance between GAPBRA and GAPBRA_d11 that are reported 

in table 6D. Since the p-values of all of our tests is greater than 0.05, we cannot reject 

the null hypothesis and find that there is no significant difference in the variances of 

GAPBRA and GAPBRA_d11. Hence, we find that seasonality is not significant in the level 

of the output gap.  However, because this result may be influenced by any persistence 

in the level of the data we compare the differences of the adjusted (DGAPBRA_d11) and 

unadjusted (DGAPBRA) data. 

The time paths of DGAPBRA and DGAPBRA_d11 (see Figure 6E) follow each other 

closely.  The difference between DGAPBRA and DGAPBRA_d11 (denoted D_DGAPBRA) 

is plotted in Figure 6F. The difference has revealed regular cyclical fluctuations. Whilst 

this may indicate time-varying seasonality we need to ascertain whether this seasonality 

is significant. To do this we refer to tests for the equality of variance between DGAPBRA 

and DGAPBRA_d11 that are reported in table 6G. Since the p-values of all of our tests 

are greater than 0.05, we cannot reject the null hypothesis and find that there is no 

significant difference in the variances of DGAPBRA and DGAPBRA_d11. Hence, 

seasonality is not significant in the difference of the output gap rate for Brazil. 
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To check that we have not missed any significant seasonality we plot the ACFs of 

GAPBRA and DGAPBRA in figure 6H and 6I. In Fig. 6H, all ACs are significant (and not just 

at the seasonal lags) which suggest nonstationary and not necessarily seasonality. The 

ACF for DGAPBRA has no significant ACs at seasonal lags (see fig. 6I). This implies that 

seasonality is not significant in GAPBRA and confirms the results of the variance equality 

tests. Hence, we will use unadjusted data GAPBRA in our VAR analysis. 

6.5.7. The seasonality features of oil price  

The graphs below depict the following variables. The oil price (denoted OILP), the 

seasonally adjusted OILP series (OILP_d11) and D_OILP =OILP - OILP_d11, as well as the 

first (nonseasonal) difference of OILP (DOILP), the DOILP seasonally adjusted 

(DOILP_d11) and D_DOILP =DOILP – DOILP_d11. The seasonally adjusted series 

(OILP_d11) is obtained using the Census X13 procedure in EViews.  Tables 7D and 7G 

report various tests of the null hypothesis of equality of variance for OILP and OILP_d11 

as well as DOILP and DOILP_d11.      
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Method df Value Probability

F-test (131, 131) 1.0064 0.9708

Siegel 0.00806 0.9994

Barlett 1 0.001341 0.9708

Levene (1, 262) 4.66E-06 0.9983

Brown-Forsythe(1, 262) 5.60E-06 0.9981
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From Figure 7A the oil price fluctuates around a relatively constant mean. There are 

suspected cycles that do not appear to be of fixed length around the period 1980 to 

1985, which is followed by an upward trend. The time paths of OILP and OILP_d11 (see 

Figure 7B) follow each other closely and it is difficult to discern whether the difference 

between them reflects seasonality. Therefore, the differences between OILP and 

OILP_d11 (denoted D_OILP) is plotted in Figure 7C. The difference has revealed a cyclical 

fluctuation that ranges between -0.64 and 7.3.   Whilst this may indicate time-varying 

seasonality we need to ascertain whether this seasonality is significant. To do this we 

Method df Value Probability

F-test (131, 130) 1.20264 0.2941

Siegel 0.31307 0.2941

Barlett 1 0.10072 0.9708

Levene (1, 260) 1.70E-01 0.6807

Brown-Forsythe(1, 260) 1.64E-01 0.686
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refer to a variety of tests for the equality of variance between OILP and OILP_d11 that 

are reported in table 7D. Since the p-values of all of our tests is greater than 0.05, we 

cannot reject the null hypothesis and find that there is no significant difference in the 

variances of OILP and OILP_d11. Hence, we find that seasonality is not significant in the 

level of the oil price.  However, because this result may be influenced by any persistence 

in the level of the data we compare the differences of the adjusted (DOILP_d11) and 

unadjusted (DOILP) data. 

The time paths of DOILP and DOILP_d11 (see Figure 7E) follow each other closely.  The 

difference between DOIL and DOILP_d11 (denoted D_DOILP) is plotted in Figure 7F. The 

difference has revealed regular cyclical fluctuations. Whilst this may indicate time-

varying seasonality we need to ascertain whether this seasonality is significant. To do 

this we refer to tests for the equality of variance between DOILP and DOILP_d11 that 

are reported in table 7G. Since the p-values of all of our tests are greater than 0.05, we 

cannot reject the null hypothesis and find that there is no significant difference in the 

variances of DOILP and DOILP_d11. Hence, seasonality is not significant in the difference 

of the oil price. 

To check that we have not missed any significant seasonality we plot the ACFs of OILP 

and DOILP in figure 7H and 7I. In Fig. 7H, all ACs are significant (and not just at the 

seasonal lags) which suggest nonstationary and not necessarily seasonality. The ACF for 

DOILP has no significant ACs at seasonal lags (see fig. 7I). This implies that seasonality is 

not significant in OILP and confirms the results of the variance equality tests. Hence, we 

will use unadjusted data OILP in our VAR analysis. 

A similar procedure was applied for all countries and (to save space) the discussion is 

made available in appendix. Section 6.2 page 457 - 540. The table below summarises the 

variables by country and indicate whether they will be used in seasonally adjusted form 

(indicated by SA) or unadjusted form (denoted with UN).  
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Table 6.5. Summary of whether the data is seasonally adjusted or not 

Countries / 
Variables 

BRA RUS IND CHI SOU NIG ALG ANG SAU 

Start 1996q4 2000q2 1960q1  1989q1   1992q2  1995q4  1996q2  1999q4  1980q1  

End 2014q4 2014q4 2014q4 2014q4 2014q4 2014q4 2014q4 2014q4 2014q4 

P UN SA SA UN UN SA SA UN UN 

M SA UN A A UN A A SA A 

R UN UN UN UN UN UN UN UN  

REE UN UN  UN UN UN UN  UN 

U UN SA        

OilP UN UN UN UN UN UN UN UN UN 

GAP UN SA UN A UN  A A A A 

Where SA is seasonal adjusted variables, UN is unadjusted variables, A is the variable that has been 

transformed from annual frequency to quarterly frequency (and is therefore not seasonal) and a blank 

entry indicates that data is unavailable for the variable in that particular country. 
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6.6. Unit root tests 

Many macroeconomic time-series are subjected to substantial instabilities such as non-

stationarity and structural breaks (Stock and Watson, 1988). To ascertain the orders of 

integration of the variables to be used in our VAR Model we use the widely employed 

DF-GLS, augmented Dickey-Fuller (ADF), Phillips and Perron (PP) and Kwiatkowski–

Phillips–Schmidt–Shin (KPSS) tests. The null hypothesis of a unit root is tested against 

the alternative of stationarity for the DF-GLS, ADF and PP tests. We reject the null 

hypothesis of stationarity when the absolute value of test statistic is greater than the 

critical value (the variable is stationary). Whereas, we cannot reject the null hypothesis 

of stationarity when the absolute value of test statistic is less than the critical value (the 

variable is non-stationary). The null hypothesis of no unit root is observed for the KPSS 

test.  

For non-stationary series. A common example is the random walk: 

𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡,           (6.1) 

Where  𝜀  is a stationary random disturbance term. The series  𝑦 has a constant forecast 

value, conditional on  𝑡  and the variance is increasing over time.  To make the series 

stationary, the nonstationary variable’s may be differenced, that is: 

𝑦𝑡 − 𝑦𝑡−1 = (1 − 𝐿) 𝑦𝑡 = 𝜀𝑡     

The standard Augmented Dickey- Fuller (ADF) test can be written as:  

∆𝑦𝑡=  𝛼𝑦𝑡−1 + 𝑥𝑡𝛿 + 𝜀𝑡          (6.2) 

Where  𝑥𝑡 are optional exogenous regressors which may consist of constant or a 

constant and trend, 𝛿 are parameters to be estimated and the 𝜀𝑡 are assumed to be 

white noise.  𝛼 = 𝜌 – 1.   The null hypothesis of 𝐻0: 𝜌 = 1 or 𝐻0: 𝑎 = 0  is tested against 

the alternative 𝐻1: 𝜌 < 1 or 𝐻1: 𝑎 < 0. 

 For  𝜌 = 1 or 𝑎 = 0 , 𝑦  is a nonstationary series and the variance of 𝑦 increases with 

time approaches infinity. If 𝜌 < 1 or 𝑎 < 0, 𝑦 is a stationary series except the KPSS test 

that evaluates the null of 𝐻0: 𝜌 < 1 against the alternative  𝐻1: 𝜌 = 1. The simple Dickey 

– Full unit root test described above is valid only if the series is an AR(1) process. If the 

series is correlated at higher order lags, the assumption of 𝜀𝑡 is violated.  The Augmented 

Dickey Fuller (ADF) test constructs a parametric correction for higher order correlation 
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by assuming that the 𝑦 series follow an AR(𝑝) process and adding 𝑝 lagged difference 

term of the dependent variables 𝑦 to the right hand side of the test regression: 

∆𝑦𝑡=  𝛼𝑦𝑡−1 + 𝑥𝑡𝛿 + 𝛽1∆𝑦𝑡−1+𝛽2∆𝑦𝑡−2+…+𝛽𝑝∆𝑦𝑡−𝑝 + 𝑣1.    (6.3) 

However, the conventional unit root tests could be biased towards finding a unit root 

when the data is trend stationary with a structural break.110  Nelson and Plosser (1982) 

described the nature of these shocks as a permanent. This view was challenged by 

Perron, (1989 and 1990). He argued that many macroeconomic time series may be 

better described as having temporary shocks fluctuating around a broken deterministic 

trend.  Perron further argued that his choice of breakpoint is based on prior observation 

of the data with the underlying asymptotic distribution theory. Perron (1989) introduced 

three models that based on Dickey- Fuller (ADF) extension by adding dummy variables 

for different intercept and slopes (the process incorporating the breaks inform of the 

intervention deterministic suggested by Box and Tiao 1975). The first model is a crash 

model that permits an exogenous change in the level of the series (“a crash”), i.e., the 

conventional unit root test (ADF model) is augmented by incorporating a dummy break 

and a dummy post-break intercept to describe the shifts in the trend. The second model 

permits an exogenous change in the growth rate. The third model combines changes in 

the level and the slope of the trend function of the series. Each of these three models 

has a unit root with breaks under the null hypothesis. According to the Perron (1989), 

the null hypothesis that a given series {𝑦𝑡} 𝑇
1
 has a unit root with drift and that an 

exogenous structural break occur at time 𝑇𝐵(1 <  𝑇𝐵 <  𝑇) versus the alternative 

hypothesis that the series is stationary about a deterministic time trend with an 

exogenous change in the trend function at time 𝑇𝐵.   

For null hypothesis  

Model (A): 𝑦𝑡 =  𝜇 +  𝑑𝐷(𝑇𝐵)𝑡 +  𝑦𝑡−1 + 𝑒𝑡 ,       (6.4) 

Model (B): 𝑦𝑡 =  𝜇1 + 𝑦𝑡−1 + (𝜇2 − 𝜇1)𝐷𝑈𝑡 +  𝑒𝑡,       (6.5) 

and 

Model (C): 𝑦𝑡 =  𝜇1 + 𝑦𝑡−1 + 𝑑𝐷(𝑇𝐵)𝑡 + (𝜇2 − 𝜇1)𝐷𝑈𝑡 +  𝑒𝑡,     (6.6) 

                                                           
110 The empirical application of the following studies (Perron, 1989, 1997., Leybourne and Newbold, 
2003) generally reaffirmed the conclusion that most macroeconomic time series have unit root. 
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Where 𝐷(𝑇𝐵)𝑡 = 1 if 𝑡 = 𝑇𝐵 + 1, 0 otherwise; 𝐷𝑈𝑡 = 1 if 𝑡 > 𝑇𝐵, 0 otherwise; 𝐴(𝐿)𝑒𝑡 = 

𝐵(𝐿)𝑣𝑡, 𝑣𝑡 ≡ 𝑖𝑖𝑑(0, 𝜎2), with 𝐴(𝐿) and 𝐵(𝐿)  pth and qth order polynomials in the lag 

operator. The innovation series {𝑒𝑡}   is taken to be of the ARIMA (𝑝, 𝑞) type with the 

orders 𝑝 and 𝑞 possibly unknown.  

For alternative hypotheses, 

Model (A): 𝑦𝑡 =  𝜇1 + 𝛽𝑡 + (𝜇2 − 𝜇1)𝐷𝑈𝑡 +  𝑒𝑡 ,       (6.7) 

Model (B): 𝑦𝑡 =  𝜇 + 𝛽1𝑡 + (𝛽2 − 𝛽1)𝐷𝑇𝑡
∗ +  𝑒𝑡 ,       (6.8) 

and  

Model (C): 𝑦𝑡 =  𝜇 +  𝛽1𝑡 + (𝜇2 − 𝜇1)𝐷𝑈𝑡  + (𝛽2 − 𝛽1)𝐷𝑇𝑡
∗ +  𝑒𝑡 ,        (6.9) 

Where 𝐷𝑇𝑡
∗= 𝑡 − 𝑇𝐵 if 𝑡 > 𝑇𝐵 and 0 otherwise. 

𝑇𝐵 refers to the time of break, i.e., the period at which the change in the parameter of 

the trend function occur. 𝜇2 − 𝜇1 represents the magnitude of the change in the 

intercept of the trend function occurring at time 𝑇𝐵.  𝛽2 − 𝛽1 represents the magnitude 

of the change in the slope of the trend function occurring at time 𝑇𝐵.  

The adjusted Dickey- Fuller (ADF) test of the models (A), (B) and (C) involve the following 

augmented regression equations.  

𝑦𝑡 =  𝜇̂𝐴 + 𝜃𝐴𝐷𝑈𝑡 + 𝛽̂𝐴𝑡 +  𝑑̂𝐴𝐷(𝑇𝐵)𝑡 + 𝑎̂𝐴𝑦𝑡−1 + ∑ 𝑐𝑗̂
𝐴∆𝑦𝑡−𝑗

𝑘
𝑗−1 +   𝑒̂𝑡,  (6.10) 

 

𝑦𝑡 =  𝜇̂𝐵 +  𝛽̂
𝐵

𝑡 +  𝛾̂
𝐵

𝐷𝑇𝑡
∗ +  𝑎̂𝐵𝑦𝑡−1 + ∑ 𝑐𝑗̂

𝐵∆𝑦𝑡−𝑗
𝑘
𝑗−1 +  𝑒̂𝑡,    (6.11) 

and 

𝑦𝑡 =  𝜇̂𝐶 + 𝜃̂
𝐶

𝐷𝑈𝑡 +  𝛽̂
𝐶

𝑡 +  𝛾̂
𝐶

𝐷𝑇𝑡
∗ +  𝑑̂

𝐶
𝐷(𝑇𝐵)𝑡 +  𝑎̂𝐶𝑦𝑡−1 + ∑ 𝑐𝑗̂

𝐶∆𝑦𝑡−𝑗
𝑘
𝑗−1 + 𝑒̂𝑡.     

(6.12) 

The 𝑘 extra regressors are added to remove possible nuisance- parameters. The number 

𝑘 is determined by a test of the significance of the estimated coefficients 𝑐𝑗̂
𝑖 (𝑖 =

𝐴, 𝐵, 𝐶).   

The idea proposed by Perron (1989) is that the break of trend function is fixed 

(exogenous) and chosen independently of the data. In addition, the ex-post forecast only 
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predicted the changes that occurred after exogenous event. The condition is that, the 

impact of these changes on economic activities may vary. As a result, some exogenous 

events may not have impact on economic actives as some theories would have 

predicted. Therefore, the argument that relates the choice of break dates to exogenous 

events or correlated with the data may not be valid because no attempts were made to 

maximize the chances that the null unit root be may rejected. As a result, different 

studies have criticized Perron (1989) for treating the time of the break as exogenous 

(Zivot and Andrews 1992., Christiano, 1992., Vogelsang and Perron,1998., and Banerjee 

et al. 1992).111  For example, Zivot and Andrews transform the Perron unit root test that 

is conditional on structural change at a known point in time into an unconditional unit 

root test.  In particular, the actual breakpoint was assumed not to be known. Instead, a 

data-dependent algorithm was applied to generate an unobserved components model, 

which allows yields a new ADF type unit root test that determines breaks at unknow 

dates.   

Perron (1994, 1997) improved on his initial paper (1989) and proposed two different 

ways of estimating the time of the break endogenously (the additive outlier model and 

innovational outlier model).112 These tests overcome many of the shortcoming of the 

Perron (1989) test with the exogenous breaks.113 

 For the Innovational Outlier Model (IO), the model applies to the case where it is more 

reasonable to view the break as occurring more slowly over time. The assumption can 

be captured using the following specification.  

Under the null hypothesis of a unit root,   

Model (1): 𝑦𝑡 =  𝜇 + 𝜃𝐷𝑈𝑡 + 𝛽𝑡 +  𝛿𝐷(𝑇𝑏)
𝑡
+ 𝛼𝑦

𝑡−1
+ ∑ 𝑐𝑡∆𝑦𝑡−𝑗

𝑘
𝑗−1  𝑒

𝑡
,        (6.13) 

Model (2):  𝑦𝑡 =  𝜇 + 𝜃𝐷𝑈𝑡 + 𝛽𝑡 +  𝛾𝐷𝑇𝑡 +  𝛿𝐷(𝑇𝑏)
𝑡
+ 𝛼𝑦

𝑡−1
+ ∑ 𝑐𝑡∆𝑦𝑡−𝑗

𝑘
𝑗−1  𝑒

𝑡
,       (6.14) 

                                                           
111 Harvie and Pahlavani (2006) document that considering the timing of the break as an exogenously 

known event invalidates the distribution theory underlying conventional testing. 

112 These studies are closely related to those of Banerjee et al. (1992) and Zivot and Andrews (1992) 
113 (I) the breaks are Endogenously estimated. (II) Minimizing the value of the t statistic on the break 
parameters associated with the change in either the intercept and slope. (III) Maximizing the absolute 
value of the t statistic on the break parameters associated with a change in either the intercept or slope. 
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The first model allows only a change in the intercept. The second model allow changes 

in both intercept and the slope at time 𝑇𝑏. Both tests are performed using the 

𝑡 −statistic for the null hypothesis that  𝛼 = 1  in the regression. Where  𝐷𝑈𝑡= 1(𝑡 > 

𝑇𝑏),  𝐷(𝑇𝑏)𝑡 = 1(𝑡 =   𝑇𝑏 + 1) and 𝐷𝑇𝑡 = 1(𝑡 >  𝑇𝑏)𝑡 and 0 otherwise.  

For the additive outlier model (AO), the model applies to cases where the break is 

assumed to occur instantly and is not affected by the dynamics of the series. The test 

follows a two-step procedure. For the first model (6.15), the series is detrended by 

regressing it on the trend component (including constant, time-trend and dummy 

break).  The second equation (6.16) is estimated without a trend function, using the 

residual from the first step regression as the dependent variable. The second equation 

used to test for a unit root. 

𝑦𝑡 =  𝜇 + 𝛽𝑡 + 𝛾𝐷𝑇𝑡
∗ + ȳ𝑡.         (6.15) 

ȳ𝑡 = 𝛼ȳ𝑡−1 + ∑ 𝑐𝑡∆𝑦𝑡−𝑖
𝑘
𝑖−1 + 𝑒𝑡.        (6.16)  

Where ȳ𝑡 = the de-trended series, we denote by 𝑡𝛼̂(𝑖, 𝑇𝑏 , 𝑘) (𝑖 =1, 2, 3), the 𝑡- statistic 

for testing 𝛼 = 1 under model 𝑖 with a break data 𝑇𝑏 and truncation lag parameter 𝑘, 

𝐷𝑇𝑡
∗= 1(t > 𝑇𝑏)(𝑡 − 𝑇𝑏).  Note that 𝑇𝑏 and 𝑘 are usually treated as unknown.  Details 

on how to determine 𝑇𝑏 and 𝑘 can be found Perron (1997). 

 

In this study, we consider both IO and AO versions of the test that allow for a break in 

the intercept only and a break in both the intercept and trend and consider whether an 

endogenously determined break causes the finding of a unit root when using 

conventional tests. All tests allowing for a structural break test the unit root null against 

the alternative of a stationarity process around a structural break in the intercept (and 

trend). The tests are applied to the variables discussed in Table 6.4 for the specified 

countries and are estimated over the reduced sample that avoid modelling structural 

breaks in inflation (though not necessarily the other variables). All variables are 

transformed using natural logarithms except for the interest rate, unemployment and 

output gap. The automatic lag selection procedure in EViews is used to determine the 

lag augmentation for all tests. The results are tabulated below for each country. 
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Table 6.6.1. Brazilian unit root tests (the levels data) 

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -0.6192 -3.5271 -1.1409 -3.4753 0.5195 -1.9456 -1.2324 -3.1260 

M -2.8678 -2.9024 -3.4499 -3.4735 1.8444 -1.9455 -1.2560 -3.1196 

R  -1.8134 -2.9018 -2.9188 -3.2725 -0.3558 -1.9453 -1.8339 -3.1164 
REE  -1.0260 -2.9018 -2.0131 -3.4726 -0.7139 -1.9453 -1.8568 -3.1160 

U  0.5943  -2.9024 -3.7005* -3.4735 -0.0886 -1.9455 -1.1757 -3.1196 

OilP -0.3339 -2.8839 -1.6993 -3.4450 -0.5929 -1.9433 -0.95826 -3.0000 

GAP -5.3191* -2.9029 -5.2806* -3.4744 -5.0192* -1.9455 -5.1618* -3.1228 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -0.7316 -2.9023 -1.2356 -3.4734 1.1365 0.4630 0.1984 0.1460 

M  -2.8677 -2.9023 -3.4499 -3.4734 1.1433 0.4630  0.2614 0.1460 

R -2.0265 -2.9017 -3.0160 -3.4725 0.9466 0.4630 0.0661* 0.1460 
REE -1.1543 -2.9018 -2.1703 -3.4725 0.8237 0.4630 0.1256* 0.1460 

U 0.2146 -2.9023 -3.7049* 3.4734 0.9946 0.4630 0.2493 0.1460 

OilP  -0.5142 -2.8838 -1.7582 -3.4445  0.7679 0.4630 0.1173* 0.1460 

GAP -3.8571* -2.9023 -3.8340* -3.4734  0.0309* 0.4630 0.0309* 0.1460 
Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5%  
 

As seen from Table 6.6.1 the absolute values of all the test statistics are less than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

variables (the unit root null cannot be rejected) except for the output gap (in all cases) 

and unemployment (only for the ADF and PP tests when both intercept and trend are 

included in the test equation). In addition, the KPSS test statistic is greater than the 

critical value for all variables (giving rejection of the I(0) null) except for the interest rate, 

exchange rate (when both intercept and trend are included in the test equation) and the 

oil price (when both intercept and trend are included in the test equation). Hence, all 

Brazilian series are unambiguously nonstationary except for the output gap, exchange 

rate, unemployment rate, oil price and interest rate. The output gap is unambiguously 

stationary whereas the test results for the unemployment rate, exchange rate, oil price 

and interest rate are ambiguous (if at least half of the tests indicate non-stationarity in 

all cases). Therefore, we proceed to the first difference of the data. 
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Table 6.6.2 Brazilian unit root tests (first difference data)  

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -5.5984* -2.9037 -5.5879*  -3.4753 -5.1408* -1.9455 -5.5228* -3.1260 

M -12.9459* -2.9029 -13.1654* -3.4743 -0.1800  -1.9455  -1.5816 -3.1292 

R  -10.1425* -2.9018 -10.1155* -3.4725 -0.9579  -1.9453 -0.5928 -3.1228 

REE -6.8752* -2.9017 -6.7998* -3.4726 -1.5810 -1.9453 -3.0533 -3.1804 

U  -6.4304* -2.9029 -6.7207* -3.4744 -3.4465* -1.9455 -6.6608* -3.1228 

OilP -9.8839*  -2.8839 -9.9807* -3.4450 -9.5767* -1.9433 -10.044* -3.0010 

GAP  -6.6704* -2.9035 -6.6215* -3.4753 -6.7116* -1.9455 -6.6985* -3.1260 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -4.7011* -2.9023 -4.6696* -3.4743 0.1650*  0.4630 0.1082*  0.1460 

M -12.8482* -2.9030 -13.0718* -3.4726 0.5275 0.4630 0.0496* 0.1460 

R -9.3289* -2.9018 -9.4466* -3.4725 0.2428* 0.4630  0.2142 0.1460 

REE  -8.1357 -2.9017 -7.9454* -3.4726 0.3644* 0.4630 0.3411 0.1460 

U  -6.3923* -2.9029 -6.7044* -3.4744 0.4206* 0.4630 0.1103* 0.1460 

OilP  -9.1476* -2.8837 -9.6866* -3.4448 0.3792* 0.4630 0.0490* 0.1460 

GAP -6.4937* -2.9029 -6.4109* -3.4743  0.0453* 0.4630 0.0439* 0.1460 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 
 
 

As seen from Table 6.6.2 the absolute values of the test statistics are greater than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

variables (rejecting the unit root null) except the money supply, interest rate and real 

exchange rate. The null hypothesis cannot be rejected for money supply, interest rate 

and real exchange rate in the DF-GLS tests in all cases. In addition, the KPSS test statistic 

is less than critical value for all variables (giving non-rejection of the I(0) null) except for 

the interest rate, money supply and real exchange rate. For the interest rate and real 

exchange rate only the version of KPSS test that includes both intercept and trend 

suggest stationarity while for the money supply only the test equation that just includes 

an intercept suggests stationarity. Hence, all Brazilian series are unambiguously 

stationary in first differences except for the money supply, the interest rate and the real 

exchange rate where the test results are ambiguous (if at least half of the tests indicate 

stationarity in both cases). That some tests indicate a nonstationary in the first 
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difference for the money supply and interest rates may reflect low power, possibly due 

to structural breaks. 

Table 6.6.3. Brazilian breakpoint unit root tests (the levels data) 

 Unit Root with Break Test (Innovative 
outliers) 

Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -2.2674 -4.4437 -5.6502* -4.8598  -0.8066 -4.4436 -3.2585 -4.8598 

M -3.3343 -4.4437 -4.7135 -4.8598 -1.3290 -4.4437 -2.4872 -4.8598 

R -3.5261 -4.4437 -4.1541 -4.8598 -3.8697 -4.4436 -5.5040* -4.8598 

REE -3.2396 -4.4437 -4.2116 -4.8598 -4.2177 -4.4436 -4.3882 -4.8598 

U -2.1215 -4.4437 -4.6588 -4.8598 -2.1435 -4.4436 -4.3587 -4.8598 

OilP  -3.1159 -4.4436 -3.0350 -4.8598 -3.9029 -4.4436 -3.8871 -4.8598 

GAP -5.6642* -4.4436 -5.9677* -4.8598  -6.0265* -4.4437 -5.8980* -4.8598 

 

Table 6.6.4. Brazilian breakpoint unit root tests (first differenced data) 

 Unit Root with Break Test (Innovative 
outliers) 

Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -7.3260* -4.9491 -6.8188* -4.8598 -8.89473* -4.4437 -8.1398* -4.8598 

M -14.9081* -4.4436 -14.555* -4.8598 -13.5161* -4.4437 -13.5608* -4.8598 

R  -10.3543* -4.4436 -10.2813* -4.8598 -10.6216* -4.4437 -10.6216* -4.8598 

REE -7.3732* -4.4437 -7.3059* -4.8598 -6.9198* -4.4437 -7.1507* -4.8598 

U  -6.9056* -4.4436 -7.0550* -4.8598 -7.1427* -4.4437 -7.2176* -4.8598 

OilP  -10.2910* -4.4436 -10.7373* -4.8598 -10.4723* -4.4437 -10.6577* -4.8598 

GAP  -8.0128* -4.4437 -7.9244* -4.8598 -7.4510* -4.4436 -7.4195* -4.8598 

 

In Table 6.6.3 and 6.6.4 we test the null hypothesis of a unit root against the alternative 

of a stationarity process around a structural break for the levels and first differences of 

the data, respectively. In Table 6.6.3., the null hypothesis of a unit root in the levels of 

the data unambiguously cannot be rejected for all of the variables except for consumer 

prices, interest rates and the output gap. The output gap is unambiguously stationary 

around a structural break, however, for consumer prices and interest rates the evidence 

is ambiguous because the unit root null is rejected in 1 of the 4 tests for both variables. 

For consumer prices (interest rates) the test for the IO (AO) case with intercept and 

trend indicates stationarity around a structural break, whereas all other cases suggest 
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nonstationarity. Since we expect prices in levels to be intrinsically nonstationary (even 

if there are structural breaks) we will treat this series as such despite the results of this 

unit root test. Further, the ambiguity of the results for interest rates suggests that we 

can treat them as nonstationary, however, we will bear this ambiguity of results in mind 

in our VAR analysis. 

In Table 6.6.4., the unit root null hypothesis is rejected at the 5% level of significance for 

all of the first-differenced variables in Brazil indicating that all series are stationarity 

around a structural break. However, the finding that all of the first differenced variables 

are unambiguously stationary without structural breaks (except for the money supply, 

interest rates and real exchange rates) means that we interpret the evidence that these 

series are stationary in first differences without structural breaks. Because at least half 

of the tests indicate that the first differences of the money supply, interest rates  and 

real exchange rates are stationary without structural breaks and we expect them to be 

stationary we will proceed with our VAR analysis as if these three series are stationary 

in first differences. Nevertheless, the ambiguity of the results for these three series will 

be borne in mind if issues arise with the VAR modelling that suggests this assumption is 

inappropriate.  

Overall, despite some ambiguities in results, the unit root tests suggest that we can treat 

all variables for Brazil as I(1) in our VAR analysis except for the output gap that is 

unambiguously I(0). Also note that while unit root tests for oil prices have been 

considered with the variables for Brazil, this series can also be used in the VAR analysis 

for the other countries. A similar procedure was applied to all variables and countries 

and (to save space), the summary is given in Table 6.6.5 and the detailed discussion of 

unit root test results for each country is available in appendix. Section 6.3 page 541-571. 
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Table 6.6.5. Orders of integration of the data.114 

Variables/
Countries 

BRA RUS IND CHI SOU NIG ALG ANG SAU 

Start 1996q4 2000q2 1960q1  1989q1   1992q2  1995q4  1996q2  1999q4  1980q1  

End 2014q4 2014q4 2014q4 2014q4 2014q4 2014q4 2014q4 2014q4 2014q4 

P I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1)** I(1) 

M I(1) I(1) I(2) I(1) I(1) I(1) I(1) I(1) I(1) 

R I(1) I(0) I(0) I(1) I(1)* I(1) I(1) I(1)*  

REE I(1) I(1)  I(1) I(1) I(1) I(1)  I(1) 

U I(1) I(1)        

OilP I(1) I(1)  I(1) I(1) I(1) I(1) I(1) I(1) 

GAP I(0) I(1) I(0) I(0) I(0)  I(0) I(0) I(0) I(0) 

* Indicates a variable that may be stationary around a structural break while ** denotes a variable that 

may be I(1) around a structural break. Where P= consumer price, M =money supply, REE= real exchange 

rate, GAP = output gap, R = interest rate, UN =unemployment and OilP = oil price. All variables are 

transformed using natural logarithms except for the interest rate, unemployment and output gap.115 

 

  

                                                           
114 Following a question raised by the external supervisor “Why is R an I(1) variable if it follows a Taylor 

rule in inflation, given that you have reported inflation as being I(0)”.  In our study, our forecast 

modelling is guided by the order of integration of variables obtained from unit root tests rather than 

economic theory (Taylor rule).  In this study, we focused on differencing and cointegrating restrictions to 

ensure the stationarity of the data in which all available variables are combined and specified based on 

their level of integration to forecast inflation. For instance, a VAR model is estimated based on 

differenced variables that are I(0) whereas, VECM and VEC are estimated based on a linear combination 

of the variables that are I(1). In future research, the forecast combination of interest rate I(0) and 

inflation I(0) will be considered.   

115 Due to the sample considered for India (1961q1 – 2012q4), the oil price data is not available for this 

sample, the oil price series we considered in this research is only available between 1980q1 and 2014q4. 
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6.7 The chapter summary and conclusion   

In this chapter, we discussed the data used in multivariate modelling. First, we identify 

the variables that are most commonly employed to model and forecast inflation in the 

literature and identify the data availability of these series for each country under study. 

Whilst we give priority to variables available at quarterly frequency we also consider the 

addition of variables that are available only at annual frequency to ameliorate omitted 

variable issues. We use frequency conversion tools to generate quarterly series from 

annual series. The main explanatory variables that we consider for each country are the 

money supply, real exchange rate, interest rate, output gap, unemployment rate and 

the oil price. Second, we identified general features of each variable by mainly focusing 

on seasonality and stationary characteristics to avoid the issue of seasonal integration. 

In particular, we seasonally adjust each series and compare the adjusted and unadjusted 

series. If the variances of these series are not significantly different, we regard the data 

as nonseasonal and utilise the unadjusted data. However, if the variances are 

significantly different we regard the data as seasonal and use the seasonally adjusted 

series. Third, we used the available relevant variable to construct the output gap that is 

based on the Phillips curve and discussed the procedure involve in estimating 

cointegrating model.  
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CHAPTER 7 

MULTIVARIATE SPECIFICATIONS AND MODELLING  

7.0 Introduction 

In this chapter, we develop on the analysis presented in Chapter six and estimate 

multivariate models based on different cointegration specification over the reduced 

sample to avoid the modelling of structural breaks (section 7.0 to 7.3). We test whether 

the estimated multivariate models are structurally stable in the sense that the 

regression coefficients are constant (section 7.4). Finally, we produce forecast for each 

multivariate model (VAR, VECM and VEC) that passes the diagnostic test for serial 

autocorrelation and choose the best forecasting model for multivariate model (section 

7.5). The motivation for this chapter is guided by the following principles. Models 

involving series that are nonstationary may lead to problems of spurious regression that 

can adversely affect forecasting accuracy. VARs estimated with cointegrated data will 

be misspecified if all of the data are differenced because long-run information will be 

omitted and will have omitted stationarity inducing constraints if all of the data are used 

in levels. Therefore, we consider the test of orders of integration of the data available in 

chapter 6 (Table 6.6.5) and estimate the following multivariate models: (I) we estimate 

an unrestricted VAR model in pure differences (stationary form) with variables that have 

the same order of integration (are I(1)) to forecast inflation. (II) We estimate a VECM 

with all nonstationary variables and test whether a linear combination of nonstationary 

variables will be cointegrated, and if cointegrated we produce forecasts for inflation. (III) 

We construct a VEC model that imposes cointegrating restrictions on the VECM to 

forecast inflation. Based upon this analysis, we compared the forecasting performance 

of all three multivariate specifications (VAR, VECM and VEC) and identify the best 

inflation forecasting model. 
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7.1 Specification and Modelling of unrestricted VAR 

In this section, we describe the process of modelling with an unrestricted VAR model 

and a Vector Error Correction Model (VECM) using the variables identified in the 

previous chapter. The unrestricted VAR approach models every endogenous variable in 

the system as a function of the lagged values of all of the endogenous variables in the 

system and can be specified as:   

𝑦𝑡 = 𝐴1𝑦𝑡−1 +….+ 𝐴𝑝𝑦𝑡−𝑝 + 𝐵𝑥𝑡 + 𝑒𝑡        7.1 

where 𝑦𝑡 is a 𝑘  vector of endogenous variables, 𝑥𝑡 is a 𝑑 vector of exogenous variables, 

𝐴1,….., 𝐴𝑝 and 𝐵 are matrices of coefficients to be estimated, and 𝑒𝑡  is a vector of 

innovations that may be contemporaneously correlated but are uncorrelated with their 

own lagged values. The VECM representation of (7.1) is:  

∆𝑦𝑡 = 𝛿 + 𝐵𝑥𝑡 + 𝛱𝑦𝑡−1 + 𝛤1∆𝑦𝑡−1+ ….+ 𝛤𝑝−1∆𝑦𝑡−𝑝+1 + 𝑒𝑡      7.2 

Where 𝛤𝑖, 𝑖 =1,…,𝑝 − 1 are functions of 𝐴𝑖, 𝑖 = 1,…,𝑘.  

   𝑦𝑡 are independent 𝐼(1) variables, ∆ = (1 − 𝐿) while 𝐿 is the lag operator, 𝛿 is the 

intercept, Γ is the matrix that reflects the short-run dynamic relationship among the 

element of 𝑦𝑡,  𝛱 is the matrix containing long-run equilibrium information and 𝑒𝑡 is the 

residual. Given 𝑘 endogenous variables, 𝑦𝑡, the Granger representation theorem 

indicates that if the matrix 𝛱 has reduced rank r ˂ k it can be decomposed as 𝛱 = 𝛼𝛽ˈ. 

The dimension of 𝛼 and 𝛽 is 𝑟 x 𝑘. The number of cointegrating equations is r, where 𝛽 

is the cointegrating vector and 𝛼 is the speed of adjustment to the long-run equilibrium 

defined by the cointegrating relationships.    

In VAR modelling, the first step is to estimate a VAR model with appropriate lag length 

that is sufficient to capture the full dynamics of the system. The choice of appropriate 

lag order (p) is important because too short a lag length may not remove all of the 

autocorrelation in the residuals and too long a lag length may reduce the precision 

(efficiency) of the estimates due to a reduction of degrees of freedom (Lack, 2006). 

Gutierrez et al. (2007) documents that overfitting (selecting a higher order lag length 

than the true lag length) causes an increase in the mean square-forecast errors of the 

VAR and that under fitting the lag length often generates autocorrelated errors. They 
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added that impulse response functions and variance decompositions are inconsistently 

derived from the estimated VAR model when the lag length is misspecified. In this 

research, we choose the maximum possible lag-length (P*) as 10 for all countries except 

Brazil, Russia, Algeria, Nigeria and Angola (where only lower orders could be estimated). 

Different maximum lag lengths are also considered when experimentation reveals that 

a lag length below 10 cannot reject the hypothesis of no autocorrelation (India, China 

and Saudi Arabia use 11, 12 and 12 lags, respectively, to remove evident 

autocorrelation). We employ the Akaike information criterion (AIC) and Schwarz 

criterion (SC) to help determine the initial lag length, P**. If there is no evidence of 

autocorrelation (of orders 1, 2, … 10) this initial lag length is selected. However, if there 

is evidence of autocorrelation, we re-estimate the VAR model using a lag length of 

P**+1. The process is repeated until the VAR model cannot reject the hypothesis of no- 

autocorrelation at the 5% level. If a VAR model with more than P∗∗ lags that is free from 

evident autocorrelation cannot be found models with fewer lags will be tested for 

autocorrelation to see if a model free from autocorrelation can be found. 
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7.1.2. Model Specification for Unrestricted VARs 

Following an eclectic approach to variable selection, we consider four different 

unrestricted VAR models for Brazil and Russia. For these countries, the output gap (𝑔𝑎𝑝) 

and unemployment (𝑢𝑛) variables (which are substitutes for the Phillips curve effect) 

are available in addition to the other variables (price inflation (𝑝), interest rates ( 𝑟), 

real exchange rates ( 𝑟𝑒𝑒), money supply (𝑚)  and the oil price (𝑜𝑖𝑙𝑝)). For the 

remaining countries (India, China, South Africa, Algeria, Angola, Nigeria and Saudi 

Arabia), we estimate only two VAR models because the output gap is the only Phillips 

curve variable available. This is in addition to the other available variables (price 

inflation, interest rates, real exchange rates, money supply and the oil price). The choice 

of variables used in each model is motivated by the availability of data in each country.   

For Brazil and Russia, we estimate four VARs. The first two VAR models include all 

variables as endogenous and do not impose a priori restrictions on structural 

relationships. The first VAR model includes the output gap and excludes unemployment 

with all other available variables. The second VAR includes unemployment and excludes 

the output gap with all other available variables. The aim of these two VARs is to 

consider whether the VAR that includes the output gap provides superior forecasts to 

the VAR model that includes unemployment. The remaining two VARs are the same as 

the first two VARs except the oil price is treated as exogenous because international oil 

prices may be best regarded as determined outside of the system for some countries – 

although for oil producing countries or large oil consuming countries, such as China, the 

assumption of endogeneity may be more appropriate.116 That is, these VARs include the 

oil price as exogenous and all other available variables as endogenous. The motivation 

behind the two latter VARs is to examine the impact of oil prices on the inflation 

forecasts when it is treated as exogenous.  

For the remaining countries (China, South Africa, Algeria, Angola, Nigeria and Saudi 

Arabia) we estimate two VARs. The first VAR model includes all variables as endogenous 

and does not impose a priori restrictions on structural relationships. The second VAR 

                                                           
116 For consistency, comparative purposes and to avoid imposing prior assumptions we consider treating 
oil as both endogenous and exogenous for all countries. Our expectation is that the estimation and 
forecasting results should reveal which assumption is most appropriate for each country. 
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model treats the oil price as exogenous and includes all other available variables as 

endogenous. All VAR models include the intercept as exogenous. 

7.1.3 Brazil Model Selection Criterion for Unrestricted VARs  

In this section, we describe the process of choosing the appropriate VAR lag order for 

Brazil. Note that these are the unrestricted VARs, not VECMs, and that the stationary 

forms of the variables are used in the model (as identified in chapter 6 Table 6.6.5 for 

Brazil).  We use the standard Akaike (AIC) and Schwarz (SC) information criteria to 

identify initial lag lengths. An interesting question is whether the AIC or SC detect the 

appropriate lag order in the sense that there is no evident autocorrelation. The 

motivation behind this question is to recognise that the AIC and SC may not always 

choose a lag length where the VAR is free from autocorrelation. However, this does not 

necessarily imply that the AIC or SC criterion are generally “bad” in selecting appropriate 

lag lengths. Such a judgment would have to be related to a particular modelling exercise, 

the nature of the deterministic terms included in the model, the sample size and variable 

transformations.117  

First, we estimate an unrestricted VAR model for Brazil where all available variables are 

included as endogenous except unemployment (which is excluded). We start with the 

maximum possible lag-length that can be estimated for Brazil (P*= 7). The VAR model 

considered includes six stationary variables (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, GAP and 

∆𝐼𝑛𝑂𝑖𝑙𝑝).118 The results are given in Table 7.1.A column 1 and 2 where the lag length 

selected by the AIC and SC are 7 and 1 respectively. To maximize the chance of selecting 

an appropriate lag length and minimizing chances that the VAR exhibits autocorrelation, 

we avoid selecting the low lag length of the SC and adopt the AIC. Therefore, we tested 

the maximum lag (P*= 7) VAR for autocorrelation (of order 1, 2, … 10). The probability 

values of these autocorrelation tests are reported in column 3 of Table 7.1.A. There is 

evidence of autocorrelation at the 5% level because many of the tests’ probability values 

are less than 0.05. The standard reaction would be to believe that the lag length is too 

short and add lags. However, because a VAR model cannot be estimated for Brazil with 

                                                           
117  See: Kapetanios (2004) and Lack (2006) for similar discussion. 

118 Where the variables are denoted as follows: prices (𝑝), interest rate( 𝑟), real exchange rate (𝑟𝑒𝑒), 
money supply (𝑚), output gap (𝑔𝑎𝑝), unemployment (𝑢𝑛)  and oil price (𝑜𝑖𝑙𝑝). 
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more than 7 lags, experience suggests that models with too many lags can exhibit 

autocorrelation and the SC suggests a lower optimal lag length, we consider lower lag 

length VARs. As a result, we re-estimate the VAR model using lag length of 6 (where P*- 

1) and test the validity of the model. Given a lag length of 7 is indicated by the AIC this 

suggests VARs with more lags are preferred to those with less hence we consider a lag 

length of 6 rather than a higher lag length. The VAR model cannot reject the hypothesis 

of no-autocorrelation at the 5% level for all of the orders of autocorrelation considered 

– see column 4 of Table 7.1.A. This indicates that this model is valid for forecasting 

Brazilian inflation. Hence, we choose 6 as the lag length for this Brazilian VAR model. 

 

Table 7.1.A 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, GAP and ∆𝐼𝑛𝑂𝑖𝑙𝑝. 

 1 2 3 4  
AIC SC Prob. Prob. 

Lag 
  

7 6 

0 -15.5061 -15.2984 
  

1 -17.5058  -16.0524* 0.000 0.1040 

2 -17.3584 -14.6592  NA 0.6037 

3 -17.7366 -13.7917  NA 0.7218 

4 -17.4705 -12.2799  NA 0.9196 

5 -17.1274 -10.691 0.000 0.5208 

6 -17.6675 -9.98533 0.000 0.4551 

7 -18.7040* -9.77609  NA 0.9050 

8   0.000 0.3130 

9 
  

0.000 0.3392 

10 
  

0.000 0.2725 
The table indicates the selected lag from the AIC and SC criterion by an asterisk 

 

Second, we estimate an unrestricted VAR model for Brazil where all available variables 

are included as endogenous except the output gap (which is excluded). We start with 

the maximum possible lag-length that can be estimated for Brazil (P*= 7). The VAR 

model considered includes six stationary variables (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, ∆𝑢𝑛 and 

∆𝐼𝑛𝑂𝑖𝑙𝑝). The results are given in Table 7.1.B column 1 and 2 where the lag length 

selected by the AIC and SC are 7 and 0 respectively. To maximize the chance of selecting 

an appropriate lag length and minimize the chances that the VAR exhibits 

autocorrelation, we avoid selecting the low lag length of the SC and adopt the AIC. 

Therefore, we tested the maximum lag (P*= 7) VAR for autocorrelation (of order 1, 2, … 
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10). There is evidence of autocorrelation at the 5% level because many of the tests’ 

probability values are less than 0.05. The standard reaction would be to believe that the 

lag length is too short and add lags. However, because a VAR model cannot be estimated 

for Brazil with more than 7 lags, because experience suggests that models with too many 

lags can exhibit autocorrelation and the SC indicates a lower optimal lag length, we 

consider lower lag length VARs. As a result, we re-estimate the VAR models with 6 and 

5 lags and report the autocorrelation tests in columns 4 and 5, respectively. Given a lag 

length of 7 is indicated by the AIC this suggests VARs with more lags are preferred to 

those with less hence we do not consider lower lag length VARS than necessary. The 

VAR models with 6 lags indicates evidence of autocorrelation whereas the VAR with 5 

lag exhibits no evident autocorrelation at 5% level for all of the orders of autocorrelation 

considered – see column 5 of Table 7.1.B. Hence, we select the 5 lag VAR of this model 

for forecasting Brazilian inflation. 

 

Table 7.1.B 

 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸,  ∆𝑈𝑁 and ∆𝐼𝑛𝑂𝑖𝑙𝑝. 

 1 2 3 4 5  
AIC SC Prob.  Prob. 

Lag 
  

7 6 5 

0 -9.95798  -9.74549* 
 

 
 

1 -10.8855 -9.4195 0.000  0.9283  0.1582 

2 -10.8621 -8.13948  NA  0.3202  0.0963 

3 -10.9592 -6.9799  NA  0.1913  0.6831 

4 -11.2014 -5.96552  NA  0.4621  0.6040 

5 -11.1313 -4.63884 0.000  0.7915  0.2058 

6 -11.9563 -4.20723 0.000  0.7506  0.2608 

7 -13.9126* -4.90693  NA  0.2430  0.6681 

8   0.000  0.9347  0.9896 

9 
  

0.000  0.0108  0.6924 

10 
  

0.000  0.5223  0.4124 

The table indicates the selected lag from AIC and SC criterion by an asterisk 

 

Third, we estimate an unrestricted VAR model for Brazil where we treat oil price as 

exogenous and all other available variables except unemployment (which is excluded) 

as endogenous. We start with the maximum possible lag-length that can be estimated 

for Brazil (P*= 9).  The VAR model considered includes six stationary variables with the 

oil price as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the following variables as endogenous (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 

∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and GAP). The results are given in Table 7.1.C column 1 and 2 where the lag 
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length selected by both the AIC and SC is 9. There is evidence of autocorrelation at the 

5% level because many of the tests’ probability values are less than 0.05 (see the column 

headed 3). The standard reaction would be to believe that the lag length is too short and 

add lags. However, because a VAR model cannot be estimated for Brazil with more than 

9 lags and because experience suggests that models with too many lags can exhibit 

autocorrelation we consider lower lag length VARs. As a result, we re-estimate the VAR 

models with 8 and 7 lags and report the autocorrelation tests in columns 4 and 5 of Table 

7.1.C, respectively. Given a lag length of 9 is indicated by the AIC and SC this suggests 

VARs with more lags are preferred to those with less hence we do not consider VARs 

with lag lengths lower than that which removes the evident autocorrelation. The VAR 

models with 9 and 8 lags indicate evidence of autocorrelation whereas the VAR with 7 

lags exhibits no evident autocorrelation. Hence, we select the 7 lag VAR of this model 

for forecasting Brazilian inflation. 

Table 7.1. C 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and GAP  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓  

1 2 3 4 5  
AIC SC Prob. Prob. Prob. 

Lag   9 8 7 

0 -13.5636 -13.1918    

1 -15.6417 -14.3405  NA  0.1869  0.5835 

2 -15.4462 -13.2157  NA  0.0870  0.1821 

3 -15.8655 -12.7056  NA  0.0087  0.3868 

4 -15.2929 -11.2036  NA  0.6377  0.1908 

5 -15.1721 -10.1534  NA  0.1131  0.8807 

6 -15.6379 -9.68988 0.000  0.1673  0.8418 

7 -16.2944 -9.41695 0.000  0.1632  0.8389 

8 -18.1713 -10.3645 0.000  0.2311  0.3212 

9  -23.37272*  -14.63652* 0.000  0.3396  0.6262 

10 
  

0.000  0.0248  0.4811 
The table indicates the selected lag from AIC and SC criterion by an asterisk 

 

Fourth, we estimate an unrestricted VAR model for Brazil where we treat oil price as 

exogenous and all other available variables except for the output gap (which is excluded) 

as endogenous. The VAR model considered includes six stationary variables with the oil 

price as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the following variables as endogenous (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 

∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and ∆𝑢𝑛). The results are given in Table 7.1.D column 1 and 2 where the lag 
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length selected by both the AIC and SC is 9. There is evidence of autocorrelation at the 

5% level because many of the tests’ probability values are less than 0.05 (see the column 

headed 3). The standard reaction would be to believe that the lag length is too short and 

add lags. However, because a VAR model cannot be estimated for Brazil with more than 

9 lags and experience suggests that models with too many lags can exhibit 

autocorrelation we consider lower lag length VARs. As a result, we re-estimate the VAR 

models with 8, 7 and 6 lags and report the autocorrelation tests in columns 4, 5 and 6 of 

Table 7.1.D, respectively. Given a lag length of 9 is indicated by the AIC and SC this 

suggests VARs with more lags are preferred to those with less hence we do not consider 

VARs with lag lengths lower than that which removes the evident autocorrelation. The 

VAR model with 8 and 7 lags indicate evidence of autocorrelation whereas the VAR with 

6 lags exhibits no evident autocorrelation. Hence, we select the 6 lag VAR of this model 

for forecasting Brazilian inflation. 

Table 7.1D 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and ∆𝑈𝑁 
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓, 

 

 1 2 3 4 5 6 

Lag 
  

9 8 7 6  
AIC SC Prob Prob Prob  

0 -8.05062 -7.67887     

1 -8.99371 -7.69258 0.000  0.0746  0.4870  0.7934 

2 -9.08246 -6.85194  NA  0.8010  0.5188  0.7240 

3 -9.24438 -6.08448  NA  0.0101  0.2108  0.7115 

4 -9.29958 -5.21029 0.000  0.7066  0.8261  0.7529 

5 -9.47729 -4.45862  NA  0.6799  0.1656  0.4303 

6 -10.4646 -4.51658 0.000  0.9425  0.9184  0.5407 

7 -11.3105 -4.43303 0.000  0.6852  0.4917  0.7872 

8 -13.4715 -5.66463 0.000  0.9171  0.9445  0.8883 

9  -19.86108*  -11.1248* 0.000  0.7715  0.6611  0.5500 

10   0.000  0.3680  0.0120  0.5613 
The table indicates the selected lag from AIC and SC criterion by an asterisk 

A similar procedure was applied for all countries and the tables of results are available 

in appendix section 7. 2 page 576 -602. A summary of the VAR models and their selected 

lag lengths for all countries is given in Table 7.1.E. Forecasts will be produced for all 

models summarised in Table 7.1.E where a valid specification (models that are free from 

evident autocorrelation) could be found. In addition, where oil prices are specified as 

exogenous, we will use the oil price forecast produced between 2013q1 – 2014q4 that 
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is based on ARIMA model. The details are available in Appendix. Section 7.1 page 572 -

575. 

Table 7.1.E. Summary of the VAR model specification  

Countries Sample Variable specifications The 
maximum 
lag length 
suggested 
by EVIews  

Chosen lag 
length  

Brazil 1999q4 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, GAP and 
∆𝐼𝑛𝑂𝑖𝑙𝑝 

7 6 

Brazil  1999q4 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝 

7 5 

Brazil 1999q4 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and GAP  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓, 

9 7 

Brazil 1999q4 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and ∆𝑈𝑁  
Exogenous: ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

9 6 

 Russia 2003Q2 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅, ∆𝐼𝑛𝑅𝐸𝐸, ∆𝐺𝐴𝑃 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝 

5 No valid model 

Russia 2003Q2 2012q4  Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅, ∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝 

5 4 

Russia 2003Q2 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and ∆𝐺𝐴𝑃 
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

6 No valid model 

Russia 2003Q2 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and ∆𝑈𝑁 
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

6 4 

India 1963q1 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆∆𝑙𝑛𝑀, 𝑅,  and 𝐺𝐴𝑃  7 11 

India 1984q1 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆∆𝑙𝑛𝑀, 𝑅, ∆𝐼𝑛𝑂𝑖𝑙𝑝  and 𝐺𝐴𝑃 3 19 

India 1984q1 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆∆𝑙𝑛𝑀, 𝑅,  and 𝐺𝐴𝑃 
Exogenous: ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

7 16 

China  1992q1 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, 𝐺𝐴𝑃 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝   

10 9 

China 1992q1 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and 𝐺𝐴𝑃  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

10 11 

South Africa 1995q2 -2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, 𝐺𝐴𝑃 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝  

10 7 

South Africa 1995q2 -2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and 𝐺𝐴𝑃  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓  

10 10  

Algeria 1999q2 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, 𝐺𝐴𝑃 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝   

7 5 

Algeria 1999q2 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and 𝐺𝐴𝑃  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓  

9 5 

Angola 2002q4 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, 𝐺𝐴𝑃 and ∆𝐼𝑛𝑂𝑖𝑙𝑝   6 4 

Angola 2002q4 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅 and 𝐺𝐴𝑃  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓  

7 7 

Nigeria 1998q4 2012q4 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, 𝐺𝐴𝑃 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝    

8 6 

Nigeria 1998q4 2012q4  Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and 𝐺𝐴𝑃  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

 9 5 

Saudi Arabia 1983q1 2012q4  Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝐼𝑛𝑅𝐸𝐸, 𝐺𝐴𝑃 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝   

4 12 

Saudi Arabia 1983q1 2014q4  Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝐼𝑛𝑅𝐸𝐸 and 𝐺𝐴𝑃  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

4 12 

Where P= consumer price, M =money supply, REE= real exchange rate, GAP = output gap, R = interest rate, UN 

=unemployment and Oilp = oil price.  The invalid models indicate the VAR models that do not pass the 
diagnostic test for autocorrelation with all possible lag lengths. 

 



205 
 

7.2 Modelling Vector Error Correction Model (VECM) 

This section describes procedures for modelling using the Vector Error Correction Model 

(VECM) stated in equation (7.2). The model adds an error-correction (long-run) feature 

into the VAR model and captures the dynamic relationships among the variables in the 

short-run. It provides the framework for estimating a co-integrated model with the aim 

of improving long-term forecasting. Engle and Granger (1987) argued that, if 

cointegrating relationships exist between variables that are integrated of order 1, a 

model may be specified as a VECM rather than a VAR. Hence, we expect variables that 

are I(1) may be cointegrated, that is, there may be a long-run equilibrium relationship 

between the variables. As a result, we estimate a VECM model for each country and 

focus only on variables that are integrated of order 1 (as identified in chapter 6 (Table 

6.6.5). To avoid model misspecification and the possibility of imposing false restrictions, 

we do not impose any a priori restrictions on this model – although some other 

researchers have imposed a priori restrictions on the VECM. To choose an appropriate 

lag length for this model, we follow the same procedure used in the previous chapter 

(section 7.1). We estimate a VAR model in levels and use the standard Akaike (AIC) and 

Schwarz (SC) information criteria with the maximum possible lag-length (P* =10) to 

determine the initial lag length P** and test for autocorrelation. If there is no evidence 

of autocorrelation (of orders 1, 2, … 10) this initial lag length is selected. However, if 

there is evidence of autocorrelation, we re-estimate the VAR model using a lag length 

of P**+1. The process is repeated until a VAR model that cannot reject the hypothesis 

of no-autocorrelation at the 5% level is obtained. If a VAR model with more than P∗∗ lags 

that is free from evident autocorrelation cannot be found models with fewer lags will be 

tested for autocorrelation to see if a model free from autocorrelation can be found. This 

yields the lag length that will be used in the VECM. 

Using this VECM, we run the Johansen cointegration test with unrestricted intercept and 

no trend to determine whether the variables cointegrate. We use the trace and 

maximum eigenvalue tests to determine the cointegrating rank. In this case, we test the 

null hypotheses from 𝑟 = 0 to 𝑟 = 𝑛 − 1 until we fail to reject the null hypothesis. If 

there is evidence of cointegration this means that long-run information should be 

included in the model. We therefore use the unrestricted VECM, that does not specify 
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the number or form of cointegrating relations to produce forecasts.119 In addition, if 

there is evident cointegration we estimate a restricted VECM, denoted by VEC, by 

assuming a single cointegrating relation (based on the Johansen estimates) and use this 

model for forecasting. We assume one cointegrating equation because it is not 

theoretically obvious how we should specify more cointegrating equations. Further, the 

Johansen procedure is known to tend to reject the less cointegration null more often 

than it should when the null is for the number of cointegrating equations being greater 

than 0.120  

  

                                                           
119  The difference between the VECM specified in this section and an unrestricted VAR model discussed 

in the previous section is that the former includes nonstationary, in particular I(1), variables that may be 

cointegrated  while the latter is applied only to variables that are made stationary through differencing. 

120 The Johansen procedure severely over-rejects the null of “less cointegration” versus the alternative 

of “more cointegration” when using sample sizes typically employed in time-series analysis – see Hanck 

C (2006 p. 6). “Cross-Sectional Correlation Robust Tests for Panel Cointegration”, Mimeo, Department of 

Economics, University of Dortmund.  
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7.2.1 Modelling Vector Error Correction Model (VECM) for Brazil 

In this section, we describe the process of modelling an unrestricted Vector Error 

Correction Model (VECM) for Brazil.  We focus only on those variables that are I(1) in 

Table 6.6.5. First, we include all variables except the output gap (which is I(0)) as 

endogenous and do not impose a priori restrictions on structural relationships. The 

following variables are considered: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁 and 𝐼𝑛𝑂𝑖𝑙𝑝 (all are I(1)).  

To choose an appropriate lag length for this model, we estimate a levels VAR model and 

use the standard Akaike (AIC) and Schwarz (SC) information criteria with the maximum 

possible lag-length that can be estimated (P* =7) to determine the initial lag length P**. 

The results are given in Table 7.2.1.A. Column 1 and 2 indicate that the lag length 

selected by both the AIC and SC is 7. We tested the maximum lag (P*= 7) VAR for 

autocorrelation (of order 1, 2, … 10). The probability values of these autocorrelation 

tests are reported in column 3 of Table 7.2.1.A. There is evidence of autocorrelation at 

the 5% level because all of the tests’ probability values are less than 0.05. The standard 

reaction would be to believe that the lag length is too short and add lags. However, 

because a VAR model cannot be estimated for Brazil with more than 7 lags and 

experience suggests that models with too many lags can exhibit autocorrelation we 

consider lower lag length VARs and re-estimate the VAR model using lag lengths 6 and 

5 (where lags = P* - 1;) and test the validity of each model. The VAR models with 6 lags 

indicate evidence of autocorrelation whereas the VAR with 5 lags exhibits no evident 

autocorrelation. Hence, we select the 5 lag VAR of this model for cointegration analysis.  

Table 7.2.1. A. The VAR lags order selection criteria 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁 and 𝐼𝑛𝑂𝑖𝑙𝑝 

 1 2 3 4 5 

Lags 
  

7 6 5 

  AIC SC Prob. Prob. Prob. 

0 2.139911 2.3629    

1 -10.922  -9.36068 0.0018 0.1726  0.1745 

2 -10.8347 -7.93504 0.0000 0.0258  0.7827 

3 -11.2047 -6.96667 0.0000 0.0618  0.8204 

4 -11.0758 -5.49954 0.0000 0.6897  0.1111 

5 -12.8521 -5.93752 0.0000 0.0312  0.6912 

6  -12.7817 -5.62883 0.0000 0.1808  0.6926 

7  -14.78175* -6.52883* 0.0000 0.8630  0.5209 

8   0.0000 0.8666  0.2921 

9   0.0000 0.4360  0.4999 

10   0.0000 0.7357  0.9144 
AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value of a test for autocorrelation.  
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Using a VECM based on 5 lagged level terms (4 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept and no trend (option 

3 in EVIews) to determine the cointegrating rank. The results of Johansen’s trace and 

maximum eigenvalue tests are reported in Table 7.2.1.B. Based on the trace and 

maximum eigenvalue statistics, we reject the null hypothesis of no cointegrating 

equations at the 5% level. However, the null hypothesis of at most 4 cointegrating 

equations cannot be rejected at the 5% significance level according to the trace test. 

Therefore, we assume one cointegrating equation because it is not theoretically obvious 

how we should specify more cointegrating equations and the Johansen procedure has a 

tendency to indicate too many cointegrating equations (see discussion above). 

 

Table 7.2.1.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace 
Statistic 
test 

Critical 
Value 

Prob.** Max-Eigen 
Statistic 

0.05 Critical 
Value 

Prob.** 

None * 

390.3386 95.75366 0.0001 148.0977 40.07757 0.0001 

At most 1* 

242.241 69.81889 0.0000 
100.6393 

 

33.87687 0.0000 

At most 2* 

141.6017 47.85613 0.0000 69.065 27.58434 0.0000 

At most 3* 

72.53672 29.79707 0.0000 
54.44726 

 21.13162 0.0000 

At most 4* 

18.08946 15.49471 0.0199 17.13844 14.2646 0.0171 

At most 5 

0.95102 3.841466 0.3295 0.95102 3.841466 0.0001 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.2.1.C to forecast inflation. This specification does not impose the number or 

form of cointegrating equations on the model. 
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Table 7.2.1. C. The Vector Error Correction Model 

 Standard errors in ( ) & t-statistics in [ ] 
   

 Table 
7.2.1.D. The Vector Error Correction Model 

    

 
DLOG(PBRA) DLOG(MBRA_D11) D(RBRA) DLOG(REEBRA) D(UBRA) DLOG(OILP) 

DLOG(PBRA(-1)) -0.02505 0.459901   8.027274 1.713247 0.498807 4.892168 
 

-0.20863 -1.36955 -32.7435 -3.14106 -15.1613 -5.97748 
 

[-0.12006] [ 0.33580] [ 
0.24516] 

[ 0.54544] [ 
0.03290] 

[ 0.81843] 

DLOG(PBRA(-2)) -0.64034 0.104678 -63.7641 -0.66796 -3.49175 -0.97568 
 

-0.18627 -1.22278 -29.2345 -2.80445 -13.5366 -5.3369 
 

[-3.43773] [ 0.08561] [-
2.18113] 

[-0.23818] [-
0.25795] 

[-0.18282] 

DLOG(PBRA(-3)) -0.11974 0.08268 -21.5148 -1.22243 -8.48606 -0.08844 
 

-0.19527 -1.28188 -30.6473 -2.93997 -14.1907 -5.59481 
 

[-0.61320] [ 0.06450] [-
0.70201] 

[-0.41580] [-
0.59800] 

[-0.01581] 

DLOG(PBRA(-4)) -0.17503 -0.66971 -54.221 1.871178 -28.7315 0.904799 
 

-0.16538 -1.08564 -25.9557 -2.48991 -12.0183 -4.73833 
 

[-1.05835] [-0.61688] [-
2.08899] 

[ 0.75151] [-
2.39064] 

[ 0.19095] 

DLOG(MBRA_D11(-
1)) 

0.030531 -0.70857 3.334608 -0.38737 -1.23705 0.445273 

 
-0.03072 -0.20164 -4.82086 -0.46246 -2.23222 -0.88007 

 
[ 0.99397] [-3.51400] [ 

0.69170] 
[-0.83762] [-

0.55418] 
[ 0.50595] 

DLOG(MBRA_D11(-
2)) 

0.05914 -0.41333 7.109911 -0.3501 0.902908 2.415929 

 
-0.0342 -0.2245 -5.36736 -0.51489 -2.48527 -0.97984 

 
[ 1.72934] [-1.84112] [ 

1.32466] 
[-0.67996] [ 

0.36330] 
[ 2.46564] 

DLOG(MBRA_D11(-
3)) 

0.127499 -0.25542 7.110853 -0.10436 4.928344 3.083513 

 
-0.04004 -0.26283 -6.28367 -0.60279 -2.90955 -1.14711 

 
[ 3.18456] [-0.97180] [ 

1.13164] 
[-0.17312] [ 

1.69385] 
[ 2.68806] 

DLOG(MBRA_D11(-
4)) 

0.096886 -0.31859 9.749591 -1.12315 7.034013 0.583007 

 
-0.05082 -0.33364 -7.97668 -0.7652 -3.69347 -1.45618 

 
[ 1.90632] [-0.95490] [ 

1.22226] 
[-1.46780] [ 

1.90444] 
[ 0.40037] 

D(RBRA(-1)) 0.00137 -0.004 0.26786 -0.00868 0.067052 -0.04629 
 

-0.00102 -0.00672 -0.16075 -0.01542 -0.07443 -0.02935 
 

[ 1.33768] [-0.59541] [ 
1.66627] 

[-0.56309] [ 
0.90082] 

[-1.57720] 

D(RBRA(-2)) -0.00069 -0.00597 -0.25438 0.011572 0.094198 -0.01369 
 

-0.00117 -0.00766 -0.18324 -0.01758 -0.08485 -0.03345 
 

[-0.59352] [-0.77832] [-
1.38821] 

[ 0.65833] [ 
1.11022] 

[-0.40923] 

D(RBRA(-3)) 0.004033 -0.00591 0.187726 -0.01648 0.122438 0.027893 
 

-0.00112 -0.00734 -0.17549 -0.01683 -0.08126 -0.03204 
 

[ 3.60703] [-0.80534] [ 
1.06974] 

[-0.97883] [ 
1.50681] 

[ 0.87066] 



210 
 

D(RBRA(-4)) 0.00043 -0.00598 -0.07125 -0.00886 0.1961 0.004426 
 

-0.00076 -0.005 -0.11963 -0.01148 -0.05539 -0.02184 
 

[ 0.56435] [-1.19496] [-
0.59563] 

[-0.77238] [ 
3.54022] 

[ 0.20265] 

DLOG(REEBRA(-1)) -0.05491 -0.02813 -3.05574 0.158792 -1.07576 0.857222 
 

-0.01557 -0.10223 -2.44422 -0.23447 -1.13176 -0.4462 
 

[-3.52560] [-0.27511] [-
1.25019] 

[ 0.67723] [-
0.95053] 

[ 1.92114] 

DLOG(REEBRA(-2)) -0.04935 0.24348 -6.91508 -0.42095 0.275846 0.396617 
 

-0.01983 -0.13016 -3.11182 -0.29851 -1.44088 -0.56808 
 

[-2.48921] [ 1.87066] [-
2.22220] 

[-1.41016] [ 
0.19144] 

[ 0.69817] 

DLOG(REEBRA(-3)) -0.05803 0.28468 -3.34386 -0.11563 0.492672 0.34053 
 

-0.02247 -0.14748 -3.52598 -0.33825 -1.63265 -0.64369 
 

[-2.58318] [ 1.93029] [-
0.94835] 

[-0.34184] [ 
0.30176] 

[ 0.52903] 

DLOG(REEBRA(-4)) -0.04455 0.191369 -3.84498 -0.21947 -2.15527 -0.35162 
 

-0.02394 -0.15718 -3.75785 -0.36049 -1.74001 -0.68601 
 

[-1.86060] [ 1.21753] [-
1.02318] 

[-0.60881] [-
1.23865] 

[-0.51255] 

D(UBRA(-1)) -0.00315 0.027035 -0.24267 0.063859 -0.54615 -0.02537 
 

-0.0029 -0.01902 -0.45471 -0.04362 -0.21055 -0.08301 
 

[-1.08590] [ 1.42148] [-
0.53368] 

[ 1.46397] [-
2.59394] 

[-0.30567] 

D(UBRA(-2)) -0.006 0.038407 -0.99963 0.053643 -0.26842 -0.07914 
 

-0.00285 -0.01869 -0.44686 -0.04287 -0.20691 -0.08158 
 

[-2.10758] [ 2.05489] [-
2.23702] 

[ 1.25140] [-
1.29728] 

[-0.97013] 

D(UBRA(-3)) -0.00468 0.038277 -0.36425 0.050164 -0.47173 -0.08278 
 

-0.00288 -0.01888 -0.45131 -0.04329 -0.20897 -0.08239 
 

[-1.62820] [ 2.02774] [-
0.80710] 

[ 1.15870] [-
2.25738] 

[-1.00468] 

D(UBRA(-4)) -0.00169 0.029846 -0.66812 0.020312 -0.73462 -0.13526 
 

-0.00294 -0.01928 -0.46089 -0.04421 -0.21341 -0.08414 
 

[-0.57483] [ 1.54824] [-
1.44965] 

[ 0.45941] [-
3.44236] 

[-1.60760] 

DLOG(OILP(-1)) 0.003258 -0.00556 0.823192 0.016615 -0.82134 -0.36459 
 

-0.00877 -0.05758 -1.37652 -0.13205 -0.63738 -0.25129 
 

[ 0.37151] [-0.09649] [ 
0.59802] 

[ 0.12583] [-
1.28862] 

[-1.45087] 

DLOG(OILP(-2)) 0.008811 -0.09016 1.845928 0.037176 -0.94655 -0.54557 
 

-0.00802 -0.05264 -1.25855 -0.12073 -0.58275 -0.22975 
 

[ 1.09880] [-1.71264] [ 
1.46671] 

[ 0.30792] [-
1.62428] 

[-2.37459] 

DLOG(OILP(-3)) -0.0015 -0.07368 -0.76849 0.069967 -0.46031 -0.34807 
 

-0.00862 -0.05659 -1.35285 -0.12978 -0.62642 -0.24697 
 

[-0.17421] [-1.30203] [-
0.56805] 

[ 0.53913] [-
0.73483] 

[-1.40935] 

DLOG(OILP(-4)) -0.00302 -0.07522 -0.60699 -0.08065 -0.50957 -0.28783 
 

-0.00873 -0.05734 -1.37091 -0.13151 -0.63478 -0.25027 
 

[-0.34564] [-1.31180] [-
0.44277] 

[-0.61325] [-
0.80276] 

[-1.15008] 
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LOG(PBRA(-5)) -0.17045 0.652487 -16.8 1.428985 -7.99718 0.439702 
 

-0.05783 -0.37966 -9.07688 -0.87074 -4.2029 -1.65703 
 

[-2.94722] [ 1.71862] [-
1.85086] 

[ 1.64112] [-
1.90278] 

[ 0.26536] 

LOG(MBRA_D11(-
5)) 

0.093528 -0.29722 9.530508 -0.57464 3.81829 0.056674 

 
-0.02896 -0.19014 -4.54584 -0.43608 -2.10488 -0.82986 

 
[ 3.22912] [-1.56318] [ 

2.09653] 
[-1.31775] [ 

1.81402] 
[ 0.06829] 

RBRA(-5) 0.002147 -0.00984 0.038328 -0.01984 0.250899 0.01918 
 

-0.00095 -0.00623 -0.14903 -0.0143 -0.06901 -0.02721 
 

[ 2.26065] [-1.57798] [ 
0.25718] 

[-1.38801] [ 
3.63589] 

[ 0.70497] 

LOG(REEBRA(-5)) -0.06122 0.21591 -6.69862 0.178297 -2.48866 -0.17408 
 

-0.02176 -0.14287 -3.41566 -0.32766 -1.58157 -0.62355 
 

[-2.81288] [ 1.51128] [-
1.96115] 

[ 0.54415] [-
1.57354] 

[-0.27917] 

UBRA(-5) -0.00674 0.028098 -0.45536 0.051163 -0.48722 -0.09761 
 

-0.00227 -0.0149 -0.35628 -0.03418 -0.16497 -0.06504 
 

[-2.96777] [ 1.88551] [-
1.27810] 

[ 1.49697] [-
2.95341] 

[-1.50082] 

LOG(OILP(-5)) -0.01134 -0.07256 -1.50277 -0.08445 0.357234 -0.36792 
 

-0.0065 -0.04264 -1.01943 -0.09779 -0.47203 -0.1861 
 

[-1.74642] [-1.70170] [-
1.47413] 

[-0.86357] [ 
0.75680] 

[-1.97700] 

 R-squared 0.88738 0.697224 0.884123 0.6062 0.739249 0.654417 

 Adj. R-squared 0.745381 0.315462 0.738017 0.109669 0.410475 0.218683 

 Sum sq. resids 0.000526 0.022665 12.9551 0.119218 2.777579 0.431745 

 S.E. equation 0.004782 0.031391 0.75051 0.071996 0.347512 0.137009 

 F-statistic 6.249191 1.826332 6.051247 1.220871 2.248503 1.501871 

 Log likelihood 230.0931 130.3631 -37.8705 86.36913 2.937135 52.26687 

 Akaike AIC -7.55068 -3.78729 2.561151 -2.12714 1.02124 -0.84026 

 Schwarz SC -6.43542 -2.67203 3.67641 -1.01188 2.1365 0.275 

 Mean dependent 0.0159  0.033944 -0.23962 0.007017 -0.15173 0.031932 

 S.D. dependent 0.009477 0.037941 1.46629 0.076301 0.452604 0.155002 

 Determinant resid covariance 
(dof adj.) 

2.66E-14 
 

  
  

 Determinant resid covariance 1.77E-16 
    

 Log likelihood 509.8871 
    

 Akaike information criterion -12.4486 
    

 Schwarz criterion -5.75701 
    

 

For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.2.1.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast Brazil inflation since there is no evidence 

of autocorrelation.  
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Table 7.2.1.D. Probability value of the residual autocorrelation  

Lags Prob. 

1  0.1745 

2  0.7827 

3  0.8204 

4  0.1111 

5  0.6912 

6  0.6926 

7  0.5209 

8  0.2921 

9  0.4999 

10  0.9144 
 

 

In this section, we seek to produce a VECM for Brazil where we treat the stationary 

transformation of oil prices as exogenous and all other variables as endogenous (which 

are I(1)). We first seek to find the appropriate lag length and start with a level’s VAR 

using the maximum possible lag-length that can be estimated for Brazil (P*= 9).  The VAR 

model considered includes five nonstationary endogenous variables (𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 

𝐼𝑛𝑅𝐸𝐸 𝑎𝑛𝑑 𝑈𝑁 ) with the difference of the log of oil prices as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝). The 

results are given in Table 7.2.1.E column 1 and 2 where the lag length selected by both 

the AIC and SC is 9. There is evidence of autocorrelation at the 5% level in this 9-lag 

model because all the tests’ probability values are less than 0.05 (see column 3). The 

standard reaction would be to believe that the lag length is too short and add lags. 

However, because a VAR model cannot be estimated for Brazil with more than 9 lags 

and because experience suggests that models with too many lags can exhibit 

autocorrelation we consider lower lag length VARs.  As a result, we re-estimate VAR 

models with 8 ,7 and 6 lags and report the autocorrelation tests in columns 4, 5 and 6 of 

Table 7.2.1.E, respectively. The VAR models with 8 and 7 lags indicate evidence of 

autocorrelation whereas the VAR with 6 lags exhibits no evident autocorrelation. Hence, 

we select the 6 lag VAR of this model for cointegration analysis.  
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Table 7.2.1. E 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 𝑙𝑛𝑅𝐸𝐸 𝑎𝑛𝑑 𝑈𝑁  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝 
  

1 2 3 4 5 6  
AIC SC Prob. Prob. Prob.  

Lag   9 8 7 6 

0 6.051451 6.237327     

1 -9.49954 -8.38428 0.000 0.0284 0.0321 0.1575 

2 -9.47911 -7.43447 0.000 0.0348 0.4982 0.1833 

3 -9.64925 -6.67523 0.000 0.367 0.1017 0.3612 

4 -9.8226 -5.91919  0.000 0.9978 0.1355 0.5404 

5 -10.739 -5.90624  0.000 0.0138 0.8474 0.9888 

6 -11.4478 -5.68559 0.000 0.3043 0.7347 0.4096 

7 -12.5219 -5.83038 0.000 0.8661 0.7619 0.8324 

8 -14.4782 -6.85723 0.000 0.8875 0.2745 0.2845 

9  -19.58900*  -11.03868* 0.000 0.9024 0.9127 0.9355 

10 
  

0.000 0.8407 0.7105 0.7257 
AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

 

Using a VECM based on 6 lagged level terms (5 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept and no trend (option 

3 in EVIews) to determine the cointegrating rank. The results of Johansen’s trace and 

maximum eigenvalue tests are reported in Table 7.2.1.F. Based on the trace and 

maximum eigenvalue statistics, we reject the null hypothesis of no cointegrating 

equations at the 5% level. However, the null hypothesis of at most 4 cointegrating 

equations cannot be rejected at the 5% significance level. Therefore, we assume one 

cointegrating equation because it is not theoretically obvious how we should specify 

more cointegrating equations and the Johansen procedure tends to indicate too many 

cointegrating equations (see the discussion above).  
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Table 7.2.1.F Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

Hypothesized Trace 

Statistic 

test 

Critical 

Value 

Prob.** Max-Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 176.6939 69.8189 0.0000 63.5116 33.8768 0.0000 

At most 1* 113.1823 47.8561 0.0000 42.5288 27.5843 0.0003 

At most 2* 70.6535 29.7970 0.0000 31.5575 21.1316 0.0012 

At most 3* 39.0960 15.4949 0.0000 25.5497 14.2646 0.0006 

At most 4* 13.5462 3.8415 0.0002 13.5462 3.8414 0.0002 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.2.1.G to forecast inflation. This specification does not impose the number or 

form of cointegrating equations on the model. 
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Table 7.2.1.G. The Vector Error Correction Model 

 Standard errors in ( ) & t-statistics in [ ] 
  

 
DLOG(PBRA) DLOG(MBRA_D11) D(RBRA) DLOG(REEBRA) D(UBRA) 

DLOG(PBRA(-1)) -0.22833 0.550628 15.92621 6.707261 -3.36615 
 

-0.23504 -1.51386 -39.7417 -3.64915 -19.1466 
 

[-0.97145] [ 0.36373] [ 0.40074] [ 1.83803] [-0.17581] 

DLOG(PBRA(-2)) -0.61565 0.80644 -46.4207 -2.04527 -15.0712 
 

-0.2029 -1.30686 -34.3075 -3.15018 -16.5285 
 

[-3.03422] [ 0.61708] [-1.35308] [-0.64925] [-0.91183] 

DLOG(PBRA(-3)) -0.35833 -0.26896 -24.4989 3.069599 -3.31068 
 

-0.23682 -1.52534 -40.0431 -3.67683 -19.2918 
 

[-1.51308] [-0.17633] [-0.61181] [ 0.83485] [-0.17161] 

DLOG(PBRA(-4)) -0.27821 0.065003 -62.0859 0.229944 -28.7151 
 

-0.16374 -1.05462 -27.6859 -2.54217 -13.3384 
 

[-1.69908] [ 0.06164] [-2.24251] [ 0.09045] [-2.15281] 

DLOG(PBRA(-5)) -0.33275 0.548354 -69.6121 2.654713 -1.71647 
 

-0.20626 -1.32849 -34.8754 -3.20232 -16.8022 
 

[-1.61324] [ 0.41277] [-1.99602] [ 0.82900] [-0.10216] 

DLOG(MBRA_D11(-1)) 0.055006 -0.76841 3.80544 -0.28874 -0.77874 
 

-0.03391 -0.21841 -5.73366 -0.52647 -2.76234 
 

[ 1.62212] [-3.51822] [ 0.66370] [-0.54844] [-0.28191] 

DLOG(MBRA_D11(-2)) 0.094216 -0.43396 8.990891 -0.20847 0.939916 
 

-0.03916 -0.25224 -6.62173 -0.60802 -3.1902 
 

[ 2.40578] [-1.72046] [ 1.35778] [-0.34287] [ 0.29463] 

DLOG(MBRA_D11(-3)) 0.182573 -0.30003 16.23415 0.056639 1.961149 
 

-0.03697 -0.23814 -6.25167 -0.57404 -3.01191 
 

[ 4.93791] [-1.25989] [ 2.59677] [ 0.09867] [ 0.65113] 

DLOG(MBRA_D11(-4)) 0.165389 -0.56076 23.42301 -1.35653 4.238154 
 

-0.0537 -0.34587 -9.07983 -0.83373 -4.37445 
 

[ 3.07986] [-1.62130] [ 2.57967] [-1.62707] [ 0.96884] 

DLOG(MBRA_D11(-5)) 0.168829 -0.65018 22.42615 -0.66791 3.744489 
 

-0.06017 -0.38756 -10.1742 -0.93422 -4.90171 
 

[ 2.80574] [-1.67762] [ 2.20421] [-0.71494] [ 0.76391] 

D(RBRA(-1)) 0.002927 -0.00671 0.032361 -0.00591 -0.01983 
 

-0.00125 -0.00802 -0.21055 -0.01933 -0.10144 
 

[ 2.35093] [-0.83648] [ 0.15370] [-0.30554] [-0.19552] 

D(RBRA(-2)) -0.0004 -0.01036 -0.40443 -0.00101 0.110014 
 

-0.00117 -0.00757 -0.19862 -0.01824 -0.09569 
 

[-0.34332] [-1.36967] [-2.03616] [-0.05516] [ 1.14966] 

D(RBRA(-3)) 0.004297 -0.0089 -0.07483 -0.00339 0.116696 
 

-0.00128 -0.00827 -0.21701 -0.01993 -0.10455 
 

[ 3.34777] [-1.07663] [-0.34481] [-0.17014] [ 1.11618] 

D(RBRA(-4)) 0.003661 -0.00901 0.11791 -0.02578 0.08291 
 

-0.00138 -0.00887 -0.23279 -0.02138 -0.11215 
 

[ 2.65934] [-1.01609] [ 0.50650] [-1.20588] [ 0.73925] 

D(RBRA(-5)) 0.003431 -0.01634 0.091489 -0.01094 0.188937 
 

-0.00103 -0.00664 -0.17426 -0.016 -0.08395 
 

[ 3.32952] [-2.46187] [ 0.52503] [-0.68351] [ 2.25052] 

DLOG(REEBRA(-1)) -0.04162 0.020023 -3.25675 0.112973 -1.56708 
 

-0.01435 -0.09244 -2.42661 -0.22282 -1.16908 
 

[-2.90028] [ 0.21662] [-1.34210] [ 0.50702] [-1.34043] 

DLOG(REEBRA(-2)) -0.05716 0.184606 -6.45632 -0.08169 -1.05372 
 

-0.01979 -0.12745 -3.3457 -0.30721 -1.61188 
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[-2.88853] [ 1.44850] [-1.92974] [-0.26590] [-0.65372] 

DLOG(REEBRA(-3)) -0.06114 0.206331 -6.41581 0.027907 -0.66153 
 

-0.01868 -0.1203 -3.15823 -0.28999 -1.52156 
 

[-3.27341] [ 1.71507] [-2.03146] [ 0.09623] [-0.43477] 

DLOG(REEBRA(-4)) -0.0738 0.072569 -6.36373 0.087077 -3.03819 
 

-0.02243 -0.14448 -3.79278 -0.34826 -1.82727 
 

[-3.28994] [ 0.50229] [-1.67785] [ 0.25003] [-1.66269] 

DLOG(REEBRA(-5)) -0.10528 0.115865 -14.7356 0.292799 -0.88359 
 

-0.02434 -0.15676 -4.1153 -0.37787 -1.98265 
 

[-4.32556] [ 0.73912] [-3.58070] [ 0.77486] [-0.44566] 

D(UBRA(-1)) -0.00628 0.033757 -0.95329 0.072754 -0.28129 
 

-0.00316 -0.02036 -0.53456 -0.04908 -0.25754 
 

[-1.98492] [ 1.65776] [-1.78332] [ 1.48221] [-1.09223] 

D(UBRA(-2)) -0.01095 0.046217 -1.76546 0.062539 -0.13762 
 

-0.0035 -0.02254 -0.59164 -0.05433 -0.28504 
 

[-3.13057] [ 2.05073] [-2.98401] [ 1.15119] [-0.48281] 

D(UBRA(-3)) -0.01039 0.031164 -1.04321 0.10108 -0.33214 
 

-0.00376 -0.02419 -0.63503 -0.05831 -0.30594 
 

[-2.76557] [ 1.28831] [-1.64277] [ 1.73351] [-1.08564] 

D(UBRA(-4)) -0.00761 0.028342 -1.52258 0.054157 -0.55844 
 

-0.00365 -0.02351 -0.61712 -0.05667 -0.29731 
 

[-2.08504] [ 1.20565] [-2.46723] [ 0.95573] [-1.87828] 

D(UBRA(-5)) -0.0088 0.040856 -2.09478 0.054035 -0.36201 
 

-0.004 -0.02573 -0.67554 -0.06203 -0.32546 
 

[-2.20324] [ 1.58769] [-3.10089] [ 0.87112] [-1.11231] 

C -0.00094 1.938028 43.13157 -2.22898 1.790133 
 

-0.14002 -0.90184 -23.675 -2.17388 -11.4061 
 

[-0.00670] [ 2.14897] [ 1.82182] [-1.02534] [ 0.15695] 

LOG(PBRA(-6)) -0.30203 0.774999 -31.4358 1.854344 -6.87639 
 

-0.08491 -0.54691 -14.3576 -1.31834 -6.91714 
 

[-3.55694] [ 1.41704] [-2.18949] [ 1.40658] [-0.99411] 

LOG(MBRA_D11(-6)) 0.153826 -0.48194 14.92527 -0.73317 3.355336 
 

-0.04436 -0.2857 -7.50014 -0.68868 -3.61339 
 

[ 3.46787] [-1.68687] [ 1.99000] [-1.06460] [ 0.92858] 

RBRA(-6) 0.005166 -0.01674 0.236499 -0.0245 0.141011 
 

-0.0014 -0.00899 -0.23611 -0.02168 -0.11375 
 

[ 3.69913] [-1.86109] [ 1.00164] [-1.13021] [ 1.23962] 

LOG(REEBRA(-6)) -0.10031 0.128217 -16.3053 0.487939 -2.3447 
 

-0.03043 -0.19597 -5.14471 -0.4724 -2.4786 
 

[-3.29677] [ 0.65426] [-3.16932] [ 1.03290] [-0.94598] 

UBRA(-6) -0.01278 0.01875 -1.66752 0.106514 -0.33277 
 

-0.0037 -0.02385 -0.62606 -0.05749 -0.30162 
 

[-3.45228] [ 0.78624] [-2.66350] [ 1.85287] [-1.10328] 

DLOG(OIL_EXOG(6)) 0.003883 -0.00839 -0.1242 0.013946 -0.42059 
 

-0.00595 -0.03829 -1.00525 -0.0923 -0.48431 
 

[ 0.65318] [-0.21920] [-0.12355] [ 0.15109] [-0.86844] 

 R-squared 0.904085 0.751771 0.885459 0.643363 0.720968 

 Adj. R-squared 0.762496 0.385339 0.716376 0.116899 0.309064 

 Sum sq. resids 0.000448 0.018581 12.80568 0.107968 2.972307 

 S.E. equation 0.004618 0.029746 0.780893 0.071703 0.376216 

 F-statistic 6.385291 2.051595 5.236811 1.222046 1.750328 

 Log likelihood 234.3479 135.6272 -37.5631 88.99596 1.141524 

 Akaike AIC -7.63577 -3.91046 2.625021 -2.15079 1.164471 

 Schwarz SC -6.632457 -2.72085 3.814631 -0.96118 2.354081 
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 Mean dependent 0.0159 0.033944 -0.23962 0.007017 -0.15173 

 S.D. dependent 0.009477 0.037941 1.46629 0.076301 0.452604 

 Determinant resid covariance (dof adj.) 3.43E-12 
   

 Determinant resid covariance 3.35E-14 
   

 Log likelihood 446.2034 
   

 Akaike information criterion -10.8001 
   

 Schwarz criterion -4.85208 
   

 

For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.2.1.H. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast Brazilian inflation since there is no 

evidence of autocorrelation.  

Table 7.2. 1. H. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.1635 

2 0.0623 

3 0.6131 

4 0.6911 

5 0.2286 

6 0.9306 

7 0.9577 

8 0.8703 

9 0.4300 

10 0.5233 

 

A similar procedure was applied for all countries and the tables of results are available 

in appendix section 7.3 page 603 - 671. A summary of the unrestricted VECM models 

and their selected lag lengths for all countries is given in Table 7.2.1.I. Forecasts will be 

produced for all models summarised in Table 7.2.1.I where a valid specification (that is 

free from evident autocorrelation) could be found. 
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Table 7.2.1. I. Summary of the VECM equations specification  

Countries Sample Variable specifications Chosen lag length  Number of 
cointegration  

Brazil  1999q4 2012q4 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁 
and 𝐼𝑛𝑂𝑖𝑙𝑝 

5 4 

Brazil 1999q4 2012q4 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 𝐼𝑛𝑅𝐸𝐸 and 
𝑈𝑁  
Exogenous: ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓  

6 4 

Russia 2003Q2 2012q4 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑔𝑎𝑝 
and 𝐼𝑛𝑂𝑖𝑙𝑝 

No models free 
from 
autocorrelation 

 

Russia 2003Q2 2012q4  Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁 
and 𝐼𝑛𝑂𝑖𝑙𝑝 

3 1  

Russia 2003Q2 2012q4 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸 
and 𝑔𝑎𝑝 
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

5 4 

Russia 2003Q2 2012q4 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸 and 𝑈𝑁 
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

6 3 

India 1963q1 2012q4 Endogenous: 𝑙𝑛𝑃 and  𝑙𝑛𝑀 9 2 

India 1984q1 2012q4 Endogenous: 𝑙𝑛𝑃  𝑙𝑛𝑀 and 𝑙𝑛𝑂𝑖𝑙𝑝 9 1 

India 1984q1 2012q4 Endogenous: 𝑙𝑛𝑃 and   𝑙𝑛𝑀 
Exogenous: ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

9 1 

China  1992q1 2012q4 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 𝐼𝑛𝑅𝐸𝐸 and 
𝐼𝑛𝑂𝑖𝑙𝑝   

10 1 

China 1992q1 2012q4 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, and  𝐼𝑛𝑅𝐸𝐸  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

10 2 

South Africa 1995q2 -
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 𝐼𝑛𝑅𝐸𝐸 and 
𝐼𝑛𝑂𝑖𝑙𝑝  

2 1 

South Africa 1995q2 -
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅 and  𝑙𝑛𝑅𝐸𝐸  
Exogenous:  ∆𝑙𝑛𝑂𝑖𝑙𝑝_𝑓  

2 1 

Algeria 1999q2 2012q4 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 𝐼𝑛𝑅𝐸𝐸 and 
𝐼𝑛𝑂𝑖𝑙𝑝   

7 5 

Algeria 1999q2 2012q4 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅,  and 𝐼𝑛𝑅𝐸𝐸  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

10 4 

Angola 2002q4 2012q4 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅 and 𝐼𝑛𝑂𝑖𝑙𝑝   6 3 

Angola 2002q4 2012q4 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  and 𝑅 
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝  

6 3 

Nigeria 1998q4 2012q4 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 𝐼𝑛𝑅𝐸𝐸 and 
𝐼𝑛𝑂𝑖𝑙𝑝    

No models free 
from 
autocorrelation 

 

Nigeria 1998q4 2012q4  Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 𝑎𝑛𝑑 𝐼𝑛𝑅𝐸𝐸  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

No models free 
from 
autocorrelation 

 

Saudi Arabia 1983q1 2012q4  Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝐼𝑛𝑅𝐸𝐸 and 
𝐼𝑛𝑂𝑖𝑙𝑝   

11 4 

Saudi Arabia 1983q1 2014q4  Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀 and 𝐼𝑛𝑅𝐸𝐸  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

5 1 

Where P= consumer price, M =money supply, REE= real exchange rate, GAP = output gap, R = interest rate, UN =unemployment, 

Oilp = oil price and ∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 is the ARIMAX forecast of the oil price. Note that all the models in this table passed the diagnostic 

tests for autocorrelation at the 5% level of significance except those where “No models free from autocorrelation” is specified. In 

these cases, the models did not pass the diagnostic test for autocorrelation for all available lag lengths. 
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7.3.0. Modelling Vector Error Correction (VEC) model 

In this section, we focus on the main problem of the vector error correction model 

(VECM) discussed in the previous section (7.2) with the aim of improving our inflation 

forecast performance. The problem with the VECM model is the large number of 

parameters that must be estimated. Each equation involves estimating 𝑚 x 𝑘 lagged 

coefficients plus one or more parameters for the deterministic components. For 

example, with a maximum of 6 lags, if six variables are treated as endogenous, each 

equation requires estimating 36 parameters, and the system as a whole has 216 

coefficients. However, the large number of parameters in a model could cause over-

parameterisation, loss of degrees of freedom, model misspecification and poor 

forecasting performance (Sa-ngasoongsong et al.2012). In practice, this problem can be 

addressed by imposing restrictions on the VECM. For example, testing the cointegrating 

rank in the system and imposing restrictions on the cointegrating vector 𝛽, long-run 

matrix ( 𝛱 ), short-run dynamic coefficients 𝛤 and cointegrating rank. Another approach 

is to form a single equation and impose zero restrictions on insignificant coefficients. 

Based upon the cointegration results from the VECM models discussed in the previous 

chapter (chapter 7.2) we estimate a restricted VECM specification (called the VEC). The 

restriction that we impose on the VECM is to specify the cointegrating equations and 

thereby produce the VEC. In particular, for the models where there is evidence of at 

least one cointegrating equation we impose a single cointegrating equation on the 

model to produce the VEC. We assume one cointegrating equation because it is not 

theoretically obvious how we should specify more cointegrating equations. Further, the 

Johansen procedure is known to tend to reject the less cointegration null more often 

than it should when the null is for the number of cointegrating equations being greater 

than zero.121 The difference between the previous model in section (7.2) (VECM) and 

the VEC model is that that cointegrating equations are imposed in the latter case and 

not the former. 

 

                                                           
121 see Hanck C (2006 p. 6). “Cross-Sectional Correlation Robust Tests for Panel Cointegration”, Mimeo, 

Department of Economics, University of Dortmund.  
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7.3.1. Brazilian Modelling Vector Error Correction (VEC) Model 

In this section, we describe the process of modelling a VEC model for Brazil and focus 

only on those valid models where the variables were found to be cointegrated in section 

7.2. First, we consider the cointegration results for the VECM model reported in (Table 

7.2.1.I) for Brazil where the stationary form of the oil price is treated as exogenous and 

all other variables as endogenous (which are I(1)). In this case, there was evidence of 

four cointegrating equations; therefore, we accept that there is one equilibrium 

relationship among the variables because it is not theoretically obvious how we should 

specify more cointegrating equations. The estimation results for the error-correction 

term (denoted CointEq1), its associated cointegrating equation (CE1) and its VEC model 

are reported in Table 7.3.1.A and 7.3.1.B respectively. Note that the only difference in 

the coefficients of the error-correction term and the cointegrating equation is that their 

signs are reversed. The error-correction term (CointEq1) has a negative and significant 

coefficient in the inflation equation [in the column headed D(LOG(PBRA) Table 

7.3.1.1.B)] suggesting that inflation is forced back to the cointegrating equation defined 

by CE1. All the explanatory variables in the cointegrating equation are significant 

(because their t-ratios exceed approximately 2 in magnitude). Based on the 

cointegrating equation results (CE1) in the Table 7.3.1.A it can be said that most of the 

signs of the equation parameters are in accordance with suggested economic theory as 

expected. The positive sign on the coefficients for the money supply supports the 

quantity theory of money. This implies that increases in money leads to rising prices in 

the long-run. The coefficient shows that a 1% increase in the money supply results in a 

0.51% increase in prices. Surprisingly, there is a positive relationship between the 

interest rate and prices in Brazil which does not appear to be consistent with the basic 

economic theory. This result indicates that a 1%-point increase in the interest rate 

results in a 0.02% increase in prices.  

We expect a positive long-run relationship between the exchange rate and inflation 

However, the negative sign contradicts our expectations. The coefficient indicates that 

a 1% increase in the exchange rate (currency depreciation) decreases the prices by 

0.31%. Considering the Phillips curve, we would expect unemployment to have a 

negative influence on the rate of inflation over a long run. Our estimation results show 

that unemployment has a negative influence on the prices which is in line with our 
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theoretical expectations. This implies that a 1%-point decrease in unemployment leads 

to 0.042% increase in prices in the long run.    

We expect a positive short-run relationship between the exogenous oil price and 

inflation. Our results indicate that the oil price has positive short-run impact on prices; 

however, this is insignificant at the 5% level, but significant at 10% level.  Hence, while 

oil prices have the expected sign it is not expected that their effect would be 

insignificant.  

Table 7.3.1.A.  Cointegrating equation.122 

 1 2 

Cointegrating Eq:  CointEq1 CE1 

LOG(PBRA(-1)) 1  

LOG(MBRA_D11(-1)) -0.51207 0.51207 
 

[-43.0127] [43.0127] 

RBRA(-1) -0.01756 0.01756 
 

[-14.6649] [14.6649] 

LOG(REEBRA(-1)) 0.31263 -0.31263 
 

[10.9281] [-10.9281] 

UBRA(-1) 0.04204 -0.04204 
 

[9.7558] [-9.7558] 

C 0.19989 -0.19989 

Where [ ] = the 𝑡 statistics 

 

Error Correction: D(LOG(PBRA)) D(LOG(MBRA_D11)) D(RBRA) D(LOG(REEBRA)) D(UBRA) 

CointEq1 -0.32473 0.967426 -21.582 1.361218 -2.94749 
 

-0.07028 -0.54213 -14.8918 -1.11563 -5.38306 
 

[-4.62030] [ 1.78449] [-1.44926] [ 1.22013] [-0.54755] 

D(LOG(PBRA(-1))) 0.030065 0.799288 47.64822 3.060759 18.02426  
-0.17334 -1.33704 -36.7271 -2.75145 -13.2761  
[ 0.17345] [ 0.59780] [ 1.29736] [ 1.11242] [ 1.35765] 

D(LOG(PBRA(-2))) -0.25654 -0.41991 -50.3474 -2.13264 -15.7947  
-0.16831 -1.29824 -35.6614 -2.67161 -12.8908  
[-1.52428] [-0.32345] [-1.41182] [-0.79826] [-1.22527] 

D(LOG(PBRA(-3))) -0.04491 -0.0685 -5.09861 2.007329 13.02149  
-0.1571 -1.21179 -33.2865 -2.49369 -12.0324  
[-0.28588] [-0.05653] [-0.15317] [ 0.80496] [ 1.08221] 

D(LOG(PBRA(-4))) 0.083827 -0.51799 -34.3806 -0.84522 -25.1915  
-0.13028 -1.00491 -27.604 -2.06798 -9.97825  
[ 0.64345] [-0.51546] [-1.24549] [-0.40872] [-2.52464] 

D(LOG(PBRA(-5))) -0.00563 1.351132 -1.55782 0.738437 14.23351  
-0.10603 -0.81786 -22.4658 -1.68305 -8.12092  
[-0.05313] [ 1.65203] [-0.06934] [ 0.43875] [ 1.75270] 

D(LOG(MBRA_D11(-
1))) 

-0.09359 0.086796 -2.76808 0.231685 -1.77358 

                                                           
122 Column 1 in the table 7.3.1.A is the equation that describe the error-correction term and Column 2 is 
the cointegrating equation. Note that the only difference in the coefficients of the error-correction term 
and cointegrating equation is that their signs are reversed.  
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-0.03229 -0.24905 -6.84122 -0.51252 -2.47295  
[-2.89851] [ 0.34851] [-0.40462] [ 0.45205] [-0.71719] 

D(LOG(MBRA_D11(-
2))) 

-0.05875 0.536467 3.352753 -0.00652 1.576656 

 
-0.03462 -0.26707 -7.33605 -0.54959 -2.65182  
[-1.69688] [ 2.00874] [ 0.45702] [-0.01185] [ 0.59456] 

D(LOG(MBRA_D11(-
3))) 

0.020484 0.521586 4.011097 0.344894 2.676611 

 
-0.03225 -0.24874 -6.83262 -0.51187 -2.46984  
[ 0.63521] [ 2.09692] [ 0.58705] [ 0.67379] [ 1.08372] 

D(LOG(MBRA_D11(-
4))) 

0.017821 -0.16072 1.787225 -0.14817 -0.12839 

 
-0.0295 -0.22754 -6.2502 -0.46824 -2.25931  
[ 0.60414] [-0.70635] [ 0.28595] [-0.31644] [-0.05683] 

D(LOG(MBRA_D11(-
5))) 

0.019859 -0.28127 1.044583 0.56876 -0.64271 

 
-0.02971 -0.2292 -6.29597 -0.47167 -2.27586  
[ 0.66833] [-1.22716] [ 0.16591] [ 1.20585] [-0.28240] 

D(RBRA(-1)) -0.00241 0.012606 0.081015 0.020555 -0.12714  
-0.00143 -0.011 -0.3021 -0.02263 -0.1092  
[-1.69306] [ 1.14623] [ 0.26817] [ 0.90820] [-1.16422] 

D(RBRA(-2)) -0.00598 0.005914 -0.56012 0.020291 0.014307  
-0.00114 -0.00882 -0.24236 -0.01816 -0.08761  
[-5.22604] [ 0.67027] [-2.31112] [ 1.11755] [ 0.16331] 

D(RBRA(-3)) -0.00142 0.013539 0.023159 0.000268 0.077277  
-0.00141 -0.01086 -0.29833 -0.02235 -0.10784  
[-1.01013] [ 1.24656] [ 0.07763] [ 0.01198] [ 0.71658] 

D(RBRA(-4)) -0.00141 0.007549 -0.15675 0.005206 -0.06343  
-0.00072 -0.00555 -0.15256 -0.01143 -0.05515  
[-1.96245] [ 1.35918] [-1.02742] [ 0.45547] [-1.15013] 

D(RBRA(-5)) -0.00217 0.000127 -0.07732 0.00724 0.097467  
-0.00074 -0.00569 -0.1563 -0.01171 -0.0565  
[-2.94058] [ 0.02234] [-0.49472] [ 0.61832] [ 1.72515] 

D(LOG(REEBRA(-1))) 0.059506 -0.24959 5.741729 -0.26926 0.058135  
-0.02598 -0.20037 -5.50409 -0.41234 -1.98961  
[ 2.29073] [-1.24562] [ 1.04317] [-0.65300] [ 0.02922] 

D(LOG(REEBRA(-2))) 0.044882 -0.02756 3.236278 -0.47452 0.695389  
-0.01602 -0.12355 -3.39379 -0.25425 -1.22678  
[ 2.80213] [-0.22308] [ 0.95359] [-1.86637] [ 0.56684] 

D(LOG(REEBRA(-3))) 0.041149 -0.08981 4.117703 -0.25811 0.488141  
-0.0171 -0.13186 -3.62219 -0.27136 -1.30934  
[ 2.40708] [-0.68110] [ 1.13680] [-0.95117] [ 0.37281] 

D(LOG(REEBRA(-4))) 0.02784 -0.23064 3.14604 -0.12376 -1.84714  
-0.01338 -0.10319 -2.83455 -0.21235 -1.02463  
[ 2.08105] [-2.23507] [ 1.10989] [-0.58281] [-1.80274] 

D(LOG(REEBRA(-5))) 0.000714 -0.11841 -1.70401 0.10803 0.451376  
-0.01217 -0.09391 -2.57951 -0.19325 -0.93244  
[ 0.05864] [-1.26094] [-0.66060] [ 0.55903] [ 0.48408] 

D(UBRA(-1)) 0.007642 0.012935 0.242379 0.016083 0.00983  
-0.00252 -0.01942 -0.53334 -0.03996 -0.19279  
[ 3.03598] [ 0.66622] [ 0.45446] [ 0.40253] [ 0.05099] 

D(UBRA(-2)) 0.001998 0.011599 -0.68404 -0.01093 0.10984  
-0.00199 -0.01537 -0.42232 -0.03164 -0.15266  
[ 1.00252] [ 0.75446] [-1.61972] [-0.34534] [ 0.71951] 

D(UBRA(-3)) 0.00193 -0.00387 0.236347 0.016364 -0.04374  
-0.00201 -0.01552 -0.42628 -0.03194 -0.15409  
[ 0.95943] [-0.24932] [ 0.55444] [ 0.51241] [-0.28385] 

D(UBRA(-4)) 0.004983 -0.01107 -0.12605 -0.02061 -0.3412  
-0.00187 -0.01439 -0.39538 -0.02962 -0.14292 
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[ 2.67023] [-0.76928] [-0.31879] [-0.69589] [-2.38733] 

D(UBRA(-5)) 0.004013 0.011579 -0.10744 -0.02995 -0.0848  
-0.00187 -0.01445 -0.39703 -0.02974 -0.14352  
[ 2.14165] [ 0.80108] [-0.27062] [-1.00696] [-0.59085] 

C 0.018528 0.016349 -0.21274 -0.05505 -0.29713  
-0.00393 -0.03028 -0.8317 -0.06231 -0.30064  
[ 4.72027] [ 0.53997] [-0.25579] [-0.88353] [-0.98834] 

DLOG(OILP_EXOG) 0.006747 -0.03865 -0.72811 0.238065 -1.10628  
-0.00578 -0.04458 -1.22461 -0.09174 -0.44267  
[ 1.82874] [-0.86695] [-0.59456] [ 2.59493] [-2.49911] 

 R-squared 0.904344 0.64493 0.820616 0.628202 0.75399 

 Adj. R-squared 0.801035 0.261454 0.626882 0.22666 0.4883 

 Sum sq. resids 0.000447 0.026579 20.05519 0.112558 2.620547 

 S.E. equation 0.004227 0.032606 0.89566 0.067099 0.323762 

 F-statistic 8.753793 1.6818 4.235775 1.564474 2.837851 

 Log likelihood 234.4194 126.1411 -49.4509 87.89268 4.479342 

 Akaike AIC -7.78941 -3.70344 2.922677 -2.2601 0.887572 

 Schwarz SC -6.7485 -2.66253 3.963586 -1.21919 1.928481 

 Mean dependent 0.0159 0.033944 -0.23962 0.007017 -0.15173 

 S.D. dependent 0.009477 0.037941 1.46629 0.076301 0.452604 

 Determinant resid covariance (dof adj.) 3.77E-12 
   

 Determinant resid covariance 8.79E-14 
   

 Log likelihood 420.6304 
   

 Akaike information criterion -10.4012 
   

 Schwarz criterion -5.01073 
   

 

For the model to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.3.1.C. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast Brazilian inflation since there is no 

evidence of autocorrelation.  

Table 7.3 1.C Probability value of the residual autocorrelation  

Lags  Prob. 

1 0.1278 
2 0.4065 
3 0.4941 
4 0.6218 
5 0.9122 
6 0.2788 
7 0.6143 
8 0.8679 
9 0.8799 
10 0.5094 

 

A similar procedure was applied for all countries (to avoid similar repetition, the details 

these tables are available on request, to save space). A summary of the VEC models, 
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adjustment coefficients on the error correction term in the inflation equation and the 

cointegrating equations for all countries are given in Table 7.3.1.D, 7.3.1.E and 7.3.1.F 

respectively. The forecasts will be produced for all models summarised in Table 7.3.1.D. 

where a valid specification that is free from evident autocorrelation and cannot reject 

cointegration could be found. 
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Table 7.3.1.D Summary of the VEC specifications  

Countries Sample Variable specifications Chosen 
lag 
length  

Number of 
cointegration rank 
imposed  

SC AIC 

Brazil  1999q4 
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 
𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁 and 𝐼𝑛𝑂𝑖𝑙𝑝 

5 1 -6.5481 -7.7377 

Brazil 1999q4 
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 
𝐼𝑛𝑅𝐸𝐸 and 𝑈𝑁  
Exogenous: 𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

5 1 -6.7485 -7.7894 

Russia 2003Q2 
2012q4 

 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  
𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁 and 𝐼𝑛𝑂𝑖𝑙𝑝 

2 1  -6.5293 -7.0412 

Russia 2003Q2 
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  
𝐼𝑛𝑅𝐸𝐸, 𝑔𝑎𝑝 and 𝐼𝑛𝑂𝑖𝑙𝑝 

4 1 -5.93014 -6.8685 

Russia 2003Q2 
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  
𝐼𝑛𝑅𝐸𝐸 and 𝑔𝑎𝑝 
Exogenous:  𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

6 1 -5.78105 -6.9327 

Russia 2003Q2 
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  
𝐼𝑛𝑅𝐸𝐸 and 𝑈𝑁 
Exogenous:  𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

6 1 -12.5695  -16.6645 

India 1963q1 
2012q4 

Endogenous: 𝑙𝑛𝑃 and  
𝑙𝑛𝑀 

13 1  -5.3968 -5.8618 

India 1984q1 
2012q4 

Endogenous: 𝑙𝑛𝑃  𝑙𝑛𝑀 
and 𝑙𝑛𝑂𝑖𝑙𝑝 

8 1 -5.2883  -5.9054 

India 1984q1 
2012q4 

Endogenous: 𝑙𝑛𝑃 and  
 𝑙𝑛𝑀 
Exogenous: 𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

16 1  -
10.7993 

- 11.7488 

China  1992q1 
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 
𝐼𝑛𝑅𝐸𝐸 and 𝐼𝑛𝑂𝑖𝑙𝑝   

10 1 -6.9911 -14.657 

China 1992q1 
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 
and  𝐼𝑛𝑅𝐸𝐸  
Exogenous:  𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

12 1 -7.6633 -13.7252 

South 
Africa 

1995q2 -
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 
𝐼𝑛𝑅𝐸𝐸 and 𝐼𝑛𝑂𝑖𝑙𝑝  

2 1 -9.97811 -11.2523 

South 
Africa 

1995q2 -
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅 
and  𝑙𝑛𝑅𝐸𝐸  
Exogenous:  𝑙𝑛𝑂𝑖𝑙𝑝_𝑓  

2 1 -9.03415 -10.0539 

Algeria 1999q2 
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 
𝐼𝑛𝑅𝐸𝐸 and 𝐼𝑛𝑂𝑖𝑙𝑝   

7 1 -10.1217 -
16.14376 

Algeria 1999q2 
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅,  
and 𝐼𝑛𝑅𝐸𝐸  
Exogenous:  𝐼𝑛𝑂𝑖𝑙𝑝_𝑓  

8 1 -10. 
6614 

-16.5009 

Angola 2002q4 
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅 
and 𝐼𝑛𝑂𝑖𝑙𝑝   

5 1 -6.1447  -7.06425 

Angola 2002q4 
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  
and 𝑅 
Exogenous:  𝐼𝑛𝑂𝑖𝑙𝑝_𝑓  

6 1 -5.4583 -6.3340 

Nigeria 1998q4 
2012q4 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 
𝐼𝑛𝑅𝐸𝐸 and 𝐼𝑛𝑂𝑖𝑙𝑝    

5 1 -3.6665 -4.6343 

Nigeria 1998q4 
2012q4 

 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 
𝑎𝑛𝑑 𝐼𝑛𝑅𝐸𝐸  
Exogenous:  𝐼𝑛𝑂𝑖𝑙𝑝 

7 1 -3.5021  -
4.61333 

Saudi 
Arabia 

1983q1 
2012q4 

 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 
𝐼𝑛𝑅𝐸𝐸 and 𝐼𝑛𝑂𝑖𝑙𝑝   

9 1 -11.7962  -15.7916 

Saudi 
Arabia 

1983q1 
2014q4 

 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀 
and 𝐼𝑛𝑅𝐸𝐸  
Exogenous:  𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

10 1  -6.1675 -6.5160 

Where P= consumer price, M =money supply, REE= real exchange rate, GAP = output gap, R = interest rate, UN =unemployment, 

Oilp = oil price. Note that all the models in this table passed the diagnostic tests for autocorrelation at the 5% level of 

significance except those where “No valid model” is specified. In these cases, the models did not pass the diagnostic 

test for autocorrelation for all available lag lengths. 
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7.3.1.E. The summary of the adjustment coefficient on the error correction terms in the 

inflation equation (where the stationary transformation of the oil price is treated as 

exogenous) 

 Brazil  Russia 
(𝑈𝑛′) 

Russia 
(𝑔𝑎𝑝′) 

India China South 
Africa 

Nigeria Algeria Angola Saudi 
Arabia 

CointEq1 -0.3247 -0.0894 -0.1118 -0.0281 0.0129 -0.0052 0.0546 -0.0250 -0.1389 -0.0089 

t []ratio 
statistics 

[-4.6203] [-1.5458] [-1.1178] [-1.6829] [ 2.068] [-
0.6501] 

[1.2095] [-
1.3898] 

[-

3.6324] 

[-
3.0094] 

Where [] = t ratio statistics, Russia (𝑔𝑎𝑝′) = when the output gap is excluded and Russia (𝑈𝑛′)= when the unemployment variable is 

excluded.  

7.3.1.F. The summary of the estimated cointegrating equations (where the stationary 

transformation of the oil price is treated as exogenous)  

CE1 Brazil  Russia 
(𝑔𝑎𝑝′) 

Russia 
(𝑈𝑛′) 

India China South 
Africa 

Algeria Angola Nigeria Saudi 
Arabia 

 𝑙𝑛𝑃           

𝑙𝑛𝑀 0.51207 0.20096 0.18827 0.47112 -0.83780 0.08997 0.82095 0.4466 0.5161 0.47582 

 [43.0137] [4.7798] [3.5071] [15.9553] [-2.9561] [0.6202] [9.52665] [11.8215] [14.0402] [2.62970] 

𝑅 0.01756    -0.26812 -0.0519 0.30119 0.00274 0.0108 
 

 

 [14.6649]    [ -1.3309] [-

1.9619] 

[4.9237] [2.4888] [1.3798]  

𝐼𝑛𝑅𝐸𝐸 -0.31263 0.67519 0.55554  5.16488 1.1295 3.24607  0.4010 

 

-0.63910 

 [ -10.928] [3.4647] [2.4541]  [2.83337] [2.3671] [4.81036]  [4.4520] [ -1.5618] 

𝑈𝑁  -0.04204 0.02153         

 [-9.7558] [2.7635]         

𝐺𝐴𝑃   -0.41819        

   [-

2.1665] 

       

C -0.19989 3.56E-01 1.0969 -10.2708 8.67335 -0.72231 -37.07347 -1.811372 12.7541 -5.178497 

Where [] = t ratio statistics, Russia (𝑔𝑎𝑝′) = when the output gap is excluded and Russia (𝑈𝑛′)= when the 

unemployment variable is excluded. 

The summary of the adjustment coefficient on the error correction terms in the inflation 

equation and the cointegrating equations (where the stationary transformation of the 

oil price is treated as exogenous) are provided in the Table 7.3.1.E and 7.3.1.F 

respectively.   Table 7.3.1.E indicates that for Brazil, Angola and Saudi Arabia, the error-

correction term (CointEq1) has a negative and significant coefficient in the inflation 

equation. This result shows evidence of a long-run equilibrium relationship between 

prices and the other selected macroeconomic variables in these countries. This long-run 

relationship implies that the selected variables move together over time such that the 

short-term deviations of prices from its long-run trend will be corrected. For Russia, 

India, South Africa and Algeria, the coefficient on the error-correction term (CointEq1) 

is negative however it is not significant. Hence, while the price is forced towards its long-

run value the adjustment is statistically insignificant. For China and Nigeria, the 

coefficient on the error-correction term (CointEq1) is positive and significant for China 
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but insignificant for Nigeria, neither of which are consistent with theory. This suggesting 

that the price variable is continually forced away from its long-run value as defined by 

the estimated cointegrating equation. This raises questions over the validity of specified 

cointegrating equation as an equilibrium specification for prices and as such might be 

expected to adversely affect the accuracy of inflation forecasts from this model for China 

and Nigeria. 

Table 7.3.1.F reports the estimated cointegrating equations. For Brazil, Russia (both 

models), India, Algeria, Angola, Saudi Arabia and Nigeria, the money supply variable has 

the theoretically expected positive and significant long-run relationship with prices. 

However, for China the coefficient on money supply is negative and significant while for 

South Africa this coefficient is positive and insignificant. Most of these countries’ 

estimates are consistent with the quantity theory of money and this general consistency 

may be expected to enhance the forecasts for inflation. 

For China and South Africa, interest rates have the theoretically expected negative long-

run relationship with prices; however, the coefficient estimates are insignificant which 

suggests caution in interpreting these results as consistent with theoretical 

expectations.123 For Nigeria, the coefficient on the interest rate is positive and 

insignificant. However, the coefficient on the interest rate is positive and significant for 

Brazil, Algeria and Angola which is not consistent with theory. The general inconsistency 

of the interest rate coefficient may have an adverse impact on these models’ forecasts 

of inflation. The real exchange rate has the theoretically expected positive and 

significant coefficient for Russia (both equations), China, South Africa, Algeria and 

Nigeria. However, the coefficient on the real exchange rate is negative and significant 

                                                           
123 According to monetary economics (for both Money demand and Money supply theory), there is an 

inverse relationship between inflation and interest rate.  For example, interest rates are determined by 

the interaction of the quantity supplied and the quantity demanded of money. For supply of money, if 

interest rates are reduced, consumers will be able to borrow more money. The result is that consumers 

have more money to spend, causing the economy to grow and inflation to increase. The opposite holds 

for demand for money. If government increase the interest rate, consumers tend to save more to get 

higher returns. The result is that consumers will have less money to spend, causing the economy to slow 

and inflation to decrease.   
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for Brazil and negative and insignificant for Saudi Arabia, neither of which are consistent 

with theory.  

The coefficient on unemployment is negative and significant for Brazil, which is 

consistent with economic theory. However, the coefficient on unemployment is positive 

and significant in the Russian cointegrating equation which is not consistent with 

theoretical expectations. Finally, the output gap has a theoretically unexpected negative 

and significant coefficient in the Russian cointegrating equation.   

We now consider the plausibility of the cointegrating equations by country. When a 

coefficient is significant and has the expected coefficient sign it is regarded as fully 

consistent with an equilibrium equation for prices and is assigned a value of 1 in Table 

7.3.1.F2 below. When a coefficient is insignificant and has the expected sign it is 

regarded as semi-consistent with an equilibrium equation for prices and is assigned a 

value of 0.5 in Table 7.3.1.F2. Finally, a coefficient that has an unexpected coefficient 

sign and is insignificant is considered as completely inconsistent with an equilibrium 

equation for prices and is assigned a value of 0 in Table 7.3.1.F2. Based on these assigned 

values we report a percentage of coefficients that are consistent with an equilibrium 

equation for prices for each country in the row labelled “plausible” to provide an 

indication of each cointegrating equation’s plausibility for each country. This should also 

give some indication of the likely forecasting performance of the inflation equation in 

the VEC for each country. It may well be that the potential benefits (in terms of 

forecasting accuracy) of using theory to build multivariate VEC models of inflation may 

be undermined by the practical difficulty in securing statistically valid and theoretically 

consistent specifications. This is an issue that we will assess when the forecasting 

performance of multivariate and univariate models are compared and evaluated. It may 

be that such practical difficulty in producing valid multivariate specifications justifies the 

use of univariate models for forecasting purposes.  
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7.3.1.F2. The plausibility of the estimated cointegrating equations as long-run inflation models (where the 

stationary transformation of the oil price is treated as exogenous)  

CE1 Brazil  
 

Russia 
(𝑔𝑎𝑝′) 

Russia 
(𝑈𝑛′) 

India China South 
Africa 

Algeria Angola Saudi 
Arabia 

Nigeria Consistent 

 𝑙𝑛𝑃            

𝑙𝑛𝑀 1 1 1 1 0 0.5 1 1 1 1 85% 

𝑅 0    0.5 0.5 0 0  0 16.6% 

𝐼𝑛𝑅𝐸𝐸 0 1 1  1 1 1  0 1 75% 

𝑈𝑁  1 0         50% 

𝐺𝐴𝑃   0        0% 

CointEq1 1 0.5 0.5 0.5 0 0.5 0.5 1 1 0 55% 

Plausible 60% 62.5% 62.5% 75% 37.5% 62.5% 62.5% 66.7% 66.7% 50%  

 Where Russia (𝑔𝑎𝑝′) = when the output gap is excluded and Russia (𝑈𝑛′)= when the unemployment 

variable is excluded. Values of 0, 0.5 and 1 indicate coefficients that are completely inconsistent, semi 

consistent and completely consistent with a plausible long-run equation for inflation. The row and column 

labelled Plausible indicates the percentage of coefficients that are consistent with a plausible long-run 

equation for inflation. 

Our results from the row labelled “Plausible” in Table 7.3.1.F2 indicates that the most 

plausible cointegrating equation as a long-run model of inflation is for India with 75% of 

the coefficients being plausible. The next most plausible equations are for Angola and 

Saudi Arabia (66.7% plausibility); followed by Russia (both equations), South Africa and 

Algeria (62.5%), Brazil (60%) and Nigeria. The least plausible cointegrating equation is 

for China (37.5%). It will be interesting to see whether the relative plausibility of the 

different countries’ VEC models (as measured above) is reflected in their forecasting 

performance. 

We also assess the relative theoretical consistency of each variable’s long-run coefficient 

in the VEC in the column headed “Consistent” of Table 7.3.1.F2. The coefficient on the 

money supply has the highest consistency rating at 85%, followed by the real exchange 

rate (75%), unemployment (50%), interest rates (16.6%) and the output gap (0%). 

Finally, we note that in 55% of models the equation is forced to its long-run equilibrium 

model of prices as defined by the cointegrating equation. 
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7.3.1.G. The summary of the adjustment coefficient on the error correction terms in the 

inflation equation (where all variables are included as endogenous) 

 Brazil 
(𝑔𝑎𝑝′) 

Russia (𝑔𝑎𝑝′) China India South 
Africa 

Algeria Nigeria Angola Saudi 
Arabia 

Error 
Correction 
(CointEq1) 

-0.18864 0.002438 -0.0088 
 

-0.01519 -0.00053 0.042605 -0.01115 -0.27439 0.006082 

t- statistics  [-1.8099] [ 0.46400] [-0.6739] [-0.72605] [-0.2820] [ 1.19416] [-0.2483] [-6.7085] [ 3.59405] 

Where [] = t ratio statistics and (𝑔𝑎𝑝′) = when the output gap is excluded  

  

7.3.1.H. The summary of the estimated cointegrating equations (where all variables 

are included endogenous) 

CE1 Brazil 

(𝑔𝑎𝑝′) 
Russia 
(𝑔𝑎𝑝′) 

India China South 
Africa 

Algeria Angola Nigeria Saudi 
Arabia 

𝑙𝑛𝑃           

𝑙𝑛𝑀 0.57787 
 

-

2.679846 

0.55395  0.3469 -1.1292 0.46909 0.26359 0.3693 

 

4.46189 

 [34.5678] [- 5.1112] [31.3397] [2.2419] [1.97561]  [6.41509] [1.6940] [7.4333] [3.99688] 

𝑅 0.00233    -0.2780 

 

0.020597 0.09369 0.00201 -00456 
 

 

 [11.5847]   [3.8548] [ 0.18569] [2.62987] [4.32512] [3.9024]  

𝐼𝑛𝑅𝐸𝐸 0.36215 18.8124  3.8339 2.09799 1.07726   0.2247 8.35233 

 [10.5416] [5.8172]  [4.3998] [0.97392] [2.71960]  [5.2953] [4.43181] 

𝑈𝑁  -0.05602 -

0.235514 

       

 [9.59924] [-2.5977]        

 𝐼𝑛𝑂𝑖𝑙𝑝  0.0769 -10.8959 -0.00351 -1.2456 1.91205 -0.16232 0.35191 0.1354 

 

-4.777097 

 [5.09120] [-4.6990] [ -3.5685] [3.6547] [2.94489] [- 2.1170] [6.59163] [1.5650] [ -4.3012] 

C -0.18864 -52.1268 -12.5968 17.059 -0.14245 -14.3692 -0.82686  8.1215 -138.2281 

Where [] = t ratio statistics and (𝑔𝑎𝑝′) = when the output gap is excluded  

 

The summary of the adjustment coefficient on the error correction terms in the inflation 

equation and the cointegrating equations (where all the variables are treated as the 

endogenous) are provided in the Table 7.3.1.G and 7.3.1.H respectively. In the Table 

7.3.1.G, for Angola, the error-correction term (CointEq1) has a negative and significant 

coefficient in the inflation equation. This result shows evidence of a long-run equilibrium 

relationship between prices and the other selected macroeconomic variables in these 

countries. The long-run relationship implies that the selected variables move together 

over time such that the short-term deviations of price from its long-run trend will be 

corrected. For Brazil, India, China, South Africa and Nigeria, the coefficient on the error-

correction term (CointEq1) is negative however it is not significant. Hence, while the 

price variable is forced towards its long-run value the adjustment is statistically 
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insignificant. For Saudi Arabia, the coefficient on the error-correction term (CointEq1) is 

positive and significant suggesting that the price variable is continually forced away from 

its long-run value as defined by the estimated cointegrating equation. This raises 

questions over the validity of specified cointegrating equation as an equilibrium 

specification for prices and as such might be expected to adversely affect the accuracy 

of inflation forecasts from this model in this country.  

Table 7.3.1.H reports the corresponding estimated cointegrating equations. For Brazil, 

India, China, Algeria, Angola, Nigeria and Saudi Arabia, the money supply has the 

theoretically expected positive and significant long-run relationship with prices. 

However, for Russia the coefficient on money supply is negative and significant. Most of 

these countries’ estimates are consistent with the quantity theory of money and this 

general consistency may enhance the forecasts for inflation. 

 For interest rates, China and Nigeria have significant theoretically expected negative 

long-run relationship with prices.  However, the coefficient on the interest rate is 

positive and significant for Brazil, Algeria and Angola, which is not consistent with 

theory. The general inconsistency of the interest rate’s coefficients may have an adverse 

impact on these models’ forecasts of inflation.  The real exchange rate has the 

theoretically expected positive and significant coefficient for Brazil, Russia, China, 

Nigeria, Algeria and Saudi Arabia.  

For the endogenous oil price, Angola, Brazil and South Africa have the theoretically 

expected positive and significant long-run relationship with prices. However, for Russia, 

India, China, Algeria and Saudi Arabia the coefficient on the oil price is negative and 

significant. The general inconsistency of the oil price coefficients may have an adverse 

impact on these models’ forecasts of inflation. 

Further, we consider the plausibility of the cointegrating equations by country. As 

before, when a coefficient is significant and has the expected coefficient sign it is 

regarded as fully consistent with an equilibrium equation for prices and is assigned a 

value of 1 in Table 7.3.1.H2 below. When a coefficient is insignificant and has the 

expected sign, it is regarded as semi-consistent with an equilibrium equation for prices 

and is assigned a value of 0.5 in Table 7.3.1.H2. Finally, a coefficient that has an 

unexpected coefficient sign and is insignificant is considered as completely inconsistent 
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with an equilibrium equation for the price variable and is assigned a value of 0 in Table 

7.3.1.H2. Based on these assigned values we report a percentage of coefficients that are 

consistent with an equilibrium equation for prices for each country in the row labelled 

“plausible” to provide an indication of each cointegrating equation’s plausibility for each 

country. This should also give some indication of the likely forecasting performance of 

the inflation equation in the VEC for each country. It may well be that the potential 

benefits (in terms of forecasting accuracy) of using theory to build multivariate VEC 

models of inflation may be undermined by the practical difficulty in securing statistically 

valid and theoretically consistent specifications. This is an issue that we will assess when 

the forecasting performance of multivariate and univariate models are compared and 

evaluated. It may be that such practical difficulties in producing valid multivariate 

specifications justify the use of univariate models for forecasting purposes.  

7.3.1.H2. The plausibility of the estimated cointegrating equations as long-run inflation 

models (where all variables are included as endogenous)  

CE1 Brazil 

(𝑔𝑎𝑝′) 
Russia 
(𝑔𝑎𝑝′) 

India South 
Africa 

China Algeria Angola Saudi 
Arabia 

Nigeria Consistent 

 𝑙𝑛𝑃           

𝑙𝑛𝑀 1 0 1 0 1 1 1 1 1 77% 

𝑅 0 0 0 0.5 1 0 0 0 1 27.8% 

𝐼𝑛𝑅𝐸𝐸 0 1 0 0.5 1 1 0 1 1 61.1% 

𝑈𝑁  1 1        100% 

𝐼𝑛𝑂𝑖𝑙𝑝 1 0 0 0.5 0 0 1 0 0.5 33.3% 

CointEq1 0.5 0 0.5 0.5 0.5 0 1 0 0.5 38.9% 

Plausible 58.3% 33.3% 30% 40% 70% 40% 60% 40% 80%  

 Where Russia (𝑔𝑎𝑝′) = when the output gap is excluded, and unemployment rate is included. Values of 

0, 0.5 and 1 indicate coefficients that are completely inconsistent, semi consistent and completely 

consistent with a plausible long-run equation for inflation. The row and column labelled Plausible 

indicates the percentage of coefficients that are consistent with a plausible long-run equation for 

inflation 

Our results from the row labelled “Plausible” in Table 7.3.1.H2 indicates that the most 

plausible cointegrating equation as a long-run model of inflation is for Nigeria with 80% 

of the coefficients being plausible. The next most plausible equations are for China (70 

plausibility), Angola (60% plausibility), Brazil, South Africa, Algeria and Saudi Arabia (40% 

plausibility); followed by Russia (33%) and India (30%). It will be interesting to see 

whether the relative plausibility of the different countries’ VEC models (as measured 

above) is reflected in their forecasting performance.  
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We also assess the relative theoretical consistency of each variable’s long-run coefficient 

in the VEC in the column headed “Consistent” of Table 7.3.1.H2. The coefficient on 

unemployment has the highest consistency rating at 100%, followed by the money 

supply (77%), real exchange rate (61.1%), oil price (33.3%) and interest rate (27.8%). 

Finally, we note that in 38.9% of the models the price variable is forced to its long-run 

equilibrium value as defined by the cointegrating equation. 
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7.4 Stability test for multivariate models 

This section aims to test whether the multivariate models are structurally stable in the 

sense that the regression coefficients are constant. Over the past three decades, the 

stability of different forecasting models has been a major concern in the monetary 

economics literature because if the relationship that exists between two different 

macroeconomic variables are not stable the forecast produced by this model can be 

inaccurate and policy recommendations can be misleading (Hansen, 2001). For the 

Phillips curve, relationships between inflation and unemployment or economic activities 

can also be affected because of this dilemma (Atkeson and Ohanian, 2001, Fischer et al. 

2002, Sims, 2002, Orphanides and Van Norden, 2005, and Stock and Watson, 2007).  The 

original studies (Phillips, 1958) established that the Phillips curve is a stable negative 

relationship that exists between inflation and unemployment. However, the 

simultaneous occurrence of high inflation and high unemployment in many developed 

countries during the 1970s and after the economic crisis of 2008 has led to the 

alternative conclusion among the scholars that Phillips curve may not stable. For 

instance, Friedman (1977) argued that there is a positive relationship between inflation 

and unemployment. He claimed that higher inflation is often accompanied by higher 

unemployment. The possible explanation for this result has been attributed to the 

contribution of lags of inflation in the Phillips curve and changes in historical data as a 

result of changes in the economic environment (Atkeson and Ohanian, 2001, Stock and 

Watson 1999a and 2003).124 In our study, we investigate whether the multivariate 

models (VAR, VECM and VEC) are stable. If not, what are the implications of the 

instability for forecasting future inflation or what forecast methods work well in the face 

of instability? For instability tests, we perform two different parameter shifts tests that 

are available in Eviews (the CUSUM and Bai and Perron (2003) tests). For the CUSUM 

test, we apply the CUSUM test that is based on the cumulative sum of the recursive 

residuals. The condition is that, if the line of the CUSUM test statistics fluctuates within 

the two 5% critical lines, the estimated models are said to be stable. In contrast, the 

models are said to be unstable if the line of the CUSUM goes outside the area between 

the 5% critical lines. In our results, the graph of the CUSUM test went outside the area 

                                                           
124 Stability test is developed to detect structural breaks of unknown origin and identify factors that 
behind the empirical failure.  
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between the two 5% critical lines for the VAR models that specified all variables as 

endogenous for Brazil (see Figure 7.4.1. A and B). This result implies that the CUSUM 

test suggests evidence of instabilities in the two models that specified all variables as 

endogenous. For the two models that specified oil price as exogenous (Figure 7.4.1. C 

and D), the line of the CUSUM tests lie within the two 5% critical lines. This result 

suggests evidence of stability for these models.125 This is despite the incidence of several 

major shocks that affect the Brazilian economy (e.g the Asian financial crisis in the 

middle of 1997, the global financial crisis in 2007, the recent oil crisis and political 

instabilities). To further check, we also applied the multiple structural breaks test 

suggested by Bai and Perron (2003). This test indicates no breaks for the two 

specifications that include all variables as endogenous (see the Table 7.4.1). However, 

the result of the multivariate breaks test suggests two potential structural breaks around 

2001 and 2003 for two model that specified the oil price as exogenous (see Table 7.4.1).  

The overall results of the CUSUM tests indicate evidence of instability for the two models 

that include all variables as endogenous. Whereas, the multiple structural breaks test 

suggested by Bai and Perron (2003) shows evidence of stability for two models that 

specified oil price as exogenous. In conclusion, that there is some evidence of parameter 

instability for multivariate VAR model in Brazil according to at least one test for all VAR 

models for Brazil.   

 

 

  

                                                           
125 Note that the CUSUM test line intercept the upper critical line around 2003 that may also imply 
evidence instabilities for the two models. 
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Figure 7.4.1. CUSUM test for four different unrestricted VAR models for Brazil 
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Where  
A = All variables included as endogenous except Unemployment that excluded 
B. All variables included as endogenous except output gap that excluded 
C. Oil price is specified as exogenous variable and all other variables included as endogenous 
except unemployment variable 
D. Oil price is specified as exogenous variables and all other variables included as endogenous 
variable except output gap variable. 
 
 

Table 7.4.1. unrestricted VAR stability result test result for Brazil 

    

Model  Sample CUSUM tests Bai and Perron (2003) tests 
VAR(GAP) 1999q4 2012q4 Unstable No breaks 

VAR(UN) 1999q4 2012q4 Unstable No breaks 

VAR (GAP)_Exo 1999q4 2012q4 Stable  2001q3 
and 2003q3 

VAR (UN)_Exo 1999q4 2012q4 Stable 2001q3 
and 2003q4 

VAR(UN) = Unrestricted VAR where all variables included as endogenous except output gap that excluded, VAR(GAP) 
= Unrestricted VAR where all variables included as endogenous except unemployment variable that excluded, VAR 
(UN)_Exo) = Unrestricted VAR where Oil price is specified as exogenous and all other variables included as 
endogenous variable except output gap. variable, VAR (GAP)_Exo = Unrestricted VAR where Oil price is specified as 
exogenous and all other variables included as endogenous variables except unemployment variable. Stable = result 
of the CUSUM test where the line of CUSUM tests lie within the two critical lines and Unstable = result of CUSUM test 

where the line of CUSUM tests lie outside the two critical lines, No breaks = where Bai and Perron (2003) tests do 
not specified any break date. 
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For the two valid Vector Error Correction Models (VECM) for Brazil in Table 7.2.1. I., the 

CUSUM test is the only test that could be implemented.126 For the CUSUM test, the line 

of CUSUM tests lie within the two 5% critical lines for the two valid models (see Figure 

E and F in 7.4.2). This suggests evidence of stability for the two models.  

 

7.4.2. CUSUM test for two VECM specifications for Brazil 
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E = VECM(UN) = specification that include all variables as endogenous except output 

gap. 

F = VECM(UN)_EXO) = specification that include oil price as exogenous and other 

variables as endogenous except output gap. 

 
 

Table 7.4.2. VECM stability result for Brazil 
Model  Sample CUSUM test 

VECM(UN)   1999q4 2012q4 Stable 

VECM(UN)_EXO) 1999q4 2012q4 Stable 

VECM(UN)= specification that include all variables as endogenous except output gap, VECM(UN)_EXO = 

specification that include oil price as exogenous and other variables as endogenous except output gap. 

Stable = result of CUSUM test where the line of CUSUM tests lie within the two critical lines and Unstable = result of 

CUSUM test where the line of CUSUM tests lie outside the two critical lines. 

 

 

  

                                                           
126 The multiple breaks Bai and Perron (2003) test could not be implemented for the two VECM 
specifications. Eviews gave an error message indicating a near singular matrix. 



238 
 

For two valid VECs models for Brazil in Table 7.3.1.D., the model that includes all 

variables as endogenous including unemployment and excluding the output gap is not 

stable according to the CUSUM test. In particular, the line of the CUSUM test statistics 

went outside the area between the two 5% critical lines (see Figure I in 7.4.3). In 

contrast, the line of the CUSUM tests lie within the two 5% critical lines for the model 

that specified oil price as exogenous and includes all other variables as endogenous 

except for the output gap (see Figure J in 7.4.3). This suggests no evidence instability for 

this model. However, the result of the Bai and Perron (2003) test suggests evidence of 

instabilities for the two VEC specifications (the model that specified the oil price as 

exogenous and the model that included the oil price as endogenous). The overall results 

suggest that the two VEC models show evidence of instabilities according to at least one 

test.  A similar method is applied to all countries and the results are summarised in Table 

7.4.4.  

7.4.3. CUSUM test for VEC specification for Brazil 
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Where  

I. All variables included as endogenous except output gap that excluded 

J. Oil price is specified as exogenous variables and all other variables included as 

endogenous variable except output gap variable. 
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Table 7.4.3. VEC stability result for Brazil 
Model  Sample CUSUM test Bai and Perron (2003) tests 

VEC(UN) 1999q4 2012q4 Instable 2003q3, 2006q3 
2009q1 
 

VEC (UN)_Exo 1999q4 2012q4 Stable 2003q2,2003q3,2006q3,2008q3,2009
q1 and 2011q1 

All variables included as endogenous except output gap that excluded (VEC(UN), Oil price is specified as 

exogenous variables and all other variables included as endogenous variable except output gap variable 

(VEC (UN)_Exo). Stable = result of CUSUM test where the line of CUSUM tests lie within the two critical lines and 

Unstable = result of CUSUM test where the line of CUSUM tests lie outside the two critical lines, no breaks = where 

Bai and Perron (2003) tests does not specified any break date. 
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Table 7.4.4 Summary of the stability tests for BRICS countries 

Brazil    

Model  Sample CUSUM test Bai and Perron (2003) tests 

VAR(GAP) 1999q4 -2012q4 Unstable No breaks 

VAR(UN) 1999q4 -2012q4 Unstable No breaks 

VAR(GAP)_Exo 1999q4 -2012q4 Stable  2001q3 and 2003q3 

VAR (UN)_Exo 1999q4 -2012q4 Stable 2001q3 and 2003q4 

VECM_UN 1999q4 -2012q4 Stable Unavailable 

VECM(UN)_Exo 1999q4 -2012q4 Stable Unavailable 

VEC_UN 1999q4 -2012q4 Unstable 2003q3, 2006q3 and 2009q1 
 

VEC(UN)_Exo 1999q4 -2012q4 Stable 2003q2,2003q3,2006q3,2008q3,2009q 
and 2011q1 

Russia 

VAR(UN) 2003Q2- 2012q4 Stable No breaks 

VAR(UN)_Exo 2003Q2 -2012q4 Unstable Unavailable 

VECM (UN) 2003Q2 -2012q4 Stable Unavailable 

 VECM(GAP) 2003Q2 -2012q4 Stable Unavailable 

VECM(GAP)_Exo 2003Q2 -2012q4 Stable Unavailable 

VECM(UN)_Exo 2003Q2 -2012q4 Stable Unavailable 

VEC(UN) 2003Q2 -2012q4 Unstable 2002q2,2007q3 and 2010q2 

VEC(GAP) 2003Q2 -2012q4 Unstable 2005q2, 2007q3, 2009q2 

VEC(GAP)_Exo 2003Q2 -2012q4 Unstable 2009q1 

VEC(UN)_Exo 2003Q2 -2012q4 stable   2008q1 

India 

FVAR 1963q1 -2012q4 Instable  1971q1 and 1979q1 

VAR 1984q1- 2012q4 Stable Unavailable 

VAR_EXO 1984q1- 2012q4 Stable No breaks 

FVECM 1963q1 -2012q4 Stable No breaks 

VECM 1984q1- 2012q4 Stable No breaks 

VECM_Exo 1984q1- 2012q4 Stable Unavailable  

FVEC 1963q1 -2012q4 Unstable No breaks 

VEC 1984q1- 2012q4 Unstable 1990q1, 1994q2, 1998q3 and 2008q4 

VEC_Exo 1984q1- 2012q4 Unstable 1991q1, 1995q2, 1999q3 and 2008q4 

China 

VAR 1992q1- 2012q4 Unstable 2005Q1 

VAR_exo 1992q1 -2012q4 Unstable No breaks 

VECM 1992q1 -2012q4 Stable 2004q4 

VECM_exo 1992q1 -2012q4 Stable 1998q1 

VEC 1992q1 -2012q4 Unstable 1996q3, 2000q3 and 2006q4 

VEC_exo 1992q1 -2012q4 Unstable 1995q1, 2000q3, 2005q1 and 2009q3 

South Africa 

VAR 1995q2- 2012q4 Unstable 2010q3 

VAR_exo 1995q2-2012q4 Stable  2010q3 

VECM 1995q2-2012q4 Stable Unavailable 

VECM_exo 1995q2- 2012q4 Stable 2005q2 and 2010q2 

VEC 1995q2- 2012q4 Unstable 1999q1, 2003q3 and 2008q2 

VEC_exo 1995q2- 2012q4 unstable  1999q1, 2003q1 and 2008q2 

Stable = result of CUSUM test where the line of CUSUM tests lie within the two critical lines and Unstable = result of 

CUSUM test where the line of CUSUM tests lie outside the two critical lines., VAR = unrestricted VAR model that 

include all variables as endogenous, VECM = multivariate model estimated with all nonstationary variables that 

include all variables as endogenous, VEC = Multivariate model that imposes cointegrating restrictions on the VECM 

and include all variables as endogenous. VAR_Exo = unrestricted VAR model that include oil price as exogenous and 

other variables as endogenous. VECM_EXO = VECM specification that include oil price as exogenous and other 

variables as endogenous, VEC_Exo = VEC model that include oil price as exogenous and other variables as 

endogenous. For Brazil and Russia where unemployment and Output gap variables are available, VAR(UN) = 

Unrestricted VAR where all variables included as endogenous except output gap that excluded, VAR(GAP) = 

Unrestricted VAR where all variables included as endogenous except unemployment variable that excluded, VAR 

(UN)_Exo) = Unrestricted VAR where Oil price is specified as exogenous and all other variables included as 

endogenous variable except output gap. VAR (GAP)_Exo = Unrestricted VAR where Oil price is specified as exogenous 

and all other variables included as endogenous variables except unemployment variable. FVAR =unrestricted VAR 

estimated over the full sample, FVECM = VECM estimated over full sample, No breaks = where Bai and Perron (2003) tests 
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does not specified any break date (hence suggesting no instability). Unavailable = where the Bai and Perron (2003) is 

not available due to the error of the singular matrix indicated by EViews. 

Table 7.4.5 Summary of the stability tests for OPEC countries 

Algeria  CUSUM test Bai and Perron (2003) tests 

VAR 1992q2-2012q4 Stable No breaks 

VAR_exo 1992q2- 2012q4 Stable No breaks 

VECM 1992q2- 2012q4 Stable Unavailable 

VECM_exo 1992q2- 2012q4 Stable Unavailable 

VEC 1992q2- 2012q4 Unstable Unavailable 

VEC_exo 1992q2- 2012q4 Unstable 2002q2, 2008q3 and 2011q1 
Angola 

VAR 2002q4 2012q4 Unstable No breaks 

VAR_exo 2002q4 2012q4 Unstable 2004q2 and 2005q4 

VECM 2002q4 2012q4 Unstable Unavailable 

VECM_oil_exo 2002q4 2012q4 Stable Unavailable 

VEC 2002q4 2012q4 Unstable 2003q4 and 2010q2 

VEC_exo 2002q4 2012q4 Unstable 2010q1 and 2004q4 

Nigeria 

VAR 1998q4 2012q4 Unstable No breaks 

VAR_exo 1998q4 2012q4 Stable No breaks 

VEC 1998q4 2012q4 Unstable 2001q2,2003q3 and 2009q1 

VEC_exo 1998q4 2012q4 Unstable 2002q1,2004q1 and 2009q2 

Saudi Arabia 

VAR 1983q1- 2012q4 Stable No breaks 

VAR_exo 1983q1- 2012q4 Stable 1992q2, 2006q4 and 2007q3 

VECM 1983Q1- 2012Q4 Stable No breaks 

VECM_Exo 1983Q1- 2012Q4 Stable 2007q3 

VEC 1983Q1- 2012Q4 Unstable 1989q1, 2000q2 and 2008q3 

VEC_exo 1983Q1- 2012Q4 unstable  1987q4, 2000q2 and 2008q3 

Note see Table 7.4.4 

For the BRICS countries (Table 7.4.4), the CUSUM test and Bai and Perron (2003) test 

suggest evidence of instability for all models except all VECMs and VARs specification 

for India (the exception is the VAR estimated over the full sample that includes all 

variables as endogenous). The other exceptions are the VECM model that includes all 

variables as endogenous for South Africa; the two VECM specifications for Brazil, all four 

VECMs and the VAR model that contains all variables as endogenous except output gap 

that excluded for Russia.   

For OPEC countries (Table 7.4.5), all models show evidence of instability except the VAR 

and VECM model that includes all variables as endogenous for Saudi Arabia, the VECM 

model that specified oil price as exogenous for Angola, the two VAR models and two 

VECM specifications for Algeria.   

 In general, our CUSUM and Bai and Perron (2003) tests yield evidence of instabilities in 

the coefficients for the VAR, VECM and VEC for both BRICS and OPEC countries.  In our 

study, we produce forecasts for all models that are free from autocorrelation in Table 
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7.1.E., Table 7.2.1. I., and Table 7.3.1.D.127  We do this despite the evidence of instability 

for many of these specifications because the literature suggests that if instabilities have 

occurred, they may or may not affect their forecasting performance (Stock and Watson 

(1999), Rudebusch (2005), Clark and Mccacken, (2006). Hence, it will be interesting to 

see whether models with evident instabilities produce poor forecasting performance.  

  

                                                           
127 Our empirical work is similar to the study of Clark and Mccacken, (2006) who argues whether model 
instabilities can affect the forecast performance of macroeconomic variables. 
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7.5.0 Forecast performance and evaluation 

In this section, we apply the same forecast evaluation procedure that was applied to 

univariate models in chapter 5 (section 5.5.0) and produce m-step ahead forecasts for 

different multivariate models and compare their forecasting performance using rolling 

regressions following, for example, Sarantis and Stewart (1995), Alles and Hotton (2000) 

and Ogunc et al. (2013). First, we conduct a series of rolling regressions and calculate 

out-of-sample forecasts for all the multivariate models identified in previous sections 

(sections 7.1, 7.2 and 7.3). Each model is estimated over a reduced sample that avoids 

modelling breaks with the period ended in 2012q4 (the start of the estimation period 

varies across models and countries). These models are used to produce forecasts over 

the ex-post forecasting period 2013q1 – 2014q4. These produce 1-step ahead forecasts 

for 2013q1, 2-step ahead forecasts for 2013q2 and so on up to 8-step ahead forecasts 

for 2014q4. The identified models were then re-estimated by adding one observation to 

the end of the sample; hence the models are estimated over a period ending in 2013q1. 

These estimated models are used to produce 1-step ahead forecasts for 2013q2, 2-step 

ahead forecasts for 2013q3 and so on up to 7-step ahead forecasts for 2014q4. This 

process is then repeated with one observation being added to the estimation period 

(with the last rolling regression’s sample period ending in 2014q3), and m-step ahead 

forecasts produced up to the end of the forecast period. These rolling regressions 

produce eight 1-step ahead forecasts, seven 2-step ahead forecasts, six 3-step ahead 

forecasts, five 4-step ahead forecasts and so on up to one 8-step ahead forecast for each 

estimated model.  

Second, we compare the forecasting performance of each model over the different 

number of the step ahead forecasting horizons using the Root Mean Squared Error 

(RMSE), Mean Absolute Percentage Error (MAPE) and Theil’s inequality coefficient (U). 

The best forecasting model, on average, over any particular horizon will have the lowest 

value of forecasting performance measures.  
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7.5.1 Brazil Forecast performance and evaluation 

 

In this section, we compare the forecasting performance of the four-alternative 

unrestricted VAR model specifications in Table 7.1.E, the VECM specifications (that does 

not restrict the cointegrating equation into the model) in Table 7.2.1. I and the VEC (that 

restricts a single cointegrating equation into the model), in Table 7.3.1.D.  To produce 

out-of-sample ex-post forecasts on a rolling basis, we first estimate the models over the 

period 1999q4 – 2012q4 and generate forecasts over the period 2013q1 to 2014q4. 

Second, the models are re-estimated over the period 1999q4 – 2013q1 and forecasts 

are produced over the period 2013q2 to 2014q4 and so on. The last estimation sample 

period is 1999q4 - 2014q3 and a single 1-step ahead forecast is produced for 2014q4. 

These forecasts are used to compute forecast error measures for each forecast horizon, 

which are compared across models. The first unrestricted VAR model includes all 

available variables as endogenous except unemployment (which is excluded). The 

second unrestricted VAR includes all available variables as endogenous except for the 

output gap (which is excluded). The remaining two unrestricted VARs are the same as 

the first two VARs except the oil price is treated as exogenous. The forecast performance 

measures for these models are given in the columns headed A, B, C and D, respectively, 

of Table 7.5.1.1. 

Table. 7.5.1.1: Inflation forecast performance of unrestricted VARs for Brazil 

 A 
All variables endogenous 
output gap included 
unemployment excluded 

B 
All variables endogenous 
output gap excluded 
unemployment included 

C 
Oil price exogenous 
output gap included 
unemployment excluded 

D 
Oil price exogenous 
output gap excluded 
unemployment included 

 RMSE MAPE U RMSE MAPE U RMSE MAPE U RMSE MAPE U 

1-
step  

0.0050 6.5320 0.0430 0.0060 8.5330 0.0460 0.0049 6.9540 0.0390 0.0048* 6.4700* 0.0380* 

2-
step 

0.0080* 11.0500* 0.0620* 0.0120 17.6600 0.0900 0.0101 14.2600 0.0770 0.0100 13.8600 0.0780 

3-
step 

0.0090* 10.6500* 0.0700* 0.0130 18.4700 0.0970 0.0200 30.5600 0.1500 0.0150 20.8500 0.1120 

4-
step 

0.0120 17.0700* 0.0930 0.0110* 17.6500 0.0850* 0.0260 32.5500 0.1910 0.0180 25.1800 0.1360 

5-
step 

0.0140* 18.4500* 0.1000* 0.0150 23.5100 0.1100 0.0300 41.9900 0.2090 0.0230 32.2200 0.1620 

6-
step 

0.0180* 19.6100* 0.1280* 0.0200 28.9700 0.1430 0.0270 37.260 0.1850 0.0320 50.2700 0.2020 

7-
step 

0.0180 28.0700 0.1250 0.0140* 19.7900* 0.1020* 0.0330 53.1900 0.2090 0.0330 53.6600 0.2130 

8-
step 

0.0260 45.2600 0.1850 0.0070* 12.4400* 0.0590* 0.0370 63.6300 0.2410 0.0270 46.3100 0.1880 

 An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for each forecasting  
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The unrestricted VAR model where all variables included as endogenous except 

unemployment, see column A of Table 7.5.1.1 has the lowest RMSE, MAPE and U values 

for all forecasting horizons except for 1, 4 (RMSE and U -statistics) 7 and 8 steps ahead. 

The unrestricted VAR model where all variables included as endogenous except out gap, 

see column B of Table 7.5.1.1 produces a superior forecast for 4 steps ahead horizons 

according to the RMSE and U-statistics and for 7 and 8 steps ahead horizons according 

to the RMSE, MAPE and U-statistics. While the best forecasting model for 1 -step ahead 

according to RMSE, MAPE and U-statistics is the unrestricted VAR model that treats the 

oil price as exogenous and all other variables as endogenous (unemployment is 

included) and the output gap is excluded, see column D of the table 7.5.1.1. In general, 

our results indicate that the specification of the unrestricted VAR models that include 

the oil price as endogenous instead of the exogenous enhance the forecasting 

performance of inflation for Brazil over the short and long horizons.  

We next consider the relative forecasting performance of the alternative Vector Error 

Correction Model (VECM) specifications discussed in section 7.2. The first VECM 

incorporates all available variables as endogenous (including unemployment) and 

excludes the output gap. The second model treats the oil price as exogenous and 

incorporates all available variables as endogenous (including unemployment) and 

excludes the output gap. The forecast performance measures for these VECMs are given 

in the column headed E and F (in Table 7.5.1.2). 

Table. 7.5.1.2:  Forecast performance of the Modelling Vector Error Correction Model for Brazil 

 E 
All variables endogenous 
output gap excluded 
unemployment included 

F 
Oil price exogenous 
output gap excluded 
unemployment included 

 RMSE MAPE U RMSE MAPE U 

1-step  0.0050 7.085 0.0300* 0.0060 8.3790 0.0470 

2-step 0.0080* 10.3500* 0.0590* 0.0150 20.7300 0.1310 

3-step 0.0130 17.1700 0.0990 0.0300 35.3500 0.2860 

4-step 0.0220 28.0000 0.1600 0.0360 47.4900 0.3640 

5-step 0.0320 42.8600 0.2100 0.0300 41.1600 0.2960 

6-step 0.0430 64.2700 0.2590 0.0360 45.5400 0.3450 

7-step 0.0490 75.2900 0.2850 0.0430 52.8000 0.3970 

8-step 0.0650 111.4000 0.35800 0.0080 14.4600 0.0670 

 An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for each forecasting 

horizon. 
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From the Table. 7.5.1.2, the two valid VECM specifications rarely improved the 

forecasting performance relative to the VAR models. The VECM specification that 

incorporates all available variables as endogenous (including unemployment) and 

excludes the output gap model (see a column headed E in the table 7.5.1.2) has lower 

RMSE, MAPE and U values over 2- step and 1-step ahead according to the U-statistics 

compared to the best selected VAR models.  The VECM specification that includes the 

oil price as an exogenous instead of endogenous (see column headed F in the table 

7.5.1.2) was never favoured. Like the best performing unrestricted VAR model, the 

VECM that includes oil prices as an endogenous variable confirming that this strategy 

appears to produce better forecasts for Brazil (of the model considered so far). However, 

the inclusion of (unrestricted) long-run information in the form of levels variables in the 

VECM has not unambiguously improved the forecasting performance over the VAR that 

includes only stationary variables for forecasting horizons considered here for Brazil.   

We next consider the two VEC models discussed in section 7.3 for Brazil. The first model 

incorporates all variables as endogenous including unemployment and excluding the 

output gap. The second model treats the oil price as exogenous, incorporates all 

available variables as endogenous (including unemployment) and excludes the output 

gap. The forecast performance measures for these VECs are given in the column headed 

G and H in Table 7.5.1.3. 

Table. 7.5.1.3:  Forecast performance of the Modelling Vector Error Correction Model for Brazil 

 G. 

All variables endogenous 

output gap excluded 

unemployment included 

H. 

Oil price exogenous 

output gap excluded 

unemployment included 

 RMSE MAPE U RMSE MAPE U 

1-step  0.0040 5.1800 0.0290 0.0040* 5.0840* 0.0290* 

2-step 0.0070 10.1000 0.0560 0.0060* 7.0540* 0.0440* 

3-step 0.0060 6.8780* 0.0450* 0.0060* 7.3040 0.0520 

4-step 0.0040 4.9060 0.0290 0.0030* 4.4790* 0.0250* 

5-step 0.0090 9.9190 0.0660 0.0030* 3.5420* 0.0220* 

6-step 0.0190 24.4600 0.1370 0.0130* 17.8300* 0.0920* 

7-step 0.0180 24.1100 0.1330 0.0190 29.0400 0.1340 

8-step 0.0110 18.0800 0.0830 0.0170 28.8600 0.1260 

 An asterisk indicates the model with the lowest value for any particular measure of forecasting 

performance for each forecasting horizon. 
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According to the above table, the VEC model where the oil price is included as 

exogenous has the best forecasting performance of both VARs and VECM over the 1, 2, 

3, 4, 5 and 6- step ahead horizons according to the RMSE, MAPE and U-statistics (MAPE 

and U-statistics are not favoured for 3-step ahead forecasting horizon). The VEC model 

that treats all variables as endogenous has superior forecasting accuracy at the 3-step 

ahead horizons according to the MAPE and U-statistics. At the longer forecasting 

horizons (over 7 to 8 steps ahead), the VEC model generally exhibits inferior forecasting 

performance relative to the favoured unrestricted VAR and VECM. However, the 

inclusion of long-run information and imposing the restriction of a single cointegration 

equation has generally improved the forecasting performance over the unrestricted VAR 

for the shorter horizon. While unrestricted VAR (that includes only stationary variables) 

produces the best forecasting performance for the longer horizons (7 to 8-step 

forecasting horizons). Further, the best forecast model is typically produced when the 

oil price is estimated as exogenous rather than endogenous. We also note that the MAPE 

values of all the favoured multivariate models are less than 20 percentage points 

suggesting moderately good relative forecasting performance for Brazil.  

A similar procedure is applied to all countries, and a summary of the models with 

superior forecasting performance in each case is given below in Table 7.5.1 and 7.5.2.   

The BRICS and OPEC graphs of actual inflation (INF_***), the point forecast of inflation 

(INF_***1) and the associated 90% confidence interval (CL_UP and CL_LW) over the 8 

step-ahead forecast period (2013 and 2014) are given in figure 7.5.1.3 for BRICS and 

7.5.1.4 for OPEC countries. For the best forecasting multivariate model for each BRICS 

and OPEC country. The confidence interval of the favoured model (VEC model that 

specified oil price exogenous and all other variables as endogenous including 

unemployment and excluding output gap) shows that we can be 90% confident that 

inflation will lie between 4.3% and 9.6% during the period of 2013 and 2014 (see figure 

7.5.1.3. for Brazil).  This confidence interval is quite wide and suggests evidence of 

uncertainty over the forecasts especially in 2014. However, it is also noticeable that 

actual inflation (INF_BRA) lies within the interval and is quite close to the forecast with 

no systematic over or under prediction visible. While the graphs for South Africa, Russia, 

Angola, Saudi Arabia and Nigeria yield a broadly similar picture to Brazil, it is noticeable 

that actual inflation is outside of the 90% confidence interval for some of the forecast 
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periods for China, India and Algeria (see Figure 7.5.1.3 and 7.5.1.4). It is also notable that 

while the width of the forecast confidence intervals is in single digits for most countries, 

they are in double digits for South Africa (up to around 12 percentage points) Angola (up 

to about 20 percentage points) and Nigeria (up to around 12 percentage points). 
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Figure 7.5.1.3: The VEC 90% confidence interval graphs for the inflation forecasting 
performance of BRICS countries128                   
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128 To avoid graphs repetition, we only include the 90% confidence interval graphs for all the favoured 
VEC model in each country because the graph of the 90% confidence interval for other multivariate 
model yields the similar patterns. 
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Key 
1. CL_UP (indicated with the blue colour) represents the confidence interval for the 

upper bound. 

2. CL_LW (indicated with the orange colour) gives the confidence interval for the lower 

bound. 

3. INF_*** (indicated with the green colour) denotes the actual inflation rate. 

4. INF_***1 (indicated with the red colour) is the forecast of the inflation over the whole 

8-step ahead horizon. 

5.  *** denotes the first three letters of each country (e.g BRA, IND, RUS, CHI, 

SOU). 
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Figure 7.5.1.4: The VEC 90% confidence interval graphs for the inflation forecasting 

performance of OPEC countries.                                      
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Key 
1. CL_UP (indicated with the blue colour) represents the confidence interval for the 

upper bound. 

2. CL_LW (indicated with the orange colour) gives the confidence interval for the lower 

bound. 

3. INF_*** (indicated with the green colour) denotes the actual inflation rate. 

4. INF_***1 (indicated with the red colour) is the forecast of the inflation over the whole 

8-step ahead horizon. 

5. *** denotes the first three letters of each country (e.g ALG, ANG, NIG and SAU). 
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Table 7.5.1 Summary of the best forecasting multivariate models for BRICS 
countries 

Best forecasting multivariate model for Brazil (1994q4 -2012q4) 

 RMSE MAPE U 

Horizon Type Oil Variables Type Oil Variables Range Type Oil Variables 
1 to 2-step VEC Exo 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁 and 

𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 
VEC Exo 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 

𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁 
and 𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

5.0840 -
7.0540 

VEC Exo 𝑙𝑛𝑃, 𝑙𝑛𝑀, ∆𝑅, 
𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁 
and 𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

3 -step VEC Exo 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁 and 
𝐼𝑛𝑂𝑖𝑙𝑝_f 

VEC End 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 
𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁 and 
𝐼𝑛𝑂𝑖𝑙𝑝 

6.8780 VEC End 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 
𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁 and 
𝐼𝑛𝑂𝑖𝑙𝑝 

4 to 6 -
steps 

VEC Exo 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 𝐼𝑛𝑅𝐸𝐸,  𝑈𝑁 and 
𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

VEC  Exo 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 
𝐼𝑛𝑅𝐸𝐸,  𝑈𝑁 and 
𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

4.4790 - 

17.8300 

VEC Exo 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑅, 
𝐼𝑛𝑅𝐸𝐸,  𝑈𝑁 and 
𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

7 and 8-
step 

VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, 
∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁 𝑎𝑛𝑑 ∆𝐼𝑛𝑂𝑖𝑙𝑝  
 

VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 
∆𝑅, 
∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁 
𝑎𝑛𝑑 ∆𝐼𝑛𝑂𝑖𝑙𝑝 

12.0000—
19. 8000 

VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 
∆𝑅, 
∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁 
𝑎𝑛𝑑 ∆𝐼𝑛𝑂𝑖𝑙𝑝 

Best forecasting multivariate model for Russia (2003q2-2012q4) 

 RMSE MAPE U 

Horizon Type Oil Variables Type Oil Variables Range Type Oil Variables 
1-step VEC End 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑔𝑎𝑝, 𝐼𝑛𝑂𝑖𝑙𝑝  VEC End 𝑙𝑛𝑃, 𝑙𝑛𝑀,  

𝐼𝑛𝑅𝐸𝐸, 
𝑔𝑎𝑝, 𝐼𝑛𝑂𝑖𝑙𝑝 

 
7.9400 

VEC End 𝑙𝑛𝑃, 𝑙𝑛𝑀,  
𝐼𝑛𝑅𝐸𝐸, 𝑔𝑎𝑝, 

𝐼𝑛𝑂𝑖𝑙𝑝 
2 -step VAR End 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝐺𝐴𝑃, 𝐼𝑛𝑂𝑖𝑙𝑝 VAR End 𝑙𝑛𝑃, 𝑙𝑛𝑀,  

𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁, 

𝐼𝑛𝑂𝑖𝑙𝑝 

12.800 VEC Exo 𝑙𝑛𝑃, 𝑙𝑛𝑀,  
𝐼𝑛𝑅𝐸𝐸, 
𝐺𝐴𝑃 and  

𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 
3 to 4-step VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅 ∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁, 

∆𝐼𝑛𝑂𝑖𝑙𝑝 

VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅 

∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁, 

∆𝐼𝑛𝑂𝑖𝑙𝑝 

14.0000 -
15.2100 

VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅 

∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁, 

∆𝐼𝑛𝑂𝑖𝑙𝑝 

5 to 6-step VAR Exo ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅 ∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁, 

∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

VAR Exo ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅 

∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁, 

∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

17.0900 – 
22.8200 

VAR Exo ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅 

∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁, 

∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

7 to 8-step VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅 ∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁, 

∆𝐼𝑛𝑂𝑖𝑙𝑝 

VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅 

∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁, 

∆𝐼𝑛𝑂𝑖𝑙𝑝 

28..0100-
33.3700 

VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅 

∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁, 

∆𝐼𝑛𝑂𝑖𝑙𝑝 

Best forecasting multivariate model for India (1984q1- 2012q4) 

 RMSE MAPE U 

Horizon Type Oil Variables Type Oil Variables Range Type Oil Variables 

1 – 8 
steps 

VEC End  𝑙𝑛𝑃, 𝑙𝑛𝑀,    𝐼𝑛𝑂𝑖𝑙𝑝 VEC End 𝑙𝑛𝑃, 𝑙𝑛𝑀,    
𝐼𝑛𝑂𝑖𝑙𝑝 

7.4500- 
12.6570 

VEC End 𝑙𝑛𝑃, 𝑙𝑛𝑀,    
𝐼𝑛𝑂𝑖𝑙𝑝 

Best forecasting multivariate model for China (1992q1 -2012q4) 

 RMSE MAPE U 

Horizon Type Oil Variables Type Oil Variables Range Type Oil Variables 

1 -5 steps VEC  End 𝑙𝑛𝑃, 𝑅 𝑙𝑛𝑀, 𝐼𝑛𝑅𝐸𝐸   and 
𝐼𝑛𝑂𝑖𝑙𝑝   

VEC  End 𝑙𝑛𝑃, 𝑅 𝑙𝑛𝑀, 
𝐼𝑛𝑅𝐸𝐸    and 
𝐼𝑛𝑂𝑖𝑙𝑝  

5.001 -
22.099 

VEC End 𝑙𝑛𝑃, 𝑅 𝑙𝑛𝑀, 
𝐼𝑛𝑅𝐸𝐸    and 
𝐼𝑛𝑂𝑖𝑙𝑝  

6 – 8 
steps 

VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸,  
𝑔𝑎𝑝, ∆𝐼𝑛𝑂𝑖𝑙𝑝 

VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 
∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸,  
𝑔𝑎𝑝, ∆𝐼𝑛𝑂𝑖𝑙𝑝 

25.1000 – 
51.6500 

VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 
∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸,  
𝑔𝑎𝑝, ∆𝐼𝑛𝑂𝑖𝑙𝑝 

Best forecasting multivariate model for South Africa (1995q2 -2012q4) 

 RMSE MAPE U 

Horizon Type Oil Variables Type Oil Variables Range Type Oil Variables 

1-2 VEC Exo 𝑙𝑛𝑃, 𝑅 𝑙𝑛𝑀, 𝐼𝑛𝑅𝐸𝐸    
𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

VEC Exo 𝑙𝑛𝑃, 𝑅 𝑙𝑛𝑀, 
𝐼𝑛𝑅𝐸𝐸    
𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

6.0450- 
15.4560 

VEC Exo 𝑙𝑛𝑃, 𝑅 𝑙𝑛𝑀, 
𝐼𝑛𝑅𝐸𝐸    
𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

3 - 8 
steps 

VEC End 𝑙𝑛𝑃, 𝑅 𝑙𝑛𝑀, 𝐼𝑛𝑅𝐸𝐸    𝐼𝑛𝑂𝑖𝑙𝑝
  

VEC End 𝑙𝑛𝑃, 𝑅 𝑙𝑛𝑀, 
𝐼𝑛𝑅𝐸𝐸    
𝐼𝑛𝑂𝑖𝑙𝑝  

8.4560- 
12.8700 

VEC End  𝑙𝑛𝑃, 𝑅 𝑙𝑛𝑀, 
𝐼𝑛𝑅𝐸𝐸    
𝐼𝑛𝑂𝑖𝑙𝑝  

The best multivariate forecasting model is identified by measure (RMSE, MAPE and U) for each forecasting horizon (1, 2, …, 8 steps ahead). The heading 

Type indicates the specification (VAR, VECM or VEC) while the Oil heading indicates whether oil is treated as an endogenous variable (End), exogenous 

variable (Exo) or is excluded from the model (None). The heading Variables specify the variables included in the model while Range gives the range of 

values for the MAPE for models favoured according to this forecasting measure over the specified horizon. 



254 
 

Table 7.5.2 Summary of the best forecasting multivariate models for OPEC countries. 

Best forecasting multivariate model for Algeria (1999q2 -2012q4) 

 RMSE MAPE U 

Horizon Type Oil Variables Type Oil Variables Range Type Oil Variables 

1-3 steps VAR Exo ∆lnP, ∆lnM, ∆R, 
∆InREE, GAP 
and ∆InOilp_f   

VAR Exo ∆lnP, ∆lnM, 
∆R, 
∆InREE, 
GAP and 
∆InOilp_f  

44.0700 -
101.600 

VAR Exo ∆lnP, ∆lnM, 
∆R, ∆InREE, 
GAP and 
∆InOilp_f   

4 to 6 steps VEC Exo 𝑙𝑛𝑃, 𝑙𝑛𝑀,  
𝐼𝑛𝑅𝐸𝐸, 𝑅 and 
𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

VEC Exo 𝑙𝑛𝑃, 𝑙𝑛𝑀,  
𝐼𝑛𝑅𝐸𝐸, 𝑅 
and 
𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

30.555 – 
163.600 

VEC Exo 𝑙𝑛𝑃, 𝑙𝑛𝑀,  
𝐼𝑛𝑅𝐸𝐸, 𝑅 
and 𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

7 and 8 VAR Exo ∆lnP, ∆lnM, ∆R, 
∆InREE, GAP 
and ∆InOilp_f   

VEC Exo 𝑙𝑛𝑃, 𝑙𝑛𝑀,  
𝐼𝑛𝑅𝐸𝐸, 𝑅 
and 
𝐼𝑛𝑂𝑖𝑙𝑝_𝑓 

30.5500 -
48.9500 

VAR Exo ∆lnP, ∆lnM, 
∆R, ∆InREE, 
GAP and 
∆InOilp_f   

Best forecasting multivariate model for Angola (2002q4 - 2012q4) 
 RMSE MAPE U 

Horizon Type Oil Variables Type Oil Variables Range Type Oil Variables 

1- 8 steps VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 
∆𝑅,   𝑔𝑎𝑝, 
∆𝐼𝑛𝑂𝑖𝑙𝑝 

VAR End ∆𝑙𝑛𝑃, 
∆𝑙𝑛𝑀, ∆𝑅,   
𝑔𝑎𝑝, 
∆𝐼𝑛𝑂𝑖𝑙𝑝 

0.0800 – 
0.1360 

VAR End ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 
∆𝑅,   𝑔𝑎𝑝, 
∆𝐼𝑛𝑂𝑖𝑙𝑝 

Best forecasting multivariate model for Saudi Arabia (1983q1- 2012q4) 
 RMSE MAPE U 

Horizon Type Oil Variables Type Oil Variables Range Type Oil Variables 

1-8steps VECM End 𝑙𝑛𝑃, 𝑙𝑛𝑀, 
𝐼𝑛𝑅𝐸𝐸 and   

𝐼𝑛𝑂𝑖𝑙𝑝 

VECM End 𝑙𝑛𝑃, 𝑙𝑛𝑀, 
𝐼𝑛𝑅𝐸𝐸 and   

𝐼𝑛𝑂𝑖𝑙𝑝 

2.4270 - 
12.710 

VECM End 𝑙𝑛𝑃, 𝑙𝑛𝑀, 
𝐼𝑛𝑅𝐸𝐸 and   

𝐼𝑛𝑂𝑖𝑙𝑝 

Best forecasting multivariate model for Nigeria (1998q4 -2012q4) 
 RMSE MAPE U 

Horizon Type Oil Variables Type Oil Variables Range Type Oil Variables 

1 to 2- steps VAR Exo ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 
∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, 
𝐺𝐴𝑃 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓    

VAR Exo ∆𝑙𝑛𝑃, 
∆𝑙𝑛𝑀, ∆𝑅, 
∆𝐼𝑛𝑅𝐸𝐸, 
𝐺𝐴𝑃 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓    

 18.0800 VAR Exo ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 
∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, 
𝐺𝐴𝑃 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝_𝑓    

3 to 8 -steps VAR Endo ∆𝑙𝑛𝑃 ∆𝑙𝑛𝑀, 
∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, 
𝐺𝐴𝑃 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝    

VAR Endo ∆𝑙𝑛𝑃 ∆𝑙𝑛𝑀, 
∆𝑅, 
∆𝐼𝑛𝑅𝐸𝐸, 
𝐺𝐴𝑃 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝    

17.1500 – 
59.5958 

VAR Endo ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 
∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, 
𝐺𝐴𝑃 and 
∆𝐼𝑛𝑂𝑖𝑙𝑝    

The best multivariate forecasting model is identified by measure (RMSE, MAPE and U) for each forecasting horizon (1, 2, …, 8 steps ahead). The heading 

Type indicates the specification (VAR, VECM or VEC) while the Oil heading indicates whether oil is treated as an endogenous variable (End), exogenous 

variable (Exo) or is excluded from the model (None). The heading Variables specify the variables included in the model while Range gives the range of 

values for the MAPE for models favoured according to this forecasting measure over the specified horizon. 
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7.6 Summary and conclusions of the multivariate models’ forecasting performance  

In this section, Table 7.5.1 summarises the multivariate models (VAR, VECM and VEC) 

with the superior forecasting performance for the BRICS countries while Table 7.5.2 

summarises the best forecasting models for the OPEC nations. A general impression 

from the table is that no single model that dominates across all the countries and the 

best forecasting method varies considerably across the models. However, the following 

general findings can be useful for future research. Where both unemployment and the 

output gap are available as indicators of the Phillips curves (for Brazil and Russia), 

models including unemployment outperform those that use the output gap. This view is 

contrary to Bjornland et al. (2008) and Stock and Watson (1999), who argue that models 

including the output gap contain the most valuable information in inflation forecasting 

than models based on alternative indicators (unemployment). 

Further, the unrestricted VAR model often produces the best forecasting performance 

for OPEC countries except in Saudi Arabia that has the history of lower inflation. VAR 

models have the superior forecasting performance over all forecasting horizons for 

Algeria, Angola and Nigeria. The exception is for Algeria over 4 to 6-steps ahead 

horizons. In contrast, unrestricted VAR model has rarely produced the best forecasts for 

BRICS countries over both shorter and longer horizons and was only favoured over 7 to 

8-steps ahead horizon for Brazil, 6 to 8-steps for China and all forecasting horizons 

except 1-step ahead horizon for Russia. The VECM only favoured for 1 out of 4 selected 

OPEC countries (Saudi Arabia overall forecasting horizons) and never favoured for BRICS 

countries.   

Further, the VEC models produce better forecasts over all forecasting horizons for all 

BRICS countries. The exception is for China over 6 to 8-steps ahead horizons, Brazil over 

7 to 8 horizons and Russia over 2 to 8-steps ahead horizon. Whereas, the VEC only 

favoured over 4 to 6 or 4 to 8-steps for Algeria. On average, our result indicates that 

unrestricted VAR models over both short and long horizons produce the best forecasting 

performance for OPEC countries. While the VEC model produces a better forecast for 

BRICS countries. The forecasting performance of the VEC model for BRICS countries and 

possible VECM for Saudi Arabia may also be because inflation in many of these countries 

is relatively moderate and kept in check by good monetary policy, especially when 

compared with other OPEC countries. Accordingly, the explicit nature of the variables 
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and characteristics of the system can influence the accuracy of the forecasting 

performance (Zapata and Garcia, 1990).  Furthermore, VEC also has the ability to 

minimize the effect of model misspecification as a result of unstable macroeconomic 

variables and avoid information lost due to differencing when including the stationary 

inducing restriction on non-stationary time series (see: Christoffersen and Diebold 1998, 

Mccrae et al. 2002 and Sa-ngasoongsong et al.2012).  Indeed, our results generally 

support the view that the inclusions of cointegrating equations improve the inflation 

forecasting performance most especially for the BRICS countries and OPEC countries 

that has a history of low inflation (Saudi Arabia).129 However, we note that many 

countries’ VEC specifications contain variables in the cointegrating equation that are not 

statistically significant or exhibit unexpected coefficients signs (see table 7.3.1.F2 and 

7.3.1.H2.).  Nevertheless, the VECs of most countries include variables with theoretically 

plausible coefficients that are statistically significant and the incorporation of this 

information in the models appears to be useful for forecasting future inflation.  

Moreover, whether the inclusion of oil prices as exogenous or endogenous will improve 

forecasting performance differs substantially according to the form of the model 

employed and the country being considered. For BRICS and OPEC countries, the model 

that includes the oil price as endogenous appears to secure better forecasting 

performance than the model that includes the oil price as exogenous, except for Algeria 

over all forecasting horizons, Brazil over 1 to 6-steps, Russia over 5 to 6-steps ahead and 

over 1 to 2-step for South Africa and Nigeria. This is interesting for many of our selected 

countries because both BRICS and OPEC countries are heavily dependent on oil 

importing for domestic consumption and oil exporting for revenue. Therefore, increases 

or decreases in the global oil price will directly affect government revenue and 

expenditure of many these countries. However, the impact of oil shocks on inflation in 

few economies most especially Algeria, Brazil, South Africa, Russia and Nigeria over a 

few steps may not be a surprise because many of these the countries have recently 

implemented monetary policies to manage their inflationary pressures; therefore it is 

possible that good monetary policy could have helped to minimize the impact of 

                                                           
129 “Forecasts are most likely to be improved by applying error-correction techniques if the data strongly 

supports the cointegration hypothesis” (See: Timothy and Thomas, 1998). 
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changes in the global oil price for this country.130  The 90% confidence interval for the 

best forecasting multivariate models are given for BRICS countries. These show that we 

can be 90% confident that, for the period of 2013 to 2014, inflation will lie between 4.3% 

to 9.6% for Brazil, - 5.2% to 12.2% for South Africa, 4.7% to 10.2% for Russia, 0.2% to 

7.2% for China, 4.2% to 12% for India. Similarly, we can also be 90% confident that 

inflation lies between 0.7% to 11. 6% for Algeria, -6.2% to 18.8% for Angola, 3.7% to 18% 

for Nigeria and 0.8% to 5.6% for Saudi Arabia using the best forecasting multivariate 

model for these OPEC countries. 

We also examine whether the instabilities in multivariate models (VAR, VECM and VEC) 

affect the performance of the inflation forecasting. In our study, the application of the 

two stability tests (the CUSUM and Bai Perron tests) provide evidence that stability of 

the model can enhance the forecasting performance of inflation for few countries (see 

Table 7.4.4 and 7.4.5). For example, the best multivariate models that are stable 

produce the best result for 3 out of 4 selected OPEC countries.  In particular, the 

unrestricted VAR specifications are stable and produce the best forecasts results over 

all horizons for Algeria and Nigeria, and the VECM specification that includes all variables 

as endogenous including oil price is stable and favoured for Saudi Arabia over all 

forecasting horizons. In contrast, all the best forecasting multivariate models for BRICS 

countries are not stable. The forecast performance of the favoured multivariate models 

that are not stable for BRICS countries are consistent with the study of (Stock and 

Watson, 2003, and Rossi 2012) who argued that instability of the theoretical model can 

be misleading for out-of-sample forecasting.131 This may also be because our forecasting 

                                                           
130 For example, Brazil launched a growth acceleration program in 2007 to provide tax incentive and 

reduce energy costs, strengthen its investment through foreign participation and restructure its oil 

royalty payment to increase revenue and provide more capital to the private sector.  Similarly, Algeria 

government has recently imposed a policy that reduces licensing of importation of luxury furniture and 

building materials. The government approved the quantitative easing of printing almost 570 billion 

dinars (about 5 billion dollars) to help the Central Bank lend money to Public Treasury. Also, the 

government has also approved the plan to diversify its economy by boosting domestic engineering, 

petrochemical and pharmaceutical and food industries to make them more globally competitive. (The 

Reuter (2016) “Algeria's economic policy may accelerate inflation - IMF Online” available on 

https://af.reuters.com/article/algeriaNews/idAFL5N1UJ512 [accessed] on 17th September 2018. 

131  Gabrielyan (2016) compares the forecast performance of the Phillips curve and random walk for 

Swedish inflation over the period 1980 – 2014. The author reports evidence of instability for Phillips 

curve. However, the Phillips curve instabilities do not affect its forecast performance when compared 

https://af.reuters.com/article/algeriaNews/idAFL5N1UJ512
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comparison are based on out-of-sample forecast instead of the in-sample comparison. 

Rossi (2012) documents that out-of-sample forecasts comparison are robust to model 

instabilities because their procedures can minimize the effect of structural breaks on 

forecasting model. In particular, they re-estimate their parameters over time by either 

rolling or recursive estimation process. 

 

  

                                                           
with the random walk model. For instance, the Phillips curve outperforms the random walk model for 

the period of 2004 to 2013.   
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7.7 The chapter summary and conclusion  

In this chapter, we estimate multivariate models (VAR, VECM and VEC) based on 

different level of integration of the variables identified in chapter six for each country. 

In particular, we distinguished between different techniques in modelling using 

differencing and cointegrating restrictions via an error-correction model to ensure 

stationary. We estimate the following multivariate models (VAR, VECM and VEC).  First, 

we estimate the VAR model in pure differences (stationary form) to forecast inflation.132 

Second, we construct a VECM without imposing cointegrating restrictions.133 Third, we 

estimate a VEC that imposes cointegrating restrictions on the VECM. This allows us to 

examine whether imposing cointegrating restrictions via a vector error-correction 

model improves long-run inflation forecasts.  

Further, we investigate whether the multivariate models (VAR, VECM and VEC) are 

structurally stable in the sense that the regression coefficients are constant. If not, what 

are the implications of the instability for forecasting future inflation or what forecast 

methods work well in the face of instability? For instability tests, we perform two 

different parameter shifts tests that are available in EViews (the CUSUM and Bai and 

Perron (2003) tests).  Further, we produce a forecast for each multivariate model (VAR, 

VECM and VEC) that passes the diagnostic test for serial autocorrelation and choose the 

best forecasting model for the multivariate model. For each model, we estimate four 

different models. The first model includes all available variables as endogenous except 

unemployment (which is excluded). The second model includes all available variables as 

endogenous except for the output gap (which is excluded). The aim of these two models 

is to consider whether the model that includes the output gap provides superior 

forecasts to the model that includes unemployment. The remaining two models are the 

same as the first two models except the oil price is treated as exogenous. 

For multivariate inflation forecast, a general impression is that there is no single model 

that dominates across all the countries and the best forecasting method varies 

considerably across the models. For example, where both unemployment and the 

                                                           
132 As a necessary requirement for this method, all the variables must be stationary and integrated in 
the same order  
133 For this model, we consider all variables that are not stationary and test for the cointegration. 
Accordingly, linear combination of two series which are stationary only after differencing may be 
cointegrated without differencing (Granger, 1986).  
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output gap are available as indicators of the Phillips curves (for Brazil and Russia), 

models including unemployment outperform those that use the output gap. Similarly, 

the unrestricted VAR model often produces the best forecasting performance for OPEC 

countries except in Saudi Arabia that has a history of lower inflation. For instance, VAR 

models have the superior forecasting performance over 1, 2, 3, 7 and 8-steps ahead for 

Algeria and all horizons for Nigeria and Angola. In contrast, the VEC is virtually favoured 

for BRICS countries over 1-step for Russia, 1 to 5-steps ahead for China, 1 to 6- steps 

ahead for Brazil and all horizons for South Africa and India. The VECM specification only 

favoured for Saudi Arabia.  In general, we find that including long-run information in the 

form of a specified cointegrating equation generally improves the forecasting 

performance of inflation compared with VARs and VECMs for BRICS. While unrestricted 

VAR model outperforms other selected models for OPEC countries. To examine whether 

the instabilities in multivariate models (VAR, VECM and VEC) affects the performance of 

the inflation forecasting. In our study, the application of the two stability tests (the 

CUSUM and Bai Perron tests) provide evidence that the stability of the model can 

enhances the forecasting performance of inflation for few countries. For example, the 

favoured forecasting models are stable for 3 (Algeria, Nigeria and Saudi Arabia) out of 4 

OPEC countries. The unrestricted VAR models are stable produce the best forecast 

results for Angola and Algeria. Similarly, the VECM specification that includes all 

variables as endogenous is stable and favoured for Saudi Arabia. In contrast, all the 

favoured forecasting model for BRICS countries are not stable. The performance of the 

favoured forecasting models that are not stable are consistent with the study of (Stock 

and Watson, 2003, and Rossi 2012) who argued that instability of the theoretical model 

could be misleading for favoured out-of-sample forecasting.   
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CHAPTER 8  

COMPARISON OF THE BEST FORECASTING PERFORMANCE OF THE 

MULTIVARIATE AND UNIVARIATE MODELS 

8.0 Introduction  

In this chapter, we estimate a benchmark model (naïve model) and compare its 

forecasting performance with the best - selected multivariate (unrestricted VAR, VECM 

and VEC) and univariate models (TAR, ARIMAX and ARIMAs) to choose the best model 

that forecasts inflation in each country. 

8.1 Naïve Model  

In this section, we apply the same forecast evaluation procedure applied to the 

univariate models in chapter 5 (section 5.5.0) and multivariate specifications developed 

in chapter 7 to produce m-step ahead forecast for the naïve model. Our approach 

follows the studies of Atkeson and Ohanian (2001) who use the same model as the 

benchmark model. Atkeson and Ohanian argued that an inflation forecasting model 

based on some hypothesized economic relationship cannot be considered a useful guide 

for policy if its forecasting performance is not better than a simple naïve model. We 

estimate the naïve model by equating the observed value in the last quarter of the 

estimation period to forecast the present quarter. In other words, the inflation rate over 

the coming quarter is expected to be the same as the inflation rate over the previous 

quarter. In our study, we applied a Naïve model to the growth rate of prices to produce 

forecasts over the ex-post forecasting period 2013q1 – 2014q4. In particular, we conduct 

the rolling forecast for the Naïve model as follows. For models estimated up to 2012q4, 

we use the 2012q4 observed value of data to produce a 1-step ahead forecast for 

2013q1, as the 2-step ahead forecast for 2013q2, 3-step ahead forecast for 2013q3, and 

up to 8- step ahead forecast for 2014q4. For Brazil, we produce out-of-sample ex-post 

forecast for naïve model based on a rolling basis. The forecast generated by the naïve 

model for Brazil is compared with the other class of the models.  Table 8.1 and 8.2 

reports the new generated naïve forecast performance measures, and those for the best 

selected univariate model in Chapter 5 Table 5.6.4 (TAR model, Automatic EView ARIMA 

selection) and best selected multivariate model in Chapter 7 Table 7.4.1.2 and 7.4.1.3 

(the VECM and VEC models).  
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The forecast performance measures for these models are given in the columns headed 

A, B, C, D, E, F and G, of Table 8.1 and 8.2. 

Table. 8.1. The best univariate models selected for Brazil 

 A. Naive Model B. Nonlinear TAR model over 
a reduced sample that avoid 
breaks 

C. Reduced sample 
EView9 Automatic 
seasonal ARIMA model 
without modelling 
breaks 

D. Reduced sample 
EView9 Automatic’s non-
seasonal ARIMA model 
without modelling 
structural breaks 

 RMSE MAPE U RMSE MAPE U RMSE MAPE U RMSE MAPE U 

1-step  0.0050 6.6990 0.0400 0.0050 6.0080 0.0360 0.0050 5.0690* 0.0360 0.0060 7.8950 0.0490 

2-step 0.0060 9.6120 0.0520 0.0080 10.9700 0.0690 0.0060 8.0390 0.0470 0.0070 9.5170 0.0560 

3-step 0.0060 8.7380 0.0490 0.0100 13.1200 0.0910 0.0070 10.150 0.0560 0.0060 8.2540 0.0480 

4-step 0.0040 4.8850 0.0290 0.0110 13.4300 0.0990 0.0060 8.6970 0.0500 0.0030* 3.7780* 0.0220* 

5-step 0.0020 2.4170 0.0150 0.0080 11.1900 0.0690 0.0070 9.3930 0.0520 0.0002* 0.1580* 0.0010* 

6-step 0.0070 9.8590 0.0530 0.0040 4.8800 0.0310 0.0060 7.2460 0.0430 0.0004* 0.5880* 0.0040* 

7-step 0.0080 12.3100 0.0660 0.0070 10.6200 0.0530 0.0060 8.2260 0.0490 0.0004* 0.7080* 0.0040* 

8-step 0.0020 3.0140 0.0150 0.0060 10.1600 0.0480 0.0090 15.4300 0.0720 0.0004* 0.3390* 0.0020* 

An asterisk indicates the model with the lowest value for any particular measure of forecasting performance  

Table 8.2. The best multivariate models selected for Brazil 

 E.  
VAR: All variables endogenous 

output gap excluded 
unemployment included 

F. 

VEC: All variables endogenous 

output gap excluded 

unemployment included 

G.  
VEC: Oil price exogenous 

output gap excluded 

unemployment included 

 RMSE MAPE U RMSE MAPE U RMSE MAPE U 

1-step  0.0060 8.5330 0.0460 0.0040 5.1800 0.0290 0.0040 5.0840 0.0290* 
2-step 0.0120 17.6600 0.0900 0.0070 10.1000 0.0560 0.0060 7.0540* 0.0440* 
3-step 0.0130 18.4700 0.0970 0.0060 6.8780 0.0450 0.0060 7.3040 0.0520 
4-step 0.0110 17.6500 0.0850 0.0040 4.9060 0.0290 0.0030 4.4790 0.0250 
5-step 0.0150 23.5100 0.1100 0.0090 9.9190 0.0660 0.0030 3.5420 0.0220 
6-step 0.0200 28.9700 0.1430 0.0190 24.4600 0.1370 0.0130 17.8300 0.0920 
7-step 0.0140 19.7900 0.1020 0.0180 24.1100 0.1330 0.0190 29.0400 0.1340 
8-step 0.0070 12.4400 0.0590 0.0110 18.0800 0.0830 0.0170 28.8600 0.1260 

An asterisk indicates the model with the lowest value for any particular measure of forecasting 

performance for each forecasting horizon.  

 

From the table (8.1 and 8.2), the reduced sample univariate model that employs EViews 

9’s automatic non-seasonal ARIMA technique, see column D, has the lowest RMSE, 

MAPE and U-statistics over all forecasting horizons except for the 1 to 3 step-ahead 

horizons. Similarly, the reduced sample that employs EView9 Automatic seasonal ARIMA 

model without modelling breaks has the lowest value for MAPE over the 1-step ahead 

horizon, (see column C table 8.1). In contrast, the reduced sample multivariate VEC 

model that specified oil price as exogenous and include other variables as endogenous 

including unemployment and excluding output gap, see column G table 8.2, has the 

lowest RMSE and U-statistics values for 1 and 2-steps-ahead horizons according to the 

RMSE, MAPE and U-statistics. The VEC model that includes all variables as an 

endogenous including oil price (see column F table 8.2) has lowest value for 3-step 
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according to the RMSE, MAPE and U-statistics.  Our results indicate that univariate 

ARIMA model that employs Eviews 9’s automatic non-seasonal ARIMA unambiguously 

produces the best forecasting performance over long horizons for Brazil. While the 

multivariate VEC model generally produces a better forecast for Brazil inflation over the 

short horizons (1, 2 and 3-steps forecast ahead).  We note that the benchmark model 

(naïve) and nonlinear TAR model were never favoured over the best selected 

multivariate models and univariate ARIMA model for all forecasting horizons according 

to the RMSE, MAPE and U-statistics. Our result is a contrast to the study of Atkeson and 

Ohanian (2001) who produces a better forecast for the naïve model than the 

multivariate VAR model. A similarly procedure was applied to all countries and summary 

is available in the table 8.3 and 8.4. 

8.3 Summary of the best forecasting multivariate and univariate models for BRICS countries 

Best forecasting model for Brazil 

 RMSE MAPE U 

Horizon Type oil Type Oil Range Type Oil 
1  VEC Exo R_A_SARIMA  5.0690 VEC Exo 
2 Step VEC Exo VEC Exo 7.0540 VEC Exo 
3  VEC Exo VEC End 6.8780 End End 

4 to 8- steps R_A_ARIMA - R_A_ARIMA - 0.3390 -
8.2540 

R_A_ARIMA - 

Best forecasting model for Russia 

 RMSE MAPE U 

Horizon Type oil Type Oil Range Type Oil 
1 to 8 –steps R_A_ARIMA - R_A_ARIMA - 6.3660 – 

20.8700 
R_A_ARIMA - 

Best forecasting multivariate model for India 

 RMSE MAPE U 

Horizon Type oil Type Oil Range Type Oil 
1 to 8 steps F_A_SARIMA - F_A_SARIMA - 13.5200 -

63.4600 
F_A_SARIMA - 

Best forecasting model for China 

 RMSE MAPE U 

Horizon Type oil Type Oil Range Type Oil 
1 to 8- steps F_TAR Model - F_TAR Model - 6.1940 – 

10.0800 
F_TAR Model  

Best forecasting model for South Africa 

 RMSE MAPE U 

Horizon Type oil Type Oil Range Type Oil 
1 to 2-steps VEC Exo VEC  Exo 6.0450- 

15.4560 
VEC Exo 

3 to 8-steps VEC End VEC End  8.4560- 
12.8700 

VEC End 

See notes for Table 5.5.2 and 7.5.1. VAR = unrestricted VAR model with differenced (stationary) data, VECM = 
unrestricted Vector Error Correction Model (VECM) that assumes cointegration without imposing cointegrating 
restrictions. VEC = restricted VECM that imposes a single cointegrating equation on the VECM. 
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8.4. Summary of the best forecasting multivariate and univariate models for OPEC countries 

Best forecasting model for Angola 

   RMSE MAPE U 

Horizon Type Oil Type Oil Range Type Oil 
1 to 8 steps VAR End R_SARIMA -  2.05900 - 

13.5000 
VAR End 

Best forecasting model for Algeria 

 RMSE MAPE U 

Horizon Type Oil Type Oil Range Type Oil 
1 to 3-steps VAR Exo VAR Exo 44.0100- 

101.600 
VAR Exo 

4 to 6 -steps VEC Exo VEC Exo 30.555 – 
163.600 

VEC Exo 

7 to 8-steps VAR Exo VAR Exo 0.0550 -

37.6500 
VAR Exo 

Best forecasting model for Ecuador 

 RMSE MAPE U 

Horizon Type Oil Type Oil Range Type oil 

1 to 8-steps F_SARIMAX - F_SARIMA
X 

- 15.4500 -
42.9100 

F_SARIMAX - 

Best forecasting model for Nigeria 

 RMSE MAPE U 

Horizon Type Oil Type Oil Range Type Oil 
1 to 4- steps R_TAR Model  R_TAR 

Model 
  15.9000- 

19.360 
R_TAR Model  

5 to 8-steps VAR End VAR End 28.7600 -
37.7700 

VAR End 

Best forecasting model for Saudi Arabia 

 RMSE MAPE U 

Horizon Type Oil Type Oil Range Type Oil 
1 to 2-steps R_TAR Model - R_TAR 

Model 
- 5.6470 – 7.8200 R_TAR Model - 

3 and 5-steps VECM End VECM End 4.3590 – 8.1710 VECM End 

4, 6, 7 and 8-
steps 

R_A_ARIMA   - R_A_ARIMA  -  1.0100 - 
13.2000 

R_A_ARIMA  - 

Best forecasting model for Kuwait 

Horizon RMSE MAPE U 

1-8-steps F_SARIMAX - F_SARIMA
X 

 11.2100 – 
38.5900 

F_SARIMAX - 

 See notes for Table 5.5.2 and 7.5.1. The best univariate forecasting model is identified by each measure (RMSE, MAPE 

and U) for each forecasting horizon (1, 2…, 8 steps ahead). The full sample univariate model that employs seasonal 

Box-Jenkins ARIMA techniques and model’s structural breaks is denoted as F_SARIMAX, the full sample univariate 

model that employs Box-Jenkins ARIMA techniques without modelling structural breaks is denoted as F_SARIMA (this 

model type is exclusive to India because there were no significant structural breaks to model over the full sample). 

The full sample specifications that employ EViews 9’s automatic seasonal and non-seasonal ARIMA model without 

modelling breaks are denoted as F_A_SARIMA and F_A_ARIMA respectively (these models are exclusively designed 

for China because the period after the structural breaks are less than 39 observations and relative step shifts for this 

period also appear to be small which mean that inference regarding unit roots may not be too adversely affected 

when using the full sample. Hence, the full sample is used for these models for this country). The reduced sample 

model that employs seasonal ARIMA technique’s without modelling structural breaks is denoted as R_SARIMA. The 

reduced sample model that employs EViews 9’s automatic seasonal ARIMA model selection procedure without 

modelling breaks is denoted as R_A_SARIMA and the reduced sample model that employs EViews 9’s automatic non-

seasonal ARIMA model selection method without modelling breaks is represented by R_A_ARIMA. F_TAR Model is 

denoted as threshold autoregressive model estimated over the full sample and R_TAR model is denoted as the 

threshold autoregressive model estimated over the reduced sample that avoid modelling breaks. The range gives the 

range of values for the MAPE for models favoured according to this forecasting measure over the specified horizon.  
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From table 8.3, the EViews 9 automatic ARIMA model selection procedure applied to 

the reduced sample is virtually favoured for all the BRICS countries except South Africa 

and China (all horizons) and Brazil (for 1 up to 3- step ahead horizon). The reduced 

sample automatic nonseasonal method is favoured for all forecasting horizons for Russia 

and over 4 to 8 steps for Brazil. The full sample automatic seasonal method is favoured 

for all forecasting horizons for India and over 1-step ahead horizon for Brazil according 

to the MAPE measure. 134  Similarly, the full sample TAR model is only favoured for China 

over all forecasting horizon. However, the VEC that specified the oil price as exogenous 

produces the best forecasts over all forecast horizons for South Africa and over the 1 to 

3-step ahead period for Brazil. We note that the MAPE of all favoured non-seasonal 

automatic ARIMA models is always less than 21 percentage points suggesting a relatively 

good forecasting performance for this class of models for BRICS nations while the MAPE 

value of the automatic seasonal ARIMA model is between 13.5200 and 63.4600 for India 

and 5 percentage point for Brazil.  The MAPE value for the TAR model is less than 11 

percentage point.  While the MAPE value for the VEC is between 6.0450 and 15.4560 for 

South Africa and 7.0540 for Brazil.  

For OPEC countries (table 8.4), the univariate ARIMA model is rarely favoured and, this 

is in contrast with the results for the BRICS nations. For all the selected OPEC countries, 

the automatic ARIMA specification is only favoured for Saudi Arabia over the longer 

horizons (4, 6, 7 and 8-steps ahead). Whereas the TAR model produces the best 

forecasting results over the shorter 1 to 2-step ahead horizons and the VECM is favoured 

over 3 and 5 steps ahead horizons. For Angola, the best forecasting models depend upon 

the forecaster’s loss function and whether they are especially averse to large errors or 

whether they treat the size of all forecasting errors equally. According to MAPE, the 

reduced sample seasonal Box-Jenkins ARIMA technique is favoured over all forecasting 

horizons. While the unrestricted VAR model produces the best results for 1 to 8- step 

ahead horizons according to the RMSE and U-statistics value. Similarly, the unrestricted 

VAR is favoured for Algeria over 1, 2, 3, 7 and 8 -steps ahead while the VEC produces the 

best forecasting results over 4 to 6-steps ahead horizons. For Nigeria, unrestricted VAR 

                                                           
134Note that the automatic seasonal method is applied to the reduced sample for Brazil. 
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is favoured over the longer horizons (5 to 8-steps ahead) and, the TAR model produces 

the best forecasting results over the shorter horizons (1 to 4-steps ahead).   

For Ecuador and Kuwait, the valid ARIMAX model and TAR model outperform the 

benchmark naïve model. The MAPE value for ARIMA specification is between 11.2100 

and 38.5900 for Kuwait, and 15.4500 - 42.9100 for Ecuador. The MAPE value for the 

favoured automatic ARIMA model is less than 14 percentage point for Saudi Arabia. 

While the MAPE value for the TAR model for Nigeria is between 15.9000 and 19.360 and 

5.6470 – 7.8200 for Saudi Arabia.  

 To sum up, our study shows that the naïve models were never over the univariate and 

multivariate models which is contrast to the study of Atkeson and Ohanian (2001).  Our 

research also shows that the univariate model is generally favoured over the 

multivariate models for the BRICS countries (except South Africa). However, the results 

are mixed between univariate and multivariate methods for OPEC countries. These 

results suggest that multivariate models do not clearly outperform univariate ARIMA 

models when forecasting inflation for the countries considered here (especially for 

Russia, China, and India). This result is consistent with the findings of Stock and Watson 

(2007) and Atkeson and Ohanian (2001) who note that the univariate models 

outperform multivariate models during periods of stable and low inflation. Their result 

is because an increase in economic instabilities (requiring modelling of these 

instabilities) could reduce forecasting accuracy, especially in multivariate models.  Other 

possible explanation may also be because all the multivariate model specified by BRICS 

countries failed the two-stability tests (CUSUM and Bai Peron test) specified in this 

research. Therefore, it may be possible that instabilities have reduced forecast 

performance of the multivariate model for the BRICS countries.  

When examining the sensitivity of forecast performance, we compare the full sample 

that explicitly models breaks and the reduced sample that avoids modelling breaks. We 

note that reducing the sample to avoid modelling instabilities increases the forecasting 

performance of both univariate and multivariate models. In our work on BRICS and OPEC 

countries, we find that reducing the sample to avoid modelling structural breaks 

improves forecasting performance, where the univariate models tend to forecast best 

(especially for BRICS countries).  
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8.2 The chapter summary and conclusion  

In this chapter, we follow the study of Atkeson, and Ohanian (2001) and produced 

forecast for inflation using a naïve model. Atkeson and Ohanian argued that an inflation 

forecasting model based on some hypothesized economic relationship cannot be 

considered a useful guide for policy if its forecasting performance is not better than a 

simple naïve model. Therefore, we examine whether the forecast produce by the naïve 

model will outperforms forecast produced by the multivariate (VAR, VECM and VEC) and 

univariate models (TAR model, ARIMAX, ARIMAs and EViews automatic selection 

procedure). In our study, the naïve models were inferior to the best selected univariate 

and multivariate model for all selected countries. This result confirms the relatively good 

forecast performance of both multivariate and univariate models estimated in our 

study. 
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CHAPTER 9 

9.1 SUMMARY AND CONCLUSION  

The evidence from previous studies indicate that the performance of inflation 

forecasting depends on different monetary regimes over different periods (Lee 2012, 

Ozkan and Yazgan, 2015). In particular, inflation forecasting performance is generally 

superior under inflation targeting monetary regime compared to periods without 

inflation targeting policy. Buelens (2012) and Stock and Watson (2008) stated that the 

accuracy of a forecasting model depends on the sample period in which they are 

estimated and evaluated. For example, the appropriate forecasting model to be used 

prior to the economic crisis may be different from that during the economic crisis. 

Pretorious and Rensburg (1996) revealed that univariate ARIMA models are better in 

the prediction of inflation when the inflation rate is relatively stable, and multivariate 

models are better at forecasting inflation when inflation is volatile. The empirical studies 

of (Sim and Zha 2006, Groen and Mumtaz 2008, and Barnett et al. (2014)) revealed that 

a model that incorporates different regime shifts have better forecasting performance 

than the alternative model without regime shifts.  Fanchon and Wendel (1992) observed 

that the predictive performance of VAR and VEC models depends on the length of the 

forecasting horizon. For instance, the multivariate VEC model outperformed the VAR 

model for 13 and 11-month ahead forecasting horizons. This study extends the existing 

literature by forecasting inflation in BRICS and selected OPEC countries over an 8-steps 

ahead forecasting horizon. To the best of our knowledge, no study has previously 

analysed the relative performance of inflation forecasting in OPEC and BRICS economies 

that cover sample periods of both high inflation and moderate inflation. In this study, 

we fill this gap by evaluating the forecasting performance of univariate and multivariate 

models in the selected economies.  

For the univariate models, we produce a forecast for ARIMAX models that have a 

deterministic component to account for structural breaks over the full sample period 

and different ARIMA specifications over a reduced sample period (with a minimum of 

39 observations) that avoids structural breaks. The univariate models that we develop 

over the reduced sample period are, first, a seasonal ARIMA specification identified 

using the Box-Jenkins method, second, a seasonal ARIMA model identified using EView’s 

automatic model selection tool, third, a non-seasonal ARIMA model identified using 
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EView’s automatic model selection tool applied to seasonally adjusted data, fourth, a 

regime shifts threshold autoregressive model  (over the reduced sample and full sample) 

and fifth,  naïve model as a benchmark model.  The aims are as follows. First, how can 

we make the price data stationary for each country? In particular, is seasonal 

differencing required, do structural breaks need to be accounted for and is the 

logarithmic approximation a valid measure of annual inflation. Second, can ARIMAX 

models that pass diagnostic checks be obtained for each country. Third, to determine 

whether forecasting accuracy is improved by using models developed over a shorter 

sample period that avoids the modelling of structural breaks or using specifications 

estimated over the full sample where structural breaks are modelled. Fourth, to 

determine whether using modeller judgement in selecting models by applying the Box-

Jenkins identification method delivers superior forecasting performance to models 

developed using automatic model selection tools. Fifth, to determine whether forecasts 

based on the models applied to seasonally adjusted data (with re-seasonalised 

forecasts) are more accurate than those based on unadjusted data. Sixth, to determine 

whether the model that incorporates different regimes or structural breaks will produce 

a better forecast than the alternative model without the incorporation of a regime shift. 

Seventh, to examine whether the inflation forecast generated by a naïve model will 

outperforms other selected models.  

For multivariate analysis, we produce a forecast for annual inflation; all models are 

estimated using reduced sample periods that avoid the modelling of structural breaks 

and use seasonally adjusted data to avert the need to deal with issues of seasonal 

integration and seasonal cointegration. The multivariate specifications developed are 

based on unrestricted VAR, VECM and VEC formulations involving stationarity inducing 

transformations. Each model formulation has potentially four specifications. The first 

specification excludes unemployment and includes the output gap, where the oil price 

and all other variables are treated as endogenous. The second specification excludes the 

output gap and includes unemployment, where the oil price and all other variables are 

treated as endogenous. Comparison of these two models are determined whether the 

specification that includes the output gap provides superior forecasts to the model that 

includes unemployment. In the third specification, the oil price is treated as exogenous 

and all other available variables as endogenous except unemployment (which is 
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excluded). For the fourth specification, the oil price is also treated as exogenous and 

includes all available variables as endogenous except the output gap (which is excluded). 

Fifth, has multivariate model stable over time? If not, what are the implications of the 

instability of forecasting inflation? These multivariate models provide insights that 

include the following. First, they indicate which economic determinants are essential for 

modelling and forecasting inflation and suggest the extent to which there are similarities 

or differences in this regard across countries. Second, they determine whether VAR, 

VECM or VEC formulations are favoured in any country and/or across countries 

generally. Third, they facilitate the assessment of whether the use of explanatory factors 

in these multivariate formulations can improve forecasting performance relative to 

univariate models that have specifications that are not based on economic theory. 

Fourth, of all the models considered (both univariate and multivariate) which model 

produces the best forecasting performance over the benchmark model (naïve) across 

countries and/or for different forecasting horizons? 

The main conclusions of this thesis are summarised below. 

1. For all countries, the price data is highly seasonal such that they appear to be a 

seasonal, rather than autoregressive, unit root requiring measures of inflation 

based upon four periods (rather than one period) differencing to induce 

stationarity. However, for all countries except India, there are evident of structural 

shifts in inflation such that inflation based upon a four period (annual) difference is 

only stationary after accounting for structural breaks. In the majority of countries, 

the annual differencing transformed the change in the slope of prices into step shifts 

in inflation such that a period of relatively high inflation is followed by a period of 

more moderate inflation. This implies the need to model structural breaks when 

using the full sample of data or reduce the sample to avoid the modelling of such 

shifts in all countries (except for India).  In this study, our results indicate that the 

annual (four periods) difference of the log of prices is a poor approximation of 

inflation for the periods of high inflation or countries that have a history of high 

inflation, for example, Brazil, Russia, Angola, Algeria and Nigeria. However, the 

annual (four periods) difference of the log of prices is a reasonable approximation 
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of inflation for the period of low inflation or countries that have a history of low 

inflation, for example, India, China, South Africa and Saudi Arabia.135  

 

2. For all the selected countries ARIMAX models estimated over the full sample that 

cannot be rejected according to the standard diagnostic tests are obtained. The 

diagnostic tests considered are for residual autocorrelation, stationarity and 

invertibility. We additionally require that the included deterministic component of 

the model adequately captures the identified structural breaks. Therefore, ARIMAX 

models that are valid for forecasting are obtained for all countries.  

 

3. The ARIMA models estimated over the reduced sample that avoids the modelling 

of structural breaks exhibit superior forecasting performance compared to ARIMAX 

models estimated over the full sample in most countries except Ecuador and Kuwait 

that only available in that class model. This result implies that the potential benefits 

of having more data from using the full sample are generally outweighed by being 

able to avoid modelling structural breaks, even at the cost of a reduced sample for 

estimation. Given the extra time and modeller expertise required to model such 

breaks this suggests that using reduced samples to avoid the issue of structural 

breaks is generally the preferred strategy. This is consistent with the notion that 

models with many regressors, as required when modelling structural breaks, can 

overfit the sample and exhibit a poor forecasting performance (Yohei, 2013 and 

Carlos, 2014). 

 

4. In some countries, the EView’s automatic (non-seasonal and seasonal) ARIMA 

model selection procedure yields specifications that are valid for forecasting. This is 

in the sense that the diagnostic checks do not reject them for residual 

autocorrelation, stationarity and invertibility. One exception is for Nigeria that 

failed the standard diagnostic checks for both the non-seasonal and seasonal 

ARIMA specifications.  In addition, the EViews automatic seasonal ARIMA model 

                                                           
135 Note, we do not use the log approximation for inflation in any country and instead use the 

more standard growth rate measure of inflation, (𝐼𝑁𝐹𝑡= 
𝑃𝑡− 𝑃𝑡−4

𝑃𝑡−4
). 

 



272 
 

selection method yielded specifications that failed at least one of the standard 

diagnostic checks for 4 of the 9 countries (being, Russia, India, Nigeria and South 

Africa). For the automatic non-seasonal ARIMA model selection procedure, 7 of the 

9 countries’ selected models are valid for forecasting where 2 (Angola and Nigeria) 

of the 4 selected OPEC countries’ models failed at least one of the diagnostic checks. 

We also note that in 8 of the 9 countries (the exception is India) the automatic 

selection procedure yields models where the ARMA coefficients are statistically 

insignificant (including the highest order AR or MA term). Overall, this suggests that 

the automatic ARIMA model selection procedure often selects specifications that 

would be considered invalid (fails at least one diagnostic check) or would not be 

favoured by the modeller (includes an irrelevant regressor).  

5. ARIMA specifications based upon the EViews 9 automatic model selection 

procedure are favoured for the class of univariate model (according to forecasting 

accuracy measures) for virtually all countries. In particular, the automatic seasonal 

model selection method is favoured: for Brazil and China over the 1 and 2 steps 

ahead horizons, for South Africa over the 1 to 4 and 6 to 7 steps ahead horizons and 

never favoured over any horizon for Angola, Nigeria, Saudi Arabia and Algeria. The 

automatic non-seasonal model selection method is favoured for Russia over all 

horizons, for Algeria over the 2-step ahead horizon, for Brazil, Saudi Arabia and 

China over the 3 to 8 step horizons and for Nigeria over the 2 (possibly 3) and 4 to 

8 steps ahead horizons. Whereas, the seasonal Box-Jenkins ARIMA model without 

using the automatic selection technique is favoured for Angola over all horizons, for 

Algeria possibly over the 8-step horizon, for Saudi Arabia over the 1 and 2 step 

horizons, for Nigeria over the 1 (and probably 3) step horizon, for South Africa over 

the 5 and 8 step horizons and for India over all forecasting horizons. In general, the 

EViews 9 automatic model selection procedure is favoured over the seasonal Box-

Jenkins ARIMA model (that does not use the automatic selection technique), 

especially for the BRICS countries. This suggests that automatic selection methods 

not only have the benefit of saving time they often also produce superior forecasts. 

This is despite our finding that ARIMA models based on automatic selection 

procedures often fail standard diagnostic checks and/or include irrelevant 

regressors. 

 



273 
 

6.  We compare automatic ARIMA model selection specifications that explicitly model 

seasonality to those that apply non-seasonal models to seasonally adjusted data 

and re-seasonalize the forecasts. We observed that non-seasonal specifications 

produce superior forecasting performance over the 3 to 8 steps ahead horizon for 

Brazil, China and Saudi Arabia, for all forecasting horizons for Russia, over the 2 and 

4 to 8 step horizons for Nigeria and the 2-step ahead horizon for Algeria. The 

automatically selected seasonal ARIMA model is favoured for Brazil, China and 

Saudi Arabia over 1 to 2 steps ahead horizons, for all forecasting horizons for India 

and Angola, over the 1 to 4 and 6 to 7 steps ahead horizons for South Africa and 

over the 1 and 3 steps ahead horizons for Nigeria. In general, we find that building 

ARIMA models to seasonally adjusted data and re-seasonalising the forecasts 

generally yields superior forecasting performance relative to constructing seasonal 

ARIMA models when using automatic ARIMA model selection procedures. 

 

7. When we compared the forecast performance of the regime shift TAR model 

estimated over the full sample and reduced sample that avoid modelling breaks. 

The TAR model estimated over a reduced sample that avoid modelling breaks 

produce superior forecast than the TAR model estimated over a full sample for all 

countries except for Saudi Arabia (over 1 to 3-steps ahead horizons). Similarly, when 

we compared the best selected ARIMA specifications in each country with the best 

selected threshold autoregressive model (TAR model).  We observed that the best 

selected TAR models were not favoured over the best selected linear ARIMA models 

for all countries except for China (over all forecasting horizons), Nigeria (over 1 to 

4-steps ahead horizons) and Saudi Arabia (over 1 to 3-steps ahead). The 

performance of the TAR model for a few countries are consistent with the studies 

of (Montgomery et al. (1998)) who argued that the nonlinear threshold models (TAR 

model) produce a superior forecast for five steps ahead over a linear ARIMA model 

during periods of high unemployment for the selected country. 

 

8. For all selected OPEC and BRICS countries, the unrestricted VAR, VECM and VEC 

models that pass the standard diagnostic check for autocorrelation can be obtained. 

Unrestricted VAR models produce superior forecasts for the class of multivariate 

models over all forecasting horizons for 3 (Algeria, Angola and Nigeria) of the 4 
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selected OPEC countries. The exception is for Algeria over 4 to 6 steps ahead 

horizons). In contrast, unrestricted VAR model has rarely produced the best 

forecasts for BRICS countries over both shorter and longer horizons and was only 

favoured over 7 to 8-steps ahead horizon for Brazil, 6 to 8-steps for China and all 

forecasting horizons except 1-step ahead horizon for Russia. The VECM is only 

favoured for 1 (Saudi Arabia) out of 4 selected OPEC countries and never favoured 

for BRICS countries. Further, the VEC models produce better forecasts over all 

forecasting horizons for all BRICS countries. The exception is for China over 6 to 8-

steps ahead horizons, Brazil over 7 to 8 horizons and Russia over 2 to 8-steps ahead 

horizon.  Whereas, the VEC only favoured over 4 to 6 or 4 to 8-steps for Algeria.  In 

summary, our results show that the unrestricted VAR models over both short and 

long horizons produce the best forecasting performance for OPEC countries. While 

the VEC model produces a better forecast for BRICS countries. The forecasting 

performance of the VEC model for BRICS countries and possible VECM for Saudi 

Arabia may be because inflation in many of these countries is relatively moderate 

and kept in check by good monetary policy, especially when compared with other 

OPEC countries. Accordingly, the explicit nature of the variables and characteristics 

of the system can influence the accuracy of the forecasting performance (Zapata 

and Garcia, 1990).  Also, the relatively good performance of the unrestricted VAR 

model over the VEC model for OPEC countries is consistent with the findings of 

Ogunc et al. (2013) who stated that VAR models appear to produce the best 

forecasting model for Turkish inflation for a period that covers the effect of the 

global financial crisis. Our results also reveal that VECs often outperform VECMs, 

which means that restricting the long-run component into a single cointegrating 

equation is beneficial. This is consistent with Timothy and Thomas (1998) who 

stated that forecasts are most likely to be improved by applying error-correction 

techniques if the data strongly supports the cointegration hypothesis. 

 

9. From the VECs, we specify a single cointegrating equation that indicates the extent 

to which models are consistent with our theoretical expectations. For 2 (Angola, 

and Saudi Arabia) of the OPEC countries where valid models could be obtained, the 

error-correction term (CointEq1) has a negative and significant adjustment 

coefficient in the inflation equation indicating error-correction toward the 
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equilibrium price level specified by the cointegrating equation. However, while the 

coefficient on the error-correction term is negative, it is insignificant for Nigeria 

(where all variables are included as endogenous except unemployment that is 

excluded) and Algeria (where oil price is treated as exogenous). The insignificance 

of the adjustment coefficient questions whether there is valid error-correction 

towards an equilibrium price level for this country, although it may just indicate 

slow adjustment given the coefficient has the expected negative coefficient sign. 

The coefficients in the cointegrating equations can also be assessed for their 

consistency with theoretical expectations. For 4 OPEC countries (Angola, Algeria, 

Nigeria and Saudi Arabia), the long-run coefficients on the money supply are 

significant and positive, which is consistent with the quantity theory of money.  In 

contrast, the long-run coefficients on the interest rate do not have the expected 

negative sign for these OPEC countries except Nigeria where all variables include as 

endogenous including the oil price. This contradicts theoretical expectations for 

many OPEC countries. The long-run coefficients on the real exchange rate are 

positive and significant for 3 (Algeria, Nigeria and Saudi Arabia) of the 4 OPEC 

countries and this is consistent with economic theory. However, the long-run 

coefficient on the real exchange rate is negative and insignificant for Angola which 

is inconsistent with economic theory.  We similarly summarise the theoretical 

plausibility of the cointegrating equations for the BRICS countries. The error-

correction term has a negative and significant adjustment coefficient in the inflation 

equation only for Brazil. This indicates valid error-correction towards the 

equilibrium price level for Brazil. The adjustment coefficient is negative and 

insignificant for Russia, India and South Africa. Whilst this is strictly not consistent 

with valid error-correction behaviour it may just indicate a slow adjustment to 

equilibrium given the coefficient has the expected negative coefficient sign. 

However, the coefficient on the error correction term in the inflation equation is 

positive and significant for China. This suggests that the price level is being forced 

away from the specified cointegrating equation for China. The long-run coefficients 

on the money supply are significant and have the theoretically expected positive 

sign for 3 (Brazil, Russia and India) of the BRICS countries. However, the long-run 

coefficient on the money supply is not consistent with economic theory for China 

(its coefficient is negative and significant) and South Africa (negative and 
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insignificant). The long-run coefficient on the interest rate has a sign that is not 

consistent with economic theory for 2 (Brazil and South Africa) of the BRICS 

countries where this variable is available.136 The long-run coefficient on the real 

exchange rate is significant and has the expected positive coefficient for 4 (Brazil, 

Russia, China and South Africa) of the BRICS countries. However, the long-run 

coefficient on the real exchange rate is negative and significant for Brazil (where the 

oil price is treated as exogenous), which contradicts the basic economic theory. The 

long-run coefficient on the oil price is positive and significant for Angola, South 

Africa, and Brazil which is consistent with economic theory. However, the 

coefficient is positive and not significant for Nigeria. Where the unemployment 

variable is available (Brazil and Russia), the long-run coefficient on unemployment’s 

is negative and significant for Russia which is consistent with economic theory. 

However, the coefficient on unemployment is positive and significant for Brazil 

which is not consistent with theoretical expectation. To summarise, we consider the 

consistency of each variable with theory across all countries where that variable is 

available. To provide an indicative summary, we measure and utilise the following 

rules. If the variable is significant and has the expected sign for any country, it is 

considered fully consistent and has a 100% rating for that nation. If a variable has 

the expected sign and is insignificant, it has a 50% consistency rating for that 

country. Whereas, if a variable has the unexpected sign it is given a 0% consistency 

rating for that country. In particular, the coefficients on the unemployment, money 

supply, exchange rate, oil price and the interest rate have the highest theoretical 

consistency rating at 100%, 85%, 75%, 33.3% and 16.6% respectively for OPEC and 

BRICS countries (see Table 12.1.F2 and 12.1.H2).137 The relatively low consistency 

rating for the interest rate across the countries except Saudi Arabia is consistent 

with the findings of Al-Shammari and Al-Sabaey (2012) who indicate that the 

interest rate does not significantly affect the general price level for 59 developing 

countries.138 However, our results may not be surprising because the literature 

                                                           
136 Note that the interest rate is not included in the VEC specifications for India and Russia because the 
variable is I(0). In addition, interest rate is consistent and significant for China where oil price is included 
as endogenous. 
137 Salehi (2013) documents that the exchange rate and money supply are appropriate variables to 
consider in monetary policies aimed at controlling inflation. 
138 Note that the interest rate variable is not available in Saudi Arabia. 
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suggests a limited role for the interest rate in controlling inflation in OPEC countries 

and many developing nations. This is due to reasons of religion, social beliefs, the 

usury activities of financial institutions and the sovereignty of many these countries 

to regulate their financial institutions independently. The explanatory variables with 

relatively high consistency with theory are unemployment (100%), the money 

supply (85%) and the exchange rate (75%).139  For instance, an increase in money 

supply will cause a significant increase in inflation in all countries except China. 

Further, a rise in unemployment increases inflation (Brazil) decreases inflation in 

Russia and an increase in the exchange rate will raise inflation in Russia, China, 

South Africa, Nigeria, Saudi Arabia and Algeria (see Table 7.1.F2 and 7.1.H2).  

We also assess the consistency and plausibility of each country’s cointegrating 

equation (from the VEC) with theory. Algeria (62.5%), Nigeria (80%) and Angola 

(66.7%) have relatively high consistency with theory, although they are not 

generally favoured when compared with other multivariate models in terms of 

forecasting performance. In contrast, Brazil, (60%), China (70%), and India (75%) 

have relatively high consistency with theory and their forecasting performance is 

generally superior to VARs and VECMs.  In general, the valid VEC models that are 

broadly (if not entirely) consistent with economic theory can be found for BRICS and 

OPEC countries, most especially BRICS countries and they are generally favoured 

over the VARs and VECMs in terms of forecasting performance. This implies that the 

potential benefits (in terms of forecasting accuracy) of using theory to build 

multivariate VEC models of inflation may be undermined by the practical difficulty 

in securing statistically valid and completely theoretically consistent specifications. 

 

10. In general, the model that includes the oil price as endogenous appears to secure 

better forecasting performance than the model that includes the oil price as 

exogenous for all BRICS countries except for Brazil and South Africa (for at least 1 to 

2 steps ahead) as well as Russia over 5 and 6 -steps ahead. Similarly, the model that 

includes the oil as endogenous also produces the best forecasting performance for 

                                                           
139 Our literature review documents that inflation in developing countries were mostly caused by the 

external influence of the import price, higher interest rates, money supply and exchange rates (Frisch 

1977, Dhakal and Kandil 1993, Wesche et al. 2008, Boujelbene and Thouraya 2010). 
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all the OPEC countries except for Algeria over all forecasting horizons and Nigeria 

over the shorter horizon (1 to 2-steps ahead).   The endogenous impact of the oil 

price on inflation for many OPEC and BRICS countries suggest that fluctuation of the 

global oil price has a considerable influence on inflation for the selective economy. 

For instance, a fall in the global oil price is expected to reduce government revenue 

and lead to a higher government budget deficit that requires either higher taxes or 

a reduction in government expenditure that may increase the cost of production. 

However, this result remains tentative because the oil price has a coefficient sign 

that is inconsistent with economic theory for 3 (Russia, India and China) out of 5 

selected BRICS countries and 2 (Algeria and Saudi Arabia) out of 4 selected OPEC 

countries. This suggests caution in interpreting these results for these countries. The 

exogenous impact of oil prices on inflation for few countries most especially Algeria, 

Brazil, Nigeria and South Africa implies that inflation may not always determine by 

the oil price. This may be because oil price reductions in recent years have reduced 

the impact of oil shocks on inflation for this economy.140 We also suggest that many 

of these economies may recently have good monetary policies to manage their 

inflationary pressures. Therefore, it is possible that good monetary policy could 

have helped to minimize the impact of changes in the global oil price for these 

countries.141 This view is supported by the findings of Hooker (2002), Taylor (2000), 

Chen (2009), Mandal et al. (2012) and Dedeoglu and Kaya (2014) who indicate that 

the effect of the oil price on inflation is weak when adequate monetary policies are 

implemented.  

 

11. When examining whether the instabilities in multivariate models (VAR, VECM and 

VEC) affects the performance of the inflation forecasting. In our study, the 

application of the two stability tests (the CUSUM and Bai Perron tests) provide 

evidence that the stability of the model can enhance the forecasting performance 

                                                           
140 Since 2008, the oil price has been traded at less than $120 per barrel and reached a 12-year low of 

$27 in January 2016. There is a link between the lower oil price and economic growth. For instance, low 

oil prices reduce the cost of production and encourage producers to increase their output. 

141 Abraham (2016), stated that devaluation of the naira in Nigeria was found to have been effective 

reduce the effect of crude oil price decline on the performance of the Nigerian stock market. 
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of inflation for few countries. For example, the best multivariate models that are 

stable produce the best result for 3 out of 4 selected OPEC countries.  In particular, 

the unrestricted VAR specifications are stable and produce the best forecasts results 

over all horizons for Algeria and Nigeria, and the VECM specification that includes 

all variables as endogenous including oil price is stable and favoured for Saudi 

Arabia over all forecasting horizons. In contrast, all the best forecasting multivariate 

models for BRICS countries are not stable according to the CUSUM and Bai Perron 

tests. The forecast performance of the favoured multivariate models that is not 

stable for BRICS countries are consistent with the study of (Stock and Watson, 2003, 

and Rossi 2012) who argued that instability of the theoretical model can be 

misleading for out-of-sample forecasting. 

 

12.  We now summarise which models have the superior forecasting performance 

across both univariate and multivariate specifications. From our study, the EViews 

9 automatic ARIMA model selection procedure applied to the reduced sample is 

virtually favoured for all the BRICS countries except South Africa and China (all 

horizons) and Brazil (for 1 up to 3- step ahead horizon). The reduced sample 

automatic nonseasonal ARIMA is favoured for all forecasting horizons for Russia and 

over 4 to 8 steps for Brazil. The full sample automatic seasonal method ARIMA is 

favoured for all forecasting horizons for India and the reduced sample automatic 

seasonal method is favoured over 1-step ahead horizon for Brazil according to the 

MAPE measure.  Similarly, the full sample TAR model is only favoured for China over 

all forecasting horizon. However, the VEC that specified the oil price as exogenous 

produces the best forecasts over all forecast horizons for South Africa and over the 

1 to 3-step ahead period for Brazil.  

 

For OPEC countries, the univariate ARIMA model is rarely favoured and this is in 

contrast with the results for the BRICS nations. For all the selected OPEC countries, 

the automatic ARIMA specification is only favoured for Saudi Arabia over the longer 

horizons (4, 6, 7 and 8-steps ahead). Whereas the TAR model produces the best 

forecasting results over the shorter 1 to 2-step ahead horizons and the VECM is 

favoured over 3 and 5 steps ahead horizons. For Angola, the best forecasting models 

depend upon the forecaster’s loss function and whether they are especially averse 
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to large errors or whether they treat the size of all forecasting errors equally. 

According to MAPE, the reduced sample seasonal Box-Jenkins ARIMA technique is 

favoured over all forecasting horizons. While the unrestricted VAR model produces 

the best results for 1 to 8- step ahead horizons according to the RMSE and U-

statistics value. Similarly, the unrestricted VAR is favoured for Algeria over 1, 2, 3, 7 

and 8 -steps ahead while the VEC produces the best forecasting results over 4 to 6-

steps ahead horizons. For Nigeria, unrestricted VAR is favoured over the longer 

horizons (5 to 8-steps ahead) and, the TAR model produces the best forecasting 

results over the shorter horizons (1 to 4-steps ahead).   For Ecuador and Kuwait, the 

valid ARIMAX model outperforms the TAR model and naïve model.  

To sum up, our study shows that the naïve models were never over the best selected 

univariate and multivariate models which is contrast to the study of Atkeson and 

Ohanian (2001).  Our research shows that the univariate model is generally 

favoured over the multivariate models for the BRICS countries (except South Africa). 

However, the results are mixed between univariate and multivariate methods for 

OPEC countries. For OPEC countries that have a history of moderate inflation, for 

example, Saudi Arabia, the univariate automatic non-seasonal ARIMA model 

generally outperforms the multivariate models. In contrast, multivariate models 

generally outperform univariate automatically selected ARIMA models for the 

countries with high inflation (e.g. Angola and Algeria).  These results suggest that 

multivariate models do not clearly outperform univariate ARIMA models when 

forecasting inflation for the countries considered here (especially for India, China 

and Russia that has the history of moderate inflation compared to the OPEC 

countries). This finding is consistent with the previous literature that finds that 

univariate models are better in a prediction of inflation when inflation rate is 

relatively stable and theory-based models are better at forecasting inflation when 

the inflation is volatile (Pretorius and Rensburg 1996, Onder 2004, Stock and 

Watson, 2007 and Atkeson and Ohanian, 2001). Given this evidence, this study adds 

to the existing literature by providing information on the best inflation forecasting 

models for OPEC and BRICS countries. It also indicates that the modelling strategy 

of reducing the sample to avoid modelling structural breaks improves forecasting 

performance relative to using the full sample and modelling structural breaks.  
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CHAPTER 10 

10. Limitations and Future research 

It is widely accepted that Inflation in developing countries is caused by monetary and 

structural issues while inflation in the developed countries is caused by mainly monetary 

reasons (Tavakkoli, 1996). For inflation forecasting, most studies have argued in favour 

of using multivariate models over univariate although other studies have questioned the 

performance of multivariate models over different forecasting horizons (Fritzer et al. 

2002, Onder 2004, Alnaa and Abdalla, 2005). In contrast, our empirical results 

predominantly favoured that univariate ARIMA model outperforms the benchmark 

model (naïve), threshold autoregressive model (TAR model) and Multivariate model 

(VAR, VECM and VEC) during the period of moderate inflation while multivariate model 

performs better than the univariate during the period of high inflation.  Nevertheless, 

our research is limited in terms of data availability. For instance, not all potential 

determinants were available at the quarterly frequency for all nations and this limited 

the variables that we could consider for some countries. In an attempt to ameliorate 

this (and omitted variable issues) we considered the addition of variables only available 

at the annual frequency and used frequency conversion tools to generate quarterly 

series from annual series. Even so, not all determinants that we wanted to consider were 

available and were, therefore, not considered in our models for some countries. 

Further, many of our selected macroeconomic variables have a variety of different 

measures that can be used as their proxies. For example, the output gap can be 

estimated by different methods, and each of these methods has their advantages and 

disadvantages.142 Similarly, the GDP deflator, for example, could be used instead of the 

consumer price index to measure inflation. Therefore, different proxies for different 

variables may lead to different forecasting results.143 As more data become available on 

                                                           
142 The Hodrick-Prescott method we considered in our study has the merit of simplicity, but it does not 
generally exploit additional relevant information apart from information on the variable of interest. 
Burns et al. (2014) suggest that the output gap estimated by a production function and multivariate 
methods are superior to those based on the Hodrick-Prescott filter and other single variable estimation 
methods. Hendry (2001) argues that the linear trend can be misleading if the trend-growth changes or 
becomes inconsistent, especially during periods of economic instability and economic recession.  
143 CPI is a good proxy of inflation because it is arguably closer to the actual price while the GNP deflator 

may be better because it includes more commodities than the CPI (see Tavakkoli, 1996). 
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the potential determinants of inflation and their different proxies in BRICS and OPEC 

countries expanded models of inflation may be considered. However, we faced data 

constraints and considered a comprehensive set of variables and models for modelling 

and forecasting inflation in countries where there has previously been little such work.  

 

In this study, we consider modelling structural breaks over the full sample for the 

univariate ARIMAX and TAR specification only. In future research, more appropriate 

multivariate models (such as Bayesian vector autoregressions, BVARs, or ARDL 

specifications) can be extended for modelling structural breaks over the full sample and 

used to compare their forecasting performance with the univariate ARIMAX model. 

Further, our multivariate models are focused on differencing and cointegrating 

restrictions to ensure the stationarity of the data, in which all available variables are 

combined and specified based on their level of integration to forecast inflation. For 

instance, a VAR model is estimated based on differenced variables that are I(0) as well 

as VECM and VEC models where differenced variables and linear combinations of  I(I) 

covariates are stationary. In future, we recommend consideration of multivariate 

models that are guided by economic theory rather than the order of integration of 

variables. For example, the ARDL model of Pesaran et al. (2001) that uses the bounds 

testing approach is appropriate when there is uncertainty over the order of integration 

of variables. 

Further, throughout this study, we restricted ourselves to a minimum of 39 observations 

for the reduced sample that avoids modelling breaks. This limited our use of seasonal 

ARIMA specifications for some OPEC countries (e.g Ecuador and Kuwait). In future 

research, as more data becomes available, this restriction may no longer be binding, and 

a broader set of models can be considered for countries where our restriction meant 

certain models were not considered.     

Also, this study only compares the forecasting performance of the univariate ARIMA, 

multivariate models (VAR, VECM and VEC), naive model and nonlinear TAR model. 

Therefore, we recommend that more non-linear models (such as switching Markov, 

Dynamic stochastic general equilibrium modelling and Neural network) should be 

considered for forecasting in both OPEC and BRICS countries in the future, to develop 



283 
 

our work further. In addition to studying both linear and nonlinear models, survey 

forecast, and combined model forecasts of inflation could also be examined.144    

Lastly, due to time constraints, we were not able to consider all alternative modelling 

strategies suggested by the referee and agree that producing forecasts based on 

stochastic volatility or time-varying MA specifications would be desirable for future work 

in these countries. 

 

  

                                                           
144Forecast combination captures important information from many different forecasts while lowering 

the risk of choosing the worst forecast (Gibbs, 2017). 
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Appendix 4. 
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  Appendix. Section 5.1 

5.2 ARIMAX modelling of annual inflation for Russia 

The maximum available sample period is 1992q1 to 2012q4. To allow for lags, 

transformations and have a consistent estimation period for all models we specify an 

initialization period of four years and estimate all models over the period 1996q1 – 

2012q4. The first sub - section discusses the development of the deterministic 

component of the model that allows for structural breaks (shifts in the seasonal means). 

The second sub-section identifies the ARMA component to the residuals of this model 

and hence discusses the development of the final ARIMAX model. 

 

Table 5.2: 1 Bai and Perron tests for structural breaks in Russian annual inflation  

 
 

Scaled F-statistic  Critical Value Sequential  Repartition 

0 vs 1 39.849 16.19 2000q1 2000q1 

1 vs 2 0.528 18.11   

 

In Table 5.2.2 we report various deterministic models of annual inflation. The model 

reported in the column labelled 1 is the benchmark model that includes the 4 seasonal 

dummy variables denoted, 𝐷𝑠𝑡 where 𝑠 = 1, 2, 3, 4, and does not model any structural 

breaks. All the four seasonal dummy variables are significant according to the t-ratios 

(reported in brackets below the dummy variables’ coefficients) and the model’s Schwarz 

criterion (SC) is 0.170.   

Table 5.2.1 reports the Bai and Perron scaled F-statistic with the associated 5% critical 

values for the benchmark model reported in the column labelled 1 in Table 5.2.2. The 

test result indicates only one breakpoint because the scaled F-statistic is greater than 

the corresponding critical value for the null hypothesis of no breaks (denoted 0 vs 1). 

However, the scaled F-statistic is less than critical value for the null hypothesis of one 

break date (1 vs 2). Both sequential and repartition methods indicate the same break 

point date of 2001q1.  

Based on the Bai and Perron test results we specify shift dummy variables (that are zero 

prior to the break date and unity from the break date onwards) interacted with the 
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seasonal dummy variables that give shifts in the seasonal means in 2001q1, denoted 

𝐷(2001𝑞1)𝑠𝑡. The model including the seasonal dummy variables and the shift dummy 

variables is given in the column headed 2 of Table 5.2.2. All the seasonal dummy 

variables and the shift dummy variables are significant suggesting significant changes in 

the seasonal means at the identified break points. The significance of these shift dummy 

variables and that this model’s SC falls to -0.091 supports the need to model the 

identified breaks. 

Figure 5.2.1 plots the actual and fitted values of the model reported in column 2 of Table 

5.2.2. Visual inspection of this graph suggests that this deterministic model based on the 

Bai and Perron test results does not capture all of the mean shifts in the actual data. The 

graph suggests two more mean shifts in 1997q2 and 1998q3 and we therefore add 

interaction dummy variables, denoted 𝐷(1997𝑞2)𝑠𝑡 and 𝐷(1998𝑞3)𝑠𝑡 to the model 

reported in column 2 to capture these shifts.  The estimation results of these model 

break dates are reported in column 3 of Table 5.2.2. All the seasonal and the shift 

dummy variables are significant except 𝐷(1997𝑞2)3𝑡 and 𝐷(1997𝑞2)4𝑡 . The SC of this 

model falls to -0.746 supports the inclusion of all of these interaction terms to in the 

model. 

Figure 5.2.2 plots the actual and fitted values of the model reported in column 3 of Table 

5.2.2. Visual inspection of this graph suggests that this deterministic model better 

captures the main mean shifts in the actual data than did model 2 (note the relative left-

hand scales for the residuals in these two figures and how the fitted values are much 

closer to the actuals for model 3). We regard model 3 from Table 5.2.2 as capturing the 

main mean shifts in the data and use this as the basis of the deterministic component of 

our ARIMAX model of Russia’s annual inflation. 
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Table 5.2.2: Deterministic component of ARIMAX models for Russia 

Sample/Observation  1996q1 – 2012q4 (68)  

 1 2 3 4 

𝐷𝑖𝑡 0.229 
(3.940) 

0.551 
5.735 

0.541 
(6.592) 

 

𝐷2𝑡  0.211 
(3.632) 

0.494 
(5.145) 

0.587 
(5.057) 

 

𝐷3𝑡  0.194 
(3.330) 

0.431 
(4.492) 

0.374 
(3.221) 

 

𝐷4𝑡  0.181 
(3.107) 

0.381 
(3.999) 

0.242 
(2.084) 

 

𝐷(1997𝑞2)𝑖𝑡   -0.447 
(-3.147) 

 

𝐷(1997𝑞2)2𝑡   -0.476 
(-3.352) 

 

𝐷(1997𝑞2)3𝑡   -0.229 
(-1.394) 

 

𝐷(1997𝑞2)4𝑡   -0.124 
(-0.753) 

 

𝐷(1998𝑞3)1𝑡   0.934 
(5.690) 

 

𝐷(1998𝑞3)2𝑡   1.058 
(7.449) 

 

𝐷(1998𝑞3)3𝑡   0.458 
(3.226) 

 

𝐷(1998𝑞3)4𝑡   0.467 
(3.307) 

 

𝐷(2000𝑞1)1𝑡  -0.420 
(-3.827) 

-0.897 
(-7.449) 

 

𝐷(2000𝑞1)2𝑡  -0.370 
(-3.367) 

-1.045 
(-8.675) 

 

𝐷(2000𝑞1)3𝑡  -0.311 
(-2.829) 

-0.483 
(-5.478) 

 

𝐷(2000𝑞1)4𝑡  -0.266 
(-2.421) 

-0.470 
(-5.334) 

 

I_RUS    1.000  
(30.248) 

Adj 𝑅2 -0.041 0.333 0.757 0.880 

SC 0.170 -0.091 -0.746 -2.128 

S.E 0.240 0.192 0.116 0.082 
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Figure 5.2.1: the actual and fitted values of model 2 reported in Table 5.2.2 

-.6

-.4

-.2

.0

.2

.4

.6

.8

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1996 1998 2000 2002 2004 2006 2008 2010 2012

Residual Actual Fitted  

Figure 5.2.2: the actual and fitted values of model 3 reported in Table 5.2.2 
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Following Hendry (2001), Hendry and Santos (2005) and Caporale et al (2012) we 

construct an index of indicator variables to summarise the deterministic terms reported 
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in column 3 of Table 5.2.2 in a single variable to enhance the efficiency of estimation of 

the ARIMAX model. We therefore define the index of indicator variables, denoted I_RUS, 

as the fitted value of the model reported in column 3 of Table 5.2.2 and report the 

regression of annual inflation on this indicator variable in column 4 of Table 5.2.2. The 

index is significant and has a unit coefficient as is expected. This model’s SC is -2.128 

which provides a benchmark for comparison with potential ARIMAX models to be 

developed from this deterministic specification that are discussed below. 

5.2.2 Developing the ARIMAX model for Russia 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

residuals of the deterministic model reported in column 4 of Table 5.2.2 is plotted in 

Figure 5.2.3. From the ACF the non-seasonal autocorrelation coefficients (ACs) are 

significant at lag 2, 3 and 5 and insignificant at lags 1 and 4. This implies that there is no 

need for further non-seasonal differencing because no more than the first 5 non-

seasonal ACs are significant. It also implies that the maximum order of non-seasonal 

moving average (MA) component is probably equal to 0 although could be 3 or 5 (given 

the significance of the ACs at lag 2, 3 and 5). Further, all the seasonal ACs are insignificant 

at lags 4, 8, 12, 16, 20, 24 and 28. This suggests that there is no need for further seasonal 

differencing because no more than the first 5 seasonal ACs (at the seasonal lags 4, 8, 12 

16 and 20) are significant. This also indicates the maximum order of seasonal moving 

average (MA) component is probably equal to 0 or 1 (given the significance of the ACs 

at lag 5). 

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lag 2, 3, 4 and insignificant at lags 1 and 5. This suggests the maximum 

order of non-seasonal autoregressive (AR) component is probably 0 although could be 

3 (given the significance of the PAC at lag 2). The seasonal PACs are significant at lags 4 

and insignificant at lags 8, 12, 16, 20, 24 and 28. Therefore, the maximum order of 

seasonal AR process is probably be equal to 1. The maximum seasonal ARMA 

specification that we initially identify to the residuals of the deterministic model is 

𝐴𝑅𝑀𝐴(3, 3)(1, 1)4 . Assuming a multiplicative specification we report an ARIMAX 

specification that includes I_ RUS plus 4 seasonal dummy variables and an 

𝐴𝑅𝑀𝐴(3, 3)(1, 1)4 model of the residuals in the column headed 5 of Table 5.2.3. 
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Figure 5.2.3: the ACF and PACF of the residuals of model 4 reported in Table 5.2.2 
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We report the multiplicative 𝐴𝑅𝑀𝐴(3, 3)(1, 1)4  specification that includes I_RUS plus 

4 seasonal dummy variables as our initial ARIMAX model in the column headed 5 Table 

5.2.3. In this model the SC increase to -1.835 suggesting that the addition of ARMA terms 

has not improved the specification.  I_RUS is significant whereas all 4 seasonal dummy 

variables are insignificant. The latter is confirmed by the joint test for the exclusion of 

all 4 seasonal dummy variables, denoted LR(SEA DUM), which has a probability value of 

0.782 (given in squared brackets below the reported test statistic). Because this exceeds 

0.05 these 4 dummy variables are jointly insignificant. The non-seasonal moving average 

MA (1) and MA(3) terms are significant in model while all other  ARMA  components are 

insignificant. These results suggest that the specification can be improved by the 

inclusion or exclusion of some combination of deterministic and ARMA terms. 



292 
 

Table 5.2.3. The ARIMAX table for Russia 
Sample/Observations 1996q1 – 2012q4 (68)  

 5 6 7 8 

I_RUS  1.084 
(14.642) 

 1.049 
(12.663) 

 1.016 
(14.421) 

1.030 
(30.170) 

𝐷1 -0.0123 
(-0.601) 

-0.014 
(-0.601) 

-0.009 
(-0.443) 

 

𝐷2 -0.016 
(-0.771) 

-0.009 
(-0.387) 

-0.009 
(-0.434) 

 

𝐷3 -0.012 
(-0.606) 
 

-0.003 
(-0.142) 

-0.004 
(-0.198) 

 

𝐷4 -0.016 
(-0.838) 

-0.009 
(-0.418) 

-0.007 
(-0.339) 

 

AR(1) -0.207 
(-1.683) 

 0.069 
(0.371) 

  

AR(2) 0.145 
(1.742) 

-0.003 
(-0.026) 

  

AR(3) -0.163 
(-1.743) 

-0.064 
(-0.566) 

  

AR(4)  0.016 
(0.241) 

  

SAR(4)  0.042 
(0.779) 

   

MA(1) 0.371 
(2.733) 

0.034 
(0.164) 

0.184 
(1.403) 

 0.177 
(0.324) 

MA(2) 0.170 
(1.548) 

0.475 
(2.603) 

0.511 
(4.432) 

0.852 
(0.930) 

MA(3) 0.799 
(7.049) 

0.527 
(3.167) 

0.468 
(3.633) 

0.671 
(1.075) 

MA(4)  -0.479 
(-2.896) 

-0.431 
(-3.397) 

-0.798 
(-1.791) 

SMA(4) -0.299 
(-1.750) 

   

MA(5)  

0.434 
(2.245) 

0.428 
(2.981) 

0.563 
(1.215) 

Adj 𝑅2 0.907 0.923 0.932 0.955 

SC -1.835 -1.985 -2.278 -2.351 

S.E 0.071 -1.985 0.062 0.050 

AR Root 0.721 
0.475 
0.452 
 

0.439 
0.404 
0.219 

  

MA Root 0.999 
0.894 
0.739 

0.999 
0.980 
0.673 

 0.999 
0.992 
0.659 

1.189 
1.066 
0.611 

P[QLB(8)] 0.000 0.000  0.519 0.069 

LR (SEA DUM) 1.751 
[0.782] 

-46.099145 9.425 
[0.051] 

  

LR (SEA DUM, CON)   12513.370 
[0.000] 

 

𝐿𝑅(1997𝑞2) 11.149 
[0.025] 

-3.200146 3.178 
[0.529] 

 7.144 
[0.129] 

𝐿𝑅(1998𝑞3) 25.805 
[0.000] 

8.751 
[0.068] 

6.261 
[0.181] 

24.910 
[0.000] 

𝐿𝑅(2000𝑞1) 19.393 
[0.001] 

40.402 
[0.000] 

7.891 
[0.096] 

32.681 
[0.000] 

                                                           
145   The test statistic has negative value and therefore no p- value. However, the test statistic is clearly 
very small and therefore is highly insignificant.  
146 The test statistic has negative value and therefore no p- value. However, the test statistic is clearly very 
small and therefore is highly insignificant.  
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Where:   I_RUS = the fitted value of the model reported in column 3 of Table 5.2.2, S E = S E of regression, 

MA = the maximum order of non-seasonal moving average component, SMA = the maximum order of 

seasonal moving average component, AR = the maximum order of non- seasonal autocorrelation 

component, SAR = the maximum order of seasonal moving average component , 𝐷𝑠𝑡  = the seasonal 

dummy variables, denoted as 𝐷1𝑡 , 𝐷2𝑡 , 𝐷3𝑡  and 𝐷4𝑡, P[QLB(8)] =  Probability value of the Ljung-Box Q-

statistic at the 8th lag from - based on the square root of the sample size ( √68), Adj 𝑅2 = Adjusted R – 

square , SC = Schwarz criterion, AR Roots = Stationary Autoregressive average , MA Roots = Stationary 

Moving average, LR(SEA DUM) = the joint test for the seasonal dummy variables;  

𝐿𝑅(1997𝑞2),𝐿𝑅(1998𝑞3) and  𝐿𝑅(2001𝑞1) = Joint shift significance of each break date, Rounded 

Bracket = T – Ratios and Square Bracket = Probability value. 

 

We also conduct variable addition tests for the shift dummy variables included in the 

I_RUS variable to determine whether the coefficients on these terms embodied in this 

index have changed significantly with the addition of ARMA terms. A test of whether the 

shift dummy variable corresponding to the 1997q2 break can be added to the model 

with joint significance is reported in the row labelled 𝐿𝑅(1997𝑞2). Since the probability 

value (0.025) is less than 0.050, this variable can be added with joint significance. 

Similarly, the probability values of other joint test for shift dummy variables 

corresponding to the break dates 1998q3 and 2000q1 reported in the rows labelled 

𝐿𝑅(1998𝑞3) and 𝐿𝑅(2001𝑞1) respectively, are also less than 0.050 indicating that the 

shift variables for these dates can be added with joint significance. This suggests that 

the coefficients embodied in 𝐴𝑅𝑀𝐴(3, 3)(1, 1)4   have significantly changed with the 

addition of ARMA terms.  

For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 8th lag, denoted P[QLB(8)], is less than 0.050 indicating evident of residual 

autocorrelation that suggests unmodelled systematic variation in the dependent 

variable and the need to adjust the model – we choose lag 8 based on the square root 

of the sample size (in this case √68). The inverse roots of the AR process, denoted AR 

Root, are all less than one indicating that the model is consistent with a stationary 

process. The inverse roots of the MA process, denoted MA Root, are all less than one 

indicating that the model is invertible.  

However, this model cannot be valid for forecasting due to the evidence of residual 

autocorrelation. Therefore, we amend the model reported in the column headed 5 of 
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Table 5.2.3 and estimate an ARMA (4, 5)4.147  This result is reported in the column 

headed 6 Table 5.2.3. The SC of this model decrease to -1.985 suggesting that the 

addition of ARMA terms has improved the specification. In terms of specification, the 

coefficient of I_RUS is significant whereas the 4 seasonal dummy variables are 

insignificant.  The non-seasonal moving average terms MA(2), MA(3), MA(4) and MA(5) 

are significant while the non-seasonal autoregressive variables’ coefficients, denoted 

AR(1) AR(2), AR(3) AR(4) and non-seasonal moving average MA(1) term are insignificant.  

 According to the standard diagnostic checks the model is stationarity and invertible 

however there is an evidence of autocorrelation suggesting unmodelled systematic 

variation in the dependent variable and the need to adjust the model. 

Therefore, we exclude the insignificant components of AR terms from the model 

reported in the column headed 6 from Table 5.2.3 and report the resulting 

𝐴𝑅𝑀𝐴𝑋(0, 5) in the column headed 7 of Table 5.2.3. Therefore, we exclude insignificant 

coefficients of AR(1) AR(2), AR(3) and  AR(4). We did not exclude the insignificant MA(1)  

term because the higher order MA components are included. The SC of this model has 

decreased to -2.278 suggesting that the exclusion of insignificant of ARMA terms has 

improved the specification. The coefficient of I_RUS is significant whereas all 4 seasonal 

dummy variables are insignificant. All the ARMA components are significant except for 

the MA(1) term, which we would not remove because the other MA terms are 

significant.  

The tests for the addition of the 3 sets of shift dummy variables, the tests 𝐿𝑅(1997𝑞2), 

𝐿𝑅(1998𝑞3) and  𝐿𝑅(2001𝑞1), all have probability values that exceed 0.050 indicating 

that the coefficients embodied in I_RUS have not significantly changed as the ARMA 

specification is amended.   

This model cannot be rejected according to the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. However, the seasonal dummy variables 

are jointly insignificant (see LR(SEA DUM)). Therefore, we exclude the seasonal dummy 

variables that are jointly insignificant (see LR(SEA DUM)) from the model reported in the  

                                                           
147 Since (MA) component is significant at lag 2, 3 and 5 and (AR) component is at significant at lag 2, 3 
and 4 (see figure 6.2.3). However, we avoid inclusion of seasonal SAR (4) since the presence of AR(4) 
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column headed 7 in the Table 5.2.3 and this result is reported in the Table 5.2.3 column 

8. In this model the SC falls to -2.351 and the coefficient of I_RUS is significant.  

The test for the shift dummy variable corresponding to 𝐿𝑅(1997𝑞2) is insignificant 

while 𝐿𝑅(1998𝑞3) and  𝐿𝑅(2001𝑞1) are significant. Notably, this test indicates the 

warning of MA backcasts differ for the original test equation and under the null 

hypothesis, the impact of this difference vanishes asymptotically.  Consequently, the 

two of the MA inverse roots is greater than one suggesting that this model could not be 

valid in the sense that the model is non- invertible.  

Therefore, we regard model 7 from Table 5.2.3 as the best ARIMAX model for 

forecasting Russia’s annual inflation because the model passed diagnostic test for 

stationary, autocorrelation and invertible. Although the seasonal dummy variables are 

jointly insignificant and required to be significant. Since the probability value of the 

dummy variable of this model is close to 0.05 (see LR(SEA DUM)). Furthermore, we test 

the null hypothesis of whether the coefficients of the seasonal dummy variables, 

𝐷1𝑡, 𝐷2𝑡, 𝐷3𝑡  and 𝐷4𝑡,  are the same using a Wald test. This test is reported in the row 

labelled LR (SEA DUM, CON) of column 7 and the probability value is 0.000. Since this 

value is less than 0.050, we reject the null hypothesis (of no seasonality) and accept the 

alternative hypothesis. This suggests a significant difference in the coefficients of the 

individual seasonal dummy variables indicating significant deterministic seasonality. 

Hence, these seasonal dummy variables cannot be replaced by a single deterministic 

intercept.  Therefore, model 7 in Table 5.2.3 is considered the best model to forecast 

Russia’s annual inflation. 
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  Figure 5.2.4: the actual and fitted values reported in Table 5.2.3 column 7 
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The visual inspection of the above figure revealed that the actual and fitted values graph 

of this model suggests that the time paths of the actual and fitted values capture all of 

the mean shifts in the actual data well. 
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5.3 ARIMAX modelling of annual inflation for India 

The maximum available sample period is 1957q1 to 2012q4. To allow for lags, 

transformations and have a consistent estimation period for all models we specify an 

initialization period of four years and estimate all models over the period 1961q1 – 

2012q4. The first sub-section discusses the development of the deterministic 

component of the model that allows for structural breaks (shifts in the seasonal means). 

The second sub-section identifies the ARIMA component to the residuals of this model 

and hence discusses the development of the final ARIMAX model. 

Table 5.3.1 Bai and Perron tests for structural breaks in India annual inflation  

Break Test 
 

F-statistic Scaled F-statistic  Critical Value 

0 vs 1 1.380 5.521 16.19 

 

In Table 5.3.2 we report various deterministic models of annual inflation. The model 

reported in the column labelled 1 is the benchmark model that includes the 4 seasonal 

dummy variables denoted, 𝐷𝑠𝑡 where 𝑠 = 1, 2, 3, 4, and does not model any structural 

breaks. All the four seasonal dummy variables are significant according to the t-ratios 

(reported in brackets below the dummy variables’ coefficients) and the model’s Schwarz 

criterion (SC) is -2.828 which supports the need to include these dummy variables.  

Table 5.3.1 reports the Bai and Perron scaled F-statistic with the associated 5% critical 

values for the benchmark model reported in the column labelled 1 in Table 5.3.2. The 

evidence revealed that there is no substantial break because the scaled F- Statistic is less 

than the corresponding critical value for the null hypothesis of no breaks (denoted 0 vs 

1). Figure 5.3.1 plots the actual and fitted values of the model reported in column 1 of 

Table 5.3.2. Visual inspection of this graph suggests that this deterministic model 

captures the actual data well. Therefore, we use this model as the basis of the 

deterministic component of our ARIMAX model of Indian’s annual inflation. 
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Table 5.3.2: Deterministic component of ARIMAX models for India 

Sample/Observation  208 

 1 

𝐷1𝑡  0.077 
(9.859) 

𝐷2𝑡 0.078 
(9.912) 

𝐷3𝑡 0.078 
(9.965) 

𝐷4𝑡 0.079 
(10.048) 

Adj 𝑅2 -0.015 

SC -2.828 

S.E 0.057 

 

 

Figure 5.3.1: the actual and fitted values reported in Table 5.3.2 
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5.3.1 Developing the ARIMAX model for India 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

residuals of the deterministic model reported in Table 5.3.2 is plotted in Figure 5.3.1. 

The ACF the non-seasonal autocorrelation coefficients (ACs) are significant at lag 1, 2, 3 

and insignificant at lag 5. This implies that there is no need for further non-seasonal 

differencing because no more than the first 5 non-seasonal ACs are significant. It also 

implies that the maximum order of non-seasonal moving average (MA) component is 

probably 3.  Further, the seasonal ACs are significant at lags 4, 8, 16, 20, 28 and 

insignificant at lags 12, and 24. This suggests that there is no need for further seasonal 

differencing because no more than the first 5 seasonal ACs (at the seasonal lags 4, 8, 12, 

16 and 20) are significant. It also indicates the maximum order of seasonal MA 

component is probably equal to 2 (the seasonal lags 4 and 8).  

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lag 1, 2 and 3. This suggests the maximum order of non-seasonal 

autoregressive (AR) component is probably 3. The seasonal PACs are significant at lags 

4 and insignificant at lags 8, 12, 16, 20, 24 and 28. Therefore, the maximum order of 

seasonal AR process is probably be equal to 1 or 2 given the significance of PAC at lag 9. 

Hence, the maximum seasonal ARMA specification that we initially identify to the 

residuals of the deterministic model is 𝐴𝑅𝑀𝐴(3, 3)(2, 2)4. Assuming a multiplicative 

specification, we report an ARIMAX specification that includes 4 seasonal dummy 

variables and an 𝐴𝑅𝑀𝐴(3, 3)(2, 2)4 model of the residuals in the of Table 5.3.2. 
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Figure 5.3.2: the ACF and PACF of the residuals of model reported in Table 5.3.2 

 

The SC of the 𝐴𝑅𝑀𝐴(3, 3)(2, 2)4 decreases to -5.332 and all 4 seasonal dummy 

variables are significant suggesting that the addition of ARMA terms has improved the 

specification. We test for the joint exclusion of all 4 seasonal dummy variables, 

denoted LR(SEA DUM), which has a probability value of 0.001 (given in square brackets 

below the reported test statistic). Because this less than 0.05 these 4 dummy variables 

are jointly significant. All the ARMA components are significant except the second non 

seasonal MA variables’ and second seasonal AR variable coefficients, denoted MA(2) 

and AR(8) respectively.  
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Table 5.3.3: The ARIMAX table for India 

Sample/Observations  1961q1 2012q4 (208)   

 2 3 4 5 6 

𝐷1 0.080 
(69.333) 

 0.080 
(83.215) 

 0.080 
(52.248) 

 0.080 
(9.585) 

 0.080 
(8.732) 

𝐷2 0.080 
(68.652) 

0.079 
(82.259) 

0.080 
(52.137) 

0.080 
(9.572) 

0.079 
(8.717) 

𝐷3 0.080 
(68.490) 

0.079 
(82.750) 

0.080 
(52.101) 

0.080 
(9.562) 

0.079 
(8.709) 

𝐷4 0.080 
(69.085) 

0.080 
(83.042) 

0.079 
(52.256) 

0.080 
(9.581) 

0.079 
(8.728) 

AR(1) 0.755 
(6.889) 

0.670 
(5.189) 

1.556 
(3.496) 

0.195 
(0.398) 

0.489 
(6.973) 

AR(2) 0.886 
(20.233) 

0.861 
(15.289) 

-0.503 
(-0.730) 

0.272 
(1.101) 

0.126 
(1.600) 

AR(3) -0.693 
(-6.664) 

-0.610 
(-4.722) 

-0.090 
(-0.342) 

0.168 
(1.746) 

0.112 
(1.435) 

AR(4)    -0.094 
(-1.127) 

-0.186 
(-2.669) 

AR(5)    -0.180 
(-1.780) 

 

SAR(4) -0.781 
(-5.807) 

 -0.672 
(-7.383) 

-0.911 
(-27.788) 

  

SAR(8) -0.147 
(-1.948) 

    

MA(1) 0.712 
(5.644) 

0.790 
(5.670) 

-0.121 
(-0.271) 

1.279 
(2.570) 

1.005 
(61.557) 

MA(2) -0.220 
(-1.164) 

-0.077 
(-0.354) 

 1.279 
(2.559) 

1.000 
(61.251) 

MA(3) 0.062 
(-2.531) 

0.129 
(1.163) 

 1.246 
(2.519) 

0.980 
(88.145) 

MA(4)    0.263 
(0.542) 

 

SMA(4) -0.258 
(-2.531) 

-0.229 
(-2.715) 

-0.019 
(-0.999) 

  

SMA(8) -0.258 
(-2.531) 

-0.771 
(-9.180) 

-0.955 
(-51.184) 

  

Adj 𝑅2 0.933 0.932 0.931 0.927 0.926 

SC -5.332 -5.341 -5.367 -5.271 -5.307 

S.E 0.041 0.015 0.015 0.015 0.015 

AR Root 0.949 
0.855 
0.751 

0.939 
0.905 
0.806 

0.977 
0.846 
0.126 

0.778 
0.691 
0.622 

0.695 
0.621 

MA Root 0.999 
0.995 
0.928 

0.999 
0.937 
0.359 

0.997 
0.992 
0.121 

0.992 
0.989 
0.269 

0.994 
0.992 

P[QLB(14)] 0.076 0.065 0.026 0.260 0.163 

LR (SEA DUM) 18.427 
[0.001] 

15.371 
[0.004] 

16.409 
[0.003] 

9.560 
[0.049] 

29.925 
[0.000] 

LR (SEA DUM, CON)     12.580 
[0.000] 

Where:   S E = S E of regression, MA = the maximum order of non-seasonal moving average component, 
SMA = the maximum order of seasonal moving average component, AR = the maximum order of non- 
seasonal autocorrelation component, SAR = the maximum order of seasonal moving average component 
, 𝐷𝑠𝑡  = the seasonal dummy variables, denoted as 𝐷1𝑡 , 𝐷2𝑡 , 𝐷3𝑡  and 𝐷4𝑡, P[QLB(14)] =  Probability value of 

the Ljung-Box Q-statistic at the 14th lag from - based on the square root of the sample size ( √208), Adj 
𝑅2 = Adjusted R – square , SC = Schwarz criterion, AR Roots = Stationary Autoregressive average , MA 
Roots = Stationary Moving average, LR(SEA DUM) = the joint test for the seasonal dummy variables, 
Rounded Bracket = T – Ratios and Square Bracket = Probability value. 
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For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 14th lag, denoted P[QLB(14)], exceeds 0.050 indicating no evident residual 

autocorrelation – we choose lag 14 based on the square root of the sample size (in this 

case √208). The inverse roots of the AR process, denoted AR Root, are all less than one 

indicating that the model is consistent with a stationary process. The inverse roots of 

the MA process, denoted MA Root, are all less than one indicating that the model is 

invertible. Hence, the model is valid for forecasting in the sense that there is no evidence 

of misspecification according to the standard tests.  

However, as indicated above the specification can be improved with the removal of 

some variables that are not significant. The coefficients on the MA(2) and  SAR(8) terms 

are not significant and are candidates for exclusion. Since the MA(3) term is significant 

we do not remove the MA(2) term to retain the full third-order non seasonal MA 

component. Therefore, we remove the SAR(8) term from the model reported in the 

column headed 2 from Table 5.3.3 and report the resulting 𝐴𝑅𝑀𝐴(3, 3)(1, 2)4 in the 

column headed 3 of Table 5.3.3.  

This model cannot be rejected by the diagnostic checks for residual autocorrelation, 

stationarity and invertibility. In terms of specification all variables are significant except 

for the MA(2) and MA(3) terms. The seasonal dummy variables are jointly significant 

according to LR(SEA DUM) because its probability value is less than 0.05. 

 However, as indicated above the specification can be improved with the removal of 

some variables that are not significant. The coefficients on the MA(2) and  MA(3) terms 

are not significant. Therefore, we remove the MA(2) and MA(3) terms from the model 

reported in the column headed 3 from Table 5.3.3 and report the resulting 

𝐴𝑅𝑀𝐴(3, 1)(1, 2)4 in the column headed 4 of Table 5.3.3.  In this model, the ARMA 

coefficient of MA(1), SMA(4), AR(2) and  AR(3) are insignificant while the ARMA 

coefficient for AR(1) , SAR(4)  and  SMA(8) are significant. 

According to the standard diagnostic checks, this model is stationary and invertible 

however there is evidence of autocorrelation suggesting unmodelled systematic 

variation in the dependent variable and the need to adjust the model. We confirmed the 

joint test for the exclusion of all 4 seasonal dummy variables, denoted LR(SEA DUM) has 
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a probability value that is less than 0.05 suggesting that theses dummy variables are 

jointly significant.  

Therefore 𝐴𝑅𝑀𝐴(3, 1)(1, 2)4 needs to be re-amended, hence we estimate an 

𝐴𝑅𝑀𝐴𝑋(5, 4)  that based on experimentation.148  The results of this model is reported 

in the column headed 5 Table 5.3.3. The coefficients on the four dummy variables are 

significant.  The non-seasonal autoregressive variables’ coefficients, denoted AR(1) 

AR(2), AR(3), AR(4), AR(5) and non-seasonal moving average MA(4) are insignificant. 

While the non-seasonal moving average terms, MA(1), MA(2) and MA(3) are significant.   

We apply the standard diagnostic checks for residual autocorrelation, stationarity and 

invertibility. The probability value of the Ljung-Box Q-statistic test exceeds 0.050 

indicating no evident residual autocorrelation.  

However, as indicated above the specification can also be improved with the removal of 

some variables. The coefficients on the AR(1) AR(2) AR(3) AR(4) AR(5) and  MA(4) terms  

that are not significant and are candidates for exclusion. Hence, experimentation with 

the ARMA terms suggest excluding the MA(4) and AR(5) terms from  the model reported 

in the column headed 5 Table 5.3.3 is significant. The resulting 𝐴𝑅𝑀𝐴𝑋(4, 3) 

specification is reported in the column headed 5 of Table 5.3.3.   

This model’s SC decreases to -5.307 suggesting that the exclusion of the MA(4) and AR(5) 

terms  from the model reported in the column headed 6 Table 5.3.3 has improved the 

specification. The coefficients on all the ARMA components are significant except for the 

AR(2)  and AR(3) terms, which we would not exclude because the AR(4) term that is 

significant. Notably, the seasonal dummy variables are now individually and jointly 

significant (see LR(SEA DUM)). This model cannot be rejected according to the standard 

diagnostic checks for residual autocorrelation, stationarity and invertibility Therefore it 

is valid for forecasting. We test the null hypothesis of whether the coefficients of the 

seasonal dummy variables are the same using a Wald test in the row labelled LR (SEA 

DUM, CON) of column 6. The probability value is 0.000 which rejects the null hypothesis 

of no deterministic seasonality. This suggests a significant difference in the coefficients 

                                                           
148 The (MA) component is significant at lag, 1,2, 3 and 4 and (AR) component is significant at lag 1, 2, 3, 
4 and 5 (see figure 5.3.2). However, we did not include seasonal SAR (4) and SMA(4) since the presence 
of AR(4) and MA(4). 
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of the individual seasonal dummy variables indicating significant deterministic 

seasonality. Hence, these seasonal dummy variables cannot be replaced by a single 

deterministic intercept.  Therefore, model 6 in Table 5.3.3 is considered the best model 

to forecast India’s annual inflation. 

Figure 5.3.3: the actual and fitted values reported in Table 5.3.3 column 6 
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The visual inspection of the actual and fitted values graph of this model suggests that 

the time paths of the fitted values capture the movements in the actual data well.  

 

. 
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5.4 Box-Jenkins ARIMAX modelling of annual inflation for China 

The maximum available sample period for estimation is 1988q1 to 2012q4. To allow for 

lags, transformations and have a consistent estimation period for all models we specify 

an initialization period of four years and estimate all models over the period 1992q1 – 

2012q4. The first sub-section discusses the development of the deterministic 

component of the model that allows for structural breaks (shifts in the seasonal means). 

The second sub-section identifies the ARMA component to the residuals of this model 

and hence discusses the development of the final ARIMAX model. 

Table 5.4.1: Bai and Perron tests for structural breaks in Chinese annual inflation 

 
 

Scaled F-statistic  Critical Value Sequential  Repartition 

0 vs 1 21.631 16.19 1996q3 1998q1 

1 vs 2 26.220 18.11 2004q4 2004q4 

2 vs 3 11.552 18.93   

 

In Table 5.4.2 we report various deterministic models of annual inflation. The model 

reported in the column labelled 1 is the benchmark model that includes the 4 seasonal 

dummy variables denoted, 𝐷𝑠𝑡 where 𝑠 = 1, 2, 3, 4, and does not model any structural 

breaks. All the four seasonal dummy variables are significant according to the t-ratios 

(reported in brackets below the dummy variables’ coefficients) and the model’s Schwarz 

criterion (SC) is -3.239. 

Table 5.4.1 reports the Bai and Perron scaled F-statistic with the associated 5% critical 

values for the benchmark model reported in the column labelled 1 in Table 5.4.2. The 

test results indicate that there are two significant breakpoints because the scaled F-

statistic is greater than the corresponding critical value for the null hypothesis of no 

breaks (denoted 0 vs 1) and the null hypothesis of one break (1 vs 2). However, the 

scaled F-statistic is less than critical value for the null hypothesis of 2 breaks (2 vs 3). The 

sequential and repartition methods indicate different break point dates. The sequential 

method indicates the multiple break point dates of 1996q3 and 2004q4 while repartition 

method indicates the multiple break point dates of 1998q1 and 2004q4. 

Based on the Bai and Perron test results we specify shift dummy variables (that are zero 

prior to the break date and unity from the break date onwards) interacted with the 
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seasonal dummy variables that give shifts in the seasonal means in 1996q3, denoted 

𝐷(1996𝑞3)𝑠𝑡, 1998q1, denoted 𝐷(1998𝑞1)𝑠𝑡 and 2004q4, denoted  𝐷(2004𝑞4)𝑠𝑡. 

 Table 5.4.2 column 2 estimates the seasonal dummy and the shift dummy variables 

 𝐷(1996𝑞3)𝑠𝑡 and  𝐷(2004𝑞4)𝑠𝑡 indicated by Bai and Perron’s sequential test (see 

Table 5.4.1). In this table, all the four seasonal dummy variables and the shift dummy 

variables are significant. The significance of these variables and that the model’s SC falls 

to -3.967 supports the need to model the identified breaks.   

Figure 5.4.1 plots the actual and fitted values of the model reported in column 2 of Table 

5.4.2. Visual inspection of this graph suggests that this deterministic model based on the 

Bai and Perron test results does not properly capture all of the mean shifts in the actual 

data in the late 1990s.  Therefore, we consider the model including the shift seasonal 

dummy variables  𝐷(1998𝑞1)𝑠𝑡 and  𝐷(2004𝑞4)𝑠𝑡as indicated by Bai and Perron’s 

repartition test, which is given in the column headed 3 of Table 5.4.2.  We note that all 

four seasonal dummy variables and the shift dummy variables are significant and that 

this new model’s SC falls to -4.253. 

Figure 5.4.2 plots the actual and fitted values of the model reported in column 3 of Table 

5.4.2. Visual inspection of this graph suggests that this deterministic model better 

captures the main mean shifts in the actual data than did model 2 (which is confirmed 

by model 3 having the lowest SC). We regard model 3 from Table 5.4.2 as capturing the 

main mean shifts in the data and use this as the basis of the deterministic component of 

our ARIMAX model of Chinese annual inflation. 
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Table 5.4.2: Deterministic component of ARIMAX models for China 

Sample/Observation  1992q1 2012q4 (84) 

 1 2 3 4 

𝐷𝑖𝑡 0.033 
(3.421) 

 0.072 
(6.105) 

0.067 
(7.228) 

 

𝐷2𝑡 0.032 
(3.372) 

0.069 
(5.857) 

0.063 
(6.783) 

 

𝐷3𝑡 0.032 
(3.323) 

0.074 
(5.616) 

0.062 
(6.683) 

 

𝐷4𝑡 0.032 
(3.287) 

0.071 
(5.430) 

0.059 
(6.331) 

 

𝐷(1996𝑞3)𝑖𝑡  -0.083 
(-5.612) 

  

𝐷(1996𝑞3)2𝑡  -0.082 
(-5.503) 

  

𝐷(1996𝑞3)3𝑡  -0.081 
(-5.168) 

  

𝐷(1996𝑞3)4𝑡  -0.083 
(-5.175) 

  

𝐷(1998𝑞1)𝑖𝑡   -0.087 
(-6.918) 

 

𝐷(1998𝑞1)2𝑡   -0.083 
(-6.582) 

 

𝐷(1998𝑞1)3𝑡   -0.085 
(-6.572) 

 

𝐷(1998𝑞1)4𝑡   -0.085 
(-6.544) 

 

𝐷(2004𝑞4)1𝑡  0.066 
(5.069) 

0.075 
(6.340) 

 

𝐷(2004𝑞4)2𝑡  0.070 
(5.308) 

0.076 
(6.498) 

 

𝐷(2004𝑞4)3𝑡  0.064 
(5.013) 

0.077 
(6.561) 

 

𝐷(2004𝑞4)4𝑡  0.065 
(5.087) 

0.080 
(6.684) 

 

I_CHI     1.000 
(21.485) 

Adj 𝑅2 -0.037 0.635 0.726 0.762 

SC -3.239 -3.967 -4.253 -4.833 

S.E 0.044 0.026 0.002 0.021 
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Figure 5.4.1: the actual and fitted values of model 2 reported in Table 5.4.2 
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Figure 5.4.2: the actual and fitted values of model 3 reported in Table 5.4.2 
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Following Hendry (2001), Hendry and Santos (2005) and Caporale et al (2012) we 

construct an index of indicator variables to summarise the deterministic terms reported 

in column 3 of Table 5.4.2 in a single variable to enhance the efficiency of estimation of 

the ARIMAX model. We therefore define the index of indicator variable, denoted I_CHI, 

as the fitted value of the model reported in column 3 of Table 5.4.2 and report the 

regression of annual inflation on this indicator variable in column 4 of Table 5.4.2. The 

index is significant and has a unit coefficient as is expected. This model’s SC is -4.833 

which provides a benchmark for comparison with potential ARIMAX models to be 

developed from this deterministic specification that are discussed below. 
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5.4.2 Developing the ARIMAX model for China 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

residuals of the deterministic model reported in column 4 of Table 5.4.2 are plotted in 

Figure 5.4.3. From the ACF the non-seasonal autocorrelation coefficients (ACs) are 

significant at lags 1, 2, 3 and insignificant at lags 4 and 5.  This implies that there is no 

need for further non-seasonal differencing because no more than the first 5 non-

seasonal ACs are significant. It also implies that the maximum order of non-seasonal 

moving average (MA) component is probably 3. Further, the seasonal ACs are 

insignificant at lags 4, 8, 12, 16, 20, 24 and 28. This suggests that there is no need for 

further seasonal differencing because no more than the first 5 seasonal ACs (at the 

seasonal lags 4, 8, 12, 16 and 20) are significant. It also indicates that the maximum order 

of seasonal moving average (MA) component is probably equal to zero. 

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lags 1 and insignificant at 2, 3, 4 and 5. This suggests the maximum order 

of non-seasonal autoregressive (AR) component is probably 1.  Furthermore, the 

seasonal PACs are insignificant at lags 4, 8, 12, 16, 24 and 28. However, PAC is significant 

at lag 9 and 20. Therefore, the maximum order of seasonal AR process is probably equal 

to 0 or 2 (in multiplicative form) given the significance of PAC at lag 9. Hence, the 

maximum seasonal ARMA specification that we initially identify to the residuals of the 

deterministic model is 𝐴𝑅𝑀𝐴(1, 3)(2, 0)4. Assuming a multiplicative specification we 

report an ARIMAX model that includes I_CHI plus 4 seasonal dummy variables and an 

𝐴𝑅𝑀𝐴(1, 3)(2, 0)4 model of the residuals in the column headed 5 of Table 5.4.3.  
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Figure 5.4.3: the ACF and PACF of the residuals of model 4 reported in Table 5.4.2 

 

 

In this model the SC falls to -5.529 suggesting that the addition of ARMA terms has 

improved the specification. I_CHI is insignificant and all 4 seasonal dummy variables are 

insignificant. The joint test for the exclusion of all 4 seasonal dummy variables, denoted 

LR(SEA DUM) has a probability value of 0.929. Because this greater than 0.05 these 4 

dummy variables are jointly insignificant. The first non-seasonal autoregressive 

variable’s coefficients, denoted AR(1) is significant while the first and second seasonal 

autoregressive variable’s coefficient, denoted as SAR(4) and SAR(8) are significant. All 

the moving average terms are significant except MA(3). 
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For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 9th lag, denoted P[QLB(9)], exceeds 0.050 indicating no evident residual 

autocorrelation – we choose lag 9 based on the square root of the sample size (in this 

case √84). The inverse roots of the AR process, denoted AR Root, are all less than one 

indicating that the model is consistent with a stationary process. The inverse roots of 

the MA process, denoted MA Root, are all less than one indicating that the model is 

invertible.  

We conduct variable addition tests for the shift dummy variables included in the model 

to assess whether the coefficients on these terms embodied in this index have changed 

significantly with the addition of ARMA components. A test of whether the shift dummy 

variables corresponding to the 1998q1 break can be added to the model with joint 

significance is reported in the row labelled 𝐿𝑅(1998𝑞1). Since the probability value 

(given in square brackets below the test statistic, being 0.148) exceeds 0.050 these 

variables cannot be added with joint significance. However, the probability values of the 

joint tests of the shift dummy variable corresponding to the break date 2004q4, 

reported in the rows labelled 𝐿𝑅(2004𝑞4) is less than 0.050. 
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Table 5.4.3: The ARIMAX table for China  

Sample/Observations  1992q1 – 2012q4 (84)    

 5 6 7 8 9 10 

I_CHI 0.167 
(1.933) 

     

I_CHI2  0.250 
(2.237) 

    

I_CHI3   0.323 
(2.743) 

0.297 
(2.546) 

  

I_CHI4     1.037 
(5.778) 

0.094 
(1.281) 

𝐷𝑖𝑡  0.021 
(0.971) 

0.026 
(1.072) 

0.032 
(1.187) 

0.035 
(2.270) 

-0.027 
(-1.600) 

 

𝐷2𝑡 0.022 
(0.980) 

0.026 
(1.072) 

0.031 
(1.179) 

0.034 
(2.252) 

-0.023 
(--1.382) 

 

𝐷3𝑡 0.022 
(0.985) 

0.026 
(1.071) 

0.032 
(1.175) 

0.034 
(2.244) 

-0.020 
(-1.246) 

 

𝐷4𝑡 0.021 
(0.974) 

0.026 0.032 
(1.197) 

0.035 
(2.278) 

-0.015 
(-0.959) 

 

AR(1) 0.937 
(18.392) 

0.943 
(18.914) 

0.946 
(18.723) 

0.412 
(3.562) 

0.378 
(2..953) 

0.429 
(3.174) 

AR(2)    0.306 
(2.704) 

0.341 
(2.789) 

0.486 
(3.959) 

SAR(4) -0.522 
(-3.722) 

-0.519 
(-3.769) 

-0.480 
(-3.315) 

   

SAR (8) -0.350 
(-2.740) 

-0.361 
(-2.839) 

-0.372 
(-2.917) 

   

MA(1) 0.321 
(2.442) 

0.342 
(2.628) 

0.422 
(3.229) 

0.992 
(16.255) 

  0.904 
(10.427) 

1.089 
(7.452) 

MA(2) 0.431 
(3.069) 

0.368 
(2.593) 

0.229 
(1.602) 

0.999 
(13.958) 

0.773 
(7.692) 

0.676 
(5.838) 

MA(3) 0.105 
(0.718) 

0.155 
(1.051) 

0.324 
(2.185) 

0.991 
(19.831) 

0.868 
(11.057) 

0.891 
(7.474) 

Adj 𝑅2 0.924 0.926 0.928 0.941 0.943 0.944 

SC -5.529 -5.556 -5.577 -5.878 -5.902 -6.079 

S.E 0.012 0.012 0.012 0.010 0.010 0.010 

AR Root 0.937 
0.877 
 

0.943 
0.881 

0.946 
0.884 
 

0.796 
0.384 

0.803 
0.425 

0.944 
0.515 

MA Root 0.643 
0.254 

0.624 
0.397 

0.724 
0.669 

0.999 
0.991 

0.999 
0.932 

1.165 
0.874 

P[QLB(9)] 0.055 0.050 0.014 0.128 0.163 0.058 

LR (SEA DUM) 0.868 
[0.929] 

0.843 
[0.933] 

1.392 
[0.846] 

6.525 
[0.163] 

3.120 
[0.540] 

 

LR (SEA DUM, CON)     10.986 
[0.000] 

 

𝐿𝑅(1998𝑞1) 6.787 
[0.148] 

7.334 
[0.119] 

19.887 
[0.001] 

14.569 
[0.005] 

-2.119 3.259 
[0.515] 

𝐿𝑅(2004𝑞4) 11.472 
[0.022] 

9.619 
[0.047] 

7.846 
[0.097] 

-5.777 -31.095 -14.687 

Where:   I_CHI = the fitted value of the model reported in column 3 of Table 5.4.2, S E = S E of regression, 

MA = the maximum order of non-seasonal moving average component, SMA = the maximum order of 

seasonal moving average component, AR = the maximum order of non- seasonal autocorrelation 

component, SAR = the maximum order of seasonal moving average component , 𝐷𝑠𝑡  = the seasonal 

dummy variables, denoted as 𝐷1𝑡 , 𝐷2𝑡 , 𝐷3𝑡  and 𝐷4𝑡, P[QLB(9)] =  Probability value of the Ljung-Box Q-

statistic at the 9th lag from - based on the square root of the sample size ( √84), Adj 𝑅2 = Adjusted R – 

square , SC = Schwarz criterion, AR Roots = Stationary Autoregressive average , MA Roots = Stationary 

Moving average, LR(SEA DUM) = the joint test for the seasonal dummy variables, , 𝐿𝑅(1998𝑞1) and 

𝐿𝑅(2000𝑞4) = Joint shift significance of each break date, Rounded Bracket = T – Ratios and Square Bracket 

= Probability value.  
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Therefore, we add the seasonal shift dummy variable corresponding to this date 

(2004𝑞4) to the model reported in the column headed 5 of Table 5.4.3 and use the 

estimated coefficients on this term to adjust I_CHI. The new index of indicator variables, 

I_CHI2, is defined as: 

I_CHI2 = I_CHI - 0.0416 [S1*S2004Q4] - 0.0408 [S2*S2004Q4] - 0.0410 [S3*S2004Q4] - 

0.0405 [S4*S2004Q4] 

We re-estimate the model reported in the column headed 5 of Table 5.4.3 with I_CHI 

being replaced with I_CHI2. The resulting model is reported in the column headed 6 of 

Table 5.4.3. In terms of specification, all the seasonal dummy variables are insignificant 

and all the ARMA components are significant except for the MA(3) term. This model 

does not fail the diagnostic checks for invertibility, stationarity and autocorrelation. 

However, the test for  𝐿𝑅(2004𝑞4) indicates that the seasonal shift coefficients 

embodied in I_CHI have changed significantly. We therefore add the seasonal shift 

dummy variable corresponding to this date to the model reported in the column headed 

6 of Table 5.4.3 and use the estimated coefficients on these terms to adjust I_CHI2. The 

new index of indicator variables, I_CHI3, is defined as: 

 CHI3 = CHI2 - 0.0280 [S1*S2004Q4] - 0.028 [S2*S2004Q4] - 0.028 [S3*S2004Q4] - 0.027 

[S4*S2004Q4] 

We re-estimate the model reported in the column headed 6 of Table 5.4.3 with I_CHI2 

being replaced with I_CHI3. The resulting model is reported in the column headed 7 of 

Table 5.4.3. In terms of specification, the seasonal dummy variables are insignificant and 

all the ARMA components are significant except for the MA(2) term. Although this model 

does not fail the diagnostic checks for invertibility and stationarity, there is evidence of 

autocorrelation suggesting unmodelled systematic variation in the dependent variable 

and the need to adjust the model.  

In column 8 Table 5.4.3, we consider a nonseasonal 𝐴𝑅𝑀𝐴(2, 3) specification that is 

chosen based upon experimentation. In this model the SC falls to -5.878. All 4 seasonal 

dummy variables and all the ARMA components are significant. This model does not fail 

the diagnostic checks for invertibility, stationarity and autocorrelation. However, the 

joint test for  𝐿𝑅(1998𝑞1) is significant. We therefore add the seasonal shift dummy 
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variables corresponding to this date to the model reported in the column headed 8 of 

Table 6.4.3 and use the estimated coefficients on these terms to adjust I_CHI3. The new 

index of indicator variable, I_CHI4, is defined as: 

CHI4 = CHI3 + 0.061 [S1*S1998Q1] + 0.056 [S2*S1998Q1] + 0.053 [S3*S1998Q1] + 0.051 

[S4*S1998Q1]. 

We re-estimate the model reported in the column headed 8 of Table 5.4.3 with I_CHI3 

being replaced with I_CHI4. The resulting model is reported in the column headed 9 of 

Table 5.4.3. This model cannot be rejected according to the standard diagnostic checks 

for residual autocorrelation, stationarity and invertibility and is therefore valid for 

forecasting. In this model the SC falls to -5.902.  All 4 seasonal dummy variables are 

insignificant and all the ARMA components are significant. Notably, the seasonal dummy 

variables are now individually and jointly insignificant (see LR(SEA DUM)). 

The probability values of the joint tests of the shift dummy variables corresponding to 

the break dates 𝐿𝑅(1998𝑞1) and 𝐿𝑅(2004𝑞4) all have the negative values and 

therefore no p-values. However, the test statistic is clearly very small and therefore is 

highly insignificant indicating that no shift variables for these dates can be added with 

joint significance. This suggests that the coefficients embodied in I_CHI4 have not 

significantly changed as the ARMA specification is amended. 

In Table 5.4.3 column 10, we exclude the seasonal dummy variables that are jointly 

insignificant (see LR(SEA DUM)) from the model reported in the column headed 9. In this 

model the SC decreases to -6.079, the coefficient of I_CHI4 becomes insignificant and all 

the ARMA components’ coefficients are significant. The tests for shift dummy variables 

corresponding to the break dates 𝐿𝑅(1998𝑞1) and 𝐿𝑅(2004𝑞4) are all insignificant. 

Although this model does not exhibit evident autocorrelation or nonstationarity one of 

the MA inverse roots is greater than one suggesting that this model is non-invertible. 

Hence, this model is not valid for forecasting. 

Therefore we regard model 9 from Table 5.4.3 as the best ARIMAX model to forecast 

China’s annual inflation because it has the lowest SC of the models that pass the 

diagnostic tests for stationarity, autocorrelation and invertibility. Although the seasonal 

dummy variables are jointly insignificant their exclusion causes the model to become 
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non-invertible and invalid for forecasting. Hence the model in the column headed 9 is 

considered as the favoured model to forecast China’s annual inflation compared to the 

other models considered. 

We test the null hypothesis of whether the coefficients of the seasonal dummy variables 

are the same using a Wald test in the row labelled LR (SEA DUM, CON) of column 9. The 

probability value is 0.000 which rejects the null hypothesis of no deterministic 

seasonality. This suggests a significant difference in the coefficients of the individual 

seasonal dummy variables indicating significant deterministic seasonality. Hence, these 

seasonal dummy variables cannot be replaced by a single deterministic intercept.  

Therefore, model 9 in Table 5.4.3 is considered the best model to forecast China’s annual 

inflation. 

 

Figure 5.4.4: the actual and fitted values reported in Table 5.4.3 column 9 
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Visual inspection of Figure 5.4.4 gives the actual and fitted values of the favoured model 

for China. It suggests that the time paths of the actual and fitted values capture the 

mean shifts and variation in the actual data generally well. 
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5.5 ARIMAX modelling of annual inflation for South Africa 

The maximum available sample period is 1957q1 to 2012q4. To allow for lags, 

transformations and have a consistent estimation period for all models we specify an 

initialization period of four years and estimate all models over the period 1961q1 – 

2012q4. The first sub- section discusses the development of the deterministic 

component of the model that allows for structural breaks (shifts in the seasonal means). 

The second sub-section identifies the ARMA component to the residuals of this model 

and hence discusses the development of the final ARIMAX model. 

Table 5.5.1: Bai and Perron tests for structural breaks in South African annual inflation 

 
 

Scaled F-statistic  Critical Value Sequential  Repartition 

0 vs 1  99.548 16.19 1972q4 1973q1 

1 vs 2 217.840 18.11 1993q1 1980q4 

2 vs 3 25.899 18.93 1980q4 1993q1 

3 vs 4 10.453 19.64   

 

In Table 5.5.2 we report various deterministic models of annual inflation. The model 

reported in the column labelled 1 is the benchmark model that includes the 4 seasonal 

dummy variables denoted, 𝐷𝑠𝑡 where 𝑠 = 1, 2, 3, 4, and does not model any structural 

breaks. All the four seasonal dummy variables are significant according to the t-ratios 

(reported in brackets below the dummy variables’ coefficients) and the model’s Schwarz 

criterion (SC) is -3.058.  

Table 5.5.1 reports the Bai and Perron scaled F-statistic with the associated 5% critical 

values for the benchmark model reported in the column labelled 1 in Table 5.5.2. The 

test results indicate that there are three significant breakpoints because the scaled F-

statistic is greater than the corresponding critical value for the null hypothesis of no 

breaks (denoted 0 vs 1), the null hypothesis of one break (1 vs 2) and the null hypothesis 

of two breaks (2 vs 3). However, the scaled F-statistic is less than critical value for the 

null hypothesis of 3 breaks (3 vs 4). The sequential and repartition methods indicate 

different break point dates. The sequential method indicates the multiple breaks point 

dates of 1972q4, 1980q4 and 1993q1 while the repartition method indicates the 

multiple breaks point dates of 1973q1, 1980q4 and 1993q1.  
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Based on the Bai and Perron test results we specify shift dummy variables (that are zero 

prior to the break date and unity from the break date onwards) interacted with the 

seasonal dummy variables that give shifts in the seasonal means in 1972q4, denoted 

𝐷(1972𝑞4)𝑠𝑡, 1973q1 denoted 𝐷(1973𝑞1)𝑠𝑡, 1980q4, denoted 𝐷(1980𝑞4)𝑠𝑡 and 

1993q1, denoted 𝐷(1993𝑞1)𝑠𝑡.  

 The results of the model including the seasonal dummy variables and the shift dummy 

variables identified by the sequential method, (𝐷(1972𝑞4)𝑠𝑡,  𝐷(1980𝑞4)𝑠𝑡 and 

 𝐷(1993𝑞1)𝑠𝑡,) are given in the column headed 2 of Table 5.5.2. In this model, all the 

seasonal dummy variables and shift dummy variables are significant suggesting 

significant changes in the seasonal means at the identified break points. The significance 

of these shift dummy variables and that this model’s SC falls to -4.028 supports the need 

to model the identified breaks.  

Figure 5.5.1 plots the actual and fitted values of the model reported in column 2 of Table 

5.5.2. Visual inspection of this graph suggests that this deterministic model captures the 

main mean shifts in the actual data. However, we also consider the model including the 

seasonal dummy variables and the shift dummy variables identified by the repartition 

method, 𝐷(1973𝑞1)𝑠𝑡,  𝐷(1980𝑞4)𝑠𝑡 and  𝐷(1993𝑞1)𝑠𝑡.This model is reported in 

column 3 of Table 5.5.2. All the shift dummy variables and seasonal dummy variables 

are significant. The significance of these shift dummy variables and that this model’s SC 

falls to -4.032 supports the inclusion of these dummy variables in the model. 

Figure 5.5.2 plots the actual and fitted values of the model reported in column 3 of Table 

5.5.2. Visual inspection of this graph suggests that this deterministic model also captures 

the main mean shifts in the actual data. We prefer the model reported in column 3 to 

that reported in column 2 because the model reported in column 3 has the lowest SC. 

Hence, we regard model 3 from Table 5.5.2 as capturing the main mean shifts in the 

data and use this as the basis of the deterministic component of our ARIMAX model of 

South Africa’s annual inflation. 
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5.5.2: Deterministic component of ARIMAX models for South Africa 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Sample/Observation   1961 q1 – 2012q4 (208) 

 1 2 3 4 

𝐷𝑖𝑡 0.087 
(12.421) 

 0.031 
(4.057) 

0.032 
(4.066) 

 

𝐷2𝑡 0.085 
(12.168) 

0.032 
(4.057) 

0.032 
(4.066) 

 

𝐷3𝑡 0.085 
(12.186) 

0.034 
(4.259) 

0.035 
(4.267) 

 

𝐷4𝑡 0.085 
(12.253) 

0.032 
(3.892) 

0.035 
(4.486) 

 

𝐷(1972q4)𝑖𝑡  0.082 
(6.568) 

  

𝐷(1972q4)2𝑡  0.084 
(6.719) 

  

𝐷(1972q4)3𝑡  0.085 
(6.800) 

  

𝐷(1972q4)4𝑡  0.081 
(6.340) 

  

𝐷(1973q1)1𝑡   0.082 
(6.582) 

 

𝐷(1973q1)2𝑡   0.084 
(6.733) 

 

𝐷(1973q1)3𝑡   0.085 
(6.814) 

 

𝐷(1973q1)4𝑡   0.083 
(6.414) 

 

𝐷(1993q1)1𝑡   -0.077 
(-7.687) 

-0.077 
(-7.702) 

 

𝐷(1993q1)2𝑡  -0.082 
(-8.200) 

-0.082 
(-8.217) 

 

𝐷(1993q1)3𝑡  -0.081 
(-8.014) 

-0.081 
(-8.158) 

 

𝐷(1993q1)4𝑡  -0.078 
(-8.014) 

-0.078 
(-8.029) 

 

𝐷(1980q4)𝑖𝑡  0.035 
(2.785) 

0.035 
(2.791) 

 

𝐷(1980q4)2𝑡  0.032 
(2.572) 

0.032 
(2.577) 

 

𝐷(1980q4)3𝑡  0.028 
(2.251) 

0.028 
(2.255) 

 

𝐷(1980q4)4𝑡  0.031 
(2.542) 

0.025 
(2.977) 

 

I_SOU     1.000 
(52.311) 

Adj 𝑅2 -0.015  0.699 0.701 0.723 

SC -3.058 -4.028 -4.032 -4.417 

S.E 0.050 0.144 0.027 0.026 
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Figure 5.5.1: the actual and fitted values of model 2 reported in Table 5.5.2 
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Figure 5.5.2: the actual and fitted values of model 3 reported in Table 5.5.2 
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Following Hendry (2001), Hendry and Santos (2005) and Caporale et al (2012) we 

construct an index of indicator variables to summarise the deterministic terms reported 

in column 3 of Table 5.5.2 in a single variable to enhance the efficiency of estimation of 

the ARIMAX model. We therefore define the index of indicator variable, denoted I_SOU, 

as the fitted value of the model reported in column 3 of Table 5.5.2 and report the 

regression of annual inflation on this indicator variable in column 4 of Table 5.5.2. The 

index is significant and has a unit coefficient as is expected. This model’s SC is -4.417 

which provides a benchmark for comparison with potential ARIMAX models to be 

developed from this deterministic specification that are discussed below.  

5.5.2 Developing the ARIMAX model for South Africa 

 The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

residuals of the deterministic model reported in column 4 of table 5.5.2 are plotted. 

From the ACF the non-seasonal autocorrelation coefficients (ACs) are significant at lag 

1, 2 and insignificant at lags 3, 4 and 5. This implies that there is no need for further non-

seasonal differencing because no more than the first 5 non-seasonal ACs are significant.  

The maximum order of non-seasonal moving average (MA) component is probably equal 

to 2.  Further, the seasonal AC is significant at lag 12 and insignificant at lags 4, 8, 16, 20, 

24 and 28.  This suggests that there is no need for further seasonal differencing because 

no more than the first 5 seasonal ACs (at the seasonal lags 4, 8, 12, 16 and 20) are 

significant. It also indicates that the maximum order of seasonal moving average (MA) 

component is probably equal to zero. 

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lags 1, 2, 3 and 5 and insignificant at lag 4.  This suggests the maximum 

order of non-seasonal autoregressive (AR) component is probably 3. The seasonal PACs 

are not significant at lags 4, 8, 12, 16, 20, 24 and 28. Hence, the maximum order of 

seasonal AR process is probably be equal to 0 or 1 (given the significance of lag 5 

assuming a multiplicative functional form).  The maximum seasonal ARMA specification 

that we initially identify to the residuals of the deterministic model is 𝐴𝑅𝑀𝐴(3, 2)(1,0)4. 

Assuming a multiplicative specification we report an ARIMAX specification that includes 

I_SOU plus 4 seasonal dummy variables and an 𝐴𝑅𝑀𝐴(3, 2)(1,0)4 model of the 

residuals in the column headed 5 of Table 5.5.3. 
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Figure 5.5.3: the ACF and PACF of the residuals of model 3 reported in Table 5.5.2 

 

In this model the SC falls to -5.669 suggesting that the addition of ARMA terms has 

improved the specification. I_SOU is significant and all 4 seasonal dummy variables are 

also significant. However, the joint test for the exclusion of all 4 seasonal dummy 

variables, denoted LR(SEA DUM) indicates that they are jointly insignificant. The second 

non-seasonal autoregressive variable’s coefficient, denoted AR(2), and the first seasonal 

AR variable’s coefficient, denoted SAR(4) are significant, while the first and third non-

seasonal AR variable’s coefficient, denoted AR(1) and AR(3) respectively are 

insignificant. The first non-seasonal moving average variable’s coefficient, denoted 

MA(1), is significant, however, the second non-seasonal MA variable’s coefficient, 

denoted MA(2), is insignificant. These results suggest that the specification can be 

improved by the exclusion of some combination of deterministic and ARMA terms. 
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Table 5.5.3: The ARIMAX table for South Africa  

Where:   I_SOU = the fitted value o3f the model reported in column 3 of Table 5.5.2, S E = S E of regression, 

MA = the maximum order of non-seasonal moving average component, SMA = the maximum order of 

seasonal moving average component, AR = the maximum order of non- seasonal autocorrelation 

component, SAR = the maximum order of seasonal moving average component , 𝐷𝑠𝑡  = the seasonal 

dummy variables, denoted as 𝐷1𝑡 , 𝐷2𝑡 , 𝐷3𝑡  and 𝐷4𝑡, P[QLB(14)] =  Probability value of the Ljung-Box Q-

statistic at the 14th lag from - based on the square root of the sample size ( √208), Adj 𝑅2 = Adjusted R – 

square , SC = Schwarz criterion, AR Roots = Stationary Autoregressive average , MA Roots = Stationary 

Moving average, LR(SEA DUM) = the joint test for the seasonal dummy variables; 𝐿𝑅(1972𝑞4), 

𝐿𝑅(1993𝑞1) and 𝐿𝑅(1980𝑞4) = Joint shift significance of each break date, Rounded Bracket = T – Ratios 

and Square Bracket = Probability value. 

Sample/Observatio
ns 

1961q1 2012q4 (208) 

 5 6 7 8 9 10 

I_SOU 0.463 
(4.507) 

 0.177 
(2.129) 

0.186 
(2.177) 

 0.175 
(2.127) 

0.126 
(1.716) 

 

I_SOUA      0.318 
(4.480) 

𝐷𝑖𝑡 0.032 
(2.521) 

0.073 
(3.441) 

0.072 
(3.573) 

   

𝐷2𝑡 0.032 
(2.575) 

0.072 
(3.424) 

0.071 
(3.557) 

   

𝐷3𝑡 0.032 
(2.561) 

0.072 
(3.438) 

0.072 
(3.572) 

   

𝐷4𝑡 0.033 
(2.635) 

0.073 
(3.462) 

0.072 
(3.596) 

   

P(2012Q2)     -0.040 
(-6.425) 

 

AR(1) 0.245 
(1.223) 

0.963 
(49.209) 

0.959 
(47.996) 

0.991 
(104.011) 

0.993 
(113.433) 

0.988 
(88.045) 

AR(2) 0.871 
(16.442) 

     

AR(3) -0.233 
(-1.197) 

     

SAR(4) -0.593 
(-7.473) 

-0.639 
(-8.539) 

-0.641 
(-8.687) 

-0.642 
(-8.844) 

-0.605 
(-9.042) 

-0.616 
(-8.772) 

MA(1) 1.044 
(4.856) 

0.407 
(5.448) 

0.415 
(6.165) 

0.408 
(6.193) 

0.465 
(7.259) 

0.411 
(6.296) 

MA(2) -0.001 
(-0.004) 

-0.062 
(-0.801) 

    

Adj 𝑅2 0.936 0.934 0.934 0.934 0.945 0.939 

SC -5.669 -5.689 -5.712 -5.794 -5.951 -5.866 

S.E 0.012 0.013 0.013 0.013 0.012 0.012 

AR Root 0.942 
0.917 
0.877 
0.270 

0.963 
0.894 
 

0.956 
0.894 
 
 

0.992 
0.894 
 

0.993 
0.882 

0.988 
0.886 

MA Root 1.045 
0.001 

0.524 
0.118 

0.415 0.408 0.465 0.411 

P[QLB(14)] 0.127 0.242 0.299 0.182 0.178 0.243 

LR (SEA DUM) -5.787 3.848 
[0.427] 

4.301 
[0.367] 

   

LR (SEA DUM, CON)     312.016 
[0.000] 

 

𝐿𝑅(1973q1) 10.844 
[0.028] 

0.157 
[0.997] 

0.194 
[0.996] 

0.526 
[0.971] 

0.719 
[0.949] 

2.927 
(0.570) 

𝐿𝑅(1993q1) 13.035 
[0.011] 

1.513 
[0.824] 

1.540 
(0.820] 

2.537 
[0.638] 

2.964 
[0.564] 

8.733 
[0.068] 

𝐿𝑅(1980q4) 14.976 
[0.005] 

5.280 
[0.260] 

4.505 
[0.342] 

5.983 
[0.200] 

7.958 
[0.093] 

4.495 
[0.343] 
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We conduct variable addition tests for the shift dummy variables included in the I_SOU 

variable to assess whether the coefficients on these terms embodied in this index have 

changed significantly with the addition of ARMA terms. A test for whether the shift 

dummy variables corresponding to the 1973q1 break can be added to the model with 

joint significance is reported in the row labelled  𝐿𝑅(1973q1). Since the probability 

value (0.028) is less than 0.050 these variables can be added with joint significance. 

Similarly, the probability values of the joint tests of the other sets of shift dummy 

variables corresponding to the break dates 1993q1 and 1980q4 are reported in the rows 

labelled  𝐿𝑅(1993q1) and 𝐿𝑅(1980q4) respectively. These probability values are all 

less than 0.050 indicating that all shifts variables for these dates can be added with joint 

significance. This suggests that the coefficients embodied in I_SOU have significantly 

changed with the addition of ARMA terms. 

For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 14th lag, denoted P[QLB(14)], is above 0.050 indicating that no evident of 

residual autocorrelation. We choose lag 14 based on the square root of the sample size 

(in this case √208). The inverse roots of the AR process denoted AR Root, are all less 

than one indicated that the model could be significant. Although, one value of the 

inverse roots of the MA process, denoted MA Root, is greater than one indicating that 

the model is non-invertible. Therefore, the model is not valid for forecasting according 

to the standard tests. 

Experimentation with the ARMA terms demonstrate that the model is invertible when 

the AR(2) and AR(3) terms are excluded from the model reported in column 5 of Table 

5.5.3.149 Hence, we estimate the 𝐴𝑅𝑀𝐴𝑋(1, 2)(1, 0)4 model reported in the column 

headed 6 of Table 5.5.3. This model cannot be rejected according to the standard 

diagnostic checks for residual autocorrelation, stationarity and invertibility. In terms of 

                                                           
149 As indicated from Table 5.5.3 column 5, the specification can be improved with the removal of some 
insignificant ARMA components. The coefficients on the AR(1), AR(3) and MA(2) terms are not significant 
and are candidates for exclusion. Since the AR(2) term is significant we do not remove the AR(1) term to 
retain the full second-order of non- seasonal AR component. Therefore, we remove the AR(3) and  MA(2) 
terms from the model reported in the column headed 5 from Table 5.5.3. To our surprise, this model 
cannot be valid for forecasting and it is rejected base on the diagnostic checks for stationarity and 
invertibility. The result indicates that the root MA process of this model is too large and the singular 
covariance- coefficients of this model are not unique as well as estimated MA process is non-invertible 
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specification, all variables are significant except for the MA(2) term (if the seasonal 

dummies are jointly insignificant) and shift dummies cannot be added with significance 

to I_SOU. This suggests that the specification can be improved by the exclusion of the 

MA(2) term that is not significant. Therefore, we remove the MA(2) term from the model 

reported in the column headed 6 in Table 5.5.3 and report the resulting 

𝐴𝑅𝑀𝐴𝑋(1, 1)(1, 0)4 specification in the column headed 7 of Table 5.5.3.  

In this model, all the ARMA coefficients are significant. The tests for the joint significance 

of the shift dummy variables corresponding to 𝐿𝑅(1973𝑞1), 𝐿𝑅(1993𝑞1) and  

𝐿𝑅(1980𝑞4), all have probability values that exceed 0.050 indicating that the 

coefficients embodied in I_SOU have not significantly changed as the ARMA 

specification is amended.  This model cannot be rejected by the diagnostic checks for 

residual autocorrelation, stationarity and invertibility. However, the seasonal dummy 

variables are jointly insignificant. Therefore, we exclude the seasonal dummy variables 

from the model reported in the column headed 7 and the resulting specification is 

reported in column 8 of Table 5.5.3. In this model the SC falls to -5.794, the coefficients 

of I_SOU and all ARMA components are significant and shift variables cannot be added 

to I_SOU with significance.  This model passes all the required diagnostic tests for 

stationarity, invertibility and autocorrelation and is therefore valid for forecasting.   

 

Figure 5.5.4: the actual and fitted values of model reported in Table 5.5.3 in column 8 
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In Figure 5.5.4, we plot the actual and fitted values of the model reported in column 8 

of Table 5.5.3. Visual inspection of this graph suggests that this model adequately 

capture all of the mean shifts in the actual data. However, the graph has an outlier in 

2012q2 and we therefore add a new pulse dummy variable, denoted 𝑃(2012𝑞2), to the 

model reported in column 8 to capture the outlier. 150 

This result is reported in the Table 5.5.3 column 9, the SC of this model fall -5.951 and 

all the ARMA coefficients are significant. This model cannot be rejected according to the 

standard diagnostic checks for residual autocorrelation, stationarity and invertibility. 

However, the coefficient of I_SOU becomes insignificant. 

In Table 5.5.3 column 10, we construct an index of a new indicator variable to summarise 

the deterministic terms for the new outlier. We add the pulse dummy variable to the 

model reported in the column 9 and use the estimated coefficient on this term to adjust 

I_SOU. The new index of indicator variables, I_SOUA, is defined as: 

I_SOUA = I_SOU - 0.0401 [P2012Q2] 

We re-estimate the model reported in the column headed 10 of Table 5.5.3 with I_SOU 

being replaced with I_SOUA.  In this model, all the ARMA components including the 

coefficient of I_SOUA are significant. The tests for the shift dummy variables 

corresponding to 𝐿𝑅(1973𝑞1), 𝐿𝑅(1993𝑞1) and  𝐿𝑅(1980𝑞4) are all insignificant. This 

model cannot be rejected according to the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. Therefore valid for forecasting.  

Notably, there are two models in Table 5.5.3 (column 9 and column 10) that are valid 

for forecasting. The model in column 9 has the minimum SC although the coefficient of 

I_SOU is not significant. In contrast the model in column 10 does not has minimum SC 

but the coefficient of I_SOUA is significant and the model does not suggest any variables 

should be excluded according to the t-ratios and P-value. Hence, we test the null 

hypothesis of whether the coefficients of the seasonal dummy variables are the same 

using a Wald test in the row labelled LR (SEA DUM, CON) of column 9. The probability 

value is 0.000 which rejects the null hypothesis of no deterministic seasonality. This 

                                                           
150 The aim is to examine whether the new pulse dummy variable, 𝑃(2012𝑞2), outlier will improve the 
specified model. 



327 
 

suggests a significant difference in the coefficients of the individual seasonal dummy 

variables indicating significant deterministic seasonality. Therefore, these seasonal 

dummy variables cannot be replaced by a single deterministic intercept.  Therefore, 

model 9 in Table 5.5.3 could be considered as the best model to forecast South Africa’s 

annual inflation. 
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5.6.  ARIMAX modelling of annual inflation for Algeria 

The maximum available sample period for estimation is 1974q1 to 2012q4. To allow for 

lags, transformations and have a consistent estimation period for all models we specify 

an initialization period of four years and estimate all models over the period 1978q1 – 

2012q4. The first sub-section discusses the development of the deterministic 

component of the model that allows for structural breaks (shifts in the seasonal means). 

The second sub-section identifies the ARMA component to the residuals of this model 

and hence discusses the development of the final ARIMAX model. 

Table 5.6.1: Bai and Perron tests for structural breaks in Algeria annual inflation 

Break 
Hypothesis 

Scaled F-statistic  Critical Value Sequential  Repartition 

0 vs 1  86.795 16.19 1997q2 1990q4 

1 vs 2 165.984 18.11 1990q4 1997q1 

2 vs 3 5.703 18.93   

 

In Table 5.6.2 we report various deterministic models of annual inflation. The model 

reported in the column labelled 1 is the benchmark model that includes the 4 seasonal 

dummy variables denoted, 𝐷𝑠𝑡 where 𝑠 = 1, 2, 3, 4, and does not model any structural 

breaks. All the seasonal dummy variables are significant according to the t-ratios 

(reported in brackets below the dummy variables’ coefficients) and the model’s Schwarz 

criterion (SC) is -1.816.   

Table 5.6.1 reports the Bai and Perron scaled F-statistic with the associated 5% critical 

values for the benchmark model reported in the column labelled 1 in Table 6.6.2. The 

test results indicate that there are two significant breakpoints because the scaled F-

statistic is greater than the corresponding critical value for the null hypothesis of no 

breaks (denoted 0 vs 1) and the null hypothesis of one break (1 vs 2). However, the 

scaled F-statistic is less than critical value for the null hypothesis of 2 breaks (2 vs 3). The 

sequential and repartition methods indicate different break point dates. The sequential 

method indicates the multiple breaks point dates of 1990q4 and 1997q2 while the 

repartition method indicates the multiple breaks point dates of 1990q4 and 1997q1.  

Based on the Bai and Perron test results we specify shift dummy variables (that are zero 

prior to the break date and unity from the break date onwards) interacted with the 
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seasonal dummy variables that give shifts in the seasonal means in 1990q4, denoted 

𝐷(1990𝑞4)𝑠𝑡, 1997q1, denoted 𝐷(1997𝑞1)𝑠𝑡 and 1997q2, denoted 𝐷(1997𝑞2)𝑠𝑡. The 

model including the seasonal dummy variables and the shift dummy variables based on 

the sequential method is given in the column headed 2 of Table 5.6.2. All of the shift 

dummy variables and seasonal dummy variables are significant suggesting significant 

changes in the seasonal means at the identified break points. The significance of these 

shift dummy variables and that this model’s SC falls to -2.870 supports the need to 

model the identified breaks. 

Figure 5.6.1 plots the actual and fitted values of the model reported in column 2 of Table 

5.6.2. Visual inspection of this graph suggests that this deterministic model based on the 

Bai and Perron test results broadly captures all of the mean shifts in the actual data.  

We also consider the model indicated by the repartition version of the Bai and Perron 

test and report this model in column 3 of Table 5.6.2. The model’s SC falls to -2.936 and 

all dummy variables are significant.  

Figure 5.6.2 plots the actual and fitted values of the model reported in column 3 of Table 

5.6.2. Visual inspection of this graph suggests that this deterministic model also captures 

the main mean shifts in the actual data, as did model 2. However, we favour model 3 

from Table 5.6.2 because it has the lowest SC and use this as the basis of the 

deterministic component of our ARIMAX model of Algeria’s annual inflation. 
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5.6.2: Deterministic component of ARIMAX models for Algeria 

Sample/Observation  1978q1 – 2012q4 (140)  

 1 2 3 4 

𝐷1𝑡 0.102 
(6.522) 

0.100 
(7.414) 

 0.100 
(7.663) 

 

𝐷2𝑡 0.103 
(6.591) 

0.107 
(7.937) 

0.107 
(8.203) 

 

𝐷3𝑡 0.102 
(6.536) 

0.104 
(7.705) 

0.104 
(7.963) 
 

 

𝐷4𝑡 0.100 
( 6.440) 

0.098 
(6.988) 

0.098 
(7.222) 

 

𝐷(1990𝑞4)1𝑡  0.144 
(6.289) 

0.167 
(7.189) 

 

𝐷(1990𝑞4)2𝑡  0.157 
(6.516) 

0.157 
(6.734) 

 

𝐷(1990𝑞4)3𝑡  0.160 
(6.650) 

0.160 
(6.873) 

 

𝐷(1990𝑞4)4𝑡   0.146 
(6.305) 

0.145 
(6.517 

 

𝐷(1997𝑞1)𝑖𝑡   -0.227 
(-10.047) 

 

𝐷(1997𝑞1)2𝑡   -0.225 
(-9.983) 

 

𝐷(1997𝑞1)3𝑡   -0.225 
(-9.959) 

 

𝐷(1997𝑞1)4𝑡   -0.206 
(-9.616) 

 

𝐷(1997𝑞2)1𝑡   -0.207 
(-9.291) 

  

𝐷(1997𝑞2)2𝑡  -0.225 
(-9.659) 

  

𝐷(1997𝑞2)3𝑡  -0.225 
(-9.636) 

  

𝐷(1997𝑞2)4𝑡  -0.206 
(-9.303) 

  

I_ALG     1.000 
(33.667) 

Adj 𝑅2 -0.022  0.715 0.733 0.754 

SC -1.816 -2.870 -2.936 -3.325 

S.E 0.092 0.048 0.047 0.045 
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Figure 5.6.1: the actual and fitted values of model 2 reported in Table 5.6.2 
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Figure 5.6.2: the actual and fitted values of model 3 reported in Table 5.6.2 
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Following Hendry (2001), Hendry and Santos (2005) and Caporale et al (2012) we 

construct an index of indicator variables to summarise the deterministic terms reported 

in column 3 of Table 5.6.2 in a single variable to enhance the efficiency of estimation of 

the ARIMAX model. We therefore define the index of indicators variable, denoted I_ALG, 

as the fitted value of the model reported in column 3 of Table 5.6.2 and report the 

regression of annual inflation on this indicator variable in column 4 of Table 5.6.2. The 

index is significant and has a unit coefficient as is expected. This model’s SC is -3.325 

which provides a benchmark for comparison with potential ARIMAX models to be 

developed from this deterministic specification that are discussed below.  

 

5.6.2 Developing the ARIMAX model for Algeria 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

residuals of the deterministic model reported in column 4 of Table 5.6.2 is plotted in 

Figure 5.6.3. From the ACF the non-seasonal autocorrelation coefficients (ACs) are 

significant at lags 1, 2, 4, 5 and 6 and insignificant at lags 3. This implies that there is no 

need for further non-seasonal differencing because no more than the first 5 or 6 non-

seasonal ACs are significant. It also implies that the maximum order of non-seasonal 

moving average (MA) component is probably 2.  Further, the seasonal ACs are significant 

at lags 4 and insignificant at lags 8, 12, 16, 20, 24 and 28. This suggests that there is no 

need for further seasonal differencing because no more than the first 5 seasonal ACs (at 

the seasonal lags 4, 8, 12, 16 and 20) are significant. It also indicates the maximum order 

of seasonal MA component is probably equal to 1 at the seasonal lags 4 (using a 

multiplicative functional form can capture the significant AC at lag 5 with a seasonal MA 

term). 

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lags 1, 3, 4, 5 and insignificant at lags 2 and 6. This suggests the maximum 

order of non-seasonal autoregressive (AR) component is probably 1 or 3 (given the 

significant third lag). The seasonal PACs are significant at lags 4, 20, 24, 28 and 

insignificant at lags 8, 12 and 16. Therefore, the maximum order of seasonal AR process 

is probably be equal to 1 (the marginal significance of the higher order seasonal lags is 

probably due to chance while a multiplicative functional form can capture the significant 
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PAC at lag 5). Therefore, the maximum seasonal ARMA specification that we initially 

identify to the residuals of the deterministic model is 𝐴𝑅𝑀𝐴(3, 2)(1, 1)4. Assuming a 

multiplicative specification, we report an ARIMAX specification that includes I_ALG plus 

4 seasonal dummy variables and an 𝐴𝑅𝑀𝐴(3, 2)(1, 1)4 model of the residuals in the 

column headed 5 of Table 5.6.3. 

Figure 5.6.3: the ACF and PACF of the residuals of model 4 reported in Table 5.6.2 

 

In this model the SC falls to -3.893 suggesting that the addition of ARMA terms has 

improved the specification. I_ALG is significant and all the seasonal dummy variables are 

individually significant. However, the latter is not confirmed by the joint test for the 

exclusion of all 4 seasonal dummy variables, denoted LR(SEA DUM), which has a 

probability value of 0.572 (given in square brackets below the reported test statistic). 

Because this exceeds 0.05 these 4 dummy variables are jointly insignificant.  All the 

ARMA terms are significant except the first seasonal moving average term SMA(4). 

These results suggest that the specification can be improved by the exclusion of some 

combination of deterministic and ARMA terms. 
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Table 5.6.3: The ARIMAX table for Algeria 

Sample/Observations 1978q1 2012q4 (140) 

 5 6 7 8 

I_ALG 0.502 
(6.159) 

0.509 
(6.361) 

0.486 
(6.107) 

0.931 
(22.883) 

𝐷1 0.052 
(2.291) 

0.052 
(2.365) 

  

𝐷2 0.051 
(2.257) 

0.052 
(2.327) 

  

𝐷3 0.052 
(2.240) 

0.051 
(2.309) 

  

𝐷4 0.052 
(2.267) 

0.051 
(2.342) 

  

AR(1) 0.225 
(3.699) 

0.215 
(4.090) 

0.259 
(5.907) 

-0.482 
(-5.905) 

AR(2)   -0.204 
(-4.401) 

-0.204 
(-4.427) 

-0.172 
(-4.125) 

0.288 
(3.025) 

AR(3) 0.786 
(16.739) 

0.784 
(16.646) 

0.826 
(20.999) 

-0.214 
(-2.367) 

AR(4)     -0.648 
(-8.371) 

SAR(4) -0.471 
(-3.075) 

-0.511 
(-6.372) 

-0.519 
(-6.716) 

 

MA(1) 0.664 
(31.131) 

0.664 
(31.301) 

0.665 
(34.170) 

 1.148 
(17.226) 

MA(2) 0.988 
(84.594) 

0.988 
(84.035) 

0.986 
(85.816) 

0.546 
(4.587) 

MA(3)    0.814 
(7.323) 

MA(4)     0.785 
(13.321) 

SMA(4) -0.063 
(-0.333) 

   

Adj 𝑅2 0.898 0.898 0.898  0.893 

SC -3.893 -3.928 -4.045 -3.929 

S.E 0.029 0.029 0.029 0.029 

AR Root 0.925 
0.922 
0.828 

0.923 
0.920 
0.845 

0.966 
0.925 
0.849 

0.933 
0.863 

MA Root 0.994 
0.501 

0.994 0.993 0.986 
0.898 

P[QLB(12)] 0.041 0.052 0.034 0.061 

LR (SEA DUM)  2.918 

[0.572] 

3.234 

[0.520] 

  

LR (SEA DUM, CON)    439.,689 
[0.000] 

𝐿𝑅(1990𝑞4) 0.922 
[0.922] 

0.879 
[0.928] 

2.182 
[0.702] 

1.673 
[0.796] 

𝐿𝑅(1997𝑞1) 0.623 
[0.960] 

0.660 
[0.956] 

3.552 
[0.470] 

3.656 
[0.455] 

Where:   I_ALG = the fitted value of the model reported in column 3 of Table 5.6.2, S E = S E of 

regression, MA = the maximum order of non-seasonal moving average component, SMA = the maximum 

order of seasonal moving average component, AR = the maximum order of non- seasonal 

autocorrelation component, SAR = the maximum order of seasonal moving average component , 𝐷𝑠𝑡  = 
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the seasonal dummy variables, denoted as 𝐷1𝑡 , 𝐷2𝑡 , 𝐷3𝑡  and 𝐷4𝑡, P[QLB(12)] =  Probability value of the 

Ljung-Box Q-statistic at the 14th lag from - based on the square root of the sample size ( √140), Adj 𝑅2 = 

Adjusted R – square , SC = Schwarz criterion, AR Roots = Stationary Autoregressive average , MA Roots = 

Stationary Moving average, LR(SEA DUM) = the joint test for the seasonal dummy variables; 

𝐿𝑅(1990𝑞4) and 𝐿𝑅(1997𝑞1) = Joint shift significance of each break date, Rounded Bracket = T – 

Ratios and Square Bracket = Probability value. 

 

We also conduct variable addition tests for the shift dummy variables included in the 

I_ALG variable to assess whether the coefficients on the terms embodied in this index 

have changed significantly with the addition of ARMA terms. A test of whether the 4 

shift dummy variables corresponding to the 1990q4 break can be added to the model 

with joint significance is reported in the row labelled 𝐿𝑅(1990𝑞4). Since the probability 

value (0.922) exceeds 0.050 these variables cannot be added with joint significance. 

Similarly, the probability values of the joint tests for the shift dummy variables 

corresponding to the break date 1997q1 reported in the row labelled 𝐿𝑅(1997𝑞1)  

exceeds 0.050 indicating that no shift variables for these dates can be added with joint 

significance. This suggests that the coefficients embodied in I_ALG have not significantly 

changed with the addition of ARMA terms and therefore remains an adequate 

specification of the deterministic component of the model.  

For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 12th lag, denoted P[QLB(12)], is less than 0.050 indicating evident of 

residual autocorrelation suggesting unmodelled systematic variation in the dependent 

variable– we choose lag 12 based on the square root of the sample size (in this case 

√140). The inverse roots of the AR process, denoted AR Root, are all less than one 

indicating that the model is consistent with a stationary process. The inverse roots of 

the MA process, denoted MA Root, are all less than one indicating that the model is 

invertible. Due to the evident autocorrelation this model is not valid for forecasting and 

needs to be respecified. 

In the model reported in Table 5.6.3 column 5 that 𝐴𝑅𝑀𝐴(3, 2)(1, 1)4 the SMA(4) term 

is not  significant and is a candidate for exclusion. Therefore, we remove SMA(4) from 

the model reported in the column headed 5  in Table 5.6.3 and report the resulting 

𝐴𝑅𝑀𝐴𝑋(3, 2)(1, 0)4 in the column headed 6 of Table 5.6.3.  The SC decreases to -3.928 
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and all the ARMA components are significant. This model cannot be rejected according 

to the standard diagnostic checks for residual autocorrelation, stationarity and 

invertibility, hence this respecification has removed the previously evident 

autocorrelation.  

We conduct variable addition tests for the shift dummy variables to assess whether the 

coefficients on these terms embodied in this index have changed significantly with the 

adjustment of ARMA terms. The test for the 2 sets of shift dummy variables 

corresponding to 𝐿𝑅(1990𝑞4), and 𝐿𝑅(1997𝑞1) are all insignificant indicating that 

these coefficients have not changed and no need to respecify the index of indicators. 

However, the test for the joint significance seasonal dummy variables, denoted LR(SEA 

DUM), indicates that they are insignificant. 

In Table 5.6.3 column 7, we exclude the seasonal dummy variables that are jointly 

insignificant from the model reported in the column headed 6 in Table 5.6.3. In this 

model the SC decreases to -4.045 and the coefficient of I_ALG and all the ARMA 

components are significant. The tests for shift dummy variables corresponding to the 

break dates 𝐿𝑅(1990𝑞4) and 𝐿𝑅(1997𝑞1) are all insignificant indicating no need to 

respecify the index of indicators variable. However, while this model does not fail the 

diagnostic checks for invertibility and stationarity, there is evidence of autocorrelation 

suggesting unmodelled systematic variation in the dependent variable and a need to 

respecify the model. Experimentation with the ARMA terms demonstrate that the 

MA(3), MA(4) and AR(4) terms are significant when included instead of the SAR(4) term 

in model 7. Hence, we estimate the 𝐴𝑅𝑀𝐴𝑋(4, 4) model reported in the column headed 

8 of Table 5.6.3. In terms of specification, all the ARMA components are significant and 

this model cannot be rejected according to the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility.  

The tests for the shift dummy variables corresponding to 𝐿𝑅(1990𝑞4) and 𝐿𝑅(1997𝑞1)  

suggest that the coefficients embodied within the I_ALG index have not changed 

significantly with the adjustment of ARMA terms. In addition, the visual inspection of 

the actual and fitted values of this model suggests that the time path of the fitted values 

capture all of the mean shifts and fit the data well (see figure 5.6.4). 
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Figure 5.6.4: the actual and fitted values reported in Table 5.6.3 Column 8 
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We regard model 8 from Table 5.6.3 as the best ARIMAX model for forecasting Algeria’s 

annual inflation because it has the minimum SC from those that cannot be rejected 

according to the diagnostic checks and because the included deterministic terms 

adequately capture the identified structural breaks (according to the conducted variable 

addition tests). 

We also test the null hypothesis of whether the coefficients of the seasonal dummy 

variables, 𝐷1𝑡, 𝐷2𝑡 , 𝐷3𝑡 and 𝐷4𝑡, are the same using a Wald test. This test is reported in 

the row labelled LR (SEA DUM, CON) of column 8 and the probability value is 0.000. Since 

this value is less than 0.050, we reject the null hypothesis (of no seasonality) and accept 

the alternative hypothesis. This suggests a significant difference in the coefficients of 

the individual seasonal dummy variables indicating significant deterministic seasonality. 

Hence, these seasonal dummy variables cannot be replaced by a single deterministic 

intercept.  Therefore, model 8 in Table 5.6.3 is considered the best model to forecast 

Algeria’s annual inflation. 
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5.7 ARIMAX modelling of annual inflation for Angola 

The maximum available sample period is 1992q1 to 2012q4. To allow for lags, 

transformations and have a consistent estimation period for all models we specify an 

initialization period of four years and estimate all models over the period 1996q1 – 

2012q4. The first sub- section discusses the development of the deterministic 

component of the model that allows for structural breaks (shifts in the seasonal means). 

The second sub-section identifies the ARMA component to the residuals of this model 

and hence discusses the development of the final ARIMAX model. 

 

Table 5.7.1: Bai and Perron tests for structural breaks in Angola annual inflation 

Break 
Hypothesis 

Scaled F-statistic  Critical Value Sequential  Repartition 

0 vs 1 51.644 16.19 1998q3 1998q3 

1 vs 2 0.567 18.11   

2 vs 3     

 

In Table 5.7.2 we report various deterministic models based upon these results. The 

model reported in the column labelled 1 is the benchmark model that includes the 4 

seasonal dummy variables denoted, 𝐷𝑠𝑡 where 𝑠 = 1, 2, 3, 4, and does not model any 

structural breaks. Three of the four seasonal dummy variables are insignificant 

according to the t-ratios (reported in brackets below the dummy variables’ coefficients) 

and the model’s Schwarz criterion (SC) is 7.898 

Table 5.7.1 reports the Bai and Perron scaled F-statistic with the associated 5% critical 

values for the benchmark model reported in the column labelled 1 in Table 5.7.2. The 

test results indicate that there is only one significant breakpoint because the scaled F-

statistic is greater than the corresponding critical value for the null hypothesis of no 

breaks (denoted 0 vs 1). However, the scaled F-statistic is less than critical value for the 

null hypothesis of 1 breaks (1 vs 2). Both sequential and repartition methods indicate 

the same break point date of 1998q3. 

Based on the Bai and Perron test results we specify a shift dummy variable (that is zero 

prior to the break date and unity from the break date onwards) interacted with the 
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seasonal dummy variables that give shifts in the seasonal means in 1998q3, denoted 

𝐷(1998𝑞3)𝑠𝑡. The model including the seasonal dummy variables and the shift dummy 

variables are given in the column headed 2 of Table 5.7.2. All of the shift dummy 

variables are significant except 𝐷(1998𝑞3)4𝑡 and all the seasonal dummy variables are 

significant. The general significance of these shift dummy variables and the fall of the SC 

to 7.526 supports the need to model the identified break. 

Figure 5.7.1 plots the actual and fitted values of the model reported in column 2 of Table 

5.7.2. Visual inspection of this graph suggests that this deterministic model based on the 

Bai and Perron test results does not properly capture all of the mean shifts in the actual 

data. The graph suggests one more shift in 1997q1 and we therefore add interaction 

dummy variables, denoted 𝐷(1997𝑞1)𝑠𝑡, to the model reported column 2. The 

estimation results of this model are reported in column 3 of Table 5.7.2.   All the seasonal 

and shift dummy variables are significant except 𝐷(1998𝑞3)3𝑡 𝑎𝑛𝑑 𝐷(1998𝑞3)4𝑡. The 

general significance of these shifts dummy variables and that this model’s SC falls to 

4.530 supports the inclusion of these interaction terms in the model. 

Figure 5.7.2 plots the actual and fitted values of the model reported in column 3 of Table 

5.7.2. Visual inspection of this graph suggests that this deterministic model better 

captures the main mean shifts in the actual data than did model 2. We regard model 3 

from Table 5.7.2 as capturing the main mean shifts in the data and use this as the basis 

of the deterministic component of our ARIMAX model of Angola’s annual inflation. 
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5.7.2: Deterministic component of ARIMAX models for Angola 

Sample/Observation  1996q1 – 2012q4 (68)  

 1 2 3 4 

𝐷1𝑡  3.672 
(1.324) 

 16.918 
(3.384) 

 35.655 
(20.144) 

 

𝐷2𝑡 3.530 
(3.530) 

16.064 
(3.213) 

40.316 
(22.778) 

 

𝐷3𝑡 5.229 
(1.885) 

38.297 
(6.255) 

75.344 
(42.568) 

 

𝐷4𝑡 1.991 
(0.717) 

10.942 
(6.123) 

20.134 
(11.375) 

 

𝐷(1997𝑞1)𝑖𝑡    -28.104 
(-12.964) 

 

𝐷(1997𝑞1)2𝑡   -36.379 
(-16.781) 

 

𝐷(1997𝑞1)3𝑡   -74.094 
(-29.600) 

 

𝐷(1997𝑞1)4𝑡   -18.384 
(-7.344) 

 

𝐷(1998𝑞3)1𝑡  -16.086 
(-2.920) 

-6.718 
(-5.021) 

 

𝐷(1998𝑞3)2𝑡  -15.219 
(-2.763) 

-3.093 
(-2.311) 

 

𝐷(1998𝑞3)3𝑡  -37.477 
(-5.750) 

-0.430 
(-0.235) 

 

𝐷(1998𝑞3)4𝑡  -10.145 
(-1.557) 

-0.953 
(-0.521) 

 

I_ANG    1.000 
(59.170) 

Adj 𝑅2 -0.036 0.406  0.975 0.979 

SC 7.898 7.526 4.530 3.848 

S.E 11.435 8.659 1.770 1.618 
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Figure 5.7.1: the actual and fitted values of model 2 reported in Table 5.7.2 
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Figure 5.7.2: the actual and fitted values of model 3 reported in Table 5.7.3 
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Following Hendry (2001), Hendry and Santos (2005) and Caporale et al (2012) we 

construct an index of indicator variables to summarise the deterministic terms reported 

in column 3 of Table 5.7.2 in a single variable to enhance the efficiency of estimation of 

the ARIMAX model. We therefore define the index of indicator variable, denoted I_ANG, 

as the fitted value of the model reported in column 3 of Table 5.7.2 and report the 

regression of annual inflation on this indicator variable in column 4 of Table 5.7.2. The 

index is significant and has a unit coefficient as is expected. This model’s SC is 3.848 

which provides a benchmark for comparison with the ARIMAX models to be developed 

from this deterministic specification that are discussed below.  
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5.7.2 Developing the ARIMAX model for Angola 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

residuals of the deterministic model reported in column 4 of Table 5.7.2 is plotted in 

Figure 5.7.3. From the ACF the non-seasonal autocorrelation coefficients (ACs) are 

significant at lag 1 and 2 and insignificant at lags 3, 4, 5 and 6. This implies that there is 

no need for further non-seasonal differencing because no more than the first 5 non-

seasonal ACs are significant. It also implies that the maximum order of non-seasonal 

moving average (MA) component is probably 2. Further, the seasonal ACs are 

insignificant at lags 4, 8, 12, 16, 20, 24 and 28. This suggests that there is no need for 

further seasonal differencing because no more than the first 5 seasonal ACs (at the 

seasonal lags 4, 8, 12, 16 and 20) are significant. It also indicates the maximum order of 

seasonal MA component is probably equal 0. 

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lags 1, 4, 5 and insignificant at lags 2, 3 and 6. This suggests the maximum 

order of non-seasonal autoregressive (AR) component is probably 1. The seasonal PACs 

are significant at lags 4 and insignificant at lags 8, 12, 20, 24 and 28. Therefore, the 

maximum order of seasonal AR process is probably be equal to 1 or 2 (assuming a 

multiplicative functional form given the significant PAC at lag 9, although this could be 

result of sampling error).  The maximum seasonal ARMA specification that we initially 

identify to the residuals of the deterministic model is 𝐴𝑅𝑀𝐴(1, 2)(2, 0)4. Assuming a 

multiplicative specification we report an ARIMAX specification that includes I_ANG plus 

4 seasonal dummy variables and an 𝐴𝑅𝑀𝐴(1, 2)(2, 0)4 model of the residuals in the 

column headed 5 of Table 5.7.3.  
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Figure 5.7.4: the ACF and PACF of the residuals of model 4 reported in Table 5.7.2 

 

In this model the SC falls to 3.065 suggesting that the addition of ARMA terms has 

improved the specification. I_ANG is significant whereas all 4 seasonal dummy variables 

are individually insignificant. The latter is confirmed by the joint test for the exclusion of 

all 4 seasonal dummy variables, denoted LR(SEA DUM), which has a probability value of 

0.296 (given in square brackets below the reported test statistic). Because this exceeds 

0.05 these 4 dummy variables are jointly insignificant. All the ARMA terms are 

significant. 
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Table 5.7.3: The ARIMAX table for Angola 

Sample/Observations 1996q1 – 2012q4 (68)    

 5 6 7 8 9 

I_ANG 0.700 
(48.041) 

0.690 
(11.423) 

    

I_ANG2   0.775 
(12.507) 

  

I_ANG3     0.293 
(44.504) 

 0.219 
(65.172) 

𝐷𝑖𝑡 0.493 
(0.858) 

0.486 
(1.151) 

0.672 
(1.561) 

-147.422 
[-42.370] 

-111.109 
(-63.171) 

𝐷2𝑡 0.474 
(0.817) 

0.486 
(1.152) 

0.505 
(1.161) 

-2.090 
[-3.102] 

-1.893 
(-4.146) 

𝐷3𝑡 0.715 
(1.229) 

0.497 
0.497 
(1.184) 

0.032 
(0.073) 

44.710 
[40.144] 

 33.137 
(48.401) 

𝐷4𝑡 0.806 
(1.401) 

0.582 
(1.393) 

1.659 
(3.884) 

2.045 
[3.103] 

0.806 
(1.747) 

AR(1) 0.498 
(4.494) 

   0.701 
(37.589) 

SAR(4) -0.374 
(4.493) 

    

SAR(8) -0.065 
(-7.839) 

    

MA(1) 1.716 
(101.758) 

0.855 
(45.799) 

0.966 
(10.370) 

1.305 
(10.340) 

-0.352 
(-8.927) 

MA(2) 0.985 
(79.977) 

0.851 
(0.0186) 

0.970 
(10.607) 

1.150 
(7.639) 

0.999 
(979.039) 

MA(3)  0.985 
(156.022) 

0.996 
(69.185) 

0.129 
(1.009) 

 

Adj 𝑅2 0.994 0.994 0.994 0.986 0.997 

SC 3.065 2.979 2.999 3.784 2.360 

S.E 0.889 0.891 0.900 1.333 0.654 

AR Root 0.710 
0.498 

   0.701 

MA Root 0.993 0.995 
0.994 

0.999 
0.996 

0.999 
0.130 

0.999 

P[QLB(8)] 0.013 0.085 0.195 0.006 0.111 

LR (SEA DUM) 4.918 
[0.296] 

32.889 
[0.000] 

90.069 
[0.000] 

233.55 
[0.000] 

298.100 
[0.000] 

LR (SEA DUM, CON)      1487.189 
[0.000] 

𝐿𝑅(1997q1) 85.686 
[0.000] 

3.576 
[0.466] 

13.871 
[0.008] 

67.215 
[0.000] 

-68.066 
 

𝐿𝑅(1998q3) 7.216 
[0.125] 

10.758 
[0.029] 

12.096 
[0.017] 

-138.289 -224.802 
 

Where:   I_ANG = the fitted value of the model reported in column 3 of Table 5.7.2, S E = S E of regression, 

MA = the maximum order of non-seasonal moving average component, SMA = the maximum order of 

seasonal moving average component, AR = the maximum order of non- seasonal autocorrelation 

component, SAR = the maximum order of seasonal moving average component , 𝐷𝑠𝑡  = the seasonal 

dummy variables, denoted as 𝐷1𝑡 , 𝐷2𝑡 , 𝐷3𝑡  and 𝐷4𝑡, P[QLB(8)] =  Probability value of the Ljung-Box Q-

statistic - based on the square root of the sample size ( √68), Adj 𝑅2 = Adjusted R – square , SC = Schwarz 

criterion, AR Roots = Stationary Autoregressive average , MA Roots = Stationary Moving average, LR(SEA 

DUM) = the joint test for the seasonal dummy variables, 𝐿𝑅(1997𝑞1) and 𝐿𝑅(1998𝑞3) = Joint shift 

significance of each break date, Rounded Bracket = T – Ratios and Square Bracket = Probability value. 

We also conduct variable addition tests for the shift dummy variables included in the 

I_ANG variable to assess whether the coefficients on the terms embodied in this index 
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have changed significantly with the addition of ARMA components. A test of whether 

the shift dummy variables corresponding to the 1997q1 break can be added to the 

model with joint significance is reported in the row labelled 𝐿𝑅(1997𝑞1). The 

probability value (given in square brackets below the test statistic, being 0.000) less than 

0.050 suggesting that the variables corresponding to this break date can be added with 

joint significance. Similarly, the probability value of the joint test of the shift dummy 

variable corresponding to the break date 1998q3 reported in the row labelled 

𝐿𝑅(1998𝑞3) exceeds 0.050 indicating that the variable corresponding to this break date 

cannot be added with joint significance.  

To assess whether the model is valid for forecasting we apply the standard diagnostic 

checks for residual autocorrelation, stationarity and invertibility. The probability value 

of the Ljung-Box Q-statistic at the 8th lag, denoted P[QLB(8)], is less than 0.05 indicating 

evident residual autocorrelation and the need to respecify the model – we choose lag 8 

based on the square root of the sample size (in this case √68). The inverse roots of the 

AR process, denoted AR Root, are all less than one indicating that the model is consistent 

with a stationary process. The inverse roots of the MA process, denoted MA Root, are 

all less than one indicating that the model is invertible.  

This model is not valid for forecasting in the sense that there is evidence of residual 

autocorrelation and that the 𝐴𝑅𝑀𝐴𝑋(1, 2)(2, 0)4  specification reported in column 5 of 

Table 5.7.3 should be amended. After experimentation with the ARMA components we 

estimate an 𝐴𝑅𝑀𝐴𝑋(0 , 3) specification and report this in the column headed 6 of Table 

5.7.3. This model cannot be rejected by the diagnostic checks for residual 

autocorrelation, stationarity and invertibility. In terms of specification, all the ARMA 

components are significant and the seasonal dummy variables are also jointly significant 

according to LR(SEA DUM) because its probability value is less than 0.05. However, the 

test denoted 𝐿𝑅(1998𝑞3) indicates that the seasonal shift coefficients embodied in 

I_ANG have changed significantly in this year. We therefore add the coefficients of the 

seasonal shift dummy variables corresponding to this date to the I_ANG variable. The 

new index of indicator variables, I_ANG2, is defined as: 

I_ANG2 = I_ANG - 0.949 [S1*S1998Q3] - 0.710 [S2*S1998Q3] - 0.081 [S3*S1998Q3] - 

2.140 [S4*S1998Q3] 
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We re-estimate the model reported in the column headed 6 of Table 6.7.3 with I_ANG 

being replaced with I_ANG2. The resulting model is reported in the column headed 7 of 

Table 5.7.3. This model cannot be rejected according to the standard diagnostic checks 

for residual autocorrelation, stationarity and invertibility.  In terms of specification all 

the ARMA components are significant and the seasonal dummy variables are jointly 

significant according to LR(SEA DUM). However, the tests 𝐿𝑅(1997𝑞1)  and 

𝐿𝑅(1998𝑞3) indicate that the seasonal shift coefficient embodied in I_ANG2 have 

changed significantly. We therefore use the estimated coefficients on these terms to 

adjust I_ANG2. The new index of indicator variables, I_ANG3, is defined as: 151 

I_ANG3 = I_ANG2 + 508.111 [S1*S1997Q1] + 10.495 [S2*S1997Q1] - 149.406 

[S3*S1997Q1] - 0.625 [S4*S1997Q1] 

We re-estimate the model reported in the column headed 7 of Table 5.7.3 with I_ANG2 

being replaced with I_ANG3. The resulting model is reported in the column headed 8 of 

Table 5.7.3. According to the diagnostic tests this model is consistent with stationarity 

and invertibility however there is evident residual autocorrelation. In terms of 

specification all the ARMA components are significant except MA(3) and the seasonal 

dummy variables are jointly significant according to LR(SEA DUM). Further, the set of 

shift dummy variables corresponding to 1997𝑞1 cannot be added with significance 

whereas the shift dummy variables corresponding 1998𝑞3 can be added with 

significance. 

To deal with the evident autocorrelation we experiment with the ARMA components 

and find that replacing the MA(3) term with an AR(1) term yields a model that cannot 

be rejected according to the standard diagnostic checks for residual autocorrelation, 

stationarity and invertibility. This model is reported in the column headed 9 of Table 

5.7.3. 

The tests for the two sets of shift dummy variables, corresponding to 𝐿𝑅(1997𝑞1) and 

𝐿𝑅(1998𝑞3), both have negative values and therefore no p-value. This implies that the 

                                                           
151 Due to the error of a singular matrix as a result of possible multiple collinearity, we are unable to 
estimate  𝐿𝑅(1997𝑞1) and 𝐿𝑅(1998𝑞3) with 𝐴𝑅𝑀𝐴𝑋(0 , 3) at a time. Experimentation with the two 
breaks dates revealed that interaction term associated with 𝐿𝑅(1997𝑞1) has lowest SC when added to 
the 𝐴𝑅𝑀𝐴𝑋(0 , 3) model. Therefore, we use this to estimate I_ANG3. 
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test statistic is clearly very small and is therefore highly insignificant indicating that the 

coefficients embodied in I_ANG3 have not significantly changed as the ARMA 

specification is amended.  The ARMA terms are all significant and the seasonal dummy 

variables are jointly significant suggesting that no variables should be excluded.  Further, 

this model has the lowest SC of all those reported.  

We test the null hypothesis of whether the coefficients of the seasonal dummy variables 

are the same using a Wald test in the row labelled LR (SEA DUM, CON) of column 9. The 

probability value is 0.000 which rejects the null hypothesis of no deterministic 

seasonality. This suggests a significant difference in the coefficients of the individual 

seasonal dummy variables indicating significant deterministic seasonality. Hence, these 

seasonal dummy variables cannot be replaced by a single deterministic intercept.  

Therefore, model 9 in Table 5.7.3 is considered the best model to forecast Angola’s 

annual inflation. 

Visual inspection of the actual and fitted values of this model are given in Figure 5.7.4  

also suggests that the time path of the fitted values capture the mean shifts in the actual 

data and broadly tracks the data well if there is some evident seasonality in the residuals 

(although this declines towards the end of the sample).  
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Figure 5.7.4: the actual and fitted values of model 9 reported in Table 5.7.3 
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Therefore, we regard model 9 from Table 5.7.3 as the best ARIMAX model for 

forecasting Angola’s annual inflation because it has the minimum SC from those that 

cannot be rejected according to the diagnostic checks and the included deterministic 

terms adequately capture the identified structural breaks (according to the conducted 

variable addition tests).  
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5.8.  ARIMAX modelling of annual inflation for Ecuador 

The maximum available sample period is 1983q1 to 2012q4. To allow for lags, 

transformations and have a consistent estimation period for all models we specify an 

initialization period of four years and estimate all models over the period 1987q1 – 

2012q4. The first sub-section discusses the development of the deterministic 

component of the model that allows for structural breaks (shifts in the seasonal means). 

The second sub-section identifies the ARMA component to the residuals of this model 

and hence discusses the development of the final ARIMAX model. 

Table 5.8.1: Bai and Perron tests for structural breaks in Ecuador annual inflation 

Break 
Hypothesis 

Scaled F-statistic  Critical Value Sequential  Repartition 

0 vs 1  149.442 16.19 2001q4 2001q4 

1 vs 2 10.366 18.11   

 

In Table 5.8.2 we report various deterministic models of annual inflation. The model 

reported in the column labelled 1 is the benchmark model that includes the 4 seasonal 

dummy variables denoted, 𝐷𝑠𝑡 where 𝑠 = 1, 2, 3, 4, and does not model any structural 

breaks. All the four seasonal dummy variables are significant according to the t-ratios 

(reported in brackets below the dummy variables’ coefficients) and the model’s Schwarz 

criterion (SC) is 0.321. 

Table 5.8.1 reports the Bai and Perron scaled F-statistic with the associated 5% critical 

values for the benchmark model reported in the column labelled 1 in Table 5.8.2. The 

test indicates one significant breakpoint because the scaled F-statistic is greater than 

the corresponding critical value for the null hypothesis of no breaks (denoted 0 vs 1). 

However, the scaled F-statistic is less than critical value for the null hypothesis of 1 

breaks (1 vs 2). Both sequential and repartition methods indicate the same break point 

date of 2001q4 

Based on the Bai and Perron test results we specify shift dummy variables (that are zero 

prior to the break date and unity from the break date onwards) interacted with the 

seasonal dummy variable that shift the seasonal mean in 2001q4, 

denoted 𝐷(2001𝑞4)𝑠𝑡. The model including the seasonal dummy variables and the shift 
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dummy variables is given in the column headed 2 of Table 5.8.2. Both the seasonal 

dummy variables and the shift dummy variables are all significant suggesting significant 

changes in the seasonal means at the identified break point. The significance of these 

shift dummy variables and that this model’s SC falls to -0.439 supports the need to 

model the identified breaks. 

Figure 5.8.1 plots the actual and fitted values of the model reported in column 2 of Table 

5.8.2. Visual inspection of this graph suggests that this deterministic model based on the 

Bai and Perron test results does not adequately capture all of the mean shifts in the 

actual data. Therefore, the graph suggests two sets of pulse outliers in around 1989 and 

2000 and experimentation gives rise to new break date in 2002q1 to replace the 

previously identified one in 2001q4. The dummy variables corresponding to the new 

break date are denoted with 𝐷(2002𝑞1)𝑠𝑡 and the pulse outliers are denoted as 

𝐷(1989) and 𝐷(2000) respectively.152 We add these new shifts and pulse dummy 

variables to the model reported in column 2 giving the estimation results are reported 

in column 3 of Table 5.8.2. All of the seasonal, shift and pulse dummy variables are 

significant. The significance of these dummy variables and that this model’s SC falls to -

1.392 supports the inclusion of all of these terms in the model. 

Figure 5.8.2 plots the actual and fitted values of the model reported in column 3 of Table 

5.8.2. Visual inspection of this graph suggests that this deterministic model better 

captures the main mean shifts in the actual data than did model 2. We regard model 3 

from Table 5.8.2 as capturing the main mean shifts in the data and use this as the basis 

of the deterministic component of our ARIMAX model of Ecuador’s annual inflation. 

  

                                                           
152 The dummy variables for  𝐷(1989)𝑠𝑡 and 𝐷(2000) are estimated as follow: 𝐷(1989) =  

{
0  𝑖𝑓 𝑡 ≠ 1988𝑞4,1989𝑞1, 1989𝑞2 𝑎𝑛𝑑 1989𝑞3
1  𝑖𝑓 𝑡 =  1988𝑞4,1989𝑞1, 1989𝑞2 𝑎𝑛𝑑 1989𝑞3

   and   𝐷(2000)  =  {
0  𝑖𝑓 𝑡 ≠ 2000
1  𝑖𝑓 𝑡 = 2000
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5.8.2: Deterministic component of ARIMAX models for Ecuador 

Sample/Observation   1987q1 – 2012q4 (104) 

 1 2 3 4 

𝐷1𝑡  0.293 
(5.637) 

 0.467 
(10.684) 

0.399 
(14.950) 

  

𝐷2𝑡 0.289 
(5.562) 

0.462 
(10.587) 

0.395 
(14.792) 

 

𝐷3𝑡 0.288 
(5.543) 

0.461 
(10.561) 

0.394 
(14.749) 

 

𝐷4𝑡 0.285 
(5.483) 

0.473 
(10.474) 

0.391 
(14.626) 

 

𝐷(2001𝑞4)1𝑡  -0.411 
(-6.114) 

  

𝐷(2001𝑞4)2𝑡  -0.409 
(6.101) 

  

𝐷(2001𝑞4)3𝑡  -0.409 
(-6.095) 

  

𝐷(2001𝑞4)4𝑡  -0.409 
(-6.139) 

  

𝐷(2002𝑞1)1𝑡   -0.342 
(-8.448) 

 

𝐷(2002𝑞1)2𝑡   -0.342 
(-8.427) 

 

𝐷(2002𝑞1)3𝑡   0.342 
(-8.411) 

 

𝐷(2002𝑞1)4𝑡   -0.342 
(-8.411) 

 

 𝐷(1989)   0.451 
(8.564) 

 

 𝐷(2000)   0.560 
(10.633) 

 

I_ECU    1.000 
(39.581) 

Adj 𝑅2 -0.030 0.580 0.849 0.862 

SC 0.321 -0.439 -1.392 -1.800 

S.E 0.265 0.169 0.101 0.097 

  

  



352 
 

Figure 5.8.1: the actual and fitted values of model 2 reported in Table 5.8.2 
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Figure 5.8.2: the actual and fitted values of model 3 reported in Table 5.8.2 

-.2

-.1

.0

.1

.2

.3

0.0

0.2

0.4

0.6

0.8

1.0

1.2

88 90 92 94 96 98 00 02 04 06 08 10 12

Residual Actual Fitted  

 



353 
 

Following Hendry (2001), Hendry and Santos (2005) and Caporale et al (2012) we 

construct an index of indicator variables to summarise the deterministic terms reported 

in column 3 of Table 5.8.2 in a single variable to enhance the efficiency of estimation of 

the ARIMAX model. We therefore define the index of indicator variable, denoted I_ECU, 

as the fitted value of the model reported in column 3 of Table 5.8.2 and report the 

regression of annual inflation on this indicator variable in column 4 of Table 5.8.2. The 

index is significant and has a unit coefficient as is expected. This model’s SC is -1.800 

which provides a benchmark for comparison with potential ARIMAX models to be 

developed from this deterministic specification that are discussed below. 

5.8.2 Developing the ARIMAX model for Ecuador 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

residuals of the deterministic model reported in column 4 of Table 5.8.2 is plotted in 

Figure 5.8.3. Although the first 7 autocorrelation coefficients (ACs) are significant which, 

being greater than 5, is normally indicative of nonstationarity, the insignificance of the 

ACs at lags 8, 9, 10, 11 and 12 and the clear sinusoidal (rather than persistently 

significant) nature of the ACF suggests that the data are stationary and do not require 

any further nonseasonal differencing. If this is not the case it will become apparent from 

our diagnostic tests for stationarity and we therefore proceed being mindful of not over 

differencing the data. We also note that this sinusoidal geometric decay of the ACF is 

suggestive of the existence of an AR process. The seasonal ACs are significant at lags 4, 

16, 20 and 24 and insignificant at lags 8 and 12. This suggests that there is no need for 

further seasonal differencing because no more than the first 5 seasonal ACs (at the 

seasonal lags 4, 8, 12, 16 and 20) are significant and, as already mentioned, the 

sinusoidal decay of the ACF is probably indicative of an AR process rather than the need 

for any further differencing (be it seasonal or nonseasonal). It also indicates the 

maximum order of seasonal MA component is probably equal to 1 (given the significant 

AC at the seasonal lag of 4 and the insignificance of the seasonal AC at lag 8). The 

sinusoidal nature of the ACF makes it difficult to identify the order of nonseasonal MA 

process with the first 7 ACs being significant. We initially specify this to be 3 to account 

for the significant ACs at lags 1, 2 and 3 and given that we have identified a seasonal MA 

component to account for the significant AC at lag 4. Since we do not expect a higher 
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nonseasonal MA process as it would imply nonstationarity we do not, at least initially, 

specify a higher order nonseasonal MA process. 

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lag 1, and insignificant at lags 2 and 3. This suggests the maximum order of 

non-seasonal autoregressive (AR) component is probably 1. The seasonal PACs are 

significant at lags 8 and 12 and insignificant at lags 4, 16, 20, 24 and 28. Therefore, the 

maximum order of seasonal AR process is probably be equal to 3 (given the significance 

of the PAC at lag 5, 8 and 12). Therefore, the maximum seasonal ARMA specification 

that we initially identify to the residuals of the deterministic model is 

𝐴𝑅𝑀𝐴(1, 3)(3, 1)4. Assuming a multiplicative specification we report an ARIMAX 

specification that includes I_ECU plus 4 seasonal dummy variables and an 

𝐴𝑅𝑀𝐴(1, 3)(3, 1)4 model of the residuals in the column headed 5 of Table 5.8.3.  
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Figure 5.8.3: the ACF and PACF of the residuals of model 4 reported in Table 5.8.2 

 

 

In this model the SC falls to -2.545 suggesting that the addition of ARMA terms has 

improved the specification. I_ECU is significant whereas all 4 seasonal dummy variables 

are individually insignificant. The latter is confirmed by the joint test for the exclusion of 

all 4 seasonal dummy variables, denoted LR(SEA DUM), which has a probability value of 

-0.822 (given in square brackets below the reported test statistic). Because the actual 

value exceeds 0.05 these 4 dummy variables are jointly insignificant while all the ARMA 

components are significant except the AR(1), SAR(8), SAR(12) and SMA(4) terms that are 

insignificant. The latter suggests the removal of ARMA components to improve the 

model. 
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Table 5.8.3: The ARIMAX table for Ecuador  

Sample/Observations 
                                                          1987q1 2012q4 (104) 

 5 6 7 8 9 10 

I_ECU  0.677 
(11.470) 

0.452 
(8.135) 

0.229 
(6.087) 

   

I_ECU2    0.270 
(6.763) 

  

I_ECU3     0.357 
(8.588) 

0.250 
(6.677) 

𝐷1 0.047 
(1.791) 

0.108 
(2.410) 

0.042 
(0.634) 

0.063 
(1.387) 

0.104 
(1.249) 

-0.138 
(-0.515) 

𝐷2 0.047 
(1.787) 

0.109 
(2.424) 

0.041 
(0.621) 

0.062 
(1.366) 

0.104 
(1.240) 

-0.139 
(-0.518) 

𝐷3 0.044 
(1.666) 

0.107 
(2.339) 

0.042 
(0.644) 

0.064 
(1.396) 

0.105 
(1.239) 

-0.138 
(-0.513) 

𝐷4 0.045 
(1.666) 

0.104 
(2.339) 

0.042 
(0.632) 

0.063 
(1.378)) 

0.101 
(1.204) 

-0.139 
(-0.517) 

AR(1) 0.075 
(0.539) 

 0.970 
(61.259) 

0.962 
(54.31 

0.936 
(24.989) 

0.986 
(87.391) 

SAR(4) 0.842 
(2.499) 

0.535 
(5.536) 

0.259 
(2.280) 

0.287 
(2.492 

-0.863 
(-26.139) 

 

SAR(8) -0.223 
(-1.182) 

     

SAR(12) -0.086 
(-0.727) 

     

MA(1) 0.817 
(6.969) 

1.059 
(13.406) 

0.582 
(5.815) 

0.580 
(5.892) 

0.423 
(4.519) 

0.696 
(7.667) 

MA(2) 0.944 
(13.280) 

1.066 
(11.494) 

0.400 
(4.166) 

0.440 
(4.672) 

0.467 
(4.822) 

0.485 
(5.238) 

MA(3) 0.881 
(10.456) 

0.992 
(23.952) 

    

SMA(4) -0.450 
(-1.280) 

 -0.999 
(-21.133) 

-0.999 
(-26.787) 

0.999 
(46.013) 

-0.999 
(-32.316) 

Adj 𝑅2 0.957 0.964 0.979 0.980 0.976 0.980 

SC -2.545 -2.867 -3.354 -3.398 -3.213 -3.449 

S.E 0.054 0.049 0.038 0.037 0.041 0.037 

AR Root 0.900 
0.668 
0.075 

0.855 0.970 
0.713 
 

0.962 
0.732 

0.964 
0.936 

0.986 

MA Root 0.999 
0.881 
0.819 

0.999 
0.992 

0.999 
0.632 

0.999 
0.63l 

0.999 
0.683 

0.999 
0.696 

P[QLB(10)] 0.030 0.002 0.224 0.214 0.037 0.116 

LR (SEA DUM) -0.822 14.818 
(0.005) 

4.188 
[0.381] 

3.151 
[0.533] 

1.660 
[0.798] 

11.295 
[0.023] 

LR (SEA DUM, 
CON) 

     6.969 
[0.000] 

𝐿𝑅(2002𝑞1) 21.365 
[0.000] 

1.453 
(0.835) 

-0.376 
 

-23.008 
 

23.025 
[0.000] 

-1.985 

𝐿𝑅(1989) 87.435 
[0.000] 

30.563 
(0.000) 

10.776 
[0.001] 

6.245 
[0.013] 

25.523 
[0.000] 

2.778 
[0.100] 

𝐿𝑅(2000) 55.828 
[0.000] 

0.155 
(0.693) 

10.006 
[0.002] 

5.937 
[0.015] 

28.242 
[0.000] 

0.964 
[0.326] 
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Where:   I_ECU = the fitted value of the model reported in column 3 of Table 5.8.2, S E = S E of regression, 

MA = the maximum order of non-seasonal moving average component, SMA = the maximum order of 

seasonal moving average component, AR = the maximum order of non- seasonal autocorrelation 

component, SAR = the maximum order of seasonal moving average component , 𝐷𝑠𝑡  = the seasonal 

dummy variables, denoted as 𝐷1𝑡 , 𝐷2𝑡 , 𝐷3𝑡  and 𝐷4𝑡, P[QLB(10)] =  Probability value of the Ljung-Box Q-

statistic at the 10th lag from the sample size ( √10), Adj 𝑅2 = Adjusted R – square , SC = Schwarz criterion, 

AR Roots = Stationary Autoregressive average , MA Roots = Stationary Moving average, LR(SEA DUM) = 

the joint test for the seasonal dummy variables; 𝐿𝑅(1989), 𝐿𝑅(2000)  and 𝐿𝑅(2002𝑞1), = Joint shift 

significance of each break date, Rounded Bracket = T – Ratios and Square Bracket = Probability value. 

 

We conduct variable addition tests for the shift dummy variables included in the I_ECU 

variable to assess whether the coefficients on these terms embodied in this index have 

changed significantly with the addition of ARMA terms. We test whether the shift 

dummy variables corresponding to the 2002q1 break can be added to the model with 

joint significance is reported in the row labelled 𝐿𝑅(2002𝑞1). Since the probability 

value is less than 0.05, this variable is highly significant and the variable can be added 

with joint significance. Similarly, the probability values of the joint tests of the pulse 

outlier dummy variables corresponding to the break dates  𝐿𝑅(1989) and  𝐿𝑅(2000), 

reported in the rows labelled 𝐿𝑅(1989) and 𝐿𝑅(2000) are also significant indicating 

that both variables can be added with joint significance. This suggests that the 

coefficients embodied in I_ECU have significantly changed with the addition of ARMA 

terms. 

For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 10th lag, denoted P[QLB(10)], is less  than 0.050 indicating  evident 

residual autocorrelation – we choose lag 10 based on the square root of the sample size 

(in this case √104). The inverse roots of the AR process, denoted AR Root, are all less 

than one indicating that the model is consistent with a stationary process. The inverse 

roots of the MA process, denoted MA Root, are all less than one indicating that the 

model is invertible.  

This model cannot be valid for forecasting due to the evidence of residual 

autocorrelation and should be respecified. Therefore, we amend the model reported in 

the column headed 5 of Table 5.8.3 by removing insignificant ARMA variables. The 

coefficients on the AR(1), SAR(8), SAR(12) and SMA(4) terms are not significant and  are 
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therefore removed from the model given in the column headed 5 of Table 5.8.3 and the 

resulting 𝐴𝑅𝑀𝐴𝑋(0, 3)(1, 0)4 specification is reported in the column headed 6 of Table 

5.8.3. Although this model does not fail the diagnostic checks for invertibility and 

stationarity, there is evidence of autocorrelation suggesting unmodelled systematic 

variation in the dependent variable that indicates the need to further adjust the model. 

Experimentation with the ARMA components yields the 𝐴𝑅𝑀𝐴𝑋(1, 2)(1, 1)4 model 

reported in the column headed 7 of Table 5.8.3. This model cannot be rejected according 

to the standard diagnostic checks for residual autocorrelation, stationarity and 

invertibility. All the ARMA components are significant. The seasonal dummy variables 

are jointly insignificant according to LR(SEA DUM) because its probability value is greater 

than 0.05. However, the joint tests for  𝐿𝑅(1989) and  𝐿𝑅(2000) indicate that the 

coefficients embodied in I_ECU have changed significantly. We therefore add the 

dummy variables corresponding to these dates to the model reported in the column 

headed 7 of Table 5.8.3 and use the estimated coefficients on these terms to adjust 

I_ECU. The new index of indicator variables, I_ECU2, is defined as: 

I_ECU2 = I_ECU - 0.139 [D1989] + 0.002 [D2000] 

We re-estimate the model reported in the column headed 7 of Table 5.8.3 with I_ECU 

being replaced with I_ECU2. The resulting model is reported in the column headed 8 of 

Table 5.8.3. This model cannot be rejected according to the standard diagnostic checks 

for residual autocorrelation, stationarity and invertibility. The seasonal dummy variables 

are jointly insignificant. However, the joint tests for  𝐿𝑅(1989) and  𝐿𝑅(2000) indicate 

that the coefficients embodied in I_ECU2 have changed significantly. We therefore add 

the dummy variables corresponding to these dates to the model reported in the column 

headed 8 of Table 5.8.3 and use the estimated coefficients on these terms to adjust 

I_ECU2. The new index of indicator variables, I_ECU3, is defined as: 

I_ECU3 =I_ECU2 - 0.089 [D1989] + 0.001 [D2000] 

We re-estimate the model reported in the column headed 8 of Table 5.8.3 with I_ECU2 

being replaced with I_ECU3. The resulting model is reported in the column headed 9 of 

Table 5.8.3. This model is rejected based on residual autocorrelation suggesting 

unmodelled systematic variation in the dependent variable and the need to adjust the 

model. After experimentation with the ARMA components we select an 
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𝐴𝑅𝑀𝐴𝑋(1, 2)(0, 1)4 with I_ECU3 which is reported in the column headed 10 of Table 

5.8.3. In this model, all the ARMA components are significant. This model cannot be 

rejected according to the standard diagnostic checks for residual autocorrelation, 

stationarity and invertibility. The tests for the addition of the 3 sets of dummy variables 

corresponding to 𝐿𝑅(1989), 𝐿𝑅(2000) and 𝐿𝑅(2002𝑞1), are all insignificant indicating 

that coefficients embodied in I_ECU3 have not significantly changed with the 

amendment of ARMA terms. However, although the four seasonal dummy variables are 

individually insignificant the joint test for the exclusion of these dummy variables is 

significant and we therefore do not exclude these insignificant dummy variables from 

this model.153   

We test the null hypothesis of whether the coefficients of the seasonal dummy variables 

are the same using a Wald test in the row labelled LR (SEA DUM, CON) of column 10. 

The probability value is 0.000 which rejects the null hypothesis of no deterministic 

seasonality. This suggests a significant difference in the coefficients of the individual 

seasonal dummy variables indicating significant deterministic seasonality. Hence, these 

seasonal dummy variables cannot be replaced by a single deterministic intercept.  

Therefore, model 10 in Table 5.8.3 is considered the best model to forecast Ecuador’s 

annual inflation. 

 

  

                                                           
153 Experimentation with the exclusion of these seasonal variables caused further problems of 
autocorrelation that suggest unmodelled systematic variation in the dependent variable. 
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Figure 5.8.4: the actual and fitted values of model 10 reported in Table 5.8.3 
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Visual inspection of the actual and fitted values of this graph shows that the fitted values 

broadly captures the mean shifts and general time path of the actual data .Therefore we 

regard model 10 from Table 5.8.3 as the best ARIMAX model for forecasting Ecuador’s 

annual inflation because it has the minimum SC from those that cannot be rejected 

according to the diagnostic checks.  Although there is some concern with the seasonality 

in the residuals (this declines to zero at the end of the sample). 
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5.9 Box-Jenkins ARIMAX modelling of annual inflation for Kuwait 

The maximum available sample period estimated is 1973q1 to 2012q4. To allow for lags, 

transformations and have a consistent estimation period for all models we specify an 

initialization period of four years and estimate all models over the period 1977q1 – 

2012q4. The first sub-section discusses the development of the deterministic 

component of the model that allows for structural breaks (shifts in the seasonal means). 

The second sub-section identifies the ARMA component to the residuals of this model 

and hence discusses the development of the final ARIMAX model. 

Table 5.9.1: Bai and Perron tests for structural breaks in Kuwait annual inflation 

Break 

Hypothesis 

Scaled F-statistic  Critical Value Sequential  Repartition 

0 vs 1  58.174 16.19 1983q2 1983q2 

1 vs 2 24.299 18.11 2007q1 2007q1 

2 vs 3 5.484 18.93   

 

In Table 5.9.2 we report various deterministic models of annual inflation. The model 

reported in the column labelled 1 is the benchmark model that includes the 4 seasonal 

dummy variables denoted, 𝐷𝑠𝑡 where 𝑠 = 1, 2, 3, 4, and does not model any structural 

breaks. All the seasonal dummy variables are significant according to the t-ratios 

(reported in brackets below the dummy variables’ coefficients) and the model’s Schwarz 

criterion (SC) is -3.777. 

Table 5.9.1 reports the Bai and Perron scaled F-statistic with the associated 5% critical 

values for the benchmark model reported in the column labelled 1 in Table 5.9.2. The 

test results indicate that there are two significant breakpoints because the scaled F-

statistic is greater than the corresponding critical value for the null hypothesis of no 

breaks (denoted 0 vs 1) and the null hypothesis of one break (1 vs 2). However, the 

scaled F-statistic is less than critical value for the null hypothesis of 2 breaks (2 vs 3). 

Both sequential and repartition methods indicate the same break point dates of 1983q2 

and 2007q1. 
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Based on the Bai and Perron test results we specify shift dummy variables (that are zero 

prior to the break date and unity from the break date onwards) interacted with the 

seasonal dummy variables that give shifts in the seasonal means in 1983q2, denoted 

𝐷(1983𝑞2)𝑠𝑡, and 2007q1, denoted 𝐷(2007𝑞1)𝑠𝑡. The model including the seasonal 

dummy variables and the shift dummy variables is given in the column headed 2 of Table 

5.9.2. All the shifts and seasonal dummy variables are significant. The significance of the 

shift dummy variables and that this model’s SC falls to -4.027 supports the need to 

model the identified breaks.  

Figure 5.9.1 plots the actual and fitted values of the model reported in column 2 of Table 

5.9.2. Visual inspection of this graph suggests that this deterministic model based on the 

Bai and Perron test results does not capture a large set of outliers in around 1992. We 

therefore add a pulse dummy variable, denoted 𝐷(1992) to the model reported in 

column 2 to capture these outliers.154 The estimation results of this model are reported 

in column 3 of Table 5.9.2. All of the dummy variables are significant suggesting 

significant justifying their inclusion. The significance of these dummy variables and that 

this model’s SC falls to -4.968 supports the inclusion of all of these terms to in the model. 

Figure 5.9.2 plots the actual and fitted values of the model reported in column 3 of Table 

5.9.2. Visual inspection of this graph suggests that this deterministic model better 

captures the main mean shifts and outliers in the actual data than did model 2. We 

regard model 3 from Table 5.9.2 as capturing the main shifts and outliers in the data and 

use this as the basis of the deterministic component of our ARIMAX model of Kuwait’s 

annual inflation. 

 

  

                                                           

154The dummy variables for  𝐷(1992) is estimated as follow:  =  {
0  𝑖𝑓 𝑡 ≠ 1992
1  𝑖𝑓 𝑡 = 1992
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Table 5.9.2: Deterministic component of ARIMAX models for Kuwait 

Sample/Observation    1977q1- 2012q4 (144) 

 1 2 3 4 

𝐷1𝑡  0.039 
(6.780) 

 0.077 
(7.378) 

 0.077 
(11.967) 

 

𝐷2𝑡 0.039 
(6.781) 

0.082 
(7.296) 

0.082 
(11.833) 

 

𝐷3𝑡 0.039 
(6.692) 

0.082 
(7.282) 

0.082 
(11.811) 

 

𝐷4𝑡 0.038 
(6.571) 

0.079 
(7.033) 

0.079 
(11.407) 

 

𝐷(2007𝑞1)𝑖𝑡  0.033 
(2.645) 

0.038 
(4.997) 

 

𝐷(2007𝑞1)2𝑡  0.032 
(2.580) 

0.038 
(4.866) 

 

𝐷(2007𝑞1)3𝑡  0.029 
(2.364) 

0.035 
(4.516) 
 

 

𝐷(2007𝑞1)4𝑡  0.029 
(2.293) 

0.034 
(4.400) 

 

                  D(1992)   0.127 
(14.707) 

 

𝐷(1983𝑞2)1𝑡  -0.053 
(-4.496) 

-0.059 
(-8.038) 

 

𝐷(1983𝑞2)2𝑡  -0.058 
(-4.593) 

-0.063 
(-8.127) 

 

𝐷(1983𝑞2)3𝑡  -0.057 
(-4.584) 

-0.063 
(-8.112) 

 

𝐷(1983𝑞2)4𝑡  -0.055 
(-4.369) 

-0.060 
(-7.764) 

 

I_KUW     1.000 
(36.379) 

Adj 𝑅2 -0.021  0.360 0.757 0.777 

SC -3.777 -4.027 -4.968 -5.382 

S.E 0.035 0.027 0.017 0.016 
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Figure 5.9.1: the actual and fitted values of model 2 reported in Table 5.9.2 
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Figure 5.9.2: the actual and fitted values of model 3 reported in Table 5.9.2 
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Following Hendry (2001), Hendry and Santos (2005) and Caporale et al (2012) we 

construct an index of indicator variables to summarise the deterministic terms reported 

in column 3 of Table 5.1.2 in a single variable to enhance the efficiency of estimation of 

the ARIMAX model. We therefore define the index of indicator variable, denoted I_KUW, 

as the fitted value of the model reported in column 2 of Table 5.9.2 and report the 

regression of annual inflation on this indicator variable in column 3 of Table 5.9.2. The 

index is significant and has a unit coefficient as is expected. This model’s SC is -5.382 

which provides a benchmark for comparison with potential ARIMAX models to be 

developed from this deterministic specification that are discussed below. 

5.9.2 Developing the ARIMAX model for Kuwait 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

residuals of the deterministic model reported in column 4 of Table 5.9.2 is plotted in 

Figure 5.9.2. From the ACF the non-seasonal autocorrelation coefficients (ACs) are 

significant at lags 1, 2 and 3 insignificant at lag 4. This implies that there is no need for 

further non-seasonal differencing because no more than the first 5 non-seasonal ACs 

are significant (the significance of the ACs at lags 5, 6 and 7 is interpreted as part of the 

sinusoidal pattern of the ACF rather than nonstationarity). It also implies that the 

maximum order of non-seasonal moving average (MA) component is probably 3.  

Further, the seasonal ACs are insignificant at lags 4, 8, 16, 20, 24 and 28 (if significant at 

lag 16, which is interpreted as part of the sinusoidal pattern of the ACF). This suggests 

that there is no need for further seasonal differencing because no more than the first 5 

seasonal ACs (at the seasonal lags 4, 8, 12, 16 and 20) are significant. It also indicates 

the maximum order of seasonal MA component is probably equal to 0. 

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lags 1, 2 and 3 and insignificant at lag 5. This suggests the maximum order 

of non-seasonal autoregressive (AR) component is probably 3. The seasonal PACs are 

significant at 4 and insignificant at lags, 8 12, 16, 20, 24 and 28. Therefore, the maximum 

order of seasonal AR process is probably be equal to 1. Therefore, the maximum 

seasonal ARMA specification that we initially identify to the residuals of the 

deterministic model is 𝐴𝑅𝑀𝐴(3, 3)(1, 0)4 . Assuming a multiplicative specification we 
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report an ARIMAX specification that includes I_KWU plus 4 seasonal dummy variables 

and an 𝐴𝑅𝑀𝐴(3, 3) (1, 0)4 model of the residuals in the column headed 5 of Table 5.9.3. 

Figure 5.9.3: the ACF and PACF of the residuals of model 4 reported in Table 5.9.2 

 

In this model the SC falls to -6.477 suggesting that the addition of ARMA terms has 

improved the specification. I_KUW is significant and all 4 seasonal dummy variables are 

individually insignificant. The latter is confirmed by the joint test for the exclusion of all 

4 seasonal dummy variables, denoted LR(SEA DUM), which has a probability value of 

0.681 (given in square brackets below the reported test statistic). Because this exceeds 

0.05 these 4 dummy variables are jointly insignificant. The first non-seasonal 

autoregressive variable’s coefficient denoted AR(1), the first, second and third non-

seasonal moving average variables’ coefficients, denoted  as MA(1), MA(2) and MA(3) 

respectively,  are significant. However, the first seasonal AR variable’s coefficient, 

denoted SAR(4), as well as the second and third  non-seasonal AR variables’ coefficients, 
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denoted AR(2) and AR(3) respectively, are insignificant. These results suggest that the 

specification can be improved by the exclusion of some combination of deterministic 

and ARMA terms.  
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Table 5.9.3: The ARIMAX table for Kuwait 

Where:   I_KUW = the fitted value of the model reported in column 3 of Table 5.9.2, S E = S E of regression, 

MA = the maximum order of non-seasonal moving average component, SMA = the maximum order of 

Sample/Observa
tions 

1977q1 – 2012q4 (140)    

 5 6 7 8 9 

I_KUW 0.940 
(17.022) 

    

I_KUW2   0.605 
(18.930) 

   

I_KUW3    0.607 
(20.111) 

 0.617 
(20.977) 

 

I_KUW4      0.566 
(21.047) 

𝐷1 0.002 
(0.393) 

0.016 
(4.022) 

0.015 
(3.685) 

0.014 
(4.022) 

0.016 
(4.383) 

𝐷2 0.002 
(0.507) 

0.020 
(5.220) 

 0.020 
(5.256) 

0. 020 
(5.773) 

0.021 
(5.968) 

𝐷3 0.002 
(0.546) 

0.018 
(4.690) 

0.017 
(4.431) 

0.017 
(4.858) 

0.019 
(5.150) 

𝐷4 0.002 
(0.643) 

0.018 
(4.601) 

0.017 
(4.371) 

0.017 
(4.814) 

0.018 
(5.102) 

AR(1) 0.301 
(2.357) 

0.281 
(3.176) 

  0.330 
(3.775) 

 0.350 
(4.000) 

0.355 
(4.131) 

AR(2) 0.019 
(0.136) 

-0.046 
(-0.492) 

-0.088 
(-0.939) 

  

AR(3) -0.154 
(-1.201) 

0.036 
(0.396) 

0.066 
(0.770) 

  

SAR(4) 0.130 
(1.130) 

0.100 
(1.297) 

  0.073 
( 1.017) 

  

MA(1) 0.697 
(6.772) 

0.902 
(42.399) 

0.896 
(44.438) 

0.845 
(18.758) 

0.861 
(20.914) 

MA(2) 0.593 
(5.657) 

0.889 
(36.176) 

0.886 
( 0.886) 

0.716 
(11.461) 

0.762 
(13.532) 

MA(3) 0.687 
(7.026) 

0.963 
(64.208) 

0.968 
(68.851) 

0.852 
(19.346) 

0.882 
(22.003) 

Adj 𝑅2 0.929 0.946  0.949 0.949 0.949 

SC -6.477 -6.502 -6.560 -6.635 -6.646 

S.E 0.009 0.008 0.008 0.008 0.008 

AR Root 0.601 
0.577 
0.462 

0.562 
0.395 
0.300 

0.521 
0.458 
0.382 

0.350 0.355 

MA Root 0.894 
0.877 

0.988 
0.987 

0.990 
0.988 

0.991 
0.927 

0.991 
0.943 

P[QLB(12)] 0.216 0.113 0.027 0.271 0.330 

LR (SEA DUM) 2.299 
[0.681] 

69.407 
[0.000] 

 86.087 
[0.000] 

90.051 
[0.000] 

88.095 
[0.000] 

LR(SEA 
DUM,CON) 

    647622.300 
[0.000] 

𝐿𝑅(1983𝑞2)  25.391 
[0.000] 

9.968 
[0.041] 

 1.614 
[0.806] 

1.137 
(0.888) 

1.546 
[0.819] 

𝐿𝑅(1992) 19.515 
[0.000] 

1.512 
[0.220] 

 1.851 
[0.174] 

4.109 
[0.043] 

2.516 
[0.113] 

𝐿𝑅(2007𝑞1) 8.033 
[0.090] 

4.264 
[0.372] 

2.711 
[0.607] 

8.574 
[0.072] 

7.585 
[0.108] 
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seasonal moving average component, AR = the maximum order of non- seasonal autocorrelation 

component, SAR = the maximum order of seasonal moving average component , 𝐷𝑠𝑡  = the seasonal 

dummy variables, denoted as 𝐷1𝑡 , 𝐷2𝑡 , 𝐷3𝑡  and 𝐷4𝑡, P[QLB(12)] =  Probability value of the Ljung-Box Q-

statistic at the 12th lag from - based on the square root of the sample size ( √114), Adj 𝑅2 = Adjusted R – 

square , SC = Schwarz criterion, AR Roots = Stationary Autoregressive average , MA Roots = Stationary 

Moving average, LR(SEA DUM) = the joint test for the seasonal dummy variables, 𝐿𝑅(1983𝑞2),𝐿𝑅(1992),  

and 𝐿𝑅(2007𝑞1) = Joint shift significance of each break date, Rounded Bracket = T – Ratios and Square 

Bracket = Probability value.  

 

We also conduct variable addition tests for the shift dummy variables included in the 

I_KUW variable to assess whether the coefficients on these terms embodied in this index 

have changed significantly with the addition of ARMA terms. Tests of whether the 

dummy variables corresponding to the 1983q2, 1992 and 2007q1 periods can be added 

to the model with joint significance are reported in the rows labelled 𝐿𝑅(1989𝑞3) and 

𝐿𝑅(1992), 𝐿𝑅(2007𝑞1).  Since the probability values for 1983q2 and 1992 (given in 

square brackets below the test statistics, both being 0.000) are less than 0.050 the 

variables corresponding to these dates can be added with joint significance. Similarly 

the probability value of the joint test for the shift dummy variable corresponding to the 

2007q1 break date exceeds 0.050 indicating that the shift variable for this date cannot 

be added with joint significance.  

For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 12th lag, denoted P[QLB(12)], exceeds 0.050 indicating no evident residual 

autocorrelation – we choose lag 12 based on the square root of the sample size (in this 

case √144). The inverse roots of the AR process, denoted AR Root, are all less than one 

indicating that the model is consistent with a stationary process. The inverse roots of 

the MA process, denoted MA Root, are all less than one indicating that the model is 

invertible.  

Since, shift dummy variables test for 𝐿𝑅(1983𝑞2) and 𝐿𝑅(1992) indicate that the 

seasonal shift coefficients embodied in I_KUW have changed significantly; we add the 

seasonal shift dummy variables corresponding to these dates to the model reported in 

the column headed 5 of Table 5.9.3 and use the estimated coefficients on these terms 

to adjust I_KUW. The new index of indicator variables, I_KUW2, is defined as: 
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I_kuw2 = I_kuw - 0.007 [S1*S1983Q2] - 0.0146 [S2*S1983Q2] - 0.0109 [S3*S1983Q2] - 

0.0101 [S4*S1983Q2] + 0.088 [D1992] 

We re-estimate the model reported in the column headed 5 of Table 5.9.3 with I_KUW2 

being replaced with I_KUW. The resulting model is reported in the column headed 6 of 

Table 5.9.3. This model cannot be rejected by the diagnostic checks for residual 

autocorrelation, stationarity and invertibility. In terms of specification all variables are 

significant except for the AR(2), AR(3) and SMA(4) terms.  The seasonal dummy variables 

are jointly significant according to LR(SEA DUM). The tests for 𝐿𝑅(2007𝑞1) and 

𝐿𝑅(1992) indicate that the coefficients embodied in I_KUW2 have not changed 

significantly (insignificant). The test 𝐿𝑅(1983𝑞2) break date is significant. Therefore, we 

add the seasonal shift dummy variables corresponding to 𝐿𝑅(1983𝑞2)  to the model 

reported in the column headed 6 of Table 5.9.3 and use the estimated coefficients on 

these terms to adjust I_KUW2. The new index of indicator variables, I_KUW3 is defined 

as: 

I_kuw3 = i_kuw2+ 0.002 [S1*S1983Q2] - 0.000 [S2*S1983Q2] + 0.002 [S3*S1983Q2] + 

0.001 [S4*S1983Q2] 

We re-estimate the model reported in the column headed 6 of Table 5.9.3 with I_KUW2 

being replaced with I_KUW3. The resulting model is reported in the column headed 7 of 

Table 5.9.3. This model does not fail the diagnostic checks for invertibility and 

stationarity, however there is evidence of autocorrelation suggesting unmodelled 

systematic variation in the dependent variable and the need to adjust the model. In 

terms of specification all variables are significant except for the AR(2), AR(3), SAR(4) and 

MA(2) terms, which are insignificant.  

Therefore, we remove all insignificant ARMA terms, except for the MA (2) term (because 

the MA(3) term is significant) from the model reported in the column headed 7 from 

Table 5.9.3 and report the resulting 𝐴𝑅𝑀𝐴𝑋(1, 3) in the column headed 8 of Table 5.9.3. 

This model cannot be rejected by the diagnostic checks for residual autocorrelation, 

stationarity and invertibility. All the ARMA terms in this model are significant. The tests 

𝐿𝑅(2007𝑞1) and 𝐿𝑅(1983𝑞2)  indicate that the seasonal shifts coefficient embodied 

in I_KUW3 have not changed significantly however the 𝐿𝑅(1992)  break date is 

significant. Therefore, we add the dummy variables corresponding to 𝐿𝑅(1992)  to the 
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model reported in the column headed 8 of Table 5.9.3 and use the estimated coefficients 

on these terms to adjust I_KUW3. The new index of indicator variables, I_KUW4 is 

defined as:  

I_kuw4 = I_kuw3 + 0.024 [D1992]  

We re-estimate the model reported in the column headed 8 of Table 5.9.3 with I_KUW3 

being replaced with I_KUW4. The resulting model is reported in the column headed 9 of 

Table 5.9.3. According to standard diagnostic test, this model cannot be rejected for 

residual autocorrelation, stationarity and invertibility. In terms of specification all the 

ARMA components are significant and the seasonal dummy variables are individually 

and jointly significant, see LR(SEA DUM).  

The tests for the addition of the 3 sets of shift dummy variables, 𝐿𝑅(1983𝑞2), 

𝐿𝑅(1992), and 𝐿𝑅(2007𝑞1), all have probability values that exceed 0.050 indicating 

that the coefficients embodied in I_KUW4 have not significantly changed as the ARMA 

specification is amended.  

We test the null hypothesis of whether the coefficients of the seasonal dummy variables 

are the same using a Wald test in the row labelled LR (SEA DUM, CON) of column 9. The 

probability value is 0.000 which rejects the null hypothesis of no deterministic 

seasonality. This suggests a significant difference in the coefficients of the individual 

seasonal dummy variables indicating significant deterministic seasonality. Hence, these 

seasonal dummy variables cannot be replaced by a single deterministic intercept.  

Therefore, model 9 in Table 5.9.3 is considered the best model to forecast Kuwait’s 

annual inflation. 

Visual inspection of the actual and fitted values graph of this model suggests that the 

time path of the fitted values broadly track the data well including the identified mean 

shifts. 
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Figure 5.9.4: the actual and fitted values of model 9 reported in Table 5.9.3 
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We  regard model 9 from Table 5.9.3 as the best ARIMAX model for forecasting Kuwait’s 

annual inflation because it has the minimum SC from those that cannot be rejected 

according to the diagnostic checks and the included deterministic adequately capture 

the identified structural breaks (according to the conducted variable addition tests). 
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5.10 ARIMAX modelling of annual inflation for Nigeria 

The maximum available sample period is 1960q1 to 2012q4. To allow for lags, 

transformations and have a consistent estimation period for all models we specify an 

initialization period of four years and estimate all models over the period 1964q1 – 

2012q4. The first sub-section discusses the development of the deterministic 

component of the model that allows for structural breaks (shifts in the seasonal means). 

The second sub-section identifies the ARMA component to the residuals of this model 

and discusses the development of the final ARIMAX model. 

 

Table 5.10.1: Bai and Perron tests for structural breaks in Nigeria annual inflation 

Break 

Hypothesis 

Scaled F-statistic  Critical Value Sequential  Repartition 

0 vs 1  25.101 16.19 1973q4 1973q4 

1 vs 2 37.619 18.11 1997q1 1988q2 

2 vs 3 71.560 18.98 1988q2 1996q3 

3  vs 4 0.696 19.64    

 

In Table 5.10.2 we report various deterministic models of annual inflation. The model 

reported in the column labelled 1 is the benchmark model that includes the 4 seasonal 

dummy variables denoted, 𝐷𝑠𝑡 where 𝑠 = 1, 2, 3, 4, and does not model any structural 

breaks. All the four seasonal dummy variables are significant according to the t-ratios 

(reported in brackets below the dummy variables’ coefficients) and the model’s Schwarz 

criterion (SC) is -0.560. 

Table 5.10.1 reports the Bai and Perron scaled F-statistic with the associated 5% critical 

values for the benchmark model reported in the column labelled 1 in Table 5.10.2. The 

test results indicate that there are three significant breakpoints because the scaled F-

statistic is greater than the corresponding critical value for the null hypothesis of no 

breaks (denoted 0 vs 1,), the null hypothesis of one break (1 vs 2) and the null hypothesis 

of two breaks (2 vs 3). However, the scaled F-statistic is less than critical value for the 

null hypothesis of 3 breaks (3 vs 4). Both sequential and repartition methods indicate 
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different break point dates. The sequential method indicates break dates of 1973q4, 

1988q2 and 1997q1 while the repartition method specifies the dates as 1973q4, 1988q2 

and 1996q3.  

Based on the Bai and Perron test results we specify shift dummy variables (that are zero 

prior to the break date and unity from the break date onwards) interacted with the 

seasonal dummy variables that give shifts in the seasonal means in 1973q4, 1988q2, 

1996q3 and 1997q1, denoted as: 𝐷(1973𝑞4)𝑠𝑡,  𝐷(1988𝑞2)𝑠𝑡,  𝐷(1996𝑞3)𝑠𝑡 

and 𝐷(1997𝑞1)𝑠𝑡  respectively. The model that include the seasonal dummy variables 

and the shift dummy variables indicated by the sequential method are given in the 

column headed 2 of Table 5.10.2. All the shift dummy variables are significant suggesting 

significant changes in the seasonal means at the identified breaks point; however, all 

four seasonal dummy variables are insignificant. The significance of the shift dummy 

variables and that this model’s SC falls to -0.883 supports the need to model the 

identified breaks.  

Figure 5.10.1 plots the actual and fitted values of the model reported in column 2 of 

Table 5.10.2. Visual inspection of this graph suggests that this deterministic model based 

on the Bai and Perron sequential test results captures all of the mean shifts in the actual 

data. We also report a model with break dates based on the repartition method in 

column 3 of Table 5.10.2. All the shift dummy variables are significant. The significance 

of these shift dummy variables and that this model’s SC falls to -0.898 suggests that this 

deterministic model should be preferred to the one reported in the column headed 2.   

Figure 5.10.2 plots the actual and fitted values of the model reported in column 3 of 

Table 5.10.2. Visual inspection of this graph suggests that this deterministic model also 

captures the main mean shifts in the actual data. We regard model 3 from Table 5.10.2 

as capturing the main mean shifts in the data and use this as the basis of the 

deterministic component of our ARIMAX model of Nigeria annual inflation because it 

has the lowest SC. 
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Table 5.10.2: Deterministic component of ARIMAX models for Nigeria 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample/Observation  1966q1 2012q4   (196) 

 1 2 3 4 

𝐷1𝑡  0.175 
(7.000) 

0.051 
(1.240) 

0.051 
(1.250) 

 

𝐷2𝑡 0.177 
(7.057) 

0.060 
(1.453) 

0.060 
(1.464) 

 

𝐷3𝑡 0.178 
(7.1011) 

0.062 
(1.493) 

0.062 
(1.550) 

 

𝐷4𝑡 0.177 
(7.057) 

0.055 
(1.265) 
 

0.055 
(1.274) 

 

𝐷(1973𝑞4)1𝑡  0.131 
(2.447) 

0.131 
(2.465) 

 

𝐷(1973𝑞4)2𝑡  0.116 
(2.148) 

0.116 
(2.164) 

 

𝐷(1973𝑞4)3𝑡  0.119 
(2.199) 

0.119 
(2.215) 

 

𝐷(1973𝑞4)4𝑡  0.121 
(2.192) 

0.121 
(2.209) 

 

𝐷(1988𝑞2)𝑖𝑡  0.245 
(4.269) 

0.245 
(4.301) 

 

𝐷(1988𝑞2)2𝑡  0.238 
(4.250) 

0.238 
(4.282) 

 

𝐷(1988𝑞2)3𝑡  0.237 
(4.232) 

0.256 
(4.440) 

 

𝐷(1988𝑞2)4𝑡  0.237 
(4.167) 

0.256 
(4.499) 

 

𝐷(1996𝑞3)1𝑡   -0.307 
(-5.452) 

 

𝐷(1996𝑞3)2𝑡   (-0.299) 
(-5.665) 

 

𝐷(1996𝑞3)3𝑡   -0.316 
(-5.665) 

 

𝐷(1996𝑞3)4𝑡   -0.311 
(-5.589) 

 

𝐷(1997𝑞1)1𝑡  -0.307 
(-5.412) 

  

𝐷(1997𝑞1)2𝑡  -0.299 
(-5.479) 

  

𝐷(1997𝑞1)3𝑡  -0.306 
(-5.605) 

  

𝐷(1997𝑞1)4𝑡  -0.290 
(-5.322) 

  

I_NIG     1.000 
(23.961) 

Adj 𝑅2 -0.016 0.432 0.441 0.484 

SC -0.560  -0.883 -0.898 -1.301 

S.E 0.175 0.131 0.130 0.125 
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Figure 5.10.1: the actual and fitted values of model 2 reported in Table 5.10.2 
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Figure 5.10.2: the actual and fitted values of model 3 reported in Table 5.10.2 
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Following Hendry (2001), Hendry and Santos (2005) and Caporale et al (2012) we 

construct an index of indicator variables to summarise the deterministic terms reported 

in column 3 of Table 5.10.2 in a single variable to enhance the efficiency of estimation 

of the ARIMAX model. We therefore define the index of indicator variable, denoted 

I_NIG, as the fitted value of the model reported in column 3 of Table 5.10.2 and report 

the regression of annual inflation on this indicator variable in column 4 of Table 5.10.2. 

The index is significant and has a unit coefficient as is expected. This model’s SC is -1.301 

which provides a benchmark for comparison with potential ARIMAX models to be 

developed from this deterministic specification that are discussed below. 

 

5.10.2 Developing the ARIMAX model for Nigeria 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

residuals of the deterministic model reported in column 4 of Table 5.10.2 is plotted in 

Figure 5.10.3. From the ACF the non-seasonal autocorrelation coefficients (ACs) are 

significant at lags 1, 2 and 3 and insignificant at lags 4 and 5. This implies that there is no 

need for further non-seasonal differencing because no more than the first 5 non-

seasonal ACs are significant. It also implies that the maximum order of non-seasonal 

moving average (MA) component is probably 3.  Further, the seasonal ACs are significant 

at lags 16 and 28 and insignificant at lags 4, 8, 12, 20 and 24. This suggests that there is 

no need for further seasonal differencing because no more than the first 5 seasonal ACs 

(at the seasonal lags 4, 8, 12, 16 and 20) are significant. It also indicates the maximum 

order of seasonal MA component is probably equal to 0. 

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lag 1, 2, 3 and insignificant at lags 4. This suggests the maximum order of 

non-seasonal autoregressive (AR) component is probably 3. The seasonal PACs are 

significant at lags 12 and insignificant at lags 4, 8, 12, 20, 24 and 28. Therefore, the 

maximum order of seasonal AR process is probably be equal to 0 or 3 (given the 

significance of PACs at lags 5, 9, 12 and 13). Therefore, the maximum seasonal ARMA 

specification that we initially identify to the residuals of the deterministic model 

is 𝐴𝑅𝑀𝐴(3, 3)(3, 0)4. Assuming a multiplicative specification we report an ARIMAX 
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specification that includes I_NIG plus 4 seasonal dummy variables and an 

𝐴𝑅𝑀𝐴(3, 3)(3, 0)4 model of the residuals in the column headed 5 of Table 5.10.3.  

Figure 5.10.3: the ACF and PACF of the residuals of model 4 reported in Table 5.10.2 

 

In this model the SC falls to -2.673 suggesting that the addition of ARMA terms has 

improved the specification. I_NIG is significant and all 4 seasonal dummy variables are 

individually significant. The latter is not confirmed by the joint test for the exclusion of 

all 4 seasonal dummy variables, denoted LR(SEA DUM), which has a probability value of 

0.169 (given in square brackets below the reported test statistic). Because this exceeds 

0.05 these 4 dummy variables are jointly insignificant. All the ARMA terms are significant 

except second and third non-seasonal autoregressive variables’ coefficients, denoted 

AR(2) and AR(3), which are not significant. These results suggest that the specification 

can be improved by the exclusion of some combination of deterministic and ARMA 

terms.  
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Table 5.10.3: The ARIMAX model for Nigeria 

Sample/Observat
ions 

1964q1- 2012q4 (196)    

 5 6 7 8 9 

I_NIG  0.298 
(3.057) 

    

I_NIG2  0.316 
(3.827) 

    

I_NIG3   0.390 
(6.306) 

0.379 
(5.058) 

0.413 
(6.740) 

𝐷1 0.127 
(3.416) 

0.128 
(3.936) 

0.111 
(4.091) 

0.053 
(1.809) 

 0.105 
(3.402) 

𝐷2 0.128 
(3.416) 

0.128 
(3.910) 

0.112 
(4.043) 

0.052 
(1.786) 

0.105 
(3.363) 

𝐷3 0.128 
(3.434) 

0.128 
(3.911) 

0.112 
(4.077) 

0.052 
(1.791) 

0.106 
(3.389) 

𝐷4 0.127 
(3.406) 

0.127 
(3.911) 

0.109 
(4.009) 

0.051 
(1.746) 

0.104 
(3.327) 

AR(1) 0.485 
(2.391) 

0.421 
(2.856) 

0.303 
(3.757) 

0.363 
(4.470) 

  0.982 
(53.154) 

AR(2) 0.261 
(1.128) 

0.289 
(1.800) 

0.213 
(2.457) 

0.286 
(3.119) 

 

AR(3) 0.095 
(0.526) 

0.083 
(0.597) 

-0.004 
(-0.045) 

  

SAR(4) -0.423 
(-3.249) 

-0.342 
(-2.631) 

-0.002 
(-0.022) 

-0.041 
(-0.422) 

 

SAR(8) -0.4227 
(-4.557) 

-0.392 
(-3.955) 

-0.163 
(-2.051) 

-0.237 
(-3.460) 

 

SAR(12) -0.316 
(-3.645) 

-0.280 
(-3.050) 

-0.079 
(-0.987) 

  

MA(1) 0.827 
(4.365) 

0.892 
(7.004) 

0.981 
(23.982) 

1.036 
(16.963) 

0.259 
(3.478) 

MA(2) 0.630 
(2.941) 

0.707 
(4.306) 

0.923 
(16.707) 

0.827 
(10.609) 

0.219 
(2.974) 

MA(3) 0.443 
(3.148) 

0.565 
(4.574) 

0.942 
(20.773) 

0.889 
(12.501) 

 

SMA(4)     -0.969 
(-63.398) 

Adj 𝑅2 0.901 0.904 0.909 0.912 0.911 

SC -2.673 -2.696 -2.762 -2.834 -2.887 

S.E 0.055 0.054 0.052 0.051 0.052 

AR Root 0.925 
0.895 
0.876 
0.326 

0.919 
0.866 
0.310 

0.844 
0.745 
0.631 
0.325 
0.017 

0.835 
0.835 
0.747 
0.383 

0.982 

MA Root 0.763 
 

0.846 
0.817 

0.999 
0.971 

1.052 
0.919 

0.992 
0.468 

P[QLB(14)] 0.671 0.550 0.666 0.160 0.184 

LR (SEA DUM) 6.533 
[0.163] 

7.539 
[0.110] 

14.907 
[0.005] 

23.013 
[0.000] 

18.313 
[0.001] 

LR (SEA DUM, 
CON) 

    8.948 
[0.000] 

𝐿𝑅(1973𝑞4) 23.030 
[0.000) 

23.134 
[0.000] 
 

 13.016 
[0.011] 
 

-10.386 1.523 
(0.823) 

𝐿𝑅(1988𝑞2)  30.951 
[0.000) 

25.332 
[0.000] 

16.528 
[0.002] 

0.165 
[0.997] 

0.566 
[0.967] 

𝐿𝑅(1996𝑞3) 2.903 
[0.574] 

16.296 
[0.003] 

6.347 
[0.175] 

-7.714 
 

1.132 
[0.889] 
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Where:   I_NIG = the fitted value of the model reported in column 3 of Table 5.10.2, S E = S E of regression, MA = the maximum order 

of non-seasonal moving average component, SMA = the maximum order of seasonal moving average component, AR = the maximum 

order of non- seasonal autocorrelation component, SAR = the maximum order of seasonal moving average component , 𝐷𝑠𝑡  = the 

seasonal dummy variables, denoted as 𝐷1𝑡, 𝐷2𝑡, 𝐷3𝑡  and 𝐷4𝑡, P[QLB(14)] =  Probability value of the Ljung-Box Q-statistic at the 11th 

lag from - based on the square root of the sample size ( √196), Adj 𝑅2 = Adjusted R – square , SC = Schwarz criterion, AR Roots = 

Stationary Autoregressive average , MA Roots = Stationary Moving average, LR(SEA DUM) = the joint test for the seasonal dummy 

variables, 𝐿𝑅(1973𝑞4) 𝐿𝑅(1988𝑞2),𝐿𝑅(1996𝑞3) and = Joint shift significance of each break date, Rounded Bracket = T – Ratios 

and Square Bracket = Probability value. 

 

For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 14th lag, denoted P[QLB(14)], exceeds 0.050 indicating no evident residual 

autocorrelation – we choose lag 14 based on the square root of the sample size (in this 

case √196). The inverse roots of the AR process, denoted AR Root, are all less than one 

indicating that the model is consistent with a stationary process. The inverse roots of 

the MA process, denoted MA Root, are all less than one indicating that the model is 

invertible. Hence, the model is valid for forecasting in the sense that there is no evidence 

of misspecification according to the standard tests.  

We conduct variable addition tests for the shift dummy variables included in the model 

to assess whether the coefficients on these terms embodied in this index have changed 

significantly with the addition of ARMA components. The test whether the shift dummy 

variables corresponding to the 1973q4 and 1988q2 breaks can be added to the model 

with joint significance were reported in the rows labelled 𝐿𝑅(1973𝑞4) and  

𝐿𝑅(1988𝑞2). Since the probability values (given in square brackets below the test 

statistic, both being 0.000) are less than 0.050 these variables can be added with joint 

significance. In contrast, the probability values of the joint tests of the shift dummy 

variables corresponding to the break date 1996q3, reported in the row labelled 

𝐿𝑅(1996𝑞3) exceeds 0.050 indicating that no shift variables for this date can be added 

with joint significance.  

Since the tests 𝐿𝑅(1973𝑞4)  and 𝐿𝑅(1988𝑞2)  indicate that the seasonal shift 

coefficients embodied in I_NIG have changed significantly (the probability values are less 

than 0.050) we add seasonal shift dummy variables corresponding to these dates to the 

model reported in the column headed 5 of Table 5.10.3 and use the estimated 

coefficients on these terms to adjust I_NIG. The new index of indicator variables, I_NIG2, 

is defined as: 
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I_NIG2   = I_NIG - 0.073 [S1*S1973Q4] - 0.072 [S2*S1973Q4] - 0.069 [S3*S1973Q4] - 

0.069 [S4*S1973Q4] + 0.088 *[S1*S1988Q2] + 0.087 [S2*S1988Q2] + 0.085 

[S3*S1988Q2] + 0.087 [S4*S1988Q2] 

We re-estimate the model reported in the column headed 5 of Table 5.10.3 with I_NIG 

being replaced with I_NIG2. The resulting model is reported in the column headed 6 of 

Table 5.10.3. In this model, all the ARMA terms are significant except for the AR(2) and 

AR(3) terms. This model cannot be rejected according to the standard diagnostic checks 

for residual autocorrelation, stationarity and invertibility. However, all the shift dummy 

variables corresponding to the statistics 𝐿𝑅(1973𝑞4), 𝐿𝑅(1988𝑞2) and 𝐿𝑅(1996𝑞3) 

are significant which indicates that the seasonal shift coefficients embodied in I_NIG2 

have changed significantly. We therefore add the seasonal shift dummy variables 

corresponding to these dates to the model reported in the column headed 6 of Table 

5.10.3 and use the estimated coefficients on these terms to adjust I_NIG2. The new 

index of indicator variables, I_NIG3, is defined as:155 

I_NIG3 = I_NIG2 + 0.050 [S1988Q2] + 0.051 [S1988Q2] + 0.048 [S1988Q2] + 0.0507 

[S1988Q2] + 0.030 [*S1996Q3] + 0.027 [S1996Q3] + 0.028 [S1996Q3] + 0.030 [S1996Q3]. 

We re-estimate the model reported in the column headed 6 of Table 5.10.3 with I_NIG2 

being replaced with I_NIG3. The resulting model is reported in the column headed 7 of 

Table 5.10.3. All variables are significant except for the AR(3), SAR(4) and SAR(12) terms. 

This model cannot be rejected according to the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The shift dummy variable corresponding 

to 𝐿𝑅(1996𝑞3) is insignificant while 𝐿𝑅(1988𝑞2) and 𝐿𝑅(1973𝑞4) are statistical 

significant. This indicates that the seasonal shift coefficients embodied in I_NIG3 have 

changed significantly.   In this model, there are two issues that arise (insignificant of 

ARMA terms and significant shift dummy variables). Therefore, we first address issue 

relating to insignificant of ARMA terms and remove variables that are not significant 

from this model. The coefficients on the AR(3), SAR(4) and SAR(12) terms are not 

                                                           
155 Due to the error of a singular matrix as a result of non-invertibility, we are unable to estimate 
the 𝐿𝑅(1973𝑞4), 𝐿𝑅(1988𝑞2) 𝑎𝑛𝑑   𝐿𝑅(1996𝑞3) 𝑤𝑖𝑡ℎ 𝐴𝑅𝑀𝐴(3, 3)(3, 0)4 together at a time. 
Experimentation with the three break dates revealed that their interaction are not invertible. However, 
interaction between  𝐿𝑅(1988𝑞2) and 𝐿𝑅(1996𝑞3) with 𝐴𝑅𝑀𝐴(3, 3)(3, 0)4 model are invertible. 
Therefore, we use interaction between  𝐿𝑅(1988𝑞2) and 𝐿𝑅(1996𝑞3) with 𝐴𝑅𝑀𝐴(3, 3)(3, 0)4 to 
estimate I_NIG3 in column 7. 
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significant in column 7 and are candidates for exclusion. Since the SAR(8) term is 

significant we do not remove the SAR(4) term to retain the full second-order seasonal 

AR component. Therefore, we remove the AR(3) and SAR(12) terms from the model 

reported in the column headed 7 from Table 6.10.3 and report the resulting 

𝐴𝑅𝑀𝐴(2, 3)(2, 0)4 in the column headed 8 of Table 5.10.3. 

 In this model, all the ARMA components are significant except for the SAR(4) term, 

which we would not remove because of the SAR(8) term that is significant. The tests for 

shift dummy variables corresponding to the break dates(1973𝑞4) , 𝐿𝑅(1988𝑞2) and 

𝐿𝑅(1996𝑞3) are all insignificant.  This model does not exhibit evident autocorrelation 

and nonstationarity. However, one of the MA inverse roots is greater than one 

suggesting that this model is non-invertible. Hence, this model is not valid for 

forecasting.  

After experimentation with the ARMA components we estimate an 𝐴𝑅𝑀𝐴(1, 2)(0, 1)4 

and report this result in the column headed 9 of Table 5.10.3. This model cannot be 

rejected by the diagnostic checks for residual autocorrelation, stationarity and 

invertibility. In terms of specification, all the ARMA components are significant and the 

seasonal dummy variables are also jointly significant according to LR(SEA DUM) because 

its probability value is less than 0.05. The test denoted , 𝐿𝑅(1973𝑞4) , 𝐿𝑅(1988𝑞2) and 

𝐿𝑅(1996𝑞3) indicating that the seasonal shift coefficients embodied in I_NIG3 have not 

changed significantly as the ARMA specification is amended.  

We test the null hypothesis of whether the coefficients of the seasonal dummy variables 

are the same using a Wald test in the row labelled LR (SEA DUM, CON) of column 9. The 

probability value is 0.000 which rejects the null hypothesis of no deterministic 

seasonality. This suggests a significant difference in the coefficients of the individual 

seasonal dummy variables indicating significant deterministic seasonality. Hence, these 

seasonal dummy variables cannot be replaced by a single deterministic intercept.  

Therefore, model 9 in Table 5.10.3 is considered the best model to forecast Nigeria’s 

annual inflation. 

 Visual inspection of the actual and fitted values graph of this model suggests that the 

time paths of the actual and fitted values capture the mean shifts in the actual data. 
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Figure 5.10.4: the actual and fitted values of model 9 reported in Table 5.10.3 
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Therefore we regard model 9 from Table 5.10.3 as the best ARIMAX model for 

forecasting Nigeria’s annual inflation because it has the minimum SC from those that 

cannot be rejected according to the diagnostic checks. 
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 5.11 Box-Jenkins ARIMAX modelling of annual inflation for Saudi Arabia 

The maximum available sample period is 1971q1 to 2012q4. To allow for lags, 

transformations and have a consistent estimation period for all models we specify an 

initialization period of four years and estimate all models over the period 1975q1 – 

2012q4. The first sub-section discusses the development of the deterministic 

component of the model that allows for structural breaks (shifts in the seasonal means). 

The second sub-section identifies the ARMA component to the residuals of this model 

and hence discusses the development of the final ARIMAX model. 

Table 5.11.1: Bai and Perron tests for structural breaks in Saudi Arabia annual inflation 

Break 
Hypothesis 

Scaled F-
statistic  

Critical Value Sequential  Repartition 

0 vs 1  76.031 16.19 1980q3 1980q3 

1 vs 2 12.479 18.11   

 

In Table 5.11.2 we report various deterministic models based upon these results. The 

model reported in the column labelled 1 is the benchmark model that includes the 4 

seasonal dummy variables denoted, 𝐷𝑠𝑡 where 𝑠 = 1, 2, 3, 4, and does not model any 

structural breaks. All the four seasonal dummy variables are significant according to the 

t-ratios (reported in brackets below the dummy variables’ coefficients) and the model’s 

Schwarz criterion (SC) is -2.132  

Table 5.11.1 reports the Bai and Perron scaled F-statistic with the associated 5% critical 

values for the benchmark model reported in the column labelled 1 in Table 5.11.2. The 

test results indicate only one significant breakpoint because the scaled F-statistic is 

greater than the corresponding critical value for the null hypothesis of no breaks 

(denoted 0 vs 1). Both sequential and repartition methods indicate the same break point 

date of 1980q3. 

Based on the Bai and Perron test results we specify shift dummy variables (that are zero 

prior to the break date and unity from the break date onwards) interacted with the 

seasonal dummy variables that give shifts in the seasonal means in 1980q3, denoted 

𝐷(1980𝑞3)𝑠𝑡. The model including the seasonal dummy variables and the shift dummy 

variables that is given in the column headed 2 of Table 5.11.2. The shift dummy variable, 



385 
 

𝐷(1980𝑞3)𝑠𝑡, is significant suggesting significant changes in the seasonal means at this 

identified break point and all the four seasonal dummy variables are also significant. The 

significance of these shift dummy variables and that this model’s SC falls to -2.424 

supports the need to model the identified break. 

Figure 5.11.1 plots the actual and fitted values of the model reported in column 2 of 

Table 5.11.2. Visual inspection of this graph suggests that this deterministic model based 

on the Bai and Perron test results does not appropriately capture the mean shifts in the 

actual data. The graph suggests two new breaks dates (1977q2 and 2008q4).  Therefore, 

we add interaction of these new breaks, denoted as  𝐷(1977𝑞2)𝑠𝑡 and  𝐷(2008𝑞4)𝑠𝑡 

respectively to the model reported in column 3 of Table 5.11.2. All the seasonal dummy 

variables and shift dummy variables are significant except for 𝐷(1980𝑞3)𝑠𝑡  where three 

out of its four seasonal shift terms are insignificant. In this model’s the SC falls to -3.918 

to support the addition of the specified interaction terms. Since three out four seasonal 

dummy variables in the 𝐷(1980𝑞3)𝑠𝑡  set are insignificant we exclude the 𝐷(1980𝑞3)𝑠𝑡  

term from the model given in Table 5.11.2 column 3. The estimation results of this model 

are reported in column 4 of Table 5.11.2. All of the seasonal and shift dummy variables 

are significant. The significance of these shift dummy variables and that this model’s SC 

falls to -3.997 to support the exclusion of insignificant 𝐷(1980𝑞3)𝑠𝑡  term. 

Figure 5.11.2 plots the actual and fitted values of the model reported in column 4 of 

Table 5.11.2. Visual inspection of this graph suggests that this deterministic model 

better captures the main mean shifts in the actual data than did model 2. We regard 

model 4 from Table 5.11.2 as capturing the main mean shifts in the data (based on its 

lowest SC and from visual inspection of the graph) and use this as the basis of the 

deterministic component of our ARIMAX model of Saudi Arabia’s annual inflation. 



386 
 

Table 5.11.2: Deterministic component of ARIMAX models for Saudi Arabia 

Sample/Observation  1975q1- 2012q4 (152) 

 1 2 3 4 5 

𝐷1𝑡  0.034 
(2.673) 

 0.142 
(5.374) 

0.271 
(16.927) 

0.271 
(16.722) 

 

𝐷2𝑡 0.034 
(2.658) 

0.142 
(5.359) 

0.347 
(17.711) 

0.347 
(17.496) 

 

𝐷3𝑡 0.032 
(2.526) 

0.148 
(5.119) 

0.332 
(16.967) 

0.332 
(16.907) 

 

𝐷4𝑡 0.032 
(2.496) 

0.147 
(5.075) 

0.335 
(17.115) 

0.335 
(16.907) 

 

𝐷(1977𝑞2)1𝑡   -0.257 
(-11.360) 

-0.264 
(-15.557) 

 

𝐷(1977𝑞2)2𝑡   -0.308 
(-12.822) 

-0.337 
(16.483) 

 

𝐷(1977𝑞2)3𝑡   -0.308 
(-12.121) 

-0.323 
(-15.811) 

 

𝐷(1977𝑞2)4𝑡   -0.306 
(-12.396) 

-0.326 
(-15.960) 

 

𝐷(1980𝑞3)𝑖𝑡  -0.128 
(-4.444) 

-0.008 
(-0.477) 

  

𝐷(1980𝑞3)2𝑡  -0.128 
(-4.436) 

-0.033 
(-2.291) 

  

𝐷(1980𝑞3)3𝑡  -0.134 
(-4.294) 

-0.019 
(-1.116) 

  

𝐷(1980𝑞3)4𝑡  -0.133 
(-4.261) 

-0.014 
(-0.859) 

  

𝐷(2008𝑞4 )1𝑡   0.052 
(3.930) 

0.052 
(3.854) 

 

𝐷(2008𝑞4)2𝑡   0.055 
(4.066) 

0.050 
(3.733) 
 

 

𝐷(2008𝑞4)3𝑡   0.051 
(3.805) 

0.049 
(3.652) 

 

𝐷(2008𝑞4)4𝑡   0.048 
(3.548) 

0.046 
(3.427) 

 

I_SAU      1.000 
(36.715) 

Adj 𝑅2 -0.020  0.314 0.875 0.872 0.881 

SC -2.132 -2.424 -3.918 -3.997 -4.360 

S.E 0.079 0.065 0.027 0.028 0.027 
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Figure 5.11.1: the actual and fitted values of model 2 reported in Table 

5.11.2 
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Figure 5.11.2: the actual and fitted values of model 4 reported in Table 

5.11.2 

-.08

-.04

.00

.04

.08

.12

-.1

.0

.1

.2

.3

.4

1975 1980 1985 1990 1995 2000 2005 2010

Residual Actual Fitted  

 

 



388 
 

Following Hendry (2001), Hendry and Santos (2005) and Caporale et al (2012) we 

construct an index of indicator variables to summarise the deterministic terms reported 

in column 4 of Table 5.11.2 in a single variable to enhance the efficiency of estimation 

of the ARIMAX model. We therefore define the index of indicator variable, denoted 

I_SAU, as the fitted value of the model reported in column 4 of Table 5.11.2 and report 

the regression of annual inflation on this indicator variable in column 5 of Table 5.11.2. 

The index is significant and has a unit coefficient as is expected. This model’s SC is -4.360 

which provides a benchmark for comparison with potential ARIMAX models to be 

developed from this deterministic specification that are discussed below. 

5.11.2 Developing the ARIMAX model for Saudi Arabia 

The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the 

residuals of the deterministic model reported in column 5 of Table 5.11.2 is plotted in 

Figure 5.11.3. From the ACF the non-seasonal autocorrelation coefficients (ACs) are 

significant at lags 1, 2 and 3 and insignificant at lags 4 and 5. This implies that there is no 

need for further non-seasonal differencing because no more than the first 5 non-

seasonal ACs are significant. It also implies that the maximum order of non-seasonal 

moving average (MA) component is probably 3. Further, the seasonal ACs are significant 

at lags 20 and 24 and insignificant at lags 4, 8, 12, 16 and 28. This suggests that there is 

no need for further seasonal differencing because no more than the first 5 seasonal ACs 

(at the seasonal lags 4, 8, 12, 16 and 20) are significant. It also indicates the maximum 

order of seasonal MA component is probably equal to 0. From the PACF the non-

seasonal partial autocorrelation coefficients (PACs) are significant at lag 1 and 

insignificant at lags 2 and 3. This suggests the maximum order of non-seasonal 

autoregressive (AR) component is probably 1. The seasonal PACs are significant at lag 4 

and insignificant at lags 8, 12, 16, 20, 24 and 28. Therefore, the maximum order of 

seasonal AR process is probably be equal to 1. Thus, the maximum seasonal ARMA 

specification that we initially identify to the residuals of the deterministic model is 

𝐴𝑅𝑀𝐴(1, 3)(1, 0)4. Assuming a multiplicative specification we report an ARIMAX 

specification that includes I_SAU plus 4 seasonal dummy variables and an 

𝐴𝑅𝑀𝐴(1, 3)(1, 0)4 model of the residuals in the column headed 6 of Table 5.11.3.  
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Figure 5.11.4: the ACF and PACF of the residuals of model 5 reported in Table 5.11.2 

 

In this model the SC falls to -5.015 suggesting that the addition of ARMA terms has 

improved the specification. I_SAU is significant and two of the four seasonal dummy 

variables are insignificant. The joint test for the exclusion of all 4 seasonal dummy 

variables, denoted LR(SEA DUM), has a probability value of 0.056, which exceeds 0.05 

indicating that they are jointly insignificant. All the ARMA components are significant 

except the AR(1) term. 
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Table 5.11.3: The ARIMAX table for Saudi Arabia 

Sample/Observ
ations 

1975q1 – 2012q4 (152)    

 

6 7 8 9 10 

I_SAU 0.622 
(9.588) 

 0.671 
(12.526) 

0.550 
(8.841) 

 0.475 
(7.683) 

0.593 
(10.889) 

𝐷𝑖𝑡  0.014 
(1.985) 

0.011 
(1.771) 

0.008 
(1.199) 

  

𝐷2𝑡 0.013 
(1.805) 

0.010 
(1.548) 

0.007 
(1.119) 

  

𝐷3𝑡 0.015 
(2.062) 

0.012 
(1.821) 

0.008 
(1.335) 

  

𝐷4𝑡 0.015 
(2.082) 

0.012 
(1.861) 

0.009 
(1.441) 

  

AR(1) 0.129 
(1.312) 

 0.411 
(4.148) 

0.476 
(4.869) 

-0.578 
(-8.389) 

AR(2)   -0.206 
(-2.369) 

-0.203 
(-2.382) 

 

SAR(4) 0.189 
(2.479) 

0.194 
(2.596) 

-0.626 
(-11.777) 

-0.607 
(-11.820) 

0.293 
(4.148) 

MA(1) 0.845 
(49.962) 

0.848 
(59.916) 

0.731 
(13.121) 

0.743 
(14.623) 

1.747 
(173.159) 

MA(2) 0.846 
(46.572) 

0.846 
(54.209) 

0.867 
(40.325) 

0.878 
(66.322) 

1.590 
(86.922) 

MA(3) 0.985 
(86.143) 

0.982 
(108.804) 

0.881 
(18.431) 

0.863 
(17.564) 

1.719 
(130.153) 

MA(4)     0.977 
(137.423) 

SMA(4)   1.135 
(11.541) 

1.204 
(13.018) 

 

SMA(8)   0.265 
(2.968) 

0.351 
(4.193) 

 

Adj 𝑅2 0.951 0.951 0.966 
 

0.966 0.960 

SC -5.015 -5.038 -5.299 -5.408 -5.296 

S.E 0.017 0.017 0.014 0.014 0.016 

AR Root 0.659 
0.129 

0.664 0.889 
0.454 

0.883 
0.450 

0.735 
0.578 

MA Root 0.996 
 

0.995 
0.992 

0.999 
0.947 
0.882 
0.757 
 

0.995 
0.918 
0.872 
0.839 

0.996 
0.993 

P[QLB(12] 0.014 0.042 0.106 0.006 0.145 

LR (SEA DUM) 9.178 
[0.056] 

30.845 
[0.000] 

3.567 
(0.468)  

  

LR (SEA DUM, 
CON) 

      499.119 
[0.000] 

𝐿𝑅(1977𝑞2) 121.409 
[0.000] 

91.722 
[0.000] 

-44.387 7.528 
[0.111] 

5.999 
[0.199] 

           
LR(2008𝑞4) 

5.525 
[0.238] 

3.506 
[0.477] 

-57.678 2.510 
[0.643] 

3.948 
[0.413] 

Where:   I_SAU = the fitted value of the model reported in column 4 of Table 5.11.2, S E = S E of regression, MA = the 

maximum order of non-seasonal moving average component, SMA = the maximum order of seasonal moving average 

component, AR = the maximum order of non- seasonal autocorrelation component, SAR = the maximum order of 

seasonal moving average component , 𝐷𝑠𝑡 = the seasonal dummy variables, denoted as 𝐷1𝑡 , 𝐷2𝑡 , 𝐷3𝑡  and 𝐷4𝑡, 

P[QLB(12)] =  Probability value of the Ljung-Box Q-statistic at the 12th lag from - based on the square root of the 

sample size ( √152), Adj 𝑅2 = Adjusted R – square , SC = Schwarz criterion, AR Roots = Stationary Autoregressive 

average , MA Roots = Stationary Moving average, LR(SEA DUM) = the joint test for the seasonal dummy variables; 

𝐿𝑅(1977𝑞2)  and 𝐿𝑅(2008𝑞4) = Joint shift significance of each break date, Rounded Bracket = T – Ratios and Square 

Bracket = Probability value. 
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We also conduct variable addition tests for the shift dummy variables included in the 

I_SAU variable to assess whether the coefficients on these terms embodied in this index 

have changed significantly with the addition of ARMA terms. A test whether the 4 shift 

dummy variables corresponding to the 1977q2 break can be added to the model with 

joint significance is reported in the row labelled 𝐿𝑅(1977𝑞2). Since the probability 

value (given in square brackets below the test statistic, being 0.000) is less than 0.050 

these variables can be added with joint significance. Similarly, the probability values of 

the joint tests of the shift dummy variable corresponding to the break date 2008q4, 

reported in the rows labelled 𝐿𝑅(2008𝑞4) exceed 0.050 indicating that the shift 

variable for this date cannot be added with joint significance. This suggests that the 

coefficients embodied in I_SAU have significantly changed with the addition of ARMA 

terms for 𝐿𝑅(1977𝑞2) in this year. 

For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 12th lag, denoted P[QLB(12)], is less than 0.050 indicating evident of 

residual autocorrelation that suggests unmodelled systematic variation in the 

dependent variable and the need to adjust the model – we choose lag 12 based on the 

square root of the sample size (in this case √152). The inverse roots of the AR process, 

denoted AR Root, are all less than one indicating that the model is consistent with a 

stationary process. The inverse roots of the MA process, denoted MA Root, are all less 

than one indicating that the model is invertible.  

As a first step in respecifying the model reported in the column headed 6 of Table 5.11.3 

we exclude the insignificant AR(1) variable and report the resulting  𝐴𝑅𝑀𝐴(0, 3)(1, 0)4 

in the column headed 7 of Table 5.11.3. This model does not fail the diagnostic checks 

for invertibility and stationarity, however there is evidence of autocorrelation 

suggesting unmodelled systematic variation in the dependent variable which suggests 

the need to further adjust the model. The tests for 2 sets of shift dummy variables 

corresponding to 𝐿𝑅(1977𝑞2) and 𝐿𝑅(2008𝑞4) indicate that 𝐿𝑅(1977𝑞2) is 

significant while 𝐿𝑅(2008𝑞4) is insignificant.  

After experimentation we produce the 𝐴𝑅𝑀𝐴(2, 3)(1, 2)4 model reported in Table 

5.11.3 column 8.  According to the standard diagnostic checks, this model cannot be 
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rejected based on stationarity, invertibility and autocorrelation. In terms of 

specification, all the ARMA components are significant although the seasonal dummy 

variables are individually insignificant. The latter is confirmed by the joint test for the 

exclusion of all 4 seasonal dummy variables, denoted LR(SEA DUM), which has a 

probability value that exceeds 0.05. 

Therefore, we exclude seasonal dummy variables that are jointly insignificant and report 

the resulting model in the column headed 9 of Table 5.11.3. In this model the SC reduces 

to -5.408 and the coefficient of I_SAU is significant as well as all the ARMA components.  

The tests for the shift dummy variables corresponding to the 𝐿𝑅(1977𝑞2) and 

𝐿𝑅(2008𝑞4) are insignificant. This model does not fail the diagnostic checks for 

invertibility and stationarity, however there is evidence of autocorrelation that suggests 

this model is not valid for forecasting.   

After further experimentation with the ARMA components we report an 

𝐴𝑅𝑀𝐴𝑋(1, 4)(1, 0)4 model in the column headed 10 of Table 5.11.3.  In this model, all 

the ARMA components are significant and this model cannot be rejected according to 

the standard diagnostic checks for residual autocorrelation, stationarity and invertibility. 

The tests for the shift dummy variables 𝐿𝑅(1977𝑞2) and 𝐿𝑅(2008𝑞4) are all 

insignificant suggesting that the coefficients in I_SAU have not changed with the changes 

in specification.  
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Figure 5.11.4: the actual and fitted values of model 10 reported in Table 5.11.3 
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Visual inspection of the actual and fitted values of this model suggests that the fitted 

values capture the mean shifts in the data and broadly track the data well (see Figure 

5.11.4). We regard this model as the best model for forecasting Saudi Arabia’s annual 

inflation. However, there are two models in Table 5.11.3 (column 8 and column 10) that 

are valid for forecasting. The model in column 8 has the minimum SC although it includes 

a variable that should be excluded according to t-ratios. In contrast the model in column 

10 does not suggest any variables should be excluded according to the t-ratios although 

it does not exhibit the minimum SC. 

Since model in column 10 does not suggest any variable should be included, we test 

the null hypothesis of whether the coefficients of the seasonal dummy variables are 

the same using a Wald test in the row labelled LR (SEA DUM, CON) of column 10. The 

probability value is 0.000 which rejects the null hypothesis of no deterministic 

seasonality. This suggests a significant difference in the coefficients of the individual 

seasonal dummy variables indicating significant deterministic seasonality. Hence, these 

seasonal dummy variables cannot be replaced by a single deterministic intercept.  

Therefore, model 10 in Table 5.11.3 is considered the best model to forecast Saudi 

Arabia annual inflation.  
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 Appendix. Section 5.2 

 5.2.2 Box-Jenkins ARIMA modelling of annual inflation for Russia 

In the full sample ARIMAX model developed for Russia in section 5.1 we identified the 

last structural break date in 2001q1. Hence, the maximum available estimation period 

is 2001q2 to 2012q4.To allow for lags, transformations and have a consistent estimation 

period for all models we specify an initialization period of two years and estimate all 

models over the period 2003q2 – 2012q4 (39 observations). First, we regress inflation 

on the 4 seasonal dummy variables, 𝐷𝑠𝑡,to yield the benchmark deterministic 

specification. Second, we identify the ARMA components to the residuals of this model 

and discuss the development of the final ARIMA model. 

Table 5.2.2 reports the benchmark deterministic specification and various ARIMAX 

models.  The model reported in the column labelled 1 is the benchmark deterministic 

model. The results indicate that all of the seasonal dummy variables coefficients are 

significant and the model’s Schwarz criterion (SC) is -3.831. 

Figure 5.2.2.1 plots the autocorrelation function (ACF) of the residuals of the model 

reported in the column headed 1 of Table 5.2.2. The non-seasonal autocorrelation 

coefficients (ACs) from the ACF are significant at lags 1, 2 and 3 and insignificant at lags 

4, 5 and 6. This implies that there is no need for further non-seasonal differencing 

because no more than the first 5 non-seasonal ACs are significant. It also implies that 

the maximum order of non-seasonal moving average (MA) component is probably 3. 

Further, the seasonal ACs are insignificant at lags 4, 8, 12, 16, 20, 24 and 28. This suggests 

that there is no need for further seasonal differencing because no more than the first 5 

seasonal ACs (at the seasonal lags) are significant. It also indicates the maximum order 

of seasonal MA component is probably equal to 0. 

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lag 1 and 2 and insignificant at lags 3 and 4. This suggests the maximum 

order of non-seasonal autoregressive (AR) component is probably 2. The seasonal PACs 

are insignificant at lags 4, 8, 12 16, 20, 24 and 28. Therefore, the maximum order of 

seasonal AR process is probably be equal to 0. Hence, the maximum ARMA specification 

that we initially identify to the residuals of the deterministic model is 
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𝐴𝑅𝑀𝐴(2, 3)(0, 0)4, which is equivalent to the non-seasonal 𝐴𝑅𝑀𝐴(2, 3) specification. 

We report an ARIMAX specification that includes 4 seasonal dummy variables and an 

𝐴𝑅𝑀𝐴(2, 3) model of the residuals in the column headed 2 of Table 5.2.2. 

Figure 5.2.2.1 the ACF and PACF of the residuals of model 1 reported in Table 5.2.2 

 

In this model the SC falls to -6.336 suggesting that the addition of ARMA terms has 

improved the specification. All four seasonal dummy variables are significant, which is 

confirmed by the joint test for the exclusion of all 4 seasonal dummy variables, denoted 

LR(SEA DUM), which has a probability value of 0.007. In this model, all of the ARMA 

components are significant except for the AR(1), AR(2) and MA(2) terms. This suggests 

that the specification can be improved by the exclusion of the insignificant ARMA terms.  
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Table 5.2.2: The ARMA table for Russia 

Observations  2003q2 2012q4 (39) 

 1 2 3 4 

𝐷1 0.099 
(9.572) 

0.095 
(7.048) 

 0.097 
(14.101) 

0.096 
(13.229) 

𝐷2 0.102 
(10.340) 

0.095 
(6.992) 

0.097 
(13.689) 

0.096 
(13.389) 

𝐷3 0.102 
(10.371) 

0.098 
(7.179) 

0.098 
(14.090) 

0.096 
(13.509) 

𝐷4 0.100 
(10.169) 

0.097 
(7.260) 

0.098 
(14.258) 

0.096 
(13.508) 

AR(1)  0.648 
(1.915) 

 0.821 
(10.849) 

AR(2)  0.012 
(0.040) 

  

MA(1)  0.977 
(2.814) 

1.203 
(29.247) 

0.777 
(8.869) 

MA(2)  0.654 
(1.855) 

1.233 
(29.998) 

0.693 
(13.154) 

MA(3)  0.670 
(2.977) 

0.959 
(8.849) 

0.916 
(11.488) 

Adj 𝑅2 -0.084 0.905 0.892 0.956 

SC -3.831 -6.336 -5.941 -6.728 

S.E 0.032 0.009 0.010 0.001 

AR Root  0.681 
0.032 

0.999 
0.959 

0.821 

MA Root  0.999 
0.900 

 0.999 
0.957 

P[QLB(6)]  0.119 0.003 0.084 

LR (SEA DUM)  19.043 
[0.007] 

61.965 
[0.000] 

19.493 
[0.001] 

LR(SEA DUM,CON)     36.149 
[0.000] 

 

For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 6th lag, denoted P[QLB(6)], exceeds 0.050 indicating no evident of residual 

autocorrelation– we choose lag 6 based on the square root of the sample size (in this 

case √39). The inverse roots of the AR and MA processes are all less than one indicating 

that the model is consistent with a stationary and invertible process. Hence, the model 

is valid for forecasting in the sense that there is no evidence of misspecification 

according to the standard tests.  

However, as indicated above the specification can be improved with the removal of 

insignificant ARMA variables. The coefficients on the AR(1), AR(2) and MA(2) terms are 

not significant and are candidates for exclusion. Since the MA(3) term is significant we 
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do not remove the MA(2) term to retain the full second-order seasonal MA component. 

Therefore, we remove the AR(1) and AR(2) terms from the model reported in the column 

headed 2 from Table 5.2.2 and report the resulting 𝐴𝑅𝑀𝐴𝑋(0, 3) in the column headed 

3. This model does not fail the diagnostic checks for invertibility and stationarity, 

however there is evidence of autocorrelation suggesting unmodelled systematic 

variation in the dependent variable and the need to adjust the model. 

After further experimentation with the ARMA components we report an improved 

𝐴𝑅𝑀𝐴𝑋(1, 3) model in the column headed 4 of Table 5.2.2.  In this model, all of the 

variables are significant and this model cannot be rejected according to the standard 

diagnostic checks for residual autocorrelation, stationarity and invertibility.  Therefore, 

it is valid for forecasting. Further, the Wald test for the null hypothesis that all of the 

seasonal dummies’ coefficients are equal, denoted LR (SEA DUM, CON), is rejected. This 

suggests significant deterministic seasonality and that these dummies cannot be 

replaced by a single (non-seasonal) intercept.  

Figure 5.2.2.2: the actual and fitted values reported in Table 5.2.2 column 4 
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Visual inspection of the actual and fitted values (Figure 5.2.2.2) of this model suggests 

that the time path of the fitted values capture the movements in the actual data well. 

In terms of model fit the adjusted 𝑅2 of this ARIMAX model on the reduced sample is 

0.956 which is slightly higher than the specification estimated using the full sample that 
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models structural breaks (Appendix A. Section 5.1 Table 5.2.3), being 0.932. It will be 

interesting to see if the comparative fit of these two models is indicative of their relative 

forecasting performance.  
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5.2.3 Box-Jenkins ARIMA modelling of annual inflation for South Africa 

In the full sample ARIMAX model developed for South Africa in section 5.1 we identified 

the last structural break date in 1993q1. Hence, the maximum available estimation 

period without a structural break is 1993q2 to 2012q4. To allow for lags and 

transformations and have a consistent estimation period for all models we specify an 

initialization period of two years and estimate all models over the period 1995q2 – 

2012q4 (71 observations). First, we regress inflation on the 4 seasonal dummy variables, 

𝐷𝑠𝑡, to yield the benchmark deterministic specification. Second, we identify the ARMA 

components to the residuals of this model and discuss the development of the final 

ARIMA model. 

Table 5.2.3 reports the benchmark deterministic specification and various ARIMAX 

models.  The model reported in the column labelled 1 is the benchmark deterministic 

model. The results indicate that all of the seasonal dummy variables coefficients are 

significant and the model’s Schwarz criterion (SC) is -3.539. 

Figure 5.2.3.1 plots the ACF of the residuals of the model reported in the column headed 

1 of Table 5.2.3. The ACF of the non-seasonal autocorrelation coefficients (ACs) are 

significant at lags 1 and 2 and insignificant at lags 3, 5 and 6. This implies that there is no 

need for further non-seasonal differencing because no more than the first 5 non-

seasonal ACs are significant. It also implies that the maximum order of non-seasonal 

moving average (MA) component is probably 2. Further, the seasonal ACs are significant 

at lag 4 and insignificant at lags 8, 12, 16, 20, 24 and 28. This suggests that there is no 

need for further seasonal differencing because no more than the first 5 seasonal ACs (at 

the seasonal lags) are significant. It also indicates the maximum order of seasonal MA 

component is probably equal to 1. 

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lag 1 and 2 and insignificant at lags 3, 4 and 5. This suggests the maximum 

order of non-seasonal autoregressive (AR) component is probably 2. The seasonal PACs 

are insignificant at lags 4, 8, 12 16, 20, 24 and 28. Therefore, the maximum order of 

seasonal AR process is probably be equal to 0. Hence, the maximum seasonal ARMA 

specification that we initially identify to the residuals of the deterministic model is ARMA 

(2, 2)(0,1)4. Assuming a multiplicative specification we report an ARIMAX specification 
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that includes 4 seasonal dummy variables and an 𝐴𝑅𝑀𝐴(2, 2)(0,1)4 model of the 

residuals in the column headed 2 of Table 5.2.3. 

Figure 5.2.3.1: the ACF and PACF of the residuals of model 1 reported in Table 5.2.3 

 

In this model the SC falls to -5.206 suggesting that the addition of ARMA terms has 

improved the specification.  Although the four seasonal dummy variables are 

individually significant they are jointly insignificant according to the test for the 

exclusion of all 4 seasonal dummy variables, denoted LR(SEA DUM), which has a 

probability value of 0.126. In this model, all the ARMA components are significant except 

for the MA(1), which we would not remove because the MA(2) term is significant. 
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Table 5.2.3 The ARMA table for South Africa 

Observations 1995Q2 2012q4( 71)   
 1 2 3 4 5 

P(2012q2)    -0.036 
(-6.343) 

-0.032 
(-6.965) 

𝐷1 0.067 
(7.367) 

0.060 
(28.149) 

   

𝐷2 0.064 
(7.170) 

0.059 
(26.976) 

   

𝐷3 0.062 
(7.023) 

0.060 
(28.687) 

   

𝐷4 0.062 
(7.041) 

0.061 
(28.688) 

   

AR(1)  1.679 
(14.509) 

1.688 
(13.773) 

0.909 
(1.770) 

0.996 
(112.894) 

AR(2)  -0.728 
(-7.163) 

-0.689 
(-5.641) 

0.087 
(0.170) 

 

MA(1)  -0.098 
(-0.777) 

-0.067 
(-0.677) 

0.949 
(1.901) 

0.764 
(8.761) 

MA(2)  -0.729 
(-4.828) 

-0.762 
(-6.342) 

0.284 
(0.760) 

 

SMA(4)  -0.826 
(-8.823) 

-0.080 
(-10.188) 

-0.902 
(-31.243) 

-0.899 
(-30.058) 

Adj 𝑅2 -0.042 0.843 0.834 0.892 0.897 
SC -3.539 -5.206 -5.332 -5.720 -5.809 
S.E 0.038 0.015 0.015 0.012 0.012 
AR Root  0.853 

0.827 
0.032 

0.998 
0.690 

0.997 
0.087 

0.996 
0.974 
0.764 

MA Root  0.953 
0.953 
0.904 
0.807 

0.951 
0.907 

0.975 
0.533 

0.974 
0.763 

P[QLB(8)]  0.312 0.294 0.115 0.103 
LR (SEA DUM)  1.873 

[0.126] 
   

 

For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 8th lag, denoted P[QLB(8)], exceed 0.050 indicating that there is no 

residual autocorrelation– we choose lag 8 based on the square root of the sample size 

(in this case √71). The inverse roots of the AR and MA processes are all less than one 

indicating that the model is consistent with a stationary and invertible process. Hence, 

the model is valid for forecasting in the sense that there is no evidence of 

misspecification according to the standard tests.   

Since the seasonal dummy variables are jointly insignificant, we exclude them from the 

model reported in the column headed 2 of Table 5.2.3 and the result is reported in the 
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column headed 3. The SC of this model falls to -5.332 and all of the ARMA components 

are significant except for the MA(1) term, which we would not remove because the 

MA(2) term is significant. This model cannot be rejected by the diagnostic checks for 

residual autocorrelation, stationarity and invertibility and is therefore valid for 

forecasting. 

Figure 5.2.3.2.the actual and fitted values reported in Table 5.2.3 column 3 

-.08

-.06

-.04

-.02

.00

.02

.04

.06

-.10

-.05

.00

.05

.10

.15

.20

1996 1998 2000 2002 2004 2006 2008 2010 2012

Residual Actual Fitted  

In Figure 5.2.3.2 we plot the actual and fitted values of the model reported in column 3 

of Table 5.2.3. Visual inspection of this graph suggests that the fitted values capture the 

mean in the actual data well. However, the graph has an outlier in 2012q2 and we 

therefore add a new pulse dummy variable, denoted 𝑃(2012𝑞2), to the model to 

capture the outlier. This new model is reported in column 4. This model cannot be 

rejected according to the standard diagnostic checks for residual autocorrelation, 

stationarity and invertibility. However, all of the ARMA coefficients are insignificant 

except for the SMA(4) term . 

Hence, this specification can be improved with the removal of insignificant ARMA 

variables. We remove the highly insignificant AR(2) and MA(2) terms and report the 

resulting 𝐴𝑅𝐼𝑀𝐴(1, 1)(0, 1)4  specification in the column headed 5 of Table 5.2.3. In 

this model, all the variables are significant and the SC fall to -5.809. This model cannot 

be rejected according to the standard diagnostic checks for residual autocorrelation, 

stationarity and invertibility. Therefore, we regard model 5 from Table 5.2.3 as the best 

ARIMAX model for forecasting South Africa’s annual inflation because it has the 
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minimum SC from those that cannot be rejected according to the diagnostic checks 

(based on the reduced sample). 

In addition, the adjusted 𝑅2 of the reduced sample model is 0.897 which is lower than 

the specification estimated using the full sample that models structural breaks 

(Appendix A. Section 5.1 Table 5.5.3), being 0.945. It will be interesting to see if the 

comparative fit of these two models is indicative of their relative forecasting 

performance.  

Figure 5.2.3.3: the actual and fitted values reported in Table 5.2.3 column 5 
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In Figure 5.2.3.3 we plot the actual and fitted values of the model reported in column 5 

of Table 5.2.3 Visual inspection of this graph suggests that the fitted values capture the 

mean in the actual data well. Therefore, we consider this model as the best model to 

forecast South Africa’s annual inflation based on reduced sample. 
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5.2.4 Box-Jenkins ARIMA modelling of annual inflation for Algeria 

In the full sample ARIMAX model developed for Algeria in section 5.1 we identified the 

last structural break date in 1997q1. Hence, the maximum available estimation period 

without an identified structural break is 1997q2 to 2012q4. To allow for lags and 

transformations and have a consistent estimation period for all models we specify an 

initialization period of two years and estimate all models over the period 1999q2 – 

2012q4 (55 observations). First, we regress inflation on the 4 seasonal dummy variables, 

𝐷𝑠𝑡, to yield the benchmark deterministic specification. Second, we identify the ARMA 

components to the residuals of this model and discuss the development of the final 

ARIMA model. 

Table 5.2.4 reports the benchmark deterministic specification and various ARIMAX 

models.  The model reported in the column labelled 1 is the benchmark deterministic 

model. The results indicate that all of the seasonal dummy variables’ coefficients are 

significant and the model’s Schwarz criterion (SC) is -4.133 

Figure 5.2.4.1 plots the ACF of the residuals of the model reported in the column headed 

1 of Table 5.2.4.  The autocorrelation coefficients (ACs) are significant at lag 1 and 2 and 

insignificant at lags 3, 4, 5 and 6. This implies that there is no need for further non-

seasonal differencing because no more than the first 5 non-seasonal ACs are significant. 

It also implies that the maximum order of non-seasonal MA component is probably 2. 

Further, the seasonal ACs are insignificant at lags 4, 8, 12, 16, 20, 24 and 28. This suggests 

that there is no need for further seasonal differencing because no more than the first 5 

seasonal ACs are significant. It also indicates the maximum order of seasonal MA 

component is probably equal to 0.  

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lag 1 and insignificant at lags 2, 3, 4 and 5. This suggests the maximum 

order of non-seasonal AR component is probably 1. The seasonal PACs are insignificant 

at lags 4, 8, 12 16, 20, 24 and 28. However, the maximum order of seasonal AR process 

is may be equal to 1 given the notable significance of the PAC at lag 5 (assuming a 

multiplicative functional form). Therefore, the maximum seasonal ARMA specification 

that we initially identify to the residuals of the deterministic model is ARMA (1, 2)(1,0)4. 

Assuming a multiplicative specification we report an ARIMAX specification that includes 
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4 seasonal dummy variables and an ARMA (1, 2)(1,0)4 model of the residuals in the 

column headed 2 of Table 5.2.4. 

Figure 5.2.4.1: the ACF and PACF of the residuals of model 1 reported in Table 5.2.4 

 

 

In this model the SC falls to -5.200 suggesting that the addition of ARMA terms has 

improved the specification. Although the four seasonal dummy variables are individually 

significant they are jointly insignificant according to the test for the exclusion of all 4 

seasonal dummy variables, denoted LR(SEA DUM), which has a probability value of 

0.668. In this model, all the ARMA components are significant except for the MA(1) and 

MA(2) terms. This suggests that the specification can be improved by exclusion of 

insignificant ARMA terms.   
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Table 5.2.4: The ARMA table for Algeria 

Observations 1999Q2 2012q4 (55)  

 1 2 3 4 

𝐷1 0.036 

(4.698) 

 0.042 

(2.739) 

 0.043 

(2.417) 

 

𝐷2 0.038 

(5.121) 

0.042 

(2.810) 

0.045 

(2.488) 

 

𝐷3 0.038 

(5.215) 

0.043 

(2.837) 

0.045 

(2.511) 

 

𝐷4 0.037 

(5.148) 

0.042 

(2.756) 

0.044 

(2.443) 

 

AR(1)  0.898 

(8.392) 

0.922 

(12.664) 

 0.999 

(32.465) 

AR(2)     

SAR(4)  -0.583 

(-4.301) 

-0.578 

(-4.354) 

-0.580 

(-4.760) 

MA(1)  0.247 

(1.247) 

  

MA(2)  -0.098 

(-0.557) 

  

SMA(4)     

Adj 𝑅2  -0.058 0.705 0.704 0.712 

SC -4.133 -5.200 -5.301 -5.551 

S.E 0.027 0.015 0.015 0.014 

AR Root  0.898 

0.874 

 

 

0.922 

0.870 

0.999 

0.873 

MA Root  0.448 

0.221 

  

P[QLB(7)]  0.588 0.523 0.432 

LR (SEA DUM)  2.369 

[0.668] 

 2.430 

[0.681] 
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We apply the standard diagnostic checks for residual autocorrelation, stationarity and 

invertibility. The probability value of the Ljung-Box Q-statistic at the 7th lag, denoted 

P[QLB(7)], exceeds 0.050 indicating that there is no residual autocorrelation– we choose 

lag 7 based on the square root of the sample size (in this case √55). The inverse roots of 

the AR and MA processes are all less than one indicating that the model is consistent 

with a stationary and invertible process. Hence, the model is valid for forecasting in the 

sense that there is no evidence of misspecification according to the standard tests. 

However, as indicated above the specification can be improved with the amendment of 

the ARMA terms. The coefficients on the MA(1) and MA(2) terms are not significant and 

are candidates for exclusion. Therefore, we remove the MA(1) and MA(2) terms from 

the model reported in the column headed 2 from Table 5.2.4 and report the resulting 

𝐴𝑅𝑀𝐴𝑋(1, 0)(1, 0)4 in the column headed 3 of Table 5.2.4.  This model’s SC decreases 

to -5.301. All of the ARMA components as well as the coefficients on the four seasonal 

dummy variables are significant. However, the test for the exclusion of all 4 seasonal 

dummy variables is jointly insignificant. 

We exclude seasonal dummy variables that are jointly insignificant and report this model 

in the column headed 4 in Table 5.2.4. In this model the SC reduces to -5.551 and all the 

ARMA components are significant. This model cannot be rejected by the diagnostic 

checks for residual autocorrelation, stationarity and invertibility and is therefore valid 

for forecasting. 

Figure 5.2.4.2: the actual and fitted values reported in Table 5.2.4 column 4 
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Visual inspection of the actual and fitted values (Figure 5.2.4.2) of this model suggests 

that the time path of the fitted values capture the movements in the actual data 

reasonably. In terms of model fit the adjusted 𝑅2 of this ARIMAX model on the reduced 

sample is 0.712 which is much lower than the specification estimated using the full 

sample that models structural breaks (Appendix A. Section 5.1. Table 5.6.3:), being 

0.893. It will be interesting to see if the comparative fit of these two models is indicative 

of their relative forecasting performance. 
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5.2.5 Box-Jenkins ARIMA modelling of annual inflation for Angola 

In the full sample ARIMAX model developed for Angola in section 5.1 we identified the 

last structural break in 1998q3. Hence, the maximum available estimation period 

without an identified structural break is 1998q4 to 2012q4. To allow for lags and 

transformations and have a consistent estimation period for all models we specify an 

initialization period of two years and estimate all models over the period 2000q4 – 

2012q4 (49 observations). First, we regress inflation on the 4 seasonal dummy variables, 

𝐷𝑠𝑡, to yield the benchmark deterministic specification. Second, we identify the ARMA 

components to the residuals of this model and discuss the development of the final 

ARIMA model.  

Table 5.2.5 reports the benchmark deterministic specification and various ARIMA 

models.  The model reported in the column labelled 1 is the benchmark deterministic 

model. The results indicate that all of the seasonal dummy variables coefficients are 

significant and the model’s Schwarz criterion (SC) is -2.136. 

Figure 5.2.5.1 plots the ACF of the residuals of the model reported in the column headed 

1 of Table 5.2.5. Visual inspection of this graph suggests that the first 9 autocorrelation 

coefficients (ACs) are significant which, being greater than 5, is normally indicative of 

nonstationarity. However, the sinusoidal pattern of ACF and that the ACs are not highly 

significant suggests the existence of an AR process rather than nonstationarity. We 

therefore assume that the series is stationary and does not require any further 

nonseasonal differencing – if this turns out to be incorrect it should result in the 

rejection of the diagnostic check for stationarity. We initially specify the maximum order 

of non-seasonal MA component as 3 and seasonal MA component as 2 given that ACs 

are significant at lag 4 and 8 and insignificant at lags 12, 16, 20, 24 and 28. This suggests 

that there is no need for further seasonal differencing because no more than the first 5 

seasonal ACs (at the seasonal lags) are significant.  Given the difficulty in clearly 

identifying the (especially non-seasonal) orders of MA process alternative orders will be 

considered if an adequate model cannot be identified.  

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lag 1 and insignificant at lags 2, 3, 4 and 5. This suggests the maximum 

order of non-seasonal AR component is probably 1. The seasonal PACs are insignificant 
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at lag 4, 8, 12 16, 20, 24 and 28. Therefore, the maximum order of seasonal AR process 

is probably equal to 0. Hence, the maximum seasonal ARMA specification that we 

initially identify to the residuals of the deterministic model is ARMA (1, 3)(0,2)4. 

Assuming a multiplicative specification we report an ARIMAX specification that includes 

4 seasonal dummy variables and an ARMA (1, 3)(0, 2)4  model of the residuals in the 

column headed 2 of Table 5.2.5 

Figure 5.2.5.1: the ACF and PACF of the residuals of model 1 reported in Table 5.2.5 
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In this model the SC falls to -2.255 suggesting that the addition of ARMA terms has 

improved the specification. All four seasonal dummy variables are individually 

insignificant. This is confirmed by the joint test for the exclusion of all 4 seasonal dummy 

variables, denoted LR(SEA DUM), which has a probability value of 0.728. In this model all 

of the ARMA components are significant except for the SMA(4) and SMA(8) terms.  

For the model to be valid we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 7th lag, denoted P[QLB(7)] is less than 0.050 indicating evidence of 

autocorrelation in the dependent variable –  we choose lag 7 based on the square root 

of the sample size (in this case √49). The inverse roots of the AR and MA processes are 

all less than one indicating that the model is consistent with a stationary and invertible 

process.  Hence, the model is not valid for forecasting in the sense that there is evidence 

of autocorrelation.  
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Table 5.2.5: The ARMA table for Angola 

Observations 2000q3 2012q4( 49)   
 1 2 3 4 5 

𝐷1  0.533 
(2.944) 

0.217 
(1.862)  

0.207 
(1.845) 

  

𝐷2 0.467 
(2.583) 

0.225 
(0.116) 

0.215 
(1.910) 

  

𝐷3 0.413 
(2.280) 

0.220 
(1.903) 

0.207 
(1.879) 

  

𝐷4 0.551 
(3.172) 

0.211 
(1.828) 

0.202 
(1.802) 

  

AR(1)  0.802 
(20.642) 

0.809 
(25.825) 

0.831 
(31.618) 

0.465 
(1.717) 

AR(2)     0.281 
(1.281) 

MA(1)  0.280 
(3.427) 

0.287 
(3.450) 

0.378 
(5.530) 

0.684 
(2.497) 

MA(2)  0.195 
(2.473) 

0.132 
(1.317) 

0.203 
(2.289) 

0.060 
(0.266) 

MA(3)  0.916 
(12.022) 

0.844 
(9.552) 

0.823 
(11.134) 

0.375 
(2.005) 

SMA(4)  0.219 
(1.353) 

   

SMA(8)  -0.209 
(-1.405) 

   

Adj 𝑅2 -0.057 0.996 0.990 0.990 0.987 
SC -2.136 -2.255 -2.306 -2.543 -2.172 
S.E 0.627 0.059 0.061 0.060 0.071 
AR Root  0.802 0.809 

 
 

0.831 
 

0.811 
0.347 

MA Root  0.999 
0.957 
0.873 
0.775 

0.999 
0.918 

0.999 
0.907 

0.999 
0.612 

P[QLB(7)]  0.002 0.053 0.017 0.002 
LR (SEA DUM)  2.041 

[0.728] 
2.584 
[0.407] 

  

LR (SEA DUM, CON)   7.581 
[0.000] 
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As indicated above the specification can be improved with the removal of insignificant 

ARMA variables. The coefficients on the SMA(4) and SAR(8) terms are not significant and 

are candidates for exclusion. Therefore, we remove these variables from the model 

reported in the column headed 2 Table 5.2.5 and report the resulting non-seasonal 

𝐴𝑅𝑀𝐴𝑋(1, 3) in the column headed 3 of Table 5.2.5. This model cannot be rejected by 

the diagnostic checks for residual autocorrelation, stationarity and invertibility. In terms 

of specification all ARMA variables are significant. However, the four seasonal dummy 

variables are individually and jointly insignificant. 

We exclude the seasonal dummy variables that are jointly insignificant and report the 

resulting model in column 4. This model’s SC decreases to -2.543 and all the included 

variables are significant. According to the standard diagnostic checks, this model is 

stationary and invertible however there is evidence of autocorrelation suggesting 

unmodelled systematic variation in the dependent variables. 

We also experiment with adding an AR(2) term to model in Colum 4 to examining 

whether the model will passes the diagnostic check and report the resulting model in 

column 5. This model is rejected based on evidence of autocorrelation.  

Since model 4 and 5 are rejected due to autocorrelation we regard model 3 as the best 

ARIMA model for forecasting Angola annual inflation because the model has the lowest 

SC of those that cannot be rejected according to the diagnostic checks.  

Further, the Wald test for the null hypothesis that all of the seasonal dummies’ 

coefficients are equal, denoted LR (SEA DUM, CON), is rejected. This suggests significant 

deterministic seasonality and that these dummies cannot be replaced by a single (non-

seasonal) intercept. 
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Figure 5.2.5.2: the actual and fitted values reported in Table 5.2.5 column 3 
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Visual inspection of the actual and fitted values (Figure 5.2.5.2) of this model suggests 

that the time path of the fitted values capture the movements in the actual data well. 

In terms of model fit the adjusted 𝑅2 of this ARIMAX model on the reduced sample is 

0.990 which is slightly lower than the specification estimated using the full sample that 

models structural breaks (Appendix A. Section 5.1 Table 5.7.3), being 0.997. It will be 

interesting to see if the comparative fit of these two models is indicative of their relative 

forecasting performance. 
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5.2.6 Box-Jenkins ARIMAX modelling of annual inflation for Nigeria  

In the full sample ARIMAX model developed for Nigeria in section 5.1 we identified the 

last structural break date in 1996q3. Hence, the maximum available estimation period 

without a structural break is 1996q4 to 2012q4. To allow for lags and transformations 

and have a consistent estimation period for all models we specify an initialization period 

of two years and estimate all models over the period 1998q4 – 2012q4 (57 

observations). First, we regress inflation on the 4 seasonal dummy variables, 𝐷𝑠𝑡, to yield 

the benchmark deterministic specification. Second, we identify the ARMA components 

to the residuals of this model and discuss the development of the final ARIMA model. 

Table 5.2.6 reports the benchmark deterministic specification and various ARIMA 

models.  The model reported in the column labelled 1 is the benchmark deterministic 

model. The results indicate that all of the seasonal dummy variables coefficients are 

significant and the model’s Schwarz criterion (SC) is -2.741 

Figure 5.2.6.1 plots the autocorrelation function (ACF) of the residuals of the model 

reported in the column headed 1 of Table 5.2.6. The non-seasonal autocorrelation 

coefficients (ACs) from the ACF are significant at lags 1 and 2 and insignificant at lags 3, 

4, 5 and 6. This implies that there is no need for further non-seasonal differencing 

because no more than the first 5 non-seasonal ACs are significant. It also implies that 

the maximum order of non-seasonal MA component is probably 2. Further, the seasonal 

ACs are significant at lag 24 and insignificant at lags 4, 8, 12, 16, 20 and 28. This suggests 

that there is no need for further seasonal differencing because no more than the first 5 

seasonal ACs are significant. It also indicates the maximum order of seasonal MA 

component is probably equal to 0. 

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are 

significant at lags 1 and 2 and insignificant at lags 3 and 4. This suggests the maximum 

order of non-seasonal AR component is probably 2. The seasonal PACs are insignificant 

at lags 4, 8, 12 16, 20, 24 and 28. Nevertheless, the maximum order of seasonal AR 

process could be 1 given the notable significance of the PAC at lag 5 (assuming a 

multiplicative specification). Hence, the maximum seasonal ARMA specification that we 

initially identify to the residuals of the deterministic model is ARMA (2, 2)(1,0)4. 

Assuming a multiplicative specification we report an ARIMAX specification that includes 
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4 seasonal dummy variables and an ARMAX (2, 2)(1,0)4  of the residuals in the column 

headed 2 of Table 5.2.6. 

Figure 5.2.6.1: the ACF and PACF of the residuals of model 1 reported in Table 5.2.6 

 

In this model the SC falls to -3.763 suggesting that the addition of ARMA terms has 

improved the specification. All four seasonal dummy variables are significant although 

this is not confirmed by the test for the joint exclusion of all 4 seasonal dummy variables, 

denoted LR(SEA DUM). In this model all the ARMA components are significant except 

for those associated with the AR(1) and MA(2) terms. 
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Table 5.2.6. The ARMA table for Nigeria 

Observations 1998q4 2012q4( 57)    

 1 2 3 4 5 6 

𝐷1 0.122 
(8.226) 

0.128 
(10.133) 

0.124 
(7.947) 

0.121 
(9.632) 

 0.123 
(6.904) 

0.121 
(10.226) 

𝐷2 0.119 
(8.013) 

0.122 
(8.811) 

0.119 
(7.593) 

0.117 
(9.301) 

0.119 
(6.691) 

0.118 
(9.889) 

𝐷3 0.117 
(7.923) 

0.126 
(8.777) 

0.119 
(7.539) 

0.117 
(9.223) 

0.118 
(6.641) 

0.117 
(9.796) 

𝐷4 0.120 
(8.387) 

0.126 
(10.125) 

0.121 
(7.774) 

0.123 
(9.727) 

0.124 
(6.977) 

0.122 
(10.340) 

P(2005q4)    -0.043 
(-2.370) 

-0.039 
(-1.713) 

-0.045 
(-2.446) 

AR(1)  -0.034 
(-0.123) 

0.220 
(1.636) 

1.072 
(3.231) 

0.843 
(10.796) 

1.192 
(8.762) 

AR(2)  0.531 
(3.144) 

0.425 
(2.963) 

-0.324 
(-1.071) 

 -0.427 
(-2.994) 

SAR(4)  -0.436 
(-3.081) 

-0.434 
(-3.090) 

-0.442 
(-3.028) 

 -0.527 
(-4.252) 

-0.427 
(-3.000) 

MA(1)  1.289 
(3.753) 

0.981 
(38.690) 

0.144 
(0.411) 

  

MA(2)  0.290 
(0.969) 

    

Adj 𝑅2 -0.056 0.706 0.639 0.706 0.657 0.711 

SC -2.741 -3.763 -3.804 -3.762 -3.711 -3.829 

S.E 0.055 0.029 0.029 0.029  0.032  

AR Root  0.812 
0.812 
0.746 

0.812 
0.772 
0.551 

0.815 
0.570 

0.852 
0.843 

0.808 
0.654 

MA Root  0.999 
0.290 

0.981 0.144   

P[QLB(8)]  0.450 0.508 0.659 0.049 0.406 

LR (SEA DUM)  -3.028 10.717 
[0.030] 

1.351 
[0.265] 

1.448 
[0.232] 

 2.829 
[0.034] 

LR (SEA DUM, 
CON) 

    
 

  18.751 
[0.000] 
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We apply the standard diagnostic checks for residual autocorrelation, stationarity and 

invertibility. The probability value of the Ljung-Box Q-statistic at the 8th lag, denoted 

P[QLB(8)], exceeds 0.050 indicating evidence of no autocorrelation in the dependent 

variable– we choose lag 8 based on the square root of the sample size (in this case √57). 

The inverse roots of the AR and MA processes are all less than one indicating that the 

model is consistent with a stationary and invertible process.  Hence, the model is valid 

for forecasting in the sense that there is no evidence of misspecification according to 

the standard tests.  

However, as indicated above the specification can be improved with the removal of 

insignificant ARMA variables. The coefficients on the AR(1) and MA(2) terms are not 

significant and are candidates for exclusion. Since the AR(2) term is significant we do not 

remove the AR(1) term to retain the full second-order specification of the non-seasonal 

AR component.  However, we remove the MA(2) term from the model reported in the 

column headed 2 from Table 5.2.6. and report the resulting 𝐴𝑅𝑀𝐴𝑋(2, 1)(1, 0)4 in the 

column headed 3. In this model all of the coefficients of the variables are significant 

except for the AR(1) term, which we would not exclude because the AR(2) term is 

significant. This model cannot be rejected by the diagnostic checks for residual 

autocorrelation, stationarity and invertibility and is therefore valid for forecasting. 

Figure 5.2.6.2: the actual and fitted values of model reported in Table 5.2.6 in column 3 
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In the Figure 5.2.6.2 we plot the actual and fitted values of the model reported in column 

3 of Table 5.2.6. Visual inspection of this graph suggests that there is an outlier in 2005q4 

and we therefore add a new pulse dummy variable, denoted 𝑃(2005𝑞4), to the model 

reported in column 3 to capture this outlier. This model, reported in column 4, cannot 

be rejected according to the diagnostic checks and all of the ARMA coefficients are 

significant except for the AR(2) and MA(1) terms.  

We remove the insignificant MA (1) and AR (2) terms from the model reported in the 

column headed 4 Table 5.2.6 and report the resulting 𝐴𝑅𝑀𝐴𝑋(1, 0)(1, 0)4 in the 

column headed 5.  In this model, the coefficient of the new pulse dummy variable 

becomes insignificant. While this model does not fail the diagnostic checks for 

invertibility and stationarity there is evidence of autocorrelation suggesting unmodelled 

systematic variation in the dependent variable and a need to respecify the model.  

After experimentation we estimate the 𝐴𝑅𝐼𝑀𝐴𝑋(2, 0)(1, 0)4   which is reported in the 

column headed 6 of Table 5.2.6. In this specification all of the variables are significant 

and this model cannot be rejected according to the standard diagnostic checks for 

residual autocorrelation, stationarity and invertibility.   

Further, the Wald test for the null hypothesis that all of the seasonal dummies’ 

coefficients are equal, denoted LR (SEA DUM, CON), is rejected. This suggests significant 

deterministic seasonality and that these dummies cannot be replaced by a single (non-

seasonal) intercept. 
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Figure 5.2.6.3: the actual and fitted values of model reported in Table 5.2.6 in column 6 
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Visual inspection of the actual and fitted values (Figure 5.2.6.3) of this model suggests 

that the time path of the fitted values reasonable capture the movements in the actual 

data. Therefore, we regard model 6 from Table 5.2.6 as the best ARIMAX model for 

forecasting Nigeria’s annual inflation because the model has the lowest SC and it cannot 

be rejected according to the diagnostic checks for stationarity, invertibility and 

autocorrelation. The adjusted 𝑅2 of the ARIMAX model using this reduced sample is 

0.711 which is much lower than the specification estimated using the full sample that 

models structural breaks (Appendix A. Section 5.1 Table 5.10.3), being 0.911. It will be 

interesting to see if the comparative fit of these two models is indicative of their relative 

forecasting performance. 
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5.2.7 Box-Jenkins ARIMA modelling of annual inflation for Saudi Arabia 

In the full sample ARIMAX model developed for Saudi Arabia in section 5.1 we identified 

the last structural break date in 1977q2. Hence, the maximum available estimation 

period without a structural break is 1977q3 to 2012q4. To allow for lags and 

transformations and have a consistent estimation period for all models we specify an 

initialization period of two years and estimate all models over the period 1979q3 – 

2012q4 (134 observations). First, we regress inflation on the 4 seasonal dummy 

variables, 𝐷𝑠𝑡 to yield the benchmark deterministic specification. Second, we identify 

the ARMA components to the residuals of this model and discuss the development of 

the final ARIMA model. 

Table 5.2.7 reports the benchmark deterministic specification and various ARIMAX 

models.  The model reported in the column labelled 1 is the benchmark deterministic 

model. The results indicate that all of the seasonal dummy variables coefficients are 

significant and the model’s Schwarz criterion (SC) is -4.098. 

Figure 5.2.7.1 plots the ACF of the model reported in the column headed 1 of Table 5.2.7 

Visual inspection of this graph suggests that the first 13 autocorrelation coefficients 

(ACs) are significant which, being greater than 5, is normally indicative of 

nonstationarity. However, the sinusoidal pattern of the ACF and that the ACs are not 

highly significant suggests the existence of an AR process rather than nonstationarity. 

We therefore assume that the series is stationary and does not require any further 

nonseasonal differencing – if this turns out to be incorrect it should result in the 

rejection of the diagnostic check for stationarity. We initially specify the maximum order 

of non-seasonal MA component as 3 and seasonal MA component as 3 given that ACs 

are significant at lags 4, 8, 12, 24 and 28 and insignificant at lags 16 and 20. This suggests 

that there is no need for further seasonal differencing because the seasonal ACs cut to 

zero by seasonal lag 5 (the seasonal ACs are insignificant at lag 16 and 20). Given the 

difficulty in clearly identifying the (especially non-seasonal) orders of MA process 

alternative orders will be considered if an adequate model cannot be identified. From 

the PACF the non-seasonal partial autocorrelation coefficients (PACs) are significant at 

lags 1 and 2 and insignificant at lags 3 and 4. This suggests the maximum order of non-

seasonal AR component is probably 2. The seasonal PACs are significant at lags 4 and 8 
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and insignificant at lags 12, 16, 20, 24 and 28. Therefore, the maximum order of seasonal 

AR process could be 2. Hence, the maximum seasonal ARMA specification that we 

initially identify to the residuals of the deterministic model is ARMA (2, 3)(2, 3)4. 

Assuming a multiplicative specification we report an ARIMAX model that includes 4 

seasonal dummy variables and an ARMA(2, 3)(2,3)4  process for the residuals in the 

column headed 2 of Table 5.2.7. 

Figure 7.7.1: the ACF and PACF of the residuals of model 1 reported in Table 7.7.1 

 

In this model the SC falls to -6.167 suggesting that the addition of ARMA terms has 

improved the specification.  All four seasonal dummy variables are individually 

insignificant, which is confirmed by the joint test for the exclusion of all 4 seasonal 

dummy variables, denoted LR(SEA DUM), which has a probability value of 1.000. The 

coefficients on the AR(1), AR(2) SAR(4),  SAR(8), MA(3), SMA(8) and SMA(12) are not 

significant. These results suggest that the specification can be improved by the exclusion 

of insignificant ARMA terms.  
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Table 5.2.7: The ARMA table for Saudi Arabia  

Observations 1979q3 2012q4 (134)  

 1 2 3 4 5 6 7 8 

𝐷1 0.014 
(2.766) 

0.025 
(1.017) 

 0.014 
(3.375) 

0.014 
(3.626) 

0.038 
(0.587) 

 0.029 
(0.810) 

 

𝐷2 0.0146 
(2.856) 

0.025 
(1.006) 

0.014 
(3.433) 

0.015 
(3.689) 

0.038 
(0.583) 

 0.030 
(0.810) 

 

𝐷3 0.015 
(2.941) 

0.026 
(1.022) 

0.014 
(3.434) 

0.015 
(3.689) 

0.038 
(0.588) 

 0.030 
(0.812) 

 

𝐷4 0.014 
(2.893) 

0.026 
(1.022) 

0.015 
(3.421) 

0.015 
(3.663) 

0.038 
(0.588) 

 0.030 
(0.812) 

 

P1992q2       -0.005 
(-1.355) 

-0.006 
(-2.853) 

AR(1)  0.616 
(1.999) 

  1.867 
(21.453) 

1.849 
(17.978) 

1.863 
(20.997) 

1.820 
(16.999) 

AR(2)  0.356 
(1.235) 

  -0.868 
(-9.845) 

-0.846 
(-8.031) 

-0.866 
(-9.622) 

-0.816 
(-7.459) 

SAR(4)  0.144 
(0.702) 

      

SAR(8)  0.241 
(1.673) 

      

MA(1)  0.709 
(2.279) 

0.914 
(9.679) 

0.971 
(13.492) 

-0.618 
(-4.710) 

-0.596 
(-4.022) 

-0.969 
(-
69.890) 

-0.535 
(-3.499) 

MA(2)  0.452 
(2.581) 

0.546 
(5.794) 

0.582 
(8.115) 

    

MA(3)  0.310 
(1.768) 

      

SMA(4)  -0.858 
(-
3.515) 

0.115 
(0.972) 

 -0.970 
(-
81.718) 

-0.967 
(-
58.179) 

-0.969 
(-
69.890) 

-0.974 
(-88.157) 

SMA(8)  -0.338 
(-
1.217) 

      

SMA(12)  0.245 
(1.671) 

      

Adj 𝑅2 -0.000 0.903 0.726 0.725 0.906 0.903 0.906 0.908 

SC -4.098 -6.167 -5.327 -5.352 -6.366 -6.452 -6.343 -6.476 

S.E 0.029 0.009 0.015 0.015 0.009 0.009 0.009 -6.476 

AR Root  0.979 
0.864 
0.807 
0.363 

 0.763 0.983 
0.883 

1.019 
0.830 

0.976 
0.887 

1.020 
0.799 

MA Root  0.985 
0.863 
0.828 
0.698 
0.667 

0.739 
0.582 
 

 0.992 
0.618 

0.992 
0.596 

0.992 
0.605 

0.993 
0.535 

P[QLB(12)]  0.000 0.000 0.000 0.103 0.064 0.039 0.027 

LR (SEA DUM)  0.219 
[1.000] 

3.826 
[0.006] 

4.556 
[0.002] 

1.949 
[0.106] 

 0.423 
[0.792] 

 

LR (SEA DUM, 
CON) 

    66.771 
[0.000] 
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We apply the standard diagnostic checks for residual autocorrelation, stationarity and 

invertibility. The probability value of the Ljung-Box Q-statistic at the 12th lag, denoted 

P[QLB(12)], is less than 0.050 indicating evident  of residual autocorrelation – we choose 

lag 12 based on the square root of the sample size (in this case √134). The inverse roots 

of the AR and MA processes are all less than one indicating that the model is consistent 

with a stationary and invertible process. Hence, the model is not valid for forecasting in 

the sense that there is evident autocorrelation.  

However, as indicated above the specification can be improved with the removal of 

some variables that are not significant. Therefore, we remove the variables  AR(1), AR(2) 

SAR(4),  SAR(8), MA(3), SMA(8) and SMA(12) from the model reported in the column 

headed 2  and report the resulting 𝐴𝑅𝑀𝐴𝑋(0, 2)(0, 1)4 in the column headed 3. In this 

model, all the ARMA components are significant except for the SMA(4) term. This model 

does not fail the diagnostic checks for invertibility and stationarity however there is 

evidence of autocorrelation suggesting unmodelled systematic variation in the 

dependent variable and a need to re-specify the model. 

 Therefore, we remove the insignificant SMA(4) term and  report the resulting 

𝐴𝑅𝑀𝐴𝑋(0, 2) model in the column headed 4. This model is rejected because there is 

evidence of autocorrelation and there is a need to re-specify this model. 

Based on experimentation we estimate the 𝐴𝑅𝑀𝐴𝑋(2, 1)(1, 0)4 that is reported in the 

column headed 5.  In terms of specification, all of the ARMA coefficients are significant. 

This model cannot be rejected according to the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. However, the seasonal dummy variables 

are individually insignificant. This is confirmed by the joint test for the exclusion of all 4 

seasonal dummy variables, denoted LR(SEA DUM). Therefore, we exclude the seasonal 

dummy variables and report the result in column 6. 

 In this model, the SC falls to -6.452. Although this model does not exhibit evident 

autocorrelation or violates invertibility one inverse root of   MA, however, the AR inverse 

roots is greater than one suggesting that this model is non-stationary. Hence, this model 

is not valid for forecasting and we prefer the valid model reported in column 5. 



425 
 

Figure 5.2.7.2: the actual and fitted values reported in Table 5.2.7 column 5 
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In Figure 5.2.7.2 we plot the actual and fitted values of the valid model reported in 

column 5 of Table 5.2.7. Visual inspection of this graph suggests that there is an outlier 

in 1992q2 and we therefore add a new pulse dummy variable, denoted 𝑃(1992𝑞2), to 

the model reported in column 5 to capture this outlier. This model is reported in column 

7 and all of the ARMA components are significant except the coefficient on the pulse 

dummy and individual seasonal dummy variables. This model cannot be rejected 

according to the diagnostic checks for stationarity and invertibility, however, there is 

evident residual autocorrelation indicating that the model is not valid for forecasting 

Therefore, we exclude the seasonal dummy variables that are jointly insignificant from 

the model reported in the column headed 7 and the result is reported in column 8. In 

this model, the SC falls to -6.476. Although this model is invertible there is evidence of 

autocorrelation and non-stationarity (one of the AR inverse roots is greater than one). 

Hence, this model is not valid for forecasting. 

Therefore, we regard model 5 from Table 5.2.7 as the best ARIMAX model for 

forecasting Saudi Arabia’s annual inflation because it has the minimum SC from those 

that cannot be rejected according to the diagnostic checks. 

Further, the Wald test for the null hypothesis that all of the seasonal dummies’ 

coefficients are equal, denoted LR (SEA DUM, CON), is rejected. This suggests significant 

deterministic seasonality and that these dummies cannot be replaced by a single (non-

seasonal) intercept. 
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 Section 5.3. 

5.5.2 Russia Forecast performance and evaluation  

We compare the forecasting performance of the full sample ARIMAX and the reduced 

sample ARIMA models. The full sample specification includes deterministic dummy 

variables to model structural breaks and seasonality for Russia in section 5.1 (Table 

5.1.5). The reduced sample models that avoid modelling structural breaks are estimated 

over the period 2003q2 – 2012q4. The following ARIMA models estimated over the 

reduced sample are used for forecasting: seasonal Box-Jenkins ARIMA model for Russia 

in section 5.2 (Table 5.2.3), EViews 9’s automatic selected seasonal ARIMA specification 

discussed in section 5.3 (Table 5.3.1) and EViews 9’s automatically selected non-

seasonal ARIMA model discussed in section 5.4 (Table 5.4.3). The forecast performance 

measures of these models are given in Table 5.5.2. 

 

Table. 5.5.2: Forecast performance of Univariate models for Russia 

 A 

Full sample seasonal ARIMAX 

model with modelling 

structural breaks 

B 

Reduced sample seasonal 

ARIMA model without 

modelling structural breaks 

C 

Reduced sample EView9 

Automatic seasonal ARIMA 

model without modelling 

breaks 

D 

Reduced sample EView9 

Automatic’s non-seasonal 

ARIMA model without modelling 

structural breaks 

 RMSE MAPE U RMSE MAPE U RMSE MAPE U RMSE MAPE U 

1-step  0.0290 33.6800 0.1710 0.0110 11.6700 0.0770 0.0160 14.9600 0.1080 0.0090* 10.1800* 0.0630* 

2-step 0.0310 37.2200 0.1790 0.0180 21.7300 0.1180 0.0280 24.0900 0.1740 0.0080* 9.4120* 0.0520* 

3-step 0.0340 42.9100 0.1940 0.0220 25.9800 0.1420 0.0400 39.0600 0.2330 0.0150* 17.5500* 0.0960* 

4-step 0.0460 59.8300 0.2380 0.0230 27.2600 0.1360 0.0530 45.5300 0.2810 0.0160* 20.6300* 0.0990* 

5-step 0.0360 43.7300 0.1920 0.0220 22.7000 0.1280 0.0560 48.3300 0.2920 0.0168* 18.8700* 0.1040* 

6-step 0.0350 41.3700 0.1760 0.0240 28.4300 0.1320 0.0490 43.4500 0.2500 0.0140* 15.5900* 0.0800* 

7-step 0.0320 36.2100 0.1570 0.0260 31.0900 0.1330 0.0480 50.8000 0.2360 0.0160* 15.1500* 0.0870* 

8-step 0.0170 18.0000 0.0830 0.0100 9.8920 0.0470 0.0290 30.2200 0.1310 0.0060* 6.3660* 0.0310* 

 An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for each forecasting 

horizon. 

 

The reduced sample univariate model that employs Eviews 9’s automatic non-seasonal 

ARIMA model, see column D of Table 5.5.2 has the lowest RMSE, MAPE and U values 

over all forecasting horizons across the four specifications. This implies that this 

specification unambiguously has the best forecasting performance over both short and 

long horizons. We note that the ARIMAX forecasts modelling structural breaks, see 

column A, reduced seasonal Box-Jenkins ARIMA, see column B and EViews 9’s automatic 

selected seasonal ARIMA, see column C, were never favoured. These results imply the 
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following for the univariate modelling on Russian data. First, the potential difficulties in 

explicitly modelling the structural breaks over the full sample outweighed the loss of 

data from using the reduced sample. Given the extra time and modeller expertise 

required to model such breaks suggests that using reduced samples to avoid structural 

breaks is the preferred strategy. Second, the quick automatic ARIMA selection 

procedures produce superior forecasts compared to using more time-consuming Box-

Jenkins ARIMA modelling techniques. Third, the ARIMA specifications that explicitly 

model seasonality are inferior to the specification that applies non-seasonal models to 

seasonally adjusted data and then reseasonalises the forecasts. Finally, note that the 

MAPE of the favoured ARIMA model is between 6 and 21 percentage points suggesting 

a relatively moderate forecasting performance for this class of models for Russian inflation. 
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5.5.3 India Forecast performance and evaluation  

 

We compare the forecasting performance of the three ARIMA models over the period 

of 1961q1 – 2012q4 for India.156 The following ARIMA specifications are used for 

forecasting: the seasonal Box-Jenkins ARIMA method discussed in section 5.1 

summarised for India in Table 5.1.5, EViews 9’s automatically selected seasonal ARIMA 

model discussed in section 5.3 (Table 5.3.1) and EViews 9’s automatically selected non-

seasonal ARIMA model discussed in section 5.4 (5.4.3)..157 The forecast performance 

measures for this model are given in Table 5.5.3. 

Table. 5.5.3: Forecast performance of Univariate models for India 

 A 

 Seasonal ARIMA modelling 

B 

EViews 9’s automatic seasonal 

ARIMA modelling 

C 

 EViews 9’s automatic non-

seasonal ARIMA modelling 

 RMSE MAPE U RMSE MAPE U RMSE MAPE U 

1-step  0.0120* 13.5200* 0.0680* 0.0140 16.3300 0.0800 0.0160 17.3300 0.0890 

2-step 0.0180* 23.1400* 0.1060* 0.0210 25.7800 0.1190 0.0210 26.9600 0.1240 

3-step 0.0190* 22.3400* 0.1130* 0.0190 24.0200 0.1150 0.0220 29.7000 0.1340 

4-step 0.0230* 33.8600* 0.1480* 0.0250 36.1500 0.1580 0.0260 38.5400 0.1590 

5-step 0.0200* 31.5000* 0.1360* 0.0220 34.4200 0.1490 0.0230 36.8100 0.1530 

6-step 0.0220* 35.3200* 0.1520* 0.0230 36.8900 0.1590 0.0240 38.8300 0.1650 

7-step 0.0240* 42.3800* 0.1780* 0.0260 44.5000 0.1870 0.0250 43.3500 0.1790 

8-step 0.0300* 63.4600* 0.2400* 0.0300 64.8100 0.2450 0.0300 64.3600 0.2440 

An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for each forecasting 

horizon. 

The univariate model employing the seasonal Box-Jenkins ARIMA method, see column 

A, has the lowest RMSE, MAPE and U values over all forecasting horizons, see Table 

5.5.3. Hence, the method that employs seasonal Box-Jenkins ARIMA specification 

unambiguously has the superior forecasting performance over all forecasting horizons. 

We note that EViews 9’s automatic selections procedures (Table. 5.5.3 column and B 

and C) are never favoured. These results imply, first, that there is no evidence that quick 

automatic ARIMA selection procedures can produce as good forecasts as specifications 

                                                           
156 Note that we do not produce forecast for ARIMAX model in India since Bai and Perron test did not 
indicates any break date for modelling deterministic. 
157 The Eviews 9’s automatically selected non-seasonal ARIMA specification is used to model and forecast 

the seasonally adjusted (annual) inflation data for 2013 and 2014. The four seasonal indices from 2012 

are then used to reintroduce seasonality into these forecasts yielding predictions for the original 

(unadjusted). 
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produced using more time-consuming traditional Box-Jenkins ARIMA method. Second, 

the ARIMA specifications that explicitly model seasonality are superior to the 

specification that applies non-seasonal models to seasonally adjusted data and then 

reseasonalises the forecasts. Finally, we note that the MAPE of the favoured ARIMA 

model is above 13 percentage points suggesting a relatively poor forecasting 

performance for this class of models for Indian inflation. 

 

 

 

  



430 
 

5.5.4 China Forecast performance and evaluation 

 

We compare the forecasting performance of the ARIMAX model and two EViews 9’s 

automatic specifications over the period of 1992q1 – 2012q4 for China. The ARIMAX 

model includes deterministic dummy variables to model structural breaks and 

seasonality as summarised for China in section 5.1 (Table 5.1.5).158  The following EViews 

9 automatically selected models are used for forecasting: EViews 9’s automatically 

selected seasonal ARIMA model discussed in section 5.3 (Table 5.3.1) and the EViews 9’s 

automatic non-seasonal ARIMA model (with re-seasonalised forecasts) discussed in 

section 5.4 (Table 5.4.3).159 The forecast performance measures of these models are 

given in Table 5.5.4 

Table. 5.5.4: Forecast performance of Univariate models for China 
 A 

ARIMAX forecasts 

B 

EViews 9’s automatic seasonal 

ARIMA forecast  

C 

EViews 9 automatic’s non-

seasonal ARIMA forecast 

 RMSE MAPE U RMSE MAPE U RMSE MAPE U 

1-step  0.0060 9.2670 0.0530 0.0040* 7.1980* 0.0390* 0.0070 10.4700 0.0600 

2-step 0.0100 14.3200 0.0880 0.0090* 14.0000* 0.0870* 0.0110 17.0200 0.0980 

3-step 0.0150 22.7500 0.1420 0.0150 24.4200 0.1450 0.0120* 16.1100* 0.1100* 

4-step 0.0210 33.4300 0.2050 0.0230 36.3400 0.2290 0.0110* 14.0200* 0.0990* 

5-step 0.0250 41.4400 0.2630 0.0260 41.4800 0.2660 0.0130* 17.8800* 0.1160* 

6-step 0.0280 45.7500 0.2980 0.0300 49.3800 0.3310 0.0150* 24.1300* 0.1410* 

7-step 0.0280 47.1100 0.3080 0.0280 46.1800 0.3010 0.0160* 25.6000* 0.1550* 

8-step 0.0310 52.6000 0.3570 0.0280 47.1300 0.2450 0.0120* 19.5400* 0.1080* 

 An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for each forecasting 

horizon. 

The univariate model that employs EViews 9’s automatic non-seasonal ARIMA model, 

see column C, Table 5.5.4 has the lowest RMSE, MAPE and U-statistic values for 3, 4,5,6,7 

and 8-step ahead horizons. While the model that employs EViews 9’s automatic 

                                                           
158 We did not estimate reduced sample model for China because the period after the structural breaks 
are less than 39 observations. However, the relative step shifts for this period appear to be small which 
mean that inference regarding (seasonal) unit roots may not be too adversely affected when using the 
full sample, Therefore, we apply EView 9’s automatic specifications over the full sample for China to 
determine whether the effect of moderate mean shifts can affect the performance of inflations for this 
class of the model. 
 
159 The Eviews 9’s automatically selected non-seasonal ARIMA specification is used to model and forecast 

the seasonally adjusted (annual) inflation data for 2013 and 2014. The four seasonal indices from 2012 

are then used to reintroduce seasonality into these forecasts yielding predictions for the original 

(unadjusted). 
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seasonal ARIMA model, see column B, has the lowest RMSE, MAPE and U-statistic values 

for the 1 and 2-step ahead horizons. Hence, the EViews 9 automatic non-seasonal 

ARIMA model generally has the superior forecasting performance over all forecasting 

horizons although EViews 9’s automatic seasonal model selection processes produce the 

best forecast for 1 and 2 steps ahead. We note that the ARIMAX that explicitly models 

structural breaks (Table. 5.5.4 column A) is never favoured. These results imply the 

following for the univariate modelling of Chinese data. First, the potential difficulties in 

explicitly modelling the structural breaks outweighed the benefits of using Eviews 9’s 

automatic selection method. Given the extra time and modeller expertise required to 

model such breaks, this suggests that avoiding modelling structural breaks is the 

preferred strategy than modelling structural breaks. Second, the quick automatic ARIMA 

selection procedures produce superior forecasts compared to using more time-

consuming Box-Jenkins ARIMA modelling techniques even when applied over the full 

sample. Third, the benefit of seasonally adjusting data and re-seasonalising the forecasts 

generally outperforms the method of modelling seasonality in ARIMA forecasting. 

Finally, note that the MAPE of the favoured ARIMA models is between 7 and 26 

percentage points suggesting a relatively moderate forecasting performance for this 

class of models for Chinese inflation. 
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5.5.5. South Africa univariate Forecast performance and evaluation 

We compare the forecasting performance of the full sample ARIMAX and the reduced 

sample ARIMA models for South Africa. The full sample specification includes 

deterministic dummy variables to model structural breaks and seasonality as discussed 

section 5.1 and summarised in Table 5.1.5. The reduced sample models that avoid 

structural breaks are estimated over the period 1995q2 – 2012q4. The following ARIMA 

models estimated over the reduced sample are used for forecasting: seasonal Box-

Jenkins ARIMA model discussed in section 5.2 and summarised for South African in Table 

5.2.3, EViews 9’s automatic seasonal ARIMA model discussed in section 5.3 (Table 5.3.1) 

and EViews 9’s automatic non-seasonal ARIMA model discussed in section 5.4 (Table 

5.4.3).160 The forecast performance measures of these models are given in Table 5.5.5. 

 

Table. 5.5.5: Forecast performance of Univariate models for South Africa 

 A 

Full sample seasonal ARIMAX 

model with modelling breaks  

B 

Reduced sample seasonal ARIMA 

model without modelling breaks 

C 

Reduced sample EView automatic 

9’s seasonal ARIMA without 

modelling breaks 

D 

Reduced sample EView 

automatic 9’s non-seasonal 

ARIMA without modelling 

breaks 

 RMSE MAPE U RMSE MAPE U RMSE MAPE U RMSE MAPE U 

1-step  0.0320 44.5700 0.2750 0.0250 41.0900 0.2160 0.0080* 14.2800* 0.0640* 0.0400 70.7100 0.3030 

2-step 0.0500 67.4000 0.3940 0.0230 35.2600 0.1880 0.0130* 19.5400* 0.1010* 0.0590 76.2700 0.3830 

3-step 0.0560 82.7900 0.4480 0.0260 34.0600 0.2150 0.0130* 17.4100* 0.1010* 0.0550 88.8900 0.3560 

4-step 0.0500 66.3800 0.4230 0.0210 28.5400 0.1770 0.0130* 20.9900* 0.1010* 0.0470 59.8600 0.3110 

5-step 0.0430 62.9200 0.4020 0.0120* 17.2600* 0.1060 0.0140 20.0300 0.1030* 0.0230 30.6000 0.1740 

6-step 0.0430 63.4500  0.4660 0.0120 15.4000 0.1010 0.0090* 13.3600* 0.0690* 0.0150 23.4800 0.1350 

7-step 0.0520 82.6000 0.6780 0.0120 18.9000 0.1040 0.0080* 12.3600* 0.0580* 0.0310 34.7200 0.2920 

8-step 0.0510 85.1100 0.7410 0.0060* 10.2000* 0.0540* 0.0120 19.7400 0.0900 0.0200 33.7900 0.2030 

 An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for each forecasting 

horizon 

 

  

                                                           
160 The Eviews 9’s automatically selected non-seasonal ARIMA specification is used to model and forecast 

the seasonally adjusted (annual) inflation data for 2013 and 2014. The four seasonal indices from 2012 

are then used to reintroduce seasonality into these forecasts yielding predictions for the original 

(unadjusted). 
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From the above Table, the EViews 9 automatic seasonal ARIMA selection method, see 

column C, has the lowest U-statistics over all forecasting horizons except for 8-steps 

ahead. This specification also has the lowest RMSE and MAPE values over all forecasting 

horizons except for 5 and 8-steps ahead. The model that employs the reduced sample 

seasonal ARIMA model without modelling breaks has the lowest RMSE and MAPE for 

the 5 step horizon and has the best 8 step ahead forecasting performance according to 

all the three measures. Hence, the EViews 9 automatic seasonal ARIMA model selection 

procedure generally produces the best forecasting performance over most (though not 

all horizons). We note that the ARIMAX forecasts produced using the full sample that 

explicitly model structural breaks (Table. 5.5.5 column A) and reduced sample ARIMA 

model that employs Eviews 9’s automatic non-seasonal ARIMA selection routine (Table. 

5.5.5 column D) were never favoured. These results imply the following for the 

univariate modelling of South African data. First, the potential benefits of using a full 

sample and explicitly modelling the structural breaks were outweighed by the benefits 

of being able to avoid modelling structural breaks at the cost of a reduced sample for 

estimation. Given the extra time and modeller expertise required to model such breaks 

suggests that using reduced samples to avoid structural breaks is the preferred strategy. 

Second, the quick automatic ARIMA selection procedures generally (though not always) 

produce superior forecasts compared to using more time-consuming Box-Jenkins 

ARIMA modelling techniques. Third, there is no evidence to support the application of 

non-seasonal models to seasonally adjusted data and reseasonalising the forecasts 

produces superior forecast to explicitly modelling seasonality with the ARIMA 

technique. Finally, note that the MAPE of the favoured ARIMA models is between 10 

and 21 percentage points suggesting a relatively moderate forecasting performance for 

this class of models for South African inflation. 
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5.5.6 Angola Forecast performance and evaluation 

We compare the forecasting performance of the full sample ARIMAX and the reduced 

sample ARIMA model for Angola. The full sample specification includes deterministic 

dummy variables to model structural breaks and seasonality as discussed in section 5.1 

and summarised in Table 5.1.6. The reduced samples that avoid modelling structural 

breaks are estimated over the period 2000q4 – 2012q4. The following ARIMA models 

estimated over the reduced sample are used for forecasting: seasonal Box-Jenkins 

ARIMA model discussed in section 5. 2 (Table 5.2.3), EViews 9’s automatically selected 

seasonal ARIMA model discussed in section 5.3 (Table 5.3.1) and EViews 9’s 

automatically selected non-seasonal ARIMA model discussed in section 5.4 (Table 

5.4.4).161 The forecast performance measures of these models are given in Table 5.5.6. 

Table 5.5.6: Forecast performance of Univariate models for Angola 

 A 

Full sample seasonal ARIMAX 

model with modelling breaks  

B 

Reduced sample seasonal ARIMA 

model without modelling breaks 

C 

Reduced sample EViews 9’s 

automatic seasonal ARIMA 

without modelling breaks 

D 

Reduced sample EViews 9’s 

automatic non-seasonal 

ARIMA without modelling 

breaks 

 RMSE MAPE U RMSE MAPE U RMSE MAPE U RMSE MAPE U 

1-step  0.1220 13.1000 0.4540 0.0180* 2.05900* 0.0990* 0.0310 3.50100 0.1680 0.0650 4.34100 0.3170 

2-step 0.1900 20.2900 0.5530 0.0270* 3.25600* 0.1440* 0.0690 6.46900 0.3170 0.1450 9.70900 0.5320 

3-step 0.2600 29.7300 0.6350 0.0400* 5.11300* 0.2060* 0.1070 12.2000 0.4200 0.1790 14.1300 0.5900 

4-step 0.2930 35.9700 0.6720 0.0570* 7.63000* 0.2760* 0.1740 22.5400 0.5450 0.1900 17.6000 0.5960 

5-step 0.3990 53.7600 0.7360 0.0720* 9.81300* 0.3320* 0.2510 33.9000 0.6350 0.2430 24.0800 0.6540 

6-step 0.4330 59.5600 0.7520 0.0860* 11.7500* 0.3740* 0.3170 43.0200 0.6890 0.2810 29.2500 0.6820 

7-step 0.4250 58.1700 0.7450 0.0940* 12.8000* 0.3920* 0.3350 46.0000 0.6970 0.1130 14.5200 0.4440 

8-step 0.2880 38.5100 0.6580 0.1000* 13.3300* 0.4000* 0.4000 53.4800 0.7280 0.1540 20.6000 0.5070 

 An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for each forecasting 

horizon.  

 

The reduced sample univariate model that employs seasonal Box-Jenkins ARIMA 

technique’s, see column B, and has the lowest RSME, MAPE and U values over all 

forecasting horizons. This implies that the reduced that employs seasonal Box-Jenkins 

ARIMA technique unambiguously produces the best forecasting performance across the 

four models. We note that the ARIMAX forecasts produced using the full sample that 

explicitly model structural breaks (Table. 5.5.6 column A) and reduced sample ARIMA 

                                                           
161 The Eviews 9’s automatically selected non-seasonal ARIMA specification is used to model and forecast 

the seasonally adjusted (annual) inflation data for 2013 and 2014. The four seasonal indices from 2012 

are then used to reintroduce seasonality into these forecasts yielding predictions for the original 

(unadjusted). 
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model that employs Eviews 9’s automatic ARIMA selection routine (Table. 5.5.6 of the 

column C and D) were never favoured. These results imply the following for the 

univariate modelling on Angolan data. First, the potential benefits of using a full sample 

and explicitly modelling the structural breaks were outweighed by the benefits of being 

able to avoid modelling structural breaks at the cost of a reduced sample for estimation.  

Given the extra time and modeller expertise required to model such breaks suggests 

that using reduced samples to avoid structural breaks is the preferred strategy. Second, 

the quick automatic ARIMA selection procedures never produced superior forecasts 

compared to using more time-consuming Box-Jenkins ARIMA modelling techniques. 

Third, there is no evidence to support the application of non-seasonal models to 

seasonally adjusted data and reseasonalising the forecasts produces superior forecast 

to explicitly modelling seasonality with the ARIMA technique. Finally, note that the 

MAPE of the favoured ARIMA models is between 2 and 14 percentage points suggesting 

a relatively good forecasting performance for this class of models for Angolan inflation. 
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5.5.7 Algeria Forecast performance and evaluation 

We compare the forecasting performance of the full sample ARIMAX and the reduced 

sample ARIMA models.  The full sample specification includes deterministic dummy 

variables to model structural breaks and seasonality as discussed in section 5.1 and 

summarised for Algeria in Table 5.1.6. The reduced sample models that avoid structural 

breaks are estimated over the period 1999q2 – 2012q4. The following ARIMA models 

estimated over the reduced sample are used for forecasting: seasonal Box-Jenkins 

ARIMA model discussed in section 5.2 (Table 5.2.3), EViews 9’s automatic seasonal 

ARIMA model discussed in section 5.3 (Table 5.3.3) and EViews 9’s automatic non-

seasonal ARIMA model discussed in section 5.4 (Table 5.4.4).162 The forecast 

performance measures of these models are given in Table 5.5.7.   

5.5.7. Forecast performance of Univariate models for Algeria 

 A 

Full sample ARIMAX model with 

modelling breaks  

B 

Reduced sample ARIMA model 

without modelling breaks 

C 

Reduced sample Eviews 9’s 

automatic seasonal ARIMA 

without modelling breaks 

D 

Reduced sample Eviews 9’s 

automatic non-seasonal ARIMA 

without modelling breaks 

 RMSE MAPE U RMSE MAPE U RMSE MAPE U RMSE MAPE U 

1-step  0.0120* 76.7400 0.1730* 0.0140 84.7400 0.1800 0.0150 61.6300* 0.1900 0.0140 63.3700 0.1950 

2-step 0.0170 111.2000 0.2670 0.0270 189.9000 0.3540 0.0250 99.4900 0.3270 0.0160* 82.6100* 0.2380* 

3-step 0.0160* 108.2000* 0.2650* 0.0380 313.0000 0.4500 0.0310 183.3000 0.3940 0.0190 158.100 0.2930 

4-step 0.0160* 136.0000* 0.2430* 0.0480 459.1000 0.5010 0.0410 369.2000 0.4990 0.0240 218.100 0.3480 

5-step 0.0200* 147.2000* 0.2660* 0.0490 371.9000 0.4710 0.0430 326.3000 0.4790 0.0220 150.800 0.2970 

6-step 0.0160* 55.9600* 0.1950* 0.0440 166.0000 0.3830 0.0420 151.7000 0.4240 0.0180 61.4700 0.2310 

7-step 0.0160* 27.3800* 0.1670* 0.0330 78.74000 0.2650 0.0420 100.3000 0.3600 0.0160 27.6800 0.1790 

8-step 0.0170* 28.7700* 0.1680 0.0210 35.6200 0.1510* 0.0260 43.1600 0.1780 0.0210 36.1300 0.2200 

 An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for each 

forecasting horizon. 

 

The full sample univariate ARIMAX specification that models’ structural breaks has the 

lowest MAPE values over all forecasting horizons except 1 and 2 steps ahead (Table. 

5.5.7 column A). This model also has the lowest RMSE and U-statistic values for all 

forecasting horizons except 2 and 8-steps ahead. The reduced sample model that 

employs the Box-Jenkins ARIMA technique has the lowest U-statistic value for 8-steps 

ahead, see Table 5.5.7 column B and the EViews 9 automatic seasonal selection 

                                                           
162 The Eviews 9’s automatically selected non-seasonal ARIMA specification is used to model and forecast 

the seasonally adjusted (annual) inflation data for 2013 and 2014. The four seasonal indices from 2012 

are then used to reintroduce seasonality into these forecasts yielding predictions for the original 

(unadjusted). 
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procedure has the lowest MAPE for the 1-step horizon, see Table 5.5.7 column C. While 

the reduced sample model that employs the EViews 9 automatic non- seasonal ARIMA 

selection method has lowest RMSE, MAPE and U-statistics for the 2-step horizon. Hence, 

the ARIMAX forecasts produced using the full sample that model structural breaks 

generally has superior forecasting performance (although not over all forecasting 

horizons). These results imply the following for the univariate modelling on Algerian 

data. First, the benefits of modelling the structural breaks with more information 

outperform the benefits of avoiding modelling structural breaks using a reduced sample. 

Second, the univariate models that employ the Eviews 9 automatic model selection 

procedures are rarely favoured. Finally, note that the MAPE of the favoured ARIMA 

models is always over 27 percentage points suggesting a relatively poor forecasting 

performance for this class of models for Algerian inflation. 
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5.5.8. Saudi Arabia Forecast performance and evaluation 

We compare the forecasting performance of the full sample ARIMAX and the reduced 

sample ARIMA models. The full sample specification includes deterministic dummy 

variables to model structural breaks and seasonality as discussed in section 5.1 and 

summarised for Saudi Arabia in Table 5.1.6. The reduced sample models that avoid 

structural breaks are estimated over the period 1977q3 to 2012q4. The following ARIMA 

models estimated over the reduced sample are used for forecasting: seasonal Box-

Jenkins ARIMA model discussed in section 5.2 (Table 5.2.3), EViews 9’s automatic 

seasonal ARIMA model discussed in section 5.3 (Table 5.3.3) and EViews 9’s automatic 

non-seasonal ARIMA model discussed in section 5.4 (Table 5.4.4).163 The forecast 

performance measures of these models are given in Table 5.5.8. 

Table. 5.5.8: Forecast performance of Univariate models for Saudi Arabia 

 A 

Full sample ARIMAX model with 

modelling breaks   

B 

Reduced sample ARIMA model 

without modelling breaks 

C 

Reduced sample EViews 9’s 

automatic seasonal ARIMA without 

modelling breaks 

D 

Reduced sample EViews 9’s 

automatic non-seasonal ARIMA 

without modelling breaks 

 RMSE MAPE U RMSE MAPE U RMSE MAPE U RMSE MAPE U 

1-step  0.0060 18.1000 0.0940 0.0030* 8.3720* 0.0450* 0.0040 10.9800 0.0700 0.0050 14.2500 0.0810 

2-step 0.0080 20.0500 0.1160 0.0050* 14.8500* 0.0800* 0.0070 21.8100 0.1280 0.0070 22.3000 0.1130 

3-step 0.0070 20.7300 0.1170 0.0090 25.9900 0.1310 0.0110 36.9100 0.2380 0.0050* 15.1400* 0.0840* 

4-step 0.0060 19.6800 0.0940 0.0130 43.0800 0.1860 0.0140 50.8800 0.3420 0.0020* 7.0610* 0.0420* 

5-step 0.0090 29.9900 0.1470 0.0150 53.4200 0.2190 0.0170 62.0600 0.4500 0.0040* 12.6800* 0.0660* 

6-step 0.0090 30.6400 0.1480 0.0180 63.3100 0.2440 0.0200 72.9600 0.5740 0.0040* 13.2000* 0.0720* 

7-step 0.0080 27.6000 0.1300 0.0210 73.8200 0.2700 0.0250 87.8300 0.7710 0.0010* 4.2320* 0.0220* 

8-step 0.0050 16.9700 0.0780 0.0220 78.7200 0.2820 0.0260 92.6100 0.8620 0.00-04* 1.0100* 0.0050* 

 

The reduced sample that employs Eviews 9’s automatic non-seasonal selection 

procedure, see column D, has the lowest RMSE, MAPE and U over all forecasting 

horizons except for 1 and 2-steps ahead (Table 5.5.8 column C). However, the reduced 

sample model that employs the seasonal Box Jenkins ARIMA specification has the lowest 

RMSE, MAPE and U value for the 1 and 2-step ahead horizons (Table 5.5.8 column B). 

Hence, the reduced sample specification that employs Eviews 9’s automatic non-

seasonal model selection procedures has the best forecasting performance over the 

medium to long term horizons if the model that employs seasonal Box Jenkin ARIMA has 

                                                           
163 The Eviews 9’s automatically selected non-seasonal ARIMA specification is used to model and forecast 

the seasonally adjusted (annual) inflation data for 2013 and 2014. The four seasonal indices from 2012 

are then used to reintroduce seasonality into these forecasts yielding predictions for the original 

(unadjusted). 
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the best forecast performance over the shorter horizons. We note that the ARIMAX 

forecasts produced using the full sample that explicitly model structural breaks (Table. 

5.5.8 column A) and reduced sample ARIMA model that employs Eviews 9’s automatic 

seasonal ARIMA selection routine (Table. 5.5.8 column C) were never favoured. These 

results imply the following for the univariate modelling on Saudi Arabian data. First, the 

potential benefits of using a full sample and explicitly modelling the structural breaks 

were outweighed by the benefits of being able to avoid modelling structural breaks at 

the cost of a reduced sample for estimation.  Given the extra time and modeller 

expertise required to model such breaks suggests that using reduced samples to avoid 

structural breaks is the preferred strategy. Second, the quick automatic ARIMA selection 

procedures generally (though not always) produce superior forecasts compared to using 

more time-consuming Box-Jenkins ARIMA modelling techniques. Third, the benefits of 

seasonally adjusting the data and re-seasonalising the forecasts generally (if not always) 

outperforms the method of modelling seasonality. The MAPE of the favoured model is 

between 1 and 16 percentage points suggesting a relatively good forecasting 

performance for Saudi Arabian univariate ARIMA models. 

 

 

 

  



440 
 

5.5.9 Nigeria Forecast performance and evaluation 

We compare the forecasting performance of the full sample ARIMAX and the reduced 

sample ARIMA models.  The full sample specification includes deterministic dummy 

variables to model structural breaks and seasonality as discussed in section 5.1 and 

summarised for Nigeria in Table 5.1.6. The reduced sample models that avoid structural 

breaks are estimated over the period 1999q2 – 2012q4. The following ARIMA models 

estimated over the reduced sample are used for forecasting: seasonal Box-Jenkins 

ARIMA model discussed in section 5.2 (Table 5.2.3), EViews 9’s automatic seasonal 

ARIMA method discussed in section 5.3 (Table 5.3.3) and EViews 9’s automatic non-

seasonal ARIMA method discussed in section 5.4 (Table 5.4.4).164 The forecast 

performance measures of these models are given in Table 5.5.9 

Table. 5.5.9: Forecast performance of Univariate models for Nigeria 

 A 

Full sample ARIMAX model 

with modelling breaks  

B 

Reduced sample ARIMA model 

without modelling breaks 

C 

Reduced sample EViews 9’s 

automatic seasonal ARIMA 

without modelling breaks 

D 

Reduced sample EViews 9’s 

automatic non-seasonal ARIMA 

without modelling breaks 

 RMSE MAPE U RMSE MAPE U RMSE MAPE U RMSE MAPE U 

1-step  0.0250 21.8300 0.1390 0.0170* 19.2400* 0.0930* 0.0240 21.3000 0.1300 0.0230 23.4500 0.1270 

2-step 0.0440 48.0400 0.2180 0.0280 31.8500 0.1450 0.0380 43.6400 0.1880 0.0200* 22.8700* 0.1120* 

3-step 0.0660 72.6500 0.2960 0.0380* 46.2800 0.1930* 0.0530 62.6500 0.2470 0.0410 38.1200* 0.2080 

4-step 0.0780 92.7600 0.3300 0.0460 56.6400 0.2210 0.0610 75.3600 0.2740 0.0370* 45.6400* 0.1870* 

5-step 0.0860 101.5000 0.3500 0.0470 57.6400 0.2240 0.0580 71.2400 0.2650 0.0380* 46.5100* 0.1910* 

6-step 0.0900 107.800 0.3590 0.0440 53.9200 0.2120 0.0490 60.6800 0.2330 0.0350* 43.0300* 0.1780* 

7-step 0.0990 116.5000 0.3770 0.0430 51.6700 0.2070 0.0480 57.6700 0.2240 0.0340* 40.7200* 0.1690* 

8-step 0.1230 153.000 0.4330 0.0430 53.9700 0.2130 0.0460 57.2000 0.2220 0.0350* 43.1000* 0.1770* 

 An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for each forecasting 

horizon. 

The reduced sample univariate model that employs seasonal Box-Jenkins ARIMA 

technique’s, see column B, has the lowest RMSE and U-statistic over the 1 and 3-step 

ahead horizons. This model also has the lowest MAPE for the 1-step ahead horizon. The 

reduced sample model that employs Eviews 9’s automatic non-seasonal selection 

procedure, see column D, has the lowest RMSE and U-statistic over all forecasting 

horizons except for 1 and 3 steps ahead and the lowest MAPE values for all forecasting 

horizons except for 1-step ahead. Hence, the reduced sample model that employs 

                                                           
164 The Eviews 9’s automatically selected non-seasonal ARIMA specification is used to model and forecast 

the seasonally adjusted (annual) inflation data for 2013 and 2014. The four seasonal indices from 2012 

are then used to reintroduce seasonality into these forecasts yielding predictions for the original 

(unadjusted). 
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Eviews 9’s automatic non-seasonal selection procedure generally has the superior 

forecasting performance although the reduced sample seasonal method that employs 

Box-Jenkins ARIMA procedures produces the best forecasts over some of the shorter 

horizons.  

We note that the ARIMAX forecasts produced using the full sample that explicitly model 

structural breaks (Table. 5.5.9 column A) and reduced sample ARIMA model that 

employs Eviews 9’s automatic seasonal ARIMA selection routine (Table. 5.5.9 column C) 

were never favoured. These results imply the following for the univariate modelling on 

Nigerian data. First, the potential benefits of using a full sample and explicitly modelling 

the structural breaks were outweighed by the benefits of being able to avoid modelling 

structural breaks at the cost of a reduced sample for estimation. Given the extra time 

and modeller expertise required to model such breaks suggests that using reduced 

samples to avoid structural breaks is the preferred strategy. Second, the quick automatic 

ARIMA selection procedures generally (though not always) produce superior forecasts 

compared to using more time-consuming Box-Jenkins ARIMA modelling techniques. 

Third, the benefit of seasonally adjusting the data and re-seasonalising the forecasts 

generally outperforms the method of explicitly modelling seasonality. Finally, note that 

the MAPE of the favoured ARIMA models is always over 19 percentage points suggesting 

a relatively poor forecasting performance for this class of models for Nigerian inflation. 
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5.5.10 Ecuador Forecast performance and evaluation 

In this section, we produce forecasts for the only valid model for Ecuador, being the full 

sample ARIMAX specification that includes deterministic dummy variables to model 

structural breaks and seasonality as discussed in section 5.1 and summarised in Table 

5.1.6 for Ecuador165. To produce out-of-sample ex post forecasts on a rolling basis, we 

first estimate the models over the period 1987q1 to 2012q4 and generate forecasts over 

the period 2013q1 to 2014q4. Second, the models are re-estimated over the period 

1987q1 – 2013q1 and forecasts are produced over the period 2013q2 to 2014q4 and so 

on. The last estimation sample period is 1987q1 - 2014q3 and a single 1-step ahead 

forecast is produced for 2014q4. These forecasts are used to compute forecast error 

measures for each forecast horizon. The forecast performance measures for this model 

are given in Table 5.5.10.  

 

Table. 5.5.10: Forecast performance of Univariate model for Ecuador 

  

Full sample ARIMAX model with modelling breaks 

 RMSE MAPE U 

1-step  0.0070 19.0500 0.1140 

2-step 0.0090 23.4900 0.1570 

3-step 0.0130 37.3100 0.2240 

4-step 0.0160 42.9100 0.2830 

5-step 0.0150 37.0800 0.2450 

6-step 0.0150 25.7600 0.2360 

7-step 0.0080 15.4500 0.1190 

8-step 0.0110 28.5700 0.1670 

An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for each forecasting 

horizon. 

There is only one valid model it is the favoured univariate specification for Ecuador. 

However, we note that the MAPE of the favoured model is between 15.4500 and 

42.9100 percentage points suggesting a poor forecasting accuracy, in a relative sense, 

for the ARIMAX model for Ecuador.  

  

                                                           
165 We did not estimate a reduced sample model for Ecuador because the period after the structural 
breaks are less than 39 observations. 
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5.5.11 Kuwait Forecast performance and evaluation 

In this section, we produce forecasts for the only valid model for Kuwait, being the full 

sample ARIMAX specification that includes deterministic dummy variables to model 

structural breaks and seasonality as discussed in section 5.1 and summarised in Table 

5.1.6 for Kuwait 166. To produce out-of-sample ex post forecasts on a rolling basis, we 

first estimate the models over the period 1977q1 to 2012q4 and generate forecasts over 

the period 2013q1 to 2014q4. Second, the models are re- estimated over the period 

1977q1 – 2013q1 and forecasts are produced over the period 2013q2 to 2014q4 and so 

on. The last estimation sample period is 1977q1 - 2014q3 and a single 1-step ahead 

forecast is produced for 2014q4. These forecasts are used to compute forecast error 

measures for each forecast horizon. The forecast performance measures for this model 

are given in Table 5.5.11.  

 

Table. 5.5.11: Forecast performance of Univariate model for Kuwait 
  

Full sample ARIMAX model with modelling breaks 

 RMSE MAPE U 

1-step  0.0060 22.1000 0.1040 

2-step 0.0090 29.8800 0.1430 

3-step 0.0130 35.3200 0.1800 

4-step 0.0120 37.3600 0.1630 

5-step 0.0130 38.5900 0.1650 

6-step 0.0110 30.7000 0.1380 

7-step 0.0080 19.1200 0.0940 

8-step 0.0040 11.2100 0.0530 

An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for each forecasting 

horizon. 

 

There is only one valid model it is the favoured univariate specification for Kuwait. 

However, we note that the MAPE of the favoured model is between 11.2100 and 

37.7000 percentage points suggesting a poor forecasting accuracy, in a relative sense, 

for the univariate ARIMAX model for Kuwait.  

  

                                                           
166 We did not estimate a reduced sample model for Kuwait because the periods after the structural breaks 
are less than 39 observations. 
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Appendix. Section 6.1 

 

Table 6.4.1 Data availability for Russia 

Variables Quarterly  Annually Source 

Consumer Price 

Index (CPI) 

1992q1 – 2014q4  IMF/IFS 

Broad money in local 

currency unit 

1994q4 -2014q4 1993 – 2014 World Bank and 

IMF/IFS 

Money and quasi 

money (M2) (current 

LCU) 

 1993 - 2014 World Bank 

Industrial Production  1995q1 2014q4  IMF/IFS/OECD 

Lending Interest rate 1994q1 – 2014q4 1995 -2014 IMF/IFS/ world bank 

Money market rate  1994q3 - 2014q4  IMF/IFS 

Real interest rate  1995 - 2014 World Bank 

Unemployment rate 

(%) 

1994q1 – 2014q4  IMF/IFS 

Unemployment (% of 

total labour force) 

(modelled ILO 

estimate) 

 1991 -2013 World Bank 

GDP (current) US $  1990 2014 World Bank 

Real GDP  1992 2011  Penn World Table 

GDP DEFLATOR 

(2000=100) index 

 

1995q1- 2014q4  IMF/IFS 

Real effective 

Exchange rate (CPI 

BASED) 

1994q1 2014q4  IMF/IFS 
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The above table summarises the availability of data for Russia. For Russia we would 

ideally like to collect data over the period 2000q2 – 2014q4. We can implement a VAR 

analysis using data over this period involving the following 5 variables: consumer price 

index, nominal broad money supply, the money market interest rate, the real effective 

exchange rate and unemployment. Quarterly data on industrial production is also 

available over this sample period which means that the output gap can also be 

constructed.  
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Table 6.4.2. Data availability for India 

Variables Quarterly Annually Source 

Consumer Price 

Index (CPI) 

1958q1 -2014q4  IMF/IFS 

Industrial 

Production 

1960q1 2014q4  IMF/IFS/OECD 

GDP deflator 

(%) 

1998q1-2014q4  IMF/IFS 

GDP (current) 

US $ 

 
1961 2014 World Bank 

Real GDP  1993 2011 Penn World 

Table 

Lending interest 

rate 

1978q1 -2014q4 1975 -2012 IMF/IFS 

Money market 

rate 

1957q1 2014q4  IMF/IFS 

Real interest 

rate 

 1975 -2014 World Bank 

Unemployment 

(% of total 

labour force) 

(modelled ILO 

estimate) 

 1991 -2013 World Bank 

Broad money in 

current local 

currency) 

 1961 – 2014 World Bank/ 

IMF/IFS 

Money and 

quasi money 

(M2) (current 

LCU) 

 1961 - 2014 World Bank 
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The above table summarises the availability of data for India. For India we would ideally 

like to collect data over the period 1957q1 – 2014Q4.  However, for many important 

series data is only available from 1960q1 – 2014q4. We can implement a VAR analysis 

using data over this period involving the following 2 variables: consumer price index and 

the money market interest rate. Quarterly data on industrial production is also available 

over this sample period which means that the output gap can also be constructed. 

Annual data on the on the broad money supply and the M2 measure of money are also 

available over this period. We will use the EViews frequency conversion tool to generate 

quarterly versions of these series to consider in our VAR analysis. Annual data on 

unemployment is available on the reduced sample period of 1991 to 2014. We will use 

the EViews frequency conversion tool to generate quarterly versions of these series to 

consider in our VAR analysis, if on a reduced sample period. 
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Table 6.4.3. Data availability for China 

Variables Quarterly  Annually Source 

Consumer Price 

Index (CPI) 

1982q1 – 2014q4  IMF/IFS 

 Broad money 

(current local 

currency 

 
1970 – 2014 World Bank 

Money and quasi 

money (M2) (current 

LCU) 

 1977- 2014 World bank 

Foreign Exchange 

rate  

1993q4 -2014q4  IMF/IFS 

GDP (current) US $  1961 2014 World Bank 

Real GDP  1992 – 2014 OCED 

Industrial Production     

Treasury bill rate  1994q1-2014q4  IMF/IFS 

Lending interest 

rate 

1980q1 2014q4  IMF/IFS 

Real interest rate  1980 2014 World Bank 

Unemployment 

rate 

2002q1 2014q4  IMF/IFS 

Unemployment (% 

of total labour 

force) (modelled 

ILO estimate) 

 1991 -2014 World Bank 

Real effective 

Exchange rate (CPI 

BASED) 

1980q1 2014q4  IMF/IFS 

GDP DEFLATOR 

(2000=100) index 

 

2000q1 2013q4 1960 2014 IMF/IFS/World 

Bank 
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The above table summarises the availability of data for China. For China we would ideally 

like to collect data over the period 1989q1 – 2014Q4. We can implement a VAR analysis 

using data over this period involving the following 3 variables: the consumer price index, 

the lending interest rate and the real effective exchange rate. Annual data on the rate 

of unemployment, money plus quasi money (M2), the broad money supply and the 

world oil price are available over this period. Annual data on nominal GDP and GDP price 

deflator are also available over this period and can be used to construct a measure of 

output gap. We will use the EViews frequency conversion tool to generate quarterly 

versions of these series to consider in our VAR analysis. 
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Table 6.4.4 Data availability for South Africa  
Variables Quarterly  Observations Source 

Consumer Price Index 
(CPI %) 

1958q1- 2014q4  IMF/ IFS 

Broad Money 
Liabilities (Millions of 
national currency) 

2001q3 2014q4  IMF/IFS 

Broad Money 
Liabilities seasonal 
adjusted (Millions of 
national currency) 

2001q1 2014q4  IMF/IFS 

Money Supply (M1) in 
Million national 
currency  

1965q1 2014q4  IMF/IFS 

Money and quasi 
money (M2) (current 
LCU) 

 1965 2014 World Bank 

GDP (current) US $  1961 2014  

Real GDP  1990 2011 Penny world Table 

Treasury bill rate (%) 1957q1 – 2014q4  IMF/IFS 
 

Real interest rate  1961 2014 World Bank 

Unemployment 
rate% 

2000q1 2014q4  IMF/IFS 

Unemployment (% of 
total labour force) 
(modelled ILO 
estimate) 

 1991 -2013 World Bank 

Real effective 
Exchange rate (CPI 
BASED) 

1979q1 2014q4 
 

 IMF/IFS 

Lending rate  1957q1 2014q4  IMF.IFS 

Manufacturer 
Industrial production 

1980q1 2014q4  OCED 

Discount rate end of 
period (% per annum) 

1957q1 2014q4  IMF/IFS 

GDP deflator  1960 2014 World Bank 

 
The above table summarises the availability of data for South Africa. For South Africa we 

would ideally like to collect data over the period 1992q2 – 2014q4.  We can implement 

a VAR analysis using data over this period involving the following 4 variables: consumer 

price index, the treasury bill interest rate, the money Supply (M1) and the real effective 

exchange rate.  Industrial production data is available to construct output gap to 

generate quarterly versions of these series to consider in our VAR analysis. 
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Table 6.4.5 Data availability for Nigeria 

Variables Quarterly  Annually Source 

Consumer Price 
Index (CPI) 

1960q1 2014q4  IMF/IFS 

Industrial 
production  

1970q1 2008q4  IMF/IFS 

Interest rate 
(lending rate) 

1971q1 2014q4  IMF/IFS 

Real interest rate  1970 2014 World Bank 

Broad Money 
Liabilities (Millions 
of national currency) 

2001q4 2014q4  IMF/IFS 

Broad Money 
Liabilities seasonal 
adjusted (Millions of 
national currency) 

2001q1 2014q4  IMF/IFS 

Money Supply (M1) 
in Million national 
currency 

2000q1 2014q4  IMF/IFS 

Money and quasi 
money (M2) 
(current LCU) 

 1960 2014 World Bank 

GDP (current) US $  1961- 2014 World Bank 

Real GDP  1992 2011 Penn World Table 

Foreign Exchange 
rate  

1961q1 – 2014q4  IMF/IFS 

Treasury bill rates 1991q1 – 2014q4  IMF/IFS 

Unemployment (% 
of total labour force) 
(modelled ILO 
estimate) 

 1991 -2013 World Bank 

Real effective 
Exchange rate (CPI 
BASED) 

1980q1 2014q4  IMF/IFS 

GDP deflator  1960 2014 World Bank 
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The above table summarises the availability of data for Nigeria. For Nigeria, we would 

ideally like to collect data over the period 1995q4 – 2014q4. We can implement a VAR 

analysis using data over this period involving the following 3 variables: the consumer 

price index, the real effective exchange rate and the treasury bill interest rate. Annual 

data on money plus quasi money (M2) and the rate of unemployment are also available 

over this period. We will use the EViews frequency conversion tool to generate quarterly 

versions of these series to consider in our VAR analysis. 
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Table 6.4.6. Data availability for Algeria 

Variables Quarterly Annually Source 

Consumer Price 
Index (CPI) 

1975q1 – 2014q4  IMF/IFS 

Broad money in 
local currency  

 
1965 – 2014 World Bank 

Money and quasi 
money (M2) 
(current LCU) 

 1964 2014 World Bank 

GDP (current) US $  1961 – 2014 World Bank 

Real GDP  1994 2011 Penn World Table 

Industrial 
Production  

1999q1 2014q4  IMF/IFS 

Foreign Exchange 
rate  

1957q1 -2014q4  IMF/ IFS 

Treasure Bill 1998q1 2014q4  IMF/IFS 

Lending Interest 
rate 

1994q1 – 2014q4  IMF/IFS 

GDP deflator   1960 – 2014 World Bank 

Unemployment (% 
of total labour 
force) (modelled 
ILO estimate) 

 1991 -2013 World Bank 

Real effective 
Exchange rate (CPI 
BASED) 

1980q1 2014q4  IMF/IFS 

 
The above table summarises the availability of data for Algeria. For Algeria we would 

ideally like to collect data over the period 1996q2 – 2014q4. We can implement a VAR 

analysis using data over this period involving the following 3 variables: the consumer 

price index, the real effective exchange rate and the lending interest rate. Annual data 

on money plus quasi money (M2) is also available over this period. Annual data on real 

GDP is also available over this period and can be used to construct a measure of output 

gap. We will use the EViews frequency conversion tool to generate quarterly versions of 

these series to consider in our VAR analysis.  
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Table 6.4.7 Data availability for Saudi Arabia 

Variables Quarterly Annually Source 

Consumer Price 
Index (CPI) 

1971q1 – 2014q4  IMF/IFS 

Broad money in 
local currency 

 

1960 – 2014 IMF/IFS 

Money and quasi 
money (M2) 
(current LCU) 

 1960 2014 World Bank 

Industrial 
Production 

1962q1 2014q4  IMF/IFS 

GDP (Current US $)  1969 – 2014  World Bank 

Real GDP  1992 2011 Penn World Table 

Foreign Exchange 
rate  

1962q1 – 2014q4  IMF/IFS 

GDP deflator base 
year 

 1968 -2013 World Bank 

Treasury bill rates  2009q1 – 2014q4  IMF/IFS 

 

Discount rate end 
of period (% per 
annum) 

1999q2 2014q4  IMF/IFS 

Unemployment 
(% of total labour 
force) (modelled 
ILO estimate) 

 1991 -2013 World Bank 

Real effective 
Exchange rate 
(CPI BASED) 

1980q1 2014q4  IMF/IFS 

GDP deflator   1968 2014 World Bank 
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The above table summarises the availability of data for Saudi Arabia. For Saudi Arabia 

we would ideally like to collect data over the period 1976q3 – 2014Q4.  However, for 

many important series data is only available from 1980q1 – 2014q4. We can implement 

a VAR analysis using data over this period involving the following 2 variables: the 

consumer price index and the real effective exchange rate. Quarterly data on industrial 

production is available over this sample period and can be used to construct a measure 

of output gap. Annual data on money plus quasi money (M2) is available over this 

period. We will use the EViews frequency conversion tool to generate quarterly versions 

of these series to consider in our VAR analysis. 
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Table 6.4.8 Data availability for Angola 

Variables Quarterly  Annually Source 

Consumer Price Index 

(CPI) 

1992q4 – 2014q4  IMF/ IFS 

Broad money in local 

currency 

 
1960 2014 World Bank 

GDP (Current US $)  1986- 2014 World Bank 

Broad Money Liabilities 

(Millions of national 

currency) 

2001q4 2014q4  IMF/IFS 

Broad Money Liabilities 

seasonal adjusted 

(Millions of national 

currency) 

2001q1 2014q4  IMF/IFS 

Money Supply (M1) in 

Million national 

currency 

1999q4 2014q4  IMF/IFS 

Money and quasi 

money (M2) (current 

LCU) 

 1995 2014 World Bank 

Lending Interest rate 1995q1 2014q4 1995- 2012 IMF/IFS 

Treasury Bill rate 2001Q1 2014Q4  IMF/1FS 

Real interest rate  1995- 2014 World bank 

Unemployment (% of 

total labour force) 

(modelled ILO estimate) 

 1991 -2013 World Bank 

GDP deflator  1975 2014 World Bank 

 

The above table summarises the availability of data for Angola. For Angola we would 

ideally like to collect data over the period 1997q4 – 2014Q4. However, for many 

important series data is only available from 1999q4 – 2014q4. We can implement a VAR 

analysis using data over this period involving the following 3 variables: the consumer 

price index, the money supply (M1) and the real lending interest rate. The annual rate 

real GDP is available in this period to construct a measure of output gap. will use the 

EViews frequency conversion tool to generate a quarterly version of this series to 

consider in our VAR analysis. 
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 Appendix. Section 6.2  

6.6.1 The graphical features of selected macroeconomic variables for Russia 

Following the sample identified in previous section (Table 6.4.1) for Russia (2000q2- 

2014q4). We analyse the stationarity and seasonality characteristics of the selected 

macroeconomic variables to determine whether the data needs to be seasonally 

adjusted for our VAR analysis. The graphs below depict the following indicators. The 

Russian consumer price (denoted PRUS), the seasonally adjusted PRUS series 

(PRUS_d11) and D_PRUS = PRUS - PRUS_d11, as well as the first (nonseasonal) 

difference of LPRUS (DLPRUS), the seasonally adjusted LPRUS series (LPRUS_d11) and 

D_LPRUS = LPRUS - LPRUS_d11 (where LPRUS is the log of PRUS). The seasonally 

adjusted series (PRUS_d11) is obtained using the Census X13 procedure in EViews. 

Tables 1D and 1G report various tests of the null hypothesis of equality of variance for 

PRUS and PRUS_d11 as well as DLPRUS and DLPRUS_d11.  
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 1E.             1F. 
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As shown in Fig. 1A, the graph of the consumer price for Russia (PRUS) exhibits an 

upward trend suggesting non-stationarity and a need to apply stationarity inducing 

transformations. Although seasonality may be expected in price data it is not visible in 

the price plot because of the dominant trend; seasonality may be revealed once the 

trend is removed through differencing. 

The time paths of PRUS and PRUS_d11 (see Figure 1B) follow each other closely and it is 

difficult to discern whether the difference between them reflects seasonality. Therefore, 

the difference between PRUS and PRUS_d11 (denoted D_PRUS) is plotted in Figure 1C. 

The difference has revealed a cyclical fluctuation that ranges between -0.77 and 0.54. 

Whilst this may indicate time-varying seasonality we need to ascertain whether this 
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seasonality is significant. To do this we refer to a variety of tests for the equality of 

variance between PRUS and PRUS_d11 that are reported in table 1D. Since the p-values 

of all of our tests is greater than 0.05, we cannot reject the null hypothesis and find that 

there is no significant difference in the variances of PRUS and PRUS_d11. Hence, we find 

that seasonality is not significant in the level of the price.  However, because this result 

may be influenced by the nonstationarity of the data we compare the differences of the 

adjusted (DLPRUS_d11) and unadjusted (DLPRUS) data. 

The time paths of DLPRUS and DLPRUS_d11 (see Figure 1E) follow each other closely. 

The trend has been removed and the series broadly fluctuates around a constant mean 

as expected after the first differencing. The variation in DLPRUS is greater than that of 

LPRUS_d11 suggesting seasonality in DLPRUS while DLPRUS is smoother.  This suggests 

that DLPRUS_d11 exhibits reduced seasonality as expected. The difference between 

DLPRUS and DLPRUS_d11 (denoted D_DLPRUS) is plotted in Figure 1F. The difference 

reveals fluctuation around a relatively constant mean that ranges between -0.0141 and 

0.0198. Whilst this may indicate time-varying seasonality we need to ascertain whether 

this seasonality is significant. To do this we refer to tests for the equality of variance 

between DLPRUS and DLPRUS_d11 that are reported in table 1G. Since the p-values of 

all of our tests is greater than 0.05, we cannot reject the null hypothesis and find that 

there is no significant difference in the variances of DLPRUS and DLPRUS_d11. Hence, 

we find that seasonality is not significant in the difference of the log of the price data for 

Russia. 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of PRUS and DLPRUS in figure 1H and 1I. Shown in Fig. 1H, all 

autocorrelation coefficients (ACs) are significant (and not just at the seasonal lags) which 

suggest nonstationary and not necessarily seasonality. The ACF for DLPRUS has 

significant ACs at seasonal lags 4, 8, 12 and 16 (see fig. 1I). This implies that seasonality 

is significant in the price data and contradicts the results of the variance equality tests. 

Given this result and because we believe that price data are likely seasonal we will use 

the seasonally adjusted data PRUS in our VAR analysis. 
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6.6.2. The seasonality features of money supply in Russia 

We analyse the stationarity and seasonality characteristics of money supply variable in 

Russia. The graphs below depict the following indicators. The Russian money supply 

(denoted MRUS), the seasonally adjusted MRUS series (MRUS_d11) and D_MRUS = 

MRUS - MRUS_d11, as well as the first (nonseasonal) difference of LMRUS (DLMRUS), 

the seasonally adjusted LMRUS series (LMRUS_d11) and D_LMRUS = LMRUS - 

LMRUS_d11 (where LMRUS Is the log of MRUS). The seasonally adjusted series 

(MRUS_d11) is obtained using the Census X13 procedure in EViews. Tables 2D and 2G 

report various tests of the null hypothesis of equality of variance for MRUS and 

MRUS_d11 as well as DLMRUS and DLMRUS_d11.  
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2E.          2F. 
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As shown in Fig. 2A, the graph of money supply in Russia (MRUS) exhibits an upward trend 

suggesting non-stationarity and a need to apply stationarity inducing the transformations. 

Although seasonality may occur in money supply it is not visible in the plot because of 

the dominant trend.  

Hence, we plot the graph of MRUS and MRUS_d11. The time paths of MRUS and MRUS_d11 

follow each other closely and it is difficult to discern whether the difference between 

them reflects seasonality (see Figure 2B). Therefore, the differences between MRUS and 

MRUS_d11 (denoted D_MRUS) is plotted in Figure 2C. The difference has revealed a 

regular fluctuation around a relatively constant mean that ranges between -0.33 and 

0.31 and substantially increase over time. The variance equality tests between MRUS 

and MRUS_d11 are reported in table 2D. Since the p-values of all of our tests is greater 
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than 0.05, we cannot reject the null hypothesis and find that there is no significant 

difference in the variances of MRUS and MRUS_d11. Hence. we find that seasonality is 

not significant in the level of the money supply data. However, because this result may 

be influenced by the nonstationarity of the data we compare the differences of the 

adjusted (DLMRUS_d11) and unadjusted (DLMRUS) data. 

The time paths of DLMRUS and DLMRUS_d11 (see Figure 2E) follow each other closely 

and it is difficult to discern whether the difference between them reflects seasonality. 

The trend has been reduced and the series broadly fluctuates around a slight downward 

trend. Therefore, the difference between DLMRUS and DLMRUS_d11 (denoted 

D_DLMRUS) is plotted in Figure 2F. The difference has reveals a regular cyclical 

fluctuation that suggests time- varying seasonality. To ascertain whether this seasonality 

is significant we refer to variety tests for the equality of variance between DLMRUS and 

DLMRUS_d11 that are reported in table 2G.  Since the p-values of all of our tests is 

greater than 0.05, we cannot reject the null hypothesis and find that there is no 

significant difference in the variances of DLMRUS and DLMRUS_d11. Hence, we find that 

seasonality is not significant in the difference of the log of the money supply for Russia. 

As a check, we plot the autocorrelation functions (ACFs) of MRUS and DLMRUS in figure 

2H and 2I. Shown in Figure 2H is the ACF for MRUS. The first 15 autocorrelation 

coefficients (ACs) are significant (and not just at the seasonal lags) which suggests 

nonstationarity and not seasonality.  The ACF for DLMRUS (see fig. 2I) has significant ACs 

for the first five lags including the first seasonal lag (lag 4) and all other ACs at seasonal 

lags are insignificant. This implies that seasonality is not significant in the money supply 

data for Russia and confirms the results of the variance equality tests. Hence, we use 

the unadjusted data MRUS in our VAR analysis. 
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6.6.3. The seasonality features of the interest rate in Russia 

We analyse the stationarity and seasonality characteristics of the interest rate variables 

in Russia. The graphs below depict the following indicators. The Russian interest rate 

(denoted RRUS), the seasonally adjusted RRUS series (RRUS_d11) and D_RRUS = RRUS - 

RRUS_d11, as well as the first (nonseasonal) difference of RRUS (DRRUS). The seasonally 

adjusted series (RRUS_d11) is obtained using the Census X13 procedure in EViews. 

Tables 3D and 3G report various tests of the null hypothesis of equality of variance for 

RRUS and RRUS_d11 as well as DRRUS and DRRUS_d11.  
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As shown in Fig. 3A, the interest rate series (RRUS) has a relatively constant mean. 

Seasonality and the business cycle are not visible in Russia interest rate plot. 

The time paths of RRUS and RRUS_d11 (see Figure 3B) follow each other closely with the 

largest difference between the two occurring in 2002q1 when RRUS_d11 is 13.50 and 

RRUS is 14.80. This suggests that RRUS_d11 is smoother than RRUS and RRUS_d11 

exhibits reduced seasonality as expected.  

Therefore, the differences between RRUS and RRUS_d11 (denoted D_RRUS) is plotted 

in Figure 3C. The difference has revealed a regular cyclical fluctuation that suggests time- 

varying seasonality.  To ascertain whether this seasonality is significant, we refer to a 
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variety of tests for the equality of variance between RRUS and RRUS_d11 that are 

reported in table 3D. Since the p-values of all of our tests is greater than 0.05, we cannot 

reject the null hypothesis and find that there is no significant difference in the variances 

of RRUS and RRUS_d11.  Hence, we find that seasonality is not significant in RRUS.  

However, because this result may be influenced by the nonstationarity of the data we 

compare the differences of the adjusted (DRRUS_d11) and unadjusted (DRRUS) data. 

The time paths of DRRUS and DRRUS_d11 (see Figure 3E) follow each other closely. 

DRRUS_d11 is slightly smoother than the DRRUS and variation in DRRUS is slightly 

greater than that of DRRUS_d11 that suggests possible seasonality in DRRUS. Hence, the 

difference between DRRUS and DRRUS_d11 (denoted D_DRRUS) is plotted in Figure 3F. 

The difference has revealed a relatively constant mean that ranges between -1.5 and 

2.4. Whilst this may indicate time-varying seasonality we need to ascertain whether this 

seasonality is significant.  To do this we refer to a variety of tests for the equality of 

variance between DRRUS and DRRUS_d11 that are reported in table 3G. Since the p-

values of all of our tests is greater than 0.05, we cannot reject the null hypothesis and 

find that there is no significant difference in the variances of DRRUS and DRRUS_d11. 

Hence, we find that seasonality is not significant in the difference of interest rate for 

Russia. 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of RRUS and DRRUS in figure 3H and 3I. Shown in Fig. 3H is the ACF for 

RRUS. The autocorrelation coefficients (ACs) are significant at lags 1, 2, 3 and 4  and 

decays exponentially suggesting that RRUS is stationary. The lack of clearly significant 

ACs at the seasonal lags (beyond the exponential decay in the ACF) suggests that any 

seasonality in the level of RRUS is not significant. The ACF for DRRUS has insignificant 

ACs at all the seasonal lags (see fig. 3I). This implies that seasonality is not significant in 

interest rates and confirms the results of the variance equality tests. Hence, we use the 

unadjusted data RRUS in our VAR analysis. 
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6.6.4. The seasonality features of real effective of exchange rate in Russia 

We analyse the stationarity and seasonality characteristics of the real effective exchange 

rate variable in Russia. The graphs below depict the following indicators. The Russian 

real effective exchange rate (denoted REERUS), the seasonally adjusted REERUS series 

(REERUS_d11) and D_REERUS = REEERUS - REERUS_d11, as well as the first 

(nonseasonal) difference of LREERUS (DLREERUS), the seasonally adjusted LREERUS 

series (LREERUS_d11) and D_LREERUS = LREERUS - LREERUS_d11 (where LREERUS is the 

log of REERUS). The seasonally adjusted series (REERUS_d11) is obtained using the 

Census X13 procedure in EViews. Tables 4D and 4G report various tests of the null 

hypothesis of equality of variance for REERUS and REERUS_d11 as well as DLREERUS and 

DLREERUS_d11.  
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From Figure 4A, the graph of real effective exchange rate for Russia (REERUS) exhibits 

an upward trend. Seasonality is not visible in this graph although it may be revealed once 

the trend is removed through differencing. 

The time paths of REERUS and REERUS_d11 (see Figure 4B) follow each other closely 

and it is difficult to discern whether the difference between them reflects seasonality. 

Therefore, the difference between REERUS and REERUS_d11 (denoted D_REERUS) is 

plotted in Figure 4C. The difference has revealed a regular fluctuation around a relatively 

constant mean that ranges between -2.3 and 1.7 that substantially increases over time. 

Whilst this may indicate time-varying seasonality we need to ascertain whether this 
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seasonality is significant. To do this we refer to a variety of tests for the equality of 

variance between REERUS and REERUS_d11 that are reported in table 4D. Since the p-

values of all of our tests is greater than 0.05, we cannot reject the null hypothesis and 

find that there is no significant difference in the variances of REERUS and REERUS_d11. 

Hence, we find that seasonality is not significant in the level of the data.  However, 

because this result may be influenced by the nonstationarity of the data we compare 

the differences of the adjusted (DLREERUS_d11) and unadjusted (DLREERUS) data. 

The time paths of DLREERUS and DLREERUS_d11 (see Figure 4E) follow each other 

closely with the largest difference between the two occurring in 2012q1 when 

(REERUS_d11) is -0.017 and (REERUS) is -0.031. This suggests that REERUS_d11 is slightly 

smoother than REERUS and variation DLREERUS_d11 is less than the variation of 

DREERUS.  

We plot the differences between DLREERUS and DLREERUS_d11 (denoted D_DLREERUS) 

in Figure 4F. The difference has revealed a regular fluctuation around a relatively 

constant mean that increases over time. Whilst this may indicate time-varying 

seasonality we need to ascertain whether this seasonality is significant. To do this we 

refer to tests for the equality of variance between DLREERUS and DLREERUS_d11 that 

are reported in table 4G. The p-values of all of our tests is greater than 0.05 except Siegel 

Tukey test that less than 0.05; therefore, we cannot reject the null hypothesis of equal 

variance for all the tests except the Siegel Tukey test. Hence, the results regarding 

equality of variance are ambiguous, if generally suggest equality and a lack of 

seasonality. 

To explore the issue further we plot the ACF of REERUS and DLREERUS in figure 4H and 

4I respectively. Shown in Fig.4H is the ACF for REERUS. The first 16 autocorrelation 

coefficients (ACs) are significant (and not just at the seasonal lags) which suggests 

nonstationarity and not necessarily seasonality.  The ACF for DLREERUS have 

insignificant ACs at all the seasonal lags. This provides evidence that seasonality is 

insignificant in real effective exchange rate for Russia. Hence, we use the unadjusted 

real effective exchange rate (REERUS) in our VAR analysis because the vast majority of 

the evidence suggests this. 



469 
 

6.6.5. The seasonality features of unemployment rate in Russia 

The graphs below depict the following variables. The Russian unemployment rate 

(denoted URUS), the seasonally adjusted URUS series (URUS_d11) and D_URUS = URUS 

- URUS_d11, as well as the first (nonseasonal) difference of URUS (DURUS). The 

seasonally adjusted series (URUS_d11) is obtained using the Census X13 procedure in 

EViews. Tables 5D and 5G report various tests of the null hypothesis of equality of 

variance for URUS and URUS_d11 as well as DURUS and DURUS_d11.  
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As shown in Fig. 5A, the graph of unemployment (URUS) follows downward trend 

indicating non-stationarity and a need to apply further stationarity inducing 

transformations. Seasonality may be expected in the unemployment series and it is 

visible in the unemployment plot despite the dominant downward trend; seasonality 

may be more clearly revealed once the trend is removed through differencing. 

The time paths of URUS and URUS_d11 (see Figure 5B) follow each other closely. The 

variation in URUS is greater than the variation in URUS_d11 and the URUS_ d11 is 

smoother than the URUS. This suggests that the URUS_d11 exhibits reduced seasonality. 

The differences between URUS and URUS_d11 (denoted D_URUS) is plotted in Figure 
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5C. The difference has revealed a regular cyclical fluctuation that range between -0.059 

and 0.084. Whilst this may indicate seasonality we need to ascertain whether this 

seasonality is significant. To do this we refer to a variety of tests for the equality of 

variance between URUS and URUS_d11 that are reported in table 5D. The p-value of all 

of our tests is greater than 0.05, we cannot reject the null hypothesis and find that there 

is no significant difference in the variances of URUS and URUS_d11. Hence, we find that 

seasonality is not significant in the level of unemployment data.  However, because this 

result may be influenced by the trend in the data we compare the differences of the 

adjusted (DURUS_d11) and unadjusted (DURUS) data. 

The time paths of DURUS and DURUS_d11 (see Figure 5E) follow each other closely. The 

downward trend has been removed and the series broadly fluctuates around a constant 

mean as expected after the first differencing. The variation of DURUS is greater than the 

variation of DURUS_ d11 suggesting seasonality in DURUS while DURUS_ d11 is 

smoother. This suggests that DURUS_d11 exhibits reduced seasonality as expected. 

The difference between DURUS and DURUS_d11 (denoted D_DURUS) is plotted in Figure 

5F. The difference has revealed cyclical fluctuations. Whilst this may indicate time-

varying seasonality we need to ascertain whether this seasonality is significant. To do 

this we refer to tests for the equality of variance between DURUS and DURUS_d11 that 

are reported in table 5G. Since the p-values of all of our tests is less than 0.05, we reject 

the null hypothesis and find that there is significant difference in the variances of DURUS 

and DURUS_d11 and hence find that seasonality is significant in the difference of the 

unemployment rate for Russia. 

To explore this further, we plot the autocorrelation functions (ACFs) of URUS and DURUS 

in figure 5H and 5I. Shown in Fig. 5H is the ACF for URUS. The first 8 autocorrelation 

coefficients (ACs) are significant (and not just at the seasonal lags) which suggests 

nonstationarity and not seasonality. The ACF for DURUS (see fig. 5I) has significant ACs 

at all seasonal lags. This implies that seasonality is significant in unemployment data and 

confirms the results of variance equality tests. Hence, we will use seasonally adjusted 

DURUS_d11 in our VAR analysis. 
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6.6.6. The seasonality features of output gap in Russia 

We analyse the stationarity and seasonality characteristics of the output gap variable in 

Russia. The graphs below depict the following indicators. The output gap (denoted 

GAPRUS), the seasonally adjusted GAPRUS series (GAPRUS_d11) and D_GAPRUS = 

GAPRUS - GAPRUS_d11, as well as the first (nonseasonal) difference of GAPRUS 

(DGAPRUS). The seasonally adjusted series (GAPRUS_d11) is obtained using the Census 

X13 procedure in EViews. Tables 6D and 6G report various tests of the null hypothesis 

of equality of variance for GAPRUS and GAPRUS_d11 as well as DGAPRUS and 

DGAPRUS_d11.  
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Equality of variances test between DGAPRUS and DGAPRUS_D11 

Method  df  Value Probability  

 F-test (57, 57)  8.102418 0.0000 

Siegel- 

Tukey 

 6.755752 0.0000 

Bartlett 1 53.03630 0.0000 

Levene (1, 116) 50.24309 0.0000 

   Brown- 

Forsythe 

(1, 116) 35.12867 0.0000 

   

 6H.     6I. 

       

From the figure 6A the series of the output gap exhibit clear cycles that appear to be of 

a one-year fixed length and therefore probably reflect seasonality. Therefore, GAPRUS 

may need to be seasonally adjusted. 

The time paths of GAPRUS and GAPRUS_d11 are given in Figure 6B. Seasonality is 

obvious in GAPRUS and the GAPRUS_ d11 is substantially smoother than the GAPRUS. 

This suggests that GAPRUS_d11 exhibits reduced seasonality.  

The differences between GAPRUS and GAPRUS_d11 (denoted D_GAPRUS) is plotted in 

Figure 6C. The difference reveals a regular cyclical fluctuation that ranges between -
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0.042 and 0.073. Whilst this may indicate time-varying seasonality we need to ascertain 

whether this seasonality is significant. To do this we refer to a variety of tests for the 

equality of variance between GAPRUS and GAPRUS_d11 that are reported in table 6D. 

The p-values of all of our tests is less than 0.05, we reject the null hypothesis and find 

that there is a significant difference in the variances of GAPRUS and GAPRUS_d11 and 

hence find that seasonality is significant in the level of the output-gap data.  To explore 

this further, we compare the differences of the adjusted (DGAPRUS_d11) and 

unadjusted (DGAPRUS) data. 

The time paths of DGAPRUS and DGAPRUS_d11 (see Figure 6E) follow each other. 

DGAPRUS_ d11 is notably smoother than the DGAPRUS suggesting evidence of 

seasonality in DGAPRUS. Hence, the difference between DGAPRUS and DGAPRUS_d11 

(denoted D_DGAPRUS) is plotted in Figure 5F. The difference has revealed a regular 

cyclical fluctuation that ranges between -0.117and 0.077. Whilst this may indicate time-

varying seasonality we need to ascertain whether this seasonality is significant. To do 

this we refer to tests for the equality of variance between DGAPRUS and DGAPRUS_d11 

that are reported in table 6G. Since the p-values of all of our tests is less than 0.05, we 

reject the null hypothesis and find that there is a significant difference in the variances 

of DGAPRUS and DGAPRUS_d11. Hence, we find that seasonality is significant in the 

difference of the output gap rate for Russia. 

To explore this further, we plot the autocorrelation functions (ACFs) of GAPRUS and 

DGAPRUS in figure 6H and 6I. The ACF for GAPRUS has significant ACs at seasonal lags 4 

and 16 (see fig. 6H). While the ACF for DGAPRUS has significant ACs at all seasonal lags 

(see fig. 6I). This provides additional evidence to accept the results of the variance 

equality tests that seasonality is significant in the output gap.  Overall, we take the view 

that the GAPRUS is seasonal. Hence, we use the seasonally adjusted data GAPRUS_d11 

in our VAR analysis. 
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 6.7.1 The graphical features of selected macroeconomic variables for India 

Following the reduced sample identified in previous section (Table 6.4.2), we would 

ideally like to collect data over the period 1957q1 – 2014Q4.  However, for many 

important series data is only available from 1960q1 – 2014q4.  Therefore, we analyse 

the stationarity and seasonality characteristics of the selected macroeconomic variables 

over this sample (1960q1 – 2014q4).  The graphs below depict the following indicators. 

The Indian consumer price (denoted PIND), the seasonally adjusted PIND series 

(PIND_d11) and D_PIND = PIND - PIND_d11, as well as the first (nonseasonal) difference 

of LPIND (DLPIND), the seasonally adjusted PIND series (PIND_d11) and D_LPIND = LPIND 

- LPIND_d11 (where LPIND is the log PIND). The seasonally adjusted series (PIND_d11) 

is obtained using the Census X13 procedure in EViews. Tables 1D and 1G report various 

tests of the null hypothesis of equality of variance for PIND and PIND_d11 as well as 

DLPIND and DLPIND_d11.  
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As shown in Fig. 1A, the graph of the consumer price for India (PIND) exhibits an upward 

trend suggesting non-stationarity and a need to apply stationarity inducing 

transformations. Although seasonality may be expected in price data it is not visible in 

the price plot because of the dominant trend; seasonality may be revealed once the 

trend is removed through differencing. 

The time paths of PIND and PIND_d11 (see Figure 1B) follow each other closely and it is 

difficult to discern whether the difference between them reflects seasonality. Therefore, 

the differences between PIND and PIND_d11 (denoted D_PIND) is plotted in Figure 1C. 

The difference has revealed regular cyclical fluctuation around a relatively constant 

mean. Whilst this may indicate seasonality we need to ascertain whether this 

seasonality is significant. To do this we refer to a variety of tests for the equality of 

variance between PIND and PIND_d11 that are reported in table 1D. Since the p-values 
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of all of our tests is greater than 0.05, we cannot reject the null hypothesis and find that 

there is no significant difference in the variances of PIND and PIND_d11. Hence, we find 

that seasonality is not significant in the price level. However, because this result may be 

influenced by the nonstationarity of the data we compare the differences of the 

adjusted DLPIND_d11 and unadjusted DLPIND data.  

The time paths of DLPIND and DLPIND_d11 (see Figure 1E) follow each other closely. 

The trend has been removed and the series broadly fluctuates around a constant mean 

as expected after the first differencing. The variation in DLPIND is greater than that of 

DLPIND_d11 suggesting seasonality in DLPIND while DLPIND_d11 is smoother.  This 

suggests that DLPIND_d11 exhibits reduced seasonality as expected.  

Hence, the difference between DLPIND and DLPIND_d11 (denoted D_DLPIND) is plotted 

in Figure 1F. The difference revealed regular cyclical fluctuations that range between -

0.029 and 0.026. Whilst this may indicate time-varying seasonality we need to ascertain 

whether this seasonality is significant. To do this we refer to tests for the equality of 

variance between DLPIND and DLPIND_d11 that are reported in table 1G. Since the p-

values of all of our tests is less than 0.05, we reject the null hypothesis and find that 

there is a significant difference in the variances of DLPIND and DLPIND_d11 and hence 

find that seasonality is significant in the difference of the log of the price data for India. 

To explore this further, we plot the autocorrelation functions (ACFs) of PIND and DLPIND 

in figure 1H and 1I. Shown in Fig. 1H is the ACF for PIND. All autocorrelation coefficients 

(ACs) are significant (and not just at the seasonal lags) which suggests nonstationarity 

and not necessarily seasonality. The ACF for DLPIND (see fig. 1I) has significant ACs at all 

the seasonal lags. This implies that seasonality is significant in the price data and 

confirms the results of the variance equality tests. Hence, we will use the adjusted data 

PIND_d11 in our VAR analysis. 
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6.7.2 The seasonality features of the interest rate in India 

We analyse the stationarity and seasonality characteristics of the interest rate variable 

in India. The graphs below depict the following indicators. The Indian interest rate 

(denoted RIND), the seasonally adjusted RIND series (RIND_d11) and D_RIND = RIND - 

RIND_d11, as well as the first (nonseasonal) difference of RIND (DRIND). The seasonally 

adjusted series (RIND_d11) is obtained using the Census X13 procedure in EViews. 

Tables 2D and 2G report various tests of the null hypothesis of equality of variance for 

RIND and RIND_d11 as well as DRIND and DRIND_d11.  
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   2E.                             2F. 
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As shown in Fig. 2A, the interest rate series (RIND) has a relatively constant mean with 

visible outliers around 1970 and 1978.  Seasonality is not clearly visible in India’s 

interest rate plot. 

 The time paths of RIND and RIND_d11 (see Figure 2B) follow each other closely and it is 

difficult to discern whether the difference between them reflects seasonality. The 

differences between RIND and RIND_d11 (denoted D_RIND) is plotted in Figure 2C. 

 The difference has revealed multiple volatilities around a constant mean. Whilst this 

may indicate time-varying seasonality we need to ascertain whether this seasonality is 

significant. To do this we refer to a variety of tests for the equality of variance between 

RIND and RIND_d11 that are reported in table 2D. Since the p-values of all of our tests 
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is greater than 0.05, we cannot reject the null hypothesis and find that there is no 

significant difference in the variances of RIND and RIND_d11 and hence we find that 

seasonality is not significant in the level of the data.  However, we compare the 

differences of the adjusted (DRIND_d11) and unadjusted (DRIND) data to further 

explore this. 

The time paths of DRIND and DRIND_d11 (see Figure 2E) follow each other closely and 

it is difficult to discern whether the difference between them reflects seasonality. 

Hence, the difference between DRIND and DRIND_d11 (denoted D_DRIND) is plotted in 

Figure 2F. The difference may indicate time-varying seasonality we need to ascertain 

whether this seasonality is significant.  To do this we refer to a variety of tests for the 

equality of variance between (DRIND) and (DRIND_d11) that are reported in table 2G. 

Since the p-values of all of our tests is greater than 0.05, we cannot reject the null 

hypothesis and find that there is no significant difference in the variances of DRIND and 

DRIND_d11.  Hence, we find that seasonality is not significant in the difference of 

interest rate for India. 

To explore this further, we plot the autocorrelation functions (ACFs) of RIND and DRIND 

in figure 2H and 2I. The ACF for RIND has insignificant ACs at all the seasonal lags (see 

fig. 2H). While the ACF for DRIND has significant AC at seasonal lag 4 (see fig. 2I) there 

are no other significant ACs. Since seasonality is not expected and there is very little 

evidence to suggest seasonality this suggests that seasonality is not significant in the 

interest rate. Hence, we will use seasonally unadjusted RIND in our VAR analysis 
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6.7.3. The seasonality features of output gap in India 

We analyse the stationarity and seasonality characteristics of the output gap variable in 

India. The graphs below depict the following indicators. The output gap (denoted 

GAPIND), the seasonally adjusted GAPIND series (GAPIND_d11) and D_GAPIND = 

GAPIND - GAPIND_d11, as well as the first (nonseasonal) difference of GAPIND 

(DGAPIND). The seasonally adjusted series (GAPIND_d11) is obtained using the Census 

X13 procedure in EViews. Tables 3D and 3G report various tests of the null hypothesis 

of equality of variance for GAPIND and GAPIND_d11 as well as DGAPIND and 

DGAPIND_d11. 
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From figure 3A the series of the output gap is relatively constant with an extreme outlier 

around 2011 that makes all other variation difficult tom identify.  

The time paths of GAPIND and GAPIND_d11 (see Figure 3B) follow each other closely 

and it is difficult to discern whether the difference between them reflects seasonality. 

We refer to a variety of tests for the equality of variance between GAPIND and 

GAPIND_d11 that are reported in table 3D. The p-values for Levene, Brown Forsythe, F-

test and Bartlett test tests are greater than 0.05 indicating equal variances while the p- 

values of Siegel Tukey is less than 0.05 which rejects the null hypothesis of equal 
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variance. Hence, the results regarding equality of variance are ambiguous if they 

generally cannot reject the null. Hence, the evidence generally suggests no seasonality. 

To explore the issue further, we plot the graph of DGAPIND and DGAPIND_d11 (see 

Figure 3E).  The time paths of DGAPIND and DGAPIND_d11 follow each other closely. To 

ascertain whether there is any significant seasonality we refer to tests for the equality 

of variance between DGAPIND and DGAPIND_d11 that are reported in table 3G. The p-

values for Levene, Brown Forsythe, F-test and Bartlett test tests are greater than 0.05 

indicating equal variances while the p- values of Siegel Tukey is less than 0.05 which 

reject the null hypothesis of equal variance. Hence, the results regarding equality of 

variance are ambiguous if they generally cannot reject the null. Hence, the evidence 

generally suggests no seasonality.  

To explore this further, we plot the autocorrelation functions (ACFs) of GAPIND and 

DGAPIND in figure 3H and 3I. The ACF for GAPIND and DGAPIND have insignificant ACs 

at all the seasonal lag (see fig. 3H and 31). This implies that seasonality is not significant 

in output gap for India. Hence, the vast majority of evidence suggests no seasonality and 

we will use seasonally unadjusted GAPIND in our VAR analysis 
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6.8.1. The graphical features of selected macroeconomic variables for China 

Following the sample indicated in previous section (Table 6.4.3), we will collect data over 

the period 1989q1 – 2014Q4. Therefore, we analyse the stationarity and seasonality 

characteristics of the selected macroeconomic variables over this sample (1989q1 

2014q4).  The graphs below depict the following indicators. The Chinese consumer price 

index (denoted PCHI), the seasonally adjusted PCHI series (PCHI_d11) and D_PCHI = PCHI 

- PCHI_d11, as well as the first (nonseasonal) difference of LPCHI (DLPCHI), the 

seasonally adjusted LPCHI series (LPCHI_d11) and D_LPCHI = LPCHI - LPCHI_d11(where 

LPCHI is the log of PCHI). The seasonally adjusted series (PCHI_d11) is obtained using the 

Census X13 procedure in EViews. Tables 1D and 1G report various tests of the null 

hypothesis of equality of variance for PCHI and PCHI_d11 as well as DLPCHI and 

DLPCHI_d11.                                 
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As shown in Fig. 1A the graph of consumer prices for China (PCHI) exhibits an upward 

trend suggesting non-stationarity and a need to apply stationarity-inducing 

transformations. Although seasonality may be expected in price data it is not visible in 

the price plot because of the dominant trend; seasonality may be revealed once the 

trend is removed through differencing. 

The time paths of PCHI and PCHI_d11 (see Figure 1B) follow each other closely and it is 

difficult to discern whether the difference between them reflects seasonality. Therefore, 

the difference between PCHI and PCHI_d11 (denoted D_PCHI) is plotted in Figure 1C. 

The difference has revealed cyclical fluctuations that range between -0.30 and 0.27.   

Whilst this may indicate time-varying seasonality we need to ascertain whether this 

seasonality is significant. To do this we refer to a variety of tests for the equality of 
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variance between PCHI and PCHI_d11 that are reported in table 1D. Since the p-values 

of all of our tests is greater than 0.05, we cannot reject the null hypothesis and find that 

there is no significant difference in the variances of PCHI and PCHI_d11.  Hence, we find 

that seasonality is not significant in the level of the consumer price.  However, this result 

may be influenced by the nonstationarity of the data so we compare the differences of 

the adjusted (DLPCHI_d11) and unadjusted (DLPCHI) data.  

The time paths of DLPCHI and DLPCHI_d11 (see Figure 1E) follow each other closely. The 

trend has been removed and the series broadly fluctuate around a constant mean as 

expected after first differencing. The variation in DLPCHI is greater than that of 

DLPCHI_d11 suggesting seasonality in DLPCHI while DLPCHI_d11 is smoother. This 

suggests that DLPCHI_ d11 exhibits reduced seasonality as expected. Hence, the 

difference between DLPCHI and DLPCHI_d11 (denoted D_DLPCHI) is plotted in Figure 1F. 

The difference revealed multiple fluctuations around a constant mean that range 

between -0.0028 and 0. 0045. Whilst this may indicate time-varying seasonality we need 

to ascertain whether this seasonality is significant. To do this we refer to tests for the 

equality of variance between DLPCHI and DLPCHI_d11 that are reported in table 1G. 

Since the p-values of all of our tests is less than 0.05, we reject the null hypothesis and 

find that there is significant difference in the variances of DLPCHI and DLPCHI_d11. 

Hence, we find that seasonality is significant in the difference of the log of the price data 

for China. 

To explore further we plot the autocorrelation functions (ACFs) of PCHI and DLPCHI in 

figure 1H and 1I. Shown in Fig. 1H is the ACF for PCHI. All autocorrelation coefficients 

(ACs) are significant (and not just at the seasonal lags) which suggests nonstationarity 

and not necessarily seasonality. The ACF for DLPCHI (see fig. 1I) has significant ACs for 

the first 12 lags, except lag 11, and not just the seasonal lags 4, 8 and 12.  This implies 

the need to plot the ACF of the second difference of LPCHI to determine if there is 

seasonality. The ACF for second difference D(PCHI,2) indicates insignificant ACs at all the 

seasonal lag except seasonal lag 12 (see fig. 1J). This implies that seasonality is not 

significant in price data and we reject the results of the variance equality tests. Hence, 

we use the unadjusted data PCHI in our VAR analysis 
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6.8.2. The seasonality features of interest rate in China 

We analyse the stationarity and seasonality characteristics of the interest rate variables 

in China. The graphs below depict the following indicators. The Chinese interest rate 

(denoted RCHI), the seasonally adjusted RCHI series (RCHI_d11) and D_RCHI = RCHI - 

RCHI_d11, as well as the first (nonseasonal) difference of RCHI (DRCHI), the seasonally 

adjusted RCHI series (RCHI_d11) and D_RCHI = RCHI - RCHI_d11. The seasonally adjusted 

series (RCHI_d11) is obtained using the Census X13 procedure in EViews. Tables 2D and 

2G report various tests of the null hypothesis of equality of variance for RCHI and 

RCHI_d11 as well as DCHI and DRCHI_d11. 
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                       2G.       2H. 

                

   

               2I. 

 

As shown in Fig. 2A, the interest rate series (RCHI) exhibits a downward trend. 

Seasonality is not visible in the interest rate plot perhaps because of the dominant 

downward trend, these may be revealed once the trend is removed through 

differencing. This interest rate moves in a discrete manner is unlikely to be seasonal. 

The time paths of RCHI and RCHI_d11 (see Figure 2B) follow each other closely and it is 

difficult to discern whether the difference between them reflects seasonality. We plot 

the difference between RCHI and RCHI_d11 (denoted D_RCHI) in Figure 2C to further 

assess whether RCHI is seasonal. The difference indicates cycles that substantially 

decline. Whilst this may indicate seasonality, we need to ascertain whether this 

seasonality is significant. To do this we refer to a variety of tests for the equality of 

variance between RCHI and RCHI_d11 that are reported in table 2D. The p-values of all 

of our tests is greater than 0.05, thus we cannot reject the null hypothesis and find that 

there is no significant difference in the variances of RCHI and RCHI_d11. Hence, we find 

that seasonality is not significant in the level of the interest rate. However, because this 

result may be influenced by the trend in the data we compare the differences of the 

adjusted (DRCHI_d11) and unadjusted (DRCHI) data. 
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The time paths of DRCHI and DRCHI_d11 (see Figure 2E) follow each other closely. The 

DRCHI_d11 series is smoother than DRCHI and variation of DRCHI_d11 is less than the 

variation of DRCHI. Whilst this may indicate seasonality we plot the graph of the 

difference between DRCHI and DRCHI_d11 in Figure 2F to further assess whether RCHI 

is seasonal. The difference indicates time-varying cycles that dramatically decline.  We 

refer to a variety of tests for the equality of variance between DRCHI and DRCHI_d11 

that are reported in table 2G. The p-values for Levene, Brown Forsythe, F-test and 

Bartlett tests are greater than 0.05 indicating equal variances while the p- values of the 

Siegel Tukey is less than 0.05. Hence, the results regarding equality of variance are 

ambiguous although generally suggest equal variance and no seasonality.  

To explore the issue further we plot the ACFs of RCHI and DRCHI in figure 2H and 2I, 

respectively. Shown in Fig. 2H is the ACF for RCHI. All autocorrelation coefficients (ACs) 

are significant (and not just at the seasonal lags) which suggests nonstationarity and not 

necessarily seasonality. The ACF for DRCHI (see fig. 2I) has insignificant ACs at all the 

seasonal lags. This provides convincing evidence that seasonality is insignificant in the 

interest rate data. Hence, we use the unadjusted RCHI variable in our VAR analysis. 
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6.8.3. The seasonality features of real effective exchange rate in China 

 

We analyse the stationarity and seasonality characteristics of the real effective exchange 

rate variable in China. The graphs below depict the following indicators. The Chinese 

real effective exchange rate (denoted REECHI), the seasonally adjusted REECHI series 

(REECHI_d11) and D_REECHI = REEECHI - REECHI_d11, as well as the first (nonseasonal) 

difference of LREECHI (DLREECHI), the seasonally adjusted LREECHI series 

(LREECHI_d11) and D_LREECHI = LREECHI - LREECHI_d11 (where LREECHI is the log of 

REECHI). The seasonally adjusted series (REECHI_d11) is obtained using the Census X13 

procedure in EViews. Tables 3D and 3G report various tests of the null hypothesis of 

equality of variance for REECHI and LREECHI_d11 as well as DLREECHI and 

DLREECHI_d11.  
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3G. 
Equality of variances test between DLREECHI and DLREECHI_D11 

Method  Df  Value Probability  

F-test 

 (102, 
102) 

1.169888 0.4295 

Siegel- 
Tukey 

 0.247784 0.8043 

Bartlett 1 0.624109 0.4295 

Levene (1, 206) 0.146815 0.7020 

  Brown- 
Forsythe 

(1, 206) 0.059659 0.8073 

 
3H.          3I 

    

 

From Figure 3A, the graph of real effective exchange rate for China (REECHI) is U-

shaped without a clear trend. Seasonality is not visible in this graph however it may be 

revealed after differencing. 

The time paths of REECHI and REECHI_d11 (see Figure 3B) follow each other closely and 

it is difficult to discern whether the difference between them reflects seasonality. 

Therefore, the difference between REECHI and REECHI_d11 (denoted D_REECHI) is 

plotted in Figure 3C. The difference has revealed cyclical fluctuations that substantially 

decline over time. Whilst this may indicate time-varying seasonality we need to 

ascertain whether this seasonality is significant. To do this we refer to a variety of tests 

for the equality of variance between REECHI and REECHI_d11 that are reported in table 

3D. Since the p-values of all of our tests is greater than 0.05, we cannot reject the null 
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hypothesis and find that there is no significant difference in the variances of REECHI and 

REECHI_d11. Hence, we find that seasonality is not significant in the level of the data.  

To explore this further, we compare the differences of the adjusted (DLREECHI_d11) and 

unadjusted (DLREECHI) data. 

The time paths of DLREECHI and DLREECHI_d11 (see Figure 3E) follow each other closely. 

The first difference is a relatively constant mean process. The variation in DLREECHI is 

greater than that of DLREECHI_d11 suggesting possible seasonality in DLREECHI. 

Therefore, we plot the differences between DLREECHI and DLREECHI_d11 (denoted 

D_DLREECHI) in Figure 3F. The difference revealed a regular fluctuation that 

substantially decreases over time. Whilst this may indicate time-varying seasonality we 

need to ascertain whether this seasonality is significant. To do this we refer to tests for 

the equality of variance between DLREECHI and DLREECHI_d11 that are reported in 

table 3G. Since the p-values of all of our tests is greater than 0.05, we cannot reject the 

null hypothesis and find that there is no significant difference in the variances of 

DLREECHI and DLREECHI_d11. Hence, we find that seasonality is not significant in the 

difference of the log of the real effective exchange rate data for China. 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of REECHI and DLREECHI in figure 3H and 3I. Shown in Fig. 3H is the ACF 

for REECHI. The first 9 autocorrelation coefficients (ACs) are significant (and not just at 

the seasonal lags) which suggests nonstationarity and not seasonality. The ACF for 

DLREECHI has no significant ACs at seasonal lags (see fig. 3I). This implies that seasonality 

is not significant in the real effective exchange rate and confirms the results of the 

variance equality tests. Hence, we will use the unadjusted data REECHI our VAR analysis. 
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6.9.1. The graphical features of selected macroeconomic variables for South Africa 

 

Following the sample indicated in previous section (Table 6.4.4), we will collect data over 

the period 1992q2 – 2014q4.  Therefore, we analyse the stationarity and seasonality 

characteristics of the selected macroeconomic variables over this sample (1992q2 – 

2014q4). The graphs below depict the following indicators. The South African consumer 

price (denoted PSOU), the seasonally adjusted PSOU series (SOU_d11) and D_PSOU = 

PSOU - PSOU_d11, as well as the first (nonseasonal) difference of LPSOU (DLPSOU), the 

seasonally adjusted LPSOU series (LPSOU_d11) and D_LPSOU = LPSOU - LPSOU_d11 

(where LPSOU is the log of PSOU). The seasonally adjusted series (PSOU_d11) is 

obtained using the Census X13 procedure in EViews. Tables 1D and 1G report various 

tests of the null hypothesis of equality of variance for PSOU and PSOU_d11 as well as 

DLPSOU and DLPSOU_d11.  
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As shown in Fig. 1A, there is an upward trend indicating non-stationarity and a need to 

apply stationarity inducing transformations. 

The time paths of PSOU and PSOU_d11 (see Figure 1B) follow each other closely and it 

is difficult to discern whether the difference between them reflects seasonality. 

Therefore, the difference between PSOU and PSOU_d11 (denoted D_PSOU) is plotted 

in Figure 1C. The difference has revealed cyclical fluctuation that range between -0.23 

and 0.37. Whilst this may indicate time-varying seasonality we need to ascertain 

whether this seasonality is significant. To do this we refer to a variety of tests for the 

equality of variance between PSOU and PSOU_d11 that are reported in table 1D. Since 

the p-values of all of our tests is greater than 0.05, we cannot reject the null hypothesis 
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and find that there is no significant difference in the variances of PSOU and PSOU_d11. 

Hence, we find that seasonality is not significant in the level of the consumer price. 

However, because this result may be influenced by the nonstationarity of the data we 

compare the differences of the adjusted (DLPSOU_d11) and unadjusted (DLPSOU) data.  

The time paths of DLPSOU and DLPSOU_d11 (see Figure 1E) follow each other closely. 

The trend has been removed and the series broadly fluctuates around a constant mean 

as expected after first differencing. The variation in DLPSOU is greater than that of 

DLPSOU_d11 suggesting possible seasonality in DLPSOU while DLPSOU_d11 is 

smoother. This suggests that DLPSOU_d11 exhibits reduced seasonality as expected.  

The difference between DLPSOU and DLPSOU_d11 (denoted D_DLPSOU) is plotted in 

Figure 1F. 

The difference reveals cyclical patterns that range between -0.0073 and 0.0037. Whilst 

this may indicate time-varying seasonality we need to ascertain whether this seasonality 

is significant. To do this we refer to tests for the equality of variance between DLPSOU 

and DLPSOU_d11 that are reported in table 1G. Since the p-values of all of our tests is 

greater than 0.05, we cannot reject the null hypothesis and find that there is no 

significant difference in the variances of DLPSOU and DLPSOU_d11. Hence, we find that 

seasonality is not significant in the difference of the log of the price data for South Africa 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of PSOU and DLPSOU in figure 1H and 1I. Shown in Fig. 1H is the ACF 

for PSOU. All autocorrelation coefficients (ACs) are significant (and not just at the 

seasonal lags) which suggests nonstationarity and not necessarily seasonality. The ACF 

for DLPSOU (see fig. 1I) has no significant ACs at seasonal lags. This implies that 

seasonality is not significant in the price data and confirms the results of the variance 

equality tests. Hence, we use the unadjusted data PSOU in our VAR analysis. 
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6.9. 2. The seasonality features of money supply in South Africa 

We analyse the stationarity and seasonality characteristics of money supply in South 

Africa. The graphs below depict the following indicators. The South African money 

supply (denoted MSOU), the seasonally adjusted MSOU series (MSOU_d11) and 

D_MSOU = MSOU - MSOU_d11, as well as the first (nonseasonal) difference of LMSOU 

(DLMSOU), the seasonally adjusted LMSOU series (LMSOU_d11) and D_LMSOU = 

LMSOU - LMSOU_d11 (where LMSOU is the log of MSOU). The seasonally adjusted series 

(MSOU_d11) is obtained using the Census X13 procedure in EViews. Tables 2D and 2G 

report various tests of the null hypothesis of equality of variance for MSOU and 

MSOU_d11 as well as DLMSOU and DLMSOU_d11.  
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2E.      2F. 
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As shown in Fig. 2A, the graph of money supply in South Africa (MSOU) exhibits an 

upward trend suggesting non-stationarity and a need to apply stationarity inducing 

transformations. Seasonality is not obvious probably due to the dominant trend.  

The time paths of MSOU and MSOU_d11 (see Figure 2B) follow each other closely and 

it is difficult to discern whether the difference between them reflects seasonality. 

Therefore, the difference between MSOU and MSOU_d11 (denoted D_MSOU) is plotted 

in Figure 2C. The difference has revealed a regular cyclical fluctuation that may indicate 

time-varying seasonality. To ascertain whether the seasonality is significant we refer to 

a variety of tests for the equality of variance between MSOU and MSOU_d11 that are 
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reported in table 2D. Since the p-values of all of our tests is greater than 0.05, we cannot 

reject the null hypothesis and find that there is no significant difference in the variances 

of MSOU and MSOU_d11. Hence, we find that seasonality is not significant in the level 

of the data.  However, because this result may be influenced by the nonstationarity of 

the data we compare the differences of the adjusted (DLMSOU_d11) and unadjusted 

(DLMSOU) data. 

The time paths of DLMSOU and DLMSOU_d11 (see Figure 2E) follow each other closely. 

The trend has been removed and the series broadly fluctuates around a constant mean 

as expected after first differencing. Therefore, the difference between DLMSOU and 

DLMSOU_d11 (denoted D_DLMSOU) is plotted in Figure 2F. The difference reveals a 

regular fluctuation that has a relatively constant mean between -0.0129 and 0.0133. 

Whilst this may indicate time-varying seasonality we need to ascertain whether this 

seasonality is significant. To do this we refer to tests for the equality of variance between 

DLMSOU and DLMSOU_d11 that are reported in table 2G.  Since the p-values of all of 

our tests is greater than 0.05, we cannot reject the null hypothesis and find that there is 

no significant difference in the variances of DLMSOU and DLMSOU_d11. Hence, we find 

that seasonality is not significant in the difference of the log of the money supply for 

South Africa. 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of MSOU and DLMSOU in figure 2H and 2I. Shown in Fig. 2H is the ACF 

for MSOU. All autocorrelation coefficients (ACs) are significant (and not just at the 

seasonal lags) which suggests nonstationarity and not necessarily seasonality. The ACF 

for DLMSOU (see fig. 2I) has no significant ACs at seasonal lags. This implies that 

seasonality is not significant in the money supply and confirms the results of the variance 

equality tests. Hence, we will use the unadjusted data MSOU in our VAR analysis. 
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6.9.3. The seasonality features of real effective exchange rate in South Africa 

 

We analyse the stationarity and seasonality characteristics of the real effective exchange 

rate variable in South Africa. The graphs below depict the following indicators. The South 

Africa real effective exchange rate (denoted REESOU), the seasonally adjusted REESOU 

series (REESOU_d11) and D_REESOU = REEESOU- REESOU_d11, as well as the first 

(nonseasonal) difference of LREESOU (DLREESOU), the seasonally adjusted LREESOU 

series (LREESOU_d11) and D_LREESOU = LREESOU - LREESOU_d11 (where LREESOU is 

the log of REESOU).  The seasonally adjusted series (REESOU_d11) is obtained using the 

Census X13 procedure in EViews. Tables 3D and 3G report various tests of the null 

hypothesis of equality of variance for REESOU and REESOU_d11 as well as DLREESOU 

and DLREESOU_d11.  
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3I. 

        

From Figure 3A, the graph of real effective exchange rate for South Africa (REESOU) 

exhibits a downward trend that plateaus at the end of the sample. Seasonality is not 

expected in the real effective exchange rate data and is not visible in this graph, although 

seasonality may be revealed once the trend is removed through differencing. 

The time paths of REESOU and REESOU_d11 (see Figure 3B) follow each other closely 

and it is difficult to discern whether the difference between them reflects seasonality. 

Therefore, the difference between REESOU and REESOU_d11 (denoted D_REESOU) is 

plotted in Figure 3C. The difference reveals cyclical fluctuations that may indicate time-

varying seasonality. To ascertain whether this seasonality is significant we refer to a 

variety of tests for the equality of variance between REESOU and REESOU_d11 that are 

reported in table 3D. The p-value of all of our tests is greater than 0.05, we cannot reject 
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the null hypothesis and find that there is no significant difference in the variances of 

REESOU and REESOU_d11. Hence, we find that seasonality is not significant in the level 

of the data.  However, because this result may be influenced by the nonstationarity of 

the data we compare the differences of the adjusted (DLREESOU_d11) and unadjusted 

(DLREESOU) data.  

The time paths of DLREESOU and DLREESOU_d11 (see Figure 3E) follow each other 

closely and the difference between DLREESOU and DLREESOU_d11 (denoted 

D_DLREESOU) is plotted in Figure 3F. The difference has revealed fluctuations around a 

relatively constant mean. Whilst this may indicate time-varying seasonality we need to 

ascertain whether this seasonality is significant. To do this we refer to tests for the 

equality of variance between DLREESOU and DLREESOU_d11 that are reported in table 

3G. Since the p-values of all of our tests is greater than 0.05, we cannot reject the null 

hypothesis and find that there is no significant difference in the variances of DLREESOU 

and DLREESOU_d11 and hence find that seasonality is not significant in the difference 

of the log of the real effective exchange rate data for South Africa. 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of REESOU and DLREESOU in figure 3H and 3I. Shown in Fig. 3H is the 

ACF for REESOU. The first 9 consecutive autocorrelation coefficients (ACs) lags are 

significant (and not just at the seasonal lags) which suggests nonstationarity and not 

seasonality. The ACF for DLREESOU (see fig. 3I) has no significant ACs at seasonal lags. 

This implies that seasonality is not significant in the real effective exchange rate and 

confirms the results of the variance equality tests. Hence, we use the unadjusted data 

REESOU in our VAR analysis. 

 

  



502 
 

6.9.4. The seasonality features of interest rate in South Africa 

We analyse the stationarity and seasonality characteristics of the interest rate in South 

Africa. The graphs below depict the following indicators. The South African interest rate 

(denoted RSOU), the seasonally adjusted RSOU series (RSOU_d11) and D_RSOU = RSOU 

- RSOU_d11, as well as the first (nonseasonal) difference of RSOU (DRSOU). The 

seasonally adjusted series (RSOU_d11) is obtained using the Census X13 procedure in 

EViews. Tables 4D and 4G report various tests of the null hypothesis of equality of 

variance for RSOU and RSOU_d11 as well as DSOU and DRSOU_d11. 
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 As shown in Fig. 4A, the interest rate series (RSOU) exhibits a downward trend. 

Seasonality is not visible in the interest rate plot because of the dominant trend. 

The time paths of RSOU and RSOU_d11 (see Figure 4B) follow each other closely and it 

is difficult to discern whether the difference between them reflects seasonality. 

Therefore, the differences between RSOU and RSOU_d11 (denoted D_RSOU) is plotted 

in Figure 2C. The difference has revealed fluctuations around a relatively constant mean. 

Whilst this may indicate time-varying seasonality we need to ascertain whether this 

seasonality is significant. To do this we refer to a variety of tests for the equality of 

variance between RSOU and RSOU_d11 that are reported in table 4D. Since the p-values 

of all of our tests is greater than 0.05, we cannot reject the null hypothesis and find that 

there is no significant difference in the variances of RSOU and RSOU_d11 and hence we 
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find that seasonality is not significant in the level of the data.  However, because this 

result may be influenced by the trend in the data we compare the differences of the 

adjusted (DRSOU_d11) and unadjusted (DRSOU) data. 

The time paths of DRSOU and DRSOU_d11 (see Figure 4E) follow each other closely and 

it is difficult to discern whether the difference between them reflects seasonality. 

Hence, the difference between DRSOU and DRSOU_d11 (denoted D_DRSOU) is plotted 

in Figure 4F. The difference has revealed cyclical patterns. Whilst this may indicate time-

varying seasonality we need to ascertain whether this seasonality is significant.  To do 

this we refer to a variety of tests for the equality of variance between (DRSOU) and 

(DRSOU_d11) that are reported in table 4G. Since the p-values of all of our tests is 

greater than 0.05, we cannot reject the null hypothesis and find that there is no 

significant difference in the variances of DRSOU and DRSOU_d11. Hence, we find that 

seasonality is not significant in the difference of interest rate data for South Africa. 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of RSOU and DRSOU in figure 4H and 4I. Shown in Fig. 4H is the ACF for 

RSOU. All autocorrelation coefficients (ACs) are significant (and not just at the seasonal 

lags) which suggests nonstationarity and not necessarily seasonality. The ACF for DRSOU 

(see fig. 4I) has no significant ACs at seasonal lags. This implies that seasonality is not 

significant in the interest rate and confirms the results of the variance equality tests. 

Hence, we use the unadjusted data RSOU in our VAR analysis. 
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6.9.5. The seasonality features of output gap in South Africa 

We analyse the stationarity and seasonality characteristics of the output gap variable in 

Russia. The graphs below depict the following indicators. The output gap (denoted 

GAPSOU), the seasonally adjusted GAPSOU series (GAPSOU_d11) and D_GAPSOU = 

GAPSOU - GAPSOU_d11, as well as the first (nonseasonal) difference of GAPSOU 

(DGAPSOU). The seasonally adjusted series (GAPSOU_d11) is obtained using the Census 

X13 procedure in EViews. Tables 5D and 5G report various tests of the null hypothesis 

of equality of variance for GAPSOU and GAPSOU_d11 as well as DGAPSOU and 

DGAPSOU_d11.  
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 5D. 

 Method Df Value Probability 

F-test (90, 90) 1.0153 0.9426 

Siegel- Tukey  0.1603 0.8726 

Bartlett 1 0.0051 0.9426 

Levene (1, 180) 0.0078 0.9299 

Brown- Forythe (1, 180) 0.0063 0.9369 

 

  

-.12

-.08

-.04

.00

.04

.08

.12

92 94 96 98 00 02 04 06 08 10 12 14

GAPSOU



506 
 

 5E                5F 
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5G 

 Method Df Value Probability 

F-test  (89, 89) 1.1236 0.5835 

Siegel- 
Tukey 

 1.5893 0.1120 

Bartlett 1 0.3007 0.5835 

Levene (1,178) 0.9395 0.3337 

Brown- 
Forythe 

(1, 178) 0.9742 0.3250 

 

5I.        5J. 

                      

 

From the figure 5A the series of the output gap exhibit clear cycles that appear to be of 

a one-year fixed length and therefore probably reflect seasonality. Therefore, GAPSOU 

may need to be seasonally adjusted. 

The time paths of GAPSOU and GAPSOU_d11 are given in Figure 5B. Seasonality is 

obvious in GAPSOU and the GAPSOU_ d11 is substantially smoother than the GAPSOU. 

This suggests that GAPSOU_d11 exhibits reduced seasonality.  

The differences between GAPSOU and GAPSOU_d11 (denoted D_GAPSOU) is plotted in 

Figure 5C. The difference reveals a regular cyclical fluctuation that ranges between -

0.0115 and 0.0079. Whilst this may indicate time-varying seasonality we need to 
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ascertain whether this seasonality is significant. To do this we refer to a variety of tests 

for the equality of variance between GAPSOU and GAPRSOU_d11 that are reported in 

table 5D. The p-values of all of our tests is greater than 0.05, we cannot reject the null 

hypothesis and find that there is no significant difference in the variances of GAPSOU 

and GAPSOU_d11 and hence find that seasonality is not significant in the level of the 

output-gap data.  To explore this further, we compare the differences of the adjusted 

(DGAPSOU_d11) and unadjusted (DGAPSOU) data. 

The time paths of DGAPSOU and DGAPSOU_d11 (see Figure 5E) follow each other. 

DGAPSOU_ d11 is notably smoother than the DGAPSOU suggesting evidence of 

seasonality in DGAPSOU. Hence, the difference between DGAPSOU and DGAPSOU_d11 

(denoted D_DGAPSOU) is plotted in Figure 5F. The difference has revealed a regular 

cyclical fluctuation that ranges between -0.0160and 0.0139. Whilst this may indicate 

time-varying seasonality we need to ascertain whether this seasonality is significant. To 

do this we refer to tests for the equality of variance between DGAPSOU and 

DGAPSOU_d11 that are reported in table 5G. Since the p-values of all of our tests is 

greater than 0.05, we cannot reject the null hypothesis and find that there is no 

significant difference in the variances of DGAPSOU and DGAPSOU_d11. Hence, we find 

that seasonality is not significant in the difference of the output gap rate for South Africa 

   To check that we have not missed any significant seasonality we plot the 

autocorrelation functions (ACFs) of GAPSOU and DGAPSOU in figure 5H and 5I. Shown 

in Fig. 5H is the ACF for GAPSOU. All autocorrelation coefficients (ACs) are significant 

(and not just at the seasonal lags) which suggests nonstationarity and not necessarily 

seasonality. The ACF for DGAPSOU (see fig. 5I) has significant ACs at seasonal lags (lag 

12). This implies that seasonality is not significant in the output gap and confirms the 

results of the variance equality tests. Hence, we will use the unadjusted data GAPSOU 

in our VAR analysis. 

 

  



508 
 

6.10.1 The graphical features of selected macroeconomic variables for Nigeria 

Following the sample identified in previous section for Nigeria (Table 6.4.5) we analyse 

the stationarity and seasonality characteristics of the selected macroeconomic 

variables. The graphs below depict the following indicators. The Nigerian consumer price 

(denoted PNIG), the seasonally adjusted PNIG series (PNIG_d11) and D_PNIG = PNIG - 

PNIG_d11, as well as the first (nonseasonal) difference of LPNIG (DLPNIG), the seasonally 

adjusted LPNIG series (LPNIG_d11) and D_LPNIG = LPNIG - LPNIG_d11 (where LPNIG is 

the log of PNIG). The seasonally adjusted series (PNIG_d11) is obtained using the Census 

X13 procedure in EViews. Tables 1D and 1G report various tests of the null hypothesis 

of equality of variance for PNIG and PNIG_d11 as well as DLPNIG and DLPNIG_d11.  
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  1E.         1F. 
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1G.         1H. 

     

1I 

 

 

As shown in Fig. 1A, the graph of consumer prices for Nigeria (PNIG) exhibits an upward 

trend suggesting non-stationarity and a need to apply stationarity inducing 

transformations. Although seasonality may be expected in price data it is not visible in 

the price plot because of the dominant trend; seasonality may be revealed once the 

trend is removed through differencing. 

The time paths of PNIG and PNIG_d11 (see Figure 1B) follow each other closely and it is 

difficult to discern whether the difference between them reflects seasonality. Therefore, 

the differences between PNIG and PNIG_d11 (denoted D_PNIG) is plotted in Figure 1C. 

The difference has revealed cyclical fluctuations that range between -0.98 and 1.37.  
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Whilst this may indicate time-varying seasonality we need to ascertain whether this 

seasonality is significant. To do this we refer to a variety of tests for the equality of 

variance between PNIG and PNIG_d11 that are reported in table 1D. Since the p-values 

of all of our tests are greater than 0.05 we cannot reject the null hypothesis and find 

that there is no significant difference in the variances of PNIG and PNIG_d11. However, 

because this result may be influenced by the nonstationarity of the data we compare 

the differences of the logs of the adjusted (DLPNIG_d11) and unadjusted (DLPNIG) data. 

The time paths of DLPNIG and DLPNIG_d11 (see Figure 1E) follow each other closely. 

The trend has been removed and the series broadly fluctuate around a constant mean 

as expected after first differencing. The variation in DLPNIG is greater than that of 

DLPNIG_d11 suggesting seasonality in DLPNIG while DLPNIG_d11 is smoother. This 

suggests that DLPNIG_ d11 exhibits reduced seasonality as expected. The difference 

between DLPNIG and DLPNIG_d11 (denoted D_DLPNIG) is plotted in Figure 1F. The 

difference has revealed a regular fluctuation around a relatively constant mean that 

ranges between -0.037 and 0.029. Whilst this may indicate time-varying seasonality we 

need to ascertain whether this seasonality is significant. To do this we refer to tests for 

the equality of variance between DLPNIG and DLPNIG_d11 that are reported in table 1G. 

The p-values for Levene, Brown Forsythe, F-test and Bartlett test tests are less than 0.05 

indicating unequal variances while the p-value of Siegel Tukey test is greater than 0.05 

which cannot reject the null hypothesis of variance equality. Hence, the results 

regarding equality of variance are ambiguous, however, they generally suggest unequal 

variances and, hence, that the series is seasonal. 

To examine this further we plot the autocorrelation functions (ACFs) of PNIG and DLPNIG 

in figure 1H and 1I. Shown in Fig. 1H is the ACF for PNIG. All autocorrelation coefficients 

(ACs) are significant (and not just at the seasonal lags) which suggests nonstationarity 

and not necessarily seasonality. The ACF for DLPNIG (see fig. 1I) has significant ACs at 

the seasonal lags 4, 8 12 and 20 (if the AC at lag 16 is insignificant).  This provides clear 

evidence that there is significant seasonality in the price data.  Overall, the vast majority 

of the tests suggest that PNIG is seasonal and so we will use the adjusted data PNIG_d11 

in our VAR analysis. 
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6.10. 2. The seasonality features of interest rate in Nigeria  

The graphs below depict the following variables. The Nigeria interest rate (denoted 

RNIG), the seasonally adjusted RNIG series (RNIG_d11), D_RNIG = RNIG – RNIG_d11, and 

the first (nonseasonal) difference of RNIG (DRNIG). The seasonally adjusted series 

RNIG_d11 is obtained using the Census X13 procedure in EViews. Table 2D reports 

various variance equality tests for RNIG and RNIG_d11 while Table 2G reports these tests 

for variance equality for DRNIG and DRNIG_d11. 
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2E.          2F. 
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As shown in Fig. 2A seasonality is not clearly visible in the Nigeria interest rate plot. The 

time paths of RNIG and RNIG_d11 (see Figure 2B) follow each other closely and it is 

difficult to discern whether the difference between them reflects seasonality.  We plot 

the difference between RNIG and RNIG_d11 (denoted D_RNIG) in Figure 2C to further 

assess whether RNIG is seasonal. The difference indicates time-varying cycles.  We refer 

to a variety of tests for the equality of variance between RNIG and RNIG_d11 that are 

reported in table 2D. Since the p-values of all of our tests are greater than 0.05, we 

cannot reject the null hypothesis and find that there is no significant difference in the 

variances of RNIG and RNIG_d11. Hence, we find that seasonality is not significant in the 

level of the data.  However, because this result may be influenced by persistence in the 

data we compare the differences of the adjusted (DRNIG_d11) and unadjusted (DRNIG) 

data. 
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The time paths of DRNIG and DRNIG_d11 (see Figure 2E) follow each other closely. The 

difference between DRNIG and DRNIG_d11 (denoted D_DRNIG) is plotted in Figure 2F. 

The difference has revealed a cyclical pattern. Variance equality tests between DRNIG 

and DRNIG_d11 are reported in Table 2G. The p-values for all the tests are greater than 

0.05 therefore we cannot reject the null hypothesis and find that there is no significant 

difference in the variances of DRNIG and DRNIG_d11. Hence, we find that seasonality is 

not significant in the difference of the data. 

To explore the issue further we plot the ACFs of RNIG and DRNIG in figure 2H and 2I, 

respectively. Shown in Fig. 2H is the ACF for RNIG. The first 12 autocorrelation 

coefficients ACs are significant (and not just at the seasonal lags) which suggests 

nonstationarity and not seasonality. The ACF for DRNIG (see fig. 2I) has no significant AC 

at any of the seasonal lags. This implies that seasonality is not significant in the interest 

rate and confirms the results of the variance equality tests. Hence, we will use the 

unadjusted data RNIG in our VAR analysis. 
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6.10.3. The seasonality features real effective exchange rate in Nigeria 

The graphs below depict the following variables. The Nigerian real effective exchange 

(denoted REENIG), the seasonally adjusted REENIG series (REENIG_d11) and D_REENIG 

= REENIG - REENIG_d11, as well as the first (nonseasonal) difference of LREENIG 

(DLREENIG), the seasonally adjusted LREENIG series (LREENIG_d11) and D_LREENIG = 

LREENIG - LREENIG_d11 (where LREENIG is the log of REENIG). The seasonally adjusted 

series (REENIG_d11) is obtained using the Census X13 procedure in EViews. Tables 3D 

and 3G report various tests of the null hypothesis of equality of variance for REENIG and 

REENIG_d11 as well as DLREENIG and DLREENIG_d11.  
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3E.        3F. 
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3G. 
Equality of variances test between DLREENIG and DLREENIG_D11 

Method  Df  Value Probability  

F-test 

 (75, 75) 

1.057118 0.8106 

Siegel- 
Tukey 

 0.738832 0.4600 

Bartlett 1 0.057561 0.8106 

Levene (1, 150) 0.005465 0.9412 

  Brown- 
Forsythe 

(1, 150) 0.018065 0.8933 

3H.          3I. 

                     

 

As shown in Fig. 3A, the graph of the real effective exchange rate for Nigeria exhibits a 

step shift at the beginning of the sample. The time paths of REENIG and REENIG_d11 

(see Figure 3B) follow each other closely and it is difficult to discern whether the 

difference between them reflects seasonality. Therefore, the differences between 

REENIG and REENIG_d11 (denoted D_REENIG) is plotted in Figure 3C. The difference has 

revealed a cyclical fluctuation that drastically declines over time. Whilst this may 

indicate time-varying seasonality we need to ascertain whether this seasonality is 

significant. To do this we refer to a variety of tests for the equality of variance between 

REENIG and REENIG_d11 that are reported in table 3D. Since the p-values of all of our 

tests is greater than 0.05, we cannot reject the null hypothesis and find that there is no 

significant difference in the variances of REENIG and REENIG_d11. Hence, we find that 

seasonality is not significant in the level of the real effective exchange rate.  However, 
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because this result may be influenced by the persistence of the data, we compare the 

differences of the adjusted (DLREENIG_d11) and unadjusted (DLREENIG) data. 

The time paths of DLREENIG and DLREENIG_d11 (see Figure 3E) follow each other 

closely. The first difference has removed the trend and gives a relatively constant mean 

process. The variation in DLREENIG is greater than that of DLREENIG_D11 suggesting 

seasonality in DLREENIG while DLREENIG_D11 is smoother. This suggests that 

DLREENIG_D11 exhibits reduced seasonality as expected. The differences between 

DLREENIG and DLREENIG_d11 (denoted D_DLREENIG) is plotted in Figure 3F. The 

difference reveals cyclical fluctuation that drastically decreases over time. Whilst this 

may indicate time-varying seasonality we need to ascertain whether this seasonality is 

significant. To do this we refer to tests for the equality of variance between DLREENIG 

and DLREENIG_d11 that are reported in table 3G. Since the p-values of all of our tests is 

greater than 0.05, we cannot reject the null hypothesis and find that there is no 

significant difference in the variances of DLREENIG and DLREENIG_d11. Hence, we find 

that seasonality is not significant in the difference of the log of the real effective 

exchange rate data for Nigeria. 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of REENIG and DLREENIG in figure 3H and 3I. Shown in Fig. 3H is the 

ACF for REENIG. The first 8 autocorrelation coefficients (ACs) are significant (and not just 

at the seasonal lags) which suggests nonstationarity (or persistence, possibly due to the 

step shift in the data) and not seasonality. The ACF for DLREENIG has no significant ACs 

at seasonal lags (see fig. 3I). This implies that seasonality is not significant in the real 

effective exchange rate and confirms the results of the variance equality tests. Hence, 

we will use the unadjusted data REENIG in our VAR analysis.  
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6.11.1 The graphical features of selected macroeconomic variables for Algeria 

Following the sample identified in previous section (Table 6.4.6) for Algeria (1996q2 – 

2014q4) we analyse the stationarity and seasonality characteristics of the selected 

macroeconomic variables. The graphs below depict the following indicators. The 

Algerian consumer price (denoted PALG), the seasonally adjusted PALG series 

(PALG_d11) and D_PALG = PALG - PALG_d11, as well as the first (nonseasonal) difference 

of LPALG (DLPALG), the seasonally adjusted LPALG series (LPALG_d11) and D_LPALG = 

LPALG - LPALG_d11 (where LPALG is the log of PALG). The seasonally adjusted series 

(PALG_d11) is obtained using the Census X13 procedure in EViews. Tables 1D and 1G 

report various tests of the null hypothesis of equality of variance for PALG and PALG_d11 

as well as DLPALG and DLPALG_d11.  
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1E.          1F. 
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As shown in Fig. 1A, the graph of consumer prices for Algeria (PALG) exhibits an upward 

trend suggesting non-stationarity and a need to apply stationarity inducing 

transformations. Although seasonality may be expected in price data it is not clearly 

visible in the price plot (there is some subtle seasonal variation) because of the dominant 

trend; seasonality may be more clearly revealed once the trend is removed through 

differencing. 

The time paths of PALG and PALG_d11 (see Figure 1B) follow each other closely and it is 

difficult to discern whether the difference between them reflects seasonality. Therefore, 

the differences between PALG and PALG_d11 (denoted D_PALG) is plotted in Figure 1C. 

The difference has revealed cyclical fluctuations that range between -1.23 and 1.04. 

Whilst this may indicate time-varying seasonality we need to ascertain whether this 

seasonality is significant. To do this we refer to a variety of tests for the equality of 
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variance between PALG and PALG_d11 that are reported in table 1D. Since the p-values 

of all of our tests is greater than 0.05, we cannot reject the null hypothesis and find that 

there is no significant difference in the variances of PALG and PALG_d11. Hence, we find 

that seasonality is not significant in the price level. However, because this result may be 

influenced by the nonstationarity of the data we compare the differences of the logs of 

the adjusted (DLPALG_d11) and unadjusted (DLPALG) data. 

The time paths of DLPALG and DLPALG_d11 (see Figure 1E) follow each other closely. 

The trend has been removed and the series broadly fluctuates around a constant mean 

as expected after first differencing. The variation in DLPALG is greater than that of 

DLPALG_d11 suggesting seasonality in DLPALG while DLPALG_d11 is smoother. This 

suggests that DLPALG_ d11 exhibits reduced seasonality as expected. The difference 

between DLPALG and DLPALG_d11 (denoted D_DLPALG) is plotted in Figure 1F. The 

difference has revealed a regular fluctuation around a relatively constant mean that 

ranges between -0.020 and 0.021. Whilst this may indicate time-varying seasonality we 

need to ascertain whether this seasonality is significant. To do this we refer to tests for 

the equality of variance between DLPALG and DLPALG_d11 that are reported in table 

1G. Since the p-values of all of our tests are less than 0.05 we reject the null hypothesis 

and find that there is significant difference in the variances of DLPALG and DLPALG_d11. 

Hence, we find that seasonality is significant in the difference of the log of prices for 

Algeria. 

To check this, we plot the autocorrelation functions (ACFs) of PALG and DLPALG in figure 

1H and 1I. Shown in Fig. 1H is the ACF for PALG. All autocorrelation coefficients (ACs) are 

significant (and not just at the seasonal lags) which suggests nonstationarity and not 

necessarily seasonality. The ACF for DLPALG (see fig. 1I) has significant ACs at all of the 

seasonal lags. This implies that seasonality is significant in the price data and confirms 

the results of the variance equality tests. Hence, we use the seasonally adjusted data 

PALG_d11 in our VAR analysis. 
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6.11.2. The seasonality features of interest rate in Algeria  

The graphs below depict the following variables. The Algerian interest rate (denoted 

RALG), the seasonally adjusted RALG series (RALG_d11), D_RALG = RALG - R_d11, and 

the first (nonseasonal) difference of RALG (DRALG). The seasonally adjusted series 

RALG_d11 is obtained using the Census X13 procedure in EViews. Table 2D reports 

various variance equality tests for RALG and RALG_d11 while Table 2G reports these 

tests for variance equality for DRALG and DRALG_d11.  
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As shown in Fig. 2A, the graph of RALG exhibits a downward trend (although it converges 

to a relatively constant mean). Seasonality is not clearly visible in the Algerian interest 

rate plot because of the dominant trend. 

The time paths of RALG and RALG_d11 (see Figure 2B) follow each other closely and it is 

difficult to discern whether the difference between them reflects seasonality.  We plot 

the difference between RALG and RALG_d11 (denoted D_RALG) in Figure 2C to assess 

whether RALG is seasonal. The difference indicates time-varying cycles that dramatically 

decline.  We refer to a variety of tests for the equality of variance between RALG and 
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RALG_d11 that are reported in table 2D. Since the p-values of all of our tests are greater 

than 0.05, we cannot reject the null hypothesis and find that there is no significant 

difference in the variances of RALG and RALG_d11. Hence, we find that seasonality is 

not significant in the level of interest series. However, because this result may be 

influenced by the trend in the data, we compare the differences of the adjusted 

(DRALG_d11) and unadjusted (DRALG) data. 

The time paths of DRALG and DRALG_d11 (see Figure 2E) follow each other closely. The 

difference between DRALG and DRALG_d11 (denoted D_DRALG) is plotted in Figure 2F. 

The difference indicates time-varying cycles that dramatically reduce through time. 

Variance equality tests between DRALG and DRALG_d11 are reported in Table 2G. The 

p-values for Levene, Brown Forsythe, F-test and Bartlett tests are greater than 0.05 

indicating equal variances while the p-value for Siegel Tukey is less than 0.05. We latter 

rejects the null hypothesis of equal variance. Hence, the results regarding equality of 

variance are ambiguous, if they generally suggest equal variances and no seasonality. 

To explore the issue further we plot the ACFs of RALG and DRALG in figure 2H and 2I, 

respectively. Shown in Fig. 2H is the ACF for RALG. The first 12 autocorrelation 

coefficients (ACs) are significant (and not just at the seasonal lags) which suggests 

persistence and not seasonality. The ACF for DRALG (see fig. 2I) has a significant AC at 

the first seasonal lag (lag 4) and all other ACs at seasonal lags are insignificant. This 

provides only slight evidence that seasonality is significant in the interest rate data. Most 

of the evidence suggests no seasonality and because we do not expect seasonality in the 

interest rate data we will use the unadjusted data RALG in our VAR analysis. 
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6.11.3. The seasonality features real effective exchange rate in Algeria 

The graphs below depict the following variables. The Algerian real effective exchange 

(denoted REEALG), the seasonally adjusted REEALG series (REEALG_d11) and D_REEALG 

= REEALG - REEALG_d11, as well as the first (nonseasonal) difference of LREEALG 

(DLREEALG), the seasonally adjusted LREEALG series (LREEALG_d11) and D_LREEALG = 

LREEALG - LREEALG_d11 (where LREEALG is the log of REEALG). The seasonally adjusted 

series (REEALG_d11) is obtained using the Census X13 procedure in EViews. Tables 3D 

and 3G report various tests of the null hypothesis of equality of variance for REEALG and 

REEALG_d11 as well as DLREEALG and DLREEALG_d11.  
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As shown in Fig. 3A, the graph of the real effective exchange rate for Algeria exhibits a 

downward trend if it converges to a constant.  

The time paths of REEALG and REEALG_d11 (see Figure 3B) follow each other closely and 

it is difficult to discern whether the difference between them reflects seasonality. 

Therefore, the difference between REEALG and REEALG_d11 (denoted D_REEALG) is 

plotted in Figure 3C. The difference has revealed a cyclical fluctuation. Whilst this may 

indicate time-varying seasonality we need to ascertain whether this seasonality is 

significant. To do this we refer to a variety of tests for the equality of variance between 

REEALG and REEALG_d11 that are reported in table 3D. Since the p-values of all of our 
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tests is greater than 0.05, we cannot reject the null hypothesis and find that there is no 

significant difference in the variances of REEALG and REEALG_d11. Hence, we find that 

seasonality is not significant in the level of the real effective exchange rate.  However, 

because this result may be influenced by the trend in the data, we compare the 

differences of the adjusted (DLREEALG_d11) and unadjusted (DLREEALG) data. 

The time paths of DLREEALG and DLREEALG_d11 (see Figure 3E) follow each other 

closely. The first difference has removed the trend and gives a relatively constant mean 

process. The difference between DLREEALG and DLREEALG_d11 (denoted D_DLREEALG) 

is plotted in Figure 3F. The difference has revealed a regular fluctuation around a 

relatively constant mean that ranges between -0.0127 and 0.0216 and substantially 

declines through time. Whilst this may indicate time-varying seasonality we need to 

ascertain whether this seasonality is significant. To do this we refer to tests for the 

equality of variance between DLREEALG and DLREEALG_d11 that are reported in table 

3G. Since the p-values of all of our tests is greater than 0.05, we cannot reject the null 

hypothesis and find that there is no significant difference in the variances of DLREEALG 

and DLREEALG_d11. Hence, we find that seasonality is not significant in the difference 

of the log of the real effective exchange rate data for Algeria 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of REEALG and DLREEALG in figure 3H and 3I. Shown in Fig. 3H is the 

ACF for REEALG. All autocorrelation coefficients (ACs) are significant (and not just at the 

seasonal lags) which suggests nonstationarity and not necessarily seasonality. The ACF 

for DLREEALG has no significant ACs at seasonal lags (see fig. 3I). This implies that 

seasonality is not significant in real effective exchange rate and confirms the results of 

the variance equality tests. Hence, we will use the unadjusted data REEALG our VAR 

analysis. 
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6.12.1 The graphical features of selected macroeconomic variables for Angola 

In Angola, we amend the reduced sample identified in previous section (Table 6.4.8) 

from 1997q4 – 2014q4 to 1999q4 – 2014q4 because data is not available for many 

important series before 1999q4. The graphs below depict the following variables. The 

Angolan consumer price (denoted PANG), the seasonally adjusted PANG series 

(PANG_d11) and D_PANG = PANG - PANG_d11, the first (nonseasonal) difference of 

LPANG (DLPANG), the seasonally adjusted LPANG series (LPANG_d11) and D_LPANG = 

LPANG - LPANG_d11 (where LPANG is the log of PANG). The seasonally adjusted series 

(PANG_d11) is obtained using the Census X13 procedure in EViews. Tables 1D and 1G 

report various tests of the null hypothesis of equality of variance for PANG and 

PANG_d11 as well as DLPANG and DLPANG_d11. 
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As shown in Fig. 1A, the graph of consumer prices for Angola (PANG) exhibits an upward 

trend suggesting non-stationarity and a need to apply stationarity inducing 

transformations. Although seasonality may be expected in price data it is not visible in 

the price plot because of the dominant trend; seasonality may be revealed once the 

trend is removed through differencing. 

The time paths of PANG and PANG_d11 (see Figure 1B) follow each other closely and it 

is difficult to discern whether the difference between them reflects seasonality. 

Therefore, the differences between PANG and PANG_d11 (denoted D_PANG) is plotted 

in Figure 1C. The difference has revealed cyclical fluctuations that range between -0.45 
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and 0.32. Whilst this may indicate time-varying seasonality we need to ascertain 

whether this seasonality is significant. To do this we refer to a variety of tests for the 

equality of variance between PANG and PANG_d11 that are reported in table 1D. Since 

the p-values of all of our tests is greater than 0.05, we cannot reject the null hypothesis 

and find that there is no significant difference in the variances of PANG and PANG_d11 

and hence find that seasonality is not significant in the price level. However, because 

this result may be influenced by the nonstationarity of the data we compare the 

differences of the logs of the adjusted (DLPANG_d11) and unadjusted (DLPANG) data. 

The time paths of DLPANG and DLPANG_d11 (see Figure 1E) follow each other closely. 

The trend has not been removed as would be expected after first differencing. The 

difference between DLPANG and DLPANG_d11 (denoted D_DLPANG) is plotted in Figure 

1F. The difference has revealed a regular fluctuation around a relatively constant mean 

that ranges between -0.0138 and 0.0206. Whilst this may indicate time-varying 

seasonality we need to ascertain whether this seasonality is significant. To do this we 

refer to tests for the equality of variance between DLPANG and DLPANG_d11 that are 

reported in table 1G. Since the p-values of all of our tests are greater than 0.05 we 

cannot reject the null hypothesis and find that there is no significant difference in the 

variances of DLPANG and DLPANG_d11. Hence, we find that seasonality is not significant 

in the difference of the log prices for Angola 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of PANG and DLPANG in figure 1H and 1I. Shown in Fig. 1H is the ACF 

for PANG. The first 15 autocorrelation coefficients (ACs) are significant (and not just at 

the seasonal lags) which suggests nonstationarity and not necessarily seasonality. The 

ACF for DLPANG (see fig. 1I) has the first 11 significant ACs (and not just at the seasonal 

lags) which suggests persistence and not necessarily seasonality.  This implies the need 

to plot the ACF of the second difference of LPANG to determine if there is seasonality. 

The ACF for second difference D(PANG,2) indicates insignificant ACs at all the seasonal 

lags except lag 4 (see fig. 1J). This implies that seasonality is not significant in price data. 

Hence, we use the unadjusted data PANG in our VAR analysis. 
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6.12. 2. The seasonality features of interest rate in Angola 

We analyse the stationarity and seasonality characteristics of the interest rate variable 

in Angola. The graphs below depict the following indicators. The Angolan interest rate 

(denoted RANG), the seasonally adjusted RANG series (RANG_d11) and D_RANG = RANG 

- RANG_d11, as well as the first (nonseasonal) difference of RANG (DRANG). The 

seasonally adjusted series (RANG_d11) is obtained using the Census X13 procedure in 

EViews. Tables 2D and 2G report various tests of the null hypothesis of equality of 

variance for RALG and RALG_d11 as well as DRALG and DRALG_d11. 
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As shown in Fig. 2A, the interest rate series (RANG) exhibits a downward trend (there may be 

a step shift around 2005). Seasonality and the business cycle are not visible in Angola 

interest rate plot. 

The time paths of RANG and RANG_d11 (see Figure 2B) follow each other closely with 

and it is difficult to discern whether the difference between them reflects seasonality. 

Therefore, the differences between RANG and RANG_d11 (denoted D_RANG) is plotted 

in Figure 2C. The difference has revealed a regular cyclical fluctuation that suggests time- 

varying seasonality.  To ascertain whether this seasonality is significant, we refer to a 

variety of tests for the equality of variance between RANG and RANG_d11 that are 
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reported in table 2D. Since the p-values of all of our tests is greater than 0.05, we cannot 

reject the null hypothesis and find that there is no significant difference in the variances 

of RANG and RANG_d11.  Hence, we find that seasonality is not significant in the RANG. 

However, because this result may be influenced by the trend (shift) in the data we 

compare the differences of the adjusted (DRANG_d11) and unadjusted (DRANG) data. 

The time paths of DRANG and DRANG_d11 (see Figure 2E) follow each other closely. The 

difference between DRANG and DRANG_d11 (denoted D_DRANG) is plotted in Figure 

2F. The difference has revealed a relatively constant mean with variations that 

substantially decrease. Whilst this may indicate time-varying seasonality we need to 

ascertain whether this seasonality is significant.  To do this we refer to a variety of tests 

for the equality of variance between (DRANG) and (DRANG_d11) that are reported in 

table 2G. Since the p-values of all of our tests is greater than 0.05, we cannot reject the 

null hypothesis and find that there is no significant difference in the variances of DRANG 

and DRANG_d11. Hence, we find that seasonality is not significant in the difference of 

interest rate for Angola. 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of RANG and DRANG in figure 2H and 2I. Shown in Fig. 2H is the ACF for 

RANG. The first 15 autocorrelation coefficients (ACs) are significant (and not just at the 

seasonal lags) which suggests nonstationarity and not necessarily seasonality. The ACF 

for DRANG (see fig. 2I) has no significant ACs at seasonal lags. This implies that 

seasonality is not significant in the data and confirms the results of the variance equality 

tests. Hence, we use the unadjusted data RANG in our VAR analysis. 
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6.12.3. The seasonality features of money supply in Angola 

The graphs below depict the following variables. The Angolan money supply (denoted 

MANG), the seasonally adjusted MANG series (MANG_d11) and D_MANG = MANG - 

MANG_d11, as well as the first (nonseasonal) difference of LMANG (DLMANG), the 

seasonally adjusted LMANG series (LMANG_d11) and D_LMANG = LMBRA - LMANG_d11 

(where LMANG is the log of MANG). The seasonally adjusted series (MANG_d11) is 

obtained using the Census X13 procedure in EViews. Tables 3D and 3G report various 

tests of the null hypothesis of equality of variance for MANG and MANG_d11 as well as 

DLMANG and DLMANG_d11. 
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As shown in Fig. 3A, the graph of the money supply in Angola (MANG) exhibits an upward trend 

suggesting non-stationarity and a need to apply stationarity inducing transformations. There 

are cycles that probably reflect seasonality. Therefore, (MANG) may need to be 

seasonally adjusted. 

The time paths of MANG and MANG_d11 (see Figure 3B) follow each other. It is obvious 

that the variation in MANG is greater than that of MANG_d11 and the plot of 
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MANG_d11 is smoother than the plot of MANG most especially at the end of the sample.  

The difference between MANG and MANG_d11 (denoted D_MANG) is plotted in Figure 

3C. The difference reveals a regular cyclical fluctuation that substantially increases 

through time and this could suggest time-varying seasonality. To ascertain whether the 

seasonality is significant we refer to a variety of tests for the equality of variance 

between MANG and MANG_d11 that are reported in table 3D. Since the p-values of all 

tests are greater than 0.05, we cannot reject the null hypothesis and find that there is 

no significant difference in the variances of MANG and MANG_d11. Hence, we find that 

seasonality is not significant in the level of the data. However, because this result may 

be influenced by the nonstationarity of the data we compare the differences of the 

adjusted (DLMANG_d11) and unadjusted (DLMANG) data. 

The time paths of DLMANG and DLMANG_d11 (see Figure 3E) follow each other closely. 

The trend has been removed and the series broadly fluctuates around a constant mean 

as expected after first differencing. The variation in DLMANG is greater than that of 

DLMANG_d11. Therefore, there may be seasonality in the DLMANG series. The 

difference between DLMANG and DLMANG_d11 (denoted D_DLMANG) is plotted in 

Figure 3F. The difference reveals cyclical fluctuations that range between -0.20 and 0.26. 

Whilst this may indicate time-varying seasonality we need to ascertain whether this 

seasonality is significant. To do this we refer to tests for the equality of variance between 

DLMANG and DLMANG_d11 that are reported in table 3G. Since the p-values of all of 

our tests are greater than 0.05 we cannot reject the null hypothesis and find that there 

is no significant difference in the variances of DLMANG and DLMANG_d11. Hence, 

seasonality appears to be insignificant in the difference of the log of the money supply 

in Angola. As a check we plot the ACFs of MANG and DLMANG in figure 3H and 3I. Shown 

in Fig. 3H is the ACF for MANG. The first 15 autocorrelation coefficients (ACs) are 

significant (and not just at the seasonal lags) which suggests nonstationarity and not 

necessarily seasonality. The ACF for DLMANG (see fig. 3I) has significant ACs at seasonal 

lags 4 and 8. This implies that seasonality is significant in the money supply data. Hence, 

despite the results of the variance equality tests We infer seasonality (because we 

expect seasonality and it is visually apparent) and use the seasonally adjusted data 

MANG_d11 in our VAR analysis. 
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6.13.1 The graphical features of selected macroeconomic variables for Saudi Arabia 

In Saudi Arabia, we amend the reduced sample identified in previous section (Table 

6.4.7) from 1976q3 – 2014Q4 to 1980q1 – 2014q4 to incorporate many important 

variables where data is available over this reduced sample. The graphs below depict the 

following variables. The Saudi Arabian consumer price (denoted PSAU), the seasonally 

adjusted PSAU series (PSAU_d11) and D_PSAU = PSAU - PSAU_d11, the first 

(nonseasonal) difference of LPSAU (DLPSAU), the seasonally adjusted LPSAU series 

(LPSAU_d11) and D_LPSAU = LPSAU - LPSAU_d11 (where LPSAU is the log of PSAU). The 

seasonally adjusted series (PSAU_d11) is obtained using the Census X13 procedure in 

EViews. Tables 1D and 1G report various tests of the null hypothesis of equality of 

variance for PSAU and PSAU_d11 as well as DLPSAU and DLPSAU_d11. 

1A.          1B. 

60

70

80

90

100

110

120

1980 1985 1990 1995 2000 2005 2010

PSAU

   

60

70

80

90

100

110

120

1980 1985 1990 1995 2000 2005 2010

PSAU PSAU_D11  

1C.                                                 1D. 

-.4

-.3

-.2

-.1

.0

.1

.2

.3

1980 1985 1990 1995 2000 2005 2010

D_PSAU

         

  



536 
 

1E.          1F 

-.06

-.04

-.02

.00

.02

.04

.06

1980 1985 1990 1995 2000 2005 2010

DLPSAU DLPSAU_D11             
-.008

-.006

-.004

-.002

.000

.002

.004

.006

1980 1985 1990 1995 2000 2005 2010

D_DLPSAU

 

1G.         1H 

             

1I.      1J. 

            

As shown in Fig. 1A, the graph of consumer prices for Saudi Arabia (PSAU) exhibits an 

upward trend suggesting non-stationarity and a need to apply stationarity inducing 

transformations. Although seasonality may be expected in price data it is not visible in 

the price plot because of the dominant trend; seasonality may be revealed once the 

trend is removed through differencing. 

The time paths of PSAU and PSAU_d11 (see Figure 1B) follow each other closely and it 

is difficult to discern whether the difference between them reflects seasonality. 
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Therefore, the differences between PSAU and PSAU_d11 (denoted D_PSAU) is plotted 

in Figure 1C. The difference has revealed cyclical fluctuations that range between -0.30 

and 0.24.  Whilst this may indicate time-varying seasonality we need to ascertain 

whether this seasonality is significant. To do this we refer to a variety of tests for the 

equality of variance between PSAU and PSAU_d11 that are reported in table 1D. Since 

the p-values of all of our tests is greater than 0.05, we cannot reject the null hypothesis 

and find that there is no significant difference in the variances of PSAU and PSAU_d11. 

Hence, we find that seasonality is not significant in the price level. However, because 

this result may be influenced by the nonstationarity of the data we compare the 

differences of the logs of the adjusted (DLPSAU_d11) and unadjusted (DLPSAU) data. 

The time paths of DLPSAU and DLPSAU_d11 (see Figure 1E) follow each other closely. 

The trend has been removed and the series broadly fluctuates around a relatively 

constant mean as expected after first differencing. The variation in DLPSAU is greater 

than that of DLPSAU_d11 suggesting seasonality in DLPSAU while DLPSAU_d11 is 

smoother. This suggests that DLPSAU_ d11 exhibits reduced seasonality as expected. 

The difference between DLPSAU and DLPSAU_d11 (denoted D_DLPSAU) is plotted in 

Figure 1F. The difference has revealed a regular fluctuation around a relatively constant 

mean that ranges between -0.0068 and 0.0041. Whilst this may indicate time-varying 

seasonality we need to ascertain whether this seasonality is significant. To do this we 

refer to tests for the equality of variance between DLPSAU and DLPSAU_d11 that are 

reported in table 1G. Since the p-values of all of our tests are greater than 0.05 we 

cannot reject the null hypothesis and find that there is no significant difference in the 

variances of DLPSAU and DLPSAU_d11. Hence, we find that seasonality is not significant 

in the difference of the log prices for Saudi Arabia 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of PSAU and DLPSAU in figure 1H and 1I. Shown in Fig. 1H is the ACF for 

PSAU. All autocorrelation coefficients (ACs) are significant (and not just at the seasonal 

lags) which suggests nonstationarity and not necessarily seasonality. In the ACF for 

DLPSAU (see fig. 1I) the first 9 ACs are significant (and not just at seasonal lags) reflecting 

persistence in the data. Therefore, we plot the ACF of the second difference of LPSAU 

to determine if there is seasonality. The ACF for second difference D(PSAU,2) indicates 

insignificant ACs at all the seasonal lags except lag 12 (see fig. 1J). This implies that 
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seasonality is not significant in price data. Hence, we use the unadjusted data PSAU in 

our VAR analysis. 

 

6.13.2 The seasonality features real effective exchange rate in Saudi Arabia 

The graphs below depict the following variables. The Saudi Arabian real effective 

exchange (denoted REESAU), the seasonally adjusted REESAU series (REESAU_d11) and 

D_REESAU = REESAU - REESAU_d11, as well as the first (nonseasonal) difference of 

LREESAU (DLREESAU), the seasonally adjusted LREESAU series (LREESAU_d11) and 

D_LREESAU = LREESAU - LREESAU_d11 (where LREESAU is the log of REESAU). The 

seasonally adjusted series (REESAU_d11) is obtained using the Census X13 procedure in 

EViews. Tables 2D and 2G report various tests of the null hypothesis of equality of 

variance for REESAU and REESAU_d11 as well as DLREESAU and DLREESAU_d11.   
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As shown in Fig. 2A, the graph of real effective exchange rate for Saudi Arabia exhibits a 

downward trend (possibly a step shift in the mid-1980s) suggesting non-stationarity and 

a need to apply stationarity inducing transformations. Seasonality is not visible, although 

this may be revealed once the trend is removed through differencing. 

The time paths of REESAU and REESAU_d11 (see Figure 2B) follow each other closely 

and it is difficult to discern whether the difference between them reflects seasonality. 

Therefore, the differences between REESAU and REESAU_d11 (denoted D_REESAU) is 
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plotted in Figure 2C. The difference has revealed cyclical fluctuations that substantially 

decline through time. Whilst this may indicate time-varying seasonality we need to 

ascertain whether this seasonality is significant. To do this we refer to a variety of tests 

for the equality of variance between REESAU and REESAU_d11 that are reported in table 

2D. Since the p-values of all of our tests is greater than 0.05, we cannot reject the null 

hypothesis and find that there is no significant difference in the variances of REESAU and 

REESAU_d11. Hence, we find that seasonality is not significant in the level of the real 

effective exchange rate. However, because this result may be influenced by the 

nonstationarity of the data we compare the differences of the adjusted (DLREESAU_d11) 

and unadjusted (DLREESAU) data. 

The time paths of DLREESAU and DLREESAU_d11 (see Figure 2E) follow each other 

closely. The first difference has removed the trend and gives a relatively constant mean 

process. The differences between DLREESAU and DLREESAU_d11 (denoted 

D_DLREESAU) is plotted in Figure 2F. The difference has revealed cyclical fluctuations 

that substantially decline through time. Whilst this may indicate time-varying 

seasonality we need to ascertain whether this seasonality is significant. To do this we 

refer to tests for the equality of variance between DLREESAU and DLREESAU_d11 that 

are reported in table 2G. Since the p-values of all of our tests is greater than 0.05, we 

cannot reject the null hypothesis and find that there is no significant difference in the 

variances of DLREESAU and DLREESAU_d11. Hence, we find that seasonality is not 

significant in the difference of the log of the real effective exchange rate data for Saudi 

Arabia 

To check that we have not missed any significant seasonality we plot the autocorrelation 

functions (ACFs) of REESAU and DLREESAU in figure 2H and 2I. Shown in Fig. 2H is the 

ACF for REESAU. All autocorrelation coefficients (ACs) are significant (and not just at the 

seasonal lags) which suggests nonstationarity and not necessarily seasonality. The ACF 

for DLREESAU has no significant ACs at seasonal lags (see fig. 2I). This implies that 

seasonality is not significant in real effective exchange rate and confirms the results of 

the variance equality tests. Hence, we will use the unadjusted data REESAU in our VAR 

analysis. 
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 Appendix. Section 6.3 

Table 6.7.1. Russia Unit root tests (the level data) 

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -3.6978* -2.9136 -3.2956 -3.4907 0.2605 -1.9466 -1.0723 -3.1676 

M  -2.9546* -2.9136 -0.1664 -3.4907 0.4200 -1.9467 -0.3494 -3.1676 

R -3.6121* -2.9126 -3.4998* -3.4892 -2.5735* -1.9465 -3.2216* -3.1644 

REE  -3.5466* -2.9126 -3.0352 -3.4892 0.3029* -1.9465 -1.2420 -3.1644 

U -1.7779 -2.9126 -2.3238 -3.4892 0.1901 -1.9465 -1.8488 -3.1644 

GAP  -3.4199* -2.9126 -3.3988 -3.4907 -2.7541* -1.9466 -3.1639  -3.1676 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -6.1725* -2.9126 -2.7758 -3.4893 0.9472 0.4630 0.2552 0.1460 

M -5.0755* -2.9126 -0.3402 -3.4892 0.9402 0.4630 0.2433 0.1460 

R  -3.6233* -2.9126 -3.5077* -3.4892 0.1716* 0.4630 0.1437* 0.1460 

REE  -3.7141* -2.9126 -3.0315 -3.4892 0.9145 0.4630 0.2523 0.1460 

U -1.8567 -2.9126 -2.6280 -3.4892 0.8369 0.4630 0.1841 0.1460 

GAP  -2.6972 -2.9126 -2.6792 3.4892 0.0560* 0.4630 0.0560* 0.1460 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 
 

As seen from Table 6.7.1 the absolute values of all the test statistics are less than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

variables (the unit root null cannot be rejected) except for the interest rate, the 

consumer price, the money supply, real excahnge rate and the output gap. The null is 

rejected for the interest rate for all 3 tests.  For the consumer price and money supply 

for both ADF and PP tests when only the intercept is included in the test equation.  For 

the output gap for both the ADF and DF-GLS tests when only the intercept is included in 

the test equation and for the real exchange rate the null is rejected when ADF, DF-GLS 

and PP tests included only the intercept in the test equation. In addition, the KPSS test 

statistic is greater than critical value for all variables (giving rejection of the I(0) null) 

except for the interest rate and output gap (when both intercept and trend are included 

in the test equation for both variables). Hence, all Russian series are unambiguously non-

stationary except for the interest rate, consumer prices, the money supply and the 

output gap. The interest rate is unambiguously stationary whereas the results for prices, 

the money supply and the output gap are ambiguous (if at least half of the tests indicate 
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nonstationarity for all 3 variables). Therefore, we proceed to unit root tests for the first 

difference of the data. 

Table 6.7.2 Russian unit root tests (the first difference data) 

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -2.7866 -2.9135 -4.2816* -3.49007 -
2.52195* 

-1.9467 -4.2728* -3.1676 

M  -2.9212* -2.9135 -4.3181* -3.4907 -1.1735 -1.9468 -4.2114* -3.1676 

R -9.3901* -2.9126 -9.3700* -3.4901 -7.9043* -1.9465 -9.1772* -3.1644 

REE -7.2709* -2.9135 -7.9079* -3.4907 -1.1986* -1.9465  -7.3467* -3.1676 

U -6.3527* -2.9136 -6.3066* -3.4953 -5.9051* -1.9467 -6.3141* -3.1676 

GAP -5.3322* -2.9135  -5.3135* -3.4906  -5.2552* -1.9471 -5.3899* -3.1676 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -2.6265 -2.9134 -5.9121* -3.4892 0.7877 0.4630 0.1006* 0.1460 

M -2.7522 -2.9136 -4.3653* -3.4892 0.8346 0.4630 0.0555* 0.1460 

R -9.4962* -2.9123 -9.7910* -3.4907 0.1193* 0.4630 0.0359* 0.1460 

REE -7.2709* -2.9135 -7.9926* -3.4907 0.5732 0.4630 0.0642* 0.1460 

U  -6.3701* -2.9135 -6.3312* -3.4906 0.0930* 0.4630 0.0754* 0.1460 

GAP -5.2259* -2.9135 -5.1864* -3.4907 0.0817* 0.4630 0.0650* 0.1460 
 

As seen from Table 6.7.2 the absolute values of the test statistics are greater than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

variables (rejecting the unit root null) except the consumer price (both ADF and PP tests 

when only the intercept is included in the test equation) and the money supply (DF-GLS 

and PP tests when only intercept is included in the tests equation). In addition, the KPSS 

test statistic is less than the critical value for all variables (giving non-rejection of the I(0) 

null) except for the consumer price, money supply and real exchange rates (when only 

the intercept is included in the test equation). Hence, all Russian first difference series 

are unambiguously stationary except for the consumer price, money supply and real 

exchange rate where the test results are ambiguous (if at least half of the tests indicate 

stationarity in all cases). That some tests indicate a nonstationary first difference for 

prices and the money supply may reflect low power, possibly due to structural breaks.  
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Table 6.7.3. Russian breakpoint unit root tests (the levels data) 

 Unit Root with Break Test (Innovative 
outliers) 

Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -5.3547* -4.4436 -5.4428* -4.8598 -1.2439 -4.4436 -3.3753 -4.8598 

M -3.3600  -4.4436 -1.5937 -4.8598 -0.9752 -4.4436 -1.3460 -4.8598 

R -3.9450 -4.4436 -4.2904 -4.8598 -4.1212 -4.4436 -4.7940 -4.8598 

REE -4.3638 -4.4436 -4.5700 -4.8598 -4.0913 -4.4436 -4.4572 -4.8598 

U -3.0607 -4.4436 -8.2622* -4.8598 -3.0402 -4.4436 -4.4459 -4.8598 

GAP -4.0022 -4.4436 -8.5616* -4.8598 -3.6935 -4.4436 -4.4188 -4.8598 

 

Table 6.7.4. Russian breakpoint unit root test (the first difference data)  
 Unit Root with Break Test (Innovative 

outliers) 
Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -3.7799 -4.4436 -5.0135* -4.8598 -4.0045 -4.4436 -5.1296* -4.8598 

M  -5.6844* -4.4436 -5.5107* -4.8498 -5.7459* -4.4436 -5.5503* -4.8598 

R -9.6093* -4.4436 -9.4996* -4.8598 -9.7767* -4.4436 -9.7617* -4.8598 

REE -9.2810* -4.4437 -9.8947* -4.8598 -9.3431* -4.4436 -10.0043* -4.8598 

U -7.7166* -4.4436 -7.8445* -4.8598 -7.8359* -4.4437 -8.0977* -4.8598 

GAP -8.1626* -4.4436 -7.8874* -4.8598 -8.1171* -4.4436 -7.8566* -4.8598 

 

In Table 6.7.3 and 6.7.4 we test the null hypothesis of a unit root against the alternative 

of a stationarity process around a structural break for the levels and first-differences of 

the data, respectively. In Table 6.7.3., the null hypothesis of a unit root in the levels of 

the data unambiguously cannot be rejected for all of the variables except prices, 

unemployment and the output gap. For the level of prices, the 2 of IO tests indicate 

stationarity around a structural break although the two AO tests suggest 

nonstationarity. For both unemployment and the output gap the IO test with intercept 

and trend indicates stationarity around a structural break if the 3 other tests suggest 

nonstationarity. 

In Table 6.7.4., the unit root null hypothesis is rejected at the 5% level of significance for 

all of the Russian first-differenced variables except for consumer prices using both IO 

and AO that only include the intercept – the 2 tests that include both intercept and trend 

suggest that this series is stationary around a structural break. However, all of the first 
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differenced variables are unambiguously stationary without structural breaks except for 

the consumer prices and the money supply. Therefore, we interpret the evidence that 

all Russian series (except prices and the money supply) are stationary in first-differences 

without structural breaks. Further, because at least half of the tests indicate that the 

first differences of  consumer prices and the money supply are stationary without 

structural breaks and we expect them to be stationary we will proceed with our VAR 

analysis as if these series are stationary in first differences. Nevertheless, the ambiguity 

of the results for these two series will be borne in mind if issues arise with the VAR 

modelling that suggests this assumption is inappropriate. Overall, despite some 

ambiguities in results, the unit root tests suggest that we can treat all variables for Russia 

as I(1) in our VAR analysis except for the interest rate that is unambiguously I(0).  
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Table 6.8.1. Indian unit root tests (the levels data) 

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -0.0499 -2.8748 -2.8639 -3.4309 2.9915* -1.9423 -2.4070 -2.9270 

M  -0.2763 -2.8751 -3.1270 -3.4313 -0.8753 -1.9423 -1.5487 -2.9278 

R -5.3922* -2.8748 -5.3859* -3.4309 -4.6450* -1.9423 -5.2592* -2.9270 

GAP -
16.0517* 

-2.8746 -
16.0147* 

-3.4305 -21.2101* -2.8746 -16.0826* -2.9262 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  0.1841 -2.8746 -2.8855 -3.4305 1.9390 0.4630 0.14787 0.1460 

M 1.4208 -2.8746 -5.1490 -3.4305 1.9360 0.4630 0.2472 0.1460 

R -
10.7247* 

-2.8746 -
10.7516* 

-3.4305 0.2317* 0.4630 0.1988 0.14600 

GAP -
21.2101* 

-2.8746 -
21.1358* 

-3.4305 0.03769* 0.4630 0.0377* 0.14600 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 
 

As seen from Table 6.8.1 the absolute values of the test statistics are less than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

variables in levels (the unit root null cannot be rejected) except for the interest rate, the 

output gap and consumer prices. For the interest rate and output gap both versions of 

all 3 tests unambiguously indicate that the data are stationary. For consumer prices only 

the DF-GLS test that includes just an intercept in the test equation indicates stationarity. 

In addition, the KPSS test statistic is greater than critical value for all variables (giving 

rejection of the I(0) null) except for the interest rate and output gap. For the output gap 

both versions of the KPSS test indicate stationarity while for the interest rate only the 

test equation that just includes an intercept suggests stationarity. Hence, the Indian unit 

root tests indicate that the level of the money supply is unambiguously nonstationary 

and the output gap is unambiguously stationary. While the results for prices and interest 

rates are ambiguous, the majority of tests indicate that interest rates are stationary and 

prices are nonstationary (and we expect prices to be intrinsically nonstationary).  Next, 

we proceed to unit root tests of the first difference of the data. 
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Table 6.8.2. Indian unit root tests (first difference) 

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test statistic 5% Critical 

values 

Test statistic 5% 

Critical 

values 

Test 

statistic 

5% 

Critical 

values 

Test 

statistic 

5Critical 

values 

P  -6.8803* -2.8750 -6.8612* -3.4312 -5.1288* -1.9423 -6.3017* -2.9270 

M -2.8663  -2.8750 -2.4616 -3.4312 -0.3552 -1.9423 -0.9674 -2.9278 

R -11.1853* -2.8748 -11.1732* -3.4309 -11.1970* -1.9423 -10.8825* -2.9270 

GAP  -10.5833* -2.8749  -10.5575* -3.4310 -12.3042* -1.9423 -11.3501* -2.9272 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test statistic 5% Critical 

values 

Test statistic 5% 

Critical 

values 

Test 

statistic 

5% 

Critical 

values 

Test 

statistic 

5% 

Critical 

values 

P -7.4586* -2.8746 -7.4395* -3.4305 0.0532* 0.4630 0.0485* 0.1460 

 M -25.1342*  -2.8746 -26.8749* -3.4306 0.3596* 0.4630 0.1828 0.1460 

R -68.7646* -2.8745 -70.9648* -3.4306 0.1012* 0.4630 0.0839* 0.1460 

GAP -152.6155* -2.8746 - 152.3218* -3.4306 0.2136* 0.4630 0.2126 0.1460 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5%  

 

As seen from Table 6.8.2 the absolute values of the test statistics are greater than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

first differenced variables (rejecting the unit root null) except for the money supply. For 

the money supply all versions of both the ADF and DF-GLS tests indicate that its first 

difference is nonstationary. In addition, the KPSS test statistic is less than critical value 

for all variables (giving non-rejection of the I(0) null) except for the money supply and 

output gap (this rejection is for the test when both intercept and trend is included in the 

test equation for both variables). Hence, all Indian series are unambiguously stationary 

in first differences except for the money supply and output the gap. For the first 

difference of the output gap all except one test indicate that it is stationary which, given 

that the level of the output gap is unambiguously stationary, suggests that it is unlikely 

to have an order of integration above 1. The test results are ambiguous for the first 

difference of the money supply with just over half of the tests indicating nonstationarity. 

That the majority of tests indicate a nonstationary first difference for the money supply 

may reflect low power, possibly due to structural breaks. 
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Table 6.8.3. Indian Breakpoint Unit root test (the levels data) 

 Unit Root with Break Test (Innovative 
outliers) 

Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -1.1742 -4.4437 -4.1344 -4.8598 -1.1349 -4.4436 -4.3935 -4.8598 

M -1.9741 -4.4437 -3.6868 -4.8598 -1.6580 -4.4436 -3.6527 -4.8598 

R  -
16.5731* 

-4.4436 -11.3457* -4.8598 -11.2545* -4.4436 -11.3512* -4.8598 

GAP -16.2552* -4.4436 -16.2611* -4.8598 -22.5358* -4.4436 -22.6431* -4.8598 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5%  

 

Table 6.8.4. Indian Breakpoint Unit root test (the first difference data)  
 Unit Root with Break Test (Innovative 

outliers) 
Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -7.2730* -4.4436 -7.2710* -4.8598 -8.1278* -4.4436 -8.1003* -4.8598 

M -3.9409 -4.4436 -3.83750 -4.8598 -3.8815 -4.4436 -3.8998 -4.8598 

R -16.5731* -4.4437 -16.4611* -4.8598 -15.5884* -4.4436 -15.5939* -4.8598 

GAP -38.5689* -4.4436 -40.2661* -4.8598 -40.3315* -4.4437  -39.7902* -4.8590 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5%  
 

In Table 6.8.3 and 6.8.4 we test the null hypothesis of a unit root against the alternative 

of a stationarity process around a structural break for the levels and first-differences of 

the data, respectively. In Table 6.8.3., the null hypothesis of a unit root in the levels of 

the data unambiguously cannot be rejected for all of the variables except for the interest 

rate and output gap. The tests indicate that both the interest rate and the output gap 

are unambiguously stationary around a structural break.  

In Table 6.8.4., the unit root null hypothesis is unambiguously rejected at the 5% level 

of significance for all of the first-differenced variables in India except for money supply. 

In contrast, the first difference of the money supply is unambiguously indicated to be 

nonstationary. Since the majority of unit root tests without structural breaks find the 

money supply to be nonstationary this suggest that the money supply data is I(2). 

Overall, there are some ambiguities in the results, however the unit root tests suggest 

that the output gap and interest rates are I(0), prices are I(1) and the money supply is 

probably I(2).  
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Table 6.9.1. Chinese unit root tests (the levels data) 

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -0.7687 -2.8903 -1.8688 -3.4549 0.9703 -1.9440 -1.5501 -3.0290 

M -1.8682 -2.8909 -2.5115 -3.4558 0.0297 -1.9441 -1.5340 -3.0332 

R  -1.8063 -2.8900 -1.9886 -3.4545 -0.4129 -1.9440 -1.8549 -3.0280 

REE  -2.1837 -2.8897 -3.1444 -3.4540 -0.9647 -1.9439 -1.0443 -3.0227 

GAP -3.8917* -2.8897 -3.8717* -3.4540 -3.8875* -1.9439 -3.9039* -3.0270 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -1.0021 -2.8897 -1.7221 -3.4540 1.0435 0.4630 0.1499 0.1460 

M  -2.3978 -2.8897 -2.2789 -3.4540 1.1298 0.4630 0.2199 0.1460 

R -1.7431 -2.8897 -1.8978 -3.4540  0.8558 0.4630 0.1570 0.1460 
REE  -2.2759 -2.8897 -3.1096 -3.4540 0.3423  0.4630 0.1671 0.1460 

GAP -4.0873* -2.8889 -4.0706* -3.4540 0.0421* 0.4630 0.0421* 0.1460 
Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 
 

As seen from Table 6.9.1 the absolute values of the test statistics are less than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

levels variables (the unit root null cannot be rejected) except for the output gap.  In 

addition, the KPSS test statistic is greater than critical value for all variables (giving 

rejection of the I(0) null) except for the output gap. Hence, all Chinese series in levels 

are unambiguously non-stationary except for the output gap, which is unambiguously 

stationary. Next, we proceed to the first difference of the data. 
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Table 6.9.2. China Unit root tests (the first difference data) 

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 

statistic 

5% 

Critical 

values 

Test 

statistic 

5% 

Critical 

values 

Test 

statistic 

5% Critical 

values 

Test 

statistic 

5% Critical 

values 

P -3.1336* -2.8903 -3.1065 -3.4549 -2.3977* -1.9440 -2.9047 -3.0290 

M  -1.7406  -2.8909 -2.3123 -3.4558 -1.3624 -1.9441 -1.6922 -3.0332 

R -7.6836* -2.8900 -7.6876* -3.4545 -7.7054* -1.9440 -7.6494* -3.0280 

REE -9.3562* -2.8900 -9.8394* -3.4545 -6.8873* -1.9442 -8.2698* -3.0280 

GAP -11.0676* -2.8900 -11.0124* -3.4545 -10.0086* -1.9440 -10.7696* -3.0280 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 

statistic 

5% 

Critical 

values 

Test 

statistic 

5% 

Critical 

values 

Test 

statistic 

5% Critical 

values 

Test 

statistic 

5% Critical 

values 

P -5.3574* -2.8900 -5.3301* -3.4545 0.2062* 0.4630 0.2045 0.1460 

M -14.8429* -2.8900 -16.8118* -3.4545 0.3540* 0.4630 0.0786* 0.1460 

R -7.6692* -2.8900 -7.6742* -3.4545 0.11323* 0.4630 0.0613* 0.1460 

REE -9.3506* -2.8900 -9.8394* -3.4545 0.4564* 0.4630 0.0835* 0.1460 

GAP  -11.1374* -2.8900  -11.0791* -3.4545 0.0289* 0.4630 0.0271* 0.1460 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 

 

As seen from Table 6.9.2 the absolute values of the test statistics are greater than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

first differenced variables (rejecting the unit root null) except the money supply (for all 

versions of both ADF and DF-GLS tests) and consumer prices (for the ADF and DF-GLS 

tests when both intercept and trend are included in the test equation). In addition, the 

KPSS test statistic is less than critical value for all variables (giving non-rejection of the 

I(0) null) except for the  consumer prices (when both intercept and trend are included 

in the test equation). Hence, all Chinese first differenced series are unambiguously 

stationary except for the money supply, consumer prices and the real exchange rate. 

Nevertheless, at least half of the tests indicate that the first differences of the money 

supply, consumer prices and the real exchange rate are stationary. That some of tests 

indicate a nonstationary first difference for the money supply, consumer prices and the 

real exchange rate may reflect low power, possibly due to structural breaks. 
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Table 6.9.3 China breakpoint unit root tests (the level data) 
 Unit Root with Break Test (Innovative 

outliers) 
Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -3.0010 -4.4436 -6.1896* -4.8598 -1.9355 -4.4436 -3.0617 -4.8598 

M  -3.0008 -4.4436  -4.8230 -4.8598 -1.6375 -4.4437 -2.4933 -4.8598 

R -4.9051* -4.4436 -4.8121 -4.8598 -4.8248* -4.4436 -4.5389 -4.8598 

REE -3.6155 -4.4436 -3.4663 -4.8598 -3.6417 -4.4436 -4.1800 -4.8598 

GAP -4.0465 -4.4436  -4.1831 -4.8598 -5.7086* -4.4436 -5.9767* -4.8598 
Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 

 

Table 6.9.4 China breakpoint unit root tests (First difference)  

 Unit Root with Break Test (Innovative outliers) Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -3.8270 -4.4436 -6.9092* -4.8598  -5.6640* -4.4436 -7.0083* -4.8598 

M  -3.5228 -4.4436 -3.2771 -4.8598 -3.6217 -4.4436 -3.2093 -4.8598 

R -8.7299* -4.4436 -8.8330* -4.8598 -8.8252* -4.4436 -4.9389* -4.8598 

REE  -
12.8988* 

-4.4436 -12.7519* -4.8598 -10.6578* -4.4436 -10.6549* -4.8598 

GAP  -
11.8423* 

-4.4436 -11.7887* -4.8598  -11.9271* -4.4436 -11.9232* -4.8598 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 

 

In Table 6.9.3 and 6.9.4 we test the null hypothesis of a unit root against the alternative 

of a stationarity process around a structural break for the levels and first-differences of 

the data, respectively. In Table 6.9.3., the null hypothesis of a unit root in the levels of 

the data unambiguously cannot be rejected for all of the variables except for consumer 

prices, interest rates and output gap. For consumer prices the null is rejected in 1 of the 

4 tests (IO with intercept and trend), however we reject the inference of stationarity 

around a structural break because we believe that consumer prices are intrinsically 

nonstationary. The null is rejected in 2 of the 4 tests for both the interest rate (IO and 

AO versions with only an intercept) and the output gap (both AO versions). Since the 

output gap was unambiguously stationary in levels without a structural break, we simply 

interpret these results as confirming this variable’s stationarity. With half of the test 

results indicating that interest rates are nonstationary in levels; we consider that this 

series could be nonstationary and treat it as such in our VAR analysis although we will 
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recognise the possibility that it is stationary around a shifting intercept in our 

multivariate modelling.  

In Table 6.9.4., the unit root null hypothesis is rejected at the 5% level of significance for 

all of the first-differenced variables except for the money supply (where the unit root 

null cannot be rejected for all tests). Nevertheless, since at least half of the tests without 

structural breaks indicate stationarity of the first difference of money supply we treat 

this variable as stationary in first differences in our VAR analysis although we will 

recognise the possibility that it is nonstationary in our multivariate analysis.  

Whilst there are some ambiguities in the results the unit root tests overall suggest that 

all of the Chinese series are I(1) except for the output gap which is I(0).  
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Table 6.10.1. South African unit root tests (levels data) 

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 

statistic 

5% 

Critical 

values 

Test 

statistic 

5% 

Critical 

values 

Test 

statistic 

5% 

Critical 

values 

Test 

statistic 

5% 

Critical 

values 

P -1.0310 -2.8945 -3.2114 -3.4622 2.0643* -1.9446 -2.2404 -3.0716 

M -2.7389 -2.8945 -1.2700 -3.4622 0.9399 -1.9447 -0.9418 -3.0716 

R -1.6625 -2.8945 -3.1730 -3.4622 -1.0405 -1.9445 -3.0644 -3.0716 

REE  -1.9161 -2.8947 -2.2088 -3.4616 -0.6685 -1.9445 -2.0471 -3.0684 

GAP  -3.9598* -2.8943 -3.9365* -3.4616  -3.8982* -1.9445 -3.9859* -30685 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 

statistic 

5% 

Critical 

values 

Test 

statistic 

5% 

Critical 

values 

Test 

statistic 

5% 

Critical 

values 

Test 

statistic 

5% 

Critical 

values 

P -1.4087 -2.8947 -2.8308 -3.4617 1.2101 0.4630 0.1440* 0.1460 

M -2.4712 -2.8947 -1.3158 -3.4617 1.9155 0.4630 0.2515 0.1460 

R -1.6085 -2.8947 -2.6799 -3.4617  0.9188 0.4630 0.0831* 0.1460 
REE  -2.0969 -2.8947 -2.4788 -3.4617 0.6494 0.4630 0.1675 0.1460 

GAP -3.0939* -2.8939 -3.0937* -2.8939 0.0377* 0.4630 0.0377* 0.1460 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 

 

As seen from Table 6.10.1 the absolute values of the test statistics are less than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

variables in levels (the unit root null cannot be rejected) except for the output gap and 

consumer prices. For the output gap all tests reject the unit root null hypothesis whereas 

for consumer prices only one test, DF-GLS when only the intercept is included in the test 

equation, rejects the null. In addition, the KPSS test statistic is greater than critical value 

for all variables (giving rejection of the I(0) null) except for the consumer price, the 

interest rate and the output gap. For the output gap both versions of the KPSS test 

cannot reject the I(0) null whereas for consumer prices and the interest rate only the 

version of the test that includes both intercept and trend cannot reject the null. Hence, 

all South African series are unambiguously non-stationary except for the output gap, 

consumer prices and the interest rate. The output gap is unambiguously stationary 

whereas the majority of test results indicate that consumer prices and interest rates are 

nonstationary. Next, we proceed to the unit root tests of the first difference of the data. 
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Table 6.10.2. South African unit root tests (first difference) 

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -6.4352* -2.8951 -6.4595* -3.4622 -5.4045* -1.9446 -6.3383* -3.0716 

M  -6.8196* -2.8951 -7.0352* -3.4622 -0.6505 -1.9449 -6.1250* -3.0716 

R  -7.2664* -2.8951 -7.2261* -3.4622 -4.5717* -1.9446 -6.0446* -3.0716 
REE  -7.8684*  -2.8951 -7.8252* -3.4622 -7.9100* -1.9446 -7.8824* -3.0716 

GAP  -7.8781* -2.8943 -7.8341* -3.4610 -4.5795* 1.9445 -6.2040* -3.0652 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -6.0942* -2.8951 -6.0603* -3.4623 0.1741 0.4630* 0.0590* 0.1460 

M -6.8547* -2.8951 -7.0175* -3.4622 0.4905 0.4630 0.0476* 0.1460 

R  -7.2065* -2.8951 -7.1621* -3.4623  0.0489* 0.4630 0.0497* 0.1460 
REE  -7.8795* -2.8951 -7.8366* -3.4622 0.0614* 0.4630 0.0528* 0.1460 

GAP  -7.7779* -2.8943 -7.7251* -3.4612 0.0275* 0.4630 0.0258* 0.1460 
Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 
 

As seen from Table 6.10.2 the absolute values of the test statistics are greater than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

first differenced variables (rejecting the unit root null) except for the money supply.  

Whilst the unit root null cannot be rejected for the DF-GLS test when only the intercept 

is included the majority of tests do reject the null. In addition, the KPSS test statistic is 

less than critical value for all differenced variables (giving non-rejection of the I(0) null) 

except for the money supply where the KPSS test rejects when only the intercept is 

included in the test equation. Hence, all South African series are unambiguously 

stationary in first differences except for the money supply. In the case of the differenced 

money supply the results are ambiguous; however, the majority of tests indicate 

stationarity.  

That some of tests indicate a nonstationary first difference for the money supply may 

reflect low power of the unit root tests, possibly due to structural breaks.
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Table 6.10.3. South African breakpoint unit root tests (level of data)  

 Unit Root with Break Test (Innovative 
outliers) 

Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 

 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -2.7764 -4.4436 -4.1024 -4.8598 -1.1044 -4.4437 -4.0414 -4.8598  

M -3.5732 -4.4436 -4.1069 -4.8598 -1.4944 -4.4437 -3.7147 -4.8598 

R -6.0487* -4.4436 -5.6451* -4.8598 -3.6484 -4.4437 -4.8929* -4.8598 

REE  -3.2460 -4.4436 -3.4831 -4.8598 -2.8203 -4.4436 -3.5192 -4.8598 

GAP  -4.7447* -44436  -4.9916* -4.8598 -4.9899* -4.4436 -5.1261* -4.8598 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 

Table 6.10.4. South African breakpoint unit root tests (first difference)  

 Unit Root with Break Test (Innovative outliers) Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 

statistic 

5% 

Critical 

values 

Test statistic 5% 

Critical 

values 

Test 

statistic 

5% Critical 

values 

Test 

statistic 

5% 

Critical 

values 

P  -8.8063* -4.4436 -8.7535* -4.8598 -6.7186* -4.4436 -6.7983* -4.8598 

M -7.6315* -4.4436 -7.5415* -4.8598 -7.7096* -4.4436 -7.6537* -4.8598 

R -10.0762* -4.4436 -10.5012* -4.8598 -7.9131* -4.4436 -7.9838* -4.8598 

 REE  -8.6345* -4.4436 -8.8668* -4.8598 -8.7312* -4.4436 -8.9756* -4.8598 

GAP  -8.8949* -4.4436 -8.7963* -4.8598 -8.8830* -4.4436 -8.8846* -.4.6073 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 

In Table 6.10.3.  and 6.10.4 we test the null hypothesis of a unit root against the 

alternative of a stationarity process around a structural break for the levels and first-

differences of the data, respectively. In Table 6.10.3, the null hypothesis of a unit root 

in the levels of the data unambiguously cannot be rejected for all of the variables except 

for the output gap and interest rate. For the output gap the unit root null is 

unambiguously rejected however we conclude that this series is stationary, rather than 

stationary around a structural break, because the unit root tests without a structural 

break indicated that it was unambiguously stationary. For the interest rate 3 of the 4 

tests (for the exception is the AO test when only the intercept is included in the test 

equation) suggest that this series is stationary around a structural break. Overall we will 

treat interest rates as nonstationary in our VAR analysis however we will recognise that 

it is very possible that they are stationary around a structural break. 
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In Table 6.10.4., the unit root null hypothesis is rejected at the 5% level of significance 

for all of the first-differenced variables in South Africa. Whilst the alternative hypothesis 

is stationarity around a structural break the finding that all of the first differenced 

variables are stationary without structural breaks except for the money supply 

unambiguously indicates stationarity without a structural break for all variables except 

the money supply.  Further, because most of the tests indicate that the first difference 

of the money supply is stationary without structural breaks we will proceed with our 

VAR analysis as if these series are stationary in first differences – although these results 

will be borne in mind if issues arise with the VAR modelling that suggest this assumption 

is inappropriate.  

Whilst there are some ambiguities in the results the unit root tests overall suggest that 

all of the South African series can be treated as I(1) except for the output gap which is 

I(0). Although we note that interest rates may well be I(0) around a structural break. 
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Table 6.11. 1. Algerian unit root tests (the levels data) 

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

P 1.4708 -2.0912 -0.7315 -3.4717 2.7518* -1.9453 -0.7862 -3.1132 

M -1.3690 -2.0935 -1.9964 -3.4753 0.5921 -1.9455 -1.8281 -3.1260 

R -2.9229* -2.9055 -2.4822 -3.4783 0.6514 -1.9457 -1.8927 -3.126 

REE -1.3218 -2.0912  -1.1653 -3.4717 -0.9326 -1.9453 -1.9776 -3.1164 

GAP -4.2721* -2.9012 -4.2438* -3.4717 -3.2241* -1.9453 -3.8549* -3.1132 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

P 1.2162 -2.9012 -0.9919 -3.4716 1.1493 0.4630 0.2689 0.1460 

M  -2.3655 -2.9012 -2.6320 -3.4753 -1.1635 0.4630 0.2563 0.1460 

R -13.8906* -2.9012 -8.2253* -3.4716 0.7533 0.4630 0.2443 0.1460 

REE -1.3218 -2.9012 -1.4452 -3.4716 0.7886 0.4630 0.2436 0.1460 

GAP -4.4257* -2.9035 -4.3954* -3.4716 0.0369* 0.4630 0.0221 0.1460* 
Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5%  

 

As seen from Table 6.11.1 the absolute values of the test statistics are less than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

variables in levels (the unit root null cannot be rejected) except for the cosumer price, 

the interest rate and output gap. For the output gap all the tests unambiguously indicate 

that the data are stationary. For consumer prices only the DF-GLS test that includes just 

an intercept in the test equation rejects the null. For the interest rate the null is rejected 

by the ADF test that includes only an intercept in the test equation and both versions of 

the Phillips and Perron tests. In addition, the KPSS test statistic is greater than critical 

value for all variables (giving rejection of the I(0) null) except for the output gap (for both 

versions of the tests). Hence, for Algeria, the unit root tests indicate that the level of the 

money supply and real exchange rate are unambiguously nonstationary and the output 

gap is unambiguously stationary. While the results for prices and interest rates are 

ambiguous, the majority of these tests indicate that they are nonstationary (and we 

expect prices to be intrinsically nonstationary). Next we proceed to unit root tests of the 

first difference of the data. 
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Table 6.11.2 Algerian unit root tests (first difference data)  

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -6.8028* -2.9018 -6.9890* -3.4726 -6.8286* -1.9453 -7.0077* -3.1164 

M -2.9485* -2.9018 -3.1529* -3.4753 -1.8629 -1.9455 -2.5258 -3.1260 

R -9.3937* -2.9055 -7.9349* -3.4783 -9.9425* -1.9453 -10.0189* -3.1356 

REE -6.3732* -2.9018 -6.3599* -3.4726 -6.3110* -1.9453 -6.3110* -3.1164 

GAP -8.9941 -2.9035 -8.9186* -3.4716 -9.0334* -1.9455 -8.9993* -3.1260 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

P -6.8641* -2.9018 -7.0244* -3.4726 0.2897* 0.4630 0.0643* 0.1460 

M -12.7734* -2.9018 -20.1596* -3.4725 0.3191* 0.4630 0.1295* 0.1460 

R -7.7177* -2.9017 -8.9623* -3.4725 0.7443 0.4630 0.1846 0.1460 

REE -6.2134* -2.9018 -6.1954* -3.4725 0.1752* 0.4630 0.0784* 0.1460 

GAP -8.5685* -2.9018 -8.5251* -3.4725 0.0312* 0.4630 0.0221*  0.1460 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 
 

As seen from Table 6.11.2 the absolute values of the test statistics are greater than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

first differenced variables (rejecting the unit root null) except for the money supply 

(where inference is ambiguous). For the money supply the unit root null cannot be 

rejected for both versions of the DF-GLS test, if the null is rejected by the ADF and Phillips 

and Perron tests. In addition, the KPSS test statistic is less than critical value for all 

differenced variables (giving non-rejection of the I(0) null) except for the interest rate 

when only the intercept is included in the test equation. Hence, all Algerian series are 

unambiguously stationary in first differences except for the money supply and interest 

rate. For the differenced money supply and interest rate the results are ambiguous, 

however, the majority of these tests indicate stationarity. That some of tests indicate 

nonstationary of the first difference of the money supply and interest rate may reflect 

low power of the unit root tests, possibly due to structural breaks. 
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Table 6.11.3 Algerian breakpoint unit root tests (the levels data) 

 Unit Root with Break Test (Innovative outliers) Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -1.6225 -4.4437 -2.3163 -4.8598 -1.1056 -4.4436 -2.2796 -4.8598 

M -2.5766 -4.4437 -7.0223* -4.8598 -1.1177 -4.4436 -3.4711 -4.8598 

R -10.6593* -4.4437 -10.2772* -4.8598 -3.6053 -4.4436 -4.2412 -4.8598 

REE -4.9030* -4.4437 -4.1839 -4.8598 -4.8224*  -4.4436 -4.5139 -4.8598 

GAP  -4.4028 -4.4436 -8.1558* -4.8598 -7.0074* -4.4436 -7.4426* -4.8598 
Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 

Table 6.11.4. Algerian breakpoint unit root tests (first differenced data) 

 Unit Root with Break Test (Innovative 
outliers) 

Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -7.8594* -4.4436 -7.7918* -4.8598 -7.9658* -4.4436 -7.7918* -4.8598 

M -4.1415 -4.4437 -3.6799 -4.8598 -4.3539 -4.4436 -4.0155 -4.8598 

R  -9.2253* -4.4436 -8.5347* -4.8598 -8.2809* -4.4436 -6.4586* -4.8598 

REE -6.7544* -4.4436 -6.7634* -4.8598 -6.9623* -4.4437 -6.9524* -4.8598 

GAP -10.3987* -4.4436 -10.3197* -4.8598 -9.9885* -4.4436 -9.6005* -4.8598 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5%. 

In Table 6.11.3 and 6.11.4 we test the null hypothesis of a unit root against the 

alternative of a stationarity process around a structural break for the levels and first-

differences of the data, respectively. In Table 6.11.3., the null hypothesis of a unit root 

in the levels of the data unambiguously cannot be rejected for all of the variables except 

the money supply, interest rates, real exchange rate and output gap. For the money 

supply the null is rejected in 1 of the 4 tests (IO with intercept and trend). The null is 

rejected in 2 of the 4 tests for both the interest rate (for all versions of the IO test) and 

the real exchange rate (IO and AO versions with only an intercept). For the output gap 

the unit root null is unambiguously rejected however we conclude that this series is 

stationary, rather than stationary around a structural break, because the unit root tests 

without a structural break indicated that it was unambiguously stationary. Further, since 

at least half of the test results indicate that the money supply, interest rate and real 

exchange rate are nonstationary in levels, we consider these series as probably 

nonstationary and treat them as such in our VAR analysis. Nevertheless, we will 
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recognise the possibility that they are stationary around a shifting intercept in our 

multivariate modelling.  

In Table 6.11.4., the unit root null hypothesis is rejected at the 5% level of significance 

for all of the first-differenced variables except for the money supply (where the unit root 

null cannot be rejected for all tests). Nevertheless, since at least half of the tests without 

structural breaks indicate stationarity of the first difference of money supply we treat 

this variable as stationary in first differences in our VAR analysis although we will 

recognise the possibility that it is nonstationary in our multivariate analysis. Whilst there 

are some ambiguities in the results the unit root tests overall suggest that all of the 

Algerian series are I(1) except for the output gap which is I(0).  
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Table 6.12.1. Angolan unit root tests (the levels data) 

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -1.5919 -2.9187 -3.4239* -3.4952 0.0245 -1.9472 -2.7849 -3.1836 

M  -6.6402* -2.9135 -3.8021* -3.4907 1.0450 -1.9467 -0.4265 -3.1708 

R  -1.7085 -2.9108 -1.0280 -3.4865 -0.0043 -1.9463 -1.0759 -3.1580 

GAP  -2.6002 -2.9145 -2.5584 -3.4921 -2.1206* -1.9467 -2.4918 -3.1708 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -14.5687*  -2.9109 -10.4164* -3.4865  0.8493 0.4630 0.2226 0.1460 

M  -11.3240* -2.9109   -3.3767* -3.4865 0.9345 0.4630  0.2516 0.1460 

R -1.7085 -2.9108 -1.0710 -3.4865 0.8205 0.4630 0.1794 0.1460 

GAP  -4.6572* -2.9108 -4.6148* -3.4865 0.0943* 0.4630 0.0943* 0.1460 
Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5%  

 

As seen from Table 6.12.1 the absolute values of the test statistics are less than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

variables in levels (the unit root null cannot be rejected) except for the consumer price, 

money supply and output gap. For the consumer price both versions of Phillips and 

Perron tests indicate that the null hypothesis of unit root is rejected, while the ADF and 

DF-GLS tests suggest that the unit root null cannot be rejected. For the money supply   

both versions of the ADF and PP tests reject the null while the DF-GLS test cannot reject 

the null. For the output gap when the DF-GLS test when only an intercept is included 

and both versions of the Phillips Perron test reject the null while the other 3 tests do not 

reject the null. In addition, the KPSS test statistic is greater than the critical value for all 

variables (giving rejection of the I(0) null) except for the output gap  for both versions of 

the test. Hence, the interest rate series is unambiguously non-stationary whereas the 

inference for the output gap, consumer prices and the money supply is ambiguous. Since 

at least half of the tests suggest that the levels of prices and money cannot reject the 

unit root null (and we believe that they are intrinsically nonstationary) we conclude that 

these series are nonstationary. Further, because the majority of tests reject the unit root 

null for the output gap (and we believe it is most likely to be stationary) we consider this 
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series to be stationary. Next, we proceed to the unit root tests of the first difference of 

the data. 

 

Table 6.12.2 Angolan unit root tests (first difference data)  

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -2.6389 -2.9188 -1.4586 -3.4986 0.2032 -1.9475 -0.8002 -3.1900 

M  -3.6154* -2.9145 -6.9841* -3.4907 -3.5061* -1.9467 -4.9348* -3.1708 

R -7.7986* -2.9117 -7.7884* -3.4878 -1.6365 -1.9475 -5.4805* -3.1612 

GAP -2.8388 -2.9145 -2.7621 -3.4921 -2.7108* -1.9467 -2.8792 -3.1708 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -3.3353* -2.9117 -2.4804 -3.4878 0.7412 0.4630 0.2573 0.1460 

M  -7.7449* -2.9117 -10.7056* -3.4878  1.2145 0.4630 0.2046 0.1460 

R  -7.7785* -2.9117 -7.78842* -3.4878 0.2945* 0.4630 0.0904* 0.1460 

GAP -13.9089* -2.9117 -13.7850* -3.4878 0.0947* 0.4630 0.0919* 0.1460 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 
 

As seen from Table 6.12.2 the absolute values of the test statistics are greater than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

first differenced variables (rejecting the unit root null) except for the consumer price , 

interest rates and the output gap. For the consumer price the unit root null is only 

rejected for 1 of the 6 tests (being the Phillips and Perron test that only includes an 

intercept). For interest rates the unit root is rejected for 5 of the 6 tests (the exception 

is the DF-GLS test that includes only an intercept). For the output gap the unit root null 

is rejected for 3 of the 6 tests (being both versions of the Phillips Perron test and the DF 

-GLS when only an intercept is included in the test equation). In addition, the KPSS test 

statistic is less than critical value for all variables (giving non-rejection of the I(0) null) 

except for the consumer price (both versions of the test) and the money supply (both 

versions of the test). Hence, only the first difference of the interest rate is 

unambiguously stationary according to the tests. Nevertheless, the majority of the tests 

indicate that the first differences of the money supply and the output gap are stationary 

and we will treat them as such. However, the majority of the tests indicate that the first 
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difference of consumer prices is nonstationary. That some of tests indicate 

nonstationary for the first difference of the money supply, consumer prices and the 

output gap may reflect low power, possibly due to structural breaks. 

Table 6.12.3 Angolan breakpoint unit root tests (the levels data) 

 Unit Root with Break Test (Innovative 
outliers) 

Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -4.4830* -4.4436 -6.4345* -4.8598 -3.5884 -4.4436 -3.6463 -4.8598 

M  -6.5940* -4.4436 -5.5717* -4.8598 -0.6887 -4.4436 -3.2622 -4.8598 

R  -6.3387* -4.4436 -5.9223* -4.8598 -5.5513* -4.4436 -2.5587 -4.8598 

GAP -3.0154 -4.4436 -3.8360 -4.8598 -2.9252 -4.4436 -3.8802 -4.8598 

 

Table 6.12.4. Angolan breakpoint unit root tests (first differenced data) 

 Unit Root with Break Test (Innovative 
outliers) 

Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% Critical 
values 

P  -9.0129* -4.4436 -11.1856* -4.8598 -2.6915 -4.4436 -3.1451 -4.8598 

M -5.0597* -4.4436 -7.5590* -4.8598 -10.3314* -4.4436  -11.2153* -4.8598 

R  -10.4385* -4.4436 -10.1642* -4.8598 -10.4913* -4.4436  -10.1496* -4.8598 

GAP -3.1479 -4.4436 -3.8884 -4.8598 -3.2192 -4.4436 -3.7013 -4.8598 

 

In Table 6.12.3 and 6.12.4 we test the null hypothesis of a unit root against the 

alternative of a stationarity process around a structural break for the levels and first-

differences of the data, respectively. In Table 6.12.3, the null hypothesis of a unit root 

in the levels of the data unambiguously cannot be rejected in the variables except for 

the consumer price, interest rate and money supply. For the interest rate the unit root 

null is rejected for 3 of the 4 tests (the exception is the AO test when both intercept and 

trend are included in the test equation). For the consumer price and money supply the 

null is rejected in 2 (the IO versions) of the 4 tests. Hence, at least half of these tests 

indicate nonstationarity for the levels of consumer prices and the money supply, which 

is consistent with our a priori beliefs and the unit root tests that do not account for 

structural breaks. The majority of tests indicate that the interest rate is stationary 

around a structural break. While we will treat this series as I(1) in our multivariate 
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analysis, given the unit root tests without structural breaks, we note that this series may 

well be stationary around a break. Whilst the output gap is unambiguously found to be 

nonstationary, we suggest that it is stationary given the unit root tests that do not 

account for structural breaks and our prior belief that it is likely stationary. 

In Table 6.12.4., the unit root null hypothesis is rejected at the 5% level of significance 

for all of the first-differenced variables in Angola except the consumer price (for all 

versions of the IO test) and the output gap (in all 4 tests). However, because the majority 

of tests that do not allow for structural breaks indicate that both the level and first 

difference of the the output gap are stationary and we believe this series is most likely 

to be stationary (given its construction) we consider this series as I(0) in our multivariate 

analysis. Because at least half of the tests of the first difference of consumer price 

indicated that it is series is stationary around a strutural break, we  believe that the level 

of prices is not I(2). We will treat prices as I(1) although note the possibility that they are 

I(1) around a structural break. The results overall also suggest that money supply is I(1) 

and we will treat it as such. While interest rates may be  stationary around a structural 

break, as a starting point in our multivariate analysis  we will treat them as I(1). The 

ambiguities in these results will be borne in mind if issues arise with the VAR modelling 

that suggest our initial assumptions are inappropriate.  
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Table 6.13.1. Nigerian unit root tests (the levels data) 

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -0.4635 -2.9012 -2.5915 -3.4700 0.8868 -1.9454 -2.5311 -3.1068 

M -1.5984 -2.9012 -2.4285 -3.4734 -0.5703 -1.9454 -2.8092 -3.1068 

R -2.0950 -2.9001 -2.9542 -3.4708 -
2.0887* 

-1.9451 -2.3653 -3.1068 

REE -1.9352 -2.9001 -1.7066 -3.4700 -1.3595 -1.9451 -1.5755 -3.1068 

GAP  -
4.1425* 

-2.9001 -4.1190* -3.4700  -2.9416* -1.9451 -3.6253* -3.1068 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -1.1362 -2.9001 -2.7338 -3.3700 1.2054 0.4630 0.1130 0.1460 

M -1.2395 -2.9001 -1.9745 -3.3700 1.1903 0.4630 0.1208 0.1460 

R -2.0087 -2.9001 -2.3746 -3.4700 0.5045 0.4630 0.1309 0.1460 
REE -2.031 -2.9001 -1.8124 -3.4700 0.2743*  0.4630 0.2135 0.1460 

GAP -4.4322* -2.9001 -4.4118* -3.4700 0.0353* 0.4630 0.0353* 0.1460* 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5%  

 

As seen from Table 6.13.1 the absolute values of the test statistics are less than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

variables in levels (the unit root null cannot be rejected) except for the output gap and 

interest rate. For the output gap all tests reject the unit root null hypothesis indicating 

that this variable is unambiguously I(0). Whereas, for the interest rate only one test, the 

DF-GLS test when only the intercept is included in the test equation, rejects the null. In 

addition, the KPSS test statistic is greater than critical value for all variables (giving 

rejection of the I(0) null) except for the exchange rate and the  output gap. For the 

output gap both versions of the KPSS test cannot reject the I(0) null whereas for the 

exchange rate only the version of the test that includes only an intercept cannot reject 

the null. Hence, all Nigerian series are unambiguously non-stationary except for the 

output gap, real exchange rate and the interest rate. The output gap is unambiguously 

stationary whereas the majority of test results indicate that real exchange rate and 

interest rates are nonstationary. Next, we proceed to the unit root tests of the first 

difference of the data. 
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Table 6.13.2 Nigerian unit root tests (first difference data)  

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -8.6563* -2.9012 -8.5999* -3.4716 -1.7764 -1.9453 -7.2950* -3.1132 

M -1.7039 -2.9024 -1.9765 -3.4716 -0.7200 -1.9453 -2.2358 -3.1132 

R -7.4190* -2.9012 -7.3667* -3.4717  -7.4686* -1.9452 -7.4692* -3.1132 

REE -8.0622* -2.9007  -8.1365* -3.4708 -7.5344* -1.9452 -7.9091* -3.1100 

GAP -6.9408* -2.9024 -6.8898* -3.4734 -0.8290 -1.9452 -5.9550* -3.1100 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -9.5752* -2.9007 -10.4651* -3.4708 0.1629* 0.4630 0.0794* 0.1460 

M -12.9798* -2.9007  -12.6507* -3.4708 0.1975* 0.4603 0.1116* 0.1460 

R -8.0404* -2.9006   -7.9382* -3.4708 0.1089* 0.4630 0.1087* 0.1460 

REE -8.0615* -2.9007 -8.1365* -3.4709 0.1516* 0.4630 0.0431* 0.1460 

GAP -9.0774* -2.9006 -9.0039* -3.4708 0.0323* 0.4630 0.0252* 0.1460 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 
 

As seen from Table 6.13.2 the absolute values of the test statistics are greater than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

first differenced variables (rejecting the unit root null) except for the consumer price, 

money supply and output gap. For the money supply both versions of the ADF and DF-

GLS tests indicate that its first difference is nonstationary whereas the Phillips and 

Perron tests suggest that it is stationary in first differences. For the both the consumer 

price and output gap only one test, the DF-GLS test when only the intercept is included 

in the test equation, cannot reject the null. In addition, the KPSS test statistic is less than 

critical value for all variables (giving non-rejection of the I(0) null) in all the cases. Hence, 

all Nigerian series are unambiguously stationary in first differences except for the price, 

money supply and output the gap.  For the first difference of the prices, money supply 

and the output at least half of the tests indicate that these series are stationary hence 

we conclude that no series is integrated of an order greater than 1.  That some of the 

tests indicate a nonstationary first difference may reflect low power, possibly due to 

structural breaks. 
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Table 6.13.3. Nigerian breakpoint unit root tests (the levels data) 

 Unit Root with Break Test (Innovative 
outliers) 

Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -2.4613 -4.4436  -4.6426 -4.8598 -1.2821 -4.4436 -4.5073 -4.8598 

M -3.0670 -4.4436 -3.5112 -4.8598 -2.2920 -4.4436 -3.7271 -4.8598 

R  -4.0931 -4.4436 -4.7326 -4.8598 -4.1895 -4.4436 -4.7326 -4.8598 

REE  -1.9980 -4.4436 -2.4286 -4.8598 -2.0247 -4.4436 -3.6344 -4.8598 

GAP -5.8049* -4.4436 -6.1616* -4.8598 -8.7799* -4.4436 -7.9681* -4.8598 
Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 

 

Table 6.13.4. Nigerian breakpoint unit root tests (first differenced data) 

 Unit Root with Break Test (Innovative 
outliers) 

Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  -9.5962* -4.4436 -9.79984* -4.8598 -9.1337* -4.4436 -9.7383* -4.8598 

M -3.2454 -4.4436 -4.4464 -4.8598 -3.4698 -4.4436 -4.0915 -4.8598 

R  -8.4419* -4.4436  -8.2927* -4.8598 -8.3594* -4.4436 -8.4665* -4.8598 

REE  -17.5144*  -4.4436  -19.4148* -4.8598  -16.6100* -4.4436  -11.4664* -4.8598 

GAP -13.5874* -4.4436 -13.5853* -4.8598 -12.6258* -4.4436 -8.4549* -4.8598 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 

 

In Table 6.13.3 and 6.13.4 we test the null hypothesis of a unit root against the 

alternative of a stationarity process around a structural break for the levels and first-

differences of the data, respectively. In Table 6.13.3., the null hypothesis of a unit root 

in the levels of the data unambiguously cannot be rejected for all of the variables except 

for output gap. The output gap rejects the null for all 4 tests. Since the output gap was 

unambiguously stationary in levels according to unit root tests without a structural break 

we simply interpret these results as confirming this variable’s stationarity.  

In Table 6.13.4., the unit root null hypothesis is rejected at the 5% level of significance 

for all of the first-differenced variables except for the money supply (where the unit root 

null cannot be rejected for all tests). Nevertheless, since at least half of the tests without 

structural breaks indicate stationarity of the first difference of money supply we treat 

this variable as stationary in first differences in our VAR analysis although we will 
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recognise the possibility that it is nonstationary in our multivariate analysis. Whilst there 

are some ambiguities in the results the unit root tests overall suggest that all of the 

Nigerian series are I(1) except for the output gap which is I(0).  
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Table 6.14. 1. Saudi Arabian unit root tests (the levels data) 

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  2.31179 -2.8824 -0.0019 -3.4427 3.1075* -1.9431 -0.1430 -2.9920 

M  1.6260 -2.8824  -1.2021 -3.4435 2.7716* -1.9432 -1.6927 -2.9950 
REE  -1.9950 -2.8824 -1.0510 -3.4427 0.15189 -1.9432 -0.8032 -2.9920 

GAP -4.3249* -2.8835 -4.3329* -3.4444 -1.8992 -1.9432 -3.3003* -2.9920 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P  2.0478 -2.8822 -0.0772 -3.4424 1.0988 0.4630 0.2544 0.1460 

M 0.5115 -2.8822 -1.0833 -3.4424 1.4443 0.4630 0.4630 0.1460 
REE -2.3076 -2.8822 -1.0849 -3.4424 1.1591 0.4630 0.2465 0.1450 

GAP -6.3579* -2.8822 -6.3300* -3.4424 0.0376* 0.4630 0.0376* 0.1450 
Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5%  

 

As seen from Table 6.14.1 the absolute values of the test statistics are less than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

variables (the unit root null cannot be rejected) except for the output gap, the  consumer 

price and the money supply. The null is rejected for the output gap by all tests except 

for the DF-GLS test that includes only an intercept. In contrast, the null cannot be 

rejected for consumer prices and the money supply for all tests except the DF-GLS test 

that only includes and intercept. In addition, the KPSS test statistic is greater than critical 

value for all variables (giving rejection of the I(0) null) except for the output gap (where 

the null cannot be rejected by either version of the test. Hence, the real exchange rate 

is unambiguously nonstationary.  While there is ambiguity for the money supply and 

consumer prices they are regarded as nonstationary because at least half of the tests 

indicate non-stationarity and they are regarded as intrinsically nonstationary. The 

output gap is considered stationary because the majority of tests indicate this and it is 

expected to be stationary (given its construction as the difference from a trend). Next, 

we proceed to unit root tests for the first difference of the data. 
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Table 6.14.2 Saudi Arabian unit root tests (first difference data)  

 ADF unit root tests DF-GLS unit root tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -7.4382* -2.8824 -8.1877* -3.4427 -2.4009* -1.9432 -4.6793* -2.9930 

M -3.89921* -2.8829 -4.2095* -3.4434 -3.0724* -1.9432  -4.4401* -2.9930 

REE  -8.2965* -2.8824 -8.5211* -3.4427 -2.6787* -1.9432 -7.3434* -2.9920 

GAP  -4.6952* -2.8835 -4.6726* -3.4427 -1.9133 -1.9432 -3.1337* -2.9920 

 Phillips and Perron tests KPSS tests 

 Intercept  Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -8.1053* -2.8822 -8.5084 * -3.4424 0.5303  0.4630 0.1122* 0.1460 

M -14.2943 * -2.8822  -14.3602* -3.4427 0.2360* 0.4630  0.1575 0.1460 

REE   -8.3186* -2.8824 -8.5520*  -3.4427 0.4337* 0.4630 0.0652* 0.1460 

GAP -15.2613* -2.8824 -15.2119* -3.4427 0.0754* 0.4630 0.0385* 0.1460 

Note* indicates rejection of the unit root null or non-rejection of the I(0) null at 5% 
 

As seen from Table 6.14.2 the absolute values of the test statistics are greater than their 

corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all 

variables (rejecting the unit root null) except the output gap. For the output gap all tests 

reject the null except for the DF-GLS when only an intercept is included in the test 

equation. In addition, the KPSS test statistic is less than critical value for all variables 

(giving non-rejection of the I(0) null) except for the consumer (when only  an intercept 

is included in the test equation) and the money supply (when both the intercept and 

trend are included in the test equation). Hence, for all Saudi Arabian series the majority 

of tests indicate that they are stationary in first differences. That some tests indicate a 

nonstationary first difference may reflect low power, possibly due to structural breaks. 

  



570 
 

Table 6.14.3 Saudi Arabian breakpoint unit root tests (the levels data) 

 Unit Root with Break Test (Innovative outliers) Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test statistic 5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -2.6198 -4.4436 -3.5362 -4.8598 -2.1398 -4.4436 -9.3501* -4.8598  

M -2.1510 -4.4436 -3.1806 -4.8598 -0.4478 -4.4436 -0.4478 -4.8598 

REE  -5.4401*  -4.4436 -5.0373* -4.8598 -5.8316* -4.4436 -4.9830* -4.8598 

GAP -5.3972* -4.4436 -5.3772* -4.8598 -6.5355* -4.4436 -6.6298* -4.8598 

 

Table 6.14.4. Saudi Arabian breakpoint unit root tests (first differenced data) 

 Unit Root with Break Test (Innovative 
outliers) 

Unit Root Break Test (additive outliers) 

 Intercept Intercept & Trend Intercept Intercept & Trend 

 Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% 
Critical 
values 

Test 
statistic 

5% Critical 
values 

Test 
statistic 

5% 
Critical 
values 

P -9.0069* -4.4436  -9.3109* -4.8598 -9.0717* -4.4436 -9.3501* -4.8598 

M -4.9410* -4.4436 -5.0303* -4.8598 -4.8358* -4.4436 -4.9403* -4.8598 

REE  -8.9608*  -4.4436 -8.9911* -4.8598 -9.0071* -4.4436 -9.0885* -4.8598 

GAP -4.9893* -4.4436 -5.0508* -4.8598 -7.1784* -4.4436 -7.1722* -4.8598 

 

In Table 6.14.3 and 6.14.4 we test the null hypothesis of a unit root against the 

alternative of a stationarity process around a structural break for the levels and first 

differences of the data, respectively. In Table 6.14.3, the null hypothesis of a unit root 

in the levels of the data unambiguously cannot be rejected for all of the variables except 

for consumer prices (in all cases except for the AO test that includes both an intercept 

and trend) and money supply (for all 4 test). Because the null cannot be rejected for the 

majority of tests for prices and the money supply, we conclude that they are 

nonstaionary. In contrast, all tests suggest that the real exchange rate and output gap 

are stationary around a structural break. Because the output gap was found to be 

stationary in the tests that exclude a structural break, we believe these results simply 

confirms its stationarity. In contrast, the real exchange was found to be nonstationary 

in the tests without a structural and these results therefore suggest that they may be 

stationary around a structural break. We treat this series as I(1) although we note that 

it may be stationary around a structural break.  

In Table 6.14.4., the unit root null hypothesis is rejected at the 5% level of significance 

for all of the first-differenced variables suggesting that they are all stationary around a 
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structural break. However, because the unit root tests without structural breaks 

suggested that all differenced series are stationary, we simply interpret these results as 

confirming this. Hence, we regard all Saudi Arabian series as I(1)  except for the output 

gap which is I(0) without structural breaks. Although we note that the real exchange rate 

may be stationary around a structural break 
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 Appendix. Section 7.1 

7. 0 Box-Jenkins based ARIMAX modelling of oil prices 

The reliable forecasts of the price of oil are of interest for a wide range of applications. 

For instance, central banks forecast oil price to achieve oil price stability, allocation of 

the scarce resources and assessing macroeconomic risks. A poor forecast of the oil price 

may lead to the poor investment decision. Therefore, how to accurately forecast the oil 

price is essential to policymakers and academic researchers. As a result, researchers 

have developed and applied different statistical and econometric models to forecast the 

oil price. For example, Bekiros et al. (2015) and Wang et al. (2017)  applied combined 

methods, unrestricted VAR, Bayesian VAR, Random Walk, Autoregressive model (AR), 

and time-varying VAR model (TVP-VAR)  as well as time-varying VAR that include Markov 

Switching processing model (TVP-VAP MS) to predict changes in the oil price.  Whereas,  

Chinn et al. (2005), Agnolucci, (2009), Ahmed and Shabri (2014) applied the  Box-Jenkins 

method to forecast the oil price.  Other model explored to predict the oil price include 

GARCH-type models (see: Hou and Saudy, 2012 and Ahmed and Shabri, 2013).167  

The general conclusion from many of these studies is that a valid model can be obtained 

(most especially ARIMA model) to forecast the oil price for the selected sample. In this 

study, we produce a forecast for the oil price using Box-Jenkins ARIMA method. In 

particular, we test whether the ARIMA model can provide a valid model that passes all 

the standard diagnostic test (stationarity, invertibility and autocorrelation) for the oil 

price between the period of 1980q1 2012q4.  

7.1 ARIMA modelling for the oil price 

Following the order of integration results reported in Table 6.6.5 for the oil price, we 

build ARIMA models to the stationary first difference of the oil price, denoted as DLOILP. 

We use unadjusted seasonal oil price in our modelling because seasonality is not 

significant in OILP (see chapter 6 Table 6.5). The quarterly oil price data available 

between 1980q1 – 2014q4. To allow for lags transformations and have a consistent 

estimation period for all models we specify an initialization period of four years and 

estimate all models over the period 1984q1 – 2012q4. Therefore, we regress DLOILP on 

a constant and use the Bai and Perron test to identify the multiple potential shifts in the 

series. 

Table 7.1 Bai and Perron tests for structural breaks for oil price 

Break Hypothesis Scaled F-statistic  Critical Value 

0 vs 1 4.0143 8.58 

 

                                                           
167 See Cheng et. Al. (2018) for more literatures on oil price forecast. 
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The above table 7.1, reports the Bai and Perron scaled F-statistic with the associated 5% 

critical values. The test result indicates no significant breakpoint because the null 

hypothesis of no breaks (denoted 0 vs 1) cannot be rejected because the scaled F-

statistic is less than the corresponding critical value. 

Since the null hypothesis of no structural breaks cannot be rejected from this Table 7.1, 

we construct the autocorrelation function (ACF) and partial autocorrelation function 

(PACF) on the residuals of a regression of DLOILP on the intercept, which are plotted in 

Figure 7.1.  The ACF of the non-seasonal autocorrelation coefficients (ACs) are significant 

at lags 1, 2 and 5 but insignificant at lags 3 and 4. This implies that there is no need for 

further non-seasonal differencing because no more than the first 5 non-seasonal ACs 

are significant. It also implies that the maximum order of non-seasonal moving average 

(MA) component is probably 2. Further, the seasonal ACs are insignificant at lags 4, 8, 

12 and 16. This suggests that there is no need for further seasonal differencing because 

the first five seasonal lags are insignificant. It also indicates the maximum order of 

seasonal MA component is equal to 0. From the PACF the non-seasonal partial 

autocorrelation coefficients (PACs) are significant at lags 1 and 2 and insignificant at lags 

3 and 5. This suggests the maximum order of non-seasonal autoregressive (AR) 

component is probably 2. The seasonal PACs are significant at lags 4 and 24 and 

insignificant at lags 8, 12, 16 and 20. The maximum order of seasonal AR process is 1 

(because the PAC are insignificant at 8, 12, 16 and 20). Therefore, the maximum ARMA 

specification that we initially estimated is ARMA (2, 2) (1,0)4.   

 

Figure 7.1: The ACF and PACF of the residual of the constant and DLOILP 

 

 

We report the multiplicative ARMA (2, 2) (1,0)4 specification that includes intercept as 

our initial ARIMA model in the column headed 1 of Table 7.2.168 In this model, the 

                                                           
168 Note that we did not use seasonal dummy variables because seasonality is not significant in OILP (see 
chapter 6 Table 6.5). 
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intercept (C) is not significant and all the coefficients of the ARMA component are non-

significant.  

Table 7.2  
Sample/Observations 1984q1 – 2012q4 (116)  

 1 2 3 

C 0.0119 
(1.0635) 

 0.0121 
(1.085) 

 

AR(1) 0.4865 
(1.3461) 

0.5074 
(1.8855) 

  

AR(2) -0.0097 
(-0.0251) 

0.0148 
(0.0421) 

 

SAR(4) -0.0281 
(-0.1356) 

  

MA(1) -0.2096 
(-0.5292) 

-0.2096 
(0.8483) 

0.2875 
(2.829) 

MA(2) -0.4141 
 
(-1.0214) 

-0.4493 
(-1.4390) 

-0.2249 
(-2.5162) 

Adj 𝑅2 0.1225 0.1297 0.1278 

SC -0.7715 -0.8119 -0.9069 

S.E 0.1468 0.1462 0.1463 

AR Root  0.4998 
0.3354 

0.5352 
-0.0278 

 

MA Root 0.7439 
0.5566 

0.7833 
-0.5737 

-0.6393 
0.3517 

P[QLB(11)] 0.8720 0.8790 0.9210 
 MA = the maximum order of non-seasonal moving average component, AR = the maximum order of non- seasonal autocorrelation 
component, SAR = the maximum order of seasonal moving average component , P[QLB(11)] =  Probability value of the Ljung-Box Q-

statistic at the 11th lag - based on the square root of the sample size ( √116), Adj 𝑅2 = Adjusted R – square , SC = Schwarz criterion, 
AR Roots = Stationary Autoregressive average  and MA Roots = Stationary Moving average 

For the model to be valid, we apply the standard diagnostic checks for residual 

autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-

statistic at the 11th lag denoted P[QLB(11)], exceeds 0.050 indicating no evident residual 

autocorrelation – we choose process lag 11 based on the square root of the sample size 

(in this case √116). The inverse roots of the AR, denoted AR Root, are all less than one 

indicating that the model is consistent with a stationary process. The inverse roots of 

the MA process, denoted MA Root, are all less than one indicating that the model is 

invertible. Hence, the model is valid for forecasting in the sense that there is no evidence 

of misspecification according to the standard tests. However, none of the coefficient 

ARMA variables are significant. To improve on this model, we respecified the model 

reported in the column headed 1 to exclude SAR(4) term and report ARMA (2, 2) 

specification in the column headed 2 of the Table 7.2. This model cannot be rejected by 

the diagnostic checks for residual autocorrelation, stationarity and invertibility. 

Therefore, the model is valid to forecast. However, none of the coefficients of the ARMA 

terms are significant.  After different experimentation, we estimate ARMA(0,2) without 

intercept and report this  model in the column headed 3 of the Table 7.2. This model 
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cannot be rejected according to the standard diagnostic checks for residual 

autocorrelation, stationarity, invertibility and all the coefficient of the MA terms are 

significant. Therefore, the model is valid for forecasting. We use this model (MA2, from 

the column 3 Table 7.2) to produce an out-sample forecast for the oil price between the 

period 2013q1 – 2014q4 and will also incorporate the new oil price forecast as an 

exogenous variable for all our multivariate models. 
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Appendix. A. Section 7.2 

 

7.2 Russia Model Selection Criterion for Unrestricted VARs  

In this section, we describe the process of choosing the appropriate VAR lag order for 

Russia. Note that these are the unrestricted VARs, not VECMs, and that the stationary 

forms of the variables are used in the model (as identified in chapter 6 Table 6.6.5 for 

Russia).  We use the standard Akaike (AIC) and Schwarz (SC) information criteria to 

identify initial lag lengths. First, we estimate an unrestricted VAR model for Russia where 

all available variables are included as endogenous except unemployment (which is 

excluded). We start with the maximum possible lag-length that can be estimated for 

Russia (P*= 10). The VAR model considered includes six stationary variables (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 

𝑅, ∆𝐼𝑛𝑅𝐸𝐸, ∆GAP and ∆𝐼𝑛𝑂𝑖𝑙𝑝). The results are given in Table 7.2.A column 1 and 2 where 

the lag length selected by the AIC and SC are 5 and 0 respectively. To maximize the 

chance of selecting an appropriate lag length and minimizing the VAR exhibiting 

autocorrelation, we avoid selecting the low lag length of the SC and adopt the AIC. 

Therefore, we tested the maximum lag (P*= 5) VAR for autocorrelation (of order 1, 2, … 

10). The probability values of these autocorrelation tests are reported in column 3 of 

Table 7.2.A. There is evidence of autocorrelation at the 5% level because all of the 

probability values are less than 0.05. The standard reaction would be to believe that the 

lag length is too short and add lags. However, because a VAR model cannot be estimated 

for Russia with more than 5 lags, experience suggests that models with too many lags 

can exhibit autocorrelation and the SC indicates a lower optimal lag length, we consider 

lower lag length VARs. As a result, we re-estimate the VAR models with 4, 3, 2 and 1 lags 

and report the autocorrelation tests in columns 4, 5, 6 and 7 of Table 7.2.A, respectively. 

The VAR models with 4, 3, 2 and 1 lags indicate evidence of autocorrelation at the 5% 

level- at least one of the tests probability value is less than 0.05. However, since 

experimentations reveals that the VAR model cannot be estimated for Russia with more 

than 5 lags and estimating P*˂ 5 with VAR model exhibit autocorrelation. We conclude 

that there is no model of this form that is valid to forecast. 
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Table 7.2.A 

  Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅, ∆𝐼𝑛𝑅𝐸𝐸, ∆𝐺𝐴𝑃 and ∆𝐼𝑛𝑂𝑖𝑙𝑝  
1 2 3 4 5 6 7 

  AIC SC Prob Prob Prob Prob Prob 

Lags   5 4 3 2 1 

0 -21.0304  -20.7744*      

1 -22.5206 -20.729 0 0.6283 0.2506 0.0303 0.0326 
2 -22.6593 -19.3322 0 0.0078 0.3536 0.5358 0.0360 
3 -23.7455 -18.8827  NA 0.1018 0.7219 0.1694 0.6362 
4 -25.6813 -19.283  NA 0.4558 0.1915 0.0996 0.0005 
5  -27.69955* -19.7656 0 0.6769 0.6977 0.9617 0.5148 
6 

  
 NA 0.1887 0.0463 0.5207 0.0111 

7 
  

0 0.0312 0.0718 0.8135 0.8536 
8 

  
0 0.6217 0.9612 0.6468 0.1913 

9 
  

0 0.8991 0.7145 0.9071 0.9951 
10    NA 0.9408 0.1805 0.9299 0.2713 

The table indicates the selected lag from AIC and SC criterion by an asterisk  

 

Second, we estimate an unrestricted VAR model for Russia where all available are 

included as endogenous except the output gap (which is excluded). We start with the 

maximum possible lag-length that can be estimated for Russia (P*= 10). The variables 

VAR model considered includes six stationary variables (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅, ∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁 and 

∆𝐼𝑛𝑂𝑖𝑙𝑝). The results are given in Table 7.2.B column 1 and 2 where the lag length 

selected by the AIC and SC are 5 and 1 respectively. To maximize the chance of selecting 

an appropriate lag length and minimizing the VAR exhibiting autocorrelation, we avoid 

selecting the low lag length of the SC and adopt the AIC. Therefore, we tested the 

maximum lag (P*= 5) VAR for autocorrelation (of order 1, 2, … 10). There is evidence of 

autocorrelation at the 5% level because all the tests’ probability values are less than 

0.05. The standard reaction would be to believe that the lag length is too short and add 

lags. However, because a VAR model cannot be estimated for Russia with more than 5 

lags, experience suggests that models with too many lags can exhibit autocorrelation 

and the SC indicates a lower optimal lag length, we consider lower lag length VARs,  as 

a result, we re-estimate the VAR model using a lag length of 4 (where P* = 5; P* -1 = 4) and 

test the validity of the model. Given a lag length of 5 is indicated by the AIC this suggests 

that VARs with more lags are preferred to those with less hence we consider a lag length 

of 4 rather than a lower lag length. The VAR model cannot reject the hypothesis of no-

autocorrelation at 5% level for all of the orders of autocorrelation considered – see 
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column 4 of Table 7.2.B. This indicates that the model is valid for forecasting Russian 

inflation. Hence, we choose 4 as the lag length for this Russian VAR model. 

Table 7.2.B 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅, ∆𝐼𝑛𝑅𝐸𝐸, ∆𝑈𝑁 and ∆𝐼𝑛𝑂𝑖𝑙𝑝 

 1 2 3 4 

 AIC SC Prob. Prob. 

Lags   5 4 

0 -18.8027 -18.5468   

1 -20.6522  -18.86063*  NA 0.1240 

2 -20.8751 -17.548  NA 0.9222 

3 -20.965 -16.1023 0 0.1217 

4 -21.3397 -14.9414 0 0.3849 

5  -25.21011* -17.2762 0 0.2002 

6 
  

0 0.2156 

7 
  

 NA 0.4958 

8 
  

0 0.9815 

9 
  

0 0.3587 

10    NA 0.2329 

The table indicates the selected lag from AIC and SC criterion by an asterisk 

Third, we estimate an unrestricted VAR model for Russia where we treat oil price as 

exogenous and all other available variables, except the output gap (which is excluded), 

as endogenous. We start with the maximum possible lag-length that can be estimated 

for Russia (P*= 10). The VAR model considered includes six stationary variables with the 

oil price as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the following variables as endogenous (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 

𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and ∆𝑈𝑁). The results are given in Table 7.2.C column 1 and 2 where the lag 

length selected by the AIC and SC are 6 and 1. To maximize the chance of selecting an 

appropriate lag length and minimizing the VAR exhibiting autocorrelation, we avoid 

selecting the low lag length of the SC and adopt the AIC. There is evidence of 

autocorrelation at the 5% level because all the tests’ probability values are less than 

0.05. The standard reaction would be to believe that the lag length is too short and add 

lags. However, because a VAR model cannot be estimated for Russia with more than 6 

lags, experience suggests that models with too many lags can exhibit autocorrelation 

and the SC indicates a lower optimal lag length, we consider lower lag length VARs. As a 

result, we re-estimate the VAR models with 5 and 4 lags and report the autocorrelation 

tests in columns 4 and 5 of Table 7.2.C, respectively. Given a lag length of 6 is indicated 

by the AIC and this suggests VARs with more lags are preferred to those with less hence 

we select lower lags where autocorrelation is not evident, however, we do not consider 

lower lag length VARS than necessary. The VAR models with 5 lags indicates evidence of 
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autocorrelation whereas the VAR with 4 lags exhibits no evident autocorrelation. Hence, 

we select the 4 lag VAR of this model for forecasting Russian inflation. 

Table 7.2.C 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and ∆𝑈𝑁 
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝 

 1 2 3 4 5  
AIC  SC Prob Prob Prob 

Lags 
  

6 5 4 

0 -14.4731 -14.0465  NA 0.0997 0.1674 

1 -16.1253  -14.63236* 0 0.1471 0.9046 

2 -16.6395 -14.0802 0 0.0001 0.5221 

3 -16.5276 -12.9019  NA 0.0128 0.4999 

4 -16.5415 -11.8494  NA 0.1896 0.2554 

5 -18.83 -13.0716  NA 0.0007 0.1417 

6  -21.17859* -14.3537  NA 0.356 0.2653    
 NA 0.9609 0.6599    
0 0.5229 0.3852    
 NA 0.1891 0.2029 

The table indicates the selected lag from AIC and SC criterion by an asterisk 

Fourth, we estimate an unrestricted VAR model for Russia where we treat oil price as 

exogenous and all other available variables except for the unemployment (which is 

excluded) as endogenous. The VAR model considered includes six stationary variables 

with the oil price as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the following variables as endogenous 

(∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and ∆𝐺𝐴𝑃). The results are given in Table 7.2.D column 1 and 

2 where the lag length selected by the AIC and SC are 6 and 1. To maximize the chance 

of selecting an appropriate lag length and minimizing the VAR exhibiting 

autocorrelation, we avoid selecting the low lag length of the SC and adopt the AIC. There 

is evidence of autocorrelation at the 5% level because all the tests’ probability values 

are less than 0.05. The standard reaction would be to believe that the lag length is too 

short and add lags. However, because a VAR model cannot be estimated for Russia with 

more than 6 lags, experience suggests that models with too many lags can exhibit 

autocorrelation and the SC indicates a lower optimal lag length, we consider lower lag 

length VARs.  As a result, we re-estimate the VAR models with 5, 4, 3, 2 and 1 lags and 

report the autocorrelation tests in columns 4, 5, 6, 7 and 8 of Table 7.2.D, respectively. 

All the VAR models with 5, 4, 3, 2 and 1 lags indicate evidence of autocorrelation. 

However, since a VAR model cannot be estimated for Russia with more than 6 lags and 
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estimating VAR model with less lags indicate evidence of autocorrelation, we conclude 

that we cannot find model of this form that is valid to forecast Russian inflation. 

 

Table 7.2.D 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, 𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and ∆𝐺𝐴𝑃 
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝 

 1 2 3 4 5 6 7 8 

 Lag AIC SC Prob. Prob. Prob. Prob. Prob. Prob. 

   6 5 4 3 2 1 

0 -16.7008 -16.2742       

1 -18.173  -
16.68009* 

0 0.1082 0.0205 0.0046 0.0016 0.0142 

2 -18.3038 -15.7445 0 0.0105 0.0213 0.0826 0.2497 0.5105 

3 -18.7102 -15.0845  NA 0.6232 0.7006 0.7888 0.6805 0.7614 

4 -18.9802 -14.2881  NA 0.2605 0.1023 0.1961 0.1142 0.0245 

5 -19.9103 -14.1518 0 0.0683 0.8788 0.708 0.4325 0.269 

6  -
22.57834* 

-15.7535 0 0.0914 0.0712 0.4700 0.5830 0.3424 

7 
  

0 0.0036 0.072 0.0168 0.763 0.3058 

8 
  

 NA 0.2010 0.1157 0.5785 0.4152 0.2581 

9 
  

0 0.9634 0.9464 0.9264 0.7245 0.9804 

10   0 0.9993 0.991 0.6588 0.577 0.8647 

The table indicates the selected lag from AIC and SC criterion by an asterisk 
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7.3. India Model Selection Criterion for Unrestricted VARs 

In this section, we describe the process of choosing the appropriate VAR lag order for 

India. Note that these are the unrestricted VARs, not VECMs, and that the stationary 

forms of the variables are used in the model (as identified in chapter 6 Table 6.6.5 for 

India).  We use the standard Akaike (AIC) and Schwarz (SC) information criteria to 

identify initial lag lengths. First, we estimate an unrestricted VAR model for India where 

we treat all available variables as endogenous. We start with the maximum possible lag-

length that can be estimated for India (P*= 10).  The VAR model considered includes four 

stationary variables (∆𝑙𝑛𝑃, ∆∆𝑙𝑛𝑀, 𝑅 and 𝐺𝐴𝑃). To utilise the large sample available for 

the core variable and other variables (1963q1 -2014q4), we did not include oil price 

variable in this VAR because the sample is only available between 1980-2014.  The 

results are given in Table 7.3.A column 1 and 2 where the lag length selected by the AIC 

and SC are 7 and 3 respectively. To maximize the chance of selecting an appropriate lag 

length and minimizing the VAR exhibiting autocorrelation, we avoid selecting the low lag 

length of the SC and adopt the AIC. Therefore, we tested the maximum lag (P*= 7) VAR 

for autocorrelation (of order 1, 2, … 10). There is evidence of autocorrelation at the 5% 

level because two of the tests’ probability values are less than 0.05. This suggests that 

the lag length is too short and a VAR with more lags are preferred to those with less, 

hence we follow the standard reaction and add lags (P*+ 1). Therefore, we re-estimate 

the VAR models with 8, 9, 10 and 11 lags and report the autocorrelation tests in columns 

4, 5, 6 and 7 of Table 7.3.A, respectively. The VAR models with 8, 9 and 10 lags indicate 

evidence of autocorrelation whereas the VAR with 11 lags exhibits no evident 

autocorrelation. Hence, we select the 11 lag VAR of this model for forecasting Indian 

inflation. 
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Table 7.3.A 

Endogenous: ∆𝑙𝑛𝑃, ∆∆𝑙𝑛𝑀, 𝑅 and 𝐺𝐴𝑃 

 1 2 3 4 5 6 7  

AIC SC Prob Prob Prob Prob Prob 

Lag 

  

7 8 9 10 11 

0 1.997236 2.063202 

     

1 1.309193 1.639024 0.2620 0.2122 0.523 0.0017 0.7974 

2 1.307763 1.90146 0.6003 0.3496 0.1794 0.6822 0.3419 

3 -2.22753  -1.369967* 0.9597 0.4714 0.9385 0.7396 0.4270 

4 -2.33151 -1.21008 0.0000 0.0002 0.0018 0.0014 0.1211 

5 -2.23377 -0.84847 0.6683 0.299 0.1591 0.0706 0.3567 

6 -2.15563 -0.50648 0.5717 0.6739 0.7302 0.7037 0.5615 

7  -2.354716* -0.44169 0.2227 0.3817 0.2784 0.3713 0.1912 

8 -2.32205 -0.14516 0.0015 0.01 0.1632 0.1818 0.2193 

9 -2.28239 0.158363 0.5796 0.7006 0.5799 0.1732 0.2187 

10 -2.23377 -0.84847 0.2273 0.8695 0.9381 0.479 0.8729 

The table indicates the selected lag from AIC and SC criterion by an asterisk 

 

Second, we estimate an unrestricted VAR model for the short period (1984q1- 2012q4) 

to include all available variables and the oil price that only available between 1980q1 

2014q4. Therefore, we start with the initial length (P*= 10) and considered the VAR 

model that include all the five stationary variables (∆𝑙𝑛𝑃, ∆∆𝑙𝑛𝑀, 𝑅, 

𝐺𝐴𝑃 𝑎𝑛𝑑 ∆𝐼𝑛𝑂𝑖𝑙𝑝). The results are given in Table 7.3.B column 1 and 2 where the lag 

length selected by the AIC and SC are both 3. We tested the maximum lag (P*= 3) VAR 

for autocorrelation (of order 1, 2, … 10). There is evidence of autocorrelation at the 5% 

level because many of the tests’ probability values are less than 0.05. The standard 

reaction would be to believe that the lag length is too short and add lags, hence we 

follow the standard reaction and add lags (P**+ 1).  We re-estimate the VAR models 

with 4, 5, 6,…..,10 lags and report the autocorrelation tests in columns 4, 5, 6,….,10 of 

Table 7.3.B, respectively. All the VAR models with 4, 5, 6,….,10 lags indicate evidence of 

autocorrelation at the 5% level because many of the tests’ probability values are less 

than 0.05. Therefore, all these models cannot be valid to forecast. After different 

experimentation with different lags length a VAR model with 19 lags exhibits no evident 

autocorrelation. Hence, we select the 19 lags VAR of this model for forecasting Indian 

inflation. 
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Table 7.3.B 

 Endogenous: ∆𝑙𝑛𝑃, ∆∆𝑙𝑛𝑀, 𝑅, 𝐺𝐴𝑃 𝑎𝑛𝑑 ∆𝐼𝑛𝑂𝑖𝑙𝑝       

 1 2 3 4 5 6 7 8 9 10 11 
 

AIC SC Prob.  Prob.       

Lag 
  

3 4 5 6 7 8 9 10 19 

0 -1.92817 -1.80949          

1 -2.95263 -2.2405 0.0966 0.4387 0.0021 0.7926 0.0948 0.0948 0.2620 0.2122 0.7366 

2 -3.22195 -1.91637 0.0130 0.7807 0.2361 0.2968 0.7041 0.7041 0.6003 0.3496 0.4693 

3  -6.352927*  -4.4539* 0.1307 0.5398 0.5881 0.8587 0.3943 0.3943 0.9597 0.4714 0.5037 

4 -6.29887 -3.8064 0.000 0.0015 0.012 0.0015 0.0045 0.0045 0.0000 0.0002 0.2803 

5 -6.31066 -3.22474 0.6234 0.8753 0.7343 0.4585 0.3807 0.3807 0.6683 0.299 0.5704 

6 -6.13277 -2.4534 0.9428 0.7929 0.862 0.7726 0.9451 0.9451 0.5717 0.6739 0.1983 

7 -6.22867 -1.95586 0.9598 0.5869 0.7039 0.9591 0.9888 0.9888 0.2227 0.3817 0.4723 

8 -6.25565 -1.38939 0.0008 0.0013 0.0018 0.0004 0.0094 0.0094 0.0015 0.0100 0.3484 

9 -6.05206 -0.59236 0.9407 0.9803 0.9919 0.9945 0.9955 0.9955 0.5796 0.7006 0.1126 

10 -5.9837 0.069455 0.4833 0.7645 0.9816 0.9105 0.908 0.908 0.2273 0.8695 0.1978 

 

In the same sample (1984q1 2012q4), we estimate an unrestricted VAR model for India 

where we treat oil price as exogenous and all other available as endogenous. We start 

with the initial lag-length for India (P*= 10).  The VAR model considered includes five 

stationary variables with the oil price as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the following variables 

as endogenous (∆𝑙𝑛𝑃, ∆∆𝑙𝑛𝑀, 𝑅 and  𝐺𝐴𝑃 ). The results are given in Table 7.3.C column 1 

and 2 where the lag length selected by the AIC and SC are 7 and 3 respectively.  To 

maximize the chance of selecting an appropriate lag length and minimizing the VAR 

exhibiting autocorrelation, we avoid selecting the low lag length of the SC and adopt the 

AIC. Therefore, we tested the maximum lag (P*= 7) VAR for autocorrelation (of order 1, 

2, … 10). The probability values of these autocorrelation tests are reported in column 3 

of Table 7.3.C. There is evidence of autocorrelation at the 5% level because 2 of the 

tests’ probability values are less than 0.05. The standard reaction would be to believe 

that the lag length is too short and add lags hence, we follow the standard reaction and 

add lags (P**+ 1).  We re-estimate the VAR models with 8, 9 and 10 lags and report the 

autocorrelation tests in columns 4, 5 and 6 of Table 7.3.C, respectively. All the VAR 

models with 8, 9 and lags indicate evidence of autocorrelation at the 5% level because 

many of the tests’ probability values are less than 0.05. Therefore, all these models 

cannot be valid to forecast. After different experimentation with different lags length a 
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VAR model with 16 lags exhibits no evident autocorrelation. Hence, we select the 16 lags 

VAR of this model for forecasting Indian inflation. 

 
Table 7.3.C 

Endogenous: ∆𝑙𝑛𝑃, ∆∆𝑙𝑛𝑀, 𝑅, 𝐺𝐴𝑃 𝑎𝑛𝑑 ∆𝐼𝑛𝑂𝑖𝑙𝑝 
Exogenous: ∆𝐼𝑛𝑂𝑖𝑙𝑝 

 1 2 3 4
  

5 6 7 

 
AIC SC Prob. Prob. Prob. Prob. Prob. 

Lags 
  

7 8 9 10 16 

0 -0.595 -0.4051      

1 -1.75801 -1.1883 0.9854 0.1082 0.0205 0.0046 0.7465 

2 -2.10526 -1.15574 0.4205 0.0105 0.0213 0.0826 0.6011 

3 -5.35516  -4.025843* 0.9289 0.6232 0.7006 0.7888 0.7545 

4 -5.33507 -3.62594 0.0039 0.2605 0.1023 0.1961 0.376 

5 -5.41334 -3.32441 0.3061 0.0683 0.8788 0.708 0.5279 

6 -5.35933 -2.89059 0.0995 0.0914 0.0712 0.4700 0.0690 

7  -5.552335* -2.70379 0.4337 0.0036 0.072 0.0168 0.4686 

8 -5.37828 -2.14993 0.0065 0.201 0.1157 0.5785 0.2634 

9 -5.25287 -1.64471 0.9954 0.9634 0.9464 0.9264 0.6848 

10 -5.24779 -1.25983 0.1965 0.9993 0.991 0.6588 0.1759 
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7.4 China Model Selection Criterion for Unrestricted VARs  

In this section, we describe the process of choosing the appropriate VAR lag order for 

China. Note that these are the unrestricted VARs, not VECMs, and that the stationary 

forms of the variables are used in the model as identified in chapter 6 Table 6.6.5 for 

China).  We use the standard Akaike (AIC) and Schwarz (SC) information criteria to 

identify initial lag lengths. First, we estimate an unrestricted VAR model for China where 

all available variables are included as endogenous including the oil price. We start with 

the maximum possible lag-length that can be estimated for China (P*= 10). The VAR 

model considered includes six stationary variables (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, 𝐺𝐴𝑃 and 

∆𝐼𝑛𝑂𝑖𝑙𝑝). The results are given in Table 7.4.A column 1 and 2 where the lag length 

selected by the AIC and the SC are 10 and 1 respectively. To maximize the chance of 

selecting an appropriate lag length and minimizing the VAR exhibiting autocorrelation, 

we avoid selecting the low lag length of the SC and adopt the AIC. Therefore, we tested 

the maximum lag (P*= 10) VAR for autocorrelation (of order 1, 2, … 10). The probability 

values of the autocorrelation tests for this model are reported in column 3 of Table 

7.4.A. There is evidence of autocorrelation at the 5% level because one of the probability 

values is less than 0.05. This suggests that the lag length is too short and a VAR with 

more lags are preferred to those with less, hence we follow the standard reaction and 

add lags (P*+ 1).  We re-estimate the VAR models with 11 and 12 lags (the maximum 

lags that can only be estimated with this VAR in China) and report the autocorrelation 

tests in columns 4 and 5 of Table 7.4.A., respectively. The VAR models with 11 and 12 

lags indicate evidence of autocorrelation at the 5% level because at least one of the 

tests’ probability values is less than 0.05. However, this VAR model cannot be estimated 

for China with more than 12 lags, experience suggests that models with too many lags 

can exhibit autocorrelation and the SC suggests a lower optimal lag length, we consider 

lower lag length VARs.  As a result, we re-estimate the VAR models with P*˂ 10 and 

report the autocorrelation tests in Table 7.4.A. The VAR model at 9 lags passed the test 

for autocorrelation at the 5% level for all lag lengths because the many the probability 

values are greater than 0.05 - see Table 7.4.A. Therefore, we VAR model with 9 lags for 

forecasting Chinese inflation.  
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Table 7.4.A 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, 𝐺𝐴𝑃 and ∆𝐼𝑛𝑂𝑖𝑙𝑝   

 1 2 3 4 5 6 

Lags   10 11 12 9  
AIC SC Prob. Prob. Prob. Prob 

0 -13.0987 -12.9251     

1 -14.3939  -13.17850* 0.7875 0.0006  NA 0.2149 

2 -14.5033 -12.2461 0.3040 0.4431  NA 0.9861 

3 -15.2788 -11.9798 0.6064 0.6056  NA 0.1897 

4 -16.6453 -12.3046 0.0034 0.0609 0 0.7853 

5 -16.3778 -10.9953 0.7491 0.6695 0 0.8483 

6 -16.289 -9.86471 0.9690 0.9950  NA 0.9958 

7 -15.8942 -8.42812 0.5538 0.2718  NA 0.2669 

8 -16.7005 -8.19268 0.5811 0.0555  NA 0.4512 

9 -16.8961 -7.34648 0.7455 0.1778 0 0.9701 

10  -17.52343* -6.93202 0.4927 0.2855  NA 0.7531 

The table indicates the selected lag from AIC and SC criterion by an asterisk 

 

Second, we estimate an unrestricted VAR model for China where we treat oil price as 

exogenous and all other available variables as endogenous. We start with the maximum 

possible lag-length that can be estimated for China (P*= 10).  The VAR model considered 

includes six stationary variables with the oil price as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the 

following variables as endogenous (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and 𝐺𝐴𝑃). The results are 

given in Table 7.4.B column 1 and 2 where the lag length selected by the AIC and the SC 

are 10 and 4 respectively. To maximize the chance of selecting an appropriate lag length 

and minimizing the VAR exhibiting autocorrelation, we avoid selecting the low lag length 

of the SC and adopt the AIC. Therefore, we tested the maximum lag (P*= 10) VAR for 

autocorrelation (of order 1, 2, … 10). The probability values of these autocorrelation 

tests are reported in column 3 of Table 7.4.B. There is evidence of autocorrelation at the 

5% level because one of the tests’ probability values is less than 0.05. This suggests that 

the lag length is too short and a VAR with more lags are preferred to those with less, 

hence we follow the standard reaction and add lags. We re-estimate the VAR models 

with 11 lags and report the autocorrelation tests in columns 4 of Table 7.4.B. The VAR 

with 11 lags exhibits no evident autocorrelation. Hence, we select the 11 lag VAR of this 

model for forecasting Chinese inflation. 
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Table 7.4.B 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and 𝐺𝐴𝑃  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝 
 1 2 3 4 

Lags   10 11  
AIC SC Prob. Prob. 

0 -11.5884 -11.299 
 

 

1 -12.8744 -11.8615 0.8003 0.6336 

2 -13.1413 -11.405 0.9457 0.9455 

3 -13.7093 -11.2496 0.9500 0.6099 

4 -15.3302  -12.1463* 0.0027 0.1814 

5 -15.3512 -11.4445 0.9505 0.5816 

6 -15.396 -10.7659 0.9957 0.9794 

7 -15.1176 -9.76401 0.7618 0.2778 

8 -15.804 -9.72694 0.1471 0.3983 

9 -16.0908 -9.29032 0.2955 0.1303 

10  -16.43192* -8.90796 0.5953 0.5398 
The automatic selected lag from AIC and SC are indicated by asterisk 
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7.5 South Africa Model Selection Criterion for Unrestricted VARs  

We describe the process of choosing the appropriate VAR lag order for South Africa. 

Note that these are the unrestricted VARs, not VECMs, and that the stationary forms of 

the variables are used in the model as identified in chapter 6 Table 6.6.5 for South 

Africa).  We use the standard Akaike (AIC) and Schwarz (SC) information criteria to 

identify initial lag lengths. First, we estimate an unrestricted VAR model for South Africa 

where all available variables are included as endogenous. We start with the maximum 

possible lag-length that can be estimated for South Africa (P*= 10). The VAR model 

considered includes six stationary variables (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, GAP and ∆𝐼𝑛𝑂𝑖𝑙𝑝). 

The results are given in Table 7.5.A column 1 and 2 where the lag length selected by the 

AIC and SC are 10 and 1 respectively. To maximize the chance of selecting an appropriate 

lag length and minimizing the VAR exhibiting autocorrelation, we avoid selecting the low 

lag length of the SC and adopt the AIC. Therefore, we tested the maximum lag (P*= 10) 

VAR for autocorrelation (of order 1, 2, … 10). The probability values of these 

autocorrelation tests are reported in column 3 of Table 7.5.A. There is evidence of 

autocorrelation at the 5% level because at least one of the tests’ probability values is 

less than 0.05. The standard reaction would be to believe that the lag length is too short 

and add lags. However, because a VAR model cannot be estimated for South Africa with 

more than 10 lags, because experience suggests that models with too many lags can 

exhibit autocorrelation and the SC suggests a lower optimal lag length, we consider 

lower lag length VARs. As a result, we re-estimate the VAR models with 9, 8 and 7 lags 

and report the autocorrelation tests in columns 4, 5 and 6 of Table 7.5.A, respectively. 

Given a lag length of 10 is indicated by the AIC this suggests VARs with more lags are 

preferred to those with less hence we seek to select as high a VAR lag length as possible 

where autocorrelation is not evident. The VAR models with 9 and 8 lags indicate 

evidence of autocorrelation whereas the VAR with 7 lags exhibits no evident 

autocorrelation. Hence, we select the 7 lag VAR of this model for forecasting South 

African inflation. 
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Table 7.5.A 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, 𝐺𝐴𝑃 and ∆𝐼𝑛𝑂𝑖𝑙𝑝 

 1 2 3 4 5 6 

Lags   10 9 8 7 
 

AIC SC Prob Prob Prob Prob 

0 -15.2039 -15.0127 
    

1 -16.4385  -15.10002*  NA 0.0462 0.1019 0.8162 

2 -16.2098 -13.7241 0 0.0002 0.1842 0.4081 

3 -15.8754 -12.2424  NA 0.3334 0.6257 0.1841 

4 -15.5364 -10.7561  NA 0.0781 0.002 0.3147 

5 -15.0535 -9.12593  NA 0.5246 0.0569 0.0609 

6 -15.0116 -7.93671 0 0.8561 0.1654 0.4019 

7 -15.1486 -6.92647 0 0.1233 0.1742 0.3084 

8 -15.5039 -6.13446 0 0.7896 0.0691 0.4760 

9 -17.6464 -7.12967  NA 0.5244 0.2501 0.7284 

10  -21.21824* -9.55429  NA 0.4617 0.7689 0.6615 

The table indicates the selected lag from AIC and SC criterion by an asterisk. 

Second, we estimate an unrestricted VAR model for South Africa where we treat oil price 

as exogenous and all other available variables as endogenous. We start with the 

maximum possible lag-length that can be estimated for South Africa (P*= 10). The VAR 

model considered includes five stationary variables with the oil price as exogenous 

(∆𝐼𝑛𝑂𝑖𝑙𝑝) and the following variables as endogenous (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and GAP). 

The results are given in Table 7.5.B column 1 and 2 where the lag length selected by the 

AIC and the SC are 10 and 1. To maximize the chance of selecting an appropriate lag 

length and minimizing the VAR exhibiting autocorrelation, we avoid selecting the low lag 

length of the SC and adopt the AIC. Therefore, we tested the maximum lag (P*= 10) VAR 

for autocorrelation (of order 1, 2, … 10). The probability values of these autocorrelation 

tests are reported in column 3 of Table 7.5.B. There is no evidence of autocorrelation at 

the 5% level because all of the tests’ probability values greater than 0.05 (see Table 

7.5.B). Hence, we select the 10 lag VAR of this model for forecasting South African 

inflation. 
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Table 7.5.B 
Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and 𝐺𝐴𝑃  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝 

 1 2 3 
 

AIC SC Prob. 

Lag 
  

10 

0 -13.8132 -13.4945 
 

1 -15.1685  -14.05309* 0.5404 

2 -14.8467 -12.9346 0.3837 

3 -14.5818 -11.8729 0.4538 

4 -14.2149 -10.7094 0.0799 

5 -13.937 -9.63471 0.2476 

6 -13.7518 -8.65284 0.3394 

7 -13.5115 -7.61577 0.3884 

8 -13.4836 -6.79111 0.4562 

9 -13.9371 -6.44791 0.1709 

10  -15.28223* -6.99636 0.9797 

The table indicates the selected lag from AIC and SC criterion by an asterisk 
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7.6 Algeria Model Selection Criterion for Unrestricted VARs  

We describe the process of choosing the appropriate VAR lag order for Algeria. Note 

that these are the unrestricted VARs, not VECMs, and that the stationary forms of the 

variables are used in the model as identified in chapter 6 Table 6.6.5 for Algeria.  We use 

the standard Akaike (AIC) and Schwarz (SC) information criteria to identify initial lag 

lengths. First, we estimate an unrestricted VAR model for Algeria where all available 

variables are included as endogenous. We start with the maximum possible lag-length 

that can be estimated for Algeria (P*= 7). The VAR model considered includes six 

stationary variables (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, GAP and ∆𝐼𝑛𝑂𝑖𝑙𝑝). The results are given in 

Table 7.6.A column 1 and 2 where the lag length selected by the AIC and SC are 7 and 0 

respectively. To maximize the chance of selecting an appropriate lag length and 

minimizing the VAR exhibiting autocorrelation, we avoid selecting the low lag length of 

the SC and adopt the AIC. Therefore, we tested the maximum lag (P*= 7) VAR for 

autocorrelation (of order 1, 2, … 10). The probability values of these autocorrelation 

tests are reported in column 3 of Table 7.6.A. There is evidence of autocorrelation at the 

5% level because many of the tests’ probability values are less than 0.05. The standard 

reaction would be to believe that the lag length is too short and add lags. However, 

because a VAR model cannot be estimated for Algeria with more than 7 lags, because 

experience suggests that models with too many lags can exhibit autocorrelation and the 

SC suggests a lower optimal lag length, we consider lower lag length VARs that free from 

autocorrelation.  As a result, we re-estimate the VAR models with 6 and 5 lags and report 

the autocorrelation tests in columns 4 and 5 of Table 7.6.A, respectively. Given a lag 

length of 7 is indicated by the AIC and this suggests VARs with more lags are preferred 

to those with less hence we seek to select as high a VAR lag length as possible where 

autocorrelation is not evident. The VAR models with 6 lags indicates evidence of 

autocorrelation whereas the VAR with 5 lags exhibits no evident autocorrelation. Hence, 

we select the 5 lag VAR of this model for forecasting Algerian inflation. 
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Table 7.6.A 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, 𝐺𝐴𝑃 and ∆𝐼𝑛𝑂𝑖𝑙𝑝   

 1 2 3 4 5 

Lag AIC SC Prob. Prob. Prob. 

   
7 6 5 

0 -18.8407  -18.62175* 
  

 

1 -18.8231 -17.2902 0.569 0.3306 0.3489 

2 -18.4766 -15.6299 0.2147 0.1137 0.3709 

3 -18.4938 -14.3332 0.0005 0.4751 0.9310 

4 -19.263 -13.7885 0.3766 0.0037 0.7897 

5 -20.1977 -13.4093 0.003 0.2431 0.4170 

6 -20.3398 -12.2375 0.0144 0.3207 0.8289 

7  -21.94884* -12.5326 0.1349 0.5196 0.6496 

8 
  

0.0389 0.2606 0.5555 

9 
  

0.0156 0.9927 0.8884 

10 
  

0.0062 0.1511 0.6451 

The table indicates the selected lag from AIC and SC criterion by an asterisk 

Second, we estimate an unrestricted VAR model for Algeria where we treat oil price as 

exogenous and all other available variables as endogenous. We start with the maximum 

possible lag-length that can be estimated for Algeria (P*= 9). The VAR model considered 

includes six stationary variables with the oil price as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the 

following variables as endogenous (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and GAP). The results are 

given in Table 7.6.B column 1 and 2 where the lag length selected by the AIC and SC are 

9 and 0 respectively.  To maximize the chance of selecting an appropriate lag length and 

minimizing the VAR exhibiting autocorrelation, we avoid selecting the low lag length of 

the SC (0) and adopt the AIC (9). Therefore, we tested the maximum lag (P*= 9) VAR for 

autocorrelation (of order 1, 2, … 10). There is evidence of autocorrelation at the 5% level 

because all of the tests’ probability values are less than 0.05. The standard reaction 

would be to believe that the lag length is too short and add lags. However, because a 

VAR model cannot be estimated for Algeria with more than 9 lags, because experience 
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suggests that models with too many lags can exhibit autocorrelation and the SC suggests 

a lower optimal lag length, we consider lower lag length VARs. As a result, we re-

estimate the VAR models with 8, 7, 6 and 5 lags and report the autocorrelation tests in 

columns 4, 5, 7 and 6 of Table 7.6.B respectively. Given a lag length of 9 is indicated by 

the AIC this suggests VARs with more lags are preferred to those with less hence we seek 

to select as high a VAR lag length as possible where autocorrelation is not evident. The 

VAR models with 8, 7 and 6 lags indicate evidence of autocorrelation whereas the VAR 

with 5 lags exhibits no evident autocorrelation. Hence, we select the 5 lag VAR of this 

model for forecasting Algerian inflation. 

 
 
Table 7.6.B 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and 𝐺𝐴𝑃  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝 

 1 2 3 4 5 6 7    
9 8 7 6 5 

LogL AIC SC Prob Prob Prob Prob Prob 

0 
       

1 -12.8372  -12.4723*  NA 0.528 0.2524 0.1817 0.6722 

2 -12.9417 -11.6643  NA 0.5828 0.0846 0.0558 0.4905 

3 -12.6627 -10.4728  NA 0.5141 0.3539 0.4106 0.4235 

4 -12.7487 -9.64643  NA 0.734 0.1715 0.4298 0.0930 

5 -13.3997 -9.38501 0 0.013 0.1299 0.1732 0.4211 

6 -13.8048 -8.87773  NA 0.4682 0.2822 0.0281 0.0544 

7 -13.5566 -7.7171  NA 0.2511 0.4201 0.1700 0.6668 

8 -14.5435 -7.79154 0 0.0509 0.3429 0.0469 0.1057 

9 -16.3174* -8.65299  NA 0.1521 0.0152 0.5965 0.1832 

10   0 0.5367 0.6479 0.5276 0.4370 

The table indicates the selected lag from AIC and SC criterion by an asterisk 
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7.7 Nigeria Model Selection Criterion for Unrestricted VARs  

We describe the process of choosing the appropriate VAR lag order for Nigeria. Note 

that these are the unrestricted VARs, not VECMs, and that the stationary forms of the 

variables are used in the model (as identified in chapter 6 Table 6.6.5 for Nigeria).  We 

use the standard Akaike (AIC) and Schwarz (SC) information criteria to identify initial lag 

lengths. First, we estimate an unrestricted VAR model for Nigeria where all available 

variables are included as endogenous. We start with the maximum possible lag-length 

that can be estimated for Nigeria (P*= 8). The VAR model considered includes six 

stationary variables (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, GAP and ∆𝐼𝑛𝑂𝑖𝑙𝑝). The results are given in 

Table 7.7.A column 1 and 2 where the lag length selected by the AIC and SC are 8 and 0 

respectively. To maximize the chance of selecting an appropriate lag length and 

minimizing the VAR exhibiting autocorrelation, we avoid selecting the low lag length of 

the SC and adopt the AIC. Therefore, we tested the maximum lag (P*= 8) VAR for 

autocorrelation (of order 1, 2, … 10). The probability values of these autocorrelation 

tests are reported in column 3 of Table 7.7.A. There is evidence of autocorrelation at the 

5% level because many of the probability values are less than 0.05. The standard 

reaction would be to believe that the lag length is too short and add lags. However, 

because a VAR model cannot be estimated for Nigeria with more than 8 lags, because 

experience suggests that models with too many lags can exhibit autocorrelation and the 

SC suggests a lower optimal lag length, we consider lower lag length VARs that free from 

autocorrelation. As a result, we re-estimate the VAR models with P*˂ 8., (7 and 6, lags) 

and report the autocorrelation tests in Table 7.7.A. The VAR estimated with 6 lags 

passed the test for autocorrelation at the 5% level for all lag lengths because the many 

the probability values are higher than 0.05 - see Table 7.7.A.  
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Table. 7.7.A 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸, 𝐺𝐴𝑃 and ∆𝐼𝑛𝑂𝑖𝑙𝑝     

 1 2 3 4 3 

 Lag AIC SC Prob. Prob. Prob. 
   

8 7 6 

0 1.082133   1.297191* 
  

 

1 1.286006 2.791412  NA 0.9910 0.5280 

2 1.713872 4.509626  NA 0.9932 0.5828 

3 1.785555 5.871658  NA 0.8489 0.5141 

4 -0.87228 4.504175  NA 0.5631 0.7340 

5 -0.67319 5.993612 0 0.7631 0.2130 

6 -1.64262 6.314524 0 0.2897 0.4682 

7 -1.91904 7.328457  NA 0.0049 0.2511 

8  -4.049670* 6.488173 0 0.9252 0.0609 

9 
  

0 0.0688 0.1521 

10 
  

 NA 0.5932 0.5367 

The table indicates the selected lag from AIC and SC criterion by an asterisk 

Second, we estimate an unrestricted VAR model for Nigeria where we treat the oil price 

as exogenous and all other available variables as endogenous. We start with the 

maximum possible lag-length that can be estimated for Nigeria (P*= 9). The VAR model 

considered includes six stationary variables with the oil price as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and 

the following variables as endogenous (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and GAP). The results 

are given in Table 7.7.B column 1 and 2 where the lag length selected by the AIC and SC 

are 9 and 0 respectively.  To maximize the chance of selecting an appropriate lag length 

and minimizing the VAR exhibiting autocorrelation, we avoid selecting the low lag length 

of the SC (0) and adopt the AIC (9). Therefore, we tested the maximum lag (P*= 9) VAR 

for autocorrelation (of order 1, 2, … 10). There is evidence of autocorrelation at the 5% 

level because 3 of the tests’ probability values are less than 0.05. The standard reaction 

would be to believe that the lag length is too short and add lags. However, because a 

VAR model cannot be estimated for Nigeria with more than 9 lags, because experience 

suggests that models with too many lags can exhibit autocorrelation and the SC suggests 

a lower optimal lag length, we consider lower lag length VARs. As a result, we re-

estimate the VAR models with 8, 7, 6 and 5 lags and report the autocorrelation tests in 

Table 7.7.B. Given a lag length of 9 is indicated by the AIC and this suggests VARs with 

more lags are preferred to those with less hence we seek to select as high a VAR lag 
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length as possible where autocorrelation is not evident. The VAR model with 8, 7 and 6 

lags indicate evidence of autocorrelation whereas the VAR with 5 lags exhibits no 

evident autocorrelation. Hence, we select the 5 lag VAR of this model for forecasting 

Nigerian inflation. 

Table 7.7.B 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, ∆𝐼𝑛𝑅𝐸𝐸 and 𝐺𝐴𝑃  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝 

 1 2 3 4 5 

   9 8 5 

Lag AIC SC Prob Prob Prob 

0 2.483251   2.84168* 0.5906 0.1685 0.9518 

1 2.454515 3.70902 0.5906 0.1685 0.9518 

2 2.58196 4.73254 0.9453 0.5447 0.5644 

3 2.554353 5.601009 0.0051 0.3184 0.8402 

4 0.432767 4.375498 0.3504 0.7955 0.7365 

5 0.65671 5.495516 0.0853 0.0072 0.4657 

6 0.535766 6.270646 0.0016 0.4109 0.2772 

7 0.736223 7.367179 0.5393 0.7939 0.3596 

8 0.257769 7.7848 0.1839 0.1144 0.6142 

9  -2.46873* 5.95433 0.0795 0.6243 0.1686 

10 
  

0.0072 0.5219 0.5910 

The table indicates the selected lag from AIC and SC criterion by an asterisk 
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7.8 Angola Model Selection Criterion for Unrestricted VARs  

We describe the process of choosing the appropriate VAR lag order for Angola. Note 

that these are the unrestricted VARs, not VECMs, and that the stationary forms of the 

variables are used in the model (as identified in chapter 6 Table 6.6.5 for Angola). We 

use the standard Akaike (AIC) and Schwarz (SC) information criteria to identify initial lag 

lengths. First, we estimate an unrestricted VAR model for Angola where all available 

variables are included as endogenous. We start with the maximum possible lag-length 

that can be estimated for Angola (P*= 6). The VAR model considered includes five 

stationary variables (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, GAP and ∆𝐼𝑛𝑂𝑖𝑙𝑝). The results are given in Table 

7.8.A column 1 and 2 where the lag length selected by the AIC and SC are 6 and 1 

respectively. To maximize the chance of selecting an appropriate lag length and 

minimizing the VAR exhibiting autocorrelation, we avoid selecting the low lag length of 

the SC and adopt the AIC. Therefore, we tested the maximum lag (P*= 6) VAR for 

autocorrelation (of order 1, 2, … 10). The probability values of these autocorrelation 

tests are reported in column 3 of Table 7.8.A. There is evidence of autocorrelation at the 

5% level because at least one of the tests’ probability values is less than 0.05. The 

standard reaction would be to believe that the lag length is too short and add lags. 

However, because a VAR model cannot be estimated for Angola with more than 6 lags, 

experience suggests that models with too many lags can exhibit autocorrelation and the 

SC suggests a lower optimal lag length, we consider lower lag length VARs. As a result, 

we re-estimate the VAR models with 5 and 4 lags and report the autocorrelation tests in 

columns 4 and 5 of Table 7.8.A, respectively. Given a lag length of 6 is indicated by the 

AIC and this suggests VARs with more lags are preferred to those with less hence we 

seek to select as high a VAR lag length as possible where autocorrelation is not evident. 

The VAR models with 5 lags indicate evidence of autocorrelation whereas the VAR with 

4 lags exhibits no evident autocorrelation. Hence, we select the 4 lag VAR of this model 

for forecasting Angolans inflation. 
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Table 7.8.A 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅, 𝐺𝐴𝑃 and ∆𝐼𝑛𝑂𝑖𝑙𝑝   

 1 2 3 4 5 
 

AIC SC Prob Prob Prob 

Lags 
  

6 5 4 

0 -3.00508 -2.79611 
   

1 -5.96261  -4.708772* 0.7816 0.4319 0.0653 

2 -5.27633 -2.97763 0.9315 0.8565 0.1872 

3 -4.93136 -1.58781 0.1394 0.5529 0.2095 

4 -6.45058 -2.06216 0.9493 0.0785 0.4827 

5 -8.11894 -2.68567 0.9649 0.8237 0.4929 

6  -9.496350* -3.01821 0.2182 0.6013 0.1833 

7 
  

0.2530 0.8698 0.5775 

8 
  

0.0701 0.0964 0.1268 

9 
  

0.7549 0.0228 0.3556 

10 
  

0.0004 0.4243 0.4952 

The table indicates the selected lag from AIC and SC criterion by an asterisk 

Second, we estimate an unrestricted VAR model for Angola where we treat oil price as 

exogenous and all other available variables as endogenous. We start with the maximum 

possible lag-length that can be estimated for Angola (P*= 7). The VAR model considered 

includes five stationary variables with the oil price as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the 

following variables as endogenous (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅 and GAP). The results are given in 

Table 7.8.B column 1 and 2 where the lag length selected by the AIC and SC are 7 and 1 

respectively.  To maximize the chance of selecting an appropriate lag length and 

minimizing the VAR exhibiting autocorrelation, we avoid selecting the low lag length of 

the SC (1) and adopt the AIC (7). Therefore, we tested the maximum lag (P*= 7) VAR for 

autocorrelation (of order 1, 2, … 10). The VAR model with 7 lags indicates no evidence 

of autocorrelation. Hence, we select the 7 lag VAR of this model for forecasting Angolan 

inflation. 
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Table 7.8.B 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅 and 𝐺𝐴𝑃  

Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝 

 1 2 3 

Lag AIC SC Prob 
   

7 

0 -1.54265 -1.20829 
 

1 -4.66042  -3.657351* 0.0996 

2 -4.23268 -2.56091 0.6011 

3 -4.11943 -1.77894 0.7180 

4 -5.12724 -2.11804 0.5208 

5 -6.36339 -2.68548 0.9109 

6 -7.31995 -2.97333 0.7966 

7  -7.880953* -2.86562 0.5492 

8 
  

0.2970 

9 
  

0.3780 

10 
  

0.6549 

The table indicates the selected lag from AIC and SC criterion by an asterisk 
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7.9 Saudi Arabia Model Selection Criterion for Unrestricted VARs  

We describe the process of choosing the appropriate VAR lag order for Angola. Note 

that these are the unrestricted VARs, not VECMs, and that the stationary forms of the 

variables are used in the model (as identified in chapter 6 Table 6.6.5 for Saudi Arabia).  

We use the standard Akaike (AIC) and Schwarz (SC) information criteria to identify initial 

lag length. First, we estimate an unrestricted VAR model for Saudi Arabia where all 

available variables are included as endogenous. We start with the maximum possible 

lag-length that can be estimated for Saudi Arabia (P*= 10). The VAR model considered 

includes five stationary variables (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅𝐸𝐸, GAP and ∆𝐼𝑛𝑂𝑖𝑙𝑝). The results are 

given in Table 7.9.A column 1 and 2 where the lag length selected by the AIC and SC are 

4 and 1 respectively. To maximize the chance of selecting an appropriate lag length and 

minimizing the VAR exhibiting autocorrelation, we avoid selecting the low lag length of 

the SC and adopt the AIC. Therefore, we tested the maximum lag (P*= 4) VAR for 

autocorrelation (of order 1, 2, … 10). The probability values of these autocorrelation 

tests are reported in column 3 of Table 7.9.A. There is evidence of autocorrelation at the 

5% level because two of the tests’ probability values are less than 0.05. This suggests 

that the lag length is too short and a VAR with more lags are preferred to those with 

less, hence we follow the standard reaction and add lags (P*+ 1).  We re-estimate the 

VAR models with 5, 6.,…,12 lags  and report the autocorrelation tests in columns 

4,5.,…,11 of Table 7.9.A., respectively. The VAR models with 4.,…,11 lags indicate 

evidence of autocorrelation whereas the VAR with 12 lags exhibits no evident 

autocorrelation. Hence, we select the 12 lag VAR of this model for forecasting Saudi 

Arabian Inflation (see Table 7.9.A column 11). 
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Table 7.9.A 

Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝐼𝑛𝑅𝐸𝐸, 𝐺𝐴𝑃 and ∆𝐼𝑛𝑂𝑖𝑙𝑝   

 1 2 3 4 5 6 7 8 9 10 11 
 

AIC SC Prob. Prob. Prob. Prob. Prob. Prob. Prob. Prob. Prob. 

Lags 
  

4 5 6 7 8 9 10 11 12 

0 -20.0663 -19.9502       
   

1 -20.7912  -20.09437* 0.0447 0.0368 0.7932 
 

0.0356 0.4702 0.0473 0.2996 0.4223 0.6083 

2 -20.5772 -19.2996 0.7757 0.076 0.0423 0.5804 0.0944 0.5342 0.068 0.055 0.8529 

3 -20.556 -18.6977 0.9836 0.5826 0.9061 0.964 0.9174 0.9413 0.811 0.7238 0.7751 

4  -21.51615* -19.0771 0.0001 0.0009 0.0216 0.1289 0.3569 0.118 0.3924 0.2961 0.3151 

5 -21.4619 -18.4421 0.8993 0.6467 0.9978 0.892 0.7723 0.8845 0.7619 0.9644 0.9527 

6 -21.1666 -17.5661 0.9822 0.9025 0.927 0.906 0.6869 0.9055 0.5455 0.3844 0.7942 

7 -20.9327 -16.7515 0.8891 0.7758 0.4478 0.4342 0.0569 0.4559 0.0349 0.0722 0.2376 

8 -21.1497 -16.3877 0.1711 0.0093 0.0208 0.0114 0.0156 0.0083 0.0088 0.0436 0.3522 

9 -20.9148 -15.5721 0.9967 0.996 0.9887 0.9655 0.6948 0.9577 0.6402 0.6376 0.6293 

10 -20.9404 -15.017 0.3838 0.4632 0.4052 0.5973 0.8859 0.6411 0.7853 0.5076 0.3191 

The table indicates the selected lag from AIC and SC criterion by an asterisk 

Second, we estimate an unrestricted VAR model for Saudi Arabia where we treat oil 

price as exogenous and all other available variables as endogenous. We start with the 

maximum possible lag-length that can be estimated for Saudi Arabia (P*= 10). The VAR 

model considered includes five stationary variables (∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝑅𝐸𝐸, GAP and 

∆𝐼𝑛𝑂𝑖𝑙𝑝). The results are given in Table 7.9.B column 1 and 2 where the lag length 

selected by the AIC and SC are 4 and 1 respectively. To maximize the chance of selecting 

an appropriate lag length and minimizing the VAR exhibiting autocorrelation, we avoid 

selecting the low lag length of the SC and adopt the AIC. Therefore, we tested the 

maximum lag (P*= 4) VAR for autocorrelation (of order 1, 2, … 10). The probability values 

of these autocorrelation tests are reported in column 3 of Table 7.9.B. There is evidence 

of autocorrelation at the 5% level because two of the tests’ probability values are less 

than 0.05. This suggests that the lag length is too short and a VAR with more lags are 

preferred to those with less, hence we follow the standard reaction and add lags (P*+ 

1).  We re-estimate the VAR models with 5, 6.,…,12 lags  and report the autocorrelation 

tests in columns 4.,…,11 of Table 7.9.B., respectively. The VAR models with 5,..,11 lags 

indicate evidence of autocorrelation whereas the VAR with 12 lags exhibits no evident 

autocorrelation. Hence, we select the 12 lag VAR of this model for forecasting Saudi 

Arabian Inflation (see Table 7.9.B column 11). 
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Table 7.9.B 

 Endogenous: ∆𝑙𝑛𝑃, ∆𝑙𝑛𝑀, ∆𝐼𝑛𝑅𝐸𝐸 and 𝐺𝐴𝑃  
Exogenous:  ∆𝐼𝑛𝑂𝑖𝑙𝑝  

1 2 3 4 5 6 7 8 9 10 11 

  AIC SC Prob Prob Prob Prob Prob Prob Prob Prob Prob 

Lags   4 5 6 7 8 9 10 11 12 

0 -18.8446 -18.6617         
 

1 -19.8853 -19.3359* 0.0042 0.0000 0.000 0.3921 0.7932 0.0368 0.0447 0.0000 0.1135 

2 -19.7849 -18.8704 0.3862 0.0000 0.0546 0.2325 0.0423 0.076 0.7757 0.0000 0.7689 

3 -19.9036 -18.6233 0.9836 0.0454 0.5476 0.9053 0.9061 0.5826 0.9836 0.0044 0.9012 

4  -
20.4568* 

-18.8215 0.0412 0.0002 0.0000 0.0000 0.0216 0.0009 0.0001 0.0000 0.3091 

5 -20.3564 -18.3445 0.8723 0.8949 0.13 0.3631 0.9978 0.6467 0.8993 0.7986 0.8384 

6 -20.1669 -17.7892 0.8057 0.7612 0.8802 0.2294 0.927 0.9025 0.9822 0.8222 0.7527 

7 -19.9946 -17.251 0.9803 0.9131 0.2422 0.5857 0.4478 0.7758 0.8891 0.9566 0.3549 

8 -20.0122 -16.9028 0.0777 0.0000 0.0000 0.0000 0.0208 0.0093 0.1711 0.0000 0.2328 

9 -19.9548 -16.4796 0.9935 0.7228 0.0271 0.1941 0.9887 0.996 0.9967 0.7664 0.9433 

10 -19.8771 -16.0361 0.7122 0.3421 0.6544 0.0334 0.4052 0.4632 0.3838 0.0983 0.7653 

The table indicates the selected lag from AIC and SC criterion by an asterisk 
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Appendix. Section 7.3 

7.2. Modelling Vector Error Correction Model (VECM) for Russia 

In this section, we describe the process of modelling an unrestricted Vector Error 

Correction Model (VECM) for Russia. We focus only on those variables that are I(1) in 

chapter 6 Table 6.6.5 for Russia. The following variables are considered: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  

𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁, 𝑔𝑎𝑝𝑟𝑢𝑠 and 𝐼𝑛𝑂𝑖𝑙𝑝 (all are I(1)).  First, we estimate a level VAR model for 

Russia where all available variables that are integrated by I(1) are included as 

endogenous except unemployment (which is excluded). To choose an appropriate lag 

length for this model, we use the Akaike (AIC) and Schwarz (SC) information criteria with 

the maximum possible lag-length that can be estimated (P* =6) to determine the initial 

lag length P**. The results are given in Table 7.2.A column 1 and 2 where the lag length 

selected by the AIC and SC are 6 and 1 respectively. To maximize the chance of selecting 

an appropriate lag length and minimizing the VAR exhibiting autocorrelation, we avoid 

selecting the lower lag length identified by the SC and adopt the AIC. Therefore, we 

tested the maximum lag (P*= 6) VAR for autocorrelation (of order 1, 2,… 10). The 

probability values of these autocorrelation tests are reported in column 3 of Table 7.2.A. 

There is evidence of autocorrelation at the 5% level because all the tests’ probability 

values are less than 0.05. The standard reaction would be to believe that the lag length 

is too short and add lags. However, because a VAR model cannot be estimated for Russia 

with more than 6 lags; experience suggests that models with too many lags can exhibit 

autocorrelation and the SC suggests a lower optimal lag length. We consider lower lag 

length VARs and re-estimate the VAR model using lag lengths 5, 4,…,1 (where P* - 1; ) 

and test the validity of each model. The VAR model reject the hypothesis of no-

autocorrelation at the 5% level for all the model considered – see column 4, 5, 6,….,8 of 

Table 7.2.A. This indicates that there is no valid model with the appropriate lag to 

estimate cointegration test. 
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Table 7.2. A. The VECM lags order selection criteria 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝐼𝑛𝑅𝐸𝐸, 𝐺𝐴𝑃 and 𝐼𝑛𝑂𝑖𝑙𝑝 

 1 2 3 4 5 6 7 8 

Lags 
  

6 5 4 3 2 1 

  AIC SC Prob. Prob. Prob. Prob. Prob. Prob. 

0 -14.67211 -14.4588       

1 -26.93061  -25.65095* 0.000 0.0542 0.0258 0.289 0.5048 0.0052 

2 -27.43891 -25.0929 0.000 0.065 0.0311 0.1374 0.8573 0.7726 

3 -27.16896 -23.7565 0.000 0.4575 0.4153 0.8535 0.8593 0.599 

4 -27.59034 -23.1115 0.000 0.5637 0.1707 0.0104 0.0095 0.000 

5 -29.13809 -23.5929 0.000 0.0303 0.4009 0.9689 0.8651 0.3403 

6  -32.00748* -25.3959 0.000 0.0025 0.1785 0.6253 0.1864 0.0165 

7   0.000 0.5456 0.9573 0.9157 0.7739 0.0743 

8   0.000 0.9453 0.902 0.4691 0.6675 0.1941 

9   0.000 0.71 0.9799 0.8773 0.8745 0.6213 

10   0.000 0.3884 0.8065 0.1981 0.353 0.6755 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

Second, we estimate a level VAR model for Russia where all variables that integrated by 

I(1) are included as endogenous except the output gap (which is excluded). We start 

with the maximum possible lag-length that can be estimated for Russia (P*= 6). The VAR 

model considered includes five non- stationary variables (𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑈𝑁 and 

𝐼𝑛𝑂𝑖𝑙𝑝). The results are given in Table 7.2.B.A column 1 and 2 where the lag length 

selected by the AIC and SC are 6 and 1 respectively. To maximize the chance of selecting 

an appropriate lag length and minimizing the VAR exhibiting autocorrelation, we avoid 

selecting the low lag length of the SC and adopt the AIC. Therefore, we tested the 

maximum lag (P*= 6) VAR for autocorrelation (of order 1, 2, … 10). There is evidence of 

autocorrelation at the 5% level because all the tests’ probability values are less than 

0.05. The standard reaction would be to believe that the lag length is too short and add 

lags. However, a VAR model cannot be estimated for Russia with more than 6 lags, 

because experience suggests that models with too many lags can exhibit autocorrelation 

and the SC indicates a lower optimal lag length, we consider lower lag length VARs hence 

we do not consider the lag that less necessary. As a result, we re-estimate the VAR model 

using a lag length of 5, 4 and 3 and test the validity of the model – see column 4, 5 and 

6 of Table 7.2.B.A respectively. The VAR models with 5 and 4 lags indicate evidence of 

autocorrelation whereas the VAR with 3 lags exhibits no evident autocorrelation. Hence, 

we select the 3 lag VAR of this model for cointegration analysis. 

 



605 
 

Table 7.2. B.A 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑢𝑛 and 𝐼𝑛𝑂𝑖𝑙𝑝 
 

1 2 3 4 5 6 
 

AIC SC Prob. Prob. Prob.  

Lag   6 5 4 3 

0 -8.572662 -8.35939     

1 -20.52935  -19.24969* 0.000 0.473 0.0251 0.7201 

2 -21.36295 -19.0169 0.000 0.3427 0.2151 0.4892 

3 -21.0847 -17.6723 0.000 0.1679 0.9068 0.7374 

4 -21.1495 -16.6707 0.000 0.8088 0.6145 0.6099 

5 -22.90982 -17.3646 0.000 0.4348 0.1709 0.4551 

6  -24.58742* -17.9758 0.000 0.0327 0.3005 0.4067 

7   0.000 0.1886 0.978 0.9721 

8   0.000 0.7589 0.4143 0.5903 

9   0.000 0.2606 0.4036 0.2595 

10   0.000 0.2447 0.1946 0.1698 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

 

Using a VECM based on 3 lagged level terms (2 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept and no trend (option 

3 in EVIews) to determine the cointegrating rank. The results of Johansen’s trace and 

maximum eigenvalue tests are reported in Table 7.2.B.B Based on the trace and 

maximum eigenvalue statistics, we reject the null hypothesis of the no cointegrating 

equation at the 5% level. However, the null hypothesis of one cointegrating equation 

cannot be rejected at 5% significance level. Therefore, our results indicate only one 

cointegrating equation among the five variables. 

 

Table 7.2.B.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace 

Statistic 

test 

Critical 

Value 

Prob.** Max-Eigen 

Statistic 

0.05 Critical 

Value 

Prob.** 

None * 84.1278 69.81889 0.0099 38.46456 33.87687 0.0041 

At most 1 45.66325 47.85613 0.4123 26.67019 27.58434 0.4423 

At most 2 18.99306 29.79707 0.6371 9.818529 21.13162 0.896 

At most 3 9.174531 15.49471 0.3731 9.04989 14.2646 0.488 

At most 4 0.124641 3.841466 0.1673 0.124641 3.841466 0.1673 
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Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.2.B.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 

 

Table 7.2.B.C The Vector Error Correction Model 

 t-statistics in [ ] 
   

 
DLOG(PRUS_D11) DLOG(MRUS) DLOG(REERUS) D(URUS_D11) DLOG(OILP) 

DLOG(PRUS_D11(-1)) 0.304561 -0.44901 0.676263 1.849259 0.63764 
 

 
[ 1.34907] [-0.63459] [ 1.02474] [ 0.16487] [ 0.56731] 

 

DLOG(PRUS_D11(-2)) -0.19746 -0.41669 0.047485 5.216157 -0.38418 
 

 
[-0.91194] [-0.61402] [ 0.07502] [ 0.48488] [-0.35637] 

DLOG(MRUS(-1)) -0.03987 0.111905 0.745683 -15.1149 0.015369 
 

 
[-0.50797] [ 0.45492] [ 3.25013] [-3.87621] [ 0.03933] 

 

DLOG(MRUS(-2)) 0.192625 -0.0465 0.477226 -9.1727 0.667978 
 

 
[ 1.71694] [-0.13224] [ 1.45514] [-1.64564] [ 1.19588] 

 

DLOG(REERUS(-1)) -0.05981 0.200921 -0.96928 3.065071 -0.38618 
 

 
[-0.91603] [ 0.98187] [-5.07849] [ 0.94489] [-1.18800] 

DLOG(REERUS(-2)) -0.05531 0.303912 -1.05027 8.776415 -0.25153 
 

 
[-0.66181] [ 1.16030] [-4.29914] [ 2.11376] [-0.60454] 

D(URUS_D11(-1)) 0.005707 -0.00072 0.015937 -0.59027 -0.00451 
 

 
[ 1.12880] [-0.04546] [ 1.07840] [-2.35006] [-0.17898] 

D(URUS_D11(-2)) 0.000378 0.006952 0.014722 -0.31082 -0.00141 
 

 
[ 0.10376] [ 0.60900] [ 1.38279] [-1.71771] [-0.07780] 

DLOG(OILP(-1)) 0.013374 0.129676 0.659381 -2.30469 -0.39915 
 

 
[ 0.26413] [ 0.81715] [ 4.45487] [-0.91615] [-1.58337] 

DLOG(OILP(-2)) 0.020982 0.028798 0.733549 -4.74827 -0.18918 
 

 
[ 0.35221] [ 0.15424] [ 4.21235] [-1.60431] [-0.63784] 

C 0.661713 -1.4592 2.915344 -17.5692 1.211525 
 

 
[ 1.83696] [-1.29248] [ 2.76859] [-0.98170] [ 0.67553] 

 

LOG(PRUS_D11(-3)) -0.1253 -0.05849 0.035183 -4.45609 -0.23437 
 

 
[-1.75137] [-0.26082] [ 0.16822] [-1.25361] [-0.65796] 

LOG(MRUS(-3)) 0.063119 -0.08031 0.138088 -0.26128 0.156222 
 

 
[ 2.10988] [-0.85651] [ 1.57902] [-0.17579] [ 1.04887] 

 

LOG(REERUS(-3)) -0.08338 0.477042 -1.10993 10.97367 -0.22133 
 

 
[-0.86034] [ 1.57061] [-3.91800] [ 2.27918] [-0.45873] 

URUS_D11(-3) 0.000721 0.01052 0.018106 -0.13311 0.027798 
 

 
[ 0.22846] [ 1.06290] [ 1.96139] [-0.84840] [ 1.76812] 

 

LOG(OILP(-3)) 0.009057 -0.08147 0.816275 -6.46569 -0.03614 
 

 
[ 0.13047] [-0.37447] [ 4.02281] [-1.87484] [-0.10458] 

 Adj. R-squared 0.480061 0.427008 0.719559 0.486229 0.027148 
 

 Akaike information criterion -21.0847 
    

 Schwarz criterion -17.6723 
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For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the 

residual autocorrelation tests are reported in Table 7.2.B.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more 

than 0.05. Therefore, this model is valid to forecast Russian inflation since there is no 

evidence of autocorrelation.  

Table 7.2.B.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.7201 

2 0.4892 

3 0.7374 

4 0.6099 

5 0.4551 

6 0.4067 

7 0.9721 

8 0.5903 

9 0.2595 

10 0.1698 

Third, we produce a VECM for Russia where we treat the stationary transformation of 

oil prices as exogenous and all other variables as endogenous (which are I(1)). We first 

seek to find the appropriate lag length and start with a levels VAR using the maximum 

possible lag-length that can be estimated for Russia (P*= 8).  The VAR model considered 

includes four nonstationary variables as endogenous (𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝐼𝑛𝑅𝐸𝐸 𝑎𝑛𝑑 𝑔𝑎𝑝) and 

stationary log of oil price as exogenous (∆𝑙𝑛𝑂𝑖𝑙𝑝). The results are given in Table 7.2.C.A 

column 1 and 2 where the lag length selected by both the AIC and SC is 8. There is 

evidence of autocorrelation at the 5% level in this 8-lag model because all the tests’ 

probability values are less than 0.05. The standard reaction would be to believe that the 

lag length is too short and add lags. However, because a VAR model cannot be estimated 

for Russia with more than 8 lags and because experience suggests that models with too 

many lags can exhibit autocorrelation, we consider lower lag length VARs.  As a result, 

we re-estimate the VAR models with 7, 6 and 5 lags and report the autocorrelation tests 

in columns 4,5 and 6 of Table 7.2.C.A, respectively. The VAR models with 7 and 6 lags 

indicate evidence of autocorrelation whereas the VAR with 5 lags exhibits no evident 

autocorrelation. Hence, we select the 5 lag VAR of this model for cointegration analysis. 
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Table 7.2. C.A 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸 and  𝑔𝑎𝑝  

Exogenous: ∆𝑙𝑛𝑂𝑖𝑙𝑝 
 

1 2 3 4 5 6 
 

AIC SC Prob. Prob. Prob.  

Lag   8 7 6 5 

0 -10.20365 -9.8624     

1 -21.77828 -20.7546 0.0000 0.4886 0.0174 0.0866 

2 -22.54718 -20.841 0.0000 0.1277 0.2885 0.1904 

3 -22.2934 -19.9047  0.0000 0.8101 0.6341 0.4435 

4 -22.00025 -18.9291 0.0000 0.154 0.5089 0.5040 

5 -22.49025 -18.7366 0.0000 0.287 0.1157 0.9465 

6 -22.90378 -18.4676 0.0000 0.2062 0.0313 0.3139 

7 -25.05141 -19.9328  0.000 0.0139 0.1911 0.3177 

8  -27.80382*  -22.00268* 0.0000 0.2337 0.4777 0.2399 

9   0.0000 0.4786 0.9889 0.9636 

10   0.00000 0.0574 0.3537 0.4609 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

 

Using a VECM based on 5 lagged level terms (4 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept and no trend (option 

3 in EVIews) to determine the cointegrating rank. The results of Johansen’s trace and 

maximum eigenvalue tests are reported in Table 7.2.C.B. Based on the trace statistics, 

we reject the null hypothesis of the no cointegrating equations, and at most 1,2 

cointegrating equations at the 5% level. However, the null hypothesis of at most 3 

cointegrating equation cannot be rejected at the 5% significance level. For the maximum 

eigenvalue, we reject the null hypothesis of the no cointegrating equation at the 5% 

level. However, the null hypothesis of one cointegrating equation cannot be rejected at 

5% significance levels.  Therefore, we accept the result of the trace test and assume that 

the system has three cointegrating equations because the trace test is more robust to 

departures from normally distributed residuals of the systems’ equations.169  

  

                                                           
169 Lutkepohi et al. (2000) observed that the trace test performs better than the maximum 

eigenvalue test most especially where the power is low. 
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Table 7.2.C.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace Statistic 

test 

Critical Value Prob.** Max-

Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 76.55259 47.85613 0.0050 43.8182 27.58434 0.0002 

At most 1 32.73439 29.79707 0.0223 16.97035 21.13162 0.1734 

At most 2 15.76403 15.49471 0.0455 14.34074 14.2646 0.0486 

At most 3 1.423299 3.841466 0.2329 1.423299 3.841466 0.2329 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.2.C.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 
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Table 7.2.C.C The Vector Error Correction Model 

  t-statistics in [ ] 
  

 
DLOG(PRUS_D11) DLOG(MRUS) DLOG(REERUS) D(GAPRUS_D11) 

DLOG(PRUS_D11(-1)) 0.173524 -0.7081 1.790761 0.888602 
 

 
[ 0.69512] [-1.06957] [ 1.65049] [ 1.09372] 

 

DLOG(PRUS_D11(-2)) -0.00682 -0.48637 0.261244 -1.19778 
 

 
[-0.02704] [-0.72758] [ 0.23846] [-1.46006] 

DLOG(PRUS_D11(-3)) -0.32063 0.607639 -1.23143 0.662657 
 

 
[-0.95535] [ 0.68269] [-0.84420] [ 0.60666] 

 

DLOG(PRUS_D11(-4)) -0.64232 -1.22126 1.95037 -0.49092 
 

 
[-2.09496] [-1.50193] [ 1.46357] [-0.49196] 

DLOG(MRUS(-1)) 0.004297 0.019152 0.98088 0.239496 
 

 
[ 0.03673] [ 0.06173] [ 1.92898] [ 0.62898] 

 

DLOG(MRUS(-2)) 0.089873 0.040638 0.130551 0.07269 
 

 
[ 0.90920] [ 0.15502] [ 0.30387] [ 0.22594] 

 

DLOG(MRUS(-3)) -0.07224 0.162927 0.152264 0.379772 
 

 
[-0.70083] [ 0.59603] [ 0.33988] [ 1.13208] 

 

DLOG(MRUS(-4)) 0.086745 -0.41062 0.326378 0.128299 
 

 
[ 0.75382] [-1.34548] [ 0.65256] [ 0.34257] 

 

DLOG(REERUS(-1)) -0.06426 0.139199 -0.41937 -0.06464 
 

 
[-1.33504] [ 1.09048] [-2.00462] [-0.41264] 

DLOG(REERUS(-2)) -0.06171 0.308075 -0.37147 -0.06071 
 

 
[-1.05738] [ 1.99032] [-1.46436] [-0.31961] 

DLOG(REERUS(-3)) -0.0496 0.44396 -0.39381 0.048275 
 

 
[-0.71858] [ 2.42510] [-1.31258] [ 0.21488] 

 

DLOG(REERUS(-4)) -0.09801 0.389143 -0.51994 0.016678 
 

 
[-1.26588] [ 1.89520] [-1.54510] [ 0.06619] 

 

D(GAPRUS_D11(-1)) -0.08 0.327593 0.54279 -0.02648 
 

 
[-0.77472] [ 1.19629] [ 1.20946] [-0.07881] 

D(GAPRUS_D11(-2)) -0.00487 -0.27144 -0.17699 -0.42013 
 

 
[-0.05656] [-1.19003] [-0.47348] [-1.50089] 

D(GAPRUS_D11(-3)) 0.053242 -0.50192 -0.29491 -0.65897 
 

 
[ 0.46744] [-1.66159] [-0.59572] [-1.77761] 

D(GAPRUS_D11(-4)) -0.00186 -0.05161 -0.12598 -0.57781 
 

 
-0.08955 -0.23749 -0.38921 -0.29145 

 

 
[-0.02082] [-0.21731] [-0.32368] [-1.98256] 

C 1.087146 -1.31401 1.132022 -1.43875 
 

 
[ 2.80220] [-1.27710] [ 0.67133] [-1.13944] 

LOG(PRUS_D11(-5)) -0.2175 -0.11874 0.321506 0.261745 
 

 
[-2.54301] [-0.52348] [ 0.86486] [ 0.94028] 

 

LOG(MRUS(-5)) 0.098002 -0.08915 0.033172 -0.12742 
 

 
[ 2.74946] [-0.94307] [ 0.21412] [-1.09834] 

LOG(REERUS(-5)) -0.11014 0.507689 -0.62023 0.17087 
 

 
[-1.41049] [ 2.45163] [-1.82754] [ 0.67236] 

 

GAPRUS_D11(-5) -0.01521 -0.30107 0.096986 -0.46135 
 

 
[-0.21773] [-1.62561] [ 0.31953] [-2.02983] 

DLOG(OILP_EXO) 0.003752 -0.03509 -0.08377 -0.03969 
 

 
[ 0.26713] [-0.94198] [-1.37210] [-0.86822] 

 Adj. R-squared 0.562865 0.655065 0.478766 0.363632 
 

 Akaike information criterion -22.4903 
   

 Schwarz criterion -18.7366 
   

 

For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.2.C.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, his model is valid to forecast Russian inflation since there is no evidence 

of autocorrelation.  
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Table 7.2.C.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.0866 

2 0.1904 

3 0.4435 

4 0.504 

5 0.9465 

6 0.3139 

7 0.3177 

8 0.2399 

9 0.9636 

10 0.4609 
 

 

Fourth, we produce a VECM for Russia where unemployment is included with other 

variables and excludes the output gap. We treat the stationary transformation of the oil 

prices (∆𝐼𝑛𝑂𝑖𝑙𝑝) as exogenous and following nonstationary variables (𝑙𝑛𝑃, 𝑙𝑛𝑀, 

𝐼𝑛𝑅𝐸𝐸 𝑎𝑛𝑑 𝑈𝑁) as endogenous. We first seek to find the appropriate lag length and start 

with a levels VAR using the maximum possible lag-length that can be estimated for 

Russia (P*= 8).  The results are given in Table 7.2.D.A column 1 and 2 where the lag 

length selected by the AIC and SC are 8 and 2 respectively. To maximize the chance of 

selecting an appropriate lag length and minimizing the VAR exhibiting autocorrelation, 

we avoid selecting the low lag length of the SC and adopt the AIC. Therefore, we tested 

the maximum lag (P*= 8) VAR for autocorrelation (of order 1, 2, … 10). There is evidence 

of autocorrelation at the 5% level in this 8-lag model because all the tests’ probability 

values are less than 0.05. The standard reaction would be to believe that the lag length 

is too short and add lags. However, because a VAR model cannot be estimated for Russia 

with more than 8 lags and because experience suggests that models with too many lags 

can exhibit autocorrelation, we consider lower lag length VARs.  As a result, we re-

estimate the VAR models with 7 and 6 lags and report the autocorrelation tests in 

columns 4 and 5 of Table 7.2.D.A, respectively. The VAR model with 7 lag indicates 

evidence of autocorrelation whereas the VAR with 6 lag exhibits no evident 

autocorrelation. Hence, we select the 6 lag VAR of this model for cointegration analysis. 

 

  



612 
 

Table 7.2. D.A 

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸 and  𝑈𝑁 

Exogenous: ∆𝑙𝑛𝑂𝑖𝑙𝑝 

 
 

1 2 3 4 5 
 

AIC SC Prob. Prob. Prob. 

Lag   8 7 6 

0 2.238751 2.409373    

1 -18.86234 -18.00923 0.000 0.3441 0.3838 

2 -20.04228  -18.50669* 0.000 0.1427 0.4168 

3 -19.86654 -17.64846 0.000 0.034 0.4612 

4 -19.29647 -16.3959  0.000 0.959 0.6915 

5 -20.32674 -16.74368 0.000 0.2753 0.4255 

6 -20.86821 -16.60267 0.000 0.3468 0.4808 

7 -21.90786 -16.95983 0.000 0.7928 0.9376 

8  -22.69874* -17.06822 0.000 0.0788 0.4122 

9   0.000 0.9022 0.9323 

10   0.000 0.1654 0.0560 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

 

Using a VECM based on 6 lagged level terms (5 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept and no trend (option 

3 in EVIews) to determine the cointegrating rank. The results of Johansen’s trace and 

maximum eigenvalue tests are reported in Table 7.2. D.B. Based on the trace and 

maximum eigenvalue results, we reject the null hypothesis of the no cointegrating 

equations, and at most 1,2 cointegrating equations at the 5% level. However, the null 

hypothesis of at most 3 cointegrating equation cannot be rejected at the 5% significance 

level. Therefore, the tests indicate that there are three cointegrating equations among 

the five variables in this Table (7.2.D.B). 

 

Table 7.2.D.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace Statistic 

test 

Critical Value Prob.** Max-

Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 91.95015 47.85613 0.0000 47.52461 27.58434 0.0000 

At most 1 44.42554 29.79707 0.0005 24.20909 21.13162 0.0178 

At most 2 20.21645 15.49471 0.0090 19.75729 14.2646 0.0061 

At most 3 0.459156 3.841466 0.4980 0.459156 3.841466 0.4980 
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Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.2.D.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 
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Table 7.2.D.C The Vector Error Correction Model 

t-statistics in [ ] 
    

 
DLOG(PRUS_D11) DLOG(MRUS) DLOG(REERUS) DLOG(URUS_D11) 

DLOG(PRUS_D11(-1)) 0.139016 -0.78014 1.30248 1.80813 
 

 
[ 0.45250] [-0.76456] [ 0.83748] [ 0.82095] 

 

DLOG(PRUS_D11(-2)) -0.2989 -0.06443 0.710193 1.118655 
 

 
[-1.06669] [-0.06923] [ 0.50066] [ 0.55686] 

 

DLOG(PRUS_D11(-3)) 0.046759 -0.03842 -1.93329 0.671433 
 

 
[ 0.15497] [-0.03834] [-1.26571] [ 0.31040] 

 

DLOG(PRUS_D11(-4)) -0.73979 -1.45129 2.197033 0.744079 
 

 
[-2.75135] [-1.62510] [ 1.61409] [ 0.38601] 

 

DLOG(PRUS_D11(-5)) -0.26575 0.606491 -1.25764 0.544865 
 

 
[-0.73307] [ 0.50372] [-0.68531] [ 0.20965] 

 

DLOG(MRUS(-1)) -0.00533 0.095625 0.815266 -2.30096 
 

 
[-0.05320] [ 0.28749] [ 1.60808] [-3.20480] 

DLOG(MRUS(-2)) 0.140627 -0.21038 -0.37497 -0.88261 
 

 
[ 1.48635] [-0.66949] [-0.78289] [-1.30124] 

DLOG(MRUS(-3)) -0.0262 0.067581 -0.10634 0.17833 
 

 
[-0.26905] [ 0.20893] [-0.21568] [ 0.25542] 

 

DLOG(MRUS(-4)) 0.11829 -0.1202 0.467432 -0.92786 
 

 
[ 1.13857] [-0.34835] [ 0.88876] [-1.24576] 

DLOG(MRUS(-5)) 0.009503 -0.03715 -0.28135 -0.08929 
 

 
[ 0.09880] [-0.11628] [-0.57784] [-0.12950] 

DLOG(REERUS(-1)) -0.09687 0.097427 -0.3192 -0.23076 
 

 
[-1.81208] [ 0.54874] [-1.17954] [-0.60213] 

DLOG(REERUS(-2)) -0.07957 0.184105 -0.42969 0.388733 
 

 
[-1.41216] [ 0.98375] [-1.50640] [ 0.96232] 

 

DLOG(REERUS(-3)) -0.10364 0.465379 -0.2979 0.865327 
 

 
[-1.56251] [ 2.11242] [-0.88716] [ 1.81971] 

 

DLOG(REERUS(-4)) -0.13447 0.49078 -0.06407 1.053925 
 

 
[-1.61752] [ 1.77750] [-0.15225] [ 1.76840] 

 

DLOG(REERUS(-5)) -0.14968 0.705938 -0.06185 1.42869 
 

 
[-1.69582] [ 2.40809] [-0.13841] [ 2.25784] 

 

DLOG(URUS_D11(-1)) 0.01136 -0.06438 -0.09531 -0.68455 
 

 
[ 0.31639] [-0.53986] [-0.52436] [-2.65948] 

DLOG(URUS_D11(-2)) -0.02441 0.096234 -0.00259 -0.57285 
 

 
[-0.81731] [ 0.97028] [-0.01713] [-2.67583] 

DLOG(URUS_D11(-3)) -0.01487 0.183991 0.066914 -0.38986 
 

 
[-0.50117] [ 1.86766] [ 0.44564] [-1.83339] 

DLOG(URUS_D11(-4)) -0.03582 0.176954 0.078232 0.041399 
 

 
[-1.20437] [ 1.79136] [ 0.51960] [ 0.19416] 

 

DLOG(URUS_D11(-5)) -0.00412 0.195832 0.210136 0.319193 
 

 
[-0.11520] [ 1.65028] [ 1.16182] [ 1.24616] 

 

C 1.739717 -3.3439 -0.84434 -2.33464 
 

 
[ 3.33355] [-1.92917] [-0.31959] [-0.62400] 

LOG(PRUS_D11(-6)) -0.32939 -0.14196 0.316417 -0.89449 
 

 
[-2.48862] [-0.32293] [ 0.47224] [-0.94267] 

LOG(MRUS(-6)) 0.159836 -0.14387 -0.11196 0.012375 
 

 
[ 3.00992] [-0.81574] [-0.41647] [ 0.03251] 

 

LOG(REERUS(-6)) -0.20365 0.918059 -0.033 1.364076 
 

 
[-1.91560] [ 2.59999] [-0.06131] [ 1.78973] 

 

LOG(URUS_D11(-6)) 0.004513 0.252322 0.020719 0.043739 
 

 
[ 0.10611] [ 1.78602] [ 0.09622] [ 0.14343] 

 

DLOG(OILP_EXO) 0.004199 -0.04744 -0.09383 0.171218 
 

 
[ 0.40728] [-1.38541] [-1.79773] [ 2.31647] 

 

 Adj. R-squared 0.615624 0.5243 0.378256 0.575709 
 

 Akaike information criterion -21.2854 
   

 Schwarz criterion -16.8492 
   

 



615 
 

For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.2.D.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast Russian inflation since there is no 

evidence of autocorrelation.  

Table 7.2.D.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.4338 

2 0.1485 

3 0.560 

4 0.6768 

5 0.7973 

6 0.1284 

7 0.6674 

8 0.5515 

9 0.2979 

10 0.1649 
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7.3 Modelling Vector Error Correction Model (VECM) for India 

In this section, we describe the process of modelling an unrestricted Vector Error 

Correction Model (VECM) for India.  We focus only on those variables that are I(1) in 

chapter 6 Table 6.6.5 for India) and  use the standard Akaike (AIC) and Schwarz (SC) 

information criteria to identify initial lag lengths. First, we estimate a VAR model in level 

for India where we treat all available variables as endogenous. We start with the 

maximum lags length (P*= 10) to identify initial lag for India and the VAR model 

considered includes two nonstationary variables (𝑙𝑛𝑃 and  𝑙𝑛𝑀 ). To utilise the large 

sample available for the core variable and other variables, we estimate between 1963q1 

-2014q4.170 The results are given in Table 7.3.A column 1 and 2 where the lag length 

selected by the AIC and SC are 10 and 5 respectively. To maximize the chance of selecting 

an appropriate lag length and minimizing the VAR exhibiting autocorrelation, we avoid 

selecting the low lag length of the SC and adopt the AIC. Therefore, we tested the 

maximum lag (P*= 10) VAR for autocorrelation (of order 1, 2, … 10). There is evidence 

of autocorrelation at the 5% level because the two of the tests’ probability values are 

less than 0.05. Since the VAR model can not be estimated more than 10 lags, we 

considered the lower lags. The VAR model with 9 lag exhibits no evident autocorrelation. 

Hence, we select the 9 lag VAR of this model for cointegration analysis. 

 

  

                                                           
170 We did not include oil price variable in this VAR because the sample is only available between 1980-
2014. 
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 Table 7.3.A. A 

Endogenous: 𝑙𝑛𝑃 and  𝑙𝑛𝑀 

 1 2 3 4 5 6  
AIC SC Prob Prob Prob Prob 

Lag 
  

10 11 12 13 

0 2.456136 2.489119 
    

1 -7.96263 -7.86368 0.2620 0.2122 0.523 0.6049 

2 -8.47441 -8.3095 0.6003 0.3496 0.1794 0.6768 

3 -8.69151 -8.46062 0.9597 0.4714 0.9385 0.9494 

4 -10.1978 -9.90096 0.0000 0.0002 0.0018 0.8138 

5 -11.4847  -11.12190* 0.6683 0.299 0.1591 0.5133 

6 -11.4538 -11.0251 0.5717 0.6739 0.7302 0.9404 

7 -11.4411 -10.9463 0.2227 0.3817 0.2784 0.7991 

8 -11.4074 -10.8466 0.0015 0.01 0.1632 0.2245 

9 -11.5848 -10.9582 0.5796 0.7006 0.5799 0.7174 

10  -11.60466* -10.912 0.2273 0.8695 0.9381 0.8502 
The table indicates the selected lag from AIC and SC criterion by an asterisk 

 

Using a VECM based on 9 lagged level terms (8 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept and no trend (option 

3 in EVIews) to determine the cointegrating rank. The results of Johansen’s trace and 

maximum eigenvalue tests are reported in Table 7.3. A.B. Based on the trace and 

maximum eigenvalue results, we cannot reject the null hypothesis of the no 

cointegrating equations at the 5% level. Therefore, there is evidence cointegration 

among the two variables and the VECM can be included in this model.  

Table 7.3.A.B Johansen’s cointegration rank tests 
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Table 7.2.C.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace Statistic 

test 

Critical Value Prob.** Max-

Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 10.27186 15.49471 0.2604 9.683948 14.2646 0.2335 

At most 1 0.587914 3.841466 0.4432 0.587914 3.841466 0.4432 

At most 2 6.76403 15.49471 0.0455 6.34074 6.1649 0.0486 

At most 3 2.423299 3.841466 0.2329 2.423299 3.84146 0.2329 

Second, we estimate a VAR level for the short period (1984q1- 2012q4) to include all 

available variables and the oil price that only available between 1980q1 2014q4. 

Therefore, we start with the initial length (P*= 10) and considered the VAR model that 

include all the nonstationary variables (𝑙𝑛𝑃,   𝑎𝑛𝑑 𝐼𝑛𝑂𝑖𝑙𝑝). The results are given in Table 

7.3.B.A column 1 and 2 where the lag length selected by the AIC and SC are both 5. We 

tested the maximum lag (P*= 5) VAR for autocorrelation (of order 1, 2, … 10). There is 

evidence of autocorrelation at the 5% level because three of the tests’ probability values 

are less than 0.05. The standard reaction would be to believe that the lag length is too 

short and add lags, hence we follow the standard reaction and add lags (P**+ 1).  We 

re-estimate the VAR models with 6,7, 8 and 9 lags and report the autocorrelation tests 

in columns 4, 5, 6 and 7 of Table 7.3.B, respectively. The VAR models with 6, 7 and 8 lags 

indicate evidence of autocorrelation whereas the VAR with 9 lags exhibits no evident 

autocorrelation. Hence, we select the 9 lag VAR of this model for cointegration analysis. 

Table 7.3.B.A 

 Endogenous: 𝑙𝑛𝑃,  𝑙𝑛𝑀, 𝑎𝑛𝑑  𝐼𝑛𝑂𝑖𝑙𝑝   

 1 2 3 4 5 6 7 
 

AIC SC Prob.  Prob. Prob. Prob. 

Lag 
  

5 6 7 8 9 

0 8.966761 9.037974      

1 -2.24817 -1.96332 0.0966 0.4387 0.0021 0.7926 0.8436 

2 -2.25685 -1.75836 0.0130 0.7807 0.2361 0.2968 0.9171 

3 -2.40654 -1.69441 0.1307 0.5398 0.5881 0.8587 0.9806 

4 -4.37472 -3.44895 0.000 0.0015 0.012 0.0015 0.1175 

5  -5.132193*  -3.992777* 0.6234 0.8753 0.7343 0.4585 0.9193 

6 -5.06132 -3.70826 0.9428 0.7929 0.862 0.7726 0.9524 

7 -4.98742 -3.42072 0.9598 0.5869 0.7039 0.9591 0.4079 

8 -4.88913 -3.10879 0.0008 0.0013 0.0018 0.0004 0.6600 

9 -5.01044 -3.01646 0.9407 0.9803 0.9919 0.9945 0.8288 

10 -4.91679 -2.70917 0.4833 0.7645 0.9816 0.9105 0.9503 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  
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Using a VECM based on 9 lagged level terms (8 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept and trend (option 4 

in EVIews) to determine the cointegrating rank.171 The results of Johansen’s trace and 

maximum eigenvalue tests are reported in Table 7.3. B.B. Based on the trace and 

maximum eigenvalue results, we reject the null hypothesis of the no cointegrating 

equations at the 5% level. However, the null hypothesis of at most 1 and 2 cointegratings 

equation cannot be rejected at the 5% significance level. Therefore, there is only one 

cointegrating equation among the three variables. 

 
  

                                                           
171  We decided to choose option 4 in the EVIew because option 3 does not specified cointegration. 
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Table 7.3.B.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace Statistic 

test 

Critical Value Prob.** Max-

Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 49.33186 42.91525 0.0101 27.68772 25.82321 0.0281 

At most 1 21.64413 25.87211 0.1537 18.1756 19.38704 0.0743 

At most 2 3.468532 12.51798 0.8168 3.468532 12.51798 0.8168 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.3.B.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 
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Table 7.3.B.C The Vector Error Correction Model 

 t-statistics in [ ]  
DLOG(PIND_D11) DLOG(MIND) DLOG(OILP) 

DLOG(PIND_D11(-1)) 0.175932 0.018916 -28.8182  
[ 1.65992] [ 0.16223] [-0.56974] 

DLOG(PIND_D11(-2)) 0.127147 -0.02575 -15.6547  
[ 1.19516] [-0.22000] [-0.30834] 

DLOG(PIND_D11(-3)) 0.11066 0.112219 -64.8454  
[ 1.05180] [ 0.96952] [-1.29148] 

DLOG(PIND_D11(-4)) -0.19173 -0.00635 -47.1435  
[-1.78887] [-0.05382] [-0.92170] 

DLOG(PIND_D11(-5)) -0.06963 -0.18893 31.38082  
[-0.64211] [-1.58373] [ 0.60641] 

DLOG(PIND_D11(-6)) 0.145202 -0.05518 7.508572  
[ 1.33227] [-0.46021] [ 0.14436] 

DLOG(PIND_D11(-7)) 0.119349 0.030001 0.637831  
[ 1.12843] [ 0.25784] [ 0.01264] 

DLOG(PIND_D11(-8)) -0.16522 -0.05314 12.33178  
[-1.59165] [-0.46530] [ 0.24894] 

DLOG(MIND(-1)) -0.0138 -0.08997 -3.25398  
[-0.15723] [-0.93172] [-0.07769] 

DLOG(MIND(-2)) 0.040502 -0.06536 -9.08417  
[ 0.46076] [-0.67588] [-0.21655] 

DLOG(MIND(-3)) 0.016108 -0.08976 -1.40786  
[ 0.18365] [-0.93023] [-0.03363] 

DLOG(MIND(-4)) -0.01871 0.383697 44.69126  
[-0.20309] [ 3.78494] [ 1.01628] 

DLOG(MIND(-5)) -0.00671 -0.05505 -16.3685  
[-0.07096] [-0.52920] [-0.36275] 

DLOG(MIND(-6)) -0.03975 -0.07427 -6.25272  
[-0.42090] [-0.71495] [-0.13875] 

DLOG(MIND(-7)) -0.00524 -0.04115 -10.4871  
[-0.05516] [-0.39342] [-0.23116] 

DLOG(MIND(-8)) 0.006111 0.47404 -30.0117  
[ 0.06564] [ 4.62771] [-0.67540] 

DLOILP(-1) -0.00019 -3.97E-05 -0.14665  
[-0.86443] [-0.16537] [-1.40842] 

DLOILP(-2) -0.00045 -8.17E-05 -0.12817  
[-2.02590] [-0.33783] [-1.22245] 

DLOILP(-3) -0.00012 -2.46E-05 -0.13931  
[-0.52440] [-0.09994] [-1.30476] 

DLOILP(-4) 5.59E-05 -0.00015 -0.37122  
[ 0.25407] [-0.59894] [-3.53718] 

DLOILP(-5) 0.000199 -5.21E-05 -0.18747  
[ 0.88224] [-0.20977] [-1.73898] 

DLOILP(-6) -5.21E-05 -9.27E-05 -0.18566  
[-0.22751] [-0.36749] [-1.69740] 

DLOILP(-7) -9.00E-05 -0.00016 -0.1516  
[-0.38929] [-0.63971] [-1.37438] 

DLOILP(-8) 1.50E-05 -4.08E-05 -0.30512  
[ 0.05814] [-0.14367] [-2.47927] 

C -0.26166 -0.4798 -468.963  
[-0.66055] [-1.10101] [-2.48075] 

LOG(PIND_D11(-9)) -0.02719 -0.04514 -37.1735  
[-0.79302] [-1.19682] [-2.27197] 

LOG(MIND(-9)) 0.012697 0.022883 20.8052  
[ 0.71259] [ 1.16732] [ 2.44665] 

LOILP(-9) 2.49E-05 -0.0002 -0.15511  
[ 0.15414] [-1.12586] [-2.00969] 

 Adj. R-squared 0.036076 0.964764 0.031334 

 Akaike information criterion -5.01044 
 

 Schwarz criterion -3.01646 
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For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.3.B.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast Indian inflation since there is no evidence 

of autocorrelation.  

Table 7.3.B.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.8436 

2 0.9171 

3 0.9806 

4 0.1175 

5 0.9193 

6 0.9524 

7 0.4079 

8 0.660 

9 0.8288 

10 0.9503 
 

 

Third, we treat the stationary transformation of oil prices as exogenous and all other 

variables as endogenous (which are I(1)). We first seek to find the appropriate lag length 

and start with a levels VAR using the maximum possible lag-length that can be estimated 

for Brazil (P*= 10).  The VAR model considered includes two nonstationary variables with 

the difference of the log of oil prices as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the following variables 

as endogenous (𝑙𝑛𝑃 and  𝑙𝑛𝑀 ). The results are given in Table 7.3.C. A column 1 and 2 

where the lag length selected by the AIC and SC is 9 and 5 respectively. Therefore, we 

estimate a VAR model in level with 9 lag and report the autocorrelation tests in column 

4 of Table 7.3.C.A. There is no evidence of autocorrelation at the 5% level in this model 

because all the tests’ probability values are greater than 0.05. Therefore, we select the 

9 lag VAR of this model for cointegration analysis. 
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Table 7.3.C.A. 

Endogenous: 𝑙𝑛𝑃 and  𝑙𝑛𝑀 

Exogenous: ∆𝐼𝑛𝑂𝑖𝑙𝑝 

  1 2 3 

Lags   9 

 AIC SC Prob. 

0 1.052247 1.147199  

1 -8.54135 -8.35144 0.449 

2 -8.65753 -8.37267 0.2901 

3 -8.85509 -8.47529 0.9768 

4 -10.8315 -10.3568 0.093 

5 -11.664  -11.09432* 0.6909 

6 -11.6393 -10.9747 0.9092 

7 -11.6346 -10.875 0.8599 

8 -11.6031 -10.7485 0.2264 

9  -11.75527* -10.8058 0.2015 

10 -11.7303 -10.6859 0.3168 

 

Using a VECM based on 9 lagged level terms (8 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept and trend (option 4 

in EVIews) to determine the cointegrating rank.172 The results of Johansen’s trace and 

maximum eigenvalue tests are reported in Table 7.3. B.B. Based on the trace and 

maximum eigenvalue results, we reject the null hypothesis of the no cointegrating 

equations at the 5% level. However, the null hypothesis of one 1 cointegrating equation 

cannot be rejected at the 5% significance level. Therefore, there is evidence of only one 

cointegrating equation among the three variables. 

 
  

                                                           
172  I decided to choose option 4 in the EVIew because option 3 does not specified cointegration. 
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Table 7.3.C.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace Statistic 

test 

Critical Value Prob.** Max-

Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 29.06319 25.87211 0.0193 25.81805 19.38704 0.0051 

At most 1 3.245147 12.51798 0.8462 3.245147 12.51798 0.8462 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.3.C.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 
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Table 7.3.C.C. The Vector Error Correction Model 

 t-statistics in [ ]   
 

DLOG(PIND_D11) DLOG(MIND) 

DLOG(PIND_D11(-1)) 0.214527 2.25E-02 
 

 
[ 2.22454] [ 0.20946] 

 

DLOG(PIND_D11(-2)) 1.37E-01 -0.02036 
 

 
[ 1.38878] [-0.18540] 

DLOG(PIND_D11(-3)) 5.85E-02 1.07E-01 
 

 
[ 0.59651] [ 0.97696] 

 

DLOG(PIND_D11(-4)) -2.10E-01 -1.08E-02 
 

 
[-2.12730] [-0.09830] 

DLOG(PIND_D11(-5)) 0.022004 -0.17541 
 

 
[ 0.22097] [-1.57885] 

DLOG(PIND_D11(-6)) 1.63E-01 -0.05961 
 

 
[ 1.65223] [-0.54002] 

DLOG(PIND_D11(-7)) 0.083132 0.041953 
 

 
[ 0.84112] [ 0.38046] 

 

DLOG(PIND_D11(-8)) -0.17995 -0.05 
 

 
[-1.85934] [-0.46304] 

DLOG(MIND(-1)) -0.02358 -0.08442 
 

 
[-0.28304] [-0.90837] 

DLOG(MIND(-2)) 0.021679 -0.06033 
 

 
[ 0.25975] [-0.64784] 

DLOG(MIND(-3)) 0.009652 -0.08118 
 

 
[ 0.11600] [-0.87445] 

DLOG(MIND(-4)) -0.00849 0.384768 
 

 
[-0.09695] [ 3.94008] 

 

DLOG(MIND(-5)) -0.00641 -0.06921 
 

 
[-0.07212] [-0.69750] 

DLOG(MIND(-6)) -0.03762 -0.09339 
 

 
[-0.42564] [-0.94709] 

DLOG(MIND(-7)) -0.01223 -0.06832 
 

 
[-0.13805] [-0.69145] 

DLOG(MIND(-8)) -0.00795 0.44989 
 

 
[-0.09110] [ 4.62091] 

 

C -0.27282 -0.04202 
 

 
[-1.62750] [-0.22469] 

LOG(PIND_D11(-9)) -0.02781 -0.0088 
 

 
[-1.63998] [-0.46511] 

LOG(MIND(-9)) 0.013209 0.003413 
 

 
[ 1.66909] [ 0.38653] 

 

DLOG(OILP_EXO) -0.02502 -0.00183 
 

 
[-2.90335] [-0.19078] 

 Adj. R-squared 0.123379 0.967042 
 

 Akaike information criterion -11.7553 
 

 Schwarz criterion -10.8058 
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For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.3.C.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast Indian inflation since there is no evidence 

of autocorrelation.  

Table 7.3.C.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.449 

2 0.2901 

3 0.9768 

4 0.0930 

5 0.6909 

6 0.9092 

7 0.8599 

8 0.2264 

9 0.2015 

10 0.3168 
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7.4 Modelling Vector Error Correction Model (VECM) for China 

In this section, we describe the process of modelling an unrestricted Vector Error 

Correction Model (VECM) for China. We focus only on those variables that are I(1) in 

chapter 6 Table 6.6.5 for China). The following variables are considered: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  

𝐼𝑛𝑅𝐸𝐸, 𝑅  and 𝐼𝑛𝑂𝑖𝑙𝑝 (all are I(1)).  First, we estimate a level VAR for China where all 

available variables that are integrated by I(1) are included as endogenous. To choose an 

appropriate lag length for this model, we use the standard Akaike (AIC) and Schwarz (SC) 

information criteria with the maximum 9 lags (P* = 9) to determine the initial lag length 

P**. The results are given in Table 7.4.A column 1 and 2 where the lag length selected by 

the AIC and SC are 9 and 1 respectively. To maximize the chance of selecting an 

appropriate lag length and minimizing the VAR exhibiting autocorrelation, we avoid 

selecting the lower lag length identified by the SC and adopt the AIC. Therefore, we 

tested the maximum lag (P*= 9) VAR for autocorrelation (of order 1, 2, … 10). The 

probability values of these autocorrelation tests are reported in column 3 of Table 7.4.A. 

There is evidence of autocorrelation at the 5% level because three of the tests’ 

probability values are less than 0.05. This suggests that the lag length is too short and a 

VAR with more lags are preferred to those with less, hence we follow the standard 

reaction and add lags (P*+ 1). Therefore, we re-estimate the VAR models with 10 and 

report the autocorrelation tests in columns 4 of Table 7.4.A. The VAR models with 10 

lags indicate evidence of no autocorrelation. This model is valid for forecasting.  
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Table 7.4.A The VAR lags order selection criteria  

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑅  and 𝐼𝑛𝑂𝑖𝑙𝑝 

 1 2 3 4  
AIC SC Prob.  

Lag 
  

9 10 

0 0.803848 0.94854   

1 -12.8803 -11.2887* 0.1130 0.7807 

2 -13.0116 -10.6966 0.1772 0.5398 

3 -14.0795 -11.041 0.0008 0.4555 

4 -15.1153 -11.3533 0.6234 0.8753 

5 -14.8158 -10.3303 0.0032 0.7929 

6 -14.7245 -9.5156 0.9598 0.5869 

7 -14.5404 -8.60809 0.0358 0.8993 

8 -14.6128 -7.95701 0.9407 0.9803 

9  -15.20700* -7.82774 0.4833 0.7645 
AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

 

Second, we treat the stationary transformation of oil prices as exogenous and all other 

variables as endogenous (which are I(1)). We first seek to find the appropriate lag length 

and start with a level’s VAR using the maximum possible lag-length that can be 

estimated for China (P*= 10).  The VAR model considered includes four nonstationary 

variables with the difference of the log of oil prices as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the 

following variables as endogenous 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑅  and 𝐼𝑛𝑂𝑖𝑙𝑝. The results are 

given in Table 7.4.B. A column 1 and 2 where the lag length selected by the AIC and SC 

is 10 and 5 respectively. Therefore, we estimate a VAR model in level with 10 lag and 

report the autocorrelation tests in column 3 of Table 7.4.B.A. There is no evidence of 

autocorrelation at the 5% level because one of the tests’ probability values is greater 

than 0.05. Hence, we select the 10 lag VAR of this model for cointegration analysis. 
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Table 7.4. B.A  

 

Using a VECM based on 10 lagged level terms (9 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept (option 3 in EVIews) 

to determine the cointegrating rank. The results of Johansen’s trace and maximum 

eigenvalue tests are reported in Table 7.4.B.B.  Based on the trace and maximum 

eigenvalue statistics, we reject the null hypothesis of the no cointegrating and at most 

1 cointegrating equation at the 5% level. However, the null hypothesis of at most two 

cointegrating equations cannot be rejected at 5% significance level. Therefore, our 

results indicate 2 cointegrating equations among the variables. 

Table 7.4.B.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace Statistic 

test 

Critical Value Prob.** Max-

Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 68.57223 47.85613 0.0002 35.72026 27.58434 0.0036 

At most 1 32.85198 29.79707 0.0216 23.45235 21.13162 0.0231 

At most 2 9.399627 15.49471 0.3297 9.389563 14.2646 0.2552 

At most 3 0.010064 3.841466 0.9198 0.010064 3.841466 0.9198 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.4.B.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 
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Table 7.4.B.C The Vector Error Correction Model 

 
Standard errors in ( ) & t-statistics in [ ] 

  

 
DLOG(PCHI) DLOG(MCHI) DLOG(REECHI) D(RCHI) 

 

DLOG(PCHI(-1)) -0.21075 0.134126 0.311064 -6.11042 
 

 
[-0.96879] [ 0.28932] [ 0.41614] [-0.90422] 

DLOG(PCHI(-2)) 0.065312 -0.48923 0.30593 -2.77091 
 

 
[ 0.30798] [-1.08255] [ 0.41984] [-0.42063] 

DLOG(PCHI(-3)) 0.028319 0.060664 -0.69833 -2.03742 
 

 
[ 0.13819] [ 0.13891] [-0.99172] [-0.32005] 

DLOG(PCHI(-4)) -0.01125 1.200355 0.037454 2.752748 
 

 
[-0.05627] [ 2.81729] [ 0.05452] [ 0.44323] 

 

DLOG(PCHI(-5)) 0.008278 -0.1243 0.761234 5.295727 
 

 
[ 0.03802] [-0.26786] [ 1.01740] [ 0.78291] 

 

DLOG(PCHI(-6)) -0.09282 0.160389 0.52045 -5.21214 
 

 
[-0.43728] [ 0.35458] [ 0.71358] [-0.79048] 

DLOG(PCHI(-7)) -0.14358 -0.28714 -0.81805 -0.59927 
 

 
[-0.70691] [-0.66338] [-1.17213] [-0.09498] 

DLOG(PCHI(-8)) -0.20222 -0.16059 2.14775 10.48074 
 

 
[-0.94530] [-0.35227] [ 2.92187] [ 1.57719] 

 

DLOG(PCHI(-9)) 0.103753 0.930894 -0.34591 -2.88319 
 

 
[ 0.41981] [ 1.76748] [-0.40734] [-0.37555] 

DLOG(MCHI(-1)) -0.01698 -0.08107 -0.31853 0.067302 
 

 
[-0.17165] [-0.38469] [-0.93739] [ 0.02191] 

 

DLOG(MCHI(-2)) -0.09406 -0.2626 -0.17554 5.69594 
 

 
[-0.96515] [-1.26434] [-0.52417] [ 1.88142] 

 

DLOG(MCHI(-3)) -0.06664 -0.0418 0.395033 1.029775 
 

 
[-0.69669] [-0.20507] [ 1.20195] [ 0.34659] 

 

DLOG(MCHI(-4)) 0.105303 0.458943 -1.18714 -0.24792 
 

 
[ 1.10975] [ 2.26957] [-3.64095] [-0.08411] 

DLOG(MCHI(-5)) 0.027281 -0.1637 0.171911 4.939263 
 

 
[ 0.20349] [-0.57295] [ 0.37318] [ 1.18601] 

 

DLOG(MCHI(-6)) 0.111433 0.108477 -0.47372 0.113497 
 

 
[ 0.91675] [ 0.41877] [-1.13419] [ 0.03006] 

 

DLOG(MCHI(-7)) 0.124827 0.06695 -0.17263 4.901388 
 

 
[ 1.01613] [ 0.25574] [-0.40896] [ 1.28443] 

 

DLOG(MCHI(-8)) 0.074133 0.09289 -0.32011 0.672651 
 

 
[ 0.67754] [ 0.39838] [-0.85143] [ 0.19791] 

 

DLOG(MCHI(-9)) 0.034899 0.071932 0.221397 3.654016 
 

 
[ 0.31634] [ 0.30597] [ 0.58405] [ 1.06627] 

 

D(RCHI(-1)) 0.011016 -0.02366 0.012769 0.016138 
 

 
[ 1.80360] [-1.81801] [ 0.60846] [ 0.08506] 

 

D(RCHI(-2)) 0.002144 -0.02974 -0.02856 -0.19137 
 

 
[ 0.34060] [-2.21721] [-1.32029] [-0.97869] 

D(RCHI(-3)) -0.0005 -0.00962 -0.01591 0.061368 
 

 
[-0.07505] [-0.68034] [-0.69807] [ 0.29776] 

 

D(RCHI(-4)) -0.00091 -0.02629 0.020879 -0.11065 
 

 
[-0.14290] [-1.93724] [ 0.95434] [-0.55942] 

D(RCHI(-5)) 0.000548 -0.01998 -0.02699 -0.43855 
 

 
[ 0.07865] [-1.34627] [-1.12823] [-2.02775] 

D(RCHI(-6)) 0.002904 -0.01128 -0.00044 -0.15169 
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[ 0.42106] [-0.76724] [-0.01875] [-0.70812] 

D(RCHI(-7)) 0.004361 -0.03052 -0.00635 -0.16941 
 

 
[ 0.65700] [-2.15768] [-0.27817] [-0.82154] 

D(RCHI(-8)) 0.006922 -0.00926 -0.01184 -0.26751 
 

 
[ 0.98911] [-0.62080] [-0.49233] [-1.23063] 

D(RCHI(-9)) 0.002306 -0.01619 -0.0266 -0.36391 
 

 
[ 0.33309] [-1.09761] [-1.11827] [-1.69251] 

 
[-0.34428] [-2.87436] [ 0.21394] [-1.11872] 

 
[ 0.06688] [-0.75281] [ 0.28898] [-0.95036] 

C -0.21572 1.354805 0.921869 12.4561 
 

 
[-0.62412] [ 1.83928] [ 0.77619] [ 1.16011] 

 

LOG(PCHI(-10)) -0.06012 0.2092 0.386001 2.469896 
 

 
[-0.73456] [ 1.19938] [ 1.37250] [ 0.97145] 

 

LOG(MCHI(-10)) 0.022839 -0.05341 -0.03748 -0.31021 
 

 
[ 1.36426] [-1.49709] [-0.65162] [-0.59653] 

LOG(REECHI(-10)) -0.05478 -0.1004 -0.29651 -2.8809 
 

 
[-1.04868] [-0.90194] [-1.65203] [-1.77553] 

RCHI(-10) 0.003781 -0.03157 -0.01143 -0.29349 
 

 
[ 0.54671] [-2.14234] [-0.48087] [-1.36620] 

DLOG(OIL_EXO) 0.002833 -0.05789 -0.15271 1.227386 
 

 
[ 0.20099] [-1.92694] [-3.15274] [ 2.80288] 

 

 Adj. R-squared 0.409834 0.939124 0.408481 0.510862 
 

 Akaike information criterion -14.4433 
   

 Schwarz criterion -7.63402 
   

 

For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.4.B.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast Chinese inflation since there is no 

evidence of autocorrelation.  

Table 7.4.B.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.2256 

2 0.9199 

3 0.6999 

4 0.0606 

5 0.7985 

6 0.1578 

7 0.4078 

8 0.3521 

9 0.5845 

10 0.0954 
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7.5 Modelling Vector Error Correction Model (VECM) for South Africa 

In this section, we describe the process of modelling an unrestricted Vector Error 

Correction Model (VECM) for South Africa. We focus only on those variables that are I(1) 

in chapter 6 Table 6.6.5 for South Africa). The following variables are considered: 𝑙𝑛𝑃, 

𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑅  and 𝐼𝑛𝑂𝑖𝑙𝑝 (all are I(1)).  First, we estimate a level VAR for South Africa 

where all available variables integrated by I(1) are included as endogenous. To choose 

an appropriate lag length for this model, we use the standard Akaike (AIC) and Schwarz 

(SC) information criteria with the maximum 10 lags (P* =10) to determine the initial lag 

length P**. The results are given in Table 7.5.A.A column 1 and 2 where the lag length 

selected by both the AIC and SC is 1. We tested the maximum lag (P*= 1) VAR for 

autocorrelation (of order 1, 2, … 10). The probability values of these autocorrelation 

tests are reported in column 3 of Table 7.5.A.A There is evidence of autocorrelation at 

the 5% level because two of the tests’ probability values are less than 0.05. This suggests 

that the lag length is too short and a VAR with more lags are preferred to those with 

less, hence we follow the standard reaction and add lags (P*+1). Therefore, we re-

estimate the VAR models with 2 lags and report the autocorrelation tests in column 4. 

There is no evidence of cointegration - the null hypothesis of no-autocorrelation cannot 

be rejected at the 5% level for this model. This indicates that the model is valid for 

cointegration analysis 
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Table 7.5.A.A The VAR lags order selection criteria  

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑅  and 𝐼𝑛𝑂𝑖𝑙𝑝 

  1 2 3 4 

  AIC SC Prob.   

Lag     1 2  

0 1.663899 1.823242     

1  -11.32522*  -10.36916* 0.0605 0.3381 

2 -11.2835 -9.53072 0.113 0.294 

3 -11.1169 -8.56742 0.0372 0.4289 

4 -10.9146 -7.56839 0.6238 0.8632 

5 -10.8593 -6.71633 0.6234 0.3891 

6 -10.6524 -5.71271 0.9428 0.1955 

7 -10.7094 -4.97307 0.9598 0.9775 

8 -10.8651 -4.33205 0.0008 0.1790 

9 -10.9432 -3.61335 0.9407 0.8782 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

 

Using a VECM based on 2 lagged level terms (1 lagged differenced term) we apply the 

standard Johansen cointegration tests with unrestricted intercept and no trend (option 

3 in EVIews) to determine the cointegrating rank. The results of Johansen’s trace and 

maximum eigenvalue tests are reported in Table 7.5. A.B. Based on the trace and 

maximum eigenvalue results, we reject the null hypothesis of the no cointegrating 

equations at the 5% level. However, the null hypothesis of at most 1 cointegrating 

equation cannot be rejected at the 5% significance level. Therefore, there is only one 

cointegrating equation among the variables. 
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Table 7.5.A.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace Statistic 

test 

Critical Value Prob.** Max-

Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 84.85363 76.97277 0.0111 45.17019 34.80587 0.0021 

At most 1 39.68344 54.07904 0.4864 15.76440 28.58808 0.7608 

At most 2 23.91904 35.19275 0.4680 12.92558 22.29962 0.5639 

 10.99345 20.26184 0.5427 6.132251 15.8921 0.7730 

 4.86120 9.164546 0.2990 4.861200 9.164546 0.2990 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.5.A.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 
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Table 7.5.A.C. The Vector Error Correction Model 

 t-statistics in [ ] 
  

 
DLOG(PSOU) DLOG(MSOU) DLOG(REESOU) D(RSOU) DLOG(OILP) 

DLOG(PSOU(-1)) 0.276691 -0.27808 0.155167 9.830071 0.131216 
 

[ 2.13971] [-1.21639] [ 0.30625] [ 
1.05898] 

[ 0.11841] 

DLOG(MSOU(-1)) -0.03519 0.236379 -0.18051 5.424197 0.119834  
[-0.51898] [ 1.97206] [-0.67948] [ 

1.11450] 
[ 0.20625] 

DLOG(REESOU(-1)) -0.04911 0.006507 0.04479 -0.44021 0.730674 
 

[-1.45271] [ 0.10888] [ 0.33817] [-
0.18142] 

[ 2.52238] 

D(RSOU(-1)) 7.24E-05 -0.00792 0.00657 -0.00653 -0.00351  
[ 0.03841] [-2.37610] [ 0.88935] [-

0.04827] 
[-0.21722] 

DLOG(OILP(-1)) 0.004872 -0.03675 -0.04408 -0.09073 -0.19954 
 

[ 0.32812] [-1.39986] [-0.75760] [-
0.08512] 

[-1.56820] 

C 0.197351 0.091318 0.184268 12.26679 -0.29901  
[ 1.69068] [ 0.44250] [ 0.40289] [ 

1.46394] 
[-0.29891] 

LOG(PSOU(-2)) -0.07646 -0.05829 0.186129 -2.73072 -0.28124 
 

[-2.18706] [-0.94304] [ 1.35872] [-
1.08806] 

[-0.93867] 

LOG(MSOU(-2)) 0.027886 -0.00656 -0.07906 0.241517 0.274673  
[ 1.70946] [-0.22760] [-1.23692] [ 

0.20625] 
[ 1.96481] 

LOG(REESOU(-2)) 0.004108 0.041662 -0.15172 -0.13893 0.284184 
 

[ 0.22331] [ 1.28090] [-2.10472] [-
0.10520] 

[ 1.80251] 

RSOU(-2) -0.00035 -0.00235 0.002454 -0.20319 -0.01237 
 

[-0.37316] [-1.43111] [ 0.67347] [-
3.04362] 

[-1.55187] 

LOG(OILP(-2)) 0.004176 0.012086 -0.00059 0.157602 -0.19181  
[ 0.50171] [ 0.82125] [-0.01814] [ 

0.26374] 
[-2.68883] 

 Adj. R-squared 0.122145 0.29263 0.048158 0.123065 0.087632 

 Akaike information criterion -11.2835 
   

 Schwarz criterion -9.53072 
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For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.5.A.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast South African inflation since there is no 

evidence of autocorrelation.  

Table 7.5.A.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.3381 

2 0.294 

3 0.4289 

4 0.8632 

5 0.3891 

6 0.1955 

7 0.9775 

8 0.179 

9 0.8782 

10 0.6252 
 

Second, we treat the stationary transformation of oil prices as exogenous and all other 

variables as endogenous (which are I(1)). We first seek to find the appropriate lag length 

and start with a level’s VAR using the maximum possible lag-length that can be 

estimated for South Afrca (P*= 10).  The VAR model considered includes four 

nonstationary variables with the difference of the log of oil prices as exogenous 

(∆𝐼𝑛𝑂𝑖𝑙𝑝) and the following variables as endogenous 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸 and  𝑅. The 

results are given in Table 7.5.B. A column 1 and 2 where the lag length selected by the 

AIC and SC is 2 and 1 respectively. Therefore, we estimate a level VAR with 2 lag and 

report the autocorrelation tests in column 3 of Table 7.5.B.A.  The VAR model with 2 lag 

exhibits no evident autocorrelation because all the tests’ probability values are greater 

than 0.05. Hence, we select a level VAR model with 2 lags for the cointegration analysis. 
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Table 7.5.A The VAR lags order selection criteria  

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑅  
Exogenous:  𝐼𝑛𝑂𝑖𝑙𝑝 

  1 2 3 

  AIC SC Prob. 

Lag     2 

0 1.871293 2.126243   

1 -10.0556  -9.290710* 0.7974 

2  -10.16517* -8.89042 0.3419 

3 -9.98489 -8.20024 0.4270 

4 -9.85854 -7.56399 0.1211 

5 -9.82273 -7.01829 0.3567 

6 -9.80611 -6.49176 0.5615 

7 -9.69866 -5.87441 0.1912 

8 -9.46939 -5.13524 0.2193 

9 -9.56327 -4.71923 0.2187 

 -9.49897 -4.14503 0.8729 
AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

Using a VECM based on 2 lagged level terms (1 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept and no trend (option 

3 in EVIews) to determine the cointegrating rank. The results of Johansen’s trace and 

maximum eigenvalue tests are reported in Table 7.5. B.B. Based on the trace and 

maximum eigenvalue results, we reject the null hypothesis of the no cointegrating 

equations at the 5% level. However, the null hypothesis of 1 cointegrating equation 

cannot be rejected at the 5% significance level. Therefore, there is one cointegrating 

equation among the variables. 
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Table 7.5.B.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace 

Statistic test 

Critical Value Prob.** Max-Eigen 

Statistic 

0.05 Critical 

Value 

Prob.** 

None * 72.70216 54.07904 0.0005 42.49636 28.58808 0.0005 

At most 1 30.2058 35.19275 0.1563 15.24004 22.29962 0.3556 

At most 2 14.96576 20.26184 0.2283 9.451264 15.8921 0.387 

At most 3 5.514499 9.164546 0.2317 5.514499 9.164546 0.2317 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.5.B.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 

 

Table 7.5.B.C. The Vector Error Correction Model 

Standard errors in ( ) & t-statistics in [ ] 
 

 
DLOG(PSOU) DLOG(MSOU) DLOG(REESOU) D(RSOU) 

DLOG(PSOU(-1)) 0.279609 -0.271 0.295878 8.793029  
[ 2.21966] [-1.17738] [ 0.63275] [ 0.98394] 

DLOG(MSOU(-1)) -0.03315 0.210275 -0.237 5.559791  
[-0.49727] [ 1.72604] [-0.95760] [ 1.17543] 

DLOG(REESOU(-1)) -0.04987 0.002671 0.04769 -0.51129  
[-1.49175] [ 0.04373] [ 0.38430] [-0.21558] 

D(RSOU(-1)) 0.000198 -0.00714 0.005513 0.011631  
[ 0.10618] [-2.09718] [ 0.79726] [ 0.08801] 

C 0.180126 0.03138 0.12799 11.9637  
[ 1.67303] [ 0.15951] [ 0.32025] [ 1.56634] 

LOG(PSOU(-2)) -0.07514 -0.03879 0.213218 -2.7075  
[-2.21545] [-0.62588] [ 1.69365] [-1.12532] 

LOG(MSOU(-2)) 0.030842 -0.00475 -0.09045 0.358444  
[ 2.00004] [-0.16862] [-1.58009] [ 0.32765] 

LOG(REESOU(-2)) 0.007976 0.045145 -0.15847 -0.0376  
[ 0.47912] [ 1.48410] [-2.56430] [-0.03184] 

RSOU(-2) -0.00051 -0.00243 0.003323 -0.21131  
[-0.57545] [-1.49419] [ 1.00521] [-3.34431] 

DLOG(OILP_EXO) -0.01004 -0.01264 0.140987 -1.29609  
[-0.74838] [-0.51598] [ 2.83257] [-1.36253] 

 Adj. R-squared 0.14048 0.260184 0.163534 0.161394 

 Akaike information criterion -10.1652 
  

 Schwarz criterion -8.89042 
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For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.5.B.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast South African inflation since there is no 

evidence of autocorrelation.  

Table 7.5.B.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.6924 

2 0.4301 

3 0.596 

4 0.3646 

5 0.9364 

6 0.3009 

7 0.9937 

8 0.5212 

9 0.9479 

10 0.3618 
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7.6 Modelling Vector Error Correction Model (VECM) for Algeria 

In this section, we describe the process of modelling an unrestricted Vector Error 

Correction Model (VECM) for Algeria. We focus only on those variables that are I(1) in 

chapter 6 Table 6.6.5 for Algeria). The following variables are considered: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  

𝐼𝑛𝑅𝐸𝐸, 𝑅  and 𝐼𝑛𝑂𝑖𝑙𝑝 (all are I(1)).  First, we estimate a level VAR for Algeria where all 

available variables integrated by I(1) are included as endogenous. To choose an 

appropriate lag length for this model, we use the standard Akaike (AIC) and Schwarz (SC) 

information criteria with the maximum lag that can be estimated (P* = 9) to determine 

the initial lag length P**. The results are given in Table 7.6.A. A. column 1 and 2 where 

the lag length selected by the AIC and SC are 9 and 1 respectively. To maximize the 

chance of selecting an appropriate lag length and minimizing the VAR exhibiting 

autocorrelation, we avoid selecting the low lag length of the SC and adopt the AIC. We 

tested the maximum lag (P*= 9) VAR for autocorrelation (of order 1, 2, … 10). The 

probability values of these autocorrelation tests are reported in column 3 of Table 7.6. 

There is evidence of autocorrelation at the 5% level because all the tests’ probability 

values are less than 0.05. The standard reaction would be to believe that the lag length 

is too short and add lags. However, because a VAR model cannot be estimated for 

Algeria with more than 9 lags, experience suggests that models with too many lags can 

exhibit autocorrelation and the SC indicates a lower optimal lag length, we consider 

lower lag length VARs. As a result, we re-estimate the VAR models with 8 and 7 lags and 

report the autocorrelation tests in columns 4 and 5 of Table 7.6.A.A respectively. The 

VAR model with 8 lag indicates evidence of autocorrelation at the 5% level whereas a 

VAR model with 7 lag indicates no evidence of autocorrelation at the 5% level.  This 

indicates that a VAR model with 7 lags is valid for cointegration analysis. 
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Table 7.5.A.A.  The VAR lags order selection criteria  

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑅  and 𝐼𝑛𝑂𝑖𝑙𝑝  

  1 2 3 4  

  AIC SC Prob.    

Lag     9 8 7 

0 -5.66799 -5.4855      

1 -15.0512 -13.9563* 0.0000 0.3381 0.273 

2 -14.8358 -12.8285 0.0000 0.294 0.6548 

3 -14.5218 -11.6021 0.0000 0.0289 0.0546 

4 -15.1443 -11.3121 0.0000 0.8632 0.0808 

5 -16.0033 -11.2587 0.0000 0.3891 0.7247 

6 -16.4435 -10.7865 0.0000 0.1955 0.4959 

7 -16.5608 -9.99135 0.0000 0.9775 0.6019 

8 -17.9797 -10.4978 0.0000 0.1790 0.7923 

9  -23.15018*  -14.75588 0.0000 0.8782 0.5434 

10 -23.5608 -15.99135 0.0000 0.9775 0.1079 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

 

Using a VECM based on 7 lagged level terms (6 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept (option 3 in EVIews) 

to determine the cointegrating rank. The results of Johansen’s trace and maximum 

eigenvalue tests are reported in Table 7.6. A.B. Based on the trace result, we reject the 

null hypothesis of the no, at most 1, 2, 3 and 4 cointegrating equations at the 5% level. 

For maximum eigenvalue result, we reject the null hypothesis of the no and at most 1 

cointegrating equation at 5% significance level. However, the null hypothesis of at most 

2 cointegrating equations cannot be rejected at the 5% significance level for maximum 

eigenvalue. Therefore, we accept the result of the trace test and assume that the system 

has 5 cointegrating equations because the trace test is more robust to departures from 

normally distributed residuals of the systems’ equations.173  

 

  

                                                           
173 Lutkepohi et al.(2000) observed that the trace test performs better than the maximum 

eigenvalue test most especially where the power is low. 
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Table 7.6.A.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace Statistic 

test 

Critical Value Prob.** Max-

Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 158.8671 69.81889 0.000 84.55229 33.87687 0.0000 

At most 1 74.31483 47.85613 0.000 42.4162 27.58434 0.0003 

At most 2 31.89863 29.79707 0.0282 15.34173 21.13162 0.2657 

At most 3 16.5569 15.49471 0.0345 11.30465 14.2646 0.1396 

At most 4 5.252249 3.841466 0.0219 5.252249 3.841466 0.0219 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.6.A.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 
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Table 7.6.A.C. The Vector Error Correction Model 

 t-statistics in [ ] 
   

 
DLOG(PALG_D11) DLOG(M) DLOG(REEALG) D(RALG) DLOG(OILP) 

DLOG(PALG_D11(-
1)) 

-0.06453 -0.20744 0.533122 0.838318 1.069698 
 

 
[-0.26306] [-0.17794] [ 0.82839] [ 0.38531] [ 0.46492] 

 

DLOG(PALG_D11(-
2)) 

-0.10818 0.267338 0.946106 2.895802 3.550871 
 

 
[-0.42154] [ 0.21920] [ 1.40522] [ 1.27222] [ 1.47520] 

 

DLOG(PALG_D11(-
3)) 

0.171803 -0.96045 1.707716 1.10607 1.010941 
 

 
[ 0.65365] [-0.76890] [ 2.47645] [ 0.47444] [ 0.41006] 

 

DLOG(PALG_D11(-
4)) 

-0.04403 1.508861 0.907346 3.636749 3.161591 
 

 
[-0.12051] [ 0.86905] [ 0.94664] [ 1.12232] [ 0.92264] 

 

DLOG(PALG_D11(-
5)) 

-0.16904 1.46153 0.689761 5.125925 6.231157 
 

 
[-0.49269] [ 0.89635] [ 0.76628] [ 1.68443] [ 1.93629] 

 

DLOG(PALG_D11(-
6)) 

-0.23225 0.816286 -0.18106 1.85196 4.132193 
 

 
[-0.61864] [ 0.45752] [-0.18383] [ 0.55617] [ 1.17350] 

 

DLOG(M(-1)) 0.082207 -0.39277 0.185048 -0.14136 -0.31386 
 

 
[ 1.60372] [-1.61226] [ 1.37596] [-0.31091] [-0.65278] 

DLOG(M(-2)) 0.072421 -0.23052 0.125553 0.280961 0.302799 
 

 
[ 1.31411] [-0.88014] [ 0.86835] [ 0.57478] [ 0.58578] 

 

DLOG(M(-3)) 0.051845 -0.26576 0.062964 -0.58788 0.154011 
 

 
[ 1.14295] [-1.23282] [ 0.52908] [-1.46116] [ 0.36198] 

 

DLOG(M(-4)) 0.044068 0.332997 -0.04406 -1.58619 0.496722 
 

 
[ 1.06509] [ 1.69351] [-0.40592] [-4.32225] [ 1.27994] 

 

DLOG(M(-5)) -0.03123 -0.18516 -0.20839 -1.60065 0.229543 
 

 
-0.05404 -0.25681 -0.14177 -0.4793 -0.50686 

 

 
[-0.57787] [-0.72099] [-1.46990] [-3.33956] [ 0.45288] 

 

DLOG(M(-6)) 0.041619 -0.39823 -0.13938 -1.8952 -0.42986 
 

 
[ 0.65858] [-1.32597] [-0.84067] [-3.38115] [-0.72521] 

DLOG(REEALG(-1)) -0.11119 -0.06398 -0.38099 -0.15622 -1.74728 
 

 
[-1.05306] [-0.12750] [-1.37530] [-0.16680] [-1.76425] 

DLOG(REEALG(-2)) 0.000164 -0.75467 -0.75982 -1.52841 -4.22611 
 

 
[ 0.00138] [-1.33030] [-2.42618] [-1.44358] [-3.77454] 

DLOG(REEALG(-3)) -0.02172 -0.37437 -0.4699 -0.78356 -3.02109 
 

 
[-0.13466] [-0.48839] [-1.11045] [-0.54771] [-1.99693] 

DLOG(REEALG(-4)) -0.00434 -0.78804 -0.5587 -2.14095 -5.47944 
 

 
[-0.03054] [-1.16780] [-1.49976] [-1.69997] [-4.11426] 

DLOG(REEALG(-5)) 0.017024 -0.39214 -0.64346 -2.34173 -3.90595 
 

 
[ 0.09745] [-0.47236] [-1.40399] [-1.51137] [-2.38386] 

DLOG(REEALG(-6)) -0.00346 -0.32625 -0.28547 -2.77009 -5.83935 
 

 
[-0.02237] [-0.44354] [-0.70301] [-2.01783] [-4.02233] 

D(RALG(-1)) 0.007135 0.016866 -0.00029 -0.79341 -0.2765 
 

 
[ 0.47190] [ 0.23473] [-0.00737] [-5.91644] [-1.94973] 

D(RALG(-2)) 0.022468 -0.00969 0.009261 -0.81327 0.000381 
 

 
[ 1.44871] [-0.13151] [ 0.22760] [-5.91216] [ 0.00262] 

 

D(RALG(-3)) -0.00011 -0.01699 -0.0013 -0.8923 -0.04025 
 

 
[-0.00839] [-0.26981] [-0.03742] [-7.59106] [-0.32376] 

D(RALG(-4)) 0.009042 -0.01937 -0.00792 -0.77308 0.093455 
 

 
-0.01654 -0.0786 -0.04339 -0.14669 -0.15513 

 

 
[ 0.54672] [-0.24648] [-0.18246] [-5.27009] [ 0.60245] 

 

       

D(RALG(-5)) -0.00135 -0.08125 -0.00454 -0.24144 0.31116 
 

 
-0.01555 -0.07392 -0.04081 -0.13796 -0.14589 

 

 
[-0.08671] [-1.09919] [-0.11135] [-1.75007] [ 2.13278] 

 

       

D(RALG(-6)) -0.0037 -0.06647 0.004251 -0.36319 0.310389 
 

 
[-0.22140] [-0.83754] [ 0.09703] [-2.45192] [ 1.98154] 
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DLOG(OILP(-1)) 0.008528 -0.0462 -0.01209 0.084756 -0.4843 
 

 
[ 0.35363] [-0.40313] [-0.19104] [ 0.39627] [-2.14119] 

DLOG(OILP(-2)) -0.03008 -0.06185 0.021239 -0.04941 -0.6375 
 

 
[-1.52343] [-0.65909] [ 0.41000] [-0.28214] [-3.44217] 

DLOG(OILP(-3)) 0.009925 -0.04105 0.032208 -0.05343 -0.55652 
 

 
[ 0.39681] [-0.34531] [ 0.49082] [-0.24085] [-2.37213] 

DLOG(OILP(-4)) 0.03615 0.147845 0.083393 0.331603 -0.51808 
 

 
[ 1.49913] [ 1.29007] [ 1.31812] [ 1.55037] [-2.29053] 

DLOG(OILP(-5)) 0.03092 0.070438 0.06999 0.249318 -0.60371 
 

 
[ 1.12303] [ 0.53831] [ 0.96890] [ 1.02091] [-2.33768] 

DLOG(OILP(-6)) 0.008377 0.064135 0.040645 0.22277 -0.70306 
 

 
[ 0.28592] [ 0.46063] [ 0.52878] [ 0.85728] [-2.55847] 

C -1.26579 12.21431 3.353084 39.90518 31.74727 
 

 
[-0.85027] [ 1.72642] [ 0.85850] [ 3.02215] [ 2.27361] 

 

LOG(PALG_D11(-7)) -0.10336 1.345017 0.228561 2.966933 3.372541 
 

 
[-0.66892] [ 1.83162] [ 0.56380] [ 2.16482] [ 2.32699] 

 

LOG(M(-7)) 0.041209 -0.55787 -0.11043 -1.25498 -0.62369 
 

 
[ 0.70181] [-1.99916] [-0.71684] [-2.40966] [-1.13242] 

LOG(REEALG(-7)) 0.099677 -0.41354 -0.30324 -3.49086 -6.06495 
 

 
[ 0.60102] [-0.52469] [-0.69692] [-2.37312] [-3.89885] 

RALG(-7) 0.002899 -0.06486 0.00278 -0.20954 0.225336 
 

 
[ 0.23668] [-1.11404] [ 0.08649] [-1.92840] [ 1.96106] 

 

LOG(OILP(-7)) 0.011124 0.137366 0.042599 0.313756 -0.61571 
 

 
[ 0.45571] [ 1.18415] [ 0.66519] [ 1.44920] [-2.68928] 

 Adj. R-squared 0.122065 0.583614 0.092321 0.760195 0.412006 
 

 Akaike information criterion -16.9495 
    

 Schwarz criterion -10.3800 
    

 

For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.6.A.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast Algerian inflation since there is no 

evidence of autocorrelation.  

Table 7.6.A.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.273 

2 0.6548 

3 0.0546 

4 0.0808 

5 0.7247 

6 0.4959 

7 0.6019 

8 0.7923 

9 0.5434 

10 0.1079 
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Second, we treat the stationary transformation of oil prices as exogenous and all other 

variables as endogenous (which are I(1)). We first seek to find the appropriate lag length 

and start with a levels VAR using the maximum possible lag-length that can be estimated 

for Algeria (P*= 10).  The VAR model considered includes four nonstationary variables 

with the difference of the log of oil prices as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the following 

variables as endogenous 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸 and  𝑅 . The results are given in Table 7.6.B. 

A column 1 and 2 where the lag length selected by the AIC and SC are 10 and 1 

respectively. To maximize the chance of selecting an appropriate lag length and 

minimizing the VAR exhibiting autocorrelation, we avoid selecting the low lag length of 

the SC and adopt the AIC. We tested the maximum lag (P*= 10) VAR for autocorrelation 

(of order 1, 2, … 10). The probability values of these autocorrelation tests are reported 

in column 3 of Table 7.6.B.A. There is no evidence of autocorrelation at the 5% level 

because all the tests’ probability values are more than 0.05. Hence, we select a level VAR 

model with 10 lag for the cointegration analysis. 

Table 7.6.B.A The VAR lags order selection criteria  

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑅  

Exogenous:  𝐼𝑛𝑂𝑖𝑙𝑝 

  1 2 3 

  AIC SC Prob. 

Lag     10 

0 2.456136 2.489119   

1 -7.96263 -7.86368* 0.6049 

2 -8.47441 -8.3095 0.6768 

3 -8.69151 -8.46062 0.9494 

4 -10.1978 -9.90096 0.8138 

5 -11.4847  -11.1219 0.5133 

6 -11.4538 -11.0251 0.9404 

7 -11.4411 -10.9463 0.7991 

8 -11.4074 -10.8466 0.2245 

9 -11.5848 -10.9582 0.7174 

10  -11.60466* -10.912 0.8502 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

Using a VECM based on 10 lagged level terms (9 lagged differenced terms) we apply the 

standard Johansen cointegration tests with standard unrestricted intercept and no trend 

(option 3 in EVIews) to determine the cointegrating rank. The results of Johansen’s trace 

and maximum eigenvalue tests are reported in Table 7.6. B.B. Based on the trace and 

maximum eigenvalue results, we reject the null hypothesis of the no, at most 1,2 and 3 
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cointegrating equations at the 5% level. Therefore, are 4 cointegrating equations among 

the variables. 

 
Table 7.6.B.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace Statistic 

test 

Critical Value Prob.** Max-

Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 167.7066 47.85613 0.0000 100.6138 27.58434 0.000 

At most 1 67.0927 29.79707 0.0000 45.10525 21.13162 0.000 

At most 2 21.98745 15.49471 0.0046 16.73726 14.2646 0.0199 

At most 3 5.250192 3.841466 0.0219 5.250192 3.841466 0.0219 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 11.6.B.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 
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Table 7.6.B.C. The Vector Error Correction Model 
  

DLOG(PALG_D11) DLOG(M) DLOG(REEALG) D(RALG) 

DLOG(PALG_D11(-1)) -0.04367 0.063146 0.867071 2.914722 
 

[-0.15035] [ 0.06436] [ 1.32228] [ 1.60358] 

DLOG(PALG_D11(-2)) -0.23973 -0.50555 0.352565 2.502163 
 

[-0.79005] [-0.49315] [ 0.51460] [ 1.31756] 

DLOG(PALG_D11(-3)) 0.263063 -0.26687 0.970531 5.288085 
 

[ 0.70697] [-0.21228] [ 1.15516] [ 2.27068] 

DLOG(PALG_D11(-4)) 0.093694 2.480586 -0.42526 6.857665 
 

[ 0.15294] [ 1.19849] [-0.30743] [ 1.78853] 

DLOG(PALG_D11(-5)) -0.34096 0.42093 -0.20462 6.027108 
 

[-0.72322] [ 0.26428] [-0.19223] [ 2.04267] 

DLOG(PALG_D11(-6)) -0.32453 -0.64106 -0.54518 3.683774 
 

[-0.71621] [-0.41876] [-0.53287] [ 1.29895] 

DLOG(PALG_D11(-7)) -0.28512 -1.20344 0.591279 4.61351 
 

[-0.64826] [-0.80989] [ 0.59540] [ 1.67599] 

DLOG(PALG_D11(-8)) -0.315 -1.35753 -0.76266 3.568943 
 

[-0.77591] [-0.98975] [-0.83199] [ 1.40460] 

DLOG(PALG_D11(-9)) -0.11902 -0.32359 -0.22192 5.851181 
 

[-0.25213] [-0.20290] [-0.20821] [ 1.98049] 

DLOG(M(-1)) 0.106506 -0.25417 0.122609 0.351643 
 

[ 1.82314] [-1.28779] [ 0.92953] [ 0.96176] 

DLOG(M(-2)) 0.04932 -0.04127 -0.06995 0.506411 
 

[ 0.65947] [-0.16331] [-0.41421] [ 1.08190] 

DLOG(M(-3)) 0.051367 -0.09842 -0.09716 0.173436 
 

[ 0.74689] [-0.42356] [-0.62566] [ 0.40293] 

DLOG(M(-4)) -0.02377 0.27946 0.085671 -1.95636 
 

[-0.36770] [ 1.27941] [ 0.58686] [-4.83476] 

DLOG(M(-5)) -0.12512 -0.523 0.100413 -2.13197 
 

[-0.89154] [-1.10304] [ 0.31688] [-2.42722] 

DLOG(M(-6)) 0.02833 -0.4652 0.073214 -1.92183 
 

[ 0.32702] [-1.58947] [ 0.37430] [-3.54459] 

DLOG(M(-7)) 0.067721 -0.25321 0.180552 -1.66773 
 

[ 0.71694] [-0.79344] [ 0.84655] [-2.82100] 

DLOG(M(-8)) 0.173211 0.221308 -0.09504 -0.06081 
 

[ 1.92844] [ 0.72930] [-0.46862] [-0.10817] 

DLOG(M(-9)) 0.145505 0.305916 -0.19218 -0.70619 
 

[ 1.37248] [ 0.85410] [-0.80282] [-1.06431] 

DLOG(REEALG(-1)) -0.20669 -0.67989 -0.41034 -1.09445 
 

[-1.49865] [-1.45913] [-1.31768] [-1.26791] 

DLOG(REEALG(-2)) -0.12408 -1.19234 -0.31811 -2.47516 
 

[-0.55446] [-1.57705] [-0.62956] [-1.76720] 

DLOG(REEALG(-3)) -0.05194 -0.84334 -0.29354 -1.40139 
 

[-0.27649] [-1.32884] [-0.69207] [-1.19197] 

DLOG(REEALG(-4)) 0.069602 -0.17593 -0.70831 -1.76486 
 

[ 0.40874] [-0.30581] [-1.84222] [-1.65597] 

DLOG(REEALG(-5)) -0.12601 -0.2092 -0.65118 -3.28653 
 

[-0.66708] [-0.32781] [-1.52675] [-2.77991] 

DLOG(REEALG(-6)) -0.12721 -0.48172 -0.1473 -4.59185 
 

-0.25445 -0.85967 -0.57454 -1.59255 
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[-0.49995] [-0.56036] [-0.25638] [-2.88333] 

DLOG(REEALG(-7)) -0.19899 -0.66399 -0.08752 -5.17216 
 

[-0.67432] [-0.66601] [-0.13135] [-2.80047] 

DLOG(REEALG(-8)) 0.066989 -0.51117 -0.11668 -4.40743 
 

[ 0.29917] [-0.67570] [-0.23078] [-3.14494] 

DLOG(REEALG(-9)) -0.05872 0.220668 -0.33308 -4.99956 
 

[-0.24718] [ 0.27496] [-0.62099] [-3.36273] 

D(RALG(-1)) 0.010852 0.117332 0.115598 -0.69099 
 

[ 0.27070] [ 0.86633] [ 1.27712] [-2.75408] 

D(RALG(-2)) 0.018785 0.022339 0.017628 -0.82574 
 

[ 0.62095] [ 0.21856] [ 0.25807] [-4.36107] 

D(RALG(-3)) 0.028182 0.185782 0.082637 -0.67608 
 

[ 1.27930] [ 2.49625] [ 1.66139] [-4.90368] 

D(RALG(-4)) 0.037311 0.227831 0.066161 -0.49776 
 

[ 1.34365] [ 2.42852] [ 1.05522] [-2.86406] 

D(RALG(-5)) 0.007726 0.037131 0.037611 -0.12942 
 

[ 0.42322] [ 0.60206] [ 0.91250] [-1.13279] 

D(RALG(-6)) 0.008324 0.048935 0.040936 -0.22876 
 

[ 0.57625] [ 1.00275] [ 1.25512] [-2.53035] 

D(RALG(-7)) 0.017564 0.117139 0.077798 -0.01721 
 

[ 1.05743] [ 2.08735] [ 2.07431] [-0.16557] 

D(RALG(-8)) 0.015383 0.06551 0.026747 -0.0662 
 

[ 0.91468] [ 1.15297] [ 0.70436] [-0.62894] 

D(RALG(-9)) 0.022154 0.116588 0.060702 -0.04329 
 

[ 1.64922] [ 2.56900] [ 2.00138] [-0.51495] 

C -0.62095 2.715552 -1.12039 47.50403 
 

[-0.24787] [ 0.32085] [-0.19807] [ 3.02982] 

LOG(PALG_D11(-10)) 0.032513 0.627772 -0.22224 3.835758 
 

[ 0.12371] [ 0.70699] [-0.37450] [ 2.33186] 

LOG(M(-10)) 0.020136 -0.15478 0.07503 -1.36732 
 

[ 0.22629] [-0.51484] [ 0.37342] [-2.45505] 

LOG(REEALG(-10)) -0.04896 -0.3005 -0.09767 -5.22266 
 

[-0.20678] [-0.37567] [-0.18269] [-3.52437] 

RALG(-10) 0.015653 0.059474 0.044501 -0.09894 
 

[ 1.38307] [ 1.55547] [ 1.74147] [-1.39682] 

DLOG(OILP_EXO) -0.01821 -0.16241 -0.05385 -0.14363 
 

[-0.80548] [-2.12657] [-1.05502] [-1.01519] 

 Adj. R-squared -0.06685 0.744292 0.183057 0.854907 

 Akaike information criterion -17.4299 
  

 Schwarz criterion -11.2984 
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For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.6.B.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast Algerian inflation since there is no 

evidence of autocorrelation.  

Table 7.6.B.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.1812 

2 0.6705 

3 0.6688 

4 0.221 

5 0.0544 

6 0.2635 

7 0.7058 

8 0.087 

9 0.4705 

10 0.5251 
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7.7 Modelling Vector Error Correction Model (VECM) for Angola 

In this section, we describe the process of modelling an unrestricted Vector Error 

Correction Model (VECM) for Angola. We focus only on those variables that are I(1) in 

chapter 6 Table 6.6.5 for Angola). The following variables are considered: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝑅  

and 𝐼𝑛𝑂𝑖𝑙𝑝 (all are I(1)).  First, we estimate a level VAR for Angola where all available 

variables integrated by I(1) are included as endogenous. To choose an appropriate lag 

length for this model, we use the standard Akaike (AIC) and Schwarz (SC) information 

criteria with the maximum lag that can be estimated (P*= 8) to determine the initial lag 

length P**. The results are given in Table 7.7.A.A column 1 and 2 where the lag length 

selected by both the AIC and SC is 8. We tested the maximum lag (P*= 8) VAR for 

autocorrelation (of order 1, 2, … 10). The probability values of these autocorrelation 

tests are reported in column 3 of Table 7.7.A. There is evidence of autocorrelation at the 

5% level because two of the tests’ probability values are less than 0.05. The standard 

reaction would be to believe that the lag length is too short and add lags. However, 

because a VAR model cannot be estimated for Angola with more than 8 lags, experience 

suggests that models with too many lags can exhibit autocorrelation and the SC indicates 

a lower optimal lag length, we consider lower lag length VARs.  As a result, we re-estimate 

a level VAR model with 7 and 6 lags (where P* -1) and test the validity of the model. There 

is an evidence of autocorrelation with a level VAR model with 7 lag and no evidence of 

autocorrelation with a level VAR model with 6 lag at the 5% level. This indicates that the 

model with 6 lag is valid for cointegration analysis. 
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Table 6.7.A The VAR lags order selection criteria  

 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑅  and 𝐼𝑛𝑂𝑖𝑙𝑝 

  1 2 3  4 

  AIC SC Prob.    

Lag     8 7 6 

0 8.231222 8.3984      

1 -1.85498 -1.01909 0.0885 0.0247 0.3381 

2 -3.05872 -1.55412 0.3923 0.6548 0.2940 

3 -2.7578 -0.58449 0.3296 0.0246 0.4289 

4 -2.45167 0.39035 0.1217 0.0808 0.8632 

5 -3.42886 0.081875 0.4075 0.7247 0.3891 

6 -3.61541 0.564038 0.0078 0.4959 0.1955 

7 -3.80425 1.04398 0.3144 0.6019 0.9775 

8  -13.46007*  -7.274489* 0.3732 0.7923 0.1790 

9   0.1175 0.5434 0.8782 

10   0.0211 0.1079 0.1185 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

 

Using a VECM based on 6 lagged level terms (5 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept (option 3 in EVIews) 

to determine the cointegrating rank. The results of Johansen’s trace and maximum 

eigenvalue tests are reported in Table 7.7. A.B. Based on the trace and maximum 

eigenvalue results, we reject the null hypothesis of the no, 1 and 2 cointegrating 

equations at the 5% level. However, the null hypothesis of at most 3 cointegrating 

equation cannot be rejected at the 5% significance level. Therefore, the tests indicate 

that there are three cointegrating equations among the variables. 
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Table 7.7.A.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace Statistic 

test 

Critical Value Prob.** Max-

Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 97.42051 47.85613 0.0000 60.02527 27.58434 0.0000 

At most 1 37.39524 29.79707 0.0055 21.63339 21.13162 0.0425 

At most 2 15.76184 15.49471 0.0456 13.30501 14.2646 0.0705 

At most 3 2.456835 3.841466 0.1170 2.456835 3.841466 0.1170 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.7.A.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 
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Table 7.7.A.C. The Vector Error Correction Model 
 t-statistics in [ ] 

 

 
DLOG(PANG) DLOG(MANG_D11) D(RANG) DLOG(OILP) 

DLOG(PANG(-1)) -0.28203 5.076529 244.3575 4.116059  
[-1.17429] [ 1.81134] [ 1.22316] [ 0.89603] 

DLOG(PANG(-2)) -0.24626 -0.32017 -15.6998 -3.68255  
[-1.80552] [-0.20116] [-0.13838] [-1.41163] 

DLOG(PANG(-3)) -0.52186 3.41436 174.216 -0.16731  
[-4.93349] [ 2.76610] [ 1.98003] [-0.08270] 

DLOG(PANG(-4)) 0.268677 0.446871 36.79336 4.205962  
[ 2.32788] [ 0.33179] [ 0.38325] [ 1.90528] 

DLOG(PANG(-5)) 0.014893 -0.68666 -41.1961 -0.91286  
[ 0.14631] [-0.57805] [-0.48652] [-0.46885] 

DLOG(MANG_D11(-1)) -0.08621 -0.20996 -14.7122 -0.00545  
[-3.89862] [-0.81366] [-0.79984] [-0.01289] 

DLOG(MANG_D11(-2)) -0.07987 -0.2104 13.01045 -0.3699  
[-2.55957] [-0.57783] [ 0.50128] [-0.61980] 

DLOG(MANG_D11(-3)) -0.05961 -0.12918 19.71568 -0.5095  
[-2.13725] [-0.39694] [ 0.84989] [-0.95516] 

DLOG(MANG_D11(-4)) -0.04621 -0.33967 4.119504 -1.06643  
[-1.73143] [-1.09075] [ 0.18558] [-2.08933] 

DLOG(MANG_D11(-5)) 0.031999 -0.44054 17.30047 -0.20445  
[ 1.41679] [-1.67153] [ 0.92090] [-0.47328] 

DRANG(-1) -0.00029 0.000118 -0.03629 -0.00423  
[-1.07449] [ 0.03719] [-0.16069] [-0.81396] 

DRANG(-2) -5.94E-05 -0.00132 0.088764 -0.00176  
[-0.23572] [-0.44795] [ 0.42336] [-0.36396] 

DRANG(-3) 6.69E-08 -0.00116 -0.51592 -0.00639  
[ 0.00028] [-0.41292] [-2.57426] [-1.38586] 

DRANG(-4) 0.000184 -0.00252 -0.52745 0.000768  
[ 0.69781] [-0.81549] [-2.39904] [ 0.15191] 

DRANG(-5) 8.48E-05 -0.00139 -0.05172 -0.00176  
[ 0.31079] [-0.43649] [-0.22783] [-0.33751] 

DLOG(OILP(-1)) 0.028948 -0.20547 5.684846 -0.43534  
[ 2.21191] [-1.34538] [ 0.52221] [-1.73917] 

DLOG(OILP(-2)) 0.036968 -0.0426 -14.3573 -0.38111  
[ 2.56491] [-0.25328] [-1.19755] [-1.38247] 

DLOG(OILP(-3)) 0.073763 -0.22405 -17.3695 -0.3493  
-0.01546 -0.18038 -12.858 -0.29566  
[ 4.77183] [-1.24208] [-1.35087] [-1.18142] 

DLOG(OILP(-4)) 0.074483 -0.11213 -14.3382 -0.45061  
[ 3.77016] [-0.48637] [-0.87253] [-1.19252] 

DLOG(OILP(-5)) 0.070582 -0.09179 -19.5442 -0.63343  
[ 3.59440] [-0.40058] [-1.19656] [-1.68654] 

C -0.10858 3.391534 20.60417 3.130742  
[-1.29960] [ 3.47872] [ 0.29649] [ 1.95920] 

LOG(PANG(-6)) -0.27983 1.378233 48.3137 0.72159  
[-6.32659] [ 2.67025] [ 1.31318] [ 0.85296] 

LOG(MANG_D11(-6)) 0.071641 -0.60734 -10.9765 -0.31877  
[ 5.02424] [-3.64999] [-0.92545] [-1.16881] 

RANG(-6) 0.000433 -0.00561 -0.31028 -0.00421  
[ 2.47742] [-2.74813] [-2.13426] [-1.26030] 

LOG(OILP(-6)) 0.093859 -0.24763 -20.8271 -0.4004  
[ 4.02997] [-0.91114] [-1.07507] [-0.89884] 

 Adj. R-squared 0.977698 0.3386 0.287715 -0.02226 

 Akaike information criterion -3.61541 
  

 Schwarz criterion 0.564038 
  

 

 
For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 
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autocorrelation tests are reported in Table 7.7.A.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast Angolan inflation since there is no 

evidence of autocorrelation.  

Table 7.7.A.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.5656 

2 0.1549 

3 0.0843 

4 0.5726 

5 0.8332 

6 0.6848 

7 0.5528 

8 0.3655 

9 0.3756 

10 0.5641 
 

Second, we treat the stationary transformation of oil prices as exogenous and all other 

variables as endogenous (which are I(1)). We first seek to find the appropriate lag length 

and start with a level’s VAR using the maximum possible lag-length that can be 

estimated for Angola (P*= 10).  The VAR model considered includes three nonstationary 

variables with the difference of the log of oil prices as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the 

following variables as endogenous 𝑙𝑛𝑃, 𝑙𝑛𝑀 and  𝑅  . The results are given in Table 7.7.B. 

A column 1 and 2 where the lag length selected by both the AIC and SC is 10. Therefore, 

we estimate a level VAR with 10 lag and report the autocorrelation tests in column 3 of 

Table 7.7.B.A. There is evidence of autocorrelation at the 5% level in this 10-lag model 

because two of the tests’ probability values are less than 0.05. The standard reaction 

would be to believe that the lag length is too short and add lags. However, because a 

VAR model cannot be estimated for Angola with more than 10 lags and because 

experience suggests that models with too many lags can exhibit autocorrelation, we 

consider lower lag length VARs.  As a result, we re-estimate the VAR models with 9, 8, 7 

and 6 lags and report the autocorrelation tests in columns 4,5,6 and 7 of Table 7.7.B.A 

respectively. The VAR model with 9, 8 and 7 lags indicate evidence of autocorrelation 

whereas the VAR with 6 lags exhibits no evident autocorrelation. Hence, we select the 6 

lag VAR of this model for cointegration analysis. 
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 Table 6.7.B.A  The VAR lags order selection criteria  

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀 and  𝑅  
Exogenous:  𝐼𝑛𝑂𝑖𝑙𝑝 

    

  1 2 3     

  AIC SC Prob. Prob. Prob. Prob. Prob. 

Lag     10 9 8 7 6 

0 9.453471 9.704238       

1 -0.44811 0.178811 0.7974 0.0018 0.1726 0.1059 0.1294 

2 -1.72539 -0.72232 0.3419 0.4447 0.0258 0.1395 0.7229 

3 -1.47203 -0.09281 0.4270 0.3020 0.0618 0.5476 0.2929 

4 -1.34443 0.410936 0.0211 0.1592 0.6897 0.3654 0.5244 

5 -1.81657 0.314951 0.3567 0.4186 0.2012 0.0996 0.7182 

6 -1.94166 0.566011 0.0015 0.6998 0.1808 0.1289 0.1105 

7 -2.34293 0.540891 0.1912 0.8537 0.8630 0.4042 0.3599 

8 -3.83144 -0.57147 0.2193 0.3889 0.8666 0.0351 0.4972 

9 -5.60992 -1.9738 0.2187 0.9778 0.4360 0.1125 0.3209 

10  -6.277772*  -2.265506* 0.8729 0.9701 0.7357 0.0352 0.1481 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

 

Using a VECM based on 6 lagged level terms (5 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept and no trend (option 

3 in EVIews) to determine the cointegrating rank. The results of Johansen’s trace and 

maximum eigenvalue tests are reported in Table 7.7.B.B. Based on the trace test result, 

we reject the null hypothesis of the no, 1 and 2 cointegrating equations at the 5% level.  

For maximum eigenvalue, we reject the null hypothesis of no cointegrating equation and 

failed to reject the null hypothesis of at most 1 cointegrating equation at 5% level. 

Therefore, we accept the result of the trace test and assume that the system has 3 

cointegrating equations because the trace test is more robust to departures from 

normally distributed residuals of the systems’ equations. 
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Table 7.7.B. B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace Statistic 

test 

Critical Value Prob.** Max-

Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 53.62932 29.79707 0.0000 31.9438 21.13162 0.001 

At most 1 21.68552 15.49471 0.0051 14.17874 14.2646 0.0516 

At most 2 7.506779 3.841466 0.0061 7.506779 3.841466 0.0061 

At most 3 5.514499 9.164546 0.2317 5.514499 9.164546 0.2317 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.7.B.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 
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Table 7.7.B.C. The Vector Error Correction Model  

 t-statistics in [ ] 
 

DLOG(PANG) DLOG(MANG_D11) DRANG 

DLOG(PANG(-1)) 0.30112 4.74142 116.0552 
 

[ 1.33777] [ 2.59837] [ 0.87902] 

DLOG(PANG(-2)) -0.19003 -0.14674 -77.8422 
 

[-1.13689] [-0.10829] [-0.79396] 

DLOG(PANG(-3)) -0.33245 3.134788 125.5331 
 

[-2.66840] [ 3.10372] [ 1.71780] 

DLOG(PANG(-4)) 0.326742 0.716775 13.52784 
 

[ 2.35194] [ 0.63643] [ 0.16601] 

DLOG(PANG(-5)) -0.20864 -0.71672 36.91432 
 

[-2.13912] [-0.90644] [ 0.64525] 

DLOG(MANG_D11(-1)) -0.03771 -0.32496 -20.5534 
 

[-1.49982] [-1.59430] [-1.39366] 

DLOG(MANG_D11(-2)) -0.00623 -0.21694 -5.03258 
 

[-0.19790] [-0.84995] [-0.27252] 

DLOG(MANG_D11(-3)) 0.0101 -0.19314 -5.097 
 

[ 0.35068] [-0.82724] [-0.30172] 

DLOG(MANG_D11(-4)) 0.008889 -0.40797 -5.32064 
 

[ 0.30461] [-1.72459] [-0.31086] 

DLOG(MANG_D11(-5)) 0.039093 -0.32725 9.033246 
 

[ 1.50164] [-1.55057] [ 0.59156] 

DRANG(-1) -0.00052 0.001121 0.019843 
 

[-1.47710] [ 0.39181] [ 0.09581] 

DRANG(-2) -5.84E-05 -0.00081 -0.00204 
 

[-0.17912] [-0.30491] [-0.01067] 

DRANG(-3) -2.89E-05 -0.00102 -0.45185 
 

[-0.08949] [-0.38868] [-2.38695] 

DRANG(-4) -0.00025 -1.66E-05 -0.50577 
 

[-0.78374] [-0.00640] [-2.69870] 

DRANG(-5) -0.0002 -0.00094 0.002331 
 

[-0.61491] [-0.35397] [ 0.01207] 

C -0.09531 3.018864 20.11886 
 

[-0.82162] [ 3.21000] [ 0.29567] 

LOG(PANG(-6)) -0.16018 1.324436 13.94194 
 

[-3.88362] [ 3.96110] [ 0.57630] 

LOG(MANG_D11(-6)) 0.060119 -0.64247 -5.95658 
 

[ 3.49464] [-4.60666] [-0.59030] 

RANG(-6) 0.000183 -0.00456 -0.26534 
 

[ 0.80947] [-2.48428] [-1.99603] 

DLOG(OILP_EXO) -0.00387 0.08572 4.885715 
 

[-0.24894] [ 0.68077] [ 0.53628] 

 Adj. R-squared 0.957465 0.391185 0.324468 

 Akaike information criterion -1.94166 
 

 Schwarz criterion 0.566011 
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For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.7.B.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast Angolan inflation since there is no 

evidence of autocorrelation.  

Table 7.7.B.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.7049 

2 0.6768 

3 0.9494 

4 0.8138 

5 0.5133 

6 0.9404 

7 0.7991 

8 0.2245 

9 0.7174 

10 0.8502 

 

  



659 
 

7.8 Modelling Vector Error Correction Model (VECM) for Nigeria 

In this section, we describe the process of modelling an unrestricted Vector Error 

Correction Model (VECM) for Nigeria. We focus only on those variables that are I(1) in 

chapter 6 Table 6.6.5 for Nigeria). The following variables are considered: 𝑙𝑛𝑃, 𝑙𝑛𝑀, 

𝑙𝑛𝑅𝐸𝐸,  𝑅  and 𝐼𝑛𝑂𝑖𝑙𝑝 (all are I(1)).  First, we estimate a level VAR for Nigeria where all 

available variables integrated by I(1) are included as endogenous. To choose an 

appropriate lag length for this model, we use the standard Akaike (AIC) and Schwarz (SC) 

information criteria with the maximum specified lag (P*= 10) to determine the initial lag 

length P**. The results are given in Table 7.8.A.A column 1 and 2 where the lag length 

selected by both the AIC and SC is 10. We tested the maximum lag (P*= 10) VAR for 

autocorrelation (of order 1, 2, … 10). The probability values of these autocorrelation 

tests are reported in column 3 of Table 7.8.A.A There is evidence of autocorrelation at 

the 5% level because all the tests’ probability values are less than 0.05. The standard 

reaction would be to believe that the lag length is too short and add lags. However, 

because a VAR model cannot be estimated for Nigeria with more than 10 lags, 

experience suggests that models with too many lags can exhibit autocorrelation and the 

SC indicates a lower optimal lag length, we consider lower lag length VARs.  As a result, 

we re-estimate a level VAR model with 9, 8, 7,….,1 lags (where P*-1) and test the validity of 

this model. There is an evidence of autocorrelation for this model with all the lag lengths 

considered (see Table 7.8.A). This indicates that the model is not valid for cointegration 

analyse and the VECM model cannot be considered for this model. 
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Table 7.8.A.A. The VAR lags order selection criteria  

Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸, 𝑅  and 𝐼𝑛𝑂𝑖𝑙𝑝 

  1 2 3  4 5 6 7 8 9 10 11 12 

  AIC SC Prob. Prob. Prob. Prob. Prob. Prob. Prob. Prob. Prob. Prob. 

Lag     10 9 8 7 6 5 4 3 2 1 

0 5.715286 5.894501       
       

1 -4.12202 -3.04673 0.0000 0.0247 0.3381 0.0226 0.0186 0.000 0.0000 0.1059 0.9548 0.000 

2 -3.7127 -1.74133 0.0000 0.6548 0.0230 0.0216 0.0674 0.8462 0.1619 0.1395 0.8282 0.0103 

3 -3.50581 -0.63837 0.0000 0.0246 0.4289 0.0044 0.0251 0.1863 0.7701 0.5476 0.0324 0.9494 

4 -4.91696 -1.15344 0.0000 0.0808 0.8632 0.7427 0.0031 0.2937 0.2677 0.3654 0.7639 0.8138 

5 -5.66331 -1.00372 0.0000 0.7247 0.3891 0.7554 0.4309 0.0776 0.0157 0.0996 0.2865 0.0251 

6 -5.81426 -0.2586 0.0000 0.4959 0.1955 0.896 0.1600 0.5311 0.1085 0.1289 0.2558 0.9404 

7 -6.19898 0.252763 0.0000 0.6019 0.9775 0.4341 0.3466 0.7438 0.8627 0.4042 0.619 0.7991 

8 -7.31397 0.033848 0.0000 0.7923 0.1790 0.6429 0.8513 0.6841 0.5146 0.0351 0.5152 0.2245 

9 -9.4635 -1.21961 0.0000 0.5434 0.8782 0.0023 0.5223 0.8019 0.8065 0.1125 0.4665 0.7174 

10  -
13.59705* 

 -
4.457085* 

0.0000 0.1079 0.1185 0.4223 0.8079 0.7044 0.9192 0.0372 0.2227 0.8502 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

Second, we treat the stationary transformation of oil prices as exogenous and all other 

variables as endogenous (which are I(1)). We first seek to find the appropriate lag length 

and start with a level’s VAR using the maximum possible lag-length that can be 

estimated for Nigeria (P*= 10).  The VAR model considered includes four nonstationary 

variables with the difference of the log of oil prices as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the 

following variables as endogenous 𝑙𝑛𝑃, 𝑙𝑛𝑀, 𝑙𝑛𝑅𝐸𝐸 and  𝑅. The results are given in 

Table 7.8.B.A column 1 and 2 where the lag length selected by the AIC and SC are 10 and 

1 respectively. Therefore, we estimate a level VAR with 10 lag and report the 

autocorrelation tests in column 3 of Table 7.8.B.A. There is evidence of autocorrelation 

at the 5% level because three of the tests’ probability values are less than 0.05. This 

suggests that the lag length is too short and a VAR with more lags are preferred to those 

with less, hence we follow the standard reaction and add lags (P*+ 1). Therefore, we re-

estimate the VAR models with 11 and 12 lags - the maximum lags that can be estimated 

with this model and report the autocorrelation tests in columns 4 and 5 of Table 7.8.B. 

A, respectively. The VAR models with 11 and 12 lags indicate evidence of autocorrelation 

(see Table 7.8.B.A). The standard reaction would be to believe that the lag length is too 

short and add lags. However, because a VAR model cannot be estimated for Nigeria with 

more than 12 lags; experience suggests that models with too many lags can exhibit 

autocorrelation and the SC suggests a lower optimal lag length. We consider lower lag 

length VARs and re-estimate the VAR model using lag lengths 9, 8…,1 (where P* - 1) and 

test the validity of each model. We reject the hypothesis of no-autocorrelation at the 



661 
 

5% level for all the lags length considered for this model – see column 9, 8, 7,….,1 of 

Table 7.8.B.B. This indicates that there is no valid model with the appropriate lag for the 

cointegration analysis.  

 

Table 7.8.B.A The VAR lags order selection criteria  

 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸 and 𝑅   
Exogenous: 𝑙𝑛𝑂𝑖𝑙𝑝 

 1 2 3 4 5  
AIC SC Prob.  Prob. 

Lag 
  

10 11 12 

0 2.249858 2.536602    

1 -6.80095  -5.940714* 0.0605 0.4387 0.0021 

2 -6.59106 -5.15734 0.0130 0.7807 0.2361 

3 -6.51292 -4.50572 0.1772 0.5398 0.5881 

4 -6.47584 -3.89514 0.0008 0.0015 0.0120 

5 -8.21804 -5.06386 0.6234 0.8753 0.7343 

6 -8.23473 -4.50706 0.9428 0.7929 0.8620 

7 -8.60474 -4.30358 0.9598 0.5869 0.7039 

8 -8.78224 -3.90759 0.0008 0.0013 0.0018 

9 -8.72406 -3.27592 0.9407 0.9803 0.9919 

10  -9.639221* -3.6176 0.4833 0.7645 0.9816 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

 

Table 7.8.B.B The VAR lags order selection criteria 
 Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀,  𝐼𝑛𝑅𝐸𝐸 and 𝑅   

Exogenous: 𝑙𝑛𝑂𝑖𝑙𝑝 
    

 1 2 3 4 5 6 7 8 9 
 

Prob.  Prob. Prob. Prob. Prob. Prob. Prob. Prob. 

Lag 9 8 7 6 5 4 3 2 1 

0          

1 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0370 

2 0.7061 0.0695 0.8136 0.4632 0.6626 0.0288 0.3369 0.0762 0.6882 

3 0.2327 0.0553 0.2016 0.4424 0.2813 0.7492 0.7137 0.9047 0.6085 

4 0.4117 0.5729 0.6333 0.7069 0.7302 0.172 0.0112 0.0049 0.0000 

5 0.8234 0.3743 0.752 0.5939 0.6063 0.4688 0.7719 0.8150 0.9300 

6 0.667 0.5964 0.6595 0.0672 0.0683 0.5017 0.6465 0.1625 0.3726 

7 0.8926 0.8853 0.8024 0.9456 0.6551 0.6185 0.4304 0.8188 0.5452 

8 0.1245 0.072 0.1461 0.3037 0.1463 0.9445 0.9431 0.7988 0.2884 

9 0.8178 0.8892 0.7637 0.9619 0.927 0.5446 0.8426 0.9767 0.9765 

10 0.0754 0.5964 0.6100 0.7637 0.7037 0.2147 0.7325 0.4750 0.9072 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  



662 
 

7.9 Modelling Vector Error Correction Model (VECM) for Saudi Arabia 

In this section, we describe the process of modelling an unrestricted Vector Error 

Correction Model (VECM) for Saudi Arabia. We focus only on those variables that are 

I(1) in chapter 6 Table 6.6.5 for Saudi Arabia). The following variables are considered: 

𝑙𝑛𝑃, 𝑙𝑛𝑀 and 𝐼𝑛𝑂𝑖𝑙𝑝 (all are I(1)).  First, we estimate a level VAR for Saudi Arabia where 

all available variables integrated by I(1) are included as endogenous. To choose an 

appropriate lag length for this model, we use the standard Akaike (AIC) and Schwarz (SC) 

information criteria with the maximum (P*= 10) to determine the initial lag length P**. 

The results are given in Table 7.9.A.A column 1 and 2 where the lag length selected by 

the AIC and SC are 5 and 1 respectively. To maximize the chance of selecting an 

appropriate lag length and minimizing the VAR exhibiting autocorrelation, we avoid 

selecting the lower lag length identified by the SC and adopt the AIC. Therefore, we 

tested the maximum lag (P*= 5) VAR for autocorrelation (of order 1, 2, … 10). The 

probability values of these autocorrelation tests are reported in column 3 of Table 

7.9.A.A. There is evidence of autocorrelation at the 5% level because two of the tests’ 

probability values are less than 0.05. This suggests that the lag length is too short and a 

VAR with more lags are preferred to those with less, hence we follow the standard 

reaction and add lags (P*+ 1). Therefore, we re-estimate the VAR models with 

6,7,8,....,11 lags and report the autocorrelation tests in columns 4, 5, 6, 7, 8 and 9 (see 

Table 7.9.A.A). The VAR model with 6,7,8,....,10 lags indicate evidence of autocorrelation 

whereas the VAR with 11 lags exhibits no evident autocorrelation. Hence, we select the 

11 lag VAR of this model for cointegration analysis. 
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Table 7.9.A.A  The VAR lags order selection criteria 

𝐸𝑛𝑑𝑜𝑔𝑒𝑛𝑜𝑢𝑠: 𝑙𝑛𝑃, 𝑙𝑛𝑀  and 𝐼𝑛𝑂𝑖𝑙𝑝 

  1 2 3   4 
    

  AIC SC Prob.     
    

Lag     5 6 7 8 9 10 11 

0 -2.05286 -1.95995 0.2488     
    

1 -15.6611  -
15.19650* 

0.4087 0.0247 0.3381 0.3701 0.9182 0.0021 0.5216 

2 -15.6808 -14.8446 0.1841 0.6548 0.294 0.9333 0.7511 0.0005 0.4549 

3 -15.6327 -14.4248 0.6392 0.0246 0.4289 0.1773 0.3486 0.0466 0.2645 

4 -16.013 -14.4335 0.6089 0.0808 0.8632 0.005 0.0707 0.0615 0.6608 

5  -
16.46200* 

-14.5108 0.3624 0.7247 0.3891 0.3692 0.922 0.6434 0.1095 

6 -16.3017 -13.9788 0.3218 0.4959 0.1955 0.8198 0.7709 0.0301 0.1944 

7 -16.1108 -13.4162 0.0268 0.6019 0.9775 0.9316 0.9194 0.0103 0.0654 

8 -16.0108 -12.9446 0.1227 0.7923 0.179 0.0198 0.0081 0.0121 0.1492 

9 -16.0621 -12.6242 0.4571 0.5434 0.8782 0.9426 0.9758 0.7475 0.1059 

10 -16.0214 -12.2119 0.0211 0.1079 0.1185 0.9324 0.7778 0.4602 0.1302 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

 

Using a VECM based on 11 lagged level terms (10 lagged differenced terms) we apply 

the standard Johansen cointegration tests with unrestricted interceptand no trend 

(option 3 in EVIews) to determine the cointegrating rank. The results of Johansen’s trace 

and maximum eigenvalue tests are reported in Table 7.9.A.B. Based on the trace result, 

we reject the null hypothesis of the no, at most 1, 2, and 3 cointegrating equations at 

the 5% level. For maximum eigenvalue result, we reject the null hypothesis of the no 

cointegrating equation at 5% significance level. Therefore, we accept the result of the 

trace test and assume that the system has 4 cointegrating equations because the trace 

test is more robust to departures from normally distributed residuals of the systems’ 

equations. 
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Table 7.9.A.B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace Statistic 

test 

Critical Value Prob.** Max-

Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 75.51941 47.85613 0 32.08903 27.58434 0.0123 

At most 1 43.43038 29.79707 0.0008 19.34598 21.13162 0.0873 

At most 2 24.0844 15.49471 0.002 18.39411 14.2646 0.0105 

At most 3 5.690295 3.841466 0.0171 5.690295 3.841466 0.0171 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.9.A.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 
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Table 7.9.A.C. The Vector Error Correction Model 

Standard errors in ( ) & t-statistics in [ ] 
 

 
DLOG(PSAU) DLOG(MSAU) DLOG(REESAU) DLOG(OILP) 

DLOG(PSAU(-1)) 0.090769 0.043041 0.413465 0.96356 
 

[ 0.77920] [ 0.13486] [ 1.03866] [ 0.53333] 

DLOG(PSAU(-2)) -0.01642 -0.18065 -0.04929 1.211394 
 

[-0.14893] [-0.59799] [-0.13081] [ 0.70840] 

DLOG(PSAU(-3)) -0.04283 -0.16411 0.426317 -1.34149 
 

[-0.41066] [-0.57426] [ 1.19604] [-0.82925] 

DLOG(PSAU(-4)) 0.052509 0.125383 0.400189 0.609839 
 

[ 0.50126] [ 0.43686] [ 1.11793] [ 0.37536] 

DLOG(PSAU(-5)) 0.05879 -0.16118 0.311097 0.023075 
 

[ 0.55774] [-0.55811] [ 0.86366] [ 0.01412] 

DLOG(PSAU(-6)) -0.11922 0.024546 -0.31761 -0.74663 
 

[-1.15923] [ 0.08711] [-0.90376] [-0.46811] 

DLOG(PSAU(-7)) 0.00386 -0.24971 -0.09424 0.565154 
 

[ 0.03845] [-0.90794] [-0.27472] [ 0.36301] 

DLOG(PSAU(-8)) 0.021814 -0.54185 0.602272 0.607948 
 

[ 0.21674] [-1.96495] [ 1.75110] [ 0.38947] 

DLOG(PSAU(-9)) -0.04572 -0.22097 0.447947 -0.91732 
 

[-0.43978] [-0.77586] [ 1.26104] [-0.56900] 

DLOG(PSAU(-10)) -0.11354 -0.11053 0.095504 3.417539 
 

[-1.07919] [-0.38345] [ 0.26564] [ 2.09449] 

DLOG(MSAU(-1)) 0.004293 -0.32696 -0.00176 0.152351 
 

[ 0.10415] [-2.89514] [-0.01250] [ 0.23831] 

DLOG(MSAU(-2)) -0.02593 -0.28348 -0.06548 0.52607 
 

[-0.61413] [-2.45034] [-0.45381] [ 0.80329] 

DLOG(MSAU(-3)) -0.03718 -0.25222 -0.1298 0.369677 
 

[-0.93409] [-2.31257] [-0.95414] [ 0.59877] 

DLOG(MSAU(-4)) -0.02691 0.277603 -0.06458 2.062807 
 

[-0.66556] [ 2.50599] [-0.46739] [ 3.28960] 

DLOG(MSAU(-5)) -0.13522 -0.14001 -0.07968 0.639553 
 

[-3.11881] [-1.17867] [-0.53781] [ 0.95111] 

DLOG(MSAU(-6)) -0.02412 -0.11387 0.173114 0.644003 
 

[-0.52689] [-0.90802] [ 1.10676] [ 0.90719] 

DLOG(MSAU(-7)) -0.01534 -0.06243 0.153308 1.062996 
 

[-0.38158] [-0.56690] [ 1.11613] [ 1.70516] 

DLOG(MSAU(-8)) -0.01941 0.224995 0.085476 0.050891 
 

[-0.51024] [ 2.15888] [ 0.65757] [ 0.08626] 

DLOG(MSAU(-9)) 0.027741 0.092646 0.079003 0.722132 
 

[ 0.72581] [ 0.88472] [ 0.60488] [ 1.21822] 

DLOG(MSAU(-10)) -0.0409 0.018426 0.002334 0.524072 
 

[-1.09387] [ 0.17989] [ 0.01827] [ 0.90383] 

DLOG(REESAU(-1)) -0.0404 -0.20382 0.090019 -0.67221 
 

[-1.22318] [-2.25220] [ 0.79752] [-1.31220] 

DLOG(REESAU(-2)) -0.00148 -0.19053 -0.19384 0.058365 
 

[-0.04405] [-2.07269] [-1.69065] [ 0.11216] 

DLOG(REESAU(-3)) -0.01637 -0.19901 -0.08168 0.71873 
 

[-0.47312] [-2.09970] [-0.69094] [ 1.33959] 

DLOG(REESAU(-4)) -0.10326 -0.08986 -0.24398 0.40671 
 

[-2.99075] [-0.94989] [-2.06781] [ 0.75949] 

DLOG(REESAU(-5)) -0.03346 -0.0513 -0.13675 0.139147 
 

[-0.94887] [-0.53094] [-1.13481] [ 0.25442] 

DLOG(REESAU(-6)) -0.03746 -0.14638 -0.09316 0.459883 
 

[-1.07191] [-1.52864] [-0.77997] [ 0.84840] 

DLOG(REESAU(-7)) -0.00044 -0.12537 0.027784 -0.01932 
 

[-0.01221] [-1.28342] [ 0.22804] [-0.03494] 

DLOG(REESAU(-8)) -0.0432 0.035037 -0.1752 0.786793 
 

[-1.20792] [ 0.35759] [-1.43363] [ 1.41854] 
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DLOG(REESAU(-9)) 0.023593 -0.05267 -0.01227 0.925452 
 

[ 0.66605] [-0.54273] [-0.10139] [ 1.68458] 

DLOG(REESAU(-10)) -0.08402 0.055408 -0.28747 0.126856 
 

[-2.40803] [ 0.57963] [-2.41113] [ 0.23443] 

DLOG(OILP(-1)) 0.008894 0.001601 0.036925 -0.13037 
 

[ 1.22357] [ 0.08039] [ 1.48644] [-1.15639] 

DLOG(OILP(-2)) 0.015355 0.006186 0.021881 -0.11755 
 

[ 2.07006] [ 0.30437] [ 0.86322] [-1.02180] 

DLOG(OILP(-3)) 0.003296 0.018789 0.011543 -0.13845 
 

[ 0.44173] [ 0.91895] [ 0.45263] [-1.19621] 

DLOG(OILP(-4)) 0.004537 0.100392 0.004066 -0.31265 
 

[ 0.61543] [ 4.97045] [ 0.16142] [-2.73449] 

DLOG(OILP(-5)) 0.010365 0.043531 0.03177 -0.22373 
 

[ 1.16424] [ 1.78466] [ 1.04428] [-1.62032] 

DLOG(OILP(-6)) 0.019399 0.039182 0.017429 -0.28472 
 

[ 2.10094] [ 1.54887] [ 0.55237] [-1.98825] 

DLOG(OILP(-7)) 0.019528 0.044431 0.041793 -0.25646 
 

[ 2.08989] [ 1.73553] [ 1.30887] [-1.76964] 

DLOG(OILP(-8)) 0.008099 0.083649 0.029699 -0.46955 
 

[ 0.82809] [ 3.12169] [ 0.88861] [-3.09555] 

DLOG(OILP(-9)) 0.016694 0.067619 0.036092 -0.33743 
 

[ 1.54768] [ 2.28815] [ 0.97919] [-2.01707] 

DLOG(OILP(-10)) 0.026669 0.059318 -0.03348 -0.39003 
 

[ 2.39964] [ 1.94808] [-0.88154] [-2.26283] 

C 0.871178 1.239109 1.165878 -12.1839 
 

[ 2.65961] [ 1.38070] [ 1.04157] [-2.39832] 

LOG(PSAU(-11)) -0.00794 0.088404 0.320017 -0.74294 
 

[-0.23331] [ 0.94843] [ 2.75266] [-1.40806] 

LOG(MSAU(-11)) -0.02498 -0.04716 -0.07804 0.522419 
 

[-1.88144] [-1.29636] [-1.71982] [ 2.53686] 

LOG(REESAU(-11)) -0.05295 -0.10099 -0.10682 0.583607 
 

[-2.71446] [-1.88953] [-1.60237] [ 1.92896] 

LOG(OILP(-11)) 0.026288 0.042513 -3.02E-05 -0.39995 
 

[ 2.69663] [ 1.59169] [-0.00091] [-2.64528] 

 Adj. R-squared 0.360394 0.737722 0.114901 -0.03628 

 Akaike information criterion -16.0202 
  

 Schwarz criterion -11.839 
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For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.9.A.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast Saudi Arabian inflation since there is no 

evidence of autocorrelation.  

Table 7.9.A.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.5216 

2 0.4549 

3 0.2645 

4 0.6608 

5 0.1095 

6 0.1944 

7 0.0654 

8 0.1492 

9 0.1059 

10 0.1302 
 

Second, we treat the stationary transformation of oil prices as exogenous and all other 

variables as endogenous (which are I(1)). We first seek to find the appropriate lag length 

and start with a levels VAR using the maximum possible lag-length that can be estimated 

for Saudi Arabia (P*= 10).  The VAR model considered includes four nonstationary 

variables including the difference of the log of oil prices as exogenous (∆𝐼𝑛𝑂𝑖𝑙𝑝) and the 

following variables as endogenous 𝑙𝑛𝑃, 𝑙𝑛𝑀 and  𝑙𝑛𝑅𝐸𝐸  . The results are given in Table 

7.9.B. A column 1 and 2 where the lag length selected by both the AIC and SC is 5. 

Therefore, we estimate a level VAR with 5 lag and report the autocorrelation tests in 

column 3 of Table 7.9.B.A. There is no evidence of autocorrelation at the 5% level in this 

5 lag model because all the tests’ probability values are more than 0.05. Hence, we select 

the 5 lag VAR of this model for cointegration analysis. 
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Table 7.9.B.A.  The VAR lags order selection criteria  
Endogenous: 𝑙𝑛𝑃, 𝑙𝑛𝑀 and  𝑙𝑛𝑅𝐸𝐸  
Exogenous:  𝐼𝑛𝑂𝑖𝑙𝑝 

  1 2 3 

  AIC SC Prob. 

Lag     5 

0 -1.85907 -1.71969   

1 -14.1798 -13.8313 0.9052 

2 -14.3003 -13.7428 0.8121 

3 -14.3339 -13.5674 0.7033 

4 -14.672 -13.6964 0.0651 

5  -15.14497*  -13.96028* 0.3990 

6 -15.0655 -13.6717 0.7699 

7 -14.9713 -13.3685 0.9630 

8 -14.9239 -13.112 0.3692 

9 -14.9091 -12.8882 0.8856 

10 -14.9085 -12.6785 0.6457 

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.  

 

Using a VECM based on 5 lagged level terms (4 lagged differenced terms) we apply the 

standard Johansen cointegration tests with unrestricted intercept (option 3 in EVIews) 

to determine the cointegrating rank. The results of Johansen’s trace and maximum 

eigenvalue tests are reported in Table 7.9.B.B. Based on the trace test result, we reject 

the null hypothesis of the no cointegrating equations at the 5% level and failed to reject 

the null hypothesis of at most 1 cointegration equation (there is one cointegrating 

equation).  For maximum eigenvalue, we cannot reject the null hypothesis of the no, at 

most 1 and 2 cointegrating equation at 5% level (there is no cointegrating equation). 

Therefore, we accept the result of the trace test and assume that the system has 1 

cointegrating equation because the trace test is more robust to departures from 

normally distributed residuals of the systems’ equations. 
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Table 7.9.B. B Johansen’s cointegration rank tests 

 Test (Trace) maximum eigenvalue 

 

Hypothesized Trace Statistic 

test 

Critical Value Prob.** Max-

Eigen 

Statistic 

0.05 

Critical 

Value 

Prob.** 

None * 31.71506 29.79707 0.0297 19.53573 21.13162 0.0823 

At most 1 12.17933 15.49471 0.1485 11.88906 14.2646 0.1149 

At most 2 0.290268 3.841466 0.59 0.290268 3.841466 0.590 

At most 3 5.514499 9.164546 0.2317 5.514499 9.164546 0.2317 

 

Because there is evidence of cointegration this suggests that long-run information 

should be included in our model. Hence, we will use the estimated VECM, reported in 

Table 7.9.B.C to forecast inflation. This specification does not impose the number or 

form of cointegrated equations on the model. 
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Table 7.9.B.C. The Vector Error Correction Model  

t-statistics in [ ] 
 

DLOG(PSAU) DLOG(MSAU) DLOG(REESAU) 

DLOG(PSAU(-1)) 0.225577 0.118637 0.28208 
 

[ 2.29629] [ 0.43249] [ 0.91392] 

DLOG(PSAU(-2)) 0.040793 -0.07366 -0.17899 
 

[ 0.40513] [-0.26198] [-0.56579] 

DLOG(PSAU(-3)) -0.01002 -0.34964 0.262559 
 

[-0.10035] [-1.25413] [ 0.83701] 

DLOG(PSAU(-4)) 0.131177 -0.00307 0.284179 
 

[ 1.32533] [-0.01111] [ 0.91383] 

DLOG(MSAU(-1)) -0.00627 -0.21448 0.092227 
 

[-0.24015] [-2.94298] [ 1.12468] 

DLOG(MSAU(-2)) 0.015104 -0.19574 0.084062 
 

[ 0.58549] [-2.71729] [ 1.03716] 

DLOG(MSAU(-3)) 0.030603 -0.18997 0.048776 
 

[ 1.18446] [-2.63312] [ 0.60085] 

DLOG(MSAU(-4)) 0.024928 0.661809 0.041876 
 

[ 1.04174] [ 9.90450] [ 0.55698] 

DLOG(REESAU(-1)) -0.04351 -0.09683 0.196236 
 

[-1.38603] [-1.10468] [ 1.98974] 

DLOG(REESAU(-2)) 0.010942 -0.05321 -0.13807 
 

[ 0.33833] [-0.58926] [-1.35876] 

DLOG(REESAU(-3)) -0.01177 -0.04243 -0.03265 
 

[-0.36666] [-0.47342] [-0.32377] 

DLOG(REESAU(-4)) -0.06506 -0.02151 -0.10495 
 

[-2.13031] [-0.25219] [-1.09384] 

C 0.000897 -0.42482 0.719554 
 

[ 0.00963] [-1.63357] [ 2.45911] 

LOG(PSAU(-5)) -0.0065 -0.07362 0.158782 
 

[-0.29907] [-1.21380] [ 2.32655] 

LOG(MSAU(-5)) 0.002611 0.027982 -0.04141 
 

[ 0.50419] [ 1.93499] [-2.54509] 

LOG(REESAU(-5)) -0.00858 0.00473 -0.06774 
 

[-1.28192] [ 0.25296] [-3.22011] 

DLOG(OILP_EXO) -0.00226 -0.00397 -0.03679 
 

[-0.33243] [-0.20885] [-1.72037] 

 Adj. R-squared 0.266868 0.687726 0.142373 

 Akaike information criterion -15.145 
 

 Schwarz criterion -13.9603 
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For the VECM to be valid to forecast, we apply the standard diagnostic check and test 

the model for autocorrelation (of order 1, 2, … 10). The probability values of the residual 

autocorrelation tests are reported in Table 7.9.B.D. There is no evidence of 

autocorrelation at the 5% level because all of the tests’ probability values are more than 

0.05. Therefore, this model is valid to forecast Saudi Arabian inflation since there is no 

evidence of autocorrelation.  

Table 7.9.B.D. Probability value of the residual autocorrelation  

Lags Prob. 

1 0.9052 

2 0.8121 

3 0.7033 

4 0.0651 

5 0.399 

6 0.7699 

7 0.963 

8 0.3692 

9 0.8856 

10 0.6457 
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Appendix 8 

Table 8.1 Summary of the best forecasting models for BRICS countries 

Best forecasting Univariate model for Brazil 

 RMSE U –statistics MAPE 

Horizon Type  Type Type Range 

1-to 2-steps R_A _SARIMA R_A_SARIMA R_A_SARIMA  5.0690 – 8.0390 

3 to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA  0.3390 -8.2540 

Best forecasting univariate model for Russia 

 RMSE U –statistics MAPE 

Horizon Type Type Type  Range 

1 to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA   6.3660 – 20.6300 

Best forecasting univariate model for India 

 RMSE U –statistics MAPE 

Horizon Type Type Type Range 

1 to 8- steps F_SARIMA F_SARIMA F_SARIMA 13.5200 -63.4600 

Best forecasting univariate model for China 

 RMSE U –statistics MAPE 

1 to 2-steps F_TAR F_TAR F_TAR  5.1980 – 12.0000 

Best forecasting univariate model for South Africa 

 RMSE U –statistics MAPE 

Horizon Type Type Type Range 

1 to 4 –steps R_A_SARIMA R_A_SARIMA R_A_SARIMA 14.2800 -20.9900  

5-step R_SARIMA R_A_SARIMA R_SARIMA 17.2600 

6 to 7-steps R_A_SARIMA R_A_SARIMA R_A_SARIMA  12.3600- 13.3600  

8-step R_SARIMA R_SARIMA R_SARIMA 10.2000 

The best univariate forecasting model is identified by each measure (RMSE, MAPE and U) for each 

forecasting horizon (1, 2…, 8 steps ahead). The full sample univariate model that employs seasonal Box-

Jenkins ARIMA techniques and model’s structural breaks is denoted as F_SARIMAX, the full sample 

univariate model that employs Box-Jenkins ARIMA techniques without modelling structural breaks is 

denoted as F_SARIMA (this model type is exclusive to India because there were no significant structural 

breaks to model over the full sample). The full sample specifications that employ EViews 9’s automatic 

seasonal and non-seasonal ARIMA model without modelling breaks are denoted as F_A_SARIMA and 

F_A_ARIMA respectively (these models are exclusively designed for China because the period after the 

structural breaks are less than 39 observations and relative step shifts for this period also appear to be 

small which mean that inference regarding unit roots may not be too adversely affected when using the 

full sample. Hence, the full sample is used for these models for this country). The reduced sample model 

that employs seasonal ARIMA technique’s without modelling structural breaks is denoted as R_SARIMA. 

The reduced sample model that employs EViews 9’s automatic seasonal ARIMA model selection 

procedure without modelling breaks is denoted as R_A_SARIMA and the reduced sample model that 

employs EViews 9’s automatic non-seasonal ARIMA model selection method without modelling breaks is 

represented by R_A_ARIMA. Range gives the range of values for the MAPE for models favoured according 

to this forecasting measure over the specified horizon. F_TAR is denoted as full sample threshold 

autoregressive model and R_TAR is the reduced sample threshold autoregressive model. 
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Table 8.2 Summary of the best forecasting models for OPEC countries 

Best forecasting univariate model for Angola 

 RMSE U –statistics MAPE 

Horizon Type  Type Type Range 

1 to 8-steps R_SARIMA R_SARIMA R_SARIMA  2.0590 – 13.3300 

Best forecasting univariate model for Algeria 

 RMSE U –statistics MAPE 
Horizon Type Type Type  Range 

1 –step F_SARIMAX F_SARIMAX R_A_SARIMA  61.6300 

2 –step R_A_ARIMA R_A_ARIMA R_A_ARIMA  82.6100 

3 to 7-steps F_SARIMAX  F_SARIMAX F_SARIMAX  27.3800- 136.0000 

8-step F_SARIMAX R_SARIMA F_SARIMAX  28.7700 

Best forecasting univariate model for Ecuador 

 RMSE U- statistics MAPE 

Horizon Type Type Type Range 
1 to 8-steps F_SARIMAX F_SARIMAX F_SARIMAX 15.4500 -42.9100 

Best forecasting univariate model for Saudi Arabia 

 RMSE U –statistics MAPE 

Horizon Type Type Type Range 

1 to 3-steps F_TAR F_TAR F_TAR 5.3720 -12.6500 
4 to 8-step R_A_ARIMA R_A_ARIMA R_A_ARIMA  1.0100 – 15.1400 

Best forecasting univariate model for Nigeria 

 RMSE U –statistics MAPE 

 Horizon  Type  Type  Type  Range 

1 to 4 steps R_TAR R_TAR R_TAR  10.2400 -20.1200 

5 to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA  40.7200 – 46.5100 

Best forecasting univariate model for Kuwait 

 RMSE U-statistics MAPE 

Horizon Type Type Type Rage 

1 to 8-steps F_SARIMAX F_SARIMAX F_SARIMAX 11.2100 – 38.5900 

See note in the Table 5.5.2  
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