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ABSTRACT

We compare the forecasting performance of univariate and multivariate models for
BRICS and OPEC economies. For the univariate models, we produce forecasts using
ARIMAX models that have a deterministic component to account for structural breaks
over the full sample period and different ARIMA specifications over a reduced sample
period that avoids the modelling structural breaks. The univariate ARIMA models that
we develop over the reduced sample period are, first, a seasonal ARIMA specification
identified using the Box-Jenkins method, second, a seasonal ARIMA model identified
using EView’s automatic model selection tool and third, a non-seasonal ARIMA model
identified using EView’s automatic model selection tool applied to seasonally adjusted
data. The other univariate model we considered include the regime shift threshold
Autoregressive model (over the full sample and reduced sample) and the naive model
which added as a benchmark. Multivariate models are estimated over the reduced
sample period to avoid modelling structural breaks and are based upon Vector
Autoregression (VAR) models that utilise differencing and cointegrating restrictions to
ensure the stationarity of the data. In particular, we consider the unrestricted VAR
model with differenced (stationary) data, the (unrestricted) Vector Error Correction
Model (VECM) that assumes cointegration without imposing cointegrating restrictions
and the restricted VEC that imposes a single cointegrating equation on the VECM. Our
study shows that the benchmark models (naive) were never favoured over the best
selected univariate and multivariate model. The univariate EView’s automatic non-
seasonal ARIMA model is generally favoured for the BRICS countries (the exception is
South Africa). However, the results are mixed between univariate and multivariate
methods for OPEC countries. For OPEC countries that have a history of moderate
inflation, for example, Saudi Arabia, the univariate automatic non-seasonal ARIMA
model outperforms the multivariate model. In contrast, multivariate models generally
outperform univariate automatically selected ARIMA models for countries with high

inflation (e.g Angola and Algeria).



DECLARATION

I, Olaoluwa Vincent Ajayi, hereby certify that this thesis, which is approximately 80,000
words in length without references, has been written by me, that it is the record of

work carried out by me and that it has not been submitted in any previous application

for a higher degree.



DEDICATION

| dedicated this thesis to my late father Justine Safe Ajayi and my two daughters
Tiwatope and Temilola Ajayi.



ACKNOWLEDGMENT

| thank God for my life and opportunity given to me to start my PhD and finish
successfully. First and foremost, | am deeply indebted to my supervisor Dr Chris Stewart
for agreeing to supervise this research work and making it a reality. If not because of his
commitment, guidance and support throughout my research, this PhD journey would
not have been possible. He is an outstanding supervisor because each time | submit a
draft he always read from word to word and provide comprehensive feedback mostly
within 72 hours. | gratefully acknowledge the contribution of my second supervisor
professor Engelbert Stockhammer for his constructive contributions that | always
receive each time | have the opportunity to meet him or discuss my research topicin the

seminar.

| would like to thank all members of the academic and non-academic staffs of the
Economic Department at the Kingston University London; it was a pleasure to work with
a team that offers the best opportunities and education to the students with a clear

vision.

| would like to acknowledge my wife, Lola Ajayi, thank you for your patience and the
support during the four difficult years of my life. Thanks for sharing my dreams, you
have been my strength and sustenance and, | would like to dedicate my PhD thesis to

our two daughters Tiwa and Temi. You will always be in my heart. | love you all.

I would like to acknowledge the support and advice | received from my late father Chief
J.S. Ajayi who died in the second year of my PhD. He was my hero and my mentor. Daddy
thanks for being a good father and for guiding me on the right path. | promise you | will

always make you proud.

I would also like to acknowledge my mother Mrs C.O. Ajayi and my parents in law Pharm
and Mrs Ogunlusi who supported me financially throughout this programme. You have
sacrificed your resources by given me the best education that you could only imagine.
You are a blessing to me and, | promise | will always be thankful to you. | am grateful to
the following people who have helped in one way or another: Ekundayo Taiwo and
Sunday, Engr Dapo, Dr Tosin, Moyin, Aunt Bisi and Yemi, Bukola Oke, Ade Osewa, Holy

Michael, Nifemi, Daniel, Dele, Deji and Tope Ajayi. | appreciate you and thank you all.



TABLE OF CONTENTS

page
ABSTRACT i
DECLARATION iii
DEDICATION iv
ACKNOWLEDGEMENT v
TABLE OF CONTENTS vi
CHAPTER 1
INTRODUCTION
1.1 Background and Motivation 1
1.2 Outline of chapters 3
1.3 Aims and Objectives 10
1.4 Overview of BRICS countries 12
1.5 BRICS Economies and Their Limitations 14
1.6 Overview of OPEC countries 18
1.7 The similarities and difference between OPEC and BRICS countries 20
1.8 Research Contributions 20
CHAPTER 2

THEORIES OF INFLATION DETERMINATION AND CENTRAL BANK POLICIES
TO CONTROL INFLATION

2.0. Introduction 25

2.1 The theory of inflation (Phillips curve) 26

2.2 Quantity Theory of money 29
Vi



2.3 Money Demand 32

2.4 Central Bank characteristics and its monetary policies 33
2.5 Central Bank and Inflation Targeting 33
2.6 Central Banks and Taylor rules 37
2.7 Central Bank and Exchange Rates 38
2.8 The fixed exchange rate system 38
2.9 The regulation of inflation under the fixed exchange rate regime 39
2.10 The exchange rate policy in Qil exporting countries 40
2.11 Central Bank and Fiscal Policy 42
2.12 Interest rates and monetary regulation in OPEC countries 43
2.13 Chapter summary 44
CHAPTER 3

EMPIRICAL LITERATURE REVIEW

3.0 Introduction 45

3.1 Empirical literature on determinants of inflation for developed and developing

inflation 46
3.2 Literature Review on determinants of inflation 47
3.3 Literature Review on the performance of inflation forecasting 51
3.4 The chapter summary and conclusion 59
CHAPTER 4

FEATURES OF CONSUMER PRICE DATA AND ITS TRANSFORMATIONS

4.0 Introduction 61

4.1 Data Analysis for the ARIMAX model 63

vii



4.2 Different transformation graphs for the consumer price 69

4.3 The Summary of the log of price transformations 73
4.4 ARIMA Modelling 76
CHAPTER 5

BOX- JENKINS BASED ARIMAX MODELLING OF ANNUAL INFLATION

5.0 Introduction 83
5.1 ARIMAX modelling of annual inflation for Brazil 85
5.1.2 Developing the ARIMAX model for Brazil 89

5.2.0 Box-Jenkins based ARIMA modelling of annual inflation on reduced samples

without structural breaks 101

5.2.1 Box-Jenkins ARIMA modelling of annual inflation for Brazil 102

5.3.0 Modelling annual inflation using Eviews 9’s automatic seasonal ARIMA model

selection tool on reduced samples without structural breaks 110

5.4.0 Modelling annual inflation using Eviews 9’s automatic non-seasonal ARIMA model

selection tool on reduced samples without structural breaks 115
5.5.0 Forecast performance and evaluation for Univariate model 122
5.6.1 Threshold Autoregressive model 131
5.7.3 The chapter summary and conclusion 151
CHAPTER 6

SELECTION OF VARIABLES FOR MULTIVARIATE ANALYSIS

6.0 Introduction 153

6.1 Phillips Curve 156

viii



6.2. Inflation forecasts based on measures of aggregate real activity and unemployment

rate 159
6.3. Multivariate Cointegration Forecast 160
6.4 Seasonal adjustment for selected macroeconomic variables 162
6.5. The graphical features of selected macroeconomic variables for Brazil 163
6.5.1. The graphs and table of equality test for consumer price in Brazil 164
6.5.2. The seasonality features of the money supply in Brazil 166
6.5.3. The seasonality features of the interest rate in Brazil 169
6.5.4. The seasonality features of the real effective exchange rate in Brazil 172
6.5.5. Seasonality and the Brazilian unemployment rate 175
6.5.6. The seasonality features of output gap in Brazil 178
6.6. Unit root tests 184
6.7 The chapter summary and conclusion 194
CHAPTER 7

MULTIVARIATE SPECIFICATIONS AND MODELLING

7.0 Introduction 195
7.1 Specification and Modelling of unrestricted VAR 196
7.1.2. Model Specification for Unrestricted VARs 198
7.1.3 Brazil Model Selection Criterion for Unrestricted VARs 199
7.2 Modelling Vector Error Correction Model (VECM) 205
7.2.1 Modelling Vector Error Correction Model (VECM) for Brazil 207
7.3.0. Modelling Vector Error Correction (VEC) model 219



7.3.1. Brazilian Modelling Vector Error Correction (VEC) Model 220

7.4.0 Stability test for multivariate models 234
7.5.0 Forecast performance and evaluation 243
7.5.1 Brazil Forecast performance and evaluation 244

7.6 Summary and conclusions of the multivariate models’ forecasting performance

255

7.7 The chapter summary and conclusion 259

CHAPTER 8

COMPARISON OF THE BEST FORECASTING PERFORMANCE OF THE
MULTIVARIATE AND UNIVARIATE MODELS

8.0 Introduction 261
8.1 Naive Model 261
8.2 The chapter summary and conclusion 267
CHAPTER 9

9.1 Summary and Conclusion 268
CHAPTER 10

10: Limitations and Future research 281
APPENDIX 284

REFERENCES 674



INTRODUCTION

1.1 Background and Motivation

There is no doubt that accurate forecasts of inflation have an important effect on
achieving macroeconomic objectives (price stability, full employment, balance of
payments equilibrium and economic growth). Any decision based on wrong inflation
forecasts could result in poor allocation of resources and worse economic performance
in achieving the goal of macroeconomic objectives. In avoidance of poor economic
performance, many academics and policy makers have extensively researched the best
inflation model to be used in forecasting inflation (De Brouwer and Ericsson 1998 and
Stock and Watson 1999). The evidence remains that none of these researchers has
agreed on any best model to forecast inflation. Carlson and Parkin (1975) and Mitra and
Rashid (1996) observed that economic agents select different forecasting models in
different inflationary environments. When inflation is high and volatile they use
sophisticated models whereas simple models are employed during mild and stable
inflation periods. Buelens (2012) and Stock and Watson (2008) stated that the accuracy
of a forecasting model depends on the sample period in which they are estimated and
evaluated. For example, the appropriate forecasting model to be used prior to the
economic crisis may be different from that during the economic crisis. Further, some
explanatory variables may be good predictors during an economic recession but not in

expansion.

Stock and Watson (1999) argued that the Phillips curve model has been more
accurate in forecasting US inflation than models involving other macroeconomic
variables such as interest rates, money supply and commodity prices. They further
revealed that the Phillips curve produced a better forecast when estimated with real
economic variables (GDP) than when estimating the Phillips curve with unemployment.
That is, the Phillips curve estimated with real economic activity can provide forecasts
with smaller mean squared errors than those from unemployment based Phillips curve
models. Atkeson and Ohanian (2001) found the Naive model as the most effective in
forecasting US inflation for the past fifteen years, when compared with the Phillips
curve. Thus, this thesis identifies the following as potential factors that influence the

accuracy of inflation forecasts: (i) the type of model in use; (ii) the variables included in



the model; (iii) the transformations applied to the data for stationarity, seasonality and
strutural breaks (iv) the economic environment (v) the sample period used to estimate

the parameters of the model and (vi) the length of the forecasting horizon.

Many researchers have based their inflation forecasting analysis on the study of
European countries and the United States. They have often compared inflation
forecasting accuracy during periods when inflation targeting policies were adopted with
periods when there were no inflation targeting policies in operation.! As far as we know,
no studies have compared the predictive performance of alternative inflation
forecasting models for OPEC and BRICS countries, despite their growing importance in
the global economy.? This study extends the existing literature by forecasting inflation
in these economies that cover sample periods of both high inflation and moderate
inflation.3 In particular, we compare the forecasting performance of univariate and
multivariate models for BRICS and OPEC countries with the aim of identifying the most
accurate inflation forecasting model for the different economies. Our univariate models
are based on ARIMAX, ARIMA specifications, regimes shift threshold autoregressive
(TAR) models and Naive model is added as a benchmark. While the multivariate models
are based upon Vector Autoregression (VAR) models that utilise differencing and
cointegrating restrictions to ensure the stationarity of the data. In particular, we
consider the unrestricted VAR model with differenced (stationary) data, the
(unrestricted) Vector Error Correction Model (VECM) that assumes cointegration
without imposing cointegrating restrictions and the restricted VECM (or VEC) that

imposes a single cointegrating equation on the VECM.

! For instance, see Nadal-De Simone (2000), Alles and Horton (2000), Guncavadi et al (2000), Stock and
Watson (2007), Lee (2012) and Buelens (2012).
2 BRICS nations control 43 percent of global foreign exchange reserves and 25 percent of global GDP.
OPEC countries account for 81% of the world’s crude oil reserves and have a high dependence on oil
revenues. See Antoine (2012), Rahman (2004) and World Qil outlook (2012).
3Lo and Granato (2008) argue that high inflation hurts growth over the long term. While, Narayan et al
(2009) documents that monetary authorities’ policies can often be misguided during periods of high
inflation. The presence of high inflation has compelled us to examine whether high inflation affects
inflation forecasting performance.

2



1.2 Outline of chapters

We organise the thesis into different inter-linked chapters. Chapter One outlines the
background and motivation of the study, research objectives, an overview of BRICS and
OPEC countries, that discusses the similarities and differences between OPEC and BRICS
countries and contributions of this research. In this chapter, we are able to identify
different characteristics of BRICS and OPEC economies that will be later considered
when forecasting inflation. In particular, we categorised OPEC countries as an oil
exporting economies and BRICS countries (excluding Russia) as an oil importing
countries. For instance, all OPEC countries produce crude oil for exportation, and this
has contributed to the higher percentage of their export earnings. For example, Nigeria
earned 70 percent of its total export revenue from crude oil; Kuwait derived almost 60
percent of its gross domestic product and 93 percent of export revenue from crude oil;
Libya acquired almost 95 percent of its government revenues.* In contrast, all the BRICS
countries except Russia are heavily dependent on oil imports to produce their
manufactured products. For example, China is the second largest oil consuming nation
in the world and second largest oil importing country from OPEC after the United States
in 2010 (Economic Analysis Division, 2004). In addition, BRICS economies are ranked
among the G-20 advanced industrial countries in the world whereas the OPEC economic
system is classified as a traditional economy where goods and services produced are

influenced by traditional beliefs, customs and religion.

Chapter Two discusses the various theoretical models that are commonly used to model
and forecast inflation and considers the policies implemented by the central bank to
control inflation for BRICS and OPEC countries. This chapter demonstrates that most of
the policies implemented by the central bank to regulate inflation focus on the interest
rate (for example, via Inflation targeting and Taylor rules as well as through the exchange
rate). According to the Taylor rule, the central bank assumes inflation and the interest
rate are directly related, especially in the short term. When inflation is above the target

rate, the central bank will increase the interest rate to reduce inflation and if inflation is

4 See: Organization of petroleum exporting countries member, available at
http://www.opec.org/opec_web/en/index.htm.
3
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below the target rate, the central bank will decrease the interest rate to raise the rate
of inflation (Taylor 2008). For the exchange rate, the government may allow the value
of the domestic currency to be fixed at the value of a selected foreign currency to control
inflation. In particular, if the government experiences a balance of payments deficit the
central bank may be tempted to reduce capital outflows to improve the balance of
payments. In this case, the central bank may decide to increase the interest rate to
technically increase the cost of borrowing to discourage people from borrowing and
decrease consumer spending. However, the use of the interest rate to control inflation
is limited in OPEC countries and most of the oil exporting nations. This is due to reasons
of religion, social beliefs, the usury activities of financial institutions and the sovereignty
of many of these countries that independently regulate their financial institutions.

Chapter Three provides an empirical literature review. The literature is divided into two
sections. The first section discusses the various factors that have been considered as
determinants of inflation in developed and developing countries. While the second
section analyses the empirical literature on inflation forecasting models. This literature
suggests a growing consensus that economic relationships change in different inflation
environments. The factors that determine inflation in developed countries may be
different from the factors that determine inflation in developing countries. For example,
the factors that determine inflation in low inflation economies may be different from
those in higher inflation economies. In particular, inflation in many developing countries
is mostly caused by the external influence of import prices, the foreign interest rate and
the exchange rate (Frisch 1977, Dhakal and Kandil 1993, Boujelbene and Thouraya
2010). While the interest rate, money growth and financial assets determine the rate of
inflation in developed countries (Tillmann, 2008 Cologni and Manera, 2008). The
empirical literature on inflation forecasting suggests the following: (i) theoretical model
most especially Phillips curve, are more accurate to forecast inflation when the economy
is weak most especially during the economic crises when compared with the univariate
ARIMA model (Pretorious and Rensburg 1996, Dotsey et al. 2011 and Buelens, 2012). (ii)
ARIMA models outperform other multivariate models (Phillips curve and VAR) during
periods of stable and low inflation (Pretorious and Rensburg,1996; Mitra and Rashed,
1996; Nadal — De Simone, 2000 and Dotsey et al. 2011). (iii) When comparing the
forecast performance of three and five quarters ahead, the VAR and VECM specifications

perform better than the naive model (Onder, 2004). When comparing VAR models with
4



VEC models, the VEC models outperform the VAR models over the longer horizon
(Fanchon and Wendel, 1999). (iv) The model that account for stochastic volatility and
time-varying coefficients (e.g Markov switching models, Dynamic stochastic general
equilibrium modelling, Self-exciting TAR models) provide more accurate forecast than
those models that do not (D’Agostino et al. (2013), Barnett et al. (2014), Bel and Paap,
(2016), Cross and Poon (2016) and Mandalinci, (2017)).

Chapter Four consists of two sections. The first section analyses the graphical features
of the quarterly price data and its transformations to assess issues of seasonality,
stationarity and structural breaks for each country. While the second section outlines
the Box Jenkins ARIMA and ARIMAX methods of univariate modelling employed in this
thesis. From the first section, a mixture of visual inspection of the data, autocorrelation
functions (ACFs) and unit root test showed that the log of the price is nonstationary in
all the growing inflationary economies under consideration. The standard quarterly (one
period) difference is generally insufficient to induce stationarity because of seasonal unit
roots. Conversely, the annual (four period) difference is generally sufficient to induce
stationarity, although only after structural breaks have been accounted for in modelling.
For example, a downward shift in the intercept (seasonal indicator variables) coinciding
with a move from high to low inflation eras may give a process that is only stationary
around a shifting mean. As widely observed from the literature, for instance, Perron
(1989), Lee and Chang (2005) and Fernandez and Fernandez (2008), a failure to account
for seasonality and structural breaks can lead to model misspecification and make unit

root tests biased towards non-rejection of the unit root null hypothesis.

Chapter Five develops the analysis presented in Chapter four and builds ARIMAX models
to the annual rate of inflation. We applied the Bai (1997) and Bai and Perron (1998,
2003) tests to a deterministic model of the annual difference of the log of prices to
identify structural breaks for each country. Based upon these tests, we used shifting
dummy variables to build the deterministic component of an ARIMAX model that
accounts for any identified structural breaks in each country. This is achieved by applying
the Box-Jenkins method to identify an ARIMA specification to the residuals of the
identified deterministic component of the ARIMAX model that accounts for structural

shifts. In addition, we develop ARIMA models to inflation using a reduced sample period



that avoids the modelling of structural breaks (with at least 39 observations). The
following different procedures for developing ARIMA specifications on the reduced
sample are employed. First, the Box Jenkins method using the modeller’s identification
of seasonal ARIMA specifications based upon ACFs and partial (PACFs) is employed.
Second, EViews automatic seasonal ARIMA model identification method is used. Third,
the data is seasonally adjusted using the Census X11 or X12 program that allows for
time-varying seasonality and EViews automatic non-seasonal ARIMA model
identification method is used. Forecasts based on the nonseasonal models are
reseasonalised using the seasonal indices in 2012 identified by the seasonal adjustment
process. The contribution of this chapter is to determine whether using the full sample
that generally requires the modelling of structural breaks with an ARIMAX specification
produces superior forecasting accuracy to ARIMA models built using a reduced sample
with less data that avoids the modelling of structural shifts. Regarding the reduced
sample modelling, we compare the forecasting accuracy of ARIMA specifications built
using the modeller’s judgement and those identified using EViews automatic model
selection procedure. The reduced sample models also allow a comparison of ARIMA
models built using seasonally adjusted data (with re-seasonalised forecasts) and those
using unadjusted data. Further, we estimated the threshold autoregressive (TAR)
models over the full sample and reduced sample and compared its forecast performance
with the best forecasting model produced by the class of univariate ARIMA
specifications. From our results, the TAR models indicate evidence of more than one
regime in all selected economies (excluding China) which support the need to for
modelling breaks. In terms of forecasting, the nonlinear TAR models (for both full sample
and reduced sample) were not favoured over the best selected linear ARIMA models
except for China (over all forecasting horizons), Nigeria (over 1 to 4-step ahead horizons)
and Saudi Arabia (over 1 to 3 steps ahead horizons) where the TAR model estimated
over a reduced sample produced the best forecast. The forecast performance of the TAR
model over a few horizons is consistent with the previous study that documents the
good performance of the TAR model over linear ARIMA models for the longer horizons

(Montgomery et al. (1998)).



Chapter Six discusses the data used in multivariate modelling. We identify the variables
that are most commonly employed to model and forecast inflation in the literature and
identify the data availability of these series for each country under study. Whilst we give
priority to variables available at the quarterly frequency, we also consider the addition
of variables that are available only at the annual frequency to ameliorate omitted
variable issues. We use frequency conversion tools to generate quarterly series from
annual series. The main explanatory variables that we consider for each country are the
money supply, real exchange rate, interest rate, output gap, unemployment rate and

the oil price.

In Chapter Seven, we considered all variables identified in chapter six for each country
and estimated multivariate models (VAR, VECM and VEC) over the reduced sample to
avoid the modelling of structural breaks and to use seasonally adjusted data to preclude
issues involving seasonal unit roots.> The motivation for this chapter is guided by the
following principle. Models involving series that are nonstationary may lead to problems
of spurious regression that can adversely affect forecasting accuracy. We, therefore, use
differencing and cointegration restrictions to transform nonstationary series into
stationary variables. VARs estimated with cointegrated data will be misspecified if all of
the data are differenced because long-run information will be omitted and will have
omitted stationarity inducing constraints if all of the data are used in levels. Therefore,
we test for the orders of integration of all variables considered as well as for
cointegration. Based on this analysis, we compared the forecasting performance of the
following multivariate models: unrestricted stationary VAR, VECM and VEC. Our result
shows that including long-run information in the form of a specified cointegrating
equation generally improves the forecasting performance compared with VARs and

VECMs for BRICS countries. This is consistent with previous findings that stated that

5> For each of the multivariate model (VAR, VECM and VEC) in each country, we estimate four equations.
The first equation includes all available variables as endogenous except unemployment (which is
excluded). The second equation includes all available variables as endogenous except for the output gap
(which is excluded). The remaining two equations are the same as the first two equations except the oil
price is treated as exogenous. The aim is to test whether inclusion of the oil price as exogenous or
endogenous will have effect on performance of inflation forecast for oil exporting OPEC and oil
importing BRICS countries.



forecasts are most likely to be improved by applying error-correction techniques if the

data strongly supports the cointegration hypothesis (see, Timothy and Thomas, 1998).

Further, we investigate whether the multivariate models (VAR, VECM and VEC) are
structurally stable in the sense that the regression coefficients are constant. If not, what
are the implications of the instability for forecasting future inflation or what forecast
methods work well in the face of instability? For instability tests, we perform two
different parameter shifts tests that are available in EViews (the CUSUM and Bai and
Perron (2003) tests). For the CUSUM test, we apply the CUSUM test that is based on the
cumulative sum of the recursive residuals. The condition is that, if the line of the CUSUM
test statistics fluctuates within the two 5% critical lines, the estimated models are said
to be stable. In contrast, the models are said to be unstable if the line of the CUSUM
goes outside the area between the 5% critical lines. For the BRICS countries, the CUSUM
test and Bai and Perron (2003) test suggest evidence of instability for all models except
all VECMs and VARs specification for India (the exception is the VAR estimated over the
full sample that includes all variables as endogenous). The other exceptions are the
VECM model that contains all variables as endogenous except unemployment for South
Africa; the two valid VECM specifications for Brazil, all four VECMs and the VAR model
that includes all variables as endogenous except output gap that excluded for Russia.
For OPEC countries, all models also show evidence of instability except the VAR and
VECM model that includes all variables as endogenous for Saudi Arabia, the VECM model
that specified oil price as exogenous for Angola, the two valid VAR models and two valid
VECM specifications for Algeria as well as the VAR model that include oil price as

exogenous and other variables as endogenous excluding unemployment for Nigeria.

We also examine whether the instabilities in multivariate models (VAR, VECM and VEC)
affects the performance of the inflation forecasting. In our study, the application of the
two stability tests (the CUSUM and Bai Perron tests) provide evidence that the stability
of the model can enhance the forecasting performance of inflation for few countries.
For example, all the favoured forecasting model for the OPEC countries are stable (the
exception is for Angola). In general, the VECM specification is stable and produce the
best forecasting results over all horizons for Saudi Arabia and the unrestricted VAR
model is stable and produce the best forecasting result over all horizon for Nigeria and
Algeria. In contrast, all the favoured forecasting models are not stable for BRICS

8



countries according CUSUM and Bai Peron tests. The performance of the favoured
forecasting models that are not stable are consistent with the study of (Stock and
Watson, 2003, and Rossi 2012) who argued that instability of the theoretical model can

be misleading for favoured out-of-sample forecasting.

Moreover, whether the inclusion of oil prices as exogenous or endogenous will improve
forecasting performance differs substantially according to the form of the model
employed and the country being considered. For BRICS and OPEC countries, the model
that includes the oil price as endogenous generally appears to secure better forecasting

performance than the model that includes the oil price as exogenous, except for Algeria.

In Chapter Eight, we estimate naive model as a benchmark model and compare its
performance with the best forecasting performance of the multivariate (VAR, VECM and
VEC) and univariate models (TAR model, ARIMAX, ARIMAs and EViews automatic
selection procedure) to identify the most accurate inflation forecasting model for BRICS
and OPEC economies. In our study, naive models were inferior to the best selected
univariate model for all selected countries. The univariate model is generally favoured
over the multivariate models for the BRICS countries (except South Africa). However,
the results are mixed between univariate and multivariate methods for OPEC countries.
For OPEC countries that have a history of moderate inflation, for example, Saudi Arabia,
the univariate automatic non-seasonal ARIMA model generally outperforms the
multivariate models over the longer horizons (4, 6, 7 and 8). While the TAR model
outperforms other selected models over the shorter horizons (1 and 2-steps ahead). In
contrast, multivariate models generally outperform univariate automatically selected

ARIMA models for the countries with high inflation (e.g Angola and Algeria).

Chapter Nine is the summary and conclusion of this research and includes the discussion

on the limitations of this study and identifies some possible areas for future research.



1.3 Aims and Objectives

The performance of inflation forecasting can vary in different economic environments.
The factors that influence inflation forecasting in developed countries may be different
from developing countries; and the factors that affect inflation forecasting in oil
exporting OPEC economies may be different from predominantly oil importing countries
such as the BRICS economies. The OPEC economic system can be classified as a
traditional economy where goods and services produced are influenced by traditional
beliefs, customs and religion whereas BRICS economies are ranked among the G-20
advanced industrial economies in the world. Developed countries have a history of low
inflation, stable macroeconomic policies and have control over both monetary and fiscal
policies while developing countries are known for higher inflation and unstable
macroeconomic policies (Ghazanfar and Sevcik 2008). In our research, we consider the
characteristics of oil importing and oil exporting economies when evaluating the
forecasting performance of univariate and multivariate models of inflation for BRICS and

selected OPEC countries. In our empirical analysis, we address the following issues:

(i) How can we make the price data stationary for each country? In particular, is
seasonal differencing required, do structural breaks need to be accounted for
and is the logarithmic approximation a valid measure of annual inflation (INF;=

Pe— Pt—4)?

Py

(ii) Can ARIMAX models that pass diagnostic checks be obtained for each country?

(iii) Do ARIMAX models built using the full sample of data (with the benefit of more
information) produce superior forecasts to ARIMA models developed using a
reduced sample that avoids the modelling of structural breaks (with the
disadvantage of less data)?

(iv) Where we applied EViews 9’s automatic ARIMA model selection procedure
using a reduced sample that avoids modelling breaks, can specifications that

pass the diagnostic checks be obtained for all countries?

6 0zkan and Yazgan (2015) suggest that the success of inflation forecasts is different in the different
monetary-policy regimes that have been implemented in different periods of time.
10



(v)

(vi)

(vii)

(viii)

(ix)

(x)

(xi)

(xii)

Does the more time-consuming Box-Jenkins ARIMA model building method that
requires modelling skill produce superior forecasts to the quicker automatic
ARIMA model selection procedure?

Do ARIMA specifications that explicitly model seasonality produce superior
forecasts to those that apply non-seasonal models to seasonally adjusted data
followed by re-seasonalising the forecasts?

Does regime shift threshold autoregressive model (TAR model) produce
superior forecasts over univariate ARIMA model selection?

Can valid VARs, VECMs and VECs be obtained for each country? Which of these
models produces the best forecasting performance for each country? Is there a
generally best performing specification across countries and/or for different
forecasting horizons?

When valid VEC models can be found are the coefficients of the long-run
equation consistent with theoretical economic expectations?

Is it better to treat the oil price as endogenous or exogenous in multivariate
models? Are models that use unemployment to capture the Phillips Curve effect
preferred to those that employ the output gap (when both variables are
available)?

Has the multivariate model stable over time? If not, what are the implications
of the instability of forecasting inflation?

Of all the models considered (both univariate and multivariate) which model
produces the best forecasting performance over the benchmark model (naive)

across countries and/or for different forecasting horizons?
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1.4 Overview of BRICS countries

In recent times, Brazil, Russia, India, China and South Africa (BRICS) have emerged to
form an international organization body that will influence global financial trade and
form a serious competitor to western economies. Accordingly, many common features
exist among the BRICS nations. They share a common thread that they are fast
developing nations and one of the largest economies in their regions. For example, China
has the largest economy in Asia and is second only to America in the world. Russia is a
member of the G8 advanced leading countries in the world, and India has the third-
largest economy in Asia. South Africa has the largest economy in Africa, while Brazil has
the largest economy in South America. Global Sherpa (2014) reported that BRICS
countries ranked among the world’s largest and most influential economies in the 215t
century. BRICS countries accounted for 25% of world GDP, over one-quarter of the
world's land area and more than 40% of the global population.” They control almost 43%
of global foreign exchange reserves, and their share keeps rising (See Goldman Sachs,
2007, Antoine 2012 and Global Sherpa, 2014). Toloraya (2014) stated that BRICS
economies have shown tremendous development in recent decades. The economy has
increased by almost two times to reach $300 billion within five years and acquire 30 to

60 percent of the world’s most valuable mineral resources.

BRICS countries are heavily dependent on oil imports to produce their
manufactured products, and many of these countries have diverse economies
particularly about natural resources, higher inflation, as well as exporters of electronics
goods. In areas of oil importing and oil consumption, BRICS countries have been playing
a leading role in the world.®2 For example, China is the second largest oil consuming
nation in the world and second largest oil importing country from OPEC after the United
States in 2010 (Economic Analysis Division, 2004). China's oil consumption growth
accounted for one-third of the world's oil consumption growth in 2013, and its
consumption is increasing by 0.37 million bbl/d 3.5% (EIA, 2014). South Africa has the

highest energy consumption in Africa; accounting for about 30% of total primary energy

7 China and Indian have remarkable population of 1.351 billion and 1.244 billion respectively (World
Bank 2012).
8 Most of BRICS countries are heavily dependent on oil importing and they rank among the highest oil
consuming nations in the world apart from Russia. Russia has tremendous oil reserves and is the third
largest producer of oil in the world after Saudi Arabia and United states, and most of oil consumption in
Russia is producing locally.
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consumption in Africa in 2012. Central Intelligence Agency (2010) ranked India as the
world's fourth-largest oil-importing and oil consuming nation in the world. India spent $
15 billion, equivalent to 3% of its GDP on oil importing in 2003 that is 16% higher in 2001
(Economic Analysis Division, 2004). EIA projected that oil consumption in India would
grow at an annual average of 1.5% for the next six years. In the case of Brazil, the country
is ranked as the 8th largest energy consuming nation in the world. EIA ranked Russia as
the second-largest producer of natural gas, second to the United States and the third-

largest generator of nuclear power in the world.

In politics and finance, BRICS countries aim to convert their growing economic
strength into political power.® They believe that by working together, they could carve
out the future economic order among themselves. They project that China will continue
to dominate in areas of manufacturing goods; India will be providing services; Russia and
Brazil will influence in areas of natural resources for the raw materials and providing
agriculture inputs. In addition to this plan, they propose to achieve sustainable economic
growth and establish an industrial development environment through the launch of the
Development Bank. The bank will serve many emerging markets for the development of
infrastructure projects and reduce numbers of many countries dependent on the World
Bank and the International Monetary Fund (IMF). All the members will provide the total
sum of $100bn. China is expected to contribute the highest amount of ($41bn), followed
by Brazil, Russia and India contributing $18bn each, and South Africa adding at least
S5bn (Wood, 2014). As a result, China won the bid for the bank headquarters which is
set to be located in Shanghai and India will provide the New Development Bank’s first
president. Nataraj and Sekhani (2014) reported that the new BRICS bank would be based
on equality and fairness where individual members will be able to vote and grant loans

with fewer restrictions and shorter delays.

% This action will bring new development for Russia and China to achieve their foreign and political
objectives; In particular, there is no sign that ties between Russia and the Western countries may
improve any time soon. As a result, Russia and China would not be totally isolated and forcefully give
away their political interest to the Western countries demands.
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1.5 BRICS Economies and Their Limitations

Research by Goldman Sachs found that economic growth in South Africa’s will increase
from an average 3.3% over the last 20 years to 6.7% per annum in 2050 which will
produce a region the size of $14tm (Coleman, 2013). The Economist Intelligence Unit
predicts that Brazil’s economy will be larger than any European country’s economy by
2020 and exceed Germany’s economy to become the world’s fifth biggest global
economy (Daly 2013). China’s GDP growth is proposed to overtake the United States’
GDP before 2030, and the total GDP of the BRICS countries will be more than the
combined GDP of the seven largest developed economies by 2050 (see Antoine, 2012

and Kangarlou, 2013).

To achieve this economic plan, BRICS countries need to improve in technology,
security, create more jobs, establish good financial institutions, invest in human
development, stable political structures and improve on social and economic reforms
that will establish sustainable growth. As a result, BRICS countries like India, Brazil, China
and South Africa have announced their commitments to the reality of these objectives.
For example, China is currently focusing on its 12th five-year plan for building many new
airports and creating an additional 45 million new jobs (Jason, 2012). India’s is advancing
on its 12th five-year plan to invest $1 trillion in infrastructures, with the aim of funding
half of it through private sector involvement in public-private partnerships (PPPs). Brazil
launched a growth acceleration program in 2007 to provide tax incentives, reduce
energy costs, strengthen its investment through foreign participation and restructure its
oil royalty payments to increase revenue and provide more capital to the private sector.
Moreover, South Africa has engaged in the construction of 56,000 new classrooms;
construction of 1,700 new clinics across the country. The country found two million free
housing units for low-income families, rehabilitation of 6,000 km of national roads and

building of 15,000 km of provincial roads.

Despite these reforms, many studies have questioned the reality of this group
becoming a leading economy in 2050. Western analysts and media have criticised the
existence of the BRICS nations; they argued that BRICS countries were too different from
each other to agree on a common goal (Stuenkel 2014). Consequently, BRICS economies
witnessed economic setbacks during the 2007 financial crisis; although its impact varies
from one country to another. For example, in the area of financial markets, the toxic
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assets owned by domestic banks in Brazil and Russia during the 2007 financial crisis was
greater than the toxic assets held by India and China. During this period, Brazil owned
almost 25%, and Russia owned 12% of toxic assets compared to 0.4% owned by China
and 4% belonging to India (Vashisht and Banerjee 2010).1° Vashisht and Banerjee (2010)
also documented that non-performing loans experienced in Brazil and Russia showed
the negative impact of the financial crisis in 1997 compared to non-performing loans in
India and China. The Non-performing liquidity ratio increased in Russia and Brazil while

it decreased in India and China from 4.4% to 2.4% and 8.6% to 1.2% respectively.!!

World Bank (2014) documents that Russia’s GDP growth reduced to 1.3% in 2013
from 3.4 % in 2012 due to inadequate structural reforms. The recent Ukraine Crimea
annexation by Russia has been drawing international condemnation and pushed down
industrial and investment activities in Russia. The crisis has eroded domestic businesses
and consumers’ confidence. Russia was accused of supplying heavy weapons to pro-
Russian forces in the eastern part of Ukraine. As a consequence, the past United States
president (Barack Obama) instigated the G8 economic group to isolate Russia. The
European Union and the United States imposed economic sanctions on various Russian
financial institutions, imposed asset freezes and visa bans on many Russian politicians.
The sanctions restricted access of Russian state-owned banks to obtain funds from
Western capital markets, which Russia could turn to and access capital to finance its
long-term investment. Consecutively, EU and U.S firms were barred from providing
capital for more than 90 days to Russia's key state-owned banks. Recknagel (2014)
disclosed that $75 billion of capital has been pulled out from Russia since the crisis
started in February 2014 to August 2014. However, this sanction does not target Russian
natural gas supplying to the European Union but aimed at the Russian financial industry,

whose contribution has powered Russia's economy.

In South Africa, the influence of the previous apartheid political system is
another important point to be considered. In the past, the South African population was

divided by race; the act was passed to segregate the black race from the white race. As

10 The toxic asset is an indicator used to measure the soundness of the financial sector. The higher the
value of the toxic assets the higher the negative impact of financial crises in selected countries. The
lower the value of toxic assets the lesser the impact of financial crises in the selected countries.
11 Non—performing liquidity ratio is used to determine the ability of financial institution to pay off its
short- terms debt obligations. Similarly, the higher the value of non-performing loan ratio, the higher
the risk and less safe for the financial institution to cover short- term debts.
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a result, many investors believe that the growing population of black races that ought
to have provided a good economic market were excluded from the South African

economy circuit (Coleman, 2013).

China’s economy has been criticised for currency manipulation, economics
"dumping" and caters less for the immediate needs of its population. Aziz (2007) stated
China's rapid growth may not be sustainable because many Chinese companies process
high cost imported inputs resource into cheap consumer goods for exporting. As a result,
when inputs become more expensive, this may undermine China’s economy and
investor confidence in achieving sustainable growth. For instance, the competition from
other producing countries will make it more difficult for many Chinese companies to
increase their market shares. In addition, the growing population of China is another
issue to be considered. Overpopulation in China could impede both economic
development and economic growth. For instance, an increase in population will increase
government expenditure by allocating more resources to social welfare rather than a
development of infrastructure. Patel (2013) documented that China’s growing
population has increased its environmental pressures and makes the current economic
situation in China unstable. For example, agriculture activities in coastal regions of the
South China Sea, which should feed fewer people now, cater for more than 300 million
persons. The year 2000, more than 11 million tons of fish were eaten in this area, even
though, fish stocks in the North East have fallen drastically since the 1990s (Patel 2013).
The introduction of the one-child policy in 1979, to curb the rapid growing population,
could also reduce the long-run labour force. Currently, 16.6 percent of the total Chinese
population is 14-year-old children, whilst 13 percent are over 65 years. If current
conditions remain, China will face a shortage of 140 million workers in 2020, and over a

quarter of the Chinese will be above 65 years old in 2050 (Patel 2013).

Consequently, corruption remains a threat to the economic growth of the BRICS
countries. BRICS countries business environment may not be favourable for many
legitimate multinational companies to function. Although the BRICS nations have the
potential of being a leading economy, corruption can jeopardize their growth targets.
The transparency International civil society organisation scored most of the countries in
the world based on their level of corruption in 2014. The group constructed a corruption

scale of 0-100, where 0 means that a country is perceived as highly corrupt, and 100
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means a very decent country. The table below indicates the level of corruption in BRICS

countries.

Tablel.1 Corruption ranking table for BRICS countries

Rank Country Score
67 South Africa 44
69 Brazil 43
100 China 36
85 India 38
136 Russia 27

Source: Corruption perception index (2014).

From the above table, all the BRICS countries scored less than 50 out of 100 and were
ranked above 65. This indicates a serious problem of corruption that exists among the
BRICS nations. The Corruption activities in many of these countries include abuse of

power, secret dealings, bribery, abuse of human rights and financial violations.
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1.6 Overview of OPEC countries

In the late 1950s, the quantities of oil produced in many of the oil producing countries
were greater than the global demand for oil. During this period, the oil production sector
was dominated by a few individuals, companies and countries. Each of them produced
oil and regulated prices independently in the international market until September 14,
1960, when the Organization of Petroleum Exporting Countries (OPEC) was established.
This organisation was established in 1960 with five founding members: Iran, Iraq,
Kuwait, Saudi Arabia and Venezuela. By the end of 1971, six other nations had joined
the group: Qatar, Indonesia, Libya, United Arab Emirates, Algeria and Nigeria. OPEC has
a rich diversity of cultures, languages, religions and united by their shared status as oil-
producing developing countries. Many of these countries heavily depend on the
exportation of petroleum, and this has contributed to the higher percentage of their
export earnings. For example, Nigeria earned 70 percent of its total export revenue from
crude oil; Kuwait derived almost 60 percent of its gross domestic product and 93 percent
of export revenue from crude oil; Libya acquired almost 95 percent of its government
revenues. In Qatar, oil and natural gas accounted for 60 percent of the country’s gross
domestic product and around 85 per cent of export earnings. In Saudi Arabia, the oil and
gas sector contributed to 50 percent of the gross domestic product and 90 percent of
export earnings and, in Venezuela, oil revenues accounted for about 95 percent of
export earnings and 25 percent of the gross domestic product.’? In total, the OPEC
members produce almost 40% of the world's crude oil, which represents almost 60
percent of the total petroleum traded internationally, produces about a third of the
world’s daily consumption of 90m barrels of crude oil, and controls 78% of the world’s
crude oil reserves (Energy Inflation Administration, 2013). Apart from petroleum oil, the
organization provides other natural resources that include natural gas, tin, iron ore, coal

limestone, niobium, lead and zinc.3

12 See: Organization of petroleum exporting countries member, available at
http://www.opec.org/opec_web/en/index.htm.

13 Sala-i Martin and Subramanian (2003) documented that countries that depend heavily on the export
of natural resources are liable to various challenges, which include: authoritarian governance, political
instabilities, civil wars, high corruption levels, high poverty rates.
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The group has the responsibilities of coordinating and unifying petroleum policies,
promoting stability and regulating the oil price in the international market. In 2005, the
acting general secretary of the organisation (Adnan Shihab-Eldin) emphasised that OPEC
is committed to market stability and supplying petroleum products at reasonable prices
to both producers and investors.'* OPEC has responsibilites to safeguard the interests
of its members and ensure the stability of the global oil price. For instance, in 1968,
OPEC issued a declaratory statement of petroleum policy to protect its members and
caution the United Nations on the right expressed by the United Nations that all
countries should exercise permanent independent rights over their natural resources
for the development of their economy. Accordingly, OPEC maintained that OPEC's
resources should benefit the whole OPEC members rather than individual countries by
setting a reasonable global oil price. OPEC often regulates the production of the crude
oil to set the global oil price and improve the balance of payments. The organization will
increases production to increase supply and keep prices low.'® In contrast, OPEC will
decrease oil production to reduce supply of oil and increase oil prices. The first notable
example was in October 1973 when the Arab nations in OPEC cut their oil production by
5% per month. The organisation put a supply oil embargo on the United States because
of its support for Israel during the Yom Kippur war. The action of the Arab countries led
to an increase in global oil prices that increased inflation across the world. A similar
example was during the Gulf War, when former Iraqi President (Saddam Hussein)
advocated that OPEC should increase the oil price to help Iraq and other member states
to generate more revenue and service their debts. However, the aggression and invasion
of Irag on Kuwait did not allow all members of the organization to support the proposal

of Saddam Hussein (Basil Ajith, 2011).

14 A speech delivered by Adnan Shihab-Eldin, Acting for the Secretary General, to the 31st Pio Manzu
Conference, Rimini, Italy, 28-30 October 2005. Available at:
http://www.opec.org/opec_web/en/883.htm. Accessed on 23 September 2013.

5An increase in oil production may leads to excess supply or oversupply and the quantity supply will be
greater than the quantity demanded in the equilibrium market. The effect of excess supply of the oil will
reduces the price of the oil to encourage consumers to purchase more and suppliers to produce less.
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1.7 The similarities and difference between OPEC and BRICS countries

The BRICS and OPEC countries are made of both developed and developing countries.
The BRICS economies are ranked among the G-20 advanced industrial countries in the
world whereas the OPEC economic system is classified as a traditional economy where
goods and services produced are influenced by traditional beliefs, customs and religion.
There is evidence that developed countries experienced low inflation and stable
macroeconomic policies while higher inflation, unstable macroeconomic policies are
attributed to developing countries (Ghazanfar and Sevcik 2008). In developing countries,
the analysis of monetary policy is hindered by the absence of a good monetary policy.
The developed countries have control over their monetary and fiscal policies and good

monetary experts manage their economies.

Many of the BRICS countries are oil importers and high oil consuming nations compared
with OPEC countries that are major oil exporters in the world. The majority of OPEC
countries are dependent on crude oil and natural resources to generate revenue and
import many consumer goods. Therefore, they are more exposed to international trade
with crude oil and increases or decreases in the oil price will directly affect their
government expenditure. In contrast, incomes for many of the BRICS countries are not
only from natural resources but taxes and the financial sector. In addition, BRICS
countries are more advanced in technology, and many of them have the ability to

process their natural resources for exports.

1.8 Research Contributions

This thesis makes the following contributions to the existing inflation forecasting
literature, especially on the empirical front. The most recent literature focuses on
developed countries, although some of them focus on developing countries, none of
them focuses on BRICS and OPEC economies despite their growing contribution to the
global economy. Therefore, this study contributes to the literature by offering evidence
that leads to following conclusions in terms of modelling and forecasting inflation for
BRICS and selected OPEC countries. We are not aware of any previous study of inflation

that draws such conclusions for these countries.
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(i) The annual (four periods) difference of the log of prices is a poor approximation
of inflation during periods of high inflation. However, the annual (four periods)
difference of the log of prices is a reasonable approximation of inflation during
periods of low inflation. Given that many BRICS and OPEC countries exhibit
periods of both relatively high and moderate inflation this suggests researchers
should not automatically assume that the difference of the log of price data can
be used as a valid approximation of inflation for modelling in these countries.
Further, when using quarterly unadjusted data, it is most appropriate to use the
growth rate of prices based on the annual difference rather than the quarterly

(one period) difference to obtain stationary data.

(ii) When forecasting with univariate specifications, reducing the sample to avoid
modelling large structural breaks improves forecasting performance compared
to using the full sample and modelling structural breaks. This implies that the
potential benefits of having more data from using the full sample are generally
outweighed by being able to avoid modelling structural breaks (even at the cost

of a reduced sample for estimation).

(iii) The quick EViews 9 automatic ARIMA model selection procedure is sometimes
favoured over the time-consuming Box-Jenkins ARIMA model building method
(that requires modelling skill). This is especially the case for the BRICS countries
that have a history of moderate inflation. This suggests that automatic selection
methods not only have the benefit of saving time they can also produce superior

forecasts.

(iv) Utilising the Bai and Perron (2003a and 2003b) test to identify any structural
breaks within the ARIMAX modelling context to model inflation is a novelty of

our work.
(v) Building ARIMA models to seasonally adjusted data and re-seasonalising the
forecasts often yields superior forecasting performance than constructing

seasonal ARIMA models to unadjusted series.
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(vi) The results from the threshold autoregressive models (TAR model) provides
empirical evidence for multiple regimes for inflation in the selected economies.
However, our studies revealed that the forecasts from the TAR models were
considerably less accurate than the best selected ARIMA specification (EView
automatic selection procedure) in all selected countries except in China (all
forecasting horizons), Nigeria (over 1 to 4-step ahead horizons) and Saudi Arabia
(over 1 to 3 steps ahead horizons). In general, our study provides evidence that
modelling of breaks or incorporation of the model that accounts for two or more
regimes shifts contributes to improved forecast performance of inflation in few
countries.

(vii) Generally, the multivariate models that include the oil price as
endogenous appears to secure better forecasting performance than those that
include the oil price as exogenous for BRICS and OPEC countries, except for
Algeria over all forecasting horizons, Brazil over 1 to 6-steps, Russia over 5 to 6-
steps ahead and over 1 to 2-step for South Africa and Nigeria. The exogenous
impact of the oil price for few countries implies that inflation may not always be
determined by the global effect of the oil price. This may be because of the
recent impact of the oil price reductions on inflation.'® Further, new technology
development may have helped many of these countries to reduce the cost of
producing oil. This may also be because many of these countries have embarked
on different economic policies to diversify their economies from predominantly
oil producing states to manufacturing economies. We note that unemployment,
money supply, exchange rate, oil price and the interest rate have the highest
theoretical consistency rating at 100%, 85%, 75%, 33.3% and 16.6% respectively
for OPEC and BRICS countries. For example, an increase in money supply will
cause a significant increase in inflation in all countries except China.'” Further, a
rise in unemployment decreases inflation in Brazil and an increase in the

exchange rate will raise inflation in Russia, China, South Africa, Nigeria, and

16 Since 2008, the oil price has traded below $120 per barrel and reached a 12-years low of $27 in
January 2016. There is a link between low oil price and economic growth. For instance, low oil prices
reduce the cost of production and encourage producers to increase their output.

71n general, our study concludes that money supply remains the most effective monetary policy to
control inflation in OPEC and selected BRICS countries.
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Algeria (see Table 7.1.F2 and 7.1.H2). In contrast, the interest rate has the lowest
consistency rating at 16.6% across the countries.'® This may be because the use
of the interest rate to control inflation is limited in OPEC countries and most of
the oil exporting nations. This is due to reasons of religion, social beliefs, the
usury activities of financial institutions and the sovereignty of many of these
countries that independently regulate their financial institutions. This result
contrasts with the findings of Hendry (2001) who indicates that the short-long
interest-rate spread is an important determinant of inflation in Uk but consistent
with the findings of Al-Shammari and Al-Sabaey (2012) who suggest that the
interest rate does not significantly affect the general price level for 59 developing

countries.

(viii) The VEC specifications often outperform VECMs in terms of forecasting
accuracy of the inflation and the oil price. This means that the incorporation of
long-run information in the form of specifying a single cointegrating equation is
generally beneficial in terms of securing superior forecasting performance. This
result is consistent with Timothy and Thomas (1998) who claimed that forecasts
are most likely to be improved by applying error-correction techniques if the

data strongly supports the cointegration hypothesis.

(ix) The application of the two stability tests (the CUSUM and Bai Perron tests) show
that stability of the model can enhance the forecasting performance of inflation.
For OPEC countries, the VECM specifications are stable and produce the best
forecasts results over all horizons for Saudi Arabia. The VAR model that includes
all variables as endogenous except unemployment is stable and produces the
best forecast results for Algeria, and the VAR models that specified oil price as
exogenous and includes all other variables as endogenous except
unemployment is stable and favoured for Nigeria. In contrast, all the favoured
forecasting multivariate models for BRICS countries are not stable. The forecast
performance of the favoured forecasting models that are not stable is consistent

with the study of (Stock and Watson, 2003, and Rossi (2012)) who argued that

18 Note that the interest rate variable is not available in Saudi Arabia.
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(x)

instability of the theoretical model can be misleading for out-of-sample
forecasting. This may also be because our forecasting comparison is based on
out-of-sample forecast instead of the in-sample comparison. Rossi (2012)
documents that out-of-sample forecasts comparison are robust to model
instabilities because their procedures can minimize the effect of structural
breaks on forecasting model. In particular, they re-estimate their parameters

over time by either rolling or recursive estimation process.

When comparing forecast performance of the benchmark model (naive) with the
best selecting univariate model regime shift TAR model, (Eview automatic ARIMA
selection) and multivariate models (VAR, VECM and VEC). Our study shows that
the benchmark models (naive) were never favoured over the best selected
univariate and multivariate model. The univariate EView’s automatic non-
seasonal ARIMA model is generally favoured for the BRICS countries. However,
the results are mixed between univariate and multivariate methods for OPEC
countries. For OPEC countries that have a history of moderate inflation, for
example, Saudi Arabia, the univariate automatic non-seasonal ARIMA model
generally performs better than the multivariate model. In contrast, multivariate
models generally outperform univariate automatically selected ARIMA models

for countries with high inflation (e.g Angola and Algeria).
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CHAPTER 2
THEORIES OF INFLATION DETERMINATION AND CENTRAL BANK POLICIES
TO CONTROL INFLATION

2.0. Introduction.

This chapter discusses the various theoretical models that are commonly used to model
and forecast inflation and considers the policies implemented by the central bank to
control inflation for BRICS and OPEC countries. This chapter demonstrates that most of
the policies implemented by the central bank to regulate inflation focus on the interest
rate (for example, via Inflation targeting and Taylor rules as well as through the exchange
rate). According to the Taylor rule, the central bank assumes inflation and the interest
rate are directly related, especially in the short term. When inflation is above the target
rate, the central bank will increase the interest rate to reduce inflation and if inflation is
below the target rate, the central bank will decrease the interest rate to raise the rate
of inflation (Taylor 2008). For the exchange rate, the government may allow the value
of the domestic currency to be fixed at the value of a selected foreign currency to control
inflation. In particular, if the government experiences a balance of payments deficit. The
central bank may be tempted to reduce capital outflows to improve the balance of
payments. In this case, the central bank may decide to increase the interest rate to
technically increase the cost of borrowing to discourage people from borrowing and
decrease consumer spending. However, the use of the interest rate to control inflation
is limited in OPEC countries and most of the oil exporting nations. This is due to reasons
of religion, social beliefs, the usury activities of financial institutions and the sovereignty

of many of these countries that independently regulate their financial institutions.
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2.1 The theory of inflation (Phillips curve)

The Phillips curve theory relates the unemployment rate or aggregate economic activity
to the rate of inflation. The theory described the relationship between unemployment
and wage inflation to be an inverse relation (William Phillips, 1958).1° In other words,
low levels of unemployment could be achieved at a high level of inflation, and a high
unemployment rate that is achieved at a low inflation rate. In the principle of the Phillips
curve, when demand for labour is increasing, unemployment will be decreasing and
employers are expected to increase the wages of the workers to attract the best labour
from the labour force. Therefore, an increase in wages will increase the cost of
production.

Later, economists substituted price inflation for wage inflation to follow a
contemporary relationship between output and demand.?’ Price inflation assumes
inflation is caused by excess supply capacity. That is, an increase in output will cause
inflation to increase. Specifically, when output is above potential demand there is
upward pressure on inflation. However, when output is below potential, this exerts a
negative influence or downward pressure on the inflation rate. Consequently, an
increase in economic production (economic activity) will increase the demand for labour
and decrease the unemployment rate. While a decrease in economic activity will
increase the unemployment rate. The effect of the Phillips curve is that employers will
employ more labour during the period of economic growth than a period of economic
recession. The original Phillips curve is referred to as a short term Phillips curve or
expectation augmented Phillips curve.

In practise, an inverse relationship between inflation and unemployment may
contradict the macroeconomic objectives of simultaneously achieving full employment
and the lowest possible inflation rate.?! Friedman (1968) argued that the government

could not permanently trade higher inflation for lower unemployment and

19 Phillips investigates the annual relationship between wage inflation and the unemployment rate in

the United Kingdom between the period 1860 and 1957, by plotting a scatter graph.

20 The source of disagreement between the wages inflation and price inflation are: The wages inflation
assumes that; the cost of labour will adjust prices. While the price inflation assumed that, prices are
sticky and firms’ activities or output will adjust the prices.

21 The outbreak of stagflation in many countries resulted in the simultaneous occurrence of high levels
of inflation and high levels of unemployment.
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differentiated between short—run and long—run Phillips curves. He further stated that
the inverse relationship between unemployment and inflation was only a short-run
phenomenon; and if the government targeted the natural rate of unemployment and
allowed real wages to respond to the demand and supply of labour, there would be no
trade-off between inflation and unemployment.?? Accordingly, if unemployment is
below the “natural rate” there will be an increase in the excess demand for wages and
costs of production will be increased and so will inflation. Due to the higher inflation,
the real wages that the workers receive will be decreased; purchasing power will be
reduced to allow the unemployment rate to return to the natural rate. The condition is
that, if the worker realised that inflation has increased more than expected, the real
wages have been reduced, and their real purchasing power have been diminished. The
worker will agitate for more wages to increase their real purchasing power; the rise in
wages will increase the cost of labour and decrease the output profits. As the profit
decreased, some workers will be let go to increase the rate of unemployment.?3
Consequently, the natural rate of unemployment can be described as an
equilibrium rate of unemployment i.e. where the supply of labour is equal to demand of
labour — this is also known as the natural stability rate.?* Nevertheless, this theory has
two important contributions to the modern-day economy. Firstly, the theory specifies
that there is a minimum level of unemployment that the economy can absorb in the
long run. Therefore, it could be difficult for any nation to push unemployment below the
natural rate for a long period without an upward spiral of wage and price inflation that

brings unemployment back to the natural rate. Secondly, the natural rate has made it

22 The classical economists argue that the long run Phillips curve is vertical and unemployment will
always return to its natural rate. This type of Phillips curve can be also described as the non-accelerating
rate of unemployment (NAIRU). That is, the level of unemployment that exists in an economy that does
not cause inflation to increase.

3 This also illustrates how the theory of adaptive expectations forecasts operate, that is, there are no
long run trade-offs between unemployment and inflation. In the short run, it is possible to lower
unemployment at the cost of higher inflation, but, eventually, worker expectations will catch up, and the
economy will correct itself to the natural rate of unemployment with higher inflation. However, rational
expectations theory predicts that expectation of the worker to catch up and the economy correcting
itself to the natural rate of unemployment with higher inflation will undermine the effort of the rational
workers. Because, the workers could act rationally to protect their interests. This especially cancels out
any intending economic policy that could increase unemployment and increase inflation.

2 There are several factors that determine the natural rate of employment: employment insurance,
availability of unemployment benefits and the desire and ability of the unemployed to search for a job.
For example, if unemployment benefits are high enough to cater for unemployed person, this may
discourage unemployed person to work or take available jobs.
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possible for many nations to handle the short run Phillips curve and allow the temporary
combination of low inflation and low unemployment rate. Also, Atkeson and Ohanian
(2000) initiated an argument on the stability of the Phillips curve. They examined
whether the statistical relationship between unemployment and inflation is stable over
time. They found that the relationship between unemployment and inflation is not
stable. They suggest that the relationship between the current unemployment rate and
future inflation varies and changes with inflation expectations. Since the theory suggests
that expectations about inflation may affect the current unemployment rate. Our views
support the notion that future inflation forecasts based on the Phillips curve may be
influenced by the economic environment or change as the economic environment

changes. 2

% In our study, we do not produce direct forecasts for the Phillips curve; instead, we explore the
performance of two major indicators of the Phillips curve (unemployment and the output gap) and

other selected macroeconomic variables by means of multivariate models to forecast inflation.
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2.2 Quantity Theory of money

The quantity theory of money explains the relationship between the money supply,
money demand, velocity of money and the real general price level of transactions. The
theory defines money supply as the total monetary assets available in the economy at a
particular period. Monetarists believe that an increase in the money supply will increase
the price and increase inflation as well as reduce the value of money in circulation.

In practise, the reality of how money is created and supplied today is slightly
different from the description of the traditional economy. Most of the money in
circulation is supplied, not by direct printing of the money by the central bank alone, but
by the commercial bank’s activities. The commercial banks create money whenever they
lend to someone in the economy or buy an asset from consumers. The central bank does
not directly control the quantity of money in circulation. Nevertheless, the authority is
still able to influence the amount of money in the economy. It does so in normal times
by setting monetary policy — through the interest rate that it pays on reserves held by
commercial banks. For example, the government often supplies money through
commercial banks by making loans. In this case, commercial banks receive deposits from
households and the deposit is lent out to the customer inform of loan by the bank to
charge interest. As a result, commercial banks simultaneously accept deposits and

create new money.

In addition, the loan given out by the commercial bank does not usually come by
giving borrowers thousands of pounds’ worth of banknotes. Instead, its credit in their
bank account with a bank deposit of the actual value.?® To ensure that money supplied
by commercial banks are consistent and conforms to stable inflation the Central Bank
usually sets the interest rate on the commercial bank reserve deposits or central bank
deposit. Central bank can also buy government securities, assets, or quantitative easing

(QE). ¥’ The quantitative easing is an unconventional monetary policy adopted by a

26 However, commercial Banks are limited in how much they can lend if they are to remain profitable in
a competitive banking system.

27 QE policy is usually implemented when interest rates are almost at zero; in this case, central banks
need to adopt different tactics - such as pumping money directly into the economy. On other hand,
central banks could also swap their bank reserves into currency, which would pay a higher interest rate
to commercial bank.
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central bank to stimulate economic activity, such as increasing consumer spending. The
policy aims to purchase government securities or other securities with money it has
"printed" - or created electronically. In general, the relationship between deposits and
loans and the relationship between reserves and loans given by commercial banks are
typically controlled and regulated by the central bank. The central banks decide how
much to lend the commercial bank, which depends on the profitable lending
opportunities available to them and the interest rate set by central banks. In addition,
any decision made by a commercial bank to give out a loan will also influence how the
central bank will set interest rates for banking reserve ratio (to meet withdrawals by the

public and meet regulatory liquidity requirements).

Traditionally, the quantity of money equation can be stated as follow:

MtVt =Pth 20

Where Y; is the level of output (real GDP) in period t, P, is the general price level, M; is
the stock of money/money supply and V; is the velocity of money (the rate at which

money passes from hand to hand).
To generate an inflation equation from the quantity demand for money

We rewrite the equation (2.0) as:

Pt = M;Vt 2.1
t

We take natural logarithms of equation (2.1)

ptzmt+vt'yt 2.2

We make v; the subject of the formula.

Ve =Y + De- My 2.3
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We followed the approached of Hallman et al. (1991) and write p; in the form of p;*,

where p,*denotes the long run price equilibrium.
P =my v -y, 24

We avoid the long-run money supply (m,*) and estimate the price gap by subtracting

equation (2.4) from (2.2)?8

Therefore: p*-pr =v" -V + Y - V¢

P -Pe= W - v )+ (Ve -yeT) 2.5
We substitute the equation (2.3) in the equation (2.5)

P - Pe =V - (Ve +pe - me) + (e -ye)

P D=V P Vet Me + Ve Ve

Dt -De= V- P Vet Ve My - Yy

Pt -pe= (M +v"-pe) - ¥ 2.6

Where (y, -y;* ) represents the output gap, (p; - p¢) denotes the price gap and (v, - v;)
stands for the liquidity gap. In equation (2.5), the price gap is directly proportional to
output y; and inversely related to velocity v;. Hence, the price gap is expected to
increase after the increase in output (y;) above its equilibrium value ( y;*). In equation
(2.6), the price gap is directly proportional to the money supply m;, which serves as an

important factor to determine the rate of the inflation.

28 The money supply is assumed to be controlled in both long run and short run by the monetary
authority
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2.3 Money Demand.

Monetarist economists believe that money is primarily demanded for transactions

purposes (for its use as a medium of exchange, store of value and unit of account). The
demand for real cash ( Mt/Pt)d is typically theorised to be positively related to economic

output (Y;) and negatively related to the real interest rate (R;).

Theoretically, the traditional demand for money equation is;

Mfp= £ O 27

Where M, is the money demand, P, is the general price level, Y; is the income level,
and R; = (RL — RD), where RL is an interest rate that reflects the opportunity cost of

holding money and RD is the interest rate that reflects the yield of the deposit.

M _ + -
Thus, P =f( Rt) 2.8

Transform the equation (2.8) into natural logarithms
me- pr=Ye- (rl —rd),; 2.9
pt=mt-yt+(rl —Td)t 2.10

In this context, the general price level depends on the actual money stock, the
opportunity cost of holding money and real income.?® Similarly, an increase in the
opportunity cost of holding money will increase the general price level and reduce the

public demand for money.

29 This assumes that money demand is equal to money supply.
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2.4 Central Bank characteristics and its monetary policies

A central bank is a financial institution that coordinates the monetary actives of a
country. The role and functions of a central bank are similar from one country to
another. The institution has the power to fix and adjust the interest rate, print money,
set a reserve requirement, purchase and sell government securities and act as a lender
of last resort to commercial banks or any financial institution during a financial crisis. In
addition, the central bank is designed to be independent of any political interference.3°
However, central bank independence has been a major challenge to both developing
and developed countries in managing and coordinating its activities. The International
Monetary Fund (IMF 1996) observed that central bank independence does not influence
inflation performance in industrialized countries (Kumar et al., 2011). Cukierman et al.
(2002) also observed that central bank independence does not control price inflation.
Gutierrez (2003) reveals that countries with higher independence of central banks tend
to have better inflation performance. While Berger et al. (2000) indicate that higher
government independence is related to lower inflation in industrialized countries but

not in developing countries.
2.5 Central Bank and Inflation Targeting

The history of inflation targeting started from New Zealand in 1990, where the
finance minister and the governor of the central bank were jointly set a numerical target
value of inflation, with the aim of stabilizing the inflation rate. The plan was adopted by
many western countries, including the United Kingdom, Canada, Australia, etc. The
policy was later adopted in many developing countries including Brazil, South Africa,
Mexico, Philippines, Chile, and Ghana etc. The numerical value of the target rate usually
ranges from zero to three percent for most developed countries. Theoretically, inflation
and the interest rate are directly related to this policy. When inflation is above the target
rate, the central bank will increase the interest rate to decrease inflation and if inflation

is below the target rate, the central bank will decrease the interest rate to stimulate the

30 If the central bank is independent, the institution will be able to implement its own monetary policy
and achieve its inflation target without government interference. For example: control its own balance
sheet, accountability and transparency,
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economy and increase the rate of inflation.3! Under this system, the central bank’s policy
intentions become transparent and investors know what would happen to interest rates
when inflation is increasing or decreasing. The procedure allows the central bank to
react to inflation shocks and provides proper coordination for inflation expectations.3?
Johan (2012) identified two possible requirements for a country to adopt an inflation
targeting policy. Firstly, central banks should be able to conduct monetary policy with
some degree of independence, policy transparency and accountability. Secondly, the
willingness and ability of the central bank to not simultaneously target other indicators,

such higher wages, higher employment, or the exchange rate stability. 33

Consequently, the policy has been more effective than other alternative
monetary policies to regulate inflation in developing countries.3* The performance of
macroeconomic variables have improved under this policy (Johan, 2012, Johnson, 1990
and Batini et al. 2006). However, inflation targeting could be difficult to implement in
developing countries when compared to developed countries. Firstly, the rates of
inflation in developing countries are relatively high and difficult to calculate. Secondly,
the large exchange rate movements because of high levels of imports may have adverse
effects on inflation. Thirdly, the poor co-ordination of financial institutions and political
instabilities in many of these countries may not guarantee the independence of the

central bank.

31 |ncrease in an interest rate will reduce supply of money by increasing the cost of borrowing,
discouraging consumers from borrowing and spending, attracting more saving, reducing the disposable
income of those with mortgages and increase the value of the exchange rate.

32 Batini and Laxton (2006) identified various advantages of inflation targeting, evidence reveals that

interest rates and exchange rates are less volatile, and the risk of currency crises is smaller under this
monetary policy.

33 The condition is that central banks may be inefficient if the authority is pursuing multiple goals, such
as low inflation and low unemployment, with only one basic instrument.
34 Rio de Janeiro (2006) studies the Brazilian experience with inflation targeting between 1999 and

2006. The evidence revealed that inflation targeting policy was successful in reducing inflation in Brazil.
However, the policy was affected by the crises caused by an increase in global risk aversion between
2001 and 2002.

Roger (2010) examines performance of inflation targeting for the 26 countries that adopted inflation
targeting policy since 1991. He graphically compares the inflation and output performance in these
countries with non-inflation-targeting countries over the same period. The evidence revealed that those
countries that adopted inflation targeting experienced a larger reduction in inflation volatilities and
growing macroeconomic output compared with non-inflation targeting countries.
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The lists of 28 countries that have been using inflation targeting policy since 1990 are
given in the table below (2.1). Finland, the Slovak Republic and Spain adopted the policy

but abandoned it when they started using the euro as their national currency.

35 Note that all the Euro member countries are subject to European wide inflation targeting policy.
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Table 2.1 Countries that have adopted inflation targeting policy

Inflation rate at

Targeted inflation rate (%)

Inflation- Adoption date (%)

targeting
Country adoption

date
New Zealand 1990 3.30 1-3
Canada 1991 6.90 2+/-1
United Kingdom 1992 4.00 2
Australia 1993 2.00 2-3
Sweden 1993 1.80 2
Czech Republic 1997 6.80 3+/-1
Israel 1997 8.10 2+/-1
Poland 1998 10.60 2.54/-1
Brazil 1999 3.30 45+/-1
Chile 1999 3.20 3+/-1
Colombia 1999 9.30 2-4
South Africa 2000 2.60 3-6
Thailand 2000 0.80 05-3
Hungary 2001 10.80 3+/-1
Mexico 2001 9.00 3+/-1
Iceland 2001 4.10 25+/-1.5
Korea 2001 2.90 3+/-1
Norway 2001 3.60 25+/-1
Peru 2002 -0.10 2+/-1
Philippines 2002 4.50 4+/-1
Guatemala 2005 9.20 5+/-1
Indonesia 2005 7.40 5+/-1
Romania 2005 9.30 3+/-1
Serbia 2006 10.80 4-8
Turkey 2006 7.70 55+/-2
Armenia 2006 5.20 45 +/-1.5
Ghana 2007 10.50 8.5+/-2
Albania 2009 3.70 3+/-1

Source: International Monetary Fund (IMF) staff publications (Batini et al. 2006 and Johan,

2012)

Empirically, various literatures have shown that the existence inflation targeting has
reduced inflation, output shocks and interest rate volatilities (Bernanke et al. 1999;
Kamil, 2012; Goncalves and Salles, 2008 and Sikklos, 1999). Others argue that inflation
targeting has no effect in reducing inflation, and if it does, the policy only contributes
very little to lower inflation and variability (Honda, 2000; Byrne, 2012; Ye Haichun, 2007;
George, 2009; Angeriz and Arestis, 2006; Johnson, 2002; Ball and Sheridan, 2003).
Hence, the success of inflation targeting may be difficult to measure in both developing

and developed countries because many of the developed countries that had adopted
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inflation targeting had a history of stable and low inflation before the introduction of
this policy (for example, New Zealand, Canada and United Kingdom). Therefore, they did
not observe recent low inflation as evidence of the success of inflation targeting because
inflation also falls in many non-inflations targeting countries (for example, Japan and

USA).
2.6 Central Banks and Taylor rules

A Taylor rule can be described as a monetary-policy that defines the rate at which the
government should modify the nominal interest rate in response to changes in inflation,
output and other macroeconomic variables. The theory gives a guide on how monetary
rules should be applied to foster price stability, full employment and achieve other
macroeconomic goals. Practically, the central bank will increase interest rates when
inflationary pressures appear to be increased and lower interest rates when inflationary
pressures are declined. Following Taylor (1993), the below equation is postulated to be

used by central banks:®

iy =T +1¢ +ag (M — 0°) + ay, (Ve — Ve) 2.11

In this equation, i; is the target short-term nominal interest rate (e.g. the federal funds
rate), m; is the rate of inflation, m;* is the inflation target, 1" is the assumed
equilibrium real interest rate, y; is the logarithm of real GDP, and y; is the logarithm of
potential output as determined by the output gap. In addition, a, and a,, are proposed
to be positive (as a rule of thumb) and they were set to be a,= a,, = 0.5 (Nikolsko and

Papell, 2012).

To what rate do we need to change the nominal interest rate? According to the Taylor
rule, the central bank should raise the nominal interest rate for the short-term, if
inflation rises above its desired level or if the output is above potential output, i.e., a, >
0. Thus, an increase in inflation by 1% should prompt the central bank to increase the
nominal interest rate by more than one percentage point (i.e by 1 +a, ). If inflation rises

by say 1 percentage point, the central bank should increase the interest rate by 1.5

36 The equation is available in Taylor (1993) page 202 and expand by (Nikolsko — Rzhevskyy and
Papell,2012)
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percentage points (Taylor 2008). He added that the interest rate does not always need
to be exactly 1.5%, but it is essential to increase the interest rate by more than 1% if
inflation increased by 1% to bring inflation down. If GDP starts to fall or inflation is
reduced, say by one percentage point, the rule says that the interest rate should be

reduced by 0.5 percentage points (Taylor 2008).
2.7 Central Bank and Exchange Rates

An exchange rate is a rate at which the currency of one country is being exchanged for
that of another country or the relative price that indicates the price of one currency in
terms of another currency. There are three types of exchange rate systems: (i) the gold
standard - the process by which countries define its national currencies in term of the
weight of gold. (ll) Fixed exchange rate system- this process by exchange rate value is
determined by the interaction of the government and market forces and (lll) floating
exchange rate - this a process by which a country’s foreign exchange rate is entirely
determined by supply and demand market forces without visible government
intervention. Each exchange rate system has different advantages and implications for

the conduct of the monetary policy.
2.8 The fixed exchange rate system

A fixed exchange rate, sometimes called a pegged exchange rate, is a process by which
government interventions and market forces interact to determine the level of
exchange rates. The procedure allows the value of the domestic currency to be fixed at
the value of a selected foreign currency. The policy encourages cross-border trade
investment, promotes sound macroeconomic policies, reduces uncertainty in
transactions costs and controls inflation. However, a fixed exchange rate may limit the
government from using other domestic monetary policy to achieve macroeconomic
stability.?” In addition, the lack of credibility may be more destructive under fixed
exchange rates than under flexible rates because countries with fixed exchange rates
are prone to currency speculation crises (Toulaboe and Terry, 2013 and Guisinger and

Andrew, 2010).

$7Under the fixed exchange rates, the domestic money stock is under the full control of monetary
authorities, which means they may help the country to overcome external shocks, such as an unusual
inflow of capital but have little influence on domestic shocks.
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2.9 The regulation of inflation under the fixed exchange rate regime

When a government experiences a balance of payments deficit, the government usually
increases the tax to generate more revenue. Sometimes, governments increase interest
rates to mobilise savings from the public. In this regard, an increase in tax, to generate
additional revenue, may have extensive implications on economic growth; i.e.
technically, increase in government corporate tax will increase the firm’s cost of
production and decreases the consumers saving and income.3® In avoidance of this
impact, the government may decide to obtain a bond from the central bank. In the
process, the central bank will create a bond by printing new money. The printing of the
new currency will increase the domestic money supply, reduce short-term interest rates
and increase the supply of domestic currency in the foreign exchange market that will
likely cause a temporary balance of payments surplus. As a result, the increase in money
supply in the foreign exchange market will depreciate the relative value of the domestic
currency and keep inflation high if domestic growth does not increase to keep up with
the increase in the money supply. To keep the rate of inflation low and prevent further
depreciation of the domestic currency under this regime, the increase in the money
supply by the domestic investors to the foreign exchange market will be moderated by
a government. In this case, the central bank will avoid excess supply of domestic
currency by operating a balance of payments deficit where the deficit will be allowed to

soak up the excess money created through the printing of additional money.

Specifically, the fixed exchange rate has been used to control inflation and its
impact on inflation has been compared with the impact of flexible exchange rates on
inflation. For example, Corckett and Goldstein (1976) reported that flexible exchange
rates generate more uncertainty than fixed exchange rates. Bleaney (1999) found that
a fixed exchange rate is 10 percent less inflationary than a flexible exchange rate regime.
Bleaney and Fielding, 2002; Ghosh et al. 2002; McKinnon and Schnabl, 2004 and Bleaney
and Francisco, 2005 observed that exchange rate rigidity reduces inflation. Toulaboe
and Terry (2013) argue that fixed exchange rates are less inflationary and the anti-
inflationary benefit is heavily dependent on the monetary stability and credibility of the

regime, which needs to be carefully built in a stable economy. Kiguel (2002) expressed

38 poulson and Kaplan (2008) explore the impact of tax policy on economic growth. The analysis
supports the hypothesis that higher marginal tax reduces the rate economic growth.
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that fixed exchange policy implemented in Argentina in the 1990s reduced the rate of
inflation, improved the efficiency of privatization, reduced unemployment and
increased GDP in Argentia during the period. Domac and Soledad (2000) argue that a
fixed exchange regime minimizes the possibility of a banking crisis in developed
countries. Calvo and Mishkin (2003) argue that strong institutions are the best
mechanism to achieve macroeconomic success than any exchange rate regime. Jackson
and Miles (2008) found that institutional quality and exchange rates reduce the rate of

inflation.
2.10 The exchange rate policy in Oil exporting countries

Many of the OPEC countries derive their revenue from oil production; to sustain this
revenue, many of these countries have obligations to minimize the cost of production.
Consequently, the choice of exchange rate regime is crucial to both oil importing and oil
exporting nations because the selection of the appropriate exchange rate regime could
guarantee oil price stability and macroeconomic stabilities.?® Keeping the exchange rate
stable, the governments of many of these countries have played various significant roles
in the establishment of oil reserves and controlling foreign transactions. In particular,
many of the oil importing and oil exporting countries have been avoiding operating
flexible exchange rates and focus on fixed exchange rates because of the vulnerability
of the global oil price.*® For example, in 1973, Iraq and Libya pegged their currencies to
the US dollar. In 1975, the Kuwait central bank adopted an exchange rate policy pegging
the Kuwait dinar to the average weight of currencies of its major suppliers (i.e., United
States, Europe and Japan).*! Since 1975, Qatar, Saudi Arabia and the United Arab

Emirates have pegged their exchange rate to the SDR (Special Drawing Rights) to boost

3% One country’s export is another country’s import. Increase in oil price of an exporting country will
affect the price level of oil importing nation.
40 The condition is that, exchange rates are influenced by supply and demand of goods and services
through the import and export. If the price of oil reduces in the international market, the export and the
revenue of oil exporting countries may be reduced to devalue currency of the oil exporting nations
against value of the currency of oil importing countries. On the other hand, if the price of oil increase in
international market, the revenue of oil exporting countries will be increased to increase the value of
the currency of the oil exporting countries and decrease the value of the oil importing country’s
currency.
“1 The process is called international currency basket - the value of Kuwait currency was used to set the
market value of other countries. In this case, the value of the Kuwait currency was used to construct a
currency basket of 40% Euro, 25% British pounds and 35% of the US dollars. The currency basket is a
mutual way used to peg a currency without overexposing it to the fluctuations of a single currency.
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the confidence and stability of their local currency. Ecuador and Gabon pegged their

currencies to the US Dollar and French franc, respectively (see Amuzegar, 1983). The list

of BRICS and OPEC countries with fixed exchange rates and the year of adoptions are

stated below:

Table 2.2 OPEC countries with fixed exchange rate

Country The Pagged | Domestic Date
Currency currency
Brazil US dollar Brazilian Real 1967 to 1990
Ecuador Us dollar Abandon its local | Dollarization since 2000 to
currency present

Libya UsS dollar Dinar 1973-1986
Saudi Arabia US dollar Riyal 2003 to present
Venezuela US dollar Bolivar 2013 to present
Qatar US dollar Riyal 2001 to present
United Arab | USdolar Dirham 1997 to present
Emirates

Kuwaiti US dollar Dinar 2003 till 2007 and later replaced

with basket currency
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2.11 Central Bank and Fiscal Policy

Fiscal policy involves the use of budget and taxation by governments to stabilise the
economy and allocate resources. A budget reflects government planned expenditure in
a period and a source of the revenue that will be used to finance the budget. The Budget
can be classified into three categories: surplus, deficits and a balanced budget. When
the government is running a budget deficit; it means that total government expenditure
exceeds its income for a particular period. On the other hand, a budget surplus occurs
when all taxes and other government revenues exceed government expenditures. The
balanced budget equates the cost and revenue together. Traditionally, when a
government is experiencing a budget deficit, the central bank will either print money or
borrow from the public to pay the debt and finance government activities. However, the
printing of excess money by central banks could cause inflation and have a direct
consequence on economic growth. To avoid this economic consequence, the
government could use fiscal policy to regulate the economy. The fiscal policy uses tax to
mobilise savings, promote investment and reduce income inequality. For example, if the
economic system is threatened with higher inflation; the government may decide to
increase income tax, reduce expenditure and reduce the money supply. In this regard,
personal income will be reduced, and individual expenditure will also reduce and
decrease the aggregate demand for goods and services. However, the direct use of the
tax to regulate inflation in developing countries may not be efficient; because it is
generally accepted that the developing countries have less efficient tax collection,
limited access to external borrowing and political instability (Catao and Terrones, 2005).
Tariq et al. (2014) documented that the costs of imposing a tax in many developing
countries are high and its effects may harm the living standards and purchasing power
of the society.

Furthermore, the relationship between the tax increase and inflation are subject
to an academic debate. Researchers have not provided reliable statistical evidence that
supports the positive relationship between tax and inflation. For example, recent studies
show a positive relationship between the fiscal deficit and inflation in developing
countries (Domac and Yucel 2004; Catao and Terrones, 2005; Chukwu, 2013; Tariq et al.
2014). While Haan and Zelhorst (1990) do not provide support for the hypothesis that

deficits influence money growth but give evidence of a positive relationship between
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budget deficits and inflation during high inflation periods. Lin and Chu, (2013) added
that the fiscal deficit is strongly related to inflation in high inflation economies and a
weak impact on inflation in low inflation economies. Komulainen and Pirttila (2002)
show that fiscal deficits increased inflation. While John, 1998; Tekin-Koru and Ozmen,
2003 argue that there was no evidence of a direct relationship between inflation and

the budget deficit.
2.12 Interest rates and monetary regulation in OPEC countries

Monetary policy affects economic activities by providing liquidity and credit to the
domestic market. The decision to regulate money and inject credit into the economy
depends on government initiatives. Governments inject money through public
expenditure under the exclusive control of the central bank. In most cases, Central bank
uses the interest rate, money supply and the minimum reserve ratio to control inflation.
However, the use of the interest rate to control inflation is limited in OPEC countries and
most of the oil exporting nations. This is due to reasons of religion, social beliefs, the
usury activities of financial institutions and the sovereignty of many of these countries
that independently regulate their financial institutions. In many of these countries,
religious beliefs are against financial institutions charging interest and when interest
rates are charged, they were charged at unreasonably high price to encourage saving.
For instance, Islamic law forbids the use of interest as an instrument of monetary policy
in Saudi Arabia. In Nigeria, interest rates have not played a significant role in monetary
policy due to low incomes. Instead, they use credit control of private firms, statutory
reserve requirements and moral suasion as alternative methods to control inflation and
regulate monetary policy. For example, in early 1970 before the rise in the price of oail,
the annual growth rates in money supply in most of the oil exporting countries were low
and estimated at 20% (see: Amuzega, 1983 pg. 49). Following the rise in the oil price;
most of the oil exporting countries experienced a rapid increase in domestic liquidity as
a result of government expansion in expenditure into the private sectors and the
establishment of development banking institutions (see: Amuzega, 1983 pg. 49).
Similarly, Algeria established a Development Bank to finance private company
investment and supervised the operation of many of the private companies. Iraq created

several credit institutions to give loans to private institutions at very low-interest rates.
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Nigeria and Venezuela established financial institutions and channelled their credit

resources into the agriculture and industrial sectors.*?

2.13. Chapter summary

In this chapter, we have discussed the various theoretical models that are commonly
used to model and forecast inflation and considers the policies implemented by the
central bank to control inflation for BRICS and OPEC countries. This chapter
demonstrates that most of the policies implemented by the central bank to regulate
inflation focus more on the interest rate (for example, via Inflation targeting and Taylor
rules as well as through the exchange rate). According to the Taylor rule, the central
bank assumes inflation and the interest rate are directly related, especially in the short
term. When inflation is above the target rate, the central bank will increase the interest
rate to reduce inflation and, if inflation is below the target rate, the central bank will
decrease the interest rate to raise the rate of inflation (Taylor 2008). For the exchange
rate, the government may allow the value of the domestic currency to be fixed at the
value of a selected foreign currency to control inflation. In particular, if the government
experiences a balance of payments deficit the central bank may be tempted to reduce
capital outflows to improve the balance of payments. In this case, the central bank may
decide to increase the interest rate to technically increase the cost of borrowing to
discourage people from borrowing and decrease consumer spending. However, the use
of the interest rate to control inflation is limited in OPEC countries and most of the oil
exporting nations. This is due to reasons of religion, social beliefs, the usury activities of
financial institutions and the sovereignty of many of these countries that independently
regulate their financial institutions. Instead, central bank use credit control of private
firms, statutory reserve requirements and moral suasion as alternative methods to
control inflation and regulate monetary policy. The main conclusion of this chapter is
that the injection of liquidity into the private sector and direct price control remain the
most effective monetary policies to control inflation in many developing countries that

include OPEC countries.

42 |n summary, injection of liquidity in to private sector and direct price control remain the most
effective monetary policies to control inflation in many OPEC countries.
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CHAPTER 3

EMPIRICAL LITERATURE REVIEW

3.0 Introduction

This chapter is divided into two sections. The first section discusses the various factors
that have been considered as determinants of inflation for both developed and
developing countries. While the second section analyses the empirical literature on
inflation forecasting models. This literature suggests a growing consensus that economic
relationships change in different inflation environments. The factors that determine
inflation in developed countries may be different from the factors that determine
inflation in developing countries (that have different economic environments to
developed nations). For instance, inflation in many developing countries is high and
mostly caused by the external influence of import prices, the foreign interest rate and
the exchange rate (Frisch 1977, Dhakal and Kandil 1993, Boujelbene and Thouraya 2010
Ciccarelli and Mojon, 2010). While money growth, financial assets and interest rate
determine the rate of inflation in developed countries (Tillmann, 2008 Cologni and
Manera, 2008).** Further, oil shocks have direct influences on inflation for both
developed and developing countries. For example, oil price shocks affect import prices
through international trade, exchange rates, production cost, and an increase or
decrease in government expenditure (Bloch et al.2006a, LeBlance and Chinn, 2004,
Aljebrin 2006 and Mandal et al.2012). Empirical literature on inflation forecasting
suggests the following: (i) theoretical model most especially Phillips curve, are more
accurate to forecast inflation when the economy is weak most especially during the
economic crises when compared with the univariate ARIMA model (Pretorious and
Rensburg 1996, Dotsey et al. 2011 and Buelens, 2012). (ii) ARIMA models outperform
other multivariate models (Phillips curve and VAR) during periods of stable and low

inflation (Pretorious and Rensburg,1996; Mitra and Rashed, 1996; Nadal — De Simone,

43 This section is important to our study because BRICS and OPEC countries have mixed characteristics of
both developed and developing economies and we believe knowing various factors that determine
inflation in different economic enviroments will improve our models’ forecasting performance.
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2000 and Dotsey et al. 2011). (iii) When comparing the forecast performance of three
and five quarters ahead, the VAR and VECM specifications perform better than the naive
model (Onder, 2004). When comparing VAR models with VEC models, the VEC models
outperform the VAR models over the longer horizon (Fanchon and Wendel, 1999). (iv)
The model that account for stochastic volatility and time varying coefficients (e.g
Markov switching models, Dynamic stochastic general equilibrium modelling, Self-
exciting TAR models) provide more accurate forecast than those models that do not
(D’Agostino et al. (2013), Barnett et al. (2014), Bel and Paap, (2016), Cross and Poon
(2016) and Mandalinci, (2017)). (Vi) The literature also reveals that the forecast
combination by means of several weights leads to a reduction in forecast error

compared to an individual model (Bjornland et al.2008 and Ogunc et al.2013).

3.1. The empirical literature on determinants of inflation for developed

and developing countries

Over the years, different policies that include targeting inflation, fiscal policy and pegged
exchange rate have been implemented to regulate inflation in both developed and
developing countries. Many of these policies have been effective to control inflation in
many countries at different periods.** In contrast, many of these policies may not be
effective to control inflation for developing countries that have a history of high
inflation. As a result, it is important for policymakers to know the sources of inflation in
many of these countries to address the reasons why many of these policies have not

been effective to regulate inflation.

44 Rio de Janeiro (2006) studies the Brazilian experience with inflation targeting between 1999 and 2006.
The evidence revealed that inflation targeting policy was successful in reducing inflation in Brazil. Domac
and Soledad (2000) argue that a fixed exchange regime reduces the possibility of a banking crisis in
developing countries, while Levy-Yeyati (2002) found evidence that countries with more flexible
exchange rate regimes tend to grow faster.
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3.2 Literature Review on determinants of inflation

Over the past few decades, different studies have investigated the determinants of
inflation across countries. The variables that are reportedly taken by researchers to be
the determinants of inflation in many of these countries include: depreciation of the
exchange rate, import inflation, government borrowing, money supply, interest rate,
output gap, wages, crude oil price, fiscal deficit and Gross domestic product (GDP). Kia
(2006) classified many of these variables into two factors: internal and external factors.
The external factors are activities from other countries that cause inflation to increase.
These factors include: the foreign interest rate, import price, trade, economic sanctions
and war. The internal factors are activities within the economic system that causes
inflation to increase or factors that shift the aggregate demand curve toward the right
side.*> For example: the nominal exchange rate, money supply, deficits, and debt

financing.

Similarly, inflation determinants can also be classified under two categories: Monetarist
and Structuralist (Adu George and Marbuah 2011 and Tavakkoli 1996). Monetarists
associated inflation to the monetary causes and suggested monetary measures to
control it. The dominant view is that money supply is exogenous and can only be
controlled by the monetary authority, and the demand for money. In contrast,
structuralists assume that monetary factors are not the only factors that cause inflation
or control it. They pointed out that most measures put forward by the monetarists to
control inflation can only be effective in the short run or offer temporary relief but
increase the inflationary pressures in the long run. The structuralist recognised the
importance of political wills such as tax reforms and drastic cuts in fiscal expenditure
when combating inflation. Consequently, structural factors tend to be treated as a short-
run phenomenon and their effects are closely linked to the cost push inflation (See
Parkin, 1991 pg 9). Empirical literature highlighted that increases in the cost of
production increase the rate of inflation (Gali et al. (2001), LeBlanc and Chinn (2004),
Primiceri (2005), Sims and Zha (2006), and Canova, et al. (2007)). For instance, Gali et al.
(2001) examined the impact of marginal cost, labour productivity and real wages on

inflation in UK, Australia, U.S and other OECD countries between 1970:1 — 1998:1. The

4> This type of inflation is also known as demand pull inflation
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evidence revealed that an increase in real wages generated from union pressures placed
consistent upward pressure on real marginal cost to increase inflation in all considered
countries. Similarly, Wachter’s (1979) result showed that increases in the cost of

agricultural inputs increased the rate of inflation in South American.

According to monetarist theory, money supply is positively linked with inflation. The
empirical studies that are consistent with this theory include: Bairam (1990), Ghura
(1995), Boschi and Girardi (2007), Bonato (2007), Mosayeb and Mohammad (2009),
Korhonen and Mehrotra (2010), Oladipo et al. (2013). For instance, Ghura (1995) stated
that an increase in the money stock increases inflation most especially in the long run.
That is; a one percent increases in the money stock causes inflation to increase by 0.8
percent in 33 sub-Saharan African countries between the period of 1970 — 1987.
Similarly, Bairam (1990) affirms that one percentage point increases in the growth of
domestic money supply leads to a 0.20 point increase in domestic inflation in the UK,
0.24 points in Canada and 0.41 points the US. Luca (2005) and Makin (2017) reveal that
the relationship between money supply and inflation varies over time. In particular, the
rate at which money growth influences inflation during the period of high inflation is
different from the period of low inflation or during the period of stable inflation. For
example, Luca (2005) shows that correlation between inflation and money growth is
weak during the of low inflation of the 1990s (inflation targeting period in the UK) when
compared with the period of high inflation in 1970s. This finding is supported by Makin
et al. (2017) who found the same relationship between money growth and inflation in
Australia during the period of the target and non-targeting inflation.*® In summary, the
conclusion of many of these studies is that money supply determines the rate of inflation
in both high inflation and low inflation period. However, the rate at which money supply
affects inflation varies, the influence of the money supply on inflation during the period
of high inflation is greater than the influence of money supply on inflation during the

period of low inflation.

4 Makin et. al. (2017) document that excess money is the main determinant of the inflation in
Australia's, although excess money growth became less important during the inflation targeting era.
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Regarding interest rates, there is a strong relationship between inflation and interest
rates and monetarists often use interest rates to control inflation. For instance, they
increase the interest rate to reduce inflation and decrease the interest rate to increase
inflation. Empirically, the relationship between interest rate and inflation has been
frequently explored by the Fisher’s hypothesis via cointegration. That is, there is a long-
run relationship between the nominal interest rate and expected inflation. The nominal
interest rate consists of the real rate plus an expected inflation rate. According to the
Fisher’s hypothesis, the real rate is constant over time; therefore, the nominal rate must
change — point-for- point when expected inflation increase or decrease.*’” Different
empirical studies have provided support for the Fisher’s hypothesis (see Fama 1975.,
Fama and Schwert 1977., Granville and Mallick, 2004., Gul and Acikalin,2007., Taker
et.al.2012 and Ozean and Ari ,2015). This implies interest rate has a direct influence on
inflation. In contrast, few studies have argued against the Fisher hypothesis theory (see
Ghazali and Ramlee,2003., Bhanumurthy and Agarwal 2003., Abubakar and Sivagnanam
(2017)). From those studies that have argued against the theory, there is a consensus
that the rejections of the Fisher hypothesis were mainly due to econometric issues and
the conduct of the monetary policies. For instance, most of the previous studies do not

account for heteroskedasticity and structural breaks to justify their conclusion.

Considering the impact of the oil price on inflation, it is widely accepted that raising the
oil price increases the rate of inflation (Shioji and Uchino 2010, Shahiden et al. 2012).
Accordingly, if the oil price increases by 10% inflation will increases by 0.4% on average
(see: Zahid Aliand Anwar 2013). LeBlanc and Chinn (2004) examine the effect of oil price
changes on inflation in the United States, United Kingdom, France, Germany and Japan
using an augmented Phillips curve model for the period of 1980:q1 — 2001:q4. The
evidence reveals that increases in the oil price increase inflation moderately in all
countries. In other words, a 10% increase in the oil price leads to 0.1-0.8 % rise in
inflation in the United States and other countries. Alvarez et al. (2010) reveal that the
direct impact of oil prices on inflation depends on several factors and varies in different

countries. For instance, the effect of oil price shocks on Spanish inflation is found to be

47 The constant interest rate mean that the interest rate must be independent of changes in inflation
and monetary shocks at any given time., i.e. neutrality of monetary policy and independent of central
bank.
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higher than other European countries. Oil price changes account for more than 50% of
the variance of Spanish inflation and 45% of the variance in other European countries.
Similarly, Barrell et al. (2011) argue that effects of oil price on inflation depend on the
country’s relative position in the oil market, i.e. whether the country is a net-importer
or net-exporter of oil. The condition is that if one country is exporting another country
will be importing. Therefore, increase in the oil price of an exporting country will affect
the price level of oil importing nation because all related production costs of oil
exporting countries will directly increase, leading to high cost of living and high inflation

in oil importing countries.

A few studies also show that an increase in oil prices have a weak effect on
macroeconomic variables, most especially inflation, and its impact has been
deteriorating relative to the past for most economies. For instance, Hooker (2002) found
that oil price affects the US economy and the effect of the oil price has been gradually
reducing since the early 1980s. Whilst Chen (2009) obtained similar results for 19
industrialized countries between the period of 1970:q1 -2006:94. Chen’s empirical
results reveal that the effect of the oil price on inflation declines through time for most
of the countries studied. That is; the impact of the oil price in increasing inflation in the
2000s was weaker than impact in the 1970s. He argues that the appreciation of the
domestic currency; active monetary policies and a higher degree of trade openness are
the major causes of the decline in the effect of oil price on inflation in the 2000s. The
conclusion is similar to the study of Mohanty and John (2014) when examining the
determinants of inflation in developing countries (India) between the period of 1996 —
2013. The results show that oil price shocks have a strong influence on inflation during
2009 -2011 and that the influence was moderated in 2012 -2013 when inflation is
relatively stable. They conclude that inflation dynamics in India have changed over time
with various determinants showing significant time variation in recent years, particularly
after the global financial crisis. The main conclusion from this section is that the oil price
has a direct relationship with inflation, where an increase in the oil price increases
inflation in both developed and developing countries (LeBlanc and Chinn,2004., and
Zahid Ali and Anwar 2013). However, the impact of oil prices on inflation has weakened
over time. The impact of the oil prices on inflation is relatively small between the period

of the 1980s and 1990s than they were in the 1960s and 1970s (Hooker, 2002, Chen
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2009, and Mohanty and John, 2014). The reason for the lower inflation in recent years
may be because of the higher energy efficiency of production processes and good

conduct of monetary policies that have been implemented by policymakers.
3.3 Literature Review on the Performance of inflation forecasting

Most of the empirical literature found that theoretical models are more accurate in
forecasting when the economy is weak, most especially during periods of economic
crises, when compared with ARIMA, naive and VAR models (Onder, 2004; Dotsey et al.
2011 and Buelens(2012). For example, Onder (2004) used quarterly data between
1987:q1 and 1999:q4 to forecast Turkish inflation with the Phillips curve, ARIMA, Vector
Autoregression (VAR), VECM and Naive models. The evidence revealed that the Phillips
curve model outperformed the other models for one-quarter ahead forecasts and the
prediction of the 2001 financial crisis. Similarly, Dotsey et al. (2011) compared the
predictive performance of the Phillips curve model, an integrated moving average IMA
(1, 1) specification and a naive model in the United States for the period of 1975 - 2010.
The evidence suggests that the Phillips curve is more accurate to forecast when the
economy is weak and less accurate when the economy is stable. This result is similar to
the study of Pretorious and Rensburg (1996) who forecast South African inflation and
compared the forecasting abilities of different theoretical models (Phillips curve model,
Traditional monetarist and money demand specifications) with time series model
(ARIMA) for the period of 1991:q1 - 1995:93. The estimation period was divided into
two different samples to reflect periods of stable inflation and higher inflation. The study
found that during periods of higher inflation, the forecast produced by the money
demand, Phillips curve and Traditional monetarist forecast models generated the lowest
RMSE and MAE when compared to the ARIMA model. Fisher et al. (2002) examine the
predictive performance of the Phillips curve with the naive model for the different
sample periods of 1977-84, 1985-1992, 1993-2000 and 1977-2000. These samples
described different periods of monetary policy in the United States such as: a high
inflation volatility period, the general period of economic turbulence associated with a
new monetary policy regime, a period of stable monetary policy and the whole sample
period respectively. Evidence reveals that Phillips curve models produced better
inflation forecast than the naive model during the period of higher inflation volatilities

(1977-1984). However, different studies have argued against theoretical models most
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especially the Phillips curve when forecasting inflation. The most famous critics of the
Phillips curve are Atkeson and Ohanian (2001) who claimed that for the last 15 years,
policymakers had not produced a version of the Philips curve that produced a better
inflation forecast than the naive model. Atkeson and Ohanian argued that economic
theory might not predict a stable relationship between current unemployment and
future inflation because the historical data changes as a result of changes in the
economic environment.*® Fischer et al. (2002), Sims (2002), Orphanides and Van Norden
(2005) and Stock and Watson (2007) also confirm Atkeson and Ohanian’ findings. They
added that the result of Atkeson and Ohanian depends on the sample period and the
forecast horizons. In particular, the Phillips curve forecasts are episodic: there are times,
such as the late 1990s, when the Phillips curve forecasts improved upon using univariate
forecasts, but there are other times (such as the mid-1990s) when a forecaster would
have been better off using a univariate model to forecast. This result is similar to the
findings of Fisher, Liu, and Zhou (2002) who suggest that Phillips curve forecasts do
relatively poorly in periods of low inflation and after a regime shift. In contrast, this
conclusion has been challenged by Sim and Zha (2006) who argued that most of the
previous studies that revealed the poor performance of the Phillips curve over the
period of low inflation did not account for heteroskedasticity and failure not to account
for heteroskedasticity can strongly statistical bias tests in favour of finding significant
shifts in the coefficients.*® Similarly, Stock and Watson (2007) argued that what have
changed in the inflation modelling process led to the poor performance of the Phillips
curve during the period of low inflation. For instance, there have been substantial
changes in the spectra of inflation which led to the apparent changes in the forecast
produced by the Phillips curve. Similarly, Giannone (2008) attributed the poor

performance of the Phillips curve to changes in the multivariate covariance of the data.

48 Atkeson and Ohanian (2001) asked whether the Phillips curves capture the stable relationship
between unemployment y and future inflation. Atkeson and Ohanian, compared the accuracy of
different specification of the Phillips curve (textbook NAIRU Phillips curve, unemployment rate and
other measure of economic activates) at a one-year forecast horizon to a naive model that makes a
simple prediction: at any date, the inflation rate over the next 12 months will be equal to inflation over
the previous 12 months between 1984 - 1999. The result revealed that the forecasts from the all Phillips
curve were considerably less accurate than those from the naive models.

49 Heteroskedasticity occurs when the variance of the error terms differs across observations
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In summary, there has been mixed evidence on the accuracy of forecasts from the
Phillips curve in different inflation environments. For instance, many of the empirical
literatures agree that Phillips curve is more accurate in forecasting inflation when the
economy is weak, most especially during periods of the economic crises, when
compared with ARIMA, naive and VAR models (Pretorious and Rensburg, 1996., Fisher
et al. 2002., Onder, 2004., Dotsey et al. 2011., and Buelens,2012). In contrast, the Phillips
curve performs poorly during periods of stable inflation (Fisher et. al. 2002). Literatures
also suggest that when Phillips curve does not account for major econometric problems
(e.g heteroskedasticity and changes in covariance) the forecast produced by the Phillips
curve is less accurate when compared with naive and other model (Sim and Zha,2006.,

Stock and Watson, 2007, and Giannone, 2008).

For the univariate ARIMA model, the model performs better than alternative models
(Naive model and multivariate VAR models) during periods of low and stable inflation.
For example, Mitra and Rashed (1996) forecast Canadian inflation for one and four
quarters ahead and compared the predictive performance of VAR, ARIMA and Static
expectation models between 1972:q1 and 1986:q4. The series were divided into
different samples to reflect different periods of stable inflation and higher inflation. The
evidence revealed that the ARIMA model performed better than the other two models
during the period of stable inflation for one- quarter ahead forecasts. For the period of
higher inflation and four-quarter ahead forecasts, the VAR model performed better than
the ARIMA and Static model. Similarly, Lee (2012) compares the predictive performance
of the ARIMA model, Phillips curve and naive model for twenty-six countries that had
adopted a policy of inflation targeting since 1990. The period before the adoption of the
policy and the period after the inflation targeting policy were considered. The results
specified that inflation forecasts generated by the ARIMA model performed better than
inflation forecasts generated by the naive and Phillips curve models for most countries,
especially for the period following the adoption of the inflation targeting policy. The
main conclusion from this section is that the univariate ARIMA model produces a better

forecast in a period of low inflation volatility than a period of high inflation volatility.
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A few studies also found that Multivariate VAR models produce a better forecast than
alternative models over the long horizon (Fanchon and Wendel 1992., Fritzer et al.
2002., Onder 2004., Canova 2007). Canova (2007), argued that when the forecast length
increases the VAR models improved their forecast performance compared to the
univariate ARIMA model. For example, Fritzer et al. (2002) used ARIMA and VAR models
to predict Austrian inflation between 1987:q1 and 2001: ql. The results indicate that
the VAR model outperformed the univariate ARIMA specifications over a longer
forecasting horizon. Similarly, Fanchon and Wendel (1992) specified different
multivariate VAR models (Vector error correction (VEC), VAR and Bayesian VAR models)
to forecast cattle prices between the period of 1970 and 1989. The (VEC) model
differenced the data to achieve stationary and used an error correction term to model
the long-run information. The performance of all the estimated models were compared.
The evidence revealed that the VAR model generated the lowest mean square error for
the 58 - month horizon forecast. The VEC model outperformed the VAR model for 13
and 11-month horizons. The VAR and VEC models outperformed the Bayesian VAR
models. They concluded that the predictive performance of VAR and VEC models

depend on the length of the forecast horizon.

We now discuss the relative forecasting performance of the survey forecasts. The
survey forecast can be described as a forecast view of different professional forecasters
on major macroeconomic variables. The forecasters are asked to give projections on
each variable over various time horizons. According to Sill (2014), they consisted of 40
to 100 professionals who regularly forecast inflation. Each participant uses their
experience to predict quarterly values of major macroeconomic variables for up to five
quarters, including the current quarter, and annual projections up to three years ahead.
Examples of these type of forecasts include the Federal Reserve Board’s Greenbook,
Data Resource, the Michigan Survey of Consumer Sentiment, the Philadelphia Fed’s
Livingston Survey, and Blue Chip Survey Professional forecaster. Empirically, there is
growing evidence that survey forecasts are among the most accurate forecasts of
inflation. The survey forecast performs better than the structural models, ARIMA
models and Phillips curve (Sims, 2002., Ang et al.2007., Moreno and Gracia, 2012., and
Faust and Wright, 2013). For example, Ang et al. (2007) examine three inflation

expectation surveys: the Livingston survey, the Survey of Professional Forecasters (SPF),
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and the Michigan survey. These are compared with the ARIMA model, the Phillips curve,
a structural model (that includes linear, non-linear and an arbitrage-free specification)
for post 1985 and post 1995 samples. The results indicate that the survey forecast
always performs better than the term structure model, ARIMA model, Phillips curve, and
the combined forecast. Similarly, Caralho and Minella (2012) compare the survey
forecast with the ARIMA, VAR and BVAR models in Brazil between the period of 1994-
2008. Evidence revealed that the survey forecast produces better forecasts than the
ARIMA, VAR and BVAR models in all estimated periods. This study suggests that survey
forecasts are using more quality information than alternative estimate. Stock and
Watson (2009) added that the relatively good performance of the survey forecasts might
be due to the ability of professional forecasters to recognize structural change more
quickly than automated regression-based forecasts. Giacomini (2015) also documents
that survey forecasts perform better than other forecasting models and its forecast has
ability to capture information about the current state of the economy. However, some
literature that include Thomas (1999), Mehra (2002) and Samuelson (2009) have
documented that survey forecasts are biased and exaggerated. Accordingly, in low
inflation period, the surveys inflation forecasts are under-predicted and at high levels of
inflation the surveys forecasts are over-predicted inflation. Mehra (2002) argued that
survey forecasts are not efficient because their projections did not account for past
information in making their predictions.>® The conclusion from this section is that the
survey forecasts improved over time when comapared with other forecasting models
(such as: structure models,multivariate VAR models, ARIMA models and Phillips curve).
The survey forecasts have a higher accuracy than those based on alternative models.
One possibility is that the survey forecast generated information from different sources
that are captured by a single model (Ang. al. at 2007). However, forecasts produced by
this method may be easily undermined by the over predcition (during periods high

inflation) and under prediction (during periods of low inflation).

An alternative forecast, so far unmentioned is the time series models that allow for time
- varying coefficients and volatilities. This type of model has ability to capture the effects

of parameter changes and predict the erratic components of inflation. The model can

50 Due to these disagreements, we do not include survey forcast in our research.
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exist in the inform of univariate, multivariate and nonlinear models to build upon a
modern dynamic macroeconomic theory that emphasizes the current state of the
economy and the role of expectation (Del Negro and Schorfheide, 2012). Also focus on
describing the transformation of macroeconomic dynamics or changes in the monetary
policy. For example, the Markov switching model is motivated by a regime-switching
process, in which inflation shifts from a low regime to high inflation and vice versa.
Similarly, the smooth threshold model describes the switching process between two
distinct regimes that smoothly move from one regime to another rather than the
threshold autoregressive model that suddenly from one regime to another. The
empiricial literature on macroeconomic forecasts that incorporate the time-varying
regime shift include: Bradley and Jansen (2004), Sims and Zha (2006), Ang et al. (2007),
Groen and Mumtaz (2008), Yuan, (2011).,Barnett et al.(2014) and Hou, (2017). For
example, Sim and Zha (2006) argue that a model that incorporates regime switching
dynamics has better forecasting performance for United States. Groen and Mumtaz
(2008) and Barnett et al.(2014) provide a similar result for the United Kingdom, and
show that a regime switching model is useful for describing the change in inflation
persistence. For instance, Barnett et. al (2014) used quarterly data between 1976: q1 -
2007: q4 to forecast UK inflation with different regime switching models (Threshold and
smooth transition VARs, regime switching VAR, Time- varying VAR, Time-varying factor
augmented VAR and unobserved component model with stochastic volatility) and
Autoregressive model (AR). The study found that all the regime shift models generated
the lowest RMSE when compared to the AR model. Bradley and Jansen (2004)
compared the forecasting performance of stock returns and industrial production in the
United States using linear (ARIMA model) and nonlinear models’ logistic smooth
transition autoregressive (LSTAR) between January 1934 to October 2002. The result
shows the superiority of the nonlinear models (LSTAR) against linear ARIMA model to
forecast industrial production. Montgomery et al (1998) compared the forecasting
performance of unemployment rate in the United States using linear (seasonal ARIMA
model and bivariate VAR) and nonlinear models (Threshold autoregressive model and
Markov switching autoregressive model) as well as combined forecast method using a
quarterly data between 1948 and 1993. This period covered the period higher and lower
unemployment rate. The study reveals that MSA and TAR model outperform seasonal

ARIMA during the rapid increase and decline in unemployment in early 1980. This
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conclusion also similar to the recent study of (Gupta et al. 2013, 2015 and Diebold et al.
2017) who estimate a Dynamic stochastic general equilibrium (DSGE) models that
account for expectation and regular structural changes in many developed and emerging
market economies. DSGE is widely used by the central bank to forecast inflation and
analyse relevant economic issues. According to Tovar (2008), DSGE model can identify
sources of fluctuation, predict the effect of policy changes and answer question about
structural changes as well as establishes a link between structural features of the
economy and reduced form parameters, something that was not always possible with
large scale macroeconomic variables. Empirically, Gupta et al. (2015) estimate DSGE and
AR model for South Africa economies using a sample period between 197192 to 1999q4
and generate a recursive forecast for inflation over 2000q1 to 2011qg4. The study shows
that the DSGE model performs better than the AR model during the estimated period.
The study of Alpanda et al. (2011) also indicate that DSGE-based inflation forecasts
generated the lowest forecast errors compared to forecasts obtained from BVAR and
VAR models. Diebold et al. (2017) estimated DSGE models with and without stochastic
volatility between 1962:q2 to 2011:q1. The DSGE model that estimated with stochastic-
volatility produces superior forecast than the DSGE estimated without stochastic
volatility versions during the estimated period. The conclusion from this section is that
a model that accounts for regime shifts or time varying coefficients provide accurate
forecast than those models that do not (D’Agostino et al. (2013)., Barnett et al. (2014),

Bel and Paap, 2016), Cross and Poon (2016) and Mandalinci, (2017)).

A few studies focus exclusively on combined forecasts. A forecast combination is the
combination of two or more individual forecasts to produce a single prediction. The
empirical success of this model has been demonstrated in a variety of studies during the
last decades (see: Stock and Watson (1999, 2003)., Clark and McCracken (2006)., Canova
(2007)., Ang, et al. (2007)., Samuelson (2009)., Altavilla and DeGrauw (2010)., Taylor
(2010) and Baumeister and Kilian (2015)). The major conclusion from all these studies
is that combined forecasts can produce more accurate forecast than individual
forecasting models. For example, Garcia et al. (2017) compare the combined forecast
model with a Bayesian VAR model in a higher inflation country (Brazil) using monthly
data between January 2003 to December 2015. The results show that that the combined

forecast produces the best forecasts in the higher inflation environment when
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compared with the alternative Bayesian VAR model. Similarly, Stock and Watson (2003)
show that the combined forecast of aggregate indices of many real activity variables
produces better inflation forecasting than individual variables. Samuelson (2009)
documents that combined forecasts have a long history of success in an economic
application and are less likely to be influenced by structural breaks. The conclusion from
this section is that forecasts produce by the combined methods are better than those
based on alternative models in the presence of model uncertainty (Samuelson, 2009 and

Li and Chen, 2014).
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3.4 The chapter summary and conclusion

The empirical literature on the determinants of inflation and forecasting inflation can be
grouped into studies that investigate developed and developing economies. Developed
economies have well-established institutions that are committed to low inflation. In
contrast, developing economies are known for higher inflation, unstable
macroeconomic environments and depend heavily on exporting capital (Catao and
Terrones, (2005), and Ghazanfar and Sevcik (2008). In developing countries, inflation is
mostly caused by the external influence of import prices, the foreign interest rate and
the exchange rate (Frisch 1977, Dhakal and Kandil 1993, Boujelbene and Thouraya
2010). Whereas, money growth, financial assets and interest rates determine the rate
inflation in developed countries (Hendry 2001, Tillmann, 2008 Cologni and Manera,
2008). For instance, when firms borrow from financial institutions to pay for their
production factors. The cost of the interest paid to the financial institution will be added
to the production factors to increase inflation. Evidence also revealed that the
correlation between money growth and inflation is stronger during periods of high
inflation whereas the correlation between inflation and money growth is weaker during
periods of stable inflation (Luca, 2005). Besides, there is a direct relationship between
the oil price and inflation in both developed and developing countries (LeBlanc and
Chinn, 2004 and Cavalcanti and Jalles 2013). For example, oil price shocks affect both
the import price and export price through the exchange rate, to increase or decrease
the cost of production (Nielsen and Bowdler, 2006 and Bloch et al.2006a). A large
amount of the literature suggests that the effect of oil price shocks on macroeconomic
variables varies considerably over time (see Burbidge and Harrison, 1984; Chen, 2009;
Alvarez et al. 2010 and Mohanty and John, 2014). The impact of the oil price on inflation
is typically higher during periods of economic crisis when compared to periods of
economic stability. The impact of the oil shock on inflation is considerably lower in
developed countries when compared to developing countries (Chen, 2009). This may be
because of good financial institutions, active monetary policies, and a higher degree of
trade openness in many developed countries, which may have helped to reduce the
effect of the oil shocks on inflation when comppared with developing countries.

Regarding the empirical literature on inflation forecasting, many studies suggest the

following conclusions:
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(i), Phillips curve-based models are more accurate in forecasting when the economy is
weak, most especially during periods of the economic crisis, when compared with

ARIMA, naive and VAR models (Onder, 2004; Dotsey et al. 2011 and Buelens 2012).

(ii) During periods of low inflation, univariate ARIMA models outperform the
multivariate VAR model (Pretorious and Rensburg,1996; Mitra and Rashed, 1996 and
Alles and Hotton, 2000).

(iii) When the forecast length increases the VAR and VECM specifications exhibit
improved forecast performance when compared to the Phillips curve, Naive and ARIMA

models (Fanchon and Wendel, 1992 and Onder, 2004).

(iv) Literature also shows that there some gains (in term of forecasting performance)
from allowing time variation in the model parameters and from exploiting a large
information set. As a result, the model that accounts for stochastic volatility and time
varying coefficients (e.g DSGE, Markov switching models and Threshold and smooth
transition model) provide more accurate forecast than those models that do not
(D’Agostino et al. (2013)., Barnett et al. (2014)., Bel and Paap, 2016)., Cross and Poon
(2016) and Mandalinci, (2017)).

(Vi) The survey forecasts improved over time when compared with an individual
forecasting model (such as: structure models, multivariate VAR models, ARIMA models
and Phillips curve). One possible explanation is that the surveys extract information

from different sources, not obtained by a single model or captured by other models.

(VII) Evidence also reveals that the forecast combination using several weights leads to
a reduction in forecast error compared to individual models (Bjornland et al.,2008 and

Ogunc et al.2013).
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CHAPTER 4

FEATURES OF CONSUMER PRICE DATA AND ITS TRANSFORMATIONS

4.0 Introduction

In this chapter, we analyse the feature of the quarterly price data and its
transformations to assess issues of seasonality, stationarity and structural breaks.
Further, we outline the Box Jenkins ARIMA and ARIMAX methods of univariate
modelling employed in this thesis (section 4.4). To identify the main features of the
quarterly price, we consider various transformations of the natural logarithm of price
data for each country to inform modelling and forecasting. The natural logarithm is used
to linearize the exponential trend that is typically expected in price series. It is
anticipated that the log of prices will need to be differenced to induce stationarity
because in growing inflationary economies this series will not have a mean that is
converging to a constant.>® However, the question is what type of differencing will be
required. The two main issues that may need addressing are the potential presence of
seasonality in the quarterly data and structural breaks. The presence of seasonality may
mean that the standard quarterly (one period) difference may be insufficient to induce
stationarity because of seasonal unit roots. Hence, an annual (four period) difference,
or other seasonal filters, may be required. It is considered quite possible that an annual
difference on its own (instead of a quarterly difference) will be sufficient to induce
stationarity. However, the presence of structural breaks may mean that unit root tests
indicate that the annual difference is nonstationary because, for example, a downward
shiftin the intercept (seasonal indices), coinciding with a move from high to low inflation
eras, gives a non-constant mean across the whole sample period. Hence, we consider
the inspection of sub-samples to determine whether the annual difference is constant
around shifting means. If this is not the case it may be necessary to consider the

quarterly difference of the annual differenced data, however, our prior belief is that this

51 In many developed countries that move from a relatively high inflation era in the 1970s and 1980s to a
lower inflation era from the 1990s (with smooth transition) may appear like a damped trend that is
converging to a constant mean rather than a split trend that simply predicts prices rising at a lower rate
in the second era. In terms of unit root testing this split trend can give the inference that the log of
prices are stationary. We reject any such inference upon the basis that the log of prices are intrinsically
nonstationary and therefore focus our attention on what type of differencing is required to induce
stationary.
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will represent over-differencing of the data that may reduce our ability to effectively

model and forecast the data.

A further issue that we consider is the validity of the (quarterly or annual) difference of
the log of prices as a valid approximation of inflation. This approximation is only valid
for relatively small rates of inflation (perhaps below 30%). We therefore, compare these
approximations to more accurate measures of inflation to determine whether we need

to employ the more accurate measures for modelling and forecasting.

Anticipating the graphical features of the data below we discuss the data with the
following modelling strategies in mind. We do not use unit root tests that account for
seasonality and structural breaks because the currently available tests allow for only one
structural break and there is more than one structural break in the data for many
countries. Instead, we consider using Box-Jenkins rules of thumb to identify the order of
seasonal and non-seasonal differencing in an ARIMAX modelling framework that seeks
to first model multiple structural shifts in the data and second models the residuals as
an ARMA process. We will apply this to annual differenced data over the full sample of
data and use the Bai and Perron (2003a and 2003b) test to identify any structural breaks.
Utilising the Bai and Perron (2003a and 2003b) test to identify any structural breaks
within the ARIMAX modelling context to model inflation is a novelty of our work. With
these issues in mind we analyse various transformations of each country’s price series

below:
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4.1 Data Analysis for the ARIMAX model

For ARIMAX modelling, we considered the consumer price index that is quarterly and
available from International Financial Statistics (IFS) published by the International
Monetary Fund (IMF) for all selected countries. The availability of the series for each

country is summarised below and graphs of various transformations of this data for each

country are given in the figures below.

Table 4.1 Consumer price index availability

Country Period

South Africa 1958q1- 201494
Indian 1953q1- 201494
Brazil 1980q1 -2014qg4
China 1988q1- 2014q4
Russia 1992q1- 2014q4
Nigeria 1960q1- 201494
Kuwaiti 1974q1- 201494
Algeria 1975q1- 201494
Ecuador 1958q1- 2014q4
Saudi Arabia 197191 - 201494
Angola 1992q4- 201494

Source: IMF and IFS
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Figure 4.1 Graphs of various transformations of consumer prices for Brazil.
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Figure 4.2 Graphs of various transformations of consumer prices for Russia
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Figure 4.3 Graphs of various transformations of consumer prices for India
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Figure 4.4 Graphs of various transformations of consumer prices for China
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Figure 4.5 Graphs of various transformations of consumer prices for South Africa
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Figure 4.6 Graphs of various transformations of consumer prices for Algeria
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Figure 4.7 Graphs of various transformations of consumer prices for Angola
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Figure 4.8 Graphs of various transformations of consumer prices for Ecuador
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Figure 4.9 Graphs of various transformations of consumer prices for Kuwait
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Figure 4.10 Graphs of various transformations of consumer prices for Nigeria
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Figure 4.11 Graphs of various transformations of consumer prices for Saudi Arabia
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4.2 The following are the main features of the above graphs

For all countries, the natural logarithm of the consumer prices (given by graph A for each
country) has an upward trend and is likely to be nonstationary. For quarterly series
seasonality may be expected in price data even if it is not visible in all the log price plots
because of the dominant trend; seasonality may be revealed once the trend is removed
through differencing. The log of price exhibits a range of trend shifts between 1970s
and 2000s that suggest structural breaks for most countries. The breaks between these
periods reflect different periods of relatively high inflation and more moderate inflation
that may have occurred as a result of the global oil price volatilities, political instabilities
and financial crisis across different countries. For example, oil price production was
volatile in the early 1970s as a result of the Arab oil Embargo. The oil price increased
tremendously during the Iran-lrag war in the early 1980s and fell back in 1985. The trend
in oil prices changed after 1985 and slightly increased and later decreased until
beginning of the 1990 when Iraq invades Kuwait. In the middle of 1990s, the price of oil

increased until 2007 and fell back in 2008 as a result of the global financial crisis. In 2011,
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the price of oil picked up and increased until the first quarter of 2014. In the last quarter
of 2014, the increase in production of American oil shale drives down the global market

price of oil below 50 dollars per barrel (See the graph in Appendix 4).

For Brazil (Graph A figure 4.1), the log of consumer prices shows that the trend is steep
up to around 199493 (corresponding to a high inflation period) and becomes flattered
after 199493 (corresponding to a lower inflation period).>? This suggests that the trend
that existed prior 199493 does not continue after this time. For Russia, (Graph A from
figure 4.2), the graph indicated a trend shift between 1996q1 and 1999q_2, slope changes
around 1997q1 and a step-shift in 1998q4.>3 Similarly, (Graph A from Figure 4.3) shows
a few possible outliers around 1974/1975 for India and two change in slopes around
199793 and 200493 with some outliers in 2008 for China (see Graph A figure 4.4).>* The
graph for South Africa (Graph A from figure 4.5) shows an S-shaped pattern exhibited by
many developed countries between the period of 1970s and 1980s. For instance, there
is a shift around 1973 (corresponding to the oil shock) when this slope becomes steeper.
Another slope shift occurs around 1991 and becomes flatter. During the 1970s and
1980s inflation was relatively high when compared with the post-1990 period. There is
also a possible downward step shift around 2012. For Algeria (Graph A from figure 4.6),
two slope shifts appear to have occurred around 199094 and 19962 with a possible
outlierin 1975q1. Similarly, the log of price indicates slow transition (slope shifts) around
1996q3 and 200393 for Angola (see Graph A from figure 4.7). For Ecuador (Graph A
from figure 4.8), there is a sequence of step shifts with constant prices prior to 1983 and

the series appears to be generated by a completely different policy regime to the post-

52 The graph reflects double-digit annual inflation of the 1970s that turned to triple digits by the 1980s.
As a result, the election of Fernando Henrique Cardoso in 1994 (a former finance minister) implemented
many successful stabilization programs, such as: introduction of new currency and privatization that are
suggested to have helped to stabilize the inflation rate around 1994 (Ito, 1999).

53 This could be a result of post-Soviet Union economic reforms implemented to reduce inflation. During
this period, the Russian government was committed to fiscal policy, privatization, and establishment of
various arbitration courts to resolve different economic disputes. As a result, Russia’s inflation was
brought under control. However, the 1998 global financial crisis contributed to a sharp decline in the
Russian economy.

>4 Due to the role of free markets and different economic reforms, China's economy gained momentum
in the early 1990s. During this period, Chinese output increased tremendously with low inflation.
However, the influenced of the Asian financial crisis slowed the economy down in 1997 and increased
inflation.
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1983 data. Hence, using data up to 1983 may be of little value for forecasting data after
2012 and we will therefore not use data in this period for modelling and forecasting
Ecuador. Hence, all other graphs for this country (B, C and D) will be for the post 1983
period.>> After 1983 the data trend upwards with a slope shift around 2001 suggesting
a structural break. The log of price has a shift around 1965 for Nigeria and step shift in
198391 and 1992q2 for Kuwait. The graphs also suggest a slope shift around 2007 for
Kuwait and 1978 and 2008 for Saudi Arabia (see graph A figure 4.9, 4.10 and 4.11 for

Kuwait, Nigeria and Saudi Arabia respectively).
B. First differencing of the log price DLOG(P)

We next consider first differencing the log of prices (denoted DLOG(P***) where ***
represents the first three letters of each country (BRA, RUS, IND, CHI, SOU, ALG, ANG,
KUW, NIG, ECU and SAU). The first difference of the log of price approximates inflation
between adjacent periods (quarters), the quarterly inflation rate. In all countries, the
first differencing has removed the trend and transformed the structural breaks from
slope shifts into an approximate step-shifts with high inflation prior to the break and
lower inflation after the break.

For example, in Brazil (see Graph B from figure 4.1), the first differencing has
transformed the structural break from a trend (slope) shift in the log of prices into an
approximate step-shift in the differenced data with high inflation prior to 199493 and
lower inflation after 1994g3. For Russia, the breaks between 1996q1 and 199992 in the
log of prices have also transformed into two sets of outliers in the differenced data with
peaks around 1995q1 (approximately a 40% quarterly inflation rate) and 1998q3 (34%)
(see Graph B from figure 4.2). Similarly, the slope shifts in 1997q3 and 200493 have
transformed into step shifts for China with an outlier peak in 2005q1 and a trough in
1998q1 (see Graph B from figure 4.3). For India (see Graph B from figure 4.4), the first
difference reveals a peak and trough around 1974 with the highest inflation rate
recorded at 9.5% (corresponding to the oil shock). In the case of South Africa, the shifts

in the differenced data are roughly divided into step shifts around 1973 and 1991.

55 This suggests that different economic policies were implemented around this period to control
inflation in Ecuador.
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However, the shifts do not appear to take place in one period; rather there is a transition

over a few periods (see Graph B from figure 4.5).

In Algeria, the first differencing transformed the changes in the slope of the log of prices
that occur around 199094 and 199642 into mean step shifts. The quarterly inflation rate
peaks in 1991qg4 at approximately 11.6% which is moderately high when compared with
after 1996q1 when inflation is much lower and in single digits, averaging approximately
3% (see Graph B from figure 4.6). For Angola, the first differencing transformed the
structural breaks from slope shifts in the log of prices into approximate step-shifts (with
the slow transition) with high inflation prior to 1996q3 and lower inflation after 2003q3
(see Graph B from figure 4.7). For Ecuador, the slope shifts around 1983q3, 198794,
1998g4 and 200094 in the log of prices have transformed into outliers and an
approximate step-shift with high inflation in 2001q1 and lower inflation around 2004q1
at approximated rates of 28% and -0.3% respectively (see Graph B from figure 4.8). For
Kuwait, the step shifts in the log of prices around 1983q1 and 2007 become step shifts
in the differenced data. The step shift around 199292 in the log of prices becomes a
small number of outliers in the differenced data that peaks at 13.9% (see Graph B from
figure 4.9). In Nigeria, the slope shift around 1996 in the log of prices is transformed
into a possible downward step-shift in the differenced data (the variability of inflation
appears to decline from 1996 onwards). The left-hand scale suggests that the quarterly
inflation rate peaked at about 20% in around 1995. After 1996 quarterly inflation is
generally below 10% which implies that only using data from 1996 onwards for
modelling and forecasting may be a strategy worth consideration (see Graph B from
figure 4.10). For Saudi Arabia, the first differencing transformed the slope shifts in the
log of prices around 1978 and 2008 into approximate step-shifts. The left-hand scale
suggests that the quarterly inflation rate peaked at about 16% before 1978 and peaked
at 4% in the post 1978 (see Graph B from figure 4.11). This implies that inflation in Saudi
Arabia is high before 1978 and moderate after 1978. Additionally, there are clear cycles
that appear to have a fixed length in all estimated countries that most likely reflects

seasonality.
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C. Annual differencing of the log price DLOG (P,0 ,4)

The fourth difference of the log of prices approximates the annual rate of inflation due
to the differencing of the logarithm of consumer prices across four quarters. This is a
widely used transformation to approximate annual inflation. In all countries except
India, the fourth difference transformation has transformed the data into relatively
constant mean processes around step shifts (structural breaks). Typically, each country’s
data is split into approximately two samples: one of high inflation and one of relatively
moderate inflation. The period of high inflation is volatile compared to the period of
moderate inflation. The annual difference also gives a series that is less cyclical
compared to the first differenced data and any seasonality has been substantially
reduced. For most countries, the difference of the log approximation of inflation is not
appropriate given the relatively high level of inflation during some point in the sample.
For consistency across countries we suggest that annual inflation should be measured

Py— Py
as: INF= ——=.
t—4

D. First annual differencing of the log price DLOG (P,1 ,4)

This approximates the first difference of annual inflation. For all countries, the
transformation has no trend and gives a relatively constant mean process, although the
approximation remains volatile for all countries except Brazil, Russia and Angola.
Evidence of volatilities in many of these countries may reflect over differencing that
could be avoided by modelling the step shifts in the annual or quarterly differenced data.
That is, since both the annual and quarterly differenced series appear to have constant
means around step shifts there is no need for both a seasonal and nonseasonal

difference to induce stationarity.
4.3 The Summary of the log of price transformations

For all countries, the log of price does not have a constant mean and is therefore
intrinsically nonstationary and we will therefore not apply unit root tests to this form of
the data as this conclusion is clear. The first (quarterly) differencing and annual
differencing of the log price are poor measures of quarterly and annual inflation due to
the generally high inflation rate (at least at some point in the sample) for most countries.

Therefore, we will not accept these measures for quarterly and annual inflation and we
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will use the real measures of inflation being: QINF; = % and INF;= % for each

t—1 t—4
country (where QINF; and INF; represent quarterly and annual rates of inflation
respectively). For all countries, the quarterly and annual rates of inflation appear to be
constant around their means or constant around shifting means. This implies that once
mean shifts are accounted for the data are likely to be stationary. We also observed that
quarterly inflation is far more seasonal than annual inflation and this may mean that the
former contains some form of seasonal unit root that requires further transformation
while the latter does not.”® Hence, we believe that modelling annual inflation, INF,=
Pi— Pr_y

> , Will be appropriate for most countries and this is our a priori belief. If this is not
t—4

the case ARIMAX models built to such data will reject the diagnostic checks for

stationarity (and invertibility).

Table 4.3 Descriptive statistics for annual inflation between 1994q1
201494

Brazil Russia Indian | China South | Angola Algeria | Ecuador | Nigeria Kuwait | Saudi
Africa Arabia
Mean 1.697 0.508 0.074 0.031 0.066 | 4.942 0.074 0.203 0.182 0.030 0.021
Median 0.063 0.137 0.0713 | 0.034 0.065 | 0.853 0.047 0.095 0.122 0.030 0.009
Maximum | 44.861 7.056 0.179 0.029 0.169 | 75.344 0.374 1.048 0.881 0.113 0.108
Minimum 0.018 0.038 0.005 0.029 -0.042 | 0.095 -0.013 | 0.015 -0.019 -0.01 -0.018
Std. Dev. 7.189 1.081 0.0341 | 0.0434 0.037 11.619 0.089 0.236 0.182 0.030 0.030
Skewness 4.752 4.061 0.527 -0.754 -0.056 | 3.902 1.976 1.884 2.296 1.262 0.992
Kurtosis 25.098 21.815 3.123 1.974 3.601 20.75 6.102 6.419 7.727 5.329 3.366
Jarque- 1832.292 | 1329.775 | 3.561 10.544 1.181 1190.527 | 79.927 | 81.955 137.532 | 37.347 | 12.888
Ber.
Peroabability 0.000 0.000 0.169 0.005 0.554 | 0.000 0.000 0.000 0.000 0.000 0.002

To provide additional evidence for the existence of various features of inflation
identified in the previous section, statistically, this study employed the Jarque-Bera test,
Kurtosis, skewness, mean and standard deviation to describe the rate of annual
inflation. The Jarque -Bera test is a test of whether sample data have the skewness and
kurtosis matching a normal distribution. Skewness measures the asymmetry of the
distribution of a series around its mean. The Kurtosis measures the peakedness or
flatness of the distribution of the series. Mean is the average value of the series,

obtained by adding up the series and dividing by the number of observations and the

%6 Note that we do not report comparison graphs of quarterly and annual inflation in this paper to save
space.
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standard deviation is used to measure a dispersion or spread of the series.>’ From Table
4.3, the mean and the standard deviation of annual inflation different across countries.
Angola has the highest mean of 494.2% followed by Brazil 169.7% and Russia 50.8%. In
contrast, Saudi Arabia has the lowest mean value of 2.1%, followed by Kuwait at 3.0%
and China 3.1%. For standard deviation (the rate of volatilities), the country that has the
highest mean has the highest deviation value with the rate of 1161.9% for Angola,
718.9% for Brazil, 108.1% for Russia, 23.6% for Ecuador,18.2% for Nigeria, 8.9% for
Algeria, 4% for China and South Africa and 3% for both Kuwait and Saudi Arabia. The
maximum (minimum) rate of inflation is 4490%(2%) for Brazil, 710% (4%) for Russia,
18%(0.5%) for Indian, 3%(3%) for China and 17%(-4%) for South Africa. In addition,
Angola has the maximum (minimum) value of 7500%(9.5%), 40%(-1) for Algeria,
105%(2%) for Ecuador, 90%(-2) for Nigeria, 11%(1%) for Kuwait and 11%(-2%) for Saudi
Arabia. In general, the countries that previously known as high inflation has an
approximately mean and standard deviation value that is above 10% (see Brazil, Russia,
Angola, Ecuador, Nigeria). Whereas, countries with moderate inflation have the mean
value that is less than 10% (India, China, South Africa, Kuwait and Saudi Arabia). The
skewness values are positive in all selected countries except for China and South Africa,
indicating that the asymmetric tail extends more towards positive values than the
negative ones. Furthermore, the kurtosis statistics is greater than 3 in all selected
countries except China indicating that the rate of inflation for all selected countries are
leptokurtic (more peakedness, heavy tails, weak shoulders). This implies that the
growth rate of the price display more extreme movements than would be estimated or
predicted by a normal distribution. The Jarque—Bera statistics clearly reject the null
hypothesis of a normal distribution for inflation in all selected countries except South
Africa and India. This suggests that the observed data are mostly inconsistent with the
assumption of normality in the selected countries. To help model the non-normality of

the data we will utilise specifications that account for structural breaks.

57 The details and the formula on how we estimate Jarque-Bera test, Kurtosis, skewness, mean and
standard deviation are available in Eviews 9 Help guide.
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4.4 ARIMA Modelling

Autoregressive integrated moving average (ARIMA) is a univariate time series model.
ARIMA models were developed by George Box and Gwilym Jenkins in 1976. The models
were often referred to as Box- Jenkins model procedures. ARIMA models have been
used to forecast inflation in the past, and it has performed well when compared with
other inflation forecasting models (see: Stock and Watson 2007, Ang, Bekaert, and Wei
2007 and Hafer & Hein 1990). In predicting inflation, the model does not need other
variables than inflation to forecast. It is expressed in terms of past values of itself (the
autoregressive component) plus current and lagged values of the error term (the moving
average component) as well as an integrated component (which refers to the number
of times a series is differenced to induce stationarity).

Modelling and forecasting with ARIMA models involve five stages: (i) identification (ii)
estimation (iii) diagnostic checking (iv) model selection, and (v) forecasting. There are
two forms of ARIMA model: Non-seasonal and Seasonal Autoregressive Integrated
Moving Average models. A seasonal ARIMA model is used when the time series data
show seasonal patterns. While the non-seasonal ARIMA model is used to forecast when
there is no evidence of seasonality. The non-seasonal ARIMA model is denoted as
ARIMA (p,d,q). The parameter p, d, and g are the autoregressive process of order of p,
AR(p), an order of integration of order d, I(d) and moving average (MA) process of order
g, MA(q), respectively.

The general non-seasonal ARIMA (p,d,q) equation is specified below:

Ad Yt :ﬂlAdYt_l + e Lt ﬂpAdYt_p + Ut - elut_l Teeseenne - eput_q 41
q

Ad Yt = 25;1 ﬂlAdYt_i + ut - Z i=1 elut_] 4.2

Where u, is the error term, Adindicates the difference (d) times, 0 is the coefficients of

the moving average term>8.The value of g denotes the coefficient of autoregressive
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terms. In addition, u; is assumed to be white noise, that is, (E(u;) = O, E(u;?) = 6%u and
E(ur ugsr) = E(ur ug—g) = 0).

ARIMA modelling can only be applied to a stationary time series. If a series is not
stationary, steps must be taken to convert the series into a stationary one before ARIMA
models can be applied. A non-stationary time series can be converted into a stationary
one by differencing and the differencing of a series can be denoted using the backward

shift or lag operator. For example, the first difference is stated (d = 1) as:

AYt=Yt - Yt—l 43
The equivalent back shift notation will be

Yt - B]'Yt = Yt - BYtz (1‘B)Y

The general dth difference can be stated as:
AdYt = (1'B)dYt 45
The traditional ARIMA model also uses the autocorrelation function (ACF) called the

correlogram to examine the stationarity of the data. The correlogram of the stationary
series is used to determine the existence of an AR process and order of MA process.>?

9 The correlogram can also be described as an autocorrelation plot, i.e., the plotting of the sample
autocorrelations versus the time lags. It measures the correlation between the current value of a process
and the lagged values up to a k™ lag displacement. Consequently, the theoretical autocorrelation

Cov (YtYeyk) -
e Where, Cov (Y;Y;yr) is

the covariance between the current value of (Y;) and the lagged value of k lag displacement (Y;, ). The

coefficient, py , for a k' lag displacement can be expressed as: p; =

value s(Y;,x) denotes the standard deviation of Y., s(Y;) represent the standard deviation of (Y;). If

the variance and standard deviation is constant, s(Y;) = s(Y;,). Therefore, we replace s(Y;,;) with the

Cov (VtYeqr) _ €OV (VeVerid) _ Dy = Cov (YeYevk) _ Cov (Yth+k)_ Note that the variance of
s(Y)SYesk) s(Yp)s(Yg)

[s(r)]? Var(¥y)
a process is equal to the covariance of a variable with itself, i.e., Cov (Y,Y;) = Var (¥;). Thus,

value s(Y;) i.e py =

Cov (VeYeri) _
Var(Y)
Cov (YtYeqk)
Cov (YY)

the same way as (Y;)). Hence, Cov (Y;Y.,)) will always be less than Cov (Y;Y;) .., i.e., Cov (Y Yiyp) <

. The maximum covariance a series can have is the covariance with itself (¥; will vary in exactly

Cov (Y;Y;) which implies that -1 < p,, < 1. Hence, the theoretical autocorrelation coefficient, p, ranges
from the value of -1 to +1. The value of -1 means perfect negative correlation and a value of +1 means
perfect positive correlation. If p, = 0 then Y;,, and Y; are not correlated at all in available data. In this
research, the tests of whether the autocorrelation coefficients are significantly different from zero will be
determined under the null hypothesis of stationarity and the confidence interval will be constructed for
to test this hypothesis. Lastly, the theoretical sample autocorrelation coefficient is estimated as: 7y
_ S D) (Ve D)
Tty (%= 7)2
the observations and the maximum number of the useful estimated autocorrelations is suggested to be
n/4 (Pankratz 1983).

T
= —1 Y . . .
where Y = % . The value of Y; is assumed to be stationary, T is the number of

77



The PACF is used to identify the order of AR process and existence of MA process.®°

4.4.1 Seasonal ARIMA Modelling

When series are quarterly, it is possible that the series will exhibit seasonality, and
modelling of such series requires the non-seasonal ARIMA model to be extended to
accommodate additional features of seasonality. Seasonality can be dealt with in two
different ways: direct seasonal modelling of unadjusted data and by using seasonal
adjustment procedure. The adjusted seasonal method will seasonally adjust the data
through, for example, the X-13 or X-12 procedures and a non-seasonal ARIMA model
can be used to forecast the adjusted data. After which the identified seasonal indices
are used to re-introduce the seasonality into the forecasts. The unadjusted data method
directly extends the non-seasonal ARIMA model to capture the seasonal component of
the series. In general, the seasonal ARIMA model can be expressed as ARIMA
(p,d,q)(P,D,Q)s. That is, there is a combination of two polynomials generated by (p,d,q)
and (P, D,Q)s, where P is the seasonal order of the autoregressive component, D denotes
the seasonal order of integration and Q represents the seasonal order of moving the
average component. The parameter p, d, and g are the corresponding non- seasonal
orders of processes. The multiplicative seasonal ARIMA model can be expressed as

follows: 1

6, (B)#p(BS)(1 — B)% (1 — B%)PY, = 6,(B)0o(B*)u, 4.6

Where B is the standard backward shift operator defined by B*y, = y,_ , 8,(B) denotes
the nonseasonal autoregressive model, @,(B®) represents the seasonal autoregressive
model, 8,(B) describes the nonseasonal moving average process, 0,(B°®) denotes

seasonal moving average process, and u; is a sequence of white noise errors that are

60 The partial autocorrelation function (PACF) is the correlation between the lagged variable and the
current value after accounting for the correlation with other variables, i.e., it is measure of correlation
between Y; and Y;_,, after the effects of Y;_; Y, .....,¥;_,41 has been taken into account. The
theoretical partial autocorrelation coefficient is expressed in the form of an AR,, process i.e.,

Ye-01Y 1+ DY + -+ @,Y,_, where g, is the partial autocorrelation coefficient that estimates the
relationship between Y, and Y;_,. By including (1) ) P ,(Z)p_1 in this regression we are accounting

for their effects on Y, while estimating g,,

61 Tseng and Tzeng, 2002; Zhang and Qi, 2005; Wang et al. 2012
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assumed to have zero mean and constant variance. (1 — B)4 and (1 — BS)? are the
nonseasonal and seasonal differencing operators, respectively. Finally, s denotes the

number of periods in the seasonal cycle.

Therefore:

0,(B)=(1-0,B - @,B*-93B%-........... — ¢, BP) 4.7
#p(B¥) = (1- 8,5B° — #,sB** —g3B35 - ....... - 8psBFS) 4.8
04(B)=(1-0,B- 08,B%-03B°-.......... — 8,B9) 4.9
0o(B°) = (1- 0;6B° — 0,6B%5 — 03B - ....... -0qsBY) 4.10

Furthermore, an ARIMA model can be amended to incorporate independent exogenous
variables to account for outliers and/or structural breaks. This could be referred to as an
ARIMAX model.®? The modelling of the outliers/breaks can take different forms such as:
step-shift, pulse, split trend or slope- shift.

In this case, the ARIMAX model can be specified as:
Ye=Bo+ 25;11 Bi Dyt Xir +u, 4.11

(1-94B - ¢,B*-@3B% - .....- 9pBF) u, = (1-0,B - 0,B% - 6,B>- ....-0,B%) e,
4.12

) (1-61B—6,B% —0,B% ..— 0,B7) e,
The equation (4.12) can be rearranged as: U, (1= p.B — 9,52 — 9,53 5P
- 1 - 2 - 3 = aeeaas - P

62 Akal (2004) documents that ARIMAX modelling corrects the deficiencies of the econometric causal-
effect technique by using dynamic filters to explain the variations in endogenous variables.
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o)
?(B)

8,B - 8,B% - 3383 - ...... - pBY)

Hence u; = €¢, where ©(B) = (1-6,B - 0,B% - 6,B% .... - ,B) and ®(B) = (1-

Therefore, the ARIMAX model could be expressed as:

O(B)
Ye=Bo + B1DitXit + B2 Dor X + -+ + B(K—l)D(K—l)tX(K—l)t + ﬁet- 4.13

WhereY, is the dependent variable, k — 1 is the intervention variable, D;; is the dummy
variable, B, and f; are the coefficients, X;; are the explanatory variables, u; is the error
term that is modelled by a univariate ARIMA(p,d,q) structure — this can be easily
extended to a seasonal ARIMA specification (as above). The equation (4.11) is the
explanatory component of the ARIMAX model and equation (4.12) specifies the ARIMA
model of the error term u; part of the ARIMAX model. The equation (4.12) is strictly an
ARMA(p,q) because it is typically assumed that u, is stationary (although this can be
extended to account for seasonal AR and MA components too). In our models, we focus
on modelling outliers and structural shifts using the dummy variables, D;;, and we do
not add any explanatory variables, X;;.

The ARIMAX model involves dummy variables to model the outliers and structural
breaks and, take the values of 0 or 1. For example, the pulse intervention specifies the
dummy variables as:

(0 if t#
Dit_{l if t=t

Where X;; =1 (one outlier or break)

And the step intervention allocates dummy variables as follows:

_ (0 If t=< ¢
Dit_{l if t>t

where X;; =1 (one outlier or break) 3

8 The step intervention analysis is associated with permanent changes in the mean of the series while
the pusle intervention is associated with a temporary shift in the mean of the series that eventually
returns to its stable position.
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4.4.2 The identification of AR and MA orders using the ACF and PACF

A stationary autocorrelogram graph is expected to decay geometrically from its initial
value and expected to drop to zero within four or five lags. The very slow decaying of
the autocorrelation function (ACF) suggests non-stationary. If the ACF sample decays
slowly, more differencing is needed to remove non-stationarity. However, over
differences should be avoided.®* Although, the consequences of over differencing is less
important in the estimation of AR and MA orders than under differencing the series.
When the series is stationary, it becomes possible to use the ACF and partial
autocorrelation function (PACF) to identify the order q and p of an ARIMA model. A
stationary autoregressive AR process exists when the ACF declines slowly toward zero
as k increases. The slow decay of the PACF indicates the existence of an MA process. In
the case of seasonal ARIMA models the identification of AR(P) and MA(Q) processess is
similar to that of non-seasonal AR(p) and MA(q) procedures except for the displacement
lags of the autocorrelation coefficients ocure at every multiple of four, i.e 4,8 12,16....,
instead of 1, 2, 3, 4....., as for non-seasonal components.®® The order of MA(Q) and
MA(q) are indicated by the number of consecutive significant sample autocorrelation
coefficients at seasonal and non-seasonal lags, respectively, while the order of AR(P) and
AR(p) are identified by the number of consecutive signifcant sample of partial
autocorrelation coefficients at seasonal and non-seasonal lags, respectively. However,
the PACF is employed to identify the order of an AR process while the ACF is employed
to identify the order of an MA process. Note that the number of statistically significant
ACF and PACF coefficents do not always indicate the correct specification of ARIMA

model due to the sampling error.

Lastly, the ARIMA models will be checked for invertibility stationarity and the absence

of residual autocorrelation in the diagnostic checking stage.®® The ARIMA model

84 Over differencing can create artificial patterns in data series (spurious MA processes) and can reduce
forecast accuracy (Pankratz 1983).
5 In most cases, the displacement lags of seasonal ARIMA models is denoted as S, 2S, 3S, 4S...., with the
requirement that S = 4 for quarterly data.
%6 According to the Wold decomposition theorem, the invertibility rule stated that the MA(1) process is
equivalent to an infinite order autoregressive process AR (=°).
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favoured for forecasting will be chosen by the lowest value of Schwarz’s (1978) Bayesian

information criterion (SBIC).

4.5 The chapter summary and conclusion

This chapter consists of two sections. The first section analyses the graphical features of
the quarterly price data (its transformations) and annual inflation with the descriptive
statistics to assess issues of seasonality, stationarity and structural breaks for each
country. While the second section outlines the Box Jenkins ARIMA and ARIMAX methods
of univariate modelling employed in this thesis. From the first section, a mixture of visual
inspection of the data and the result of the descriptive statistics test showed that the
log of the price is nonstationary in all the growing inflationary economies under
consideration. The standard quarterly (one period) difference is generally insufficient to
induce stationarity because of seasonal unit roots. Conversely, the annual (four periods)
difference is generally sufficient to induce stationarity, although only after structural
breaks have been accounted for in modelling. However, the graphical analysis indicates
that annual inflation is stationary around a constant mean or around step-shifts in the
t— Pt—s

mean.®’ In our study, we use annual inflation, INF,= PP— to estimate ARIMAX/ARIMA

t—4

and TAR model for all countries. Our expectation follows that if annual inflation is not
stationary the ARIMAX/ARIMA estimate with such data will be rejected by the diagnostic

checks for stationarity and invertibility.

57 Although, the Jarque—Bera statistics clearly reject the null hypothesis of a normal distribution for
annual inflation in all selected countries except South Africa and India. This suggests that the observed
data are mostly inconsistent with the assumption of normality in the selected countries.

82



CHAPTER 5

BOX- JENKINS BASED ARIMAX MODELLING OF ANNUAL INFLATION

5.0 Introduction

In this chapter, we develop on the analysis presented in Chapter four and build ARIMAX,
different ARIMA specifications and TAR models to the annual difference of inflation,
INF_*, where * denotes the three-letter country identifier (section 5.1 to 5.5).68 Further,
we produce forecast for the best selected ARIMAX, different ARIMA specifications and
TAR model that passes the standard diagnostic tests (residual autocorrelation,
stationarity and invertibility for ARIMAs/ARIMAX and serial autocorrelation for TAR
model) and choose the best forecasting model with the lowest value of RMSE, MAPE
and U-statistics (section 5.6). For stationarity, our graphical analysis indicates that
annual inflation will be stationary around a constant mean or around step-shifts in the
mean. Whilst there may be some seasonality our graphical analysis suggests that this
will not require transformations to deal with seasonal (unit) roots although it might
require seasonal dummy variables (that shift for some countries) and seasonal ARMA
components. We use the Bai and Perron (2003a and 2003b) test to help identify
potential multiple shifts in the seasonal dummy variables to build a deterministic model
of these shifts. Using graphical analysis of the actual and fitted values, we check that this
deterministic model has appropriately captured the breaks in the data and make any
necessary modifications. The structural breaks are then summarised by a single indicator
variable. We then build a potentially seasonal ARMA model (based on the Box-Jenkins
method) to the residuals of the deterministic model. The ARIMAX model is the combined

deterministic and ARMA model. For each country, we model the full sample of available

%8 TAR model is the threshold autoregressive model estimated over the full sample and reduced sample
that avoid modelling structural breaks. ARIMAX is the ARIMA models that have a deterministic
component to account for structural breaks over the full sample period. Different ARIMA specifications
are estimated over a reduced sample period that avoids the modelling structural breaks.

For different ARIMA specifications, we estimate the followings: first, a seasonal ARIMA specification
identified using the Box-Jenkins method, second, a seasonal ARIMA model identified using EView’s
automatic model selection tool and, third, a non-seasonal ARIMA model identified using EView’s
automatic model selection tool applied to seasonally adjusted data.
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data (with a couple of minor exceptions). The modelling of each country is considered
in turn below. We provide a detailed discussion of the ARIMAX model developed for
Brazil and summarise the results of the ARIMAX modelling process that was applied to

the other countries under consideration.
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5.1 ARIMAX modelling of annual inflation for Brazil

The maximum available sample period is 1980g1 to 2012g4. To allow for lags,
transformations and have a consistent estimation period for all models we specify an
initialization period of four years and estimate all models over the period 1984q1 —
2012qg4. Forecasts (to be discussed in later chapters) will be produced over the period
2013qg1 — 201494 using this model. The first sub-section discusses the development of
the deterministic component of the model that allows for structural breaks (shifts in the
seasonal means). The second sub-section identifies the ARMA component to the

residuals of this model and hence discusses the development of the final ARIMAX model.

Table 5.1.1: Bai and Perron tests for structural breaks in Brazilian annual inflation

Break Scaled F-statistic | Critical Value Sequential Repartition
Hypothesis

Ovs1 48.440 16.19 1995q1 1989¢3
lvs?2 69.432 18.11 198993 1995q1
2vs3 0.0518 18.93

In Table 5.1.2 we report various deterministic models of annual inflation. The model
reported in the column labelled 1 is the benchmark model that includes the 4 seasonal
dummy variables denoted, Dy; where s = 1, 2, 3,4, and does not model any structural
breaks. Three of the four seasonal dummy variables are significant according to the t-
ratios (reported in brackets below the dummy variables’ coefficients) and the model’s

Schwarz criterion (SC) is 7.637.

Table 5.1.1 reports the Bai and Perron scaled F-statistics with the associated 5% critical
values for the benchmark model reported in the column labelled 1 in Table 5.1.2. The
test results indicate that there are two significant breakpoints because the scaled F-
statistic is greater than the corresponding critical value for the null hypothesis of no
breaks (denoted 0 vs 1) and the null hypothesis of one break (1 vs 2). However, the
scaled F-statistic is less than the critical value for the null hypothesis of 2 breaks (2 vs 3).
The sequential and repartition methods indicate the same break point dates of 1995q1

and 1989q3.
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Based on the Bai and Perron test results we specify shift dummy variables (that are zero
prior to the break date and unity from the break date onwards) interacted with the
seasonal dummy variables that give shifts in the seasonal means in 1989q3, denoted
D(1989q3)s:, and 1995q1, denoted D(1995qg1)4;. The model including the seasonal
dummy variables and the shift dummy variables is given in the column headed 2 of Table
5.1.2. All of the shift dummy variables are significant suggesting significant changes in
the seasonal means at the identified break points although all 4 of the original seasonal
dummy variables are insignificant. The significance of these shift dummy variables and

that this model’s SC falls to 7.083 supports the need to model the identified breaks.

Figure 5.1.1 plots the actual and fitted values of the model reported in column 2 of Table
5.1.2. Visual inspection of this graph suggests that this deterministic model based on the
Bai and Perron test results does not capture all of the mean shifts in the actual data. The
graph suggests two more mean shifts in 1991g1 and 1992g3 and, we therefore add
interaction dummy variables, denoted D(1991q1)s; and D(1992q3);, to the model
reported in column 2 to capture these shifts. The estimation results of this model are
reported in column 3 of Table 5.1.2. All of the shift dummy variables are significant
suggesting significant changes in the seasonal means at the identified break points and
3 of the original seasonal dummy variables are significant. The significance of these shift
dummy variables and that this model’s SC falls to 6.022 supports the inclusion of all of

these interaction terms in the model.

Figure 5.1.2 plots the actual and fitted values of the model reported in column 3 of Table
5.1.2. Visual inspection of this graph suggests that this deterministic model better
captures the main mean shifts in the actual data than did model 2 (note the relative left-
hand scales for the residuals in these two figures and how the fitted values are much
closer to the actuals for model 3). We regard model 3 from Table 5.1.2 as capturing the
main mean shifts in the data and use this as the basis of the deterministic component of

our ARIMAX model of Brazil’s annual inflation.
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Table 5.1.2: Deterministic component of ARIMAX models for Brazil

Sample/Observation 198491 —-201294 (116)
1 2 3 4
Dy, 4.531 3.733 3.733
(2.362) (1.326) (2.551)
D, 5.447 3.579 3.579
(2.839) (1.271) (2.446)
D3 4.380 2.743 2.743
(2.283) (0.889) (1.711)
Dy 3.689 3.499 3.499
(1.923) (1.134) (2.182)
D(1989q3),; 17.010 39.369
(4.072) (10.167)
D(1989q3),; 23.318 56.806
(5.583) (14.670)
D(1989¢3)3; 15.908 22.513
(3.809) (7.506)
D(1989q3) .4, 11.191 15.1446
(2.679) (5.049)
D(1991q1);, -38.445
(-8.756)
D(1991q1),, -56.014
(-12.758)
D(1991q1)3, -21.456
(-4.887)
D(1991q1),, -14.169
(-3.227)
D(1992g3),; 20.993
(5.856)
D(1992g3),; 28.309
(7.897)
D(1992g3)3; 15.400
(3.720)
D(1992q3),; 10.984
(2.653)
D(1995q1),, -20.449 -25.356
(-5.864) (-9.489)
D(1995q1),; -26.786 -32.569
(-7.681) (-12.189)
D(1995q1)3; -18.574 -19.122
(-5.712) (-8.554)
D(1995q1),; -14.615 -15.384
(-4.494) (-6.881)
|_BRA 1.000
(34.979)
Adj R? -0.023 0.544 0.877 0.897
SC 7.637 7.083 6.022 5.243
S.E 10.331 6.898 3.585 3.276
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Figure 5.1.1: the actual and fitted values of model 2 reported in Table 5.1.2
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Figure 5.1.2: the actual and fitted values of model 3 reported in Table 5.1.2
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Following Hendry (2001), Hendry and Santos (2005) and Caporale et. al. (2012) we
construct an index of indicator variables to summarise the deterministic terms reported
in column 3 of Table 5.1.2 in a single variable to enhance the efficiency of estimation of
the ARIMAX model. We therefore define the index of indicator variable, denoted |_BRA,
as the fitted value of the model reported in column 3 of Table 5.1.2 and report the
regression of annual inflation on this indicator variable in column 4 of Table 5.1.2. The
index is significant and has a unit coefficient as is expected. This model’s SC is 5.243
which provides a benchmark for comparison with potential ARIMAX models to be

developed from this deterministic specification that are discussed below.

5.1.2 Developing the ARIMAX model for Brazil

The autocorrelation function (ACF) and partial autocorrelation function (PACF) of the
residuals of the deterministic model reported in column 4 of Table 5.1.2 is plotted in
Figure 5.1.3. From the ACF the non-seasonal autocorrelation coefficients (ACs) are
significant at lag 1 and insignificant at lags 2, 3, 5 and 6. This implies that there is no need
for further non-seasonal differencing because no more than the first 5 non-seasonal ACs
are significant. It also implies that the maximum order of non-seasonal moving average
(MA) component is probably 1. Further, the seasonal ACs are significant at lags 4 and 8
and insignificant at lags 12, 16, 20, 24 and 28.%° This suggests that there is no need for
further seasonal differencing because no more than the first 5 seasonal ACs (at the
seasonal lags 4, 8, 12, 16 and 20) are significant. It also indicates the maximum order of
seasonal MA component is probably equal to 2 given the significant seasonal lags of 4

and 8.

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are
significant at lag 1 and insignificant at lags 2 and 3. This suggests the maximum order of

non-seasonal autoregressive (AR) component is probably 1. The seasonal PACs are

% In seasonal ARIMA modelling the ACF is expected to have insignificant autocorrelation coefficients by
the fifth or sixth seasonal lag to require no seasonal differencing. The first, second, third, fourth and fifth
seasonal lags are represented by the autocorrelation coefficients at the following lag displacements: 4,
8, 12, 16 and 20 respectively. If the ACF sample decays very slowly at the seasonal lags (that is, the first 5

or so seasonal lags are significant) further seasonal differencing is needed.
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significant at lags 4, 8 and 16 and insignificant at lags 12, 20, 24 and 28. Therefore, the
maximum order of seasonal AR process is probably be equal to 2 (because the PAC at
lag 12 is insignificant) although could be 4 (given the significance of the PAC at lag 16).
Therefore, the maximum seasonal ARMA specification that we initially identify to the

residuals of the deterministic model is ARMA(1,1)(2,2),.

Figure 5.1.3: the ACF and PACF of the residuals of model 4 reported in Table 5.1.2
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We report the multiplicative ARMA(1, 1)(2, 2), specification that includes |_BRA plus 4
seasonal dummy variables as our initial ARIMAX model in the column headed 5 of Table
5.1.3. In this model the SC falls to 4.805 suggesting that the addition of ARMA terms has
improved the specification. |_BRA is significant whereas all 4 seasonal dummy variables
are insignificant. The latter is confirmed by the joint test for the exclusion of all 4
seasonal dummy variables, denoted LR (SEA DUM), which has a probability value of
0.687 (given in squared brackets below the reported test statistic). Because this exceeds
0.05 these 4 dummy variables are jointly insignificant. The first non-seasonal
autoregressive variable’s coefficient, denoted AR(1), is significant as is the first seasonal
AR variable’s coefficient, denoted SAR(4), however, the second seasonal AR variable’s
coefficient, denoted SAR(8), is insignificant. The first non-seasonal moving average
variable’s coefficient, denoted MA(1), is insignificant as is the first seasonal MA
variable’s coefficient, denoted SMA(4), however, the second seasonal MA variable’s
coefficient, denoted SMA(8), is significant. These results suggest that the specification
can be improved by the exclusion of some combination of deterministic and ARMA

terms.
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Table 5.1.3: The ARIMAX table for Brazil

Sample/Observations 1984q1-2012qg4 (116)
5 6 7 8
I_BRA 1.021 1.021
(73.407) (77.081)
I_BRA2 1.043 1.046
(73.462) (95.933)
D, 0.080 0.081 -0.471 -0.494
(0.956) (1.022) (-6.435) (-9.628)
D, 0.064 0.064 -0.362 -0.392
(0.670) (0.702) (-4.449) (-6.887)
D3 0.094 0.092 -0.544 -0.569
(1.098) (1.115) (-8.159) (-11.900)
D, 0.026 0.027 -0.520 -0.472
(0.337) (0.368) (6.163) (-11.089)
AR(1) 0.474 0.366 0.520 0.622
(2.052) (4.026) (6.163) (7.955)
SAR(4) -0.777 -0.825 -0.841 -0.145
(-7.803) (-18.477) (-17.111) (-1.511)
SAR(8) 0.052 -0.297
(0.545) (-3.180)
MA(1) -0.128
(-0.492)
SMA(4) 0.023 0.024 -0.000 -0.100
(1.000) (0.962) (-0.008) (-26.029)
SMA(8) -0.977 -0.977 -1.000
(-42.532) (-39.905) (-30.695)
Adj R? 0.952 0.952 0.958 0.956
SC 4.805 4.730 4.607 4.645
S.E 2.243 2.230 2.100 2.137
AR Root 0.957 0.953 0.958 0.859
0.499 0.366 0.520 0.622
0.474
MA Root 0.999 1.0007° 0.999 0.999
0.994 0.994
0.128
P[QLB(11)] 0.281 0.447 0.009 0.402
LR (SEA DUM) 2.265 2.378 29.439 29.138
[0.687] [0.667] [0.000] [0.000]
LR (SEA DUM, CON) 36.093
[0.000]
LR(1989¢3) 4.888 9.734 0.632 1.153
[0.299] [0.045] [0.959] [0.886]
LR(1991q1) 4.483 -0.0857* 0.376 1.536
[0.345] [0.984] [0.820]
LR(1992q3) 6.794 13.985 0.095 2.191
[0.147] [0.007] [0.999] [0.701]
LR(1995¢1) 3.360 12.717 0.621 0.305
[0.500] [0.013] [0.961] [0.990]

Where: |_BRA = the fitted value of the model reported in column 3 of Table 5.1.2, SE = S E of regression, MA = the maximum order
of non-seasonal moving average component, SMA = the maximum order of seasonal moving average component, AR = the maximum
order of non- seasonal autocorrelation component, SAR = the maximum order of seasonal moving average component , D, = the
seasonal dummy variables, denoted as D, D,;, D5, and D,;, P[QLB(11)] = Probability value of the Ljung-Box Q-statistic at the 11t
lag - based on the square root of the sample size (v/116), Adj R? = Adjusted R—square , SC = Schwarz criterion, AR Roots = Stationary
Autoregressive average , MA Roots = Stationary Moving average, LR(SEA DUM) = the joint test for the seasonal dummy variables;
LR(1989¢3),LR(1991q1), LR(1992q3) and LR(1995q1) =Joint shift significance of each break date, Rounded Bracket =T — Ratios
and Square Bracket = Probability value.

70 The value is rounded up to one, however, it is less than one which means that invertibility is not violated.

7 The test statistic has a negative value and therefore no p-value. However, the test statistic is clearly very small
and therefore is highly insignificant.
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We also conduct variable addition tests for the shift dummy variables included in the
|_BRA variable to assess whether the coefficients on these terms embodied in this index
have changed significantly with the addition of ARMA terms. A test of whether the 4
shift dummy variables corresponding to the 1989qg3 break can be added to the model
with joint significance is reported in the row labelled LR(1989g3). Since the probability
value (given in square brackets below the test statistic, being 0.299) exceeds 0.050 these
variables cannot be added with joint significance. Similarly, the probability values of the
joint tests of the 4 shift dummy variables corresponding to the break dates 1991q1,
199293 and 1995q1, reported in the rows labelled LR(1991qg1), LR(1992g3) and
LR(1995q1) respectively; all exceed 0.050 indicating that no shift variables for these
dates can be added with joint significance. This suggests that the coefficients embodied
in |_BRA have not significantly changed with the addition of ARMA terms and therefore

remains an adequate specification of the deterministic component of the model.

For the model to be valid we apply the standard diagnostic checks for residual
autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-
statistic at the 11t lag, denoted P[QLB(11)], exceeds 0.050 indicating no evident residual

autocorrelation — we choose lag 11 based on the square root of the sample size (in this

case \/E). The inverse roots of the AR process, denoted AR Root, are all less than one
indicating that the model is consistent with a stationary process. The inverse roots of
the MA process, denoted MA Root, are all less than one indicating that the model is
invertible. Hence, the model is valid for forecasting in the sense that there is no evidence

of misspecification according to the standard tests.

However, as indicated above the specification can be improved with the removal of
insignificant ARMA variables. The coefficients on the MA(1), SMA(4) and SAR(8) terms
are not significant and are candidates for exclusion. Since the SMA(8) term is significant
we do not remove the SMA(4) term to retain the full second-order seasonal MA
component. Therefore, we remove the MA(1) and SAR(8) terms from the model
reported in the column headed 5 from Table 5.1.3 and report the resulting
ARMAX(1,0)(1,2), specification in the column headed 6 of Table 5.1.3. This model
cannot be rejected by the diagnostic checks for residual autocorrelation, stationarity

and invertibility. In terms of specification, all variables are significant except for the
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SMA(4) term, which we would not exclude because the SMA(8) term is significant. The
seasonal dummy variables are jointly insignificant according to LR(SEA DUM) because its
probability value is greater than 0.05. However, the tests LR(1989q3), LR(1992¢g3)
and LR(1995q1) indicate that the seasonal shift coefficients embodied in I_BRA have
changed significantly. We therefore add the seasonal shift dummy variables
corresponding to these dates to the model reported in the column headed 6 of Table
5.1.3 and use the estimated coefficients on these terms to adjust |_BRA. The new index

of an indicator variable, |_BRA2, is defined as:

|_ BRA2 = |_BRA + 2.483 [S1*51989Q3] + 1.264 [S2*51989Q3] - 0.488 [S3*51989Q3] +
1.323 [$4*$1989Q3] - 3.987 [S1*51992Q3] - 3.791 [S2*51992Q3] + 1.002 [S3*51992Q3]
- 2.270 [S4*S1992Q3] + 1.865 [S51*S1995Q1] + 2.970 [S2*$1995Q1] + 0.113
[S3*51995Q1] + 1.433 [S4*$1995Q1].

We re-estimate the model reported in the column headed 6 of Table 5.1.3 with |_BRA
being replaced with |_BRA2. The resulting model is reported in the column headed 7 of
Table 5.1.3. Although this model does not fail the diagnostic checks for invertibility and
stationarity, there is evidence of autocorrelation suggesting unmodelled systematic
variation in the dependent variable and the need to adjust the model. Experimentation
with the ARMA terms demonstrates that an SAR(8) term is significant when included
instead of the SMA(8) term included in model 7. Hence, we estimate the

ARMAX(1,0)(2,1), model reported in the column headed 8 of Table 5.1.3.

This model cannot be rejected according to the standard diagnostic checks for residual
autocorrelation, stationarity and invertibility. Therefore, it is valid for forecasting. All
variables are significant except for the SAR(4) term, which we would not remove
because the SAR(8) term is significant. Notably, the seasonal dummy variables are now

individually and jointly significant (see LR(SEA DUM)).

The tests for the addition of the 4 sets of shift dummy variables, LR(1989¢3),
LR(1991q1), LR(1992g3) and LR(1995q1), all have probability values that exceed
0.050 indicating that the coefficients embodied in |_BRA2 have not significantly changed

as the ARMA specification is amended.
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We test the null hypothesis of whether the coefficients of the seasonal dummy
variables, Dy¢, Dy¢, D3¢ and Dy, are the same using a Wald test. This test is reported in
the row labelled LR (SEA DUM, CON) of column 8 and the probability value is 0.000. Since
this value is less than 0.050, we reject the null hypothesis (of no seasonality) and accept
the alternative hypothesis. This suggests a significant difference in the coefficients of
the individual seasonal dummy variables indicating significant deterministic seasonality.
Hence, these seasonal dummy variables cannot be replaced by a single deterministic
intercept. Further, this model cannot be rejected according to the standard diagnostic
checks for residual autocorrelation, stationarity, invertibility and the coefficients
embodied in |_BRA2 have not significantly changed as the ARMA specification is
amended. Therefore, model 8 in Table 5.1.3 is considered the best model to forecast
Brazil’s annual inflation. Visual inspection of the actual and fitted values graph of this
model suggests that the time paths of the actual and fitted values capture all of the
mean shifts in the actual data and any unmodelled seasonality is within the confidence

limits and diminishes toward zero.

Figure 5.1.4: the actual and fitted values of model 8 reported in Table 5.1.3
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Therefore, we regard model 8 from Table 5.1.3 as the best ARIMAX model for
forecasting Brazilian annual inflation because it has the minimum SC from those that
cannot be rejected according to the diagnostic checks and the included deterministic
adequately captures the identified structural breaks (according to the conducted

variable addition tests). A similar procedure was applied for all countries and (to save
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space) the discussion for all countries is available in Appendix (Section 5.1, page 285 -
393). The table below summarises the favoured ARIMAX specifications for all BRICS and
OPEC countries. These are the ARIMAX specifications used to forecast each country’s
inflation over the period 2013g1 to 2014q4. We note that all countries’ favoured models
pass the diagnostic checks and are therefore valid for forecasting. Further, the favoured
ARIMAX models include an indicator dummy variable to capture structural breaks for all

countries except India.
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5.1.5 Summary of the ARIMAX specification for BRICS countries

Countries Brazil Russia India China South Africa
Start 1984q1 1996q1 1961q1 1992q1 1961q1
End 201204 2012q4 2012q4 2012q4 2012q1
Observations 116 68 208 84 208
ARMAX (1,0) (2,1) (0,5) (4,3) (2, 3) (1,1) (1,0)
Specifications
|_(P) 1.046 1.016 1.037 -0.040
(95.933) (14.421) (5.778) (-6.425)
D, -0.494 -0.009 0.080 -0.027
(-9.628) (-0.443) (8.732) (-1.600)
D, -0.392 -0.009 0.079 -0.023
(-6.887) (-0.434) (8.717) (--1.382)
D, -0.569 -0.004 0.079 -0.020
(-11.900) (-0.198) (8.709) (-1.246)
D, -0.472 -0.007 0.079 -0.015
(-11.089) (-0.339) (8.728) (-0.959)
AR(1) 0.622 0.489 0.378 0.993
(7.955) (6.973) (2..953) (113.433)
AR(2) 0.126 0.341
(1.600) (2.789)
AR(3) 0.112
(1.435)
AR(4) -0.186
(-2.669)
SAR(4) -0.145 -0.605
(-1.511) (-9.042)
SAR(8) -0.297
(-3.180)
MA(1) 0.184 1.005 0.904 0.465
(1.403) (61.557) (10.427) (7.259)
MA(2) 0.511 1.000 0.773
(4.432) (61.251) (7.692)
MA(3) 0.468 0.980 0.868
(3.633) (88.145) (11.057)
MA(4) -0.431
(-3.397)
SMA(4) -0.100
(-26.029)
MA(5) 0.428
(2.981)
Adj R? 0.956 0.932 0.926 0.943 0.945
SC 4.645 -2.278 -5.307 -5.902 -5.951
S.E 2.137 0.062 0.015 0.010 0.012
AR Root 0.859 0.695 0.803 0.993
0.622 0.621 0.425 0.882
MA Root 0.999 0.999 0.994 0.999 0.465
0.992 0.992 0.932
0.659
P[QLB] 0.402[11] 0.519[8] 0.163 [14] 0.163[9] 0.178[14]
LR (SEA DUM) 29.138 9.425 29.925 3.120
[0.000] [0.051] [0.000] [0.540]
LR (SEA DUM, | 36.093 12513.370 12.580 10.986 312.016
CON) [0.000] [0.000] [0.000] [0.000] [0.000]
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MA = the maximum order of non-seasonal moving average component, SMA = the maximum order of
seasonal moving average component, AR = the maximum order of non- seasonal autocorrelation
component, SAR = the maximum order of seasonal moving average component , Dy, = the seasonal
dummy variables, denoted as Dy, D,¢, D3¢ and Dy, P[QLB]= Probability value of the Ljung-Box Q-statistic
at that based on the square root of the sample size, Adj R? = Adjusted R — square , SC = Schwarz criterion,
AR Roots = Stationary Autoregressive average , MA Roots = Stationary Moving average, LR(SEA DUM) =
the joint test for the seasonal dummy variables, Rounded Bracket = T — Ratios and Square Bracket =
Probability value. |_(P ) = is an index indicator variable for seasonal shifts embodied as the deterministic
terms, i.e Brazil is estimated at I_ BRA2, Russia at |_ RUS, China is estimated at |_ CHI4 and South Africa
is estimated at I_ SOU. However, India does not have an index indicator variable because the Bai Perron
test did not specify any break for this country. For South Africa, the seasonal dummy variables are jointly
insignificant. Therefore, we exclude the seasonal dummy variables from the model. After the exclusion of
these dummies the model passes all the required diagnostic tests for stationarity, invertibility and

autocorrelation.
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5.1.6 Summary of ARIMAX specification for selected OPEC countries

Countries Algeria Angola Ecuador Kuwait Nigeria Saudi
Arabia
Start 1978q1 199691 1987q1 1977q1 1964q1 1975q1
End 2012Q4 2012q4 2012q4 2012q4 2012q1 2012q1
Observations 140 68 104 140 196 152
ARMAX (4,4) (1, 2) (0,2) (0,1) (1,3) (1,2) (0,1) (1,4)(1,0)
Specifications
I_(P) 0.931 0.219 0.250 0.566 0.413 0.593
(22.883) (65.172) (6.677) (21.047) (6.740) (10.889)
D, -111.109 -0.138 0.016 0.105
(-63.171) (-0.515) (4.383) (3.402)
D, -1.893 -0.139 0.021 0.105
(-4.146) (-0.518) (5.968) (3.363)
D, 33.137 -0.138 0.019 0.106
(48.401) (-0.513) (5.150) (3.389)
D, 0.806 -0.139 0.018 0.104
(1.747) (-0.517) (5.102) (3.327)
AR(1) -0.482 0.701 0.355 0.982 -0.578
(-5.905) (37.589) (4.131) (53.154) (-8.389)
AR(2) 0.288
(3.025)
AR(3) -0.214
(-2.367)
AR(4) -0.648
(-8.371)
SAR(4) 0.293
(4.148)
MA(1) 1.148 -0.352 0.696 0.861 0.259 1.747
(17.226) (-8.927) (7.667) (20.914) (3.478) (173.159)
MA(2) 0.546 0.999 0.485 0.762 0.219 1.590
(4.587) (979.039) (5.238) (13.532) (2.974) (86.922)
MA(3) 0.814 0.882 1.719
(7.323) (22.003) (130.153)
MA(4) 0.785 0.977
(13.321) (137.423)
SMA(4) -0.999 -0.969
(-32.316) (-63.398)
Adj R? 0.893 0.997 0.980 0.949 0.911 0.960
SC -3.929 2.360 -3.449 -6.646 -2.887 -5.296
S.E 0.029 0.654 0.037 0.008 0.052 0.016
AR Root 0.933 0.701 0.986 0.355 0.982 0.735
0.863 0.578
MA Root 0.986 0.999 0.999 0.991 0.992 0.996
0.898 0.696 0.943 0.468 0.993
P[QLB] 0.061[12] 0.111[8] 0.116[10] 0.330[12] 0.184[14] 0.145[12]
LR (SEADUM) 298.100 11.295 88.095 18.313
[0.000] [0.023] [0.000] [0.001]
LR (SEA DUM, | 439.,689 1487.189 6.969 647622.300 | 8.948 499.119
CON) [0.000] [0.000] [0.000] [0.000] [0.000] [0.000]

MA = the maximum order of non-seasonal moving average component, SMA = the maximum order of
seasonal moving average component, AR = the maximum order of non- seasonal autocorrelation
component, SAR = the maximum order of seasonal moving average component , Dy = the seasonal
dummy variables, denoted as Dy;, D,;, D3; and D,;, P[QLB]= Probability value of the Ljung-Box Q-statistic
at that based on the square root of the sample size, Adj R? = Adjusted R — square , SC = Schwarz criterion,
AR Roots = Stationary Autoregressive average , MA Roots = Stationary Moving average, LR(SEA DUM) =
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the joint test for the seasonal dummy variables, Rounded Bracket = T — Ratios and Square Bracket =
Probability value. |_(P ) = is an index indicator variable for seasonal shifts embodied as the deterministic
terms, i.e Algeria is significant at |_ ALG, Angola at|_ ANG3, Ecuador at |_ ECU3, Kuwait at |_KUW4, Nigeria
at |_NIG3 and Saudi Arabia is significant at |_ SAU. For Saudi Arabia and Algeria, the seasonal dummy
variables are jointly insignificant. Therefore, we exclude the seasonal dummy variables from these
models. After the exclusion of these dummies the model passes all the required diagnostic tests for
stationarity, invertibility and autocorrelation.
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5.2.0 Box-Jenkins based ARIMA modelling of annual inflation on reduced
samples without structural breaks

In this section, we will build ARIMA models to the countries’ annual inflation using a
reduced sample period that avoids structural breaks. We use the break dates identified
in the above full sample modelling and provided a minimum of 39 observations for
estimation and we develop seasonal ARIMA models. Although there may be some
seasonality our analysis in Chapter 4 suggests that the annual rate of inflation (based on
a 4-period difference) will not require further transformations to deal with seasonal (or
nonseasonal) unit roots. Hence, it is this variable that we build seasonal ARIMA models
to in all countries. However, we include seasonal dummy variables as the deterministic
component of our model which combined with an ARMA specification to the residuals
yields our ARIMA model. The purpose of this is to consider whether forecast accuracy is
improved by using a shorter sample (reducing efficiency of estimation) to avoid the
modelling of structural breaks. The latter entails problems associated with accurately
identifying and characterising the breaks (we have typically approximated breaks with
an abrupt sample shift which may not be ideal if the break occurs over several periods).
Therefore, we consider those countries that meet our minimum requirements. In this
study, we consider countries that exhibit structural breaks (we therefore do not model
India without a structural break again) and a minimum of 39 observations without
structural breaks at the end of their samples. This may be justified by the notion that

the end-of-sample period is more relevant for forecasting the future than older samples.

The available countries that meet up with our minimum requirements in the BRICS and

selected OPEC countries are summarised below:

Table 5.2

Country Sample

Brazil 1995qg2- 201294
Russia 2001qg2- 2012qg4
South Africa 1993¢2-2012qg4
Nigeria 1996q4- 201294
Algeria 1997q1- 2012q4
Saudi Arabia 1977q3- 2012q4
Angola 1998q4- 2012q4
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5.2.1 Box-Jenkins ARIMA modelling of annual inflation for Brazil

In the full sample ARIMAX model developed for Brazil in section 5.1 we identified the
last structural break date as 1995g1. Hence, the maximum available estimation period
that avoids structural breaks is 1995q2 to 2012q4.To allow for lags, transformations and
have a consistent estimation period for all models we specify an initialization period of
two years and estimate all models over the period 199792 — 201294 (63 observations).
First, we regress inflation on the 4 seasonal dummy variables denoted Dy, where s =
1,2, 3,4, to yield the benchmark deterministic specification. Second, we identify the
ARMA components to the residuals of this model and discuss the development of the

final seasonal ARIMA model.

Table 5.2.1 reports the benchmark deterministic specification and various seasonal
ARIMA models. The model reported in the column labelled 1 is the benchmark
deterministic model. The results indicate that all of the seasonal dummy variables’

coefficients are significant and the model’s Schwarz criterion (SC) is -4.055.

Figure 5.2.1 plots the autocorrelation function (ACF) of the residuals of the model
reported in the column headed 1 in Table 5.2.1. The non-seasonal autocorrelation
coefficients (ACs) from the ACF are significant at lags 1, 2 and 3 and insignificant at lags
4, 5 and 6. This implies that there is no need for further non-seasonal differencing
because no more than the first 5 non-seasonal ACs are significant. It also implies that
the maximum order of non-seasonal moving average (MA) component is probably 3.
Further, the seasonal ACs are significant at lags 16 and 20 and insignificant at lags 4, 8,
12, 16, 20, 24 and 28. This suggests that there is no need for further seasonal
differencing because no more than the first 5 seasonal ACs (at the seasonal lags 4, 8, 12,
16 and 20) are significant. It also indicates the maximum order of seasonal MA

component is probably equal to 0.

From the PACF the non-seasonal partial autocorrelation coefficients (PACs) are
significant at lags 1 and 2 and insignificant at lags 3 and 4. This suggests the maximum
order of non-seasonal autoregressive (AR) component is probably 2. The seasonal PACs
are insignificant at lags 4, 8, 12 16, 20, 24 and 28. Therefore, the maximum order of
seasonal AR process could be 0. Hence, the maximum seasonal ARMA specification that
we initially identify to the residuals of the deterministic model is a seasonal
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ARMA(2,3)(0,0),, which is equivalent to the non-seasonal ARMA(2, 3) specification.
We report an ARIMA specification that includes 4 seasonal dummy variables and an

ARMA(2, 3) model of the residuals in the column headed 2 of Table 5.2.1.
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Figure 5.2.1: the ACF and PACF of the residuals of model 1 reported in Table 5.2.1

Sample: 199702 201204
Included observations: 63
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In this model, the SC falls to -5.981 suggesting that the addition of ARMA terms has
improved the specification. All four seasonal dummy variables are significant. The latter
is confirmed by the joint test for the exclusion of all 4 seasonal dummy variables,
denoted LR(SEA DUM), which has a probability value of 0.022 (given in square brackets
below the reported test statistic). However, all the ARMA components are insignificant.
These results suggest that the specification can be improved by the removal of some of

the ARMA terms.
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Table 5.2.1: The ARIMA table for Brazil

Observations 199792 2012494 (63)
1 2 3
D, 0.063 0.063 0.056
(8.421) (8.693) (46.188)
D, 0.063 0.063 0.056
(8.774) (8.596) (41.780)
D5 0.062 0.063 0.056
(8.617) (8.442) (41.403)
D, 0.063 0.063 0.056
(8.686) (8.548) (46.139)
AR(1) 1.115
(1.442)
AR(2) -0.371
(0.727)
MA(1) 0.597 2.029
(0.765) (22.789)
MA(2) -0.250 2.046
(-0.288) (16.104)
MA(3) 0.152 1.986
(0.660) (20.354)
MA(4) 0.969
(15.567)
Adj R? -0.051 0.892 0.930
SC -4.055 -5.981 -6.577
S.E 0.028 0.009 0.007
AR Root 0.609
MA Root 0.999 0.995
0.390 0.989
P[QLB(7)] 0.016 0.355
LR (SEADUM) 11.413 65.826
[0.022] [0.000]
LR (SEA DUM, CON) 169.279
[0.000]

For the model to be valid we apply the
autocorrelation, stationarity and invertibility. The probability value of the Ljung-Box Q-
statistic at the 7t lag, denoted P[QLB(7)], is less than 0.050 indicating evident of residual
autocorrelation that suggests unmodelled systematic variation in the dependent
variable and the need to adjust the model — we choose lag 8 based on the square root
of the sample size (in this case V63). The inverse roots of the AR process, denoted AR
Root, are all less than one indicating that the model is consistent with a stationary

process. The inverse roots of the MA process, denoted MA Root, are all less than one

standard diagnostic checks for residual




indicating that the model is invertible. Hence, the model is not valid for forecasting

because there is evident autocorrelation.

After experimentation, we find that a non-seasonal ARMA(0, 4) specification is an
improved model. The results of this ARMA(0,4) model is reported in the column
headed 3 of Table 5.2.1. The coefficients on the four dummy variables and all of the
moving average components are significant. A Wald test for the null hypothesis that all
of the seasonal dummies’ coefficients are equal is reported in the row denoted LR (SEA
DUM, CON). Since the probability value, being 0.000, is less than 0.050 this suggests a
significant difference in the coefficients of the individual seasonal dummy variables
(significant seasonality) and that they cannot be replaced by a single (non-seasonal)
intercept. This model’s SC decreases to -6.577. This model cannot be rejected by the
diagnostic checks for residual autocorrelation, stationarity and invertibility. Therefore,

it is valid for forecasting.

Figure 5.2.2: the actual and fitted values reported in Table 5.2.1 column 3
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Visual inspection of the actual and fitted values (Figure 5.2.2) of this model suggests that
the time path of the fitted values capture the movements in the actual data well. In
terms of model fit the adjusted R? of this ARIMA model on the reduced sample is 0.930

which is slightly less than the specification estimated using the full sample that model’s

106



structural breaks (Section 5.1), being 0.956. It will be interesting to see if the
comparative fit of these two models is indicative of their relative forecasting

performance.

A similar procedure was applied for all countries and (to save space) the discussion is
available in Appendix. Section 5.2 page 394 - 425. The table below summarises the
seasonal ARIMA specifications for both BRICS and OPEC countries. These are the
seasonal ARIMA specifications used to forecast each country’s inflation over the period
2013qg1l to 2014g4. We note that all countries’ favoured models pass the diagnostic

checks and are therefore valid for forecasting.
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Table 5.2.3 Summary of seasonal ARIMA specification for BRICS and selected OPEC

countries’?
Countries Brazil Russia South Algeria Angola Nigeria Saudi
Africa Arabia
Start 1997q2 2003q2 1995Q2 1999Q2 200093 | 199894 197993
End 2012qg4 2012qg4 2012qg4 2012qg4 2012g4 | 2012qg4 2012qg4
Observations | 63 39 71 55 49 57 134
P_(D) -0.032 -0.045
(-6.965) (-2.446)
ARMA (0, 4) (1,3) (1,0)(1,0) | (1,3)
Specifications (1,1)(0,1) (2, 0)(1,0) (2,1) (1,0)
D, 0.056 0.096 0.207 0.121 0.038
(46.188) | (13.229) (1.845) | (10.226) (0.587)
D, 0.056 0.096 0.215 0.118 0.038
(41.780) | (13.389) (1.910) | (9.889) (0.583)
D, 0.056 0.096 0.207 0.117 0.038
(41.403) | (13.509) (1.879) | (9.796) (0.588)
D, 0.056 0.096 0.202 0.122 0.038
(46.139) | (13.508) (1.802) | (10.340) (0.588)
AR(1) 0.821 0.996 0.999 0.809 1.192 1.867
(10.849) (112.894) | (32.465) | (25.825) | (8.762) (21.453)
AR(2) -0.427 -0.868
(-2.994) (-9.845)
SAR(4) -0.580 -0.427 -0.970
(-4.760) (-3.000) (-81.718)
MA(1) 2.029 0.777 0.764 0.287 -0.618
(22.789) | (8.869) (8.761) (3.450) (-4.710)
MA(2) 2.046 0.693 0.132
(16.104) (13.154) (1.317)
MA(3) 1.986 0.916 0.844
(20.354) | (11.488) (9.552)
MA(4) 0.969
(15.567)
SMA(4) -0.899
(-30.058)
Adj R? 0.930 0.956 0.897 0.712 0.990 0.711 0.906
SC -6.577 -6.728 -5.809 -5.551 -2.306 -3.829 -6.366
S.E 0.007 0.001 0.012 0.014 0.061 0.009
AR Root 0.821 0.996 0.999 0.809 0.808 0.983
0.974 0.873 0.654 0.883
0.764
MA Root 0.995 0.999 0.974 0.999 0.992
0.989 0.957 0.763 0.918 0.618
P[QLB] 0.355 0.084 0.103 0.432 0.053 0.406 0.103
LR (SEADUM) | 65.826 19.493 2.584 2.829 1.949
[0.000] [0.001] [0.407] [0.034] [0.106]
LR (SEADUM, | 169.279 36.149 7.581 18.751 66.771
CON) [0.000] [0.000] [0.000] [0.000] [0.000]

Note see Table 5.1 6 for details and P_(D) = index pulse dummy variable indicator

72 Note that we only consider those countries that identified with breaks in the previous section with the
minimum of 39 observations after the last break and initialization period of two years. Therefore, we did
not consider Ecuador, Kuwait and China in this section because they did not meet our minimum

requirement.
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In summary, Table 5.2.3 summaries seasonal ARIMA models for both BRICS and selected
OPEC countries using a reduced sample period that avoids structural breaks for the
following countries: Brazil, Russia, South Africa, Algeria, Angola, Nigeria and Saudi
Arabia. We only built models for countries where the reduced sample had at least 39
observations. This will allow us to assess whether forecast accuracy is generally better
for seasonal ARIMA specifications using a shorter sample that avoids the modelling of
structural breaks or models developed on the full sample where structural breaks are
modelled. For Russia, the in-sample fit (according to the R?) is superior using the
reduced sample specification while for the following countries the in-sample fit is better
for the ARIMAX specifications based on the full sample: Brazil, South Africa, Algeria,
Angola, Nigeria and Saudi Arabia.”® For the following countries, there is no in-sample fit
comparison because models were not developed on the reduced sample: India, China,
Ecuador and Kuwait. It will be interesting to see if the comparative fit of these two

models is indicative of their relative forecasting performance.

73 See Table 5.4.6 for details.
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5.3.0 Modelling annual inflation using Eviews 9’s automatic seasonal
ARIMA model selection tool on reduced samples without structural
breaks

In this section, we conduct a further ARIMA modelling experiment to provide an
additional model formulation for comparative purposes. We develop seasonal ARIMA
models to forecast unadjusted annual inflation variables over the reduced sub-samples
(without structural breaks) identified in section 5.2. This is done for the countries where
the sub-sample contains at least 39 observations.”* The difference between these
models and those developed in section 5.2 is that we utilise EViews 9’s automatic ARMA
model selection procedure. This procedure selects seasonal models that minimise the
Schwarz (SC) criterion of all ARMA specifications nested within the assumed maximum
order of non-seasonal AR and MA components of 3 and maximum seasonal AR and MA
components of order 2. A maximum order of 3 for the non-seasonal components is
specified because the seasonal terms will capture lag 4 and, in multiplicative
specifications, will capture lag 5 (provided a corresponding non-seasonal ARMA
component is included). We do not consider the automatic selection of logarithmic or
differencing transformations that are also available because we believe that the annual
inflation data is stationary. We also include deterministic seasonal dummy variables in
the model as exogenous variables when the automatic ARMA selection takes place to
yield automatically selected seasonal ARIMA specifications. Whilst we report diagnostic
checks (for residual autocorrelation, stationarity and invertibility) for the selected
models we do not reject automatically selected models for forecasting that fail these
checks because this is not intended in real world applications (it is a cost that needs to
be offset against the time saving benefit of the method). However, we will consider
whether the forecasting performance of the models that fail these checks notably
deteriorates relative to models that do not fail these checks. We will also assess whether
EViews 9’s automatic ARMA selection procedure leads to the inclusion of statistically

insignificant variables.

74 We include China in this section because the period after the structural breaks are less than 39
observations and relative step shifts for this period also appear to be small which mean that inference
regarding unit roots may not be too adversely affected when using the full sample. Hence, the full
sample is used for these models for this country.
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Table 5.3.1. Automatic Eviews seasonal ARMA specifications: BRICS countries

Countries Brazil Russia India China South Africa
Start 1997Q2 2003Q2 1961Q1 1992Q1 1995Q2
End 201204 2012Q4 2012Q4 2012Q4 2012Q4
Observations 63 39 208 84 71
ARMA (1,1)(0,1) (2,2)(2, 2,) (1,3)(0,0) (3,2)(0,1) (1, 1)(0,2)
Specifications
D, 0.064 0.105 0.077 0.030 0.063
(10.263) (9.451) (7.149) (2.857) (30.375)
D, 0.064 0.106 0.077 0.030 0.062
(10.276) (9.486) (7.139) (2.835) (26.257)
Dy 0.064 0.106 0.077 0.029 0.062
(9.986) (9.572) (7.145) (2.810) (28.628)
D, 0.064 0.106 0.077 0.029 0.063
(10.054) (9.541) (7.138) (2.783) (32.350)
AR(1) 0.928 1.930 0.569 1.017 0.791
(8.247) (5.267) (12.018) (3.118) (9.032)
AR(2) -0.951 0.835
(-2.778) (1.358)
AR(3) -0.870
(-2.814)
SAR(4) -0.951
(-1.252)
SAR(8) -0.624
(-2.427)
MA(1) 0.999 -0.360 0.983 0.310 0.761
(0.000) (-0.211) (0.010) (0.005) (8.526)
MA(2) 0.989 0.983 -0.699
(0.095) (0.010) (-0.015)
MA(3) 0.999
(0.006)
SMA(4) -0.999 -1.908 -0.999 -1.000
(-0.001) (-0.000) (-0.006) (-0.001)
SMA(8) 0.999
(0.000)
Adj R? 0.928 0.983 0.925 0.944 0.856
SC -6.236 -6.094 -5.257 -5.669 -5.138
S.E 0.003 0.003 0.015 0.010 0.013
AR Root 0.952 0.975 0.569 0.972
0.942 0.919 0.791
MA Root 0.999 0.999 0.999 0.999 1.000
0.995 0.761
P[QLB] 0.544 [8] 0.000 [6] 0.043 [14] 0.213 [9] 0.606 [8]
LR (SEA DUM) 7.501 36.775 9.737 2.640 3.049
[0.000] [0.000] [0.000] [0.041] [0.023]
LR (SEA | 213760.000 16.825 32.493 3.392 28.252
DUM,CON) [0.000] [0.000] [0.000] [0.022] [0.000]

Where: MA =the maximum order of non-seasonal moving average component, AR = the maximum order
of non- seasonal autocorrelation component, Dg; = the seasonal dummy variables, denoted as
Di¢, Doy, D3y and Dy, P[QLB] = Probability value of the Ljung-Box Q-statistic where the number of ACs
included in the ACF is indicated in brackets, Adj R? = Adjusted R —square , SC = Schwarz criterion, AR Roots
= Stationary Autoregressive average , MA Roots = Stationary Moving average, LR(SEA DUM) = the test for
the joint significance of the seasonal dummy variables and LR (SEA DUM, CON) is the Wald test for the
null hypothesis that all of the seasonal dummies’ coefficients are equal.
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Table 5.3.2 Automatic Eviews seasonal ARMA specifications: OPEC countries

Countries Algeria Angola Nigeria Saudi Arabia
Start 1999Q2 200004 199804 1979Q3
End 2012Q4 201204 201204 201204
Observations 55 49 57 134
ARMA Specifications | (1,0)(0,1) (3,0)(0,1) (2,1)(0,1) (2,1)(0,1)
D, 0.037 1.541 0.123 0.012
(2.786) (0.662) (19.261) (2.615)
D, 0.038 1.534 0.119 0.012
(2.840) (0.661) (16.645) (2.577)
Dy 0.040 1.536 0.121 0.012
(3.018) (0.662) (18.260) (2.616)
D, 0.038 1.540 0.122 0.012
(2.809) (0.663) (21.520) (2.582)
AR(1) 0.986 1.683 0.767 1.962
(4.091) (14.890) (6.360) (33.246)
AR(2) -0.384 -0.967
(-2.012) (-15.973)
AR(3) -0.303
(-3.409)
MA(1) 0.426 -0.813
(2.452) (-5.887)
SMA(4) -0.999 -1.000 -1.000 -0.999
(-0.001) (-0.000) (-0001) (-0.021)
Adj R? 0.755 0.987 0.787 0.908
SC -5.295 -1.648 -3.929 -6.249
S.E 0.013 0.069 0.024 0.008
AR Root 0.986 0.996 0.767 0.983
MA Root 0.999 1.0007 1.000 0.999
0.426 0.812
P[QLB] 0.725 [7] 0.068 [7] 0.967 [8] 0.082 [12]
LR (SEA DUM) 4.089 3.207 5.498 4.276
[0.006] [0.023] [0.001] [0.003]
LR (SEA DUM,CON) 16.117 0.069 5.497 333.029
[0.000] [0.976] [0.001] [0.000]

See notes to Table 5.3.1

7> The value is rounded up to one, however, it is less than one indicating that invertibility is not violated.
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Table 5.3.3 Automatic Eviews seasonal ARMA specifications for Angola

Countries Angola
Start 200004
Observations 49
ARMA Specifications (3,0)(0,1)
c 1.501
(0.833)
AR(1) 1.681
(19.990)
AR(2) -0.383
(-2.527)
AR(3) -0.302
(-3.890)
SMA(4) -0.999
(-0.013)
Adj R? 0.987
SC -1.800
SE 0.068
AR Root 0.986
MA Root 0.995
0.305
P[QLB] 0.038[ 7]
LR (C, DUM) 8.854
[0.005]

See notes to table 5.3.1. Note that C denotes the intercept and LR(C, DUM) denotes the test for the
significance of the intercept that replaced the 4 seasonal dummy variables.

The seasonal ARIMA models automatically selected for the seasonally unadjusted data
are reported in Table 5.3.1 (BRICS countries) and Table 5.3.2 (OPEC countries) above.
Three of the 5 BRICS countries’ automatically selected models fail the standard
diagnostic checks for autocorrelation (Russia and India) and invertibility (South Africa).
Only Nigeria failed the standard diagnostic checks (for invertibility) in the selected OPEC
countries. Hence, 5 of the 9 countries’ selected models are valid for forecasting, in the
sense that they are not rejected by the diagnostic checks, while there are 4 countries
where the automatically selected models are rejected by these diagnostic checks. We
therefore might expect that the forecasting performance of the automatically selected
models for these 4 countries will be adversely affected relative to those where the
checks are not failed. We will see whether this is the case when assessing the ex post

forecasting performance of these models.

Regarding the statistical significance of the models’ coefficients, we note the following.
The seasonal dummy variables are jointly significant in all 9 models indicating the need

to include seasonal dummy variables — see LR(SEA DUM). Further, the seasonal dummy
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variables are significantly different from each other for 8 of the 9 countries (Angola is
the exception) suggesting significant deterministic seasonality in these countries’
models — see LR(SEA DUM, CON). For Angola, where the seasonal dummy variables are
not significantly different, we replace the 4 seasonal dummy variables with a single
intercept because seasonality is not significant. This model is reported in the Table 5.3.3
and represents our favoured automatically selected seasonal model for Angola. Inall 9
countries, the automatic selection procedure yields models where several ARMA
coefficients are statistically insignificant (including the highest order AR or MA terms).
This suggests that the automatic selection procedure generally selects models with
variables that would be considered for exclusion by a modeller. It will be interesting to

see whether this has an impact on the forecasting performance of these models
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5.4.0 Modelling annual inflation using Eviews 9’s automatic non-seasonal
ARIMA model selection tool on reduced samples without structural
breaks

In this section, we conduct a further ARIMA modelling experiment to provide an
additional model formulation for comparative purposes for chapter 5. These ARIMA
models’ forecasting performance will be compared to those developed in section 5.1,
5.2 and 5.3. We modify the methodology applied in section 5.3 in the following two
ways. First, we seasonally adjust the data on annual inflation prior to developing a non-
seasonal ARIMA model using the census X13 method of (multiplicative) seasonal
adjustment.’® This method allows the seasonal indices to vary over time and captures
any stochastic seasonality in the data. The non-seasonal ARMA model is used to forecast
the seasonally adjusted data for 2013 and 2014 and the four seasonal indices used to
adjust the data in 2012 are used to reintroduce seasonality into these forecasts yielding
predictions of the original (unadjusted) series. These seasonal forecasts can therefore
be compared with those produced by the models developed in section 5.1, 5.2 and 5.3
— these forecasts are compared in later chapters. To ameliorate the impact of the
(sometimes very large) structural breaks on the seasonal adjustment procedure we use
the reduced sub-samples without structural breaks identified in chapter 5.2 for

countries where the sub-sample contains at least 39 observations.

Second, we utilise EViews 9’s automatic ARMA model selection procedure that
minimises the Schwarz (SC) criterion of all ARMA specifications nested within the
assumed maximum non-seasonal ARMA (5, 5) specification. We do not consider the
automatic selection of logarithmic or differencing transformations that are also
available because we believe that the annual inflation data is stationary (as discussed
above). We also include deterministic seasonal dummy variables in the model as
exogenous terms when the automatic ARMA selection takes place to yield automatically

selected non-seasonal ARIMA specifications. Whilst we report diagnostic checks (for

76 All the countries are seasonal adjusted with the census X13 multiplicative method except for India,
China, South Africa, Algeria, Nigeria and Saudi Arabia that are seasonally adjusted with the census X12
method of (additive) seasonal adjustment. We use the census X- 12 to adjust annual inflation in these
countries because the census X13 method of (multiplicative and additive) cannot be implemented with a
series with zero or negative values.
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residual autocorrelation, stationarity and invertibility) for the selected models we do not
reject automatically selected models for forecasting that fail these checks because this
is not intended in real world applications (it is a cost that needs to be offset against the
time saving benefit of the automatic selection method). However, we will consider
whether the forecasting performance of the models that fail these checks notably
deteriorates relative to models that do not fail these checks. We will also assess whether
EViews 9’s automatic non-seasonal ARMA selection procedure leads to the inclusion of
statistically insignificant variables. The seasonal factors used in the seasonal adjustment
of each country’s data for 2012 are presented in Table 5.4.1 (BRICS countries) and Table
5.4.2 (OPEC countries) below.”’

Table5.4.1
Observations | INF_BRA INF_RUS INF_IND (A) | INF_CHI (A) | INF_SOU (A)
(M) (M)
2012Q1 0.999689 0.988775 0.002035 0.001556 -0.00119
2012Q2 0.993315 0.966174 -0.0001 0.000148 -0.00336
2012Q3 1.003945 1.006558 -0.00012 -0.00114 -0.00547
2012Q4 1.003383 1.040168 -0.00205 -0.00055 0.010634
Table 5.4.2
Observations | INF_ALG (A) INF_ANG (M) INF_NIG (A) INF_SAU (A)
2012Q1 -0.00108 0.997064 0.004994 -0.00100
2012Q2 0.001466 1.00181 0.001509 0.000761
2012Q3 -0.00054 0.996738 -0.00588 4.37E-05
201204 -0.00011 1.00440 -0.00117 0.000229

The non-seasonal ARMA models automatically selected for the seasonally adjusted data
are reported in Table 5.4.3 (BRICS countries) and Table 5.4.4 (OPEC countries) below.
None of the automatically selected models could be rejected according to the standard
diagnostic checks that we conduct for the 5 BRICS countries. However, for 2 of the 4
selected OPEC countries the automatically selected models failed the diagnostic checks

for autocorrelation (Angola) and invertibility (Nigeria). Hence, while 7 of the 9 countries’

77 Where INF_* denotes inflation, * denotes the first three letters of each country, (M) denotes

multiplicative indices and (A) denotes additive indices.

116



selected models are valid for forecasting, in the sense that they are not rejected by the
diagnostic checks, there are 2 countries where the automatically selected models are
rejected by these checks. We, therefore, might expect that the forecasting performance
of the automatically selected models for these 2 countries will be adversely affected.
We will see whether this is the case when assessing the ex-post forecasting performance

of these models.

Regarding the statistical significance of the models’ coefficients, we note the following.
The seasonal dummy variables are jointly significant in all 9 models indicating the need
to include seasonal dummies —see LR(SEA DUM). Further, the seasonal dummy variables
are significantly different from each other for 7 of the 9 countries suggesting significant
deterministic seasonality in these countries’ models — see LR(SEA DUM, CON). In the 2
countries (Brazil and Angola) where the seasonal dummy variables are not significantly
different we replace the 4 seasonal dummy variables with a single intercept because
deterministic seasonality is not significant. These models are reported in Table 5.4.5 for
Brazil and Angola and they represent the automatically selected non-seasonal models
that are favoured for forecasting for these countries. For 8 of the 9 countries (the
exception is India) the automatic selection procedure yields models where several
ARMA coefficients are statistically insignificant (including the highest order AR or MA
term). This suggests that the automatic selection procedure generally selects models
with variables that would be considered for exclusion by a modeller. It will be interesting

to see whether this has an impact on the forecasting performance of these models.
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Table 5.4.3 Automatic Eviews non-seasonal ARMA specifications: BRICS countries

Countries Brazil Russia India China South Africa
Start 1997Q2 2003Q2 1961Q1 1992Q1 1995Q2
End 201204 201204 201204 201204 201204
Observations 63 39 208 84 71
ARMA(p,q) (0,4) (1,3) (1,3) (1,4) (2,2)
Specifications
D, 0.064 0.102 0.077 0.041 0.067
(6.185) (8.357) (6.298) (1.670) (8.556)
D, 0.064 0.010 0.077 0.041 0.065
(6.023) (8.468) (6.412) (1.7112) (7.702)
D5 0.063 0.102 0.077 0.042 0.065
(5.983) (8.432) (6.449) (1.723) (8.383)
D, 0.063 0.099 0.077 0.041 0.065
(6.104) (8.320) (6.288) (1.669) (7.838)
AR(1) 0.643 0.632 0.903 1.187
(3.003) (13.628) (10.732) (11.307)
AR(2) -0.736
(-6.307)
MA(1) 1.571 0.974 0.758 0.353 -0.085
(0.004) (0.002) (13.325) (1.971) (-0.038)
MA(2) 1.656 0.974 0.720 0.544 0.999
(0.002) (0.001) (12.623) (0.386) (0.019)
MA(3) 1.564 0.999 0.721 0.332
(0.001) (0.001) (13.589) (0.670)
MA(4) 0.629 -0.455
(0.001) (-0.731)
Adj R? 0.896 0.924 0.901 0.930 0.830
e -5.993 -5.889 -5.033 -5.579 -4.988
S.EE 0.009 0.008 0.017 0.012 0.015
AR Root 0.643 0.632 0.903 0.857
MA Root 0.999 0.999 0.907 0.998 0.999
0.793 0.876 0.866
0.528
P[QLB] 0.626 [8] 0.293 [6] 0.269 [14] 0.662 [9] 0.335 [8]
LR (SEADUM) 23.548 6.399 6.769 3.398 16.153
[0.000] [0.001] [0.000] [0.013] [0.000]
LR (SEADUM,CON) | 0.658 8.762 663 36.026 40.752
[0.581] [0.000] [0.000] [0.000] [0.000]

Where: MA =the maximum order of non-seasonal moving average component, AR = the maximum order
of non- seasonal autocorrelation component, Dg; = the seasonal dummy variables, denoted as
Di¢, Doy, D3y and Dy, P[QLB] = Probability value of the Ljung-Box Q-statistic where the number of ACs
included in the ACF is indicated in brackets, Adj R? = Adjusted R —square , SC = Schwarz criterion, AR Roots
= Stationary Autoregressive average , MA Roots = Stationary Moving average, LR(SEA DUM) = the test for
the joint significance of the seasonal dummy variables and LR (SEA DUM, CON) is the Wald test for the
null hypothesis that all of the seasonal dummies’ coefficients are equal.
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Table 5.4.4 Automatic Eviews non-seasonal ARMA specifications: selected OPEC
countries

Countries Algeria Angola Nigeria Saudi Arabia
Start 1999Q2 200004 199804 1979Q3
End 2012Q4 2012Q4 2012Q4 2012Q4
Observations 55 49 57 134
ARMA(p,q) (0,3) (1,3) (0, 3) (1,4)
Specifications
D, 0.037 1.202 0.121 0.016
(4.543) (0.800) (7.493) (1.196)
D, 0.037 1.190 0.118 0.017
(4.708) (0.792) (7.195) (1.258)
Dy 0.041 1.198 0.124 0.017
(5.122) (0.799) (7.747) (1.241)
D, 0.037 1.190 0.117 0.016
(4.485) (0.789) (7.776) (1.221)
AR(1) 0.982 0.912
(9.502) (10.520)
MA(1) 0.972 0.537 0.999 0.247
(0.088) (0.001) (0.001) (1.198)
MA(2) 0.971 0.938 0.999 0.401
(0.100) (0.000) (0.000) (0.048)
MA(3) 0.999 0.635 1.000 0.190
(0.068) (0.000) (0.000) (0.117)
MA(4) -0.607
(-0.122)
Adj R? 0.748 0.982 0.750 0.900
sC -5.187 -1.395 -3.808 -6.172
S.E 0.013 0.083 0.026 0.009
AR Root 0.981 0.912
MA Root 0.999 1.0007® 1.000 0.999
0.635 0.892
0.680
PlQLB] 0.612 [7] 0.025 [7] 0.286 [8] 0.092 [12]
LR (SEA DUM) 12.803 5.428 26.451 3.280
[0.000] [0.001] [0.000] [0.014]
LR (SEA DUM,CON) 6.322 2.443 4.487 34.607
[0.001] [0.078] [0.007] [0.000]

See the notes to Table 5.4.3

78 This value is rounded up to one, however, it is less than one and therefore does not reject invertibility
for this model.
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Table 5.4.5 Automatic Eviews non-seasonal ARMA specifications for Brazil and Angola

Countries Brazil Angola
Start 1997Q2 200004
End 201204 2012Q4
Observations 63 49
ARMA(p,q) Specifications (0,4) (1, 3)
C 0.064 1.196
(7.201) (0.802)
AR(1) 0.983
(8.900)
MA(1) 1.590 0.477
(17.895) (0.013)
MA(2) 1.631 0.916
(10.161) (0.002)
MA(3) 1.467 0.614
(6.503) (0.003)
MA(4) 0.600
(5.864)
Adj R? 0.889 0.982
sC -6.116 -1.586
S.EE 0.009 0.082
AR Root 0.983
MA Root 0.964 0.999
0.804 0.614
PlQLB] 0.774 [8] 0.019 [7]
LR (C, DUM) 9.023 20.202
[0.000] [0.000]

See notes to table 8.6. Note that C denotes intercept and LR(C, DUM) denotes the test for the significance
of the intercept that replaced the 4 seasonal dummy variables.
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Table 5.4.6 Comparison of in-sample fit (adjusted R-square) of different ARIMA

models
Countries Chapter 5.1 | Chapter 5.2 | Chapter 5.3 | Chapter 5.4
ARIMAX full | seasonal EViews 9’s | EViews 9’s
sample ARIMA reduced | reduced sample | reduced sample
modelling sample automatic ARIMA | automatic
modelling seasonal ARIMA non-
without breaks | modelling seasonal
modelling
Brazil 0.956 0.930 0.928 0.889
Russia 0.932 0.956 0.983 0.924
India 0.926 0.925 0.901
China 0.943 0.944 0.930
South Africa | 0.939 0.897 0.856 0.830
Algeria 0.893 0.712 0.755 0.748
Angola 0.997 0.990 0.987 0.982
Ecuador 0.980
Kuwait 0.949
Nigeria 0.911 0.711 0.787 0.750
Saudi Arabia | 0.960 0.906 0.908 0.900

Table 5.4.6 reports the adjusted R-squares of the favoured ARIMAX/ARIMA models

developed in chapters 5.1 and 5.2 with those obtained by Eviews 9’s automatic

selections procedure. The automatically selected non-seasonal ARIMA models have the

lowest R-squares for all countries except Algeria and Nigeria (where the fit is the third

best out of the 4 models in both cases).”® For 7 of the 9 countries (the exception is Russia

and China) the adjusted R-squares of the ARIMAX models developed on the full sample

that model structural breaks are greater than those of the other models. Whether the

generally superior fit to modelling the full sample is due to overfitting the sample

(especially overfitting structural breaks in the full sample) or will be reflected in the out-

of-sample forecasting performance will be considered in the chapter when the

forecasting performance of the models of the different countries is compared.8°

® This may be because the dependent variable is seasonally adjusted for these models whereas they are

unadjusted for the other models.

80 This difference in fit may also be because the models developed in section 5.1 generally use a larger
sample than the other models.
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5.5.0 Forecast performance and evaluation for Univariate model

In this section, we compare the forecasting performance of ARIMAX models estimated
over the full sample and different ARIMA specifications estimated on a reduced sample
(with @ minimum of 39 observations). When using the full sample, there may be
structural breaks that the ARIMAX model accommodates using dummy variables and
seasonality that is modelled using seasonal dummy variables and seasonal AR and MA
terms. The reduced sample modelling was designed to avoid structural breaks such that
there is no need for deterministic terms to model such shifts. Hence, the first set of
ARIMA models developed using the reduced sample only include seasonal dummy
variables and seasonal AR and MA components. A second set of ARIMA models
developed for the reduced sample employ EViews 9’s automatic seasonal ARIMA model
specification routine. A third set of ARIMA models were developed for the reduced
sample where the data are first seasonally adjusted and EViews 9’s automatic non-
seasonal ARIMA model specification routine is employed. In this latter case forecasts are
re-seasonalised using the 2012 seasonal indices obtained from the seasonal adjustment

procedure.

We seek to assess the following. First, whether superior forecasts can be obtained by
using the full sample (with the benefit of more information) and explicitly modelling the
structural breaks (with the possibility of overfitting and difficulty in adequately capturing
such effects) or whether using reduced samples (with the disadvantage of fewer data
points) is compensated by the avoidance of having to model any structural breaks.
Second, whether quick automatic ARIMA selection procedures can produce as good
forecasts as specifications produced using more time-consuming model building
techniques. Third, whether ARIMA specifications that explicitly model seasonality are
superior to specifications that apply non-seasonal models to seasonally adjusted data
followed by reseasonalising the forecasts. Each model was estimated over a period that
ended in 201294 (the start of the estimation period varies across models and countries).
These models are used to produce forecasts over the ex-post forecasting period 2013q1
—201494. These produce 1-step ahead forecasts for 2013q1, 2-step ahead forecasts for

201392 and so on up to 8-step ahead forecasts for 2014g4.8! The identified models were

81 Due to the sample variation (different sample for different country), our forecast comparison is based
on out-sample and we did not consider in-sample comparison. It is well known that in-sample
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then re-estimated by adding one observation to the end of the sample, hence the
models are estimated over a period ending in 2013q1. These estimated models are used
to produce 1-step ahead forecasts for 201392, 2-step ahead forecasts for 201393 and
so on up to 7-step ahead forecasts for 2014q4. This process is then repeated with one
observation being added to the estimation period (with the last rolling regression’s
sample period ending in 2014q3), and m-step ahead forecasts produced up to the end
of the forecast period. These rolling regressions produce eight 1-step ahead forecasts,
seven 2-step ahead forecasts, six 3-step ahead forecasts, five 4-step ahead forecasts and

so on up to one 8-step ahead forecast for each estimated model.

Second, we compare the forecasting performance of each model over the different
number of step ahead forecasting horizons using the Root Mean Squared Error (RMSE),
Mean Absolute Percentage Error (MAPE) and Theil’s inequality coefficient (U). The best
forecasting model, on average, over any particular horizon will have the lowest value of
forecasting performance measures. The RMSE and U have a quadratic loss function that
gives more weight to extreme errors than smaller errors (e.g the square error of 50 is
disproportionately more than the square error of 25) while the MAPE has a proportional
loss function where small and large errors are weighted similarly. These forecasting
performance measures can be classified into two categories: relative measures (MAPE
and Theil’s U-statistic) and absolute measures (RMSE).8?The difference between the two
types of measure is that relative measures are not determined by the units of
measurement of the data and can be used to compare the forecasting performance of
different series (including across different countries) while the value of absolute
measures are determined by the unit of measurement of the data and only provide valid

comparisons of models applied to the same data (for the same country).

comparison does not guarantee good forecasting performance. A general problem is that in-sample

estimation error usually increases with the sample size, and if the forecast sample increase the forecast

error may increase.

Te? ¢ o Fp)?
n

n

82The root mean squared error (RMSE) = . The percentage error is (PE;) = (_th— ) x
t

100, Mean absolute percentage error is (MAPE) =% ™, /PE./, and Theil’s U-statistic is U =

Rmse Tei? Z(Xt Fp)?
= 2 , Where X, is the actual observation for time period t F;

ZXt2+ IFe” +
n n n

+
is the forecast for the same perlod W|th et X: - Fy and nis the number of forecast periods used in the

calculation.
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5.5.1 Brazil Forecast performance and evaluation

We compare the forecasting performance of the full sample ARIMAX and the reduced
sample ARIMA models. The full sample specification includes deterministic dummy
variables to model structural breaks and seasonality as discussed in section 5.1 (Table
5.1.3). The reduced sample models that avoid structural breaks are estimated over the
period 199792 to 2012g4. The following ARIMA models estimated over the reduced
sample are used for forecasting: seasonal Box-Jenkins ARIMA model discussed in section
5.2 (Table 5.2.1), EViews 9’s automatically selected seasonal ARIMA model discussed in
section 5.3 (Table 5.3.1) and EViews 9’s automatically selected non-seasonal ARIMA
model discussed in section 5.4 (Table 5.4.5). The forecast performance measures of

these models are given in Table 5.5.1.

Table. 5.5.1: Forecast performance of Univariate models for Brazil

A B C D
Full sample seasonal ARIMAX | Reduced sample seasonal | Reduced sample EView9 | Reduced sample EView9
model with modelling | ARIMA  model without | Automatic seasonal ARIMA | Automatic’s non-seasonal
structural breaks modelling structural breaks | model without modelling | ARIMA model without
breaks modelling structural breaks
RMSE MAPE V) RMSE MAPE U RMSE MAPE U RMSE MAPE U
1- 21.2100 | 14.2420 | 0.9960 | 0.0050 | 6.3580 0.0360 | 0.0050* | 5.0690* | 0.0360* | 0.0060 7.8950 0.0490
step
2- 24.3500 | 21.4800 | 0.9960 | 0.0060 | 8.9510 | 0.0490 | 0.0060* | 8.0390* | 0.0470* | 0.0070 | 9.5170 | 0.0560
step
3- 26.4200 | 25.4060 | 0.9960 | 0.0080 | 10.4100 | 0.0640 | 0.0060 10.1500 | 0.0560 0.0060* | 8.2540* | 0.0480*
step
4- 28.9400 | 30.4640 | 0.9960 | 0.0060 | 7.1580 0.0460 | 0.0060 8.6970 0.0500 0.0030* | 3.7780* | 0.0220*
step
5- 32.3600 | 38.0500 | 0.9970 | 0.0040 | 5.8330 | 0.0300 | 0.0070 9.3930 | 0.0520 0.0002* | 0.1580* | 0.0010*
step
6- 37.3600 | 50.6330 | 0.9970 | 0.0050 | 7.3880 0.0430 | 0.0060 7.2460 0.0430 0.0004* | 0.5880* | 0.0040*
step
7- 19.1300 | 30.0090 | 0.9940 | 0.0100 | 15.7600 | 0.0790 | 0.0060 8.2260 0.0490 0.0004* | 0.7080* | 0.0040*
step
8- 14.9000 | 25.7580 | 0.9920 | 0.0020 | 3.3460 | 0.0170 | 0.0090 15.4300 | 0.0720 0.0004* | 0.3390* | 0.0020*
step

An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for each
forecasting horizon.

The reduced sample univariate model that employs the automatic non-seasonal ARIMA
technique, see column D, has the lowest RMSE, MAPE and U-statistics over all
forecasting horizons except for the 1 and 2 step-ahead horizons. However, the reduced
sample ARIMA model that employs Eviews 9’s automatic seasonal selection procedure
has the lowest RMSE, MAPE and U values for 1 and 2-step-ahead horizons (Table 5.5.1
column C). Hence, the reduced sample specifications that employ the EView’'s 9
automatic model selection process produces the best forecasts over all horizons. We
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note that the univariate ARIMA specification that employs the Box-Jenkins method for
the full sample ARIMAX (Table. 5.5.1 column A) and the reduced sample ARIMA (Table.
5.5.1 column B) methods were never favoured. These results imply the following for the
univariate modelling on Brazilian data. First, the potential difficulties in explicitly
modelling the structural breaks outweighed the benefits of being able to use more data
in estimation. Given the extra time and modeller expertise required to model such
breaks, this suggests that using reduced samples to avoid structural breaks is the
preferred strategy. Second, the quick automatic ARIMA selection procedures produce
superior forecasts compared to using more time-consuming Box-Jenkins ARIMA
modelling techniques. Third, the benefits of seasonally adjusting the data and re-
seasonalising the forecasts generally outperforms the method of modelling seasonality
in ARIMA forecasting (although not always). Finally, note that the MAPE of the favoured
ARIMA model is always less than 10 percentage points suggesting a relatively good
forecasting performance for this class of models for Brazilian inflation. A similar
procedure was applied for all countries and a summary of the favoured methods is given
below in the Table 5.5.2 and 5.5.3. The detailed results and discussion are available in

Appendix. Section 5.3 page 426 — 443.
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Table 5.5.2 Summary of the best forecasting univariate models for BRICS countries

Best forecasting Univariate model for Brazil

RMSE U —statistics MAPE
Horizon Type Type Type Range
1-to 2-steps R_A _SARIMA R_A_SARIMA R_A_SARIMA 5.0690 — 8.0390
3 to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA 0.3390 -8.2540
Best forecasting univariate model for Russia

RMSE U —statistics MAPE
Horizon Type Type Type Range
1to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA 6.3660 — 20.6300
Best forecasting univariate model for India

RMSE U —statistics MAPE
Horizon Type Type Type Range
1to 8- steps F_SARIMA F_SARIMA F_SARIMA 13.5200 -63.4600
Best forecasting univariate model for China

RMSE U —statistics MAPE
1 to 2-steps F_A_SARIMA F_A_SARIMA F_A_SARIMA 7.1980 - 14.0000
3to 8- steps F_A_ARIMA F_A_ARIMA F_A_ARIMA 14.5800 -19.5400
Best forecasting univariate model for South Africa

RMSE U —statistics MAPE
Horizon Type Type Type Range
1to 4 —steps R_A_SARIMA R_A_SARIMA R_A_SARIMA 14.2800 -20.9900
5-step R_SARIMA R_A_SARIMA R_SARIMA 17.2600
6 to 7-steps R_A_SARIMA R_A_SARIMA R_A_SARIMA 12.3600- 13.3600
8-step R_SARIMA R_SARIMA R_SARIMA 10.2000

The best univariate forecasting model is identified by each measure (RMSE, MAPE and U) for each
forecasting horizon (1, 2..., 8 steps ahead). The full sample univariate model that employs seasonal Box-
Jenkins ARIMA techniques and model’s structural breaks is denoted as F_SARIMAX, the full sample
univariate model that employs Box-Jenkins ARIMA techniques without modelling structural breaks is
denoted as F_SARIMA (this model type is exclusive to India because there were no significant structural
breaks to model over the full sample). The full sample specifications that employ EViews 9’s automatic
seasonal and non-seasonal ARIMA model without modelling breaks are denoted as F_A_SARIMA and
F_A_ARIMA respectively (these models are exclusively designed for China because the period after the
structural breaks are less than 39 observations and relative step shifts for this period also appear to be
small which mean that inference regarding unit roots may not be too adversely affected when using the
full sample. Hence, the full sample is used for these models for this country). The reduced sample model
that employs seasonal ARIMA technique’s without modelling structural breaks is denoted as R_SARIMA.
The reduced sample model that employs EViews 9’s automatic seasonal ARIMA model selection
procedure without modelling breaks is denoted as R_A_SARIMA and the reduced sample model that
employs EViews 9’s automatic non-seasonal ARIMA model selection method without modelling breaks is
represented by R_A_ARIMA. Range gives the range of values for the MAPE for models favoured according
to this forecasting measure over the specified horizon.
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Table 5.5.3 Summary of the best forecasting univariate models for OPEC countries

Best forecasting univariate model for Angola

RMSE U —statistics MAPE
Horizon Type Type Type Range
1to 8-steps R_SARIMA R_SARIMA R_SARIMA 2.0590 - 13.3300
Best forecasting univariate model for Algeria
RMSE U —statistics MAPE
Horizon Type Type Type Range
1-step F_SARIMAX F_SARIMAX R_A_SARIMA 61.6300
2 —step R_A_ARIMA R_A_ARIMA R_A_ARIMA 82.6100
3 to 7-steps F_SARIMAX F_SARIMAX F_SARIMAX 27.3800- 136.0000
8-step F_SARIMAX R_SARIMA F_SARIMAX 28.7700
Best forecasting univariate model for Ecuador
RMSE U- statistics MAPE
Horizon Type Type Type Range
1 to 8-steps F_SARIMAX F_SARIMAX F_SARIMAX 15.4500 -42.9100
Best forecasting univariate model for Saudi Arabia
RMSE U —statistics MAPE
Horizon Type Type Type Range
1 to 2-steps R_SARIMA R_SARIMA R_SARIMA 8.3720 -14.8500
3 to 8-step R_A_ARIMA R_A_ARIMA R_A_ARIMA 1.0100 - 15.1400
Best forecasting univariate model for Nigeria
RMSE U —statistics MAPE
Horizon Type Type Type Range
1-step R_SARIMA R_SARIMA R_SARIMA 19.2400
2-step R_A_ARIMA R_A_ARIMA R_A_ARIMA 22.8700
3-step R_SARIMA R_SARIMA R_A_ARIMA 38.1200
4 to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA 40.7200 - 46.5100
Best forecasting univariate model for Kuwait
RMSE U-statistics MAPE
Horizon Type Type Type Rage
1 to 8-steps F_SARIMAX F_SARIMAX F_SARIMAX 11.2100 - 38.5900

See note in the Table 5.5.2
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For BRICS countries, see Table 5.5.2, the EViews 9 automatic model selection procedure
is virtually always favoured for all countries except India. The reduced sample automatic
seasonal method is favoured for Brazil over the 1 and 2 steps ahead horizons and for
South Africa over the 1 to 4 and 6 to 7-step ahead horizons. The full sample automatic
seasonal model is only favoured at the 1 and 2-step ahead horizons for China. The
reduced sample automatic non-seasonal method is favoured for Brazil over the 3 to 8
step horizons and for Russia over all horizons. While the full sample automatic non-
seasonal method is favoured for China over the 3 to 8 step horizons. The seasonal ARIMA
model (without modelling structural breaks) is favoured for India over all horizons (using
the full sample) and is preferred for South Africa over the 5 and 8 step horizons (using a
reduced sample). For Brazil, Russia, China and South Africa, the MAPE values of all the
favoured EViews 9 automatic selection models are always less than 21 percentage
points. The MAPE value of the favoured automatic seasonal method is between 5.0690
— 8.0390 for Brazil, 7.1980 — 14.0000 for China and 12.3600- 20.9900 for South Africa.
The MAPE values of the automatic non-seasonal method is between 0.3390- 8.2540 for
Brazil, 6.3660 — 20.6300 for Russia and 14.5800 -19.5400 for China. The MAPE value for
the seasonal ARIMA model (without modelling structural breaks) is between 13.5200
and 63.4600 for India and 10.2000 for South Africa. However, the ARIMAX model was

never favoured for any BRICS country.

For OPEC countries, see Table 5.5.3, the EViews 9 automatic model selection procedure
applied to the reduced sample is only occasionally favoured and the automatic seasonal
method is never favoured for any horizon according to all the 3 forecasting performance
measures (which contrasts with the results for BRICS countries). The automatic non-
seasonal method is favoured for Algeria over the 2-step horizon, for Saudi Arabia over
the 3 to 8 steps ahead horizons and for Nigeria over the 2 (possibly 3) and 4 to 8 step
horizons. The seasonal ARIMA model (without modelling structural breaks) is favoured
for Angola over all horizons, for Algeria possibly over the 8-step horizon, for Saudi Arabia
over the 1 and 2 step horizons and Nigeria over the 1 (and possibly 3) step horizon. The
ARIMAX model being the only valid model for Ecuador and Kuwait performs
comparatively well for this class of model and produces the best forecast for Algeria over
the 3 to 7 (and possibly 1 and 8) step horizons. The MAPE value for the seasonal ARIMA

model (without modelling structural breaks) is between 2.0590 — 13.3300 for Angola,
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28.7700 for Algeria, 8.3720 -14.8500 for Saudi Arabia and 19.2400 for Nigeria. While the
MAPE value for the best automatic non-seasonal model is 82.6100 for Algeria, and
1.0100 — 15.1400 for Saudi Arabia as well as 22.8700 — 46.5100 for Nigeria. The
corresponding ARIMAX value for the MAPE is between 11.2100 — 38.5900 for Kuwait,
15.4500 -42.9100 for Ecuador and 27.3800- 136.0000 for Algeria.

When comparing ARIMAX/ARIMA models for BRICS and OPEC countries, the ARIMAX
model applied to the full sample is rarely favoured in the class of univariate models
(except where it is the only valid model). This suggests that the potential benefits of
using a full sample and explicitly modelling the structural breaks are generally
outweighed by the benefits of being able to avoid modelling structural breaks at the cost
of a reduced sample for estimation. Given the extra time and modeller expertise
required to model such breaks suggests that using reduced samples to avoid structural
breaks is typically the preferred strategy. EViews 9’s automatic model selection
procedure applied to the reduced sample is often favoured (especially for the BRICS
countries) although seasonal ARIMA modelling without using automatic model selection
is sometimes favoured. Hence, the quick automatic ARIMA selection procedures often
(though not always) produce superior forecasts compared to more time-consuming Box-
Jenkins ARIMA modelling techniques. Of the two automatic ARIMA model selection
procedures considered the non-seasonal method applied to seasonally adjusted data
was more generally favoured than the seasonal method applied to unadjusted data. This
suggests that the benefit of seasonally adjusting the data and re-seasonalising the

forecasts generally outperforms the method of explicitly modelling seasonality.
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5.6.0. Nonlinear model

In the previous section, we have seen remarkable success in the application of linear
time series models (ARIMA and ARIMAX) to forecast inflation. One of the main
conclusions from this section is that, linear time model (ARIMA and ARIMAX) yield
specifications that are valid for forecasting. This is in the sense that they are not rejected
by the diagnostic checks for residual autocorrelation, stationarity and invertibility.
However, different studies have document poor performance of linear ARIMA model
over the nonlinear model most especially when to describe the transformation of
macroeconomic dynamics or changes in the monetary policy (Bradley and Jansen (2004),
Song et. al. (2003), Terasvirta et al (2005)). They argue that linear model may not be
used to capture features of the data that exist not to be stable. Instead, they argued in
favour of nonlinear model. For example, the empirical studies (Tong, 1990, Granger and
Terasvirta, 1993) document that the nonlinear model has ability to capture
asymmetries, structural breaks that showed in many time series data. In this section, we
investigate the forecast performance of nonlinear time series (threshold autoregressive
models) and compared its forecasting performance with the best selected
ARIMA/ARIMAX models estimated the previous chapter. The threshold autoregressive
models (TAR model) is estimated over the full sample that identified with breaks and

the reduced sub-samples (without structural breaks) identified in section 5.2.
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5.6.1 Threshold Autoregressive model

The threshold autoregressive model (TAR model) was first proposed by Tong (1978) and
discussed in detail by Tong and Lim (1980) and Tong (1983). The model is often classified
as a nonlinear model that is typically designed to accommodate features of the data that
cannot be captured by the linear models. It is used to describe the features of time series
variables in two or more different regimes. For several decades, numerous works have
been published regarding the application of the threshold model for modelling and
forecasting macroeconomic variables. This model has proved successful in describing
different economic environments that include periods of high and low inflation (Tiao
and Tsay, (1991), Clements and Smith (1997)., Pippenger and Goering, (1998)). For
instance, Tiao and Tsay (1991) compare the forecast performance of an AR(2)
specification to two- regime Self- Exciting Threshold Autoregressive (SETAR) model for
real US quarterly GNP. Evidence reveals that the SETAR model performs better than the
AR model during the period of economic recession. This conclusion is similar to the
studies of Clement and Smith (1997, 1999) who used the same approach to forecast UK
GDP. Montgomery, et al. (1998) also compare the empirical forecasting performance of
a set of time-series models for the U.S. unemployment rate. The time series models
considered include linear univariate autoregressive integrated moving average (ARIMA)
models, bivariate vector autoregressive moving average (VARMA) models, threshold
autoregressive (TAR) models, Markov switching autoregressive (MSA), combined
forecast and survey forecast method. Evidence reveals that the TAR and MSA models
outperform other selected linear models during periods of economic contraction or
period of rapidly rising unemployment. For example, the TAR model yields up to a 28%
reduction in mean-squared forecast error for longer term forecasts relative to all linear
models. The recent literature on inflation forecasting that apply a threshold framework
is very rare. Although, the model has been recently used in other field for forecasting,
most especially in Science and Engineering. For example, Amiri (2015) compared
forecasting performance of 5 different nonlinear time series models, namely Threshold
Autoregressive (TAR), Smooth Transition Autoregressive (STAR), Exponential
Autoregressive (EXPAR), Bilinear Model (BL) and Markov Switching Autoregressive
(MSAR) to forecast daily river flow at Colorado River in U.S.A., from 1/01/2000 to
12/31/2011. The results show that a self-exciting TAR (SETAR) model performs better
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than other four competing models. Similarly, Tongal and Booij (2016) examine the
forecasting performance of two different nonlinear models (SETAR, and a chaotic k-
nearest neighbour(k-nn) model) for nine flowing rivers that characterised as low,
medium, and high flows in the western United States. Evidence reveals that the SETAR
model is superior to the k-nn model for various forecast horizons. In our study, we
examine whether the use of the threshold autoregressive model that accounts for
different economic environments will improve the forecasting performance for inflation

compared to the other models that we consider.

TAR is considered as the self-exciting threshold autoregressive (SETAR) model when the
threshold variable is taken as the lagged value of the time series being modelled. The
SETAR assumes that a variable Yy, is a linear autoregression within a regime but may
move between regimes depending on the value taken by a lag of y;, say, y;_4 where
d is the length of the delay.

The simple AR(p) model for a time series {y;} follow the process:
Ve=0o + D1Ye—1 +t DpYep + 0& (5.0)

Where @; (i = 1,2,...,, p) are the AR coefficients, & . N(0,1) and o > 0 is the standard
deviation of the disturbance term. The model parameters @ = (@, @4, @2, ....., ;) and
o are independent of time t and remain constant. To capture nonlinear dynamics, TAR

models can be estimated as follow:
Ve=0," + 0, Py g+t 0, Py, +,Difr_ <z, <15, (5.1)

Wherej =1,2,....,k, zs = y;_q. The thresholdis -0 =1y <1y < .. <71, =0, forj.
k is the number of regimes separated by k — 1 nontrivial thresholds, {et(j)} are
independent identical distributed sequences with zero mean and variance ajz and are
mutually independent for different j . The parameter d is the delay parameter, 7; are
thresholds, p is denotes the AR order and @,, are the autoregressive coefficients. An
interesting feature of SETAR model is that, the stationarity of y, does not require the

model to be stationary in each regime. In this study, we use EViews to apply the Bai and

Perron test to determine the number of the regimes and threshold parameter.

Terasvirta and Anderson (1992) and Granger and Terasvirta (1993) estimate a time

varying SETAR where parameters are allowed to change smoothly over time. This
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resulting model is called a smooth threshold autoregressive model (STAR) and has the

following general expression.
Ve = Mo + 111 + (6 + 61%1) F(e—a) + uy (5.2)

Where the error is assumed to be n.i.d (0,62), x, = Ve-1,...Yt-p) ) 1=

(114, .. Mp)'and 8y = (64;, .. 01p)’, and = F(.) is the transition function.

The most common specifications for the transition function are the logistic and the

exponential:
Fe-a) = {1+ exp[-y(ye-a — NI (5.3)
F(i-a) =1 —exp[-Y(Vt-a — M)]? (5.4)

In the logistic STAR (LSTAR) model the parameters change monotonically with y;_,.
When y trends to infinity, F(y,_4) becomes a Heaviside function which assumes the
value 0 if the threshold variable is equal or smaller than r and the value 1 if is greater
than r; in this case the model becomes a SETAR model. On the other hand, if y tends to

zero, the STAR reduces to a linear AR(p) model.
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5.6.2 Specification and Modelling of threshold Autoregressive model

In this section, we describe the process of modelling the threshold autoregressive model
(TAR model). In estimating the TAR model, we broadly follow the procedure presented
in Terasvirta and Anderson (1992).8% According to this study, the procedure to estimate
a TAR model involves three steps. First, select the AR order p for threshold lags. In the
second step, we test for the number of regimes and if there is more than one regime we
assume a TAR model. However, we do not allow smooth transition between regimes
that is estimated in the third procedure of Terasvirta and Anderson (1992). As already
indicated, modelling of the TAR models first required to choose an appropriate lag
length for linear AR order p. A standard procedure requires to choose appropriate lag
length on the basis of a goodness of fit criteria. In practise, different methods can be
used to decide the appropriate lag length (e.g Schwarz Information Criteria (SIC) or
Akaike Information Criteria and partial autocorrelation function (PACF)). In our study,
we use available in EViews (Automatic ARMA model selection procedure) that select
Akaike Information Criteria to estimate the lag of the AR. In this method, we estimate
the maximum possible AR lags that free from autocorrelation. This procedure selects
the maximum 8 lags for non- seasonal AR components and O for other ARMA
components. We specified maximum order of 8 lags for non-seasonal AR components
to capture any possible seasonal AR terms that may occur at lag 4 or 8 lags. Second step
is to test for the number of regimes and assuming a TAR model if the regimes are more
than one.?4 For each model, we conduct a diagnostic test to the residual of the estimated
model for serial correlation using Breusch Godfrey’s LM test. If there is no evidence of
autocorrelation (of orders 1, 2, ... 4) this initial lag length is selected. However, if there
is evidence of autocorrelation, we re-estimate the TAR model using a lag length of P*+1

((where P* =initial lag length). The process is repeated until the model cannot reject the

8 Qur technique is slightly different from procedure presented by Terasvirta and Anderson (1992) in two
ways. First, Terasvirta and Anderson (1992) adopts Information Criteria to select AR lag length. In
contrast, we apply EVlew automatic ARIMA selection to select AR lag length. Second, Terasvirta and
Anderson (1992) tests for linearity before estimating TAR model. In our study, we did not test for
linearity before estimating TAR model because evidence suggest that testing linearity may not be
relevant when estimating threshold model, but carefully selecting the lag order and delay parameter are
important (Terasvirta et al. 2005).
84 In our study, we did not test for linearity because we only estimate TAR models. The linearity test is to
determine whether the TAR specification or STAR specification are appropriate. Preliminary experiment
revealed that the STAR model cannot be estimated for most of the selected countries due to the stated
error in EViews “specification leads to singular matrix in at least one sub-sample”.
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hypothesis of no- autocorrelation at the 5% level. For step 3, the TAR model can be

examined as long as the model pass the diagnostic test for autocorrelation. &

5.6.3. Modelling TAR Models for Brazil

In this section, we construct a TAR model for Brazil over the full sample estimated for
ARIMAX for model in section 5.1.2. To identify the lag length in the linear AR of annual
inflation, we use the EViews automatic ARIMA selection procedure (without MA terms).
First, we select the maximum 8 lags for non- seasonal AR components and 0 for the
other ARMA components (such as the MA components). We do not consider the
automatic selection of logarithmic or differencing transformations that are available in
EViews because we believe that the annual inflation data is stationary following our
previous analysis. The automatic ARIMA selection indicates that 3 lags are appropriate
for annual inflation. These results are summarized in Table 5.6.1 column 1. Second, we
estimate a TAR model using the suggested 3 lags length and d element.®® The result
shows two distinct regimes of the threshold value of 9.658904. This implies that that
value of annual inflation in the first regime is less than 965%. While the value of annual
inflation in the second regime is more than 965% for Brazil. All the coefficients of the AR
terms are significant except AR(3) for the second regime. In contrast, only AR(1) is
significant in the first regime (see Table 5.6.1 column 2). The coefficient value of the
intercept is also not significant for the first regime and significant in the second regime.
The result of the Bai and Perron test associated 5% critical value indicates that there is
only one significant breakpoint because the scaled F-statistic is greater than the
corresponding critical value for the null hypothesis of no breaks (denoted 0 vs 1).
However, the scaled F-statistic is less than critical value for the null hypothesis of 1 break
(1 vs 2). For the model to be valid we apply the standard diagnostic checks for serial
autocorrelation. Our result shows that 3 out of the 4 of the probability values of the
residual autocorrelation at the 4™ lag, denoted LM[RESID(4)], are less than 0.050

indicating evident of serial autocorrelation up to order four. The probability value of the

8 In this research, we will not pay more attention into insignificant value of AR coefficients instead we
focus on diagnostic test for Autocorrelation because, literature suggests that insignificant value of AR
coefficients is not informative when estimating threshold models (Tsay 1989).

8|n our study, we estimate d = 1 because annual inflation is stationary at level.
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LM (Obs*R-squared) also indicates that residuals are serially correlated, and the
equation should be re-specified before using for forecasting. These results are
summarized in Table 5.6.1 column 2. To maximize the chance of selecting an appropriate
lag length that will be free from autocorrelation. We consider models with higher lags
for Brazil and re-estimate the TAR model using lag lengths 4 (where P*+ 1= lag length,
and P* is the initial lag specified by EView automatic selection) and test the validity of
this model. The results of the TAR model with 4 lags is reported in the column headed
3 of Table 5.6.1. This equation also specified the two distinct regimes for the TAR model
with the same threshold value of 9.658904 for Brazil. In term of specification, the
coefficients of all AR components are not significant for the both regimes except AR (1)
and AR(2) for the second regime. The result of the Bai and Perron test associated 5%
critical value indicates that there is only one significant breakpoint because the scaled
F-statistic is greater than the corresponding critical value for the null hypothesis of no
breaks (denoted 0 vs 1). However, the scaled F-statistic is less than critical value for the
null hypothesis of 1 break (1 vs 2). For the model to be valid we apply the standard
diagnostic checks for serial autocorrelation. At least more than two of the probability
value of the residual autocorrelation at the 4% lag, denoted LM[RESID(4)], is less than
0.050 indicating evident of serial autocorrelation up to order four. The probability value
of the LM (Obs*R-squared) also indicate that residuals are serially correlated, and the
equation should be re-specified before using for forecasting. After experimentation with
all possible lower and higher lag lengths, we find that a TAR model estimated with 3 lags
without intercept passed diagnostic test for serial autocorrelation. The results of this
TAR model with 3 lags without intercept is reported in the column headed 4 of Table
5.6.1. Therefore, the TAR model with 3 lags without intercept is valid for forecasting.
From the favoured model, the TAR specification reveals that inflation is characterized by
only one regime of higher inflation for Brazil between 1984ql 2012qg4. A similar
procedure was applied for all countries and a summary of the favoured TAR models is
given in Table 5.6.2 and 5.6.3 for BRICS and OPEC countries respectively. For both BRICS
and selected OPEC countries, we note that TAR specification identified at least two
regimes for each country except for Brazil, China and Angola that the TAR model
specified only 1 regime. This implies that inflation is characterized by the nonlinearity
with at least two distinct regimes for all selected countries except Brazil, China and

Angola.
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Table 5.6.1. Modelling of the TAR model for Brazil

1 2 3 4
Countries AR automatic | TAR Specifications TAR Specifications TAR specifications
selections
Lags values 3 3 4 3
Number of regimes chosen 2 2 1
by Selection Criteria
Threshold value for 1 9.658904 (99) 9.658904 (99)
C 0.012186 -0.00698 0.052305
(-0.03231) (-0.01840) (0.1519)
Inf_BRA (-1) 1.4767 1.5001 1.0988 1.5648
(3.7804) (3.6066) (1.9655) (17.89374)
Inf_BRA(-2) -0.3315 -0.4071 -0.3449 -1.0345
(-0.4916) (-0.5030) (-0.4755) (-7.3436)
Inf_Bra(-3) 0.0091 0.1008 0.14728 0.3685
(0.0348) (0.1679) (0.2736) (4.2136)
Inf_Bra(-4) -0.0549
(-0.2802)
Threshold value for 2 9.658904 (17) 9.658904 (17)
C 13.3197 26.22902
(7.0078) (8.8387)
Inf_Bra(-1) 1.1266 1.0130
(10.5001) (10.3225)
Inf_Bra(-2) -0.7814 -0.8925
(-4.5167) (-5.72663)
Inf_Bra(-3) -0.1442 0.1284
(0.5510) (0.5366)
Inf_Bra(-4) -0.2770
(-1.0528)
Adj R? 0.8971 10.2149 0.9176 -0.0344
SC 5.4670 5.5359 5.3717 5.8180
LM[RESID(1)] 0.2737 0.0386 0.1033
LM[RESID(2)] 0.9055 0.0168 0.7496
LM[RESID(3)] 0.0000 0.1880 0.4015
LM[RESID(4)] 0.0000 0.9456 0.0931
LM (Obs*R-squared) 0.0000 0.0000 0.4592
Bai- Perron test
Ovs1 30.9804 45.2648 2.9871
{18.23} {20.08} {13.98}
lvs2 2.0375 4.0461
{19.91} {22.11}

Where Adj R? = Adjusted R — square, SC = Schwarz criterion, {} is the critical values for Bai- Perron test, ()

is the probability value of the coefficient of the TAR model, LM[RESID()] = p value of the residual, LM
(Obs*R-squared) = probability value of Breusch- Godfrey LM test. Obs = number of the observations.
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Table 5.6.2. Modelling of the TAR models for BRICS

C Brazil Russia India China South Africa
Sample 1984Q4 -2012g4 | 1996Q1-2012q4 1961Q1-2012qg4 1992Q1-2012qg4 1961q1-2012qg4
Lags values 3 6 5 10 6
Number of regime | 1 2 2 1 2
chosen by Selection
Criteria
Threshold value for 1 0.24422(57) 0.11375[166] 0.84756(160)
C 0.000357 0.0093 0.0030 -0.00258
(0.0149) (0.0021) (0.0916) (2.8966)
Inf_Inflation(-1) 1.5648 3.3516 1.1860 1.1258 0.12435
(17.89374) (10.4292) (0.0000) (0.0000) (7.2658)
Inf_Inflation(-2) -1.0345 -3.7823 -0.2492 0.0345 0.05411
(-7.3436) (-5.4582) (0.0400) (0.8485) (-2.3203)
Inf_Inflation(-3) 0.3685 1.9502 0.2677 -0.0922 0.32112
(4.2136) (2.5846) (0.0342) (0.5862) (0.8475)
Inf_Inflation(-4) -0.5762 -0.8055 -0.1155 -0.1524
(-1.5505) (0.0000) (-0.2850) (-2.1494)
Inf_Inflation(-5) 0.1568 0.49022 0.6105 -0.51326
(0.6781) (6.9147) (0.0064) (2.0098)
Inf_Inflation(-6) -0.04433 0.3948 1.4567
(-0.4694) (0.2498) (4.2117)
Inf_Inflation(-7) 1.2610
(0.0641)
Inf_Inflation(-8) 0.1263
(-3.1027)
Inf_Inflation(-9) 0.3075
(2.8442)
Inf_Inflation(-10) 0.0436
(0.2225)
Threshold value for 2 0.24433 (11) 0.11375[42] 0.84756 (48)
C -0.0094 0.03216 0.043222
(-0.1408) (0.0001) (5.72189)
Inf_Inflation(-1) 1.6492 1.4184 1.765502
(11.9724) (0.0000) (12.78504)
Inf_Inflation(-2) -1.07198 -0.3499 -1.74365
(-5.3124) (0.0457) (-6.17347)
Inf_Inflation(-3) 0.5727 -0.2459 0.997681
(2.3572) (0.1750) (2.95944)
Inf_Inflation(-4) -0.5693 -0.1122 -0.74486
(-2.3898) (0.5687) (-2.01695)
Inf_Inflation(-5) 0.5258 0.0082 0.432142
(2.6518) (0.9477) (1.25310)
Inf_Inflation(-6) -0.1860 0.246243
(-1.5696) (0.75410)
Adj R? 0.9421 0.9072 0.9177 0.9450
SC -0.0344 -2.2685 -5.2469 -5.5347 -6.6892
S.E 5.8180 0.0565 0.0171 0.05150 0.0234
LM[RESID(1)] 0.1033 0.3601 0.4704 1.4736 0.4346
LMIRESID(2)] 0.7496 0.1076 0.1161 0.269391 0.21344
LM[RESID(3)] 0.4015 0.4200 0.2825 0.2108 0.2306
LM[RESID(4)] 0.0931 0.0810 0.0563 0.1879 0.13455
LM (Obs*R-squared) | 0.4592 0.2682 8.7239 3.4229
2.5669
Bai- Perron test
Ovs1 2.9871 30.5087 40.7161 21.2577 20.6788
{13.98} {21.87} {27.03} {27.03} {22.0567}
lvs2 12.3041 28.7211 14.5300
{24.17} {29.7211} {28.7234}
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Table 5.6.3. Modelling of the TAR model for selected OPEC countries

C Algeria Angola Nigeria Saudi Arabia Kuwait Ecuador
Sample 1978Q1- 1996q1 1964q1- 1975Q1- 1977q1 201294 1987q1 201294
2012q4 2012g4 2012g4 2012g4
Lags values 7 3 15 10 5 3
Number of | 3 1 2 2 2 3
regime chosen
by Selection
Criteria
Threshold value | 0.09372(83) 0.37499(165) 0.0594776(130) | 0.06870(115) 0.438485(72)
for1
C 0.006123 0.454768 0.026648 0.00138 0.0070 -0.00236
(0.91779) (0.468309) | (3.316294) (0.8273) (1.11723) (-1.11769)
Inf_Inflation(-1) | 0.777401 0.577528 1.202501 1.229157 0.538022 1.38968
(0.9177) (4.839734) | (13.34657) (9.1675) (2.192908) (4.07459)
Inf_Inflation(-2) | 0.199435 0.199171 -0.1434 -0.37044 1.463869 -0.27517
(0.9177) (1.448596) | (-1.0616) (-1.7940) (-3.34909) (0.749685)
Inf_Inflation(-3) | -0.01111 -0.02292 -0.13016 0.103592 -2.07862
(-0.0743) (-0.19502) | (-1.06744) (0.5046) (4.628368)
Inf_Inflation(-4) | -0.8886 -0.68105 -0.4276 2.303215
(-6.7429) (-6.10123) (-2.2533) (-1.65001)
Inf_Inflation(-5) | 0.83497 0.801916 0.594925 -1.00916
(4.40641) (3.19800) (1.46386)
Inf_Inflation(-6) | 0.0144 -0.11533 -0.2916
(0.0824) (6.392716) (-1.4997)
Inf_Inflation(-7) | -0.0619 0.087161 0.15430
(-0.4965) (0.707849) (0.81186)
Inf_Inflation(-8) -0.72106 -0.3048
(-6.65902) (-1.7546)
Inf_Inflation(-9) 0.719952 0.3425
(5.816971) (2.1814)
Inf_Inflation(- -0.15098 -0.1312
10) (-1.10264) (-1.5358)
Inf_Inflation(- 0.066229
11) (0.564039)
Inf_Inflation(- -0.47435
12) (-4.4386)
Inf_Inflation(- 0.578215
13) (4.967618)
Inf_Inflation(- -0.19689
14) (1.57349)
Inf_Inflation(- -0.02775
15) (-0.3670)
Threshold value | 0.093723(24) 0.37499(28) 0.0594776(22) 0.06870(29) 0.4384858(15)
for 2
C 0.135891 0.072 0.011738 0.004981 -1.11769
(2.836803 (1.35613) (1.4409) (1.049287) (-4.52669)
Inf_Inflation(-1) | -0.32878 1.673 1.235227 0.99674 4.074599
(-0.6567) (9.759833) (11.2408) (10.16356) (5.98994)
Inf_Inflation(-2) | 0.365933 -1.155 -0.37266 -0.07437 0.749685
(1.6358) (4.21423) (-2.6137) (0.51907) (1.128554)
Inf_Inflation(-3) | 0.0056 0.432 -0.3659 0.140046 -1.74153
(0.0269) (1.524301) (-2.47621) (0.950018) (-2.78238)
Inf_Inflation(-4) | -0.3060 -0.68217 0.5141 -1.00346
(-1.2225) (-2.54981) (2.9287) (0.950018)
Inf_Inflation(-5) | -0.02255 0.658429 1.1008 0.68131
(-0.1283) (1.940667) (7.6260) (3.268875)
Inf_Inflation(-6) | -0.04376 0.322021 -0.76787
(-0.2096) (0.759652) (-4.2113)
Inf_Inflation(-7) | -0.05943 -1.44667 -0.68419
(-0.4185) (-3.01114) (-4.85632)
Inf_Inflation(-8) 1.625617 0.25619
(3.070437) (1.41498)
Inf_Inflation(-9) -0.71065 0.9819
(-1.29662) (1.4149)
Inf_Inflation(- 0.400739 -1.2179
10) (0.801632) (-5.6619)
Inf_Inflation(- -0.09806
11) (-0.26301)
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Inf_Inflation(- -0.66393
12) (-2.54661)
Inf_Inflation(- 0.925057
13) (3.461555)
Inf_Inflation(- -0.61483
14) (-2.00118)
Inf_Inflation(- 0.258236
15) (1.349004)
Threshold value | 0.15275(33) 0.53901(17)
for 3
C -0.00209 0.12946
(-0.08217) (2.544994)
Inf_Inflation(-1) 1.270973 1.5361
(8.481038) (15.2291)
Inf_Inflation(-2) | 0.077223 -0.5439
(0.4020) (-3.36705)
Inf_Inflation(-3) | -0.57528 -0.4262
(-3.15919) (-2.51298)
Inf_Inflation(-4) | -0.19653
(-1.0505)
Inf_Inflation(-5) | 0.2987
(1.3162)
Inf_Inflation(-6) | 0.5339
(2.3218)
Inf_Inflation(-7) | -0.44118
(-2.9190)
Adj R? 0.8978 0.8750 0.9154 0.9546 0.8310 0.9837
SC -3.5725 -5.232 -2.4417 -4.7809 -5.1979 -3.2559
LM[RESID(1)] 0.3942 0.1209 0.409307 0.18574 0.5614 0.3098
LM[RESID(2)] 0.6689 0.15378 0.8699 0.202
0.5833 0.18446
LM[RESID(3)] 0.0561 0.122 0.68687 0.16792 0.2108 0.4093
LM[RESID(4)] 0.3275 0.1029 0.25734 0.16918 0.1879 0.9739
LM  (Obs*R- | 0.2000 0.0841 0.9501 0.2754 0.5555
squared) 0.1164
Bai- Perron test
Ovs1 3.0927 0.4477 50.2290 90.6243 46.1241 47.0812
{23.70} (16.19) {27.3} {27.0} {20.08} {16.7}
1vs2 3.2856 26.3329 10.9373 20.0098 27.2727
{25.75} {29.24} {29.24} {22.11} {18.93}
2vs3 0.7421 2.6458
{26.81} (18.13)

Where Adj R? = Adjusted R — square, SC = Schwarz criterion, {} is the critical values for Bai- Perron test, ()
is the probability value of the coefficient of the TAR model, LM[RESID()] = p value of the residual, LM
(Obs*R-squared) = probability value of Breusch- Godfrey LM test. Obs = number of the observations
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5.6.4. Modelling TAR Models for Brazil

In this section, we use the same sample period used in section 5.2 and 5.3. In particular,
we construct TAR models to the countries’ annual inflation using a reduced sample
period that avoids structural breaks for Brazil. The difference between the TAR model
estimated in this section and previous section (5.6.3) is that, we estimate TAR model
over a full sample that identify with different multiple breaks in the previous section
(5.6.3) and estimate TAR model over a reduced sample that avoid multiple breaks in this
section. In particular, we use the Bai Perron tests to identify the number of the possible
breaks over the full sample and estimate TAR model on the end of the sample that has
no breaks with the minimum of 39 observations.?’ To identify the lag length in the linear
AR of annual inflation, we use the EViews automatic ARIMA selection procedure
(without MA terms). First, we select the maximum 8 lags for non- seasonal AR
components and 0 for the other ARMA components (such as the MA components). We
do not consider the automatic selection of logarithmic or differencing transformations
that are available in EViews because we believe that the annual inflation data is
stationary following our previous analysis. The automatic ARIMA selection indicates
that 6 lags are appropriate for annual inflation. These results are summarized in Table
5.6.4 column 1. Second, we estimate a TAR model using the suggested 6 lags length and
d element.® The result shows two distinct regimes of the threshold value of
0.07492098. The value of annual inflation in the first regime is less than 0. 07492098
while the value of annual inflation in the second regime is more than 0.07492098 for
Brazil. All the AR coefficients are not significant for two regimes. The result of the Bai
and Perron test associated 5% critical value indicates that there is only one significant
breakpoint because the scaled F-statistic is greater than the corresponding critical value
for the null hypothesis of no breaks (denoted 0 vs 1). However, the scaled F-statistic is
less than critical value for the null hypothesis of 1 break (1 vs 2). For the model to be
valid we apply the standard diagnostic checks for serial autocorrelation. At least one of
the probability value of the residual autocorrelation at the 4™ lag, denoted
LM[RESID(4)], is less than 0.050 indicating evident of serial autocorrelation up to order

four. The probability value of the LM (Obs*R-squared) also indicate that residuals are

87 See section 5.2.0 for the details
8|n our study, we estimate d = 1 because annual inflation is stationary at level.
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serially correlated, and the equation should be re-specified before using for forecasting.
These results are summarized in Table 5.6.4 column 2. To maximize the chance of
selecting an appropriate lag length that will be free from autocorrelation. We consider
models with higher lags for Brazil and re-estimate the TAR model using lag lengths 7
(where P*+ 1= lag length) and test the validity of this model. The TAR models with 7 lags
also indicates evidence of autocorrelation — see column 3 of Table 5.6.4. Therefore, this
model is not valid to forecast. After experimentation with valid higher and lower lags,
we find that a TAR model estimated with 3 lags and annual inflation passed diagnostic
test for serial autocorrelation.® The results of this TAR model with 3 lags is reported in
the column headed 4 of Table 5.6.4. Therefore, the TAR model with 3 lags is valid for
forecasting. From the favoured model, the TAR specification reveals that inflation are
characterized by the two distinct regimes for Brazil. For the first regime, the value of
annual inflation is less than 6.75% while the value of annual inflation in the second
regime is more than 6.75% for Brazil. We categorised the first regime where the value
of annual inflation is less than 6.75% as a period of low inflation and the second regime
where annual is more than 6.75% as period of high inflation. We also note that the TAR
model allocates more observations to the first regime (41 observations) than the second
regime (21 observations). This implies that period of economy crisis is less than the
period of economic stability for Brazil. This finding is consistent with economic views
that duration of economic booms (period lower inflation) tends to be longer than those
of economic slumps (period of higher inflation). A similar procedure was applied for all
countries and a summary of the favoured TAR models is given in Table 5.6.5 and 5.6.6
for BRICS and OPEC countries respectively. For both BRICS and selected OPEC countries,
we noticed that TAR specification identified two regimes for each country except Saudi
Arabia that the TAR model specified 3 regimes.’® This implies that inflation is
characterized by the nonlinear with at least two distinct regimes for all selected

countries over a reduced sample identified without breaks.®!

8Note that d =1 because annual inflation is stationary at level.
90 The available countries that meet up with our minimum requirements in the BRICS and selected OPEC countries

are summarised below: Brazil, Russia, South Africa, Nigeria, Algeria, Saudi Arabia and Angola.

91 The possibility of two regimes mean that inflation parameter in many of these countries is nonlinear.
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Table 5.6.4. Modelling of the TAR model for Brazil

1 2 3 4
Countries AR automatic | TAR Specifications TAR Specifications TAR specifications
selections
Lags values 6 6 7 3
Number of regimes chosen 2 2 2
by Selection Criteria
Threshold value for 1 0.07492098 [47 Obs] | 0.07252098 [47 Obs] 0.06753 [41 Obs]
c 0.0666 0.01241 0.0118 0.0175
(4.9538) (0.0155) (0.0263) (0.0040)
Inf_BRA (-1) 1.5613 1.4982 1.4445 1.6682
(17.0160) (0.0000) (0.0000) (0.0000)
Inf_BRA(-2) -0.9431 -0.9886 -0.9404 -1.2603
(-4.0581) (0.0019) (0.0044) (0.000)
Inf_Bra(-3) 0.4343 0.5470 0.4956 0.2844)
(1.2666) (0.0560) (0.0965) (0.0234)
Inf_Bra(-4) -0.6202 -0.7518 -0.5417
(-2.0044) (0.0048) (0.0294)
Inf_Bra(-5) 0.7419 0.6826 0.2985
(2.9123) (0.0048) (0.0167)
Inf_Bra(-6) -0.3171 -0.2289 -0.0462
(-2.2669) (0.0617) (-0.1651)
Inf_Bra(-7) -0.1569
(-1.1318)
Threshold value for 2 0.07492098[16 Obs] 0.072592098[16 Obs] 0.06753[22 Obs]
C 0.04309 0.0452 0.0296
(0.0000) (0.0000) (0.0001)
Inf_Bra(-1) 1.8115 1.7609 1.6623
(0.0000) (0.0000) (0.0000)
Inf_Bra(-2) -1.7549 -1.6506 -0.6623
(0.0000) (0.0000) (0.0000)
Inf_Bra(-3) 0.8854 0.6478 -0.0513
(0.0151) (0.0678) (0.8024)
Inf_Bra(-4) -0.5612 -0.0991
(0.1561) (0.7653)
Inf_Bra(-5) 0.48115 -0.1023
(0.1554) (0.5134)
Inf_Bra(-6) -0.2895 0.2462
(0.0567) (0.7541)
Inf_Bra(-7) -0.3700
(-2.2398)
Adj R? 0.8865 0.9317 0.9043 0.8927
SC -5.8305 -6.0816 -6.3189 -6.1436
LM[RESID(1)] 0.9910 0.0078 0.9677
LM[RESID(2)] 0.1452 0.3759 0.9079
LM[RESID(3)] 0.0183 0.0700 0.9056
LM[RESID(4)] 0.1016 0.0407 0.9976
LM (Obs*R-squared) 0.0200 0.0334 0.0831
Bai- Perron test
Ovs1 29.1165 32.6372 22.3885
{21.87} {20.08} {16.56}
1vs2 9.8978 1.7984 7.8445
{24.17} {22.11} {18.11}

Where Adj R? = Adjusted R — square, SC = Schwarz criterion, {} is the critical values for Bai- Perron test,
() is the probability value of the coefficient of the TAR model, LM[RESID()] = p value of the residual, LM
(Obs*R-squared) = probability value of Breusch- Godfrey LM test. Obs = number of the observations.
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Table 5.6.5. Modelling of the TAR models for BRICS

C Brazil Russia South Africa
Sample 1997Q2 -2012q4 2003Q2-2012q94 1995¢2-2012qg4
Lags values 3 2 6
Number of regimes chosen | 2 2 2
by Selection Criteria
Threshold value for 1 0.06753[41] 0.08882[7] 0.1041456[60]
C 0.0175 -0.0176 0.01091
(0.0040) (0.1292)
Inf_Inflation(-1) 1.6682 1.844 8 1.76445
(0.0000) (0.0000) (0.0000)
Inf_Inflation(-2) -1.2603 -0.7512 -0.9218
(0.000) (0.0052) (0.0000)
Inf_Inflation(-3) 0.2844) 0.1061
(0.0234) (0.6246)
Inf_Inflation(-4) -0.6236
(0.0080)
Inf_Inflation(-5) 0.9907
(0.0000)
Inf_Inflation(-6) -0.0922
(0.5862)
Threshold value for 2 0.06753[22] 0.08882[32] 0.1041456[11]
C 0.0296 0.005749 0.11977
(0.0001) (0.0000) (0.0217)
Inf_Inflation(-1) 1.6623 1.4510 0.6328
(0.0000) (0.0000) (0.0147)
Inf_Inflation(-2) -0.6623 -0.6962 -0.8331
(0.0000) (0.0000) (0.0694)
Inf_Inflation(-3) -0.0513 0.5035
(0.8024) (0.2592)
Inf_Inflation(-4) -0.6236
(0.0080)
Inf_Inflation(-5) 0.9907
(0.0000)
Inf_Inflation(-6) -0.4709
(0.0007)
Adj R? 0.8927 0.9193 0.9209
SC -6.1436 -6.3006 -5.4734
S.E 0.0092 0.00850 0.0115
LM[RESID(1)] 0.9677 0.4561 0.7941
LM[RESID(2)] 0.9079 0.9976 0.1848
LM[RESID(3)] 0.9056 0.8773 0.4713
LM[RESID(4)] 0.9976 0.3977 0.7744
LM (Obs*R-squared) 8.2426 2.1696 3.6922
[0.0831] [0.7048] (0.4493)
Bai- Perron test
Ovs1 22.3885 18.3894 64.2068
{16.56} {14.12} {39.1724}
1vs 2 7.8445 4.7870 1.5054
{18.11} {1.5959} {10.5381}
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Table 5.6.6. Modelling of the TAR model for selected OPEC countries

C Algeria Angola Nigeria Saudi Arabia
Sample 1999Q2-2012q94 2000Q4- 1998Q4-2012g4 | 1979Q3-2012qg4
201294
Lags values 5 2 6 8
Number of regimes | 2. 2 2 3
chosen by Selection
Criteria
Threshold value for 1 | 0.00902987[25] 1.11950{19] 0.1507519[24] 0.0040835([51]
C 0.0068 0.01333 0.0225 0.00102
(0.1438) (0.2848) (0.1025) (0.5735)
Inf_Inflation(-1) 1.0076 1.5088 1.4140 1.0695
(0.0000) (0.0000) (0.0000) (0.0000)
Inf_Inflation(-2) -0.1219 -0.6042 -0.5406 -0.3495
(0.4872) (0.0005) (0.0323) (0.0000)
Inf_Inflation(-3) 0.1125 -0.1649 0.4034
(0.5242) (0.4461) (0.0000)
Inf_Inflation(-4) -0.6605 -0.3952 -0.8675
(0.0005) (0.0211) (0.0000)
Inf_Inflation(-5) 0.4945 0.5968 1.0053
(0.0008) (0.0006) (0.0000)
Inf_Inflation(-6) -0.1227 -0.4215
(0.3277) (0.1620)
Inf_Inflation(-7) 0.6420
(0.0146)
Inf_Inflation(-8) -0.5930
(0.0000)
Threshold value for 2 | 0.00902987[30] 1.11950[30] 0.1507519(33] 0.0040835[63]
C 0.541 0.33120 0.27416 -0.001034
(0.592) (0.0000) (0.0019) (0.6215)
Inf_Inflation(-1) -0.447 0.4012 0.2494 1.4227
(-0.1470) (0.0014) (0.2797) (0.0000)
Inf_Inflation(-2) -0.476 -0.6042 -0.3294 -0.3105
(-0.3529) (0.0005) (0.1704) (0.1533)
Inf_Inflation(-3) -0.229 -0.2923 -0.0541
(-0.3945) (0.3802) (0.7466)
Inf_Inflation(-4) -0.124 -0.5076 0.0499
(-0.7531) (0.2968) (0.7306)
Inf_Inflation(-5) 0.934 0.7282 0.0580
(0.6902) (0.1533) (0.6565)
Inf_Inflation(-6) -0.6508 -0.0928
(0.0190) (0.4560)
Inf_Inflation(-7) 0.0112
(0.9306)
Inf_Inflation(-8) 0.0055
(0.0055)
Threshold value for 3 0.04761904[20]
C -0.0129
(0.1234)
Inf_Inflation(-1) 0.9655
(0.0000)
Inf_Inflation(-2) 0.1838
(0.3742)
Inf_Inflation(-3) -0.1206
(0.6057)
Inf_Inflation(-4) -0.7086
(0.0050)
Inf_Inflation(-5) 1.0370
(0.0002)
Inf_Inflation(-6) -0.7635
(0.1432)
Inf_Inflation(-7) 0.1634
(0.8033)
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Inf_Inflation(-8) 0.4544
(0.1875)
Adj R? 0.7107 0.9914 0.8051 0.9158
SC -5.3230 -2.5734 -3.9300 -5.9484
LM[RESID(1)] 0.8255 0.5092 0.9908 0.2258
LMIRESID(2)] 0.3374 0.1112 0.4948 0.2343
LM[RESID(3)] 0.7580 0.4036 0.6544 0.9313
LM[RESID(4)] 0.1673 0.0581 0.3919 0.3132
LM (Obs*R-squared) 4.4505 9.2801 1.6069 5.3362
(0.3485) (0.0545) (0.8076) (0.2545)
Bai- Perron test
Ovs1 1.1571 23.3253 5.5717 4.3041
(6.9423) {69.9760} {39.0019} {38.7376}
1vs2 0.4739 2.4028 4.9224
{1.4217} {16.8200} {44.3022}
1vs3 1.3739
{12.3658}

Where Adj R? = Adjusted R — square, SC = Schwarz criterion, {} is the critical values for Bai- Perron test,
() is the probability value of the coefficient of the TAR model, LM[RESID()] = p value of the residual, LM
(Obs*R-squared) = probability value of Breusch- Godfrey LM test. Obs = number of the observations
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5.7.1 Forecast performance and evaluation for Threshold Models for

Brazil annual inflation

In this section, we follow the rolling regression technique discussed in section 5.5.0 and
produce out-of-sample forecasts for two different estimated TAR models given in table
5.6.1 and 5.6.4. The first TAR model is estimated over a full sample with different
multiple breaks between the period 1984ql to 2012g4. The second TAR model is
estimated over a reduced sample between the period 199792 to 2012qg4. The reduced
sample are designed to avoid modelling structural breaks. The forecast performance of

the two non-linear TAR models for Brazil are given below in Table 5.7.1.

Table 5.7.1. Forecast performance of the nonlinear TAR model for Brazil

A.  Non-linear TAR models estimated over the B. Non-linear TAR models estimated on a reduced sample that
full sample avoid breaks
RMSE MAPE U RMSE MAPE V)
7 0.0070 9.8180 0.0600 0.0050* 6.0080* 0.0360*
2-step 0.0170 25.6600 0.1580 0.0080* 10.9700* 0.0690*
3-step 0.0260 41.1200 0.2640 0.0100* 13.1200* 0.0910*
4-step 0.0310 50.8800 0.3450 0.0110* 13.4300* 0.0990*
5-step 0.0360 57.5300 0.4050 0.0080* 11.1900* 0.0690*
6-step 0.0390 62.300 0.4560 0.0040* 4.8800* 0.0310*
7-step 0.0420 66.7500 0.5070 0.0070* 10.6200* 0.0530*
8-step 0.0420 71.8700 0.5610 0.0060* 10.1600* 0.0480*

An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for

From Table 5.7.1, the nonlinear TAR model estimated over the reduced sample without
multiple breaks (Table 5.7.1 column B) has the lowest RMSE, MAPE and U-statistics over
all forecasting horizons. This implies that the TAR model estimated over a reduce sample
that avoid modelling breaks is unambiguous outperforms the TAR model estimated over
the full sample with different multiple breaks. This result is consistent with our previous
findings (in section 5.5.1) that stated that reduced samples to avoid structural breaks is
the preferred strategy when modelling and forecasting inflation. A similar procedure
was applied to all countries. In summary, for BRICS and selected OPEC countries. The
TAR model estimated over a reduce sample that avoid modelling breaks produce
superior forecast than the TAR model estimated over a full sample with different
multiple breaks except for Saudi Arabia (over 1 to 3-steps ahead horizons). Note that,
we did not estimate TAR model over a reduced sample for China, India, Kuwait and
Ecuador because the multiple Bai Peron test does not identified breaks over the full
sample for China and India. For Kuwait and Ecuador, the end of the sample identified

without multiple breaks are less than 39 observations.
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5.7.2 Brazil Forecast performance and evaluation

In this section, we compare the forecasting performance of the best selected linear
univariate ARIMA model in section 5.5.1 and best selected nonlinear TAR model in
section 5.7.1 for Brazil to choose the best univariate model that forecast inflation. The
forecast performance of the best selected univariate model for Brazil are given below in

Table 5.7.2.

Table. 5.7.2: Comparison of the best performance of the nonlinear TAR model and best

selected ARIMA model for Brazil.

A. Non-linear TAR models| B.Reduced sample EView9 Automatic seasonal | C. Reduced sample EView9 Automatic’s non-
estimated on a reduced| ARIMA model without modelling breaks seasonal ARIMA model without modelling
sample that avoid structural breaks
breaks

RMSE MAPE U RMSE MAPE U RMSE MAPE U
1 0.0050 6.0080 0.0360 0.0050* 5.0690* 0.0360* 0.0060 7.8950 0.0490
2-step|0.0080 10.9700 |0.0690 0.0060* 8.0390* 0.0470* 0.0070 9.5170 0.0560
3-step|0.0100 13.1200 |0.0910 0.0060 10.1500 0.0560 0.0060* 8.2540* 0.0480*
4-step|0.0110 13.4300 |0.0990 0.0060 8.6970 0.0500 0.0030* 3.7780* 0.0220*
5-step|0.0080 11.1900 |0.0690 0.0070 9.3930 0.0520 0.0002* 0.1580* 0.0010*
6-step|0.0040 4.8800 0.0310 0.0060 7.2460 0.0430 0.0004* 0.5880* 0.0040*
7-step|0.0070 10.6200  |0.0530 0.0060 8.2260 0.0490 0.0004* 0.7080* 0.0040*
8-step|0.0060 10.1600  |0.0480 0.0090 15.4300 0.0720 0.0004* 0.3390* 0.0020*

An asterisk indicates the model with the lowest value for any particular measure of forecasting performance for
each.

From Table 5.7.2, we compare the forecasting performance of the best selected
univariate ARIMA model (automatic non-seasonal ARIMA technique) in section 5.5.1
and best selected nonlinear TAR model in section 5.7.2 (Non-linear TAR models
estimated on a reduced sample that avoid breaks). From our study, the linear ARIMA
model (reduced sample automatic non-seasonal ARIMA technique without modelling
breaks) in Table 5.7.2 column C, has the lowest RMSE, MAPE and U-statistics over all
forecasting horizons except 1 and 2- step ahead horizons. Similarly, the reduced sample
EViews automatic seasonal ARIMA technique without modelling breaks in Table 5.7.2
column B has the lowest RMSE, MAPE and U-statistics values for 1 and 2-step ahead
horizon. In contrast, the nonlinear TAR model estimated over the reduced sample that
avoid modelling breaks were never favoured for Brazil when compared with other
forecasting models. A similar procedure was applied to all countries. In summary, for
BRICS and selected OPEC countries. The nonlinear TAR models were not favoured over
the best selected linear ARIMA models in Table 5.5.2 and 5.5.3 except for China (over all
forecasting horizons), Nigeria (over 1 to 4-steps ahead horizons) and Saudi Arabia (over

1 to 3- steps ahead). Hence, there are 3 countries where the TAR model produces the
148



better forecasts than the best selected ARIMA models over at least some horizons (see

table 5.7.3 and 5.7.4 below for details).

Table 5.7.3 Summary of the best forecasting univariate models for BRICS countries

Best forecasting Univariate model for Brazil

RMSE U —statistics MAPE
Horizon Type Type Type Range
1-to 2-steps R_A _SARIMA R_A_SARIMA R_A_SARIMA 5.0690 — 8.0390
3 to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA 0.3390 -8.2540
Best forecasting univariate model for Russia

RMSE U —statistics MAPE
Horizon Type Type Type Range
1to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA 6.3660 — 20.6300
Best forecasting univariate model for India

RMSE U —statistics MAPE
Horizon Type Type Type Range
1to 8- steps F_SARIMA F_SARIMA F_SARIMA 13.5200-63.4600
Best forecasting univariate model for China

RMSE U —statistics MAPE
1to 8-steps F_TAR Model F_TAR Model F_TAR model 6.1940 - 10.0800
Best forecasting univariate model for South Africa

RMSE U —statistics MAPE
Horizon Type Type Type Range
1to 4 —steps R_A_SARIMA R_A_SARIMA R_A_SARIMA 14.2800 -20.9900
5-step R_SARIMA R_A_SARIMA R_SARIMA 17.2600
6 to 7-steps R_A_SARIMA R_A_SARIMA R_A_SARIMA 12.3600- 13.3600
8-step R_SARIMA R_SARIMA R_SARIMA 10.2000

The best univariate forecasting model is identified by each measure (RMSE, MAPE and U) for each
forecasting horizon (1, 2..., 8 steps ahead). The full sample univariate model that employs seasonal Box-
Jenkins ARIMA techniques and model’s structural breaks is denoted as F_SARIMAX, the full sample
univariate model that employs Box-Jenkins ARIMA techniques without modelling structural breaks is
denoted as F_SARIMA (this model type is exclusive to India because there were no significant structural
breaks to model over the full sample). The full sample specifications that employ EViews 9’s automatic
seasonal and non-seasonal ARIMA model without modelling breaks are denoted as F_A_SARIMA and
F_A_ARIMA respectively (these models are exclusively designed for China because the period after the
structural breaks are less than 39 observations and relative step shifts for this period also appear to be
small which mean that inference regarding unit roots may not be too adversely affected when using the
full sample. Hence, the full sample is used for these models for this country). The reduced sample model
that employs seasonal ARIMA technique’s without modelling structural breaks is denoted as R_SARIMA.
The reduced sample model that employs EViews 9’s automatic seasonal ARIMA model selection
procedure without modelling breaks is denoted as R_A_SARIMA and the reduced sample model that
employs EViews 9’s automatic non-seasonal ARIMA model selection method without modelling breaks is
represented by R_A_ARIMA. F_TAR Model is denoted as threshold autoregressive model estimated over
the full sample and R_TAR model is denoted as the threshold autoregressive model estimated over the
reduced sample that avoid modelling breaks. The range gives the range of values for the MAPE for models
favoured according to this forecasting measure over the specified horizon.
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Table 5.7.4 Summary of the best forecasting univariate models for OPEC countries

Best forecasting univariate model for Angola

RMSE U —statistics MAPE
Horizon Type Type Type Range
1 to 8-steps R_SARIMA R_SARIMA R_SARIMA 2.0590 - 13.3300
Best forecasting univariate model for Algeria
RMSE U —statistics MAPE
Horizon Type Type Type Range
1-step F_SARIMAX F_SARIMAX R_A_SARIMA 61.6300
2 —step R_A_ARIMA R_A_ARIMA R_A_ARIMA 82.6100
3 to 7-steps F_SARIMAX F_SARIMAX F_SARIMAX 27.3800- 136.0000
8-step F_SARIMAX R_SARIMA F_SARIMAX 28.7700
Best forecasting univariate model for Ecuador
RMSE U- statistics MAPE
Horizon Type Type Type Range
1 to 8-steps F_SARIMAX F_SARIMAX F_SARIMAX 15.4500 -42.9100
Best forecasting univariate model for Saudi Arabia
RMSE U —statistics MAPE
Horizon Type Type Type Range
1 to 3-steps F_TAR Model F_TAR Model F_TAR Model 4.3720 -8.4800
4 to 8-step R_A_ARIMA R_A_ARIMA R_A_ARIMA 1.0100 - 15.1400
Best forecasting univariate model for Nigeria
RMSE U —statistics MAPE
Horizon Type Type Type Range
1 to4-steps | R_TAR Model R_TAR Model R_TAR Model 15.9000- 19.360
5 to 8-steps R_A_ARIMA R_A_ARIMA R_A_ARIMA 40.7200 - 46.5100
Best forecasting univariate model for Kuwait
RMSE U-statistics MAPE
Horizon Type Type Type Rage
1 to 8-steps F_SARIMAX F_SARIMAX F_SARIMAX 11.2100 — 38.5900

See note in the Table 5.5.2
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5.7.3 The chapter summary and conclusion

This chapter is divided into two sections, first we discussed the procedure of modelling
ARIMAX models that have a deterministic component to account for structural breaks
over the full sample period and different ARIMA specifications over a reduced sample
period that avoids the modelling structural breaks. The univariate ARIMA models that
we develop over the reduced sample period are, first, a seasonal ARIMA specification
identified using the Box-Jenkins method, second, a seasonal ARIMA model identified
using EView’s automatic model selection tool and third, a non-seasonal ARIMA model
identified using EView’s automatic model selection tool applied to seasonally adjusted
data. The other model we considered in this chapter also include the regime shift
threshold Autoregressive model estimated over the full sample and reduced sample.
Second, we compare the forecasting performance of each valid model over 8-steps
ahead forecasting horizons using the Root Mean Squared Error (RMSE), Mean Absolute
Percentage Error (MAPE) and Theil’s inequality coefficient (U) to choose appropriate
model with the lowest error. The aim of this chapter is to determine whether the valid
ARIMA/ARIMAX and TAR models that passes the standard diagnostic test (stationarity
and autocorrelation) can be obtained for each country. We also examine whether
superior forecasts can be obtained by using the full sample (with the benefit of more
information) and explicitly modelling the structural breaks (with the possibility of
overfitting and difficulty in adequately capturing such effects) or whether using reduced
samples (with the disadvantage of fewer data points) is compensated by the avoidance
of having to model any structural breaks. In our study, a valid ARIMA/ARMAX and TAR
model can be obtained to forecast inflation for BRICS and selected OPEC countries. To
choose the best selected univariate model for both BRICS and OPEC countries. In our
study, we observed that the nonlinear TAR models were not favoured over the best
selected linear ARIMA/ ARIMAX models except for China (over all forecasting horizons),
Nigeria (over 1 to 4-steps ahead horizons) and Saudi Arabia (over 1 to 3- steps ahead).
When comparing performance of model estimated over the full sample (ARIMAX and
TAR model) to the model estimated over a reduce sample (ARIMAs models and reduced
sample TAR model). The ARIMAX and TAR applied to the full sample is rarely favoured
when compared with all model estimated over the reduce sample (except where it is

the only valid model). This suggests that the potential benefits of using a full sample and
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explicitly modelling the structural breaks are generally outweighed by the benefits of
being able to avoid modelling structural breaks at the cost of a reduced sample for
estimation. Given the extra time and modeller expertise required to model such breaks
suggests that using reduced samples to avoid structural breaks is typically the preferred

strategy.
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CHAPER 6

SELECTION OF VARIABLES FOR MULTIVARIATE ANALYSIS

6.0 Introduction

In this chapter, we discuss the data used in multivariate modelling. We identify the
variables that are most commonly employed to model and forecast inflation in the
literature and identify the data availability of these series for each country under study.
Whilst we give priority to variables available at quarterly frequency we also consider the
addition of variables that are available only at annual frequency to ameliorate omitted
variable issues. We use frequency conversion tools to generate quarterly series from
annual series. The main explanatory variables that we consider for each country are the
money supply, real exchange rate, interest rate, output gap, unemployment rate and
the oil price. The periods where data are available on most of these variables for each

country are given below:

Table 6.1 The summary of available data for multivariate analysis in each country

Countries Brazil Russia India China South Africa
Start 1994Q2 2000Q2 1957Q1 1989Q1 1992Q2

End 201404 201404 2014Q4 201404 2014Q4
Countries Algeria Angola Nigeria Saudi Arabia

Start 1996Q2 199704 1995Q4 1976Q3

End 2014Q4 2014Q4 201404 201404

To allow for lags and transformations we use data up to 3 years prior to the start of the
estimation period (2 years for lags and one year for the four-period seasonal difference
used to construct inflation from prices). Hence, the sample periods over which

multivariate models can be estimated for each country are given in the table below:

Table 6.2. The summary of the estimated samples for each country
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Countries Brazil Russia India China South Africa
Start 1997Q2 2003Q2 1960Q1 1992Q1 1995Q2

End 2012Q4 2012Q4 2012Q4 2012Q4 2012Q4
Countries Algeria Angola Nigeria Saudi Arabia

Start 1999Q2 2000Q4 1998Q4 1979Q3

End 2012Q4 2012Q4 2012Q4 2012Q4



Table 6.3. Data availability for Brazil

Variables Quarterly Annually Source
Consumer Price Index | 1980qg1 — 201494 1970 - 2008 IMF/IFS & UN DATA
(CPI)

Broad Money | 2001g4 2014q4 IMF/IFS
Liabilities (Millions of

national currency)

Broad Money | 2001g4 2014q4 IMF/IFS
Liabilities  seasonal

adjusted (Millions of

national currency)

Money Supply (M1)in | 1971q1 201494 IMF/IFS
Million national

currency

Money and quasi 1990 2014 World Bank
money (M2) (current

LCU)

GDP (current) US S 1961 2014 World Bank
Real GDP 1992 2011 Penn World Table
Unemployment rate | 1960q4- 201494 IMF/IFS

%

Industrial production | 1975q1 201593 OECD
lending interest rate | 1997q1 —2014q4 IMF/IFS
Money market rate 1957qg1 201494 IMF/IFS
Real interest rate 1997q1 -201494 World Bank
Treasury bill rates % | 1995q1 -2014qg4 IMF/IFS
Discount rate end of | 1999q2 2014qg4 IMF/IFS
period (% per annum)

Real effective | 1980q1 2014q4 IMF/IFS
Exchange rate (CPI

BASED)

Unemployment (% of 1991 -2013 World Bank
total labour force)

(modelled ILO

estimate)

GDP DEFLATOR | 199591 201494 IMF/IFS
(2000=100) index

Oil price 1980q1 — 2014q4 FRED database®?

The above table summarises the availability of data for Brazil. For Brazil, we would
ideally like to collect data over the period 1994q2 — 201494. We implement a VAR

analysis using data available over this period involving the following variables: consumer

9 In this study, we employ quarterly seasonal unadjusted data for the oil price rather than the seasonal
adjusted oil price earlier mentioned by external supervisor simply because the graph of the partial
autocorrelation for the quarterly oil price shows that oil price does not has the feature of seasonality
between the period of 1980q1 to 2014q4.
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price index, nominal money supply M1, the money market short-term interest rate, the

real effective exchange rate, oil price and unemployment. Quarterly data on industrial

production is also available over this sample period which means that the output gap

can also be constructed. We will use the EViews frequency conversion tool to generate

quarterly versions of these series to additionally use in our VAR analysis. A similar data

selection procedure was applied to all countries and (to save space) the full discussion

for each country is made available in appendix section 6.1 page 444 — 456. The table

below summarises the data availability for each country.

Table 6.4. Summary of data availability for all the countries

Countries Sample Variables

Brazil 1999q4 201294 P, M, R, REE, UN, GAP and Oilp
Russia 2003Q2 2012qg4 P, M, R, REE, UN, GAP and Oilp
India 196391 2012qg4 P, M, R, GAP and Oilp

China 1992q1 201294 P, M, R, REE, GAP and Oilp

South Africa

1995q2 -2012q4

P, M, R, REE, GAP and Oilp

Algeria 199992 2012qg4 P, M, R, REE, GAP and Oilp
Angola 200294 201294 P, M, R, GAP and Oilp
Nigeria 1998qg4 2012qg4 P, M, R, REE GAP and Oilp
Saudi Arabia 1983q1 2012q4 P, M REE, GAP and Oilp

Where P= consumer price, M =money supply, REE= real exchange rate, GAP = output gap, R = interest
rate, UN =unemployment and Oilp = oil price. The invalid models indicate the VAR model that do not pass
diagnoses test for autocorrelation with all suggesting lags length.
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6.1 Phillips Curve

In this section, we utilise the available variables discussed in the previous section to
construct the output gap that is based on the Phillips curve. The Phillips curve is a widely
used economic model to forecast inflation.®> The model is based on measures of
economic activity such as the unemployment rate or the output gap. The output gap
measures the difference between current economic activity (actual output) and the
potential output level that could be sustained while keeping inflation stable.®
The unemployment rateis calculated as a percentage by dividing the number
of unemployed individuals by all individuals currently in the labour force.®> There are
many different methods for estimating the output gap. The methods are either based
on pure statistical procedures or economic theories. Some statistical procedures are the
univariate Hodrick-Prescott (HP) method, multivariate HP method, linear trend method,
quadratic time trend, Baxter-King (BK) method, the state-space framework using the
Kalman filter etc. The theoretical methods include structural VAR, the Cobb-Douglas
production function etc. In practice, each method has advantages and disadvantages
and none is unambiguously better than the alternatives.®® Therefore, we seek to use an
appropriate method that is relevant to our research and can be constructed with the

available data.?” Since our focus is on forecasting and comparison, we consider two

%3 See Stock and Watson (1999, 2008), Onder (2004), Faust and Wright (2011) and Ogunc et al. (2013)
among others.
% See: Office for Budget Responsibility (2011) Estimating the output gap Briefing paper no.2; available

on http://budgetresponsibility.org.uk/wordpress/docs/briefing%20paper%20No2%20FINAL. pdf
[accessed] on 28 February 2015.

% The concept of the output gap is often used to maintain low inflation and stable economic growth.
Accordingly, when aggregate demand exceeds potential output, the economy is subject to inflationary
pressures and inflation should be expected to increase. Under these circumstances, policymakers will
control inflation by restricting aggregate demand. Similarly, when aggregate demand falls short of
potential supply, inflation is expected to fall. To maintain stable inflation, the monetary authority aims
to adopt expansionary policies.

% For example, the Hodrick-Prescott method has the merit of simplicity, but it does not generally exploit
additional relevant information apart from information on the variable of interest. Burns et al (2014)
suggest that the output gap estimated with a production function and multivariate methods are
superior to the Hodrick-Prescott filter and other single variable estimation methods of the output gap.
Hendry (2001) argues that the linear trend method can be misleading if the trend-growth changes or
becomes inconsistent, especially during periods of economic instability and economic recession.
97 See Ince and Papell, 2013 on how to estimate different types of output gap.
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measures of the output gap when considering the Phillips curve. One uses the

unemployment rate and the other uses a version of Stock and Watson’s activity index.%®

% See: Stock and Watson (1999) and Atkeson and Ohanian (2001) for a similar methodology. However,
Stock and Watson (1999) noted that the Phillips curve estimated with real economic activity provides
the best forecast when compared with unemployment-based Phillips curves. They conclude that “the
unemployment rate Phillips curve can play a useful role in forecasting inflation, but that relying on it to
the exclusion of other forecasts is a mistake”. Stock and Watson (2003) document that the ability of
output gap models to forecast inflation in Europe is more limited than in the U.S
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6.2. Inflation forecasts based on measures of aggregate real activity and

unemployment rate

The Phillips curve model that we base our research on is the same as the methodology
used by Stock and Watson (1999, 2003), Clark and McCracken (2006) and Nnanna

(2007). Their models can be written as:

Teyn- T =+ B(L)xy + y(L)Am, + vy 6.1

Where v, is the random disturbance, u is a constant, m; denotes the inflation rate, x; is
an indicator for the activity index or unemployment rate, y(L) and B(L) are polynomials
in lag operators L and t is the time period. We consider two measures of aggregate
activity that are suggested by Stock and Watson (2003) — the index of industrial
production and real output measured by real GDP — and utilise the measure where data
is most available.® We also consider the unemployment rate as measure by

International Labour Organization.

In this study we follow Stock and Watson (1999) and estimate x; in equation 6.1 based
on the one-sided version of the Hodrick-Prescott (HP) filter.%° This method is convenient
and preserves the temporal ordering of the data.l’®® The one-sided HP trend is
constructed as the Kalman filter estimate of 7, in the model:

Ve = Te + &, 6.2

AZ Tt = T’t 63

% Due to the limited data, we use different indicators of the real activity variable for different countries.
The industrial production index is available for Brazil, India, Russia, Nigeria and Saudi Arabia while the
real output variable measure, real GDP, is estimated by adjusting nominal GDP with the GDP deflator for
all the remaining countries.

100 Wwe use the one-side version because the future value of the observed series (y,) would not be used
in the detrending operation.

101 See: Stock and Watson (1999, 2003), Clark and McCracken (2006) and Nnanna (2007) for a similar

methodology.
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Where y; is the logarithm of the series (the observed series), t; is the unobserved trend
component and &; and 1, are mutually uncorrelated white noise sequences with relative
variance g=var(n,)/var(&;). Accordingly, g = 0.00625, which corresponds to the usual
value of the HP smoothing parameter (A2 = Lambda = 1600). The HP technique
computes the smoothed series of the trend component (z; ) of the log of the real activity
variable (y;) to minimize the variance of the log of this real activity variable around it

trend. That is, the output gap is calculated by minimizing the loss-function:

Minimise {7,}",__, {Xi=1 &% + ALt [(Te- Temt) = (Tem1 - Te-2)1?} 6.4

where & = y; - T4, A is the relative multiplier and the parameter is a positive number.
The smoothness parameter A punishes the variability in the trend component smoother.
The larger the value of A the smoother is the trend component and when A approaches

infinity the trend component becomes a linear trend (Ince and Papell, 2013).1%?

102 The value of AZ is conventionally set at 100 for annual data, 1600 for quarterly data and 14,400 for
monthly series (see: Van Norden Simone 1995, Ceo and McDermott, 1996, Ince and Papell, 2013 and E-
views 8 guidelines for estimating the Hodrick-Prescott (HP) filter).
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6.3. Multivariate Cointegration Forecast

Our multivariate time series model is based on the VAR method. A standard VAR is used
to capture the linear interdependencies of multivariate time series and capture the
dynamic behaviours and structural relationship among the variables. That is, it consists
of linear relationships among the different variables in which each variable is explained
by its own lags, as well as the current and past values of the remaining variables. In
estimating a VAR, we face different decisions, namely: the variables to be included and

how to deal with the non-stationarity variables.

With regard to nonstationarity, we test for the orders of integration of variables and for
those that are nonstationary we consider whether they are cointegrated.'®> We note
that modelling and forecasting any series that is not stationary may lead to spurious
results. Engle and Granger (1987) establish that a cointegrating equation can be
represented as an error correction model which incorporates both changes and levels
of variables such that all of the elements are stationary. However, “VARs estimated with
cointegrated data will be misspecified if all of the data are differenced because long-run
information will be omitted and will have omitted stationarity inducing constraints if all
of the data are used in levels. Further, including variables in both levels and differences
should satisfy stationarity requirements, however, they will omit cointegrating
restrictions that may improve the model. Of course, these constraints will be satisfied
asymptotically but efficiency gains and improved multi-step forecasts may be achieved
by imposing the constraints” (Engle Granger 1987, p. 259). Therefore, we distinguish
between different techniques in modelling using differencing and cointegrating
restrictions via an error-correction model to ensure stationary.’®* We focus on the
following approaches, three of which are discussed by Timothy and Thomas (1998). The
first approach is to construct a VAR model in pure differences (stationary form) to

forecast inflation.%> The second approach is to construct a VECM without imposing

103 The linear combination of two series which are stationary only after differencing may be cointegrated
without differencing (Granger, 1986).
104 The literature on forecasting variables in cointegrated models that are similar to our approach
includes: Engle et al. (1989), Engle and Yoo (1987), Hall et al. (1992), Fanchon and Wendel (1992),
Timothy and Thomas (1998) and Sa-ngasoongsong et al. (2012).
105 As a necessary requirement for this method, all the variables must integrate in the same order,
therefore, all the variables will be seasonal adjusted by using census x- 12 or x- 13 and Augmented
Dickey-Fuller (ADF) test statistics will be used to test whether each variable has a unit root. The
condition is that, the series must be stationary before applying this method.
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cointegrating restrictions. The third approach is to construct a VEC that imposes
cointegrating restrictions on the VECM. This will allow us to consider whether imposing
cointegrating restrictions via an vector error-correction model improves long-run
forecasts.10°

In selecting variables to use we focus on those variables that are commonly and mostly
used in explaining and forecasting inflation in the literature and on which we have data.
Because there are data constraints we take an eclectic theoretical approach in the sense
of combining variables from different economic theories in our VAR specification. Our
approach is as follows. We first specify our core VAR model, based on variables that are
available at quarterly frequency across the whole sample for any particular country, for
example this may include the three variables: money supply, interest rates and prices
(from which inflation can be generated). We examine the ability of VARs based on these
variables to forecast inflation. To avoid model misspecification (in particular omitted
variable issues), we examine whether the inflation forecasting model can be improved
by incorporating additional information. In this case we add variables that are available
only annually over the available sample and use frequency conversion tools to generate
quarterly series and/or variables that are only available quarterly over a reduced sub-
sample. In this case, VAR models including all available inflation determinants for each
country are considered. In particular, the VARs will be based on (a subset of) consumer
prices, money supply, interest rates, real effective exchange rates, the output gap (or,

alternatively the unemployment rate) as well as the world oil price (see Table 6.4).107

106 We could use weak/strong exogeneity tests to eliminate irrelevant endogenous variables in the
VAR/VECM/VEC, however, this would mean that some variables would not be forecasted by the VAR
and would require separate forecasting equations. To avoid this, we will not impose any exogeneity
restrictions and therefore do not apply exogeneity tests. The maximum eigenvalue and trace tests will
be applied to guide us on whether there is co-integration.

107 Given the variety of indicators that have been suggested to influence inflation in our literature
chapter, we include many of these variables and observe whether incorporation of these variables
would provide additional useful information about future inflation as compared to our previous
univariate modelling.
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6.4 Seasonal adjustment for selected macroeconomic variables

In this section, we identify the general features of selected macroeconomic variables
identified in Table (6.4) in each country by mainly focusing on seasonality and stationary
characteristics to avoid the issue of seasonal integration.'%® We seasonally adjust each
series and compare the adjusted and unadjusted series. If the variances of these series
are not significantly different, we regard the data as nonseasonal and utilise the
unadjusted data. However, if the variances are significantly different we regard the data
as seasonal and use the seasonally adjusted series. We also plot the autocorrelation
functions of the series and if these indicate seasonality we will consider seasonally
adjusting the data (even if the variances are not significantly different). Anticipating that
prices / inflation will be seasonal we will save the seasonal indices in 2012 and use these
to reintroduce seasonality into the forecasts that we produce. Using nonseasonal
(seasonally adjusted) data will allow us to model using nonseasonal integration and
cointegration techniques. For comparison purposes, we plot the graph of the level of
the series, the seasonally adjusted data and other transformations of these series. These

graphs are discussed for each country below.

108 \We seasonal adjusted these series because seasonal adjusted data are not available from
international Financial Statistics/IMF for most of our selected data.
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6.5. The graphical features of selected macroeconomic variables for Brazil

In Brazil, we amend the reduced sample identified in chapter 5 from 1994q2- 201494 to
199694 -2014q4 to avoid an outlier that occurred at the start of this sample.'%° The
graphs below depict the following variables. The Brazilian consumer price (denoted
PBRA), the seasonally adjusted PBRA series (PBRA _d11) and D_PBRA = PBRA -
PBRA_d11, the first (nonseasonal) difference of LPBRA (DLPBRA), the seasonally
adjusted LPBRA series (LPBRA_d11) and D_LPBRA = LPBRA - LPBRA_d11 (where LPBRA
is the log of PBRA). The seasonally adjusted series PBRA_d11 is obtained using the
Census X13 procedure in EViews. Tables 1D and 1G report various tests of the null
hypothesis of equality of variance for PBRA and PBRA_d11 as well as DLPBRA and
DLPBRA _d11. We expect equal variances for both tests if the data are nonseasonal. In
contrast, if the data are seasonal we expect the equal variances null hypothesis to be
rejected. However, if the data are nonstationary the variances may have equal variances
in levels even if they are seasonal. Hence, for the data to be deemed seasonal and
require seasonal adjustment we only require the equal variance null to be rejected for
the stationary (differenced) form of the data. As a further check, we plot the ACF of
LPBRA and DLPBRA. If the seasonal lag (4, 8, 12, 16 and 20) autocorrelation coefficients
are significant in the stationary form of the series, we will use the seasonally adjusted

data (even if the variance equality null hypothesis is not rejected).

109 From the preliminary plot of the linear graph of PBRA within 1994q2 — 2014q4, we observed a shift
outlier at the beginning of the sample that becomes more visible after the samples were reduced.
Although, we do not expect this to be a structural break because the Bai Peron test does not suggest
this shift as a break in chapter 5, Table 5.1.1.
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6.5.1. The graphs and table of equality test for consumer price in Brazil
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As shown in Fig. 1A, the graph of consumer prices for Brazil (PBRA) exhibits an upward
trend suggesting non-stationarity and a need to apply stationarity inducing
transformations. Although seasonality may be expected in price data it is not visible in
the price plot because of the dominant trend; seasonality may be revealed once the
trend is removed through differencing. The time paths of PBRA and PBRA_d11 (see
Figure 1B) follow each other closely and it is difficult to discern whether the difference
between them reflects seasonality. Therefore, the differences between PBRA and
PBRA_d11 (denoted D_PBRA) is plotted in Figure 1C. The difference has revealed a
cyclical fluctuation that ranges between -0.37 and 0.41. Whilst this may indicate time-
varying seasonality we need to ascertain whether this seasonality is significant. To do
this we refer to a variety of tests for the equality of variance between PBRA and
PBRA _d11 that are reported in table 1D. The reported tests are the: F-, Siegel Turkey,
Bartlett, Levene and Brown Forsythe tests. For all tests the null hypothesis is that the
variances are equal. Hence, if the p-value exceeds 0.05 we cannot reject the null
hypothesis of equal variances and therefore infer that there is no significant seasonality.
Whereas if the p-value is below 0.05 we reject the null hypothesis and conclude that the
difference in the series’ variances are statistically significant and there is significant
seasonality. Since the p-values of all of our tests is greater than 0.05, we cannot reject
the null hypothesis and find that there is no significant difference in the variances of
PBRA and PBRA_d11. Hence, we find that seasonality is not significant in the price level.
However, because this result may be influenced by the nonstationarity of the data we
compare the differences of the logs of the adjusted (DLPBRA_d11) and unadjusted
(DLPBRA) data.

The time paths of DLPBRA and DLPBRA_d11 (see Figure 1E) follow each other closely.
The trend has been removed and the series broadly fluctuates around a constant mean
as expected after first differencing. The variation in DLPBRA is greater than that of
DLPBRA_d11 suggesting seasonality in DLPBRA while DLPBRA_d11 is smoother. This
suggests that DLPBRA_ d11 exhibits reduced seasonality as expected. The difference
between DLPBRA and DLPBRA _d11 (denoted D_DLPBRA) is plotted in Figure 1F. The
difference has revealed a regular fluctuation around a relatively constant mean that
ranges between -0.006 and 0.005. Whilst this may indicate time-varying seasonality we

need to ascertain whether this seasonality is significant. To do this we refer to tests for
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the equality of variance between DLPBRA and DLPBRA _d11 that are reported in table
1G. Since the p-values of all of our tests are greater than 0.05 we cannot reject the null
hypothesis and find that there is no significant difference in the variances of DLPBRA and
DLPBRA_d11. Hence, we find that seasonality is not significant in the difference of the

log prices for Brazil.

To check that we have not missed any significant seasonality we plot the autocorrelation
functions (ACFs) of PBRA and DLPBRA in figure 1H and 11. Shown in Fig. 1H is the ACF for
PBRA. All autocorrelation coefficients (ACs) are significant (and not just at the seasonal
lags) which suggests nonstationarity and not necessarily seasonality. The ACF for
DLPBRA (see fig. 11) has no significant ACs at seasonal lags. This implies that seasonality
is not significant in the price data and confirms the results of the variance equality tests.

Hence, we use the unadjusted data PBRA in our VAR analysis.

6.5.2. The seasonality features of money supply in Brazil

The graphs below depict the following variables. The Brazilian money supply (denoted
MBRA), the seasonally adjusted MBRA series (MBRA_d11) and D_MBRA = MBRA -
MBRA_d11, as well as the first (nonseasonal) difference of LMBRA (DLMBRA), the
seasonally adjusted LMBRA series (LMBRA_d11) and D_LMBRA = LMBRA - LMBRA_d11
(where LMBRA is the log of MBRA). The seasonally adjusted series MBRA_d11 is
obtained using the Census X13 procedure in EViews. Tables 2D and 2G report various
tests of the null hypothesis of equality of variance for MBRA and MBRA _d11 as well as
DLMBRA and DLMBRA_d11.
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As shown in Fig. 2A, the graph of money supply in Brazil (MBRA) exhibits an upward trend
suggesting non-stationarity and a need to apply stationarity inducing transformations. There
are clear cycles that probably reflect seasonality. Therefore, MBRA may need to be

seasonally adjusted.

The time paths of MBRA and MBRA_d11 (see Figure 2B) follow each other. It is obvious
that the variation in MBRA is greater than that of MBRA_d11 and the plot of MBRA _d11
is smoother than the plot of MBRA. The difference between MBRA and MBRA_d11
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(denoted D_MBRA) is plotted in Figure 2C. The difference reveals a regular cyclical
fluctuation that may indicate time-varying seasonality. To ascertain whether the
seasonality is significant we refer to a variety of tests for the equality of variance
between MBRA and MBRA_d11 that are reported in table 2D. Since the p-values of all
tests are greater than 0.05, we cannot reject the null hypothesis and find that there is
no significant difference in the variances of MBRA and MBRA_d11. This suggests that
seasonality is not significant in the level of the data. However, because this result may
be influenced by the nonstationarity of the data we compare the differences of the

adjusted (DLMBRA_d11) and unadjusted (DLMBRA) data.

The time paths of DLMBRA and DLMBRA_d11 (see Figure 2E) follow each other closely.
The trend has been removed and the series broadly fluctuate around a constant mean
as expected after first differencing. The variation in DLMBRA is greater than that of
DLMBRA_d11. Therefore, there is seasonality in the DLMBRA series while DLMBRA_d11
is smoother suggesting that DLMBRA_ d11 exhibits reduced seasonality. The difference
between DLMBRA and DLMBRA_d11 (denoted D_DLMBRA) is plotted in Figure 2F. The
difference reveals a regular fluctuation around a relatively constant mean that ranges
between -0.178 and 0.17. Whilst this may indicate time-varying seasonality we need to
ascertain whether this seasonality is significant. To do this we refer to tests for the
equality of variance between DLMBRA and DLMBRA_d11 that are reported in table 2G.
Since the p-values of all of our tests is less than 0.05 we reject the null hypothesis and
find that there is a significant difference in the variances of DLMBRA and DLMBRA_d11.

Hence, seasonality is significant in the difference of the log of the money supply in Brazil.

As a check, we plot the ACFs of MBRA and DLMBRA in figure 2H and 21. Shown in Fig. 2H
is the ACF for MBRA. All autocorrelation coefficients (ACs) are significant (and not just
at the seasonal lags) which suggests nonstationarity and not necessarily seasonality. The
ACF for DLMBRA (see fig. 2I) has significant ACs at all seasonal lags. This implies that
seasonality is significant in the money supply data and confirms the results of the
variance equality tests. Hence, we will use the seasonally adjusted data MBRA_d11 in

our VAR analysis.
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6.5.3. The seasonality features of interest rate in Brazil

The graphs below depict the following variables. The Brazilian interest rate (denoted
RBRA), the seasonally adjusted RBRA series (RBRA_d11), D_RBRA = RBRA - RBRA_d11,
and the first (nonseasonal) difference of RBRA (DRBRA), the seasonally adjusted DRBRA
series (DRBRA_d11) and D_DRBRA = DRBRA — DRBRA_d11. The seasonally adjusted
series RBRA_d11 is obtained using the Census X13 procedure in EViews. Table 3D reports

various variance equality tests for RBRA and RBRA_d11 while Table 3G reports these

tests for variance equality for DRBRA
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As shown in Fig. 3A, the graph of RBRA exhibits a downward trend. Seasonality is not

clearly visible in the Brazilian interest rate plot because of the dominant trend.

The time paths of RBRA and RBRA_d11 (see Figure 3B) follow each other closely with
the largest difference occurring in 199794 when RBRA_d11 is 31.20% and RBRA is
35.80%. While RBRA_d11 is smoother than RBRA this is primarily due to two large cycles
at the start of the sample which do not appear to be a year in length. Hence, the
difference may not reflect seasonality. We plot the difference between RBRA and
RBRA_d11 (denoted D_RBRA) in Figure 3C to further assess whether RBRA is seasonal.
The difference indicates time-varying cycles that substantially decline. We refer to a
variety of tests for the equality of variance between RBRA and RBRA_d11 that are
reported in table 3D. Since the p-values of all of our tests are greater than 0.05, we
cannot reject the null hypothesis and find that there is no significant difference in the
variances of RBRA and RBRA_d11 and hence we find that seasonality is not significant in
the level of the data. However, because this result may be influenced by the
nonstationarity of the data we compare the differences of the adjusted (DRBRA_d11)
and unadjusted (DRBRA) data.

The time paths of DRBRA and DRBRA _d11 (see Figure 3E) follow each other closely if the
variation in DRBRA is greater than that of DRBRA_d11 at the start of the sample —if not
the end. Therefore, seasonality is not obvious. The difference between DRBRA and
DRBRA_d11 (denoted D_DRBRA) is plotted in Figure 3F. The difference has revealed a
regular fluctuation around a relatively constant mean that ranges between -4.90% and
8.30% that substantially declines through time. Variance equality tests between DRBRA
and DRBRA_d11 are reported in Table 3G. The p-values for Siegel Turkey, Levene and

Brown Forsythe tests are greater than 0.05 indicating equal variances while the p-values
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of the F-test and Bartlett test are less than 0.05 which reject the null hypothesis of equal

variance. Hence, the results regarding equality of variance are ambiguous.

To explore the issue further we plot the ACFs of RBRA and DRBRA in figure 3H and 3,
respectively. Shown in Fig. 3H is the ACF for RBRA. All autocorrelation coefficients (ACs)
are significant (and not just at the seasonal lags) which suggests nonstationarity and not
necessarily seasonality. The ACF for DRBRA (see fig. 31) has a marginally significant AC at
the first seasonal lag (lag 4) and all other ACs at seasonal lags are insignificant. This
provides some evidence that seasonality is significant in the interest rate data.
However, because the ACF evidence is not strong, the variance equality tests give
ambiguous conclusions, the graphs do not convincingly suggest one-year cycles and
seasonality is not expected in interest rates we take the view that RBRA probably is not

seasonal. Hence, we use the unadjusted data RBRA in our VAR analysis.
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6.5.4. The seasonality features the real effective exchange rate in Brazil

The graphs below depict the following variables. The Brazilian real effective exchange
(denoted REEBRA), the seasonally adjusted REEBRA series (REEBRA_d11) and D_REEBRA
= REEBRA - REEBRA_d11, as well as the first (nonseasonal) difference of LREEBRA
(DLREEBRA), the seasonally adjusted DLREEBRA series (DLREEBRA_d11) and
D_DLREEBRA = DLREEBRA - DLREEBRA_d11 (where LREEBRA is the log of REEBRA). The
seasonally adjusted series (REEBRA_d11) is obtained using the Census X13 procedure in
EViews. Tables 4D and 4G report various tests of the null hypothesis of equality of
variance for REEBRA and REEBRA_d11 as well as DLREEBRA and DLREEBRA_d11.
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Test for equality of variance between DLREEBRA and DLREEBRA_D11

Method of Value Probahility
F-test (71,72 1.054151 0.8236
Siegel 0.231336 0.8171
Turkey
Bartlett 1 0.049424 0.8241
Levene (1,143) 0.024550 0.8757
Brown- (1,243) 0.049137 0.8249
Foresythe

As shown in Fig. 4A, the graph of real effective exchange rate fluctuates around a

relatively constant mean. There are large cycles that do not appear to be a year in length.

The time paths of REEBRA and REEBRA _d11 (see Figure 4B) follow each other closely
and it is difficult to discern whether the difference between them reflects seasonality.
Therefore, the differences between REEBRA and REEBRA_d11 (denoted D_REEBRA) is
plotted in Figure 4C. The difference has revealed a cyclical fluctuation that ranges
between -2.40 and 1.70. Whilst this may indicate time-varying seasonality we need to
ascertain whether this seasonality is significant. To do this we refer to a variety of tests
for the equality of variance between REEBRA and REEBRA_d11 that are reported in table
4D. Since the p-values of all tests is greater than 0.05, we cannot reject the null
hypothesis and find that there is no significant difference in the variances of REEBRA and
REEBRA_d11 and hence find that seasonality is not significant in the level of the real
effective exchange rate. However, because this result may be influenced by the
nonstationarity of the data we compare the differences of the adjusted (DLREEBRA _d11)
and unadjusted (DLREEBRA) data.

The time paths of DLREEBRA and DLREEBRA _d11 (see Figure 4E) follow each other
closely. The variation in DLREEBRA is slightly greater than that of DLREEBRA_D11
suggesting possible seasonality in DLREEBRA while DLREEBRA_D11 is smoother. This
suggests that DLREEBRA_D11 exhibits reduced seasonality as expected. The difference
between DLREEBRA and DLREEBRA_d11 (denoted D_DLREEBRA) is plotted in Figure 4F.

The difference revealed a regular fluctuation around a relatively constant mean that
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ranges between -0.045 and 0.038. Whilst this may indicate time-varying seasonality we
need to ascertain whether this seasonality is significant. To do this we refer to tests for
the equality of variance between DLREEBRA and DLREEBRA_d11 that are reported in
table 4G. Since the p-values of all of our tests is greater than 0.05, we cannot reject the
null hypothesis and find that there is no significant difference in the variances of
DLREEBRA and DLREEBRA_d11 and hence find that seasonality is not significant in the

difference of the log of the real effective exchange rate data for Brazil.

To check that we have not missed any significant seasonality we plot the autocorrelation
functions (ACFs) of REEBRA and DLREEBRA in figure 4H and 4l. Shown in Fig. 4H is the
ACF for REEBRA. The first 14 autocorrelation coefficients (ACs) are significant (and not
just at the seasonal lags) which suggests nonstationarity and not seasonality. The ACF
for DLREEBRA has no significant ACs at seasonal lags (see fig. 4l). This implies that
seasonality is not significant in the real effective exchange rate and confirms the results
of the variance equality tests. Hence, we will use the unadjusted data REEBRA our VAR

analysis.
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6.5.5. Seasonality and the Brazilian unemployment rate

The graphs below depict the following variables. The Brazilian unemployment rate
(denoted UBRA), the seasonally adjusted UBRA series (UBRA_d11) and D_UBRA = UBRA
- UBRA _d11, as well as the first (nonseasonal) difference of UBRA (DUBRA), the
seasonally adjusted DUBRA series (DUBRA_d11) and D_DUBRA — DUBRA_d11. The
seasonally adjusted series (UBRA_d11) is obtained using the Census X13 procedure in
EViews. Tables 5D and 5G report various tests of the null hypothesis of equality of
variance for UBRA and UBRA_d11 as well as DUBRA and DUBRA_d11.
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5G.

Test for equality of variance between DUBRA and DUBRA_D11

Method Df Value Probability
F-test (71,72) 1.125242 0.6188
Siegel 0.164110 0.8696
Turkey
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Brown- (1,143) 0.029663 0.8635
Foresythe
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As shown in Fig. 5A, the graph of unemployment (UBRA) follows a downward trend.
Seasonality is not clearly visible in the unemployment plot because of the dominant
trend — although this downward trend could not continue indefinitely because

unemployment cannot fall below 0%.

The time paths of UBRA and UBRA_d11 (see Figure 5B) follow each other closely and it
is difficult to discern whether the difference between them reflects seasonality.
Therefore, the differences between UBRA and UBRA_d11 (denoted D_UBRA) is plotted
in Figure 5C. The difference has revealed cyclical fluctuation that ranges between -0.161
% and 0.182%. Whilst this may indicate time-varying seasonality we need to ascertain
whether this seasonality is significant. To do this we refer to a variety of tests for the
equality of variance between UBRA and UBRA_d11 that are reported in table 5D. Since
the p-values of all of our tests is greater than 0.05, we cannot reject the null hypothesis
and find that there is no significant difference in the variances of UBRA and UBRA_d11.
Hence, we find that seasonality is not significant in the level of unemployment data.
However, because this result may be influenced by the nonstationarity of the data we

compare the differences of the adjusted (DUBRA_d11) and unadjusted (DUBRA) data.

The time paths of DUBRA and DUBRA_d11 (see Figure 5E) follow each other closely. The

trend has been removed and the series broadly fluctuates around a constant mean, as
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expected after first differencing. The variation in DUBRA is greater than that of
DUBRA_d11 suggesting seasonality in DUBRA while DUBRA_D11 is smoother. This
suggests that DUBRA_D11 exhibits reduced seasonality as expected. The difference
between DUBRA and DUBRA_d11 (denoted D_DUBRA) is plotted in Figure 5F. The
difference has revealed cyclical fluctuations that range between -0.30% and 0.32%.
Whilst this may indicate time-varying seasonality we need to ascertain whether this
seasonality is significant. To do this we refer to tests for the equality of variance between
DUBRA and DUBRA_d11 that are reported in table 5G. Since the p-values of all of our
tests is greater than 0.05, we cannot reject the null hypothesis and find that there is no
significant difference in the variances of DUBRA and DUBRA_d11 and hence find that

seasonality is not significant in the difference of the unemployment rate for Brazil.

To check that we have not missed any significant seasonality we plot the ACFs of UBRA
and DUBRA in figure 5H and 5I. In Fig. 5H all ACs are significant (and not just at the
seasonal lags) which suggest nonstationary and not necessarily seasonality. The ACF for
DUBRA has no significant ACs at seasonal lags (see fig. 51). This implies that seasonality
is not significant in UBRA and confirms the results of the variance equality tests. Hence,

we will use the unadjusted data UBRA in our VAR analysis.
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6.5.6. The seasonality features of output gap in Brazil

The graphs below depict the following variables. The Brazilian output gap (denoted
GAPBRA), the seasonally adjusted GAPBRA series (GAPBRA_d11) and D_GAPBRA =
GAPBRA - GAPBRA_d11, as well as the first (nonseasonal) difference of GAPBRA
(DGAPBRA), the DGAPBRA seasonally adjusted (DGAPBRA_d11) and D_DGAPBRA
=DGAPBRA — DGAPBRA_d11. The seasonally adjusted series (GAPBRA_d11) is obtained
using the Census X13 procedure in EViews. Tables 6D and 6G report various tests of the

null hypothesis of equality of variance for GAPBRA and GAPBRA_d11 as well as

DGAPBRA and DGAPBRA_d11.
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6l.

From Figure 6A the output gap fluctuates around a relatively constant mean. There are
clear cycles however they do not appear to fixed at one-year in length and unlikely

reflect seasonality.

The time paths of GAPBRA and GAPBRA_d11 (see Figure 6B) follow each other closely
and it is difficult to discern whether the difference between them reflects seasonality.
Therefore, the differences between GAPBRA and GAPBRA_d11 (denoted D_GAPBRA) is
plotted in Figure 6C. The difference reveals regular cyclical fluctuations that range
between -0.0082 and 0.0079. Whilst this may indicate time-varying seasonality we need
to ascertain whether this seasonality is significant. To do this we refer to a variety of
tests for the equality of variance between GAPBRA and GAPBRA_d11 that are reported
in table 6D. Since the p-values of all of our tests is greater than 0.05, we cannot reject
the null hypothesis and find that there is no significant difference in the variances of
GAPBRA and GAPBRA_d11. Hence, we find that seasonality is not significant in the level
of the output gap. However, because this result may be influenced by any persistence
in the level of the data we compare the differences of the adjusted (DGAPBRA_d11) and
unadjusted (DGAPBRA) data.

The time paths of DGAPBRA and DGAPBRA_d11 (see Figure 6E) follow each other
closely. The difference between DGAPBRA and DGAPBRA_d11 (denoted D_DGAPBRA)
is plotted in Figure 6F. The difference has revealed regular cyclical fluctuations. Whilst
this may indicate time-varying seasonality we need to ascertain whether this seasonality
is significant. To do this we refer to tests for the equality of variance between DGAPBRA
and DGAPBRA_d11 that are reported in table 6G. Since the p-values of all of our tests
are greater than 0.05, we cannot reject the null hypothesis and find that there is no
significant difference in the variances of DGAPBRA and DGAPBRA _dl11. Hence,

seasonality is not significant in the difference of the output gap rate for Brazil.
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To check that we have not missed any significant seasonality we plot the ACFs of
GAPBRA and DGAPBRA in figure 6H and 6l. In Fig. 6H, all ACs are significant (and not just
at the seasonal lags) which suggest nonstationary and not necessarily seasonality. The
ACF for DGAPBRA has no significant ACs at seasonal lags (see fig. 6l). This implies that
seasonality is not significant in GAPBRA and confirms the results of the variance equality

tests. Hence, we will use unadjusted data GAPBRA in our VAR analysis.
6.5.7. The seasonality features of oil price

The graphs below depict the following variables. The oil price (denoted OILP), the
seasonally adjusted OILP series (OILP_d11) and D_OILP =OILP - OILP_d11, as well as the
first (nonseasonal) difference of OILP (DOILP), the DOILP seasonally adjusted
(DOILP_d11) and D_DOILP =DOILP — DOILP_d11. The seasonally adjusted series
(OILP_d11) is obtained using the Census X13 procedure in EViews. Tables 7D and 7G
report various tests of the null hypothesis of equality of variance for OILP and OILP_d11
as well as DOILP and DOILP_d11.
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Sample: 1930011 201204
Included obsenvations: 131

Autocorrelation  Partial Correlation AC  PAC Q-Sfat Prob

[y [y 1 0231 0231 71678 0.007
[y [ 2 -0.304 -0.377 19.631 0.000
(ml [N 3-0.156 0.035 22837 0.000
g O 4 -0.082 -0.193 23867 0.000
g g 5-0.087 -0.073 249319 0.000
I g B -0.026 -0.077 25.016 0.000
] [l 7 0146 0118 28.008 0.000
[N I ! 8 0.064 -0.086 28.596 0.000
g iy 9 -0.144 -0.006 31.562 0.000
g iy 10 -0.137 -0.091 34245 0.000
m [l 11 0.091 0104 35440 0.000
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From Figure 7A the oil price fluctuates around a relatively constant mean. There are
suspected cycles that do not appear to be of fixed length around the period 1980 to
1985, which is followed by an upward trend. The time paths of OILP and OILP_d11 (see
Figure 7B) follow each other closely and it is difficult to discern whether the difference
between them reflects seasonality. Therefore, the differences between OILP and
OILP_d11 (denoted D_OILP) is plotted in Figure 7C. The difference has revealed a cyclical
fluctuation that ranges between -0.64 and 7.3. Whilst this may indicate time-varying

seasonality we need to ascertain whether this seasonality is significant. To do this we
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refer to a variety of tests for the equality of variance between OILP and OILP_d11 that
are reported in table 7D. Since the p-values of all of our tests is greater than 0.05, we
cannot reject the null hypothesis and find that there is no significant difference in the
variances of OILP and OILP_d11. Hence, we find that seasonality is not significant in the
level of the oil price. However, because this result may be influenced by any persistence
in the level of the data we compare the differences of the adjusted (DOILP_d11) and
unadjusted (DOILP) data.

The time paths of DOILP and DOILP_d11 (see Figure 7E) follow each other closely. The
difference between DOIL and DOILP_d11 (denoted D_DOILP) is plotted in Figure 7F. The
difference has revealed regular cyclical fluctuations. Whilst this may indicate time-
varying seasonality we need to ascertain whether this seasonality is significant. To do
this we refer to tests for the equality of variance between DOILP and DOILP_d11 that
are reported in table 7G. Since the p-values of all of our tests are greater than 0.05, we
cannot reject the null hypothesis and find that there is no significant difference in the
variances of DOILP and DOILP_d11. Hence, seasonality is not significant in the difference

of the oil price.

To check that we have not missed any significant seasonality we plot the ACFs of OILP
and DOILP in figure 7H and 7. In Fig. 7H, all ACs are significant (and not just at the
seasonal lags) which suggest nonstationary and not necessarily seasonality. The ACF for
DOILP has no significant ACs at seasonal lags (see fig. 71). This implies that seasonality is
not significant in OILP and confirms the results of the variance equality tests. Hence, we

will use unadjusted data OILP in our VAR analysis.

A similar procedure was applied for all countries and (to save space) the discussion is
made available in appendix. Section 6.2 page 457 - 540. The table below summarises the
variables by country and indicate whether they will be used in seasonally adjusted form

(indicated by SA) or unadjusted form (denoted with UN).
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Table 6.5. Summary of whether the data is seasonally adjusted or not

Countries / | BRA RUS IND CHI sou NIG ALG ANG SAU
Variables

Start 1996qg4 | 200092 | 1960ql1 | 1989q1 | 1992q2 | 199594 | 1996¢2 | 1999g4 | 1980q1l
End 201494 | 201494 | 2014qg4 | 201494 | 201494 | 201494 | 2014qg4 | 201494 | 201494
P UN SA SA UN UN SA SA UN UN

M SA UN A A UN A A SA A

R UN UN UN UN UN UN UN UN

REE UN UN UN UN UN UN UN

U UN SA

OilP UN UN UN UN UN UN UN UN UN
GAP UN SA UN A UN A A A A
Where SA is seasonal adjusted variables, UN is unadjusted variables, A is the variable that has been

transformed from annual frequency to quarterly frequency (and is therefore not seasonal) and a blank
entry indicates that data is unavailable for the variable in that particular country.
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6.6. Unit root tests

Many macroeconomic time-series are subjected to substantial instabilities such as non-
stationarity and structural breaks (Stock and Watson, 1988). To ascertain the orders of
integration of the variables to be used in our VAR Model we use the widely employed
DF-GLS, augmented Dickey-Fuller (ADF), Phillips and Perron (PP) and Kwiatkowski—
Phillips—Schmidt—Shin (KPSS) tests. The null hypothesis of a unit root is tested against
the alternative of stationarity for the DF-GLS, ADF and PP tests. We reject the null
hypothesis of stationarity when the absolute value of test statistic is greater than the
critical value (the variable is stationary). Whereas, we cannot reject the null hypothesis
of stationarity when the absolute value of test statistic is less than the critical value (the
variable is non-stationary). The null hypothesis of no unit root is observed for the KPSS

test.

For non-stationary series. A common example is the random walk:

Yt =Vt-1* & (6.1)
Where ¢ is a stationary random disturbance term. The series y has a constant forecast

value, conditional on t and the variance is increasing over time. To make the series

stationary, the nonstationary variable’s may be differenced, that is:

Ve = YVe-1=(A—-L)y=¢
The standard Augmented Dickey- Fuller (ADF) test can be written as:
Ayi= ayp_1 +x:6 + & (6.2)

Where x; are optional exogenous regressors which may consist of constant or a
constant and trend, § are parameters to be estimated and the &; are assumed to be
white noise. @ = p—1. The null hypothesisof Hy:p = 1 or Hy:a = 0 is tested against

the alternative Hi:p < 1lor Hy:a <0.

For p=1ora =0,y is anonstationary series and the variance of y increases with
time approaches infinity. If p < 1 ora < 0, y is a stationary series except the KPSS test
that evaluates the null of Hy: p < 1 against the alternative H;: p = 1. The simple Dickey
— Full unit root test described above is valid only if the series is an AR(1) process. If the
series is correlated at higher order lags, the assumption of &; is violated. The Augmented
Dickey Fuller (ADF) test constructs a parametric correction for higher order correlation
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by assuming that the y series follow an AR(p) process and adding p lagged difference

term of the dependent variables y to the right hand side of the test regression:
Ayi= ay;_1 +x:0 + B1AYe 128y o+ +BpAYe_p + V1. (6.3)

However, the conventional unit root tests could be biased towards finding a unit root
when the data is trend stationary with a structural break.''® Nelson and Plosser (1982)
described the nature of these shocks as a permanent. This view was challenged by
Perron, (1989 and 1990). He argued that many macroeconomic time series may be
better described as having temporary shocks fluctuating around a broken deterministic
trend. Perron further argued that his choice of breakpoint is based on prior observation
of the data with the underlying asymptotic distribution theory. Perron (1989) introduced
three models that based on Dickey- Fuller (ADF) extension by adding dummy variables
for different intercept and slopes (the process incorporating the breaks inform of the
intervention deterministic suggested by Box and Tiao 1975). The first model is a crash
model that permits an exogenous change in the level of the series (“a crash”), i.e., the
conventional unit root test (ADF model) is augmented by incorporating a dummy break
and a dummy post-break intercept to describe the shifts in the trend. The second model
permits an exogenous change in the growth rate. The third model combines changes in
the level and the slope of the trend function of the series. Each of these three models
has a unit root with breaks under the null hypothesis. According to the Perron (1989),
the null hypothesis that a given series {yt}z has a unit root with drift and that an
exogenous structural break occur at time Tz(1 < Ty < T) versus the alternative
hypothesis that the series is stationary about a deterministic time trend with an

exogenous change in the trend function at time Tp.

For null hypothesis

Model (A): y; = u+ dD(Tg)¢ + yi—1 + €4, (6.4)
Model (B): y; = uy + yr—1 + (42 — 11)DU; + ey, (6.5)
and

Model (C): y; = py +yi-1 +dD(Tp)¢ + (1, — £ )DU + ey, (6.6)

110 The empirical application of the following studies (Perron, 1989, 1997., Leybourne and Newbold,
2003) generally reaffirmed the conclusion that most macroeconomic time series have unit root.
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Where D(Tg); = 1if t = Tz + 1,0 otherwise; DU, = 1 if t > Tg, 0 otherwise; A(L)e; =
B(L)v,, v, = iid (0, 0?), with A(L) and B(L) pth and gth order polynomials in the lag
operator. The innovation series {e;} is taken to be of the ARIMA (p, q) type with the

orders p and g possibly unknown.

For alternative hypotheses,

Model (A): y; = uy + Bt + (Uy — u)DU; + e, (6.7)
Model (B): y; = pu+ Bit + (B, — B1)DT:" + e, (6.8)
and

Model (C):y; = u+ pit + (uy — u)DU; + (B, — B)DT." + e, (6.9)

Where DT;"=t — Tg if t > T and 0 otherwise.

Ty refers to the time of break, i.e., the period at which the change in the parameter of
the trend function occur. u, — u, represents the magnitude of the change in the
intercept of the trend function occurring at time Tp. [, — B represents the magnitude

of the change in the slope of the trend function occurring at time Tj.

The adjusted Dickey- Fuller (ADF) test of the models (A), (B) and (C) involve the following

augmented regression equations.

Ye = A% +84DU, + fAt+ dAD(Tp), + @'y, | + Z]'-‘_lé}-AAyt_j + & (6.10)

~ ~B ~B * A~ ~B A
ye= AP+ Bt+ 7°DT + @y, +2}(—1 ¢ Ayej+ é, (6.11)
and
A ~C ~C ~C * ~C A~ ~C A
yve= A +8 DU+ B t+ DT+ d D(Tp), + @ yr1 + X5 1§ Ay, + &,
(6.12)

The k extra regressors are added to remove possible nuisance- parameters. The number

k is determined by a test of the significance of the estimated coefficients é;i (i =
A, B,C).

The idea proposed by Perron (1989) is that the break of trend function is fixed
(exogenous) and chosen independently of the data. In addition, the ex-post forecast only
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predicted the changes that occurred after exogenous event. The condition is that, the
impact of these changes on economic activities may vary. As a result, some exogenous
events may not have impact on economic actives as some theories would have
predicted. Therefore, the argument that relates the choice of break dates to exogenous
events or correlated with the data may not be valid because no attempts were made to
maximize the chances that the null unit root be may rejected. As a result, different
studies have criticized Perron (1989) for treating the time of the break as exogenous
(Zivot and Andrews 1992., Christiano, 1992., Vogelsang and Perron,1998., and Banerjee
et al. 1992).1! For example, Zivot and Andrews transform the Perron unit root test that
is conditional on structural change at a known point in time into an unconditional unit
root test. In particular, the actual breakpoint was assumed not to be known. Instead, a
data-dependent algorithm was applied to generate an unobserved components model,
which allows yields a new ADF type unit root test that determines breaks at unknow

dates.

Perron (1994, 1997) improved on his initial paper (1989) and proposed two different
ways of estimating the time of the break endogenously (the additive outlier model and
innovational outlier model).1*? These tests overcome many of the shortcoming of the

Perron (1989) test with the exogenous breaks.'3

For the Innovational Outlier Model (I0), the model applies to the case where it is more
reasonable to view the break as occurring more slowly over time. The assumption can

be captured using the following specification.

Under the null hypothesis of a unit root,

Model (1): y; = pu+ 6DU, + Bt + 6D(Ty),+ ay,_, + X5 1 cehy,_; e, (6.13)

Model (2): ¥, = pu+ 6DU, + Bt + yDT, + SD(T}),+ ay, , + X5_1 CtAy,_; e, (6.14)

111 Harvie and Pahlavani (2006) document that considering the timing of the break as an exogenously
known event invalidates the distribution theory underlying conventional testing.

112 These studies are closely related to those of Banerjee et al. (1992) and Zivot and Andrews (1992)

113 (1) the breaks are Endogenously estimated. (Il) Minimizing the value of the t statistic on the break

parameters associated with the change in either the intercept and slope. (lll) Maximizing the absolute

value of the t statistic on the break parameters associated with a change in either the intercept or slope.
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The first model allows only a change in the intercept. The second model allow changes
in both intercept and the slope at time T,. Both tests are performed using the
t —statistic for the null hypothesis that @ = 1 in the regression. Where DU;= 1(t >
Typ), D(Tp)¢=1(t= T, + 1) and DTy = 1(t > T,)t and O otherwise.

For the additive outlier model (AO), the model applies to cases where the break is
assumed to occur instantly and is not affected by the dynamics of the series. The test
follows a two-step procedure. For the first model (6.15), the series is detrended by
regressing it on the trend component (including constant, time-trend and dummy
break). The second equation (6.16) is estimated without a trend function, using the
residual from the first step regression as the dependent variable. The second equation

used to test for a unit root.
Ve=ayi—1 + T chy; + ey (6.16)

Where y; = the de-trended series, we denote by t;(i, Ty, k) (i =1, 2, 3), the t- statistic
for testing @ = 1 under model i with a break data T}, and truncation lag parameter k,
DT,"=1(t > T},)(t — T}). Note that T}, and k are usually treated as unknown. Details

on how to determine T}, and k can be found Perron (1997).

In this study, we consider both 10 and AO versions of the test that allow for a break in
the intercept only and a break in both the intercept and trend and consider whether an
endogenously determined break causes the finding of a unit root when using
conventional tests. All tests allowing for a structural break test the unit root null against
the alternative of a stationarity process around a structural break in the intercept (and
trend). The tests are applied to the variables discussed in Table 6.4 for the specified
countries and are estimated over the reduced sample that avoid modelling structural
breaks in inflation (though not necessarily the other variables). All variables are
transformed using natural logarithms except for the interest rate, unemployment and
output gap. The automatic lag selection procedure in EViews is used to determine the

lag augmentation for all tests. The results are tabulated below for each country.
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Table 6.6.1. Brazilian unit root tests (the levels data)

ADF unit root tests DF-GLS unit root tests

Intercept Intercept & Trend | Intercept Intercept & Trend

Test 5% Test 5% Test 5% Test 5%

statistic Critical statistic Critical statistic Critical statistic Critical

values values values values

P -0.6192 | -3.5271 | -1.1409 -3.4753 | 0.5195 -1.9456 | -1.2324 | -3.1260
M -2.8678 -2.9024 | -3.4499 -3.4735 | 1.8444 -1.9455 | -1.2560 | -3.1196
R -1.8134 | -2.9018 | -2.9188 -3.2725 | -0.3558 | -1.9453 | -1.8339 | -3.1164
REE -1.0260 | -2.9018 | -2.0131 -3.4726 | -0.7139 | -1.9453 | -1.8568 | -3.1160
U 0.5943 -2.9024 | -3.7005* | -3.4735 | -0.0886 | -1.9455 | -1.1757 | -3.1196
QilP | -0.3339 -2.8839 | -1.6993 -3.4450 | -0.5929 -1.9433 | -0.95826 | -3.0000
GAP | -5.3191* | -2.9029 | -5.2806* | -3.4744 | -5.0192* | -1.9455 | -5.1618* | -3.1228

Phillips and Perron tests KPSS tests

Intercept Intercept & Trend | Intercept Intercept & Trend

Test 5% Test 5% Test 5% Test 5%

statistic Critical statistic Critical statistic Critical statistic Critical

values values values values

P -0.7316 | -2.9023 | -1.2356 -3.4734 | 1.1365 0.4630 | 0.1984 0.1460
M -2.8677 | -2.9023 | -3.4499 -3.4734 | 1.1433 0.4630 | 0.2614 0.1460
R -2.0265 -2.9017 | -3.0160 -3.4725 | 0.9466 0.4630 | 0.0661* | 0.1460

REE -1.1543 -2.9018 | -2.1703 -3.4725 | 0.8237 0.4630 | 0.1256* | 0.1460

U 0.2146 -2.9023 | -3.7049* | 3.4734 | 0.9946 0.4630 | 0.2493 0.1460

Qilp -0.5142 | -2.8838 | -1.7582 -3.4445 | 0.7679 | 0.4630 | 0.1173* | 0.1460

GAP | -3.8571* | -2.9023 | -3.8340* | -3.4734 | 0.0309* | 0.4630 | 0.0309* | 0.1460
Note* indicates rejection of the unit root null or non-rejection of the 1(0) null at 5%

As seen from Table 6.6.1 the absolute values of all the test statistics are less than their
corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all
variables (the unit root null cannot be rejected) except for the output gap (in all cases)
and unemployment (only for the ADF and PP tests when both intercept and trend are
included in the test equation). In addition, the KPSS test statistic is greater than the
critical value for all variables (giving rejection of the 1(0) null) except for the interest rate,
exchange rate (when both intercept and trend are included in the test equation) and the
oil price (when both intercept and trend are included in the test equation). Hence, all
Brazilian series are unambiguously nonstationary except for the output gap, exchange
rate, unemployment rate, oil price and interest rate. The output gap is unambiguously
stationary whereas the test results for the unemployment rate, exchange rate, oil price
and interest rate are ambiguous (if at least half of the tests indicate non-stationarity in

all cases). Therefore, we proceed to the first difference of the data.

189



Table 6.6.2 Brazilian unit root tests (first difference data)

ADF unit root tests DF-GLS unit root tests

Intercept Intercept & Trend Intercept Intercept & Trend

Test 5% Test 5% Test 5% Test 5%

statistic Critical statistic Critical statistic | Critical statistic | Critical

values values values values

P -5.5984" -2.9037 | -5.5879" -3.4753 | -5.1408" | -1.9455 | -5.5228" | -3.1260
M -12.9459" | -2.9029 | -13.1654* | -3.4743 | -0.1800 |-1.9455 |-1.5816 | -3.1292
R -10.1425" | -2.9018 | -10.1155" | -3.4725 | -0.9579 | -1.9453 |-0.5928 |-3.1228
REE | -6.8752" -2.9017 | -6.7998" -3.4726 | -1.5810 | -1.9453 | -3.0533 | -3.1804
U -6.4304" -2.9029 | -6.7207" -3.4744 | -3.4465" | -1.9455 | -6.6608" | -3.1228
OilP | -9.8839" -2.8839 | -9.9807° | -3.4450 |-9.5767° |-1.9433 |-10.044" | -3.0010
GAP | -6.6704" | -2.9035 |-6.6215" |-3.4753 |-6.7116" |-1.9455 | -6.6985" | -3.1260

Phillips and Perron tests KPSS tests

Intercept Intercept & Trend Intercept Intercept & Trend

Test 5% Test 5% Test 5% Test 5%

statistic Critical statistic Critical statistic | Critical statistic | Critical

values values values values

P -4.7011 -2.9023 | -4.6696° | -3.4743 | 0.1650° | 0.4630 | 0.1082° | 0.1460
M -12.8482° -2.9030 | -13.0718" | -3.4726 | 0.5275 0.4630 0.0496" 0.1460
R -9.3289" -2.9018 | -9.4466" -3.4725 | 0.2428" | 0.4630 0.2142 | 0.1460
REE | -8.1357 -2.9017 | -7.9454" -3.4726 | 0.3644" | 0.4630 0.3411 0.1460
u -6.3923" -2.9029 | -6.7044" -3.4744 | 0.4206" | 0.4630 0.1103" | 0.1460
OilP | -9.1476" -2.8837 | -9.6866" -3.4448 | 0.3792" | 0.4630 0.0490" | 0.1460
GAP | -6.4937" -2.9029 | -6.4109" -3.4743 0.0453" | 0.4630 0.0439" | 0.1460

Note* indicates rejection of the unit root null or non-rejection of the 1(0) null at 5%

As seen from Table 6.6.2 the absolute values of the test statistics are greater than their
corresponding 5% critical values for the ADF, DF-GLS and Phillips and Perron tests for all
variables (rejecting the unit root null) except the money supply, interest rate and real
exchange rate. The null hypothesis cannot be rejected for money supply, interest rate
and real exchange rate in the DF-GLS tests in all cases. In addition, the KPSS test statistic
is less than critical value for all variables (giving non-rejection of the 1(0) null) except for
the interest rate, money supply and real exchange rate. For the interest rate and real
exchange rate only the version of KPSS test that includes both intercept and trend
suggest stationarity while for the money supply only the test equation that just includes
an intercept suggests stationarity. Hence, all Brazilian series are unambiguously
stationary in first differences except for the money supply, the interest rate and the real
exchange rate where the test results are ambiguous (if at least half of the tests indicate

stationarity in both cases). That some tests indicate a nonstationary in the first

190



difference for the money supply and interest rates may reflect low power, possibly due

to structural breaks.

Table 6.6.3. Brazilian breakpoint unit root tests (the levels data)

Unit Root with Break Test (Innovative
outliers)

Unit Root Break Test (additive outliers)

Intercept Intercept & Trend Intercept Intercept & Trend
Test 5% Test 5% Test 5% Test 5%
statistic | Critical statistic | Critical statistic | Critical statistic | Critical
values values values values
P -2.2674 | -4.4437 | -5.6502" | -4.8598 | -0.8066 | -4.4436 -3.2585 | -4.8598
M -3.3343 | -4.4437 | -4.7135 | -4.8598 | -1.3290 | -4.4437 -2.4872 | -4.8598
R -3.5261 | -4.4437 | -4.1541 | -4.8598 | -3.8697 | -4.4436 -5.5040" | -4.8598
REE -3.2396 | -4.4437 | -4.2116 | -4.8598 | -4.2177 | -4.4436 -4.3882 | -4.8598
U -2.1215 | -4.4437 | -4.6588 | -4.8598 | -2.1435 | -4.4436 -4.3587 | -4.8598
OilP -3.1159 | -4.4436 | -3.0350 | -4.8598 | -3.9029 | -4.4436 -3.8871 | -4.8598
GAP | -5.6642" | -4.4436 | -5.9677 | -4.8598 | -6.0265" | -4.4437 | -5.8980" | -4.8598

Table 6.6.4. Brazilian breakpoint unit root tests (first differenced data)

Unit Root with Break Test (Innovative | Unit Root Break Test (additive outliers)
outliers)
Intercept Intercept & Trend Intercept Intercept & Trend
Test 5% Test 5% Test 5% Critical | Test 5%
statistic Critical | statistic Critical | statistic values statistic | Critical
values values values
P -7.3260° -4.9491 | -6.8188" -4.8598 | -8.89473" | -4.4437 -8.1398" | -4.8598
M -14.9081" | -4.4436 | -14.555" -4.8598 | -13.5161" | -4.4437 -13.5608" | -4.8598
R -10.3543" | -4.4436 | -10.2813" | -4.8598 | -10.6216" | -4.4437 -10.6216" | -4.8598
REE | -7.3732" -4.4437 | -7.3059° -4.8598 | -6.9198" -4.4437 -7.1507" | -4.8598
U -6.9056" -4.4436 | -7.0550° -4.8598 | -7.1427° -4.4437 -7.2176" | -4.8598
QilpP -10.2910" | -4.4436 | -10.7373" | -4.8598 | -10.4723" | -4.4437 -10.6577" | -4.8598
GAP | -8.0128" -4.4437 | -7.9244" -4.8598 | -7.4510" -4.4436 -7.4195" | -4.8598

In Table 6.6.3 and 6.6.4 we test the null hypothesis of a unit root against the alternative

of a stationarity process around a structural break for the levels and first differences of

the data, respectively. In Table 6.6.3., the null hypothesis of a unit root in the levels of

the data unambiguously cannot be rejected for all of the variables except for consumer

prices, interest rates and the output gap. The output gap is unambiguously stationary

around a structural break, however, for consumer prices and interest rates the evidence

is ambiguous because the unit root null is rejected in 1 of the 4 tests for both variables.

For consumer prices (interest rates) the test for the 10 (AO) case with intercept and

trend indicates stationarity around a structural break, whereas all other cases suggest
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nonstationarity. Since we expect prices in levels to be intrinsically nonstationary (even
if there are structural breaks) we will treat this series as such despite the results of this
unit root test. Further, the ambiguity of the results for interest rates suggests that we
can treat them as nonstationary, however, we will bear this ambiguity of results in mind

in our VAR analysis.

In Table 6.6.4., the unit root null hypothesis is rejected at the 5% level of significance for
all of the first-differenced variables in Brazil indicating that all series are stationarity
around a structural break. However, the finding that all of the first differenced variables
are unambiguously stationary without structural breaks (except for the money supply,
interest rates and real exchange rates) means that we interpret the evidence that these
series are stationary in first differences without structural breaks. Because at least half
of the tests indicate that the first differences of the money supply, interest rates and
real exchange rates are stationary without structural breaks and we expect them to be
stationary we will proceed with our VAR analysis as if these three series are stationary
in first differences. Nevertheless, the ambiguity of the results for these three series will
be borne in mind if issues arise with the VAR modelling that suggests this assumption is

inappropriate.

Overall, despite some ambiguities in results, the unit root tests suggest that we can treat
all variables for Brazil as I(1) in our VAR analysis except for the output gap that is
unambiguously 1(0). Also note that while unit root tests for oil prices have been
considered with the variables for Brazil, this series can also be used in the VAR analysis
for the other countries. A similar procedure was applied to all variables and countries
and (to save space), the summary is given in Table 6.6.5 and the detailed discussion of

unit root test results for each country is available in appendix. Section 6.3 page 541-571.
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Table 6.6.5. Orders of integration of the data.!!*
Variables/ | BRA RUS IND CHI sou NIG ALG ANG SAU
Countries
Start 1996g4 | 2000g2 | 1960q1 | 1989g1 | 1992g2 | 1995g4 | 19962 | 1999g4 | 1980q1
End 2014g4 | 201494 | 2014g4 | 2014g4 | 201494 | 201494 | 2014g4 | 2014g4 | 201494
P I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1)” I(1)
M (1) (1) 1(2) (1) (1) (1) (1) (1) (1)
R 1(1) 1(0) 1(0) I(1) I(1)" I(1) 1(1) 1(1)"
REE (1) (1) (1) (1) (1) (1) (1)
u (1) (1)
OilP (1) I(1) (1) (1) (1) (1) (1) (1)
GAP 1(0) (1) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0) 1(0)

* Indicates a variable that may be stationary around a structural break while ** denotes a variable that
may be I(1) around a structural break. Where P= consumer price, M =money supply, REE= real exchange
rate, GAP = output gap, R = interest rate, UN =unemployment and OilP = oil price. All variables are
transformed using natural logarithms except for the interest rate, unemployment and output gap.**

114 Following a question raised by the external supervisor “Why is R an 1(1) variable if it follows a Taylor
rule in inflation, given that you have reported inflation as being 1(0)”. In our study, our forecast
modelling is guided by the order of integration of variables obtained from unit root tests rather than
economic theory (Taylor rule). In this study, we focused on differencing and cointegrating restrictions to
ensure the stationarity of the data in which all available variables are combined and specified based on
their level of integration to forecast inflation. For instance, a VAR model is estimated based on
differenced variables that are 1(0) whereas, VECM and VEC are estimated based on a linear combination
of the variables that are I(1). In future research, the forecast combination of interest rate 1(0) and
inflation 1(0) will be considered.

115 Due to the sample considered for India (1961q1 — 2012q4), the oil price data is not available for this
sample, the oil price series we considered in this research is only available between 1980q1 and 2014q4.
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6.7 The chapter summary and conclusion

In this chapter, we discussed the data used in multivariate modelling. First, we identify
the variables that are most commonly employed to model and forecast inflation in the
literature and identify the data availability of these series for each country under study.
Whilst we give priority to variables available at quarterly frequency we also consider the
addition of variables that are available only at annual frequency to ameliorate omitted
variable issues. We use frequency conversion tools to generate quarterly series from
annual series. The main explanatory variables that we consider for each country are the
money supply, real exchange rate, interest rate, output gap, unemployment rate and
the oil price. Second, we identified general features of each variable by mainly focusing
on seasonality and stationary characteristics to avoid the issue of seasonal integration.
In particular, we seasonally adjust each series and compare the adjusted and unadjusted
series. If the variances of these series are not significantly different, we regard the data
as nonseasonal and utilise the unadjusted data. However, if the variances are
significantly different we regard the data as seasonal and use the seasonally adjusted
series. Third, we used the available relevant variable to construct the output gap that is
based on the Phillips curve and discussed the procedure involve in estimating

cointegrating model.
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CHAPTER 7

MULTIVARIATE SPECIFICATIONS AND MODELLING

7.0 Introduction

In this chapter, we develop on the analysis presented in Chapter six and estimate
multivariate models based on different cointegration specification over the reduced
sample to avoid the modelling of structural breaks (section 7.0 to 7.3). We test whether
the estimated multivariate models are structurally stable in the sense that the
regression coefficients are constant (section 7.4). Finally, we produce forecast for each
multivariate model (VAR, VECM and VEC) that passes the diagnostic test for serial
autocorrelation and choose the best forecasting model for multivariate model (section
7.5). The motivation for this chapter is guided by the following principles. Models
involving series that are nonstationary may lead to problems of spurious regression that
can adversely affect forecasting accuracy. VARs estimated with cointegrated data will
be misspecified if all of the data are differenced because long-run information will be
omitted and will have omitted stationarity inducing constraints if all of the data are used
in levels. Therefore, we consider the test of orders of integration of the data available in
chapter 6 (Table 6.6.5) and estimate the following multivariate models: (I) we estimate
an unrestricted VAR model in pure differences (stationary form) with variables that have
the same order of integration (are I(1)) to forecast inflation. (II) We estimate a VECM
with all nonstationary variables and test whether a linear combination of nonstationary
variables will be cointegrated, and if cointegrated we produce forecasts for inflation. (ll1)
We construct a VEC model that imposes cointegrating restrictions on the VECM to
forecast inflation. Based upon this analysis, we compared the forecasting performance
of all three multivariate specifications (VAR, VECM and VEC) and identify the best

inflation forecasting model.
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7.1 Specification and Modelling of unrestricted VAR

In this section, we describe the process of modelling with an unrestricted VAR model
and a Vector Error Correction Model (VECM) using the variables identified in the
previous chapter. The unrestricted VAR approach models every endogenous variable in
the system as a function of the lagged values of all of the endogenous variables in the

system and can be specified as:
Ve =A1Yi—q +t ApYep + Bxs + e 7.1

where y; is a k vector of endogenous variables, x; is a d vector of exogenous variables,
Aq,...., Ay and B are matrices of coefficients to be estimated, and e; is a vector of
innovations that may be contemporaneously correlated but are uncorrelated with their

own lagged values. The VECM representation of (7.1) is:
Ay =6+ Bxy + Iy, q + GAYe 1+ ..+ [ 1Ay g + e 7.2
Where I}, i =1,...,p — 1 are functions of 4;, i = 1,...,k.

Y, are independent (1) variables, A = (1 — L) while L is the lag operator, & is the
intercept, I is the matrix that reflects the short-run dynamic relationship among the
element of y, Il is the matrix containing long-run equilibrium information and e, is the
residual. Given k endogenous variables, y;, the Granger representation theorem
indicates that if the matrix IT has reduced rank r < k it can be decomposed as IT = a3 .
The dimension of a and f is  x k. The number of cointegrating equations is r, where 8
is the cointegrating vector and «a is the speed of adjustment to the long-run equilibrium

defined by the cointegrating relationships.

In VAR modelling, the first step is to estimate a VAR model with appropriate lag length
that is sufficient to capture the full dynamics of the system. The choice of appropriate
lag order (p) is important because too short a lag length may not remove all of the
autocorrelation in the residuals and too long a lag length may reduce the precision
(efficiency) of the estimates due to a reduction of degrees of freedom (Lack, 2006).
Gutierrez et al. (2007) documents that overfitting (selecting a higher order lag length
than the true lag length) causes an increase in the mean square-forecast errors of the

VAR and that under fitting the lag length often generates autocorrelated errors. They
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added that impulse response functions and variance decompositions are inconsistently
derived from the estimated VAR model when the lag length is misspecified. In this
research, we choose the maximum possible lag-length (P*) as 10 for all countries except
Brazil, Russia, Algeria, Nigeria and Angola (where only lower orders could be estimated).
Different maximum lag lengths are also considered when experimentation reveals that
a lag length below 10 cannot reject the hypothesis of no autocorrelation (India, China
and Saudi Arabia use 11, 12 and 12 lags, respectively, to remove evident
autocorrelation). We employ the Akaike information criterion (AIC) and Schwarz
criterion (SC) to help determine the initial lag length, P*". If there is no evidence of
autocorrelation (of orders 1, 2, ... 10) this initial lag length is selected. However, if there
is evidence of autocorrelation, we re-estimate the VAR model using a lag length of
P**+1. The process is repeated until the VAR model cannot reject the hypothesis of no-
autocorrelation at the 5% level. If a VAR model with more than P** lags that is free from
evident autocorrelation cannot be found models with fewer lags will be tested for

autocorrelation to see if a model free from autocorrelation can be found.
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7.1.2. Model Specification for Unrestricted VARs

Following an eclectic approach to variable selection, we consider four different
unrestricted VAR models for Brazil and Russia. For these countries, the output gap (gap)
and unemployment (un) variables (which are substitutes for the Phillips curve effect)
are available in addition to the other variables (price inflation (p), interest rates (1),
real exchange rates ( ree), money supply (m) and the oil price (oilp)). For the
remaining countries (India, China, South Africa, Algeria, Angola, Nigeria and Saudi
Arabia), we estimate only two VAR models because the output gap is the only Phillips
curve variable available. This is in addition to the other available variables (price
inflation, interest rates, real exchange rates, money supply and the oil price). The choice

of variables used in each model is motivated by the availability of data in each country.

For Brazil and Russia, we estimate four VARs. The first two VAR models include all
variables as endogenous and do not impose a priori restrictions on structural
relationships. The first VAR model includes the output gap and excludes unemployment
with all other available variables. The second VAR includes unemployment and excludes
the output gap with all other available variables. The aim of these two VARs is to
consider whether the VAR that includes the output gap provides superior forecasts to
the VAR model that includes unemployment. The remaining two VARs are the same as
the first two VARs except the oil price is treated as exogenous because international oil
prices may be best regarded as determined outside of the system for some countries —
although for oil producing countries or large oil consuming countries, such as China, the
assumption of endogeneity may be more appropriate.l® That is, these VARs include the
oil price as exogenous and all other available variables as endogenous. The motivation
behind the two latter VARs is to examine the impact of oil prices on the inflation

forecasts when it is treated as exogenous.

For the remaining countries (China, South Africa, Algeria, Angola, Nigeria and Saudi
Arabia) we estimate two VARs. The first VAR model includes all variables as endogenous

and does not impose a priori restrictions on structural relationships. The second VAR

116 For consistency, comparative purposes and to avoid imposing prior assumptions we consider treating
oil as both endogenous and exogenous for all countries. Our expectation is that the estimation and
forecasting results should reveal which assumption is most appropriate for each country.
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model treats the oil price as exogenous and includes all other available variables as

endogenous. All VAR models include the intercept as exogenous.
7.1.3 Brazil Model Selection Criterion for Unrestricted VARs

In this section, we describe the process of choosing the appropriate VAR lag order for
Brazil. Note that these are the unrestricted VARs, not VECMs, and that the stationary
forms of the variables are used in the model (as identified in chapter 6 Table 6.6.5 for
Brazil). We use the standard Akaike (AIC) and Schwarz (SC) information criteria to
identify initial lag lengths. An interesting question is whether the AIC or SC detect the
appropriate lag order in the sense that there is no evident autocorrelation. The
motivation behind this question is to recognise that the AIC and SC may not always
choose a lag length where the VAR is free from autocorrelation. However, this does not
necessarily imply that the AIC or SC criterion are generally “bad” in selecting appropriate
lag lengths. Such a judgment would have to be related to a particular modelling exercise,
the nature of the deterministic terms included in the model, the sample size and variable

transformations.1t’

First, we estimate an unrestricted VAR model for Brazil where all available variables are
included as endogenous except unemployment (which is excluded). We start with the
maximum possible lag-length that can be estimated for Brazil (P*= 7). The VAR model
considered includes six stationary variables (AlnP, AlnM, AR, AInREE, GAP and
AInOilp).**® The results are given in Table 7.1.A column 1 and 2 where the lag length
selected by the AIC and SC are 7 and 1 respectively. To maximize the chance of selecting
an appropriate lag length and minimizing chances that the VAR exhibits autocorrelation,
we avoid selecting the low lag length of the SC and adopt the AIC. Therefore, we tested
the maximum lag (P*= 7) VAR for autocorrelation (of order 1, 2, ... 10). The probability
values of these autocorrelation tests are reported in column 3 of Table 7.1.A. There is
evidence of autocorrelation at the 5% level because many of the tests’ probability values
are less than 0.05. The standard reaction would be to believe that the lag length is too

short and add lags. However, because a VAR model cannot be estimated for Brazil with

117 see: Kapetanios (2004) and Lack (2006) for similar discussion.

118 Where the variables are denoted as follows: prices (p), interest rate( ), real exchange rate (ree),
money supply (m), output gap (gap), unemployment (un) and oil price (oilp).
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more than 7 lags, experience suggests that models with too many lags can exhibit
autocorrelation and the SC suggests a lower optimal lag length, we consider lower lag
length VARs. As a result, we re-estimate the VAR model using lag length of 6 (where P*-
1) and test the validity of the model. Given a lag length of 7 is indicated by the AIC this
suggests VARs with more lags are preferred to those with less hence we consider a lag
length of 6 rather than a higher lag length. The VAR model cannot reject the hypothesis
of no-autocorrelation at the 5% level for all of the orders of autocorrelation considered
— see column 4 of Table 7.1.A. This indicates that this model is valid for forecasting

Brazilian inflation. Hence, we choose 6 as the lag length for this Brazilian VAR model.

Table 7.1.A

Endogenous: AlnP, AinM, AR, AInREE, GAP and AInOilp.

1 2 3 4

AIC SC Prob. Prob.
Lag 7 6
0 -15.5061 -15.2984
1 -17.5058 -16.0524* 0.000 0.1040
2 -17.3584 -14.6592 NA 0.6037
3 -17.7366 -13.7917 NA 0.7218
4 -17.4705 -12.2799 NA 0.9196
5 -17.1274 -10.691 0.000 0.5208
6 -17.6675 -9.98533 0.000 0.4551
7 -18.7040* -9.77609 NA 0.9050
8 0.000 0.3130
9 0.000 0.3392
10 0.000 0.2725

The table indicates the selected lag from the AIC and SC criterion by an asterisk

Second, we estimate an unrestricted VAR model for Brazil where all available variables
are included as endogenous except the output gap (which is excluded). We start with
the maximum possible lag-length that can be estimated for Brazil (P*= 7). The VAR
model considered includes six stationary variables (AlnP, AlnM, AR, AInREE, Aun and
AInOilp). The results are given in Table 7.1.B column 1 and 2 where the lag length
selected by the AIC and SC are 7 and 0 respectively. To maximize the chance of selecting
an appropriate lag length and minimize the chances that the VAR exhibits
autocorrelation, we avoid selecting the low lag length of the SC and adopt the AIC.

Therefore, we tested the maximum lag (P*= 7) VAR for autocorrelation (of order 1, 2, ...
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10). There is evidence of autocorrelation at the 5% level because many of the tests’
probability values are less than 0.05. The standard reaction would be to believe that the
lag length is too short and add lags. However, because a VAR model cannot be estimated
for Brazil with more than 7 lags, because experience suggests that models with too many
lags can exhibit autocorrelation and the SC indicates a lower optimal lag length, we
consider lower lag length VARs. As a result, we re-estimate the VAR models with 6 and
5 lags and report the autocorrelation tests in columns 4 and 5, respectively. Given a lag
length of 7 is indicated by the AIC this suggests VARs with more lags are preferred to
those with less hence we do not consider lower lag length VARS than necessary. The
VAR models with 6 lags indicates evidence of autocorrelation whereas the VAR with 5
lag exhibits no evident autocorrelation at 5% level for all of the orders of autocorrelation
considered — see column 5 of Table 7.1.B. Hence, we select the 5 lag VAR of this model

for forecasting Brazilian inflation.

Table 7.1.B
| Endogenous: AlnP, AinM, AR, AINREE, AUN and AInOilp.

1 2 3 4 5

AIC SC Prob. Prob.
Lag 7 6 5
0 -9.95798 -9.74549%*
1 -10.8855 -9.4195 0.000 0.9283 0.1582
2 -10.8621 -8.13948 NA 0.3202 0.0963
3 -10.9592 -6.9799 NA 0.1913 0.6831
4 -11.2014 -5.96552 NA 0.4621 0.6040
5 -11.1313 -4.63884 0.000 0.7915 0.2058
6 -11.9563 -4.20723 0.000 0.7506 0.2608
7 -13.9126* -4.90693 NA 0.2430 0.6681
8 0.000 0.9347 0.9896
9 0.000 0.0108 0.6924
10 0.000 0.5223 0.4124

The table indicates the selected lag from AIC and SC criterion by an asterisk

Third, we estimate an unrestricted VAR model for Brazil where we treat oil price as
exogenous and all other available variables except unemployment (which is excluded)
as endogenous. We start with the maximum possible lag-length that can be estimated
for Brazil (P*=9). The VAR model considered includes six stationary variables with the
oil price as exogenous (AIn0ilp) and the following variables as endogenous (AlnP, AlnM,

AR, AInREE and GAP). The results are given in Table 7.1.C column 1 and 2 where the lag
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length selected by both the AIC and SC is 9. There is evidence of autocorrelation at the
5% level because many of the tests’ probability values are less than 0.05 (see the column
headed 3). The standard reaction would be to believe that the lag length is too short and
add lags. However, because a VAR model cannot be estimated for Brazil with more than
9 lags and because experience suggests that models with too many lags can exhibit
autocorrelation we consider lower lag length VARs. As a result, we re-estimate the VAR
models with 8 and 7 lags and report the autocorrelation tests in columns 4 and 5 of Table
7.1.C, respectively. Given a lag length of 9 is indicated by the AIC and SC this suggests
VARs with more lags are preferred to those with less hence we do not consider VARs
with lag lengths lower than that which removes the evident autocorrelation. The VAR
models with 9 and 8 lags indicate evidence of autocorrelation whereas the VAR with 7
lags exhibits no evident autocorrelation. Hence, we select the 7 lag VAR of this model

for forecasting Brazilian inflation.

Table 7.1. C

Endogenous: AlnP, AlnM, AR, AInREE and GAP
Exogenous: AInOilp_f

1 2 3 4 5

AIC SC Prob. Prob. Prob.
Lag 9 8 7
0 -13.5636 -13.1918
1 -15.6417 -14.3405 NA 0.1869 0.5835
2 -15.4462 -13.2157 NA 0.0870 0.1821
3 -15.8655 -12.7056 NA 0.0087 0.3868
4 -15.2929 -11.2036 NA 0.6377 0.1908
5 -15.1721 -10.1534 NA 0.1131 0.8807
6 -15.6379 -9.68988 0.000 0.1673 0.8418
7 -16.2944 -9.41695 0.000 0.1632 0.8389
8 -18.1713 -10.3645 0.000 0.2311 0.3212
9 -23.37272* -14.63652* | 0.000 0.3396 0.6262
10 0.000 0.0248 0.4811

The table indicates the selected lag from AIC and SC criterion by an asterisk

Fourth, we estimate an unrestricted VAR model for Brazil where we treat oil price as
exogenous and all other available variables except for the output gap (which is excluded)
as endogenous. The VAR model considered includes six stationary variables with the oil
price as exogenous (AInOilp) and the following variables as endogenous (AlnP, AlnM,

AR, AInREE and Aun). The results are given in Table 7.1.D column 1 and 2 where the lag
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length selected by both the AIC and SC is 9. There is evidence of autocorrelation at the
5% level because many of the tests’ probability values are less than 0.05 (see the column
headed 3). The standard reaction would be to believe that the lag length is too short and
add lags. However, because a VAR model cannot be estimated for Brazil with more than
9 lags and experience suggests that models with too many lags can exhibit
autocorrelation we consider lower lag length VARs. As a result, we re-estimate the VAR
models with 8, 7 and 6 lags and report the autocorrelation tests in columns 4, 5 and 6 of
Table 7.1.D, respectively. Given a lag length of 9 is indicated by the AIC and SC this
suggests VARs with more lags are preferred to those with less hence we do not consider
VARs with lag lengths lower than that which removes the evident autocorrelation. The
VAR model with 8 and 7 lags indicate evidence of autocorrelation whereas the VAR with
6 lags exhibits no evident autocorrelation. Hence, we select the 6 lag VAR of this model

for forecasting Brazilian inflation.

Table 7.1D

Endogenous: AlnP, AInM, AR, AInREE and AUN
Exogenous: AInOilp_f,

1 2 3 4 5 6
Lag 9 8 7 6

AIC SC Prob Prob Prob
0 -8.05062 -7.67887
1 -8.99371 -7.69258 0.000 0.0746 0.4870 0.7934
2 -9.08246 -6.85194 NA 0.8010 0.5188 0.7240
3 -9.24438 -6.08448 NA 0.0101 0.2108 0.7115
4 -9.29958 -5.21029 0.000 0.7066 0.8261 0.7529
5 -9.47729 -4.45862 NA 0.6799 0.1656 0.4303
6 -10.4646 -4.51658 0.000 0.9425 0.9184 0.5407
7 -11.3105 -4.43303 0.000 0.6852 0.4917 0.7872
8 -13.4715 -5.66463 0.000 0.9171 0.9445 0.8883
9 -19.86108* -11.1248* 0.000 0.7715 0.6611 0.5500
10 0.000 0.3680 0.0120 0.5613

The table indicates the selected lag from AIC and SC criterion by an asterisk

A similar procedure was applied for all countries and the tables of results are available
in appendix section 7. 2 page 576 -602. A summary of the VAR models and their selected
lag lengths for all countries is given in Table 7.1.E. Forecasts will be produced for all
models summarised in Table 7.1.E where a valid specification (models that are free from
evident autocorrelation) could be found. In addition, where oil prices are specified as

exogenous, we will use the oil price forecast produced between 2013q1 — 201494 that
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is based on ARIMA model. The details are available in Appendix. Section 7.1 page 572 -

575.

Table 7.1.E. Summary of the VAR model specification

Exogenous: AInOilp_f

Countries Sample Variable specifications The Chosen lag
maximum | length
lag length
suggested
by EVlews

Brazil 199994 201294 Endogenous: AlnP, AlnM, AR, AInREE, GAP and | 7 6

AInOilp
Brazil 199994 2012qg4 Endogenous: AlnP, AlnM, AR, AInREE, AUN and | 7 5
AInOilp
Brazil 199994 2012qg4 Endogenous: AlnP, AlnM, AR, AInREE and GAP 9 7
Exogenous: AInOilp_f,
Brazil 199994 2012qg4 Endogenous: AlnP, AlnM, AR, AInREE and AUN 9 6
Exogenous: AInOilp_f
Russia 2003Q2 201294 Endogenous: AlnP, AlnM, R, AInREE, AGAP and | 5 No valid model
AInOilp
Russia 2003Q2 201294 Endogenous: AlnP, AlnM, R, AInREE, AUN and | 5 4
AInQilp
Russia 2003Q2 2012qg4 Endogenous: AlnP, AlnM, R, AInNREE and AGAP 6 No valid model
Exogenous: AInOilp_f
Russia 2003Q2 201294 Endogenous: AlnP, AlnM, R, AInNREE and AUN 6 4
Exogenous: AInOilp_f
India 1963q1 2012qg4 Endogenous: AlnP, AAInM, R, and GAP 7 11
India 1984q1 2012q94 Endogenous: AlnP, AAInM, R, AInOilp and GAP 3 19
India 198491 2012qg4 Endogenous: AlnP, AAInM, R, and GAP 7 16
Exogenous: AInOilp_f

China 199291 2012qg4 Endogenous: AlnP, AlnM, AR, AInREE, GAP and | 10 9
AInOilp

China 199291201294 Endogenous: AlnP, AlnM, AR, AInREE and GAP 10 11
Exogenous: AInOilp_f

South Africa 1995q2 -2012q94 Endogenous: AlnP, AlnM, AR, AInREE, GAP and | 10 7
AInOilp

South Africa 1995q2 -2012q94 Endogenous: AlnP, AlnM, AR, AInREE and GAP 10 10
Exogenous: AInOilp_f

Algeria 199992 201294 Endogenous: AlnP, AlnM, AR, AInREE, GAP and | 7 5
AInOilp

Algeria 199992 2012qg4 Endogenous: AlnP, AlnM, AR, AInREE and GAP 9 5
Exogenous: AInOilp_f

Angola 200294 201294 Endogenous: AlnP, AlnM, AR, GAP and AInOilp 6 4

Angola 200294 201294 Endogenous: AlnP, AlnM, AR and GAP 7 7
Exogenous: AInOilp_f

Nigeria 19984 201294 Endogenous: AlnP, AlnM, AR, AInREE, GAP and | 8 6
AInOilp

Nigeria 19984 2012qg4 Endogenous: AlnP, AinM, AR, AInREE and GAP 9 5
Exogenous: AInOilp_f

Saudi Arabia 1983q12012qg4 Endogenous: AlnP, AlnM, AInREE, GAP and | 4 12
AInOilp

Saudi Arabia 1983q1 201494 Endogenous: AlnP, AInM, AInREE and GAP 4 12

Where P= consumer price, M =money supply, REE= real exchange rate, GAP = output gap, R = interest rate, UN
=unemployment and Qilp = oil price. The invalid models indicate the VAR models that do not pass the
diagnostic test for autocorrelation with all possible lag lengths.
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7.2 Modelling Vector Error Correction Model (VECM)

This section describes procedures for modelling using the Vector Error Correction Model
(VECM) stated in equation (7.2). The model adds an error-correction (long-run) feature
into the VAR model and captures the dynamic relationships among the variables in the
short-run. It provides the framework for estimating a co-integrated model with the aim
of improving long-term forecasting. Engle and Granger (1987) argued that, if
cointegrating relationships exist between variables that are integrated of order 1, a
model may be specified as a VECM rather than a VAR. Hence, we expect variables that
are I(1) may be cointegrated, that is, there may be a long-run equilibrium relationship
between the variables. As a result, we estimate a VECM model for each country and
focus only on variables that are integrated of order 1 (as identified in chapter 6 (Table
6.6.5). To avoid model misspecification and the possibility of imposing false restrictions,
we do not impose any a priori restrictions on this model — although some other
researchers have imposed a priori restrictions on the VECM. To choose an appropriate
lag length for this model, we follow the same procedure used in the previous chapter
(section 7.1). We estimate a VAR model in levels and use the standard Akaike (AIC) and
Schwarz (SC) information criteria with the maximum possible lag-length (P* =10) to
determine the initial lag length P™* and test for autocorrelation. If there is no evidence
of autocorrelation (of orders 1, 2, ... 10) this initial lag length is selected. However, if
there is evidence of autocorrelation, we re-estimate the VAR model using a lag length
of P**+1. The process is repeated until a VAR model that cannot reject the hypothesis
of no-autocorrelation at the 5% level is obtained. If a VAR model with more than P** lags
that is free from evident autocorrelation cannot be found models with fewer lags will be
tested for autocorrelation to see if a model free from autocorrelation can be found. This

yields the lag length that will be used in the VECM.

Using this VECM, we run the Johansen cointegration test with unrestricted intercept and
no trend to determine whether the variables cointegrate. We use the trace and
maximum eigenvalue tests to determine the cointegrating rank. In this case, we test the
null hypotheses from r = 0 to r = n — 1 until we fail to reject the null hypothesis. If
there is evidence of cointegration this means that long-run information should be

included in the model. We therefore use the unrestricted VECM, that does not specify
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the number or form of cointegrating relations to produce forecasts.''® In addition, if
there is evident cointegration we estimate a restricted VECM, denoted by VEC, by
assuming a single cointegrating relation (based on the Johansen estimates) and use this
model for forecasting. We assume one cointegrating equation because it is not
theoretically obvious how we should specify more cointegrating equations. Further, the
Johansen procedure is known to tend to reject the less cointegration null more often
than it should when the null is for the number of cointegrating equations being greater

than 0.120

119 The difference between the VECM specified in this section and an unrestricted VAR model discussed
in the previous section is that the former includes nonstationary, in particular I(1), variables that may be
cointegrated while the latter is applied only to variables that are made stationary through differencing.

120 The Johansen procedure severely over-rejects the null of “less cointegration” versus the alternative
of “more cointegration” when using sample sizes typically employed in time-series analysis — see Hanck
C (2006 p. 6). “Cross-Sectional Correlation Robust Tests for Panel Cointegration”, Mimeo, Department of
Economics, University of Dortmund.
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7.2.1 Modelling Vector Error Correction Model (VECM) for Brazil

In this section, we describe the process of modelling an unrestricted Vector Error
Correction Model (VECM) for Brazil. We focus only on those variables that are I(1) in
Table 6.6.5. First, we include all variables except the output gap (which is 1(0)) as
endogenous and do not impose a priori restrictions on structural relationships. The
following variables are considered: InP, InM, R, InREE, UN and InOilp (all are 1(1)).
To choose an appropriate lag length for this model, we estimate a levels VAR model and
use the standard Akaike (AIC) and Schwarz (SC) information criteria with the maximum
possible lag-length that can be estimated (P* =7) to determine the initial lag length P*".
The results are given in Table 7.2.1.A. Column 1 and 2 indicate that the lag length
selected by both the AIC and SC is 7. We tested the maximum lag (P*= 7) VAR for
autocorrelation (of order 1, 2, ... 10). The probability values of these autocorrelation
tests are reported in column 3 of Table 7.2.1.A. There is evidence of autocorrelation at
the 5% level because all of the tests’ probability values are less than 0.05. The standard
reaction would be to believe that the lag length is too short and add lags. However,
because a VAR model cannot be estimated for Brazil with more than 7 lags and
experience suggests that models with too many lags can exhibit autocorrelation we
consider lower lag length VARs and re-estimate the VAR model using lag lengths 6 and
5 (where lags = P* - 1;) and test the validity of each model. The VAR models with 6 lags
indicate evidence of autocorrelation whereas the VAR with 5 lags exhibits no evident

autocorrelation. Hence, we select the 5 lag VAR of this model for cointegration analysis.

Table 7.2.1. A. The VAR lags order selection criteria

Endogenous: InP, InM, R, InREE, UN and InOilp

1 2 3 4 5
Lags 7 6 5

AIC SC Prob. Prob. Prob.
0 2.139911 2.3629
1 -10.922 -9.36068 0.0018 0.1726 0.1745
2 -10.8347 -7.93504 0.0000 0.0258 0.7827
3 -11.2047 -6.96667 0.0000 0.0618 0.8204
4 -11.0758 -5.49954 0.0000 0.6897 0.1111
5 -12.8521 -5.93752 0.0000 0.0312 0.6912
6 -12.7817 -5.62883 0.0000 0.1808 0.6926
7 -14.78175* -6.52883* 0.0000 0.8630 0.5209
8 0.0000 0.8666 0.2921
9 0.0000 0.4360 0.4999
10 0.0000 0.7357 0.9144

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value of a test for autocorrelation.
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Using a VECM based on 5 lagged level terms (4 lagged differenced terms) we apply the
standard Johansen cointegration tests with unrestricted intercept and no trend (option
3 in EVlews) to determine the cointegrating rank. The results of Johansen’s trace and
maximum eigenvalue tests are reported in Table 7.2.1.B. Based on the trace and
maximum eigenvalue statistics, we reject the null hypothesis of no cointegrating
equations at the 5% level. However, the null hypothesis of at most 4 cointegrating
equations cannot be rejected at the 5% significance level according to the trace test.
Therefore, we assume one cointegrating equation because it is not theoretically obvious
how we should specify more cointegrating equations and the Johansen procedure has a

tendency to indicate too many cointegrating equations (see discussion above).

Table 7.2.1.B Johansen’s cointegration rank tests

Test (Trace) maximum eigenvalue
Hypothesized Trace Critical Prob.** Max-Eigen 0.05 Critical | Prob.**
Statistic Value Statistic Value
test
None *
390.3386 95.75366 0.0001 148.0977 | 40.07757 0.0001
At most 1* 100.6393
242.241 69.81889 0.0000 33.87687 0.0000
At most 2*
141.6017 47.85613 0.0000 69.065 | 27.58434 0.0000
At most 3* 54.44726
72.53672 29.79707 0.0000 21.13162 0.0000
At most 4*
18.08946 15.49471 0.0199 17.13844 | 14.2646 0.0171
At most 5
0.95102 3.841466 0.3295 0.95102 | 3.841466 0.0001

Because there is evidence of cointegration this suggests that long-run information
should be included in our model. Hence, we will use the estimated VECM, reported in
Table 7.2.1.C to forecast inflation. This specification does not impose the number or

form of cointegrating equations on the model.
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Table 7.2.1. C. The Vector Error Correction Model

Standard errors in () & t-statistics in [ ]

7.2.1.D. The Vector Error Correction Model

Table

DLOG(PBRA) | DLOG(MBRA_D11) | D(RBRA) | DLOG(REEBRA) | D(UBRA) | DLOG(OILP)
DLOG(PBRA(-1)) -0.02505 0.459901 8.027274 | 1.713247 0.498807 | 4.892168
-0.20863 -1.36955 -32.7435 | -3.14106 -15.1613 | -5.97748
[-0.12006] | [ 0.33580] [ [0.54544] [ [0.81843]
0.24516] 0.03290]
DLOG(PBRA(-2)) -0.64034 0.104678 -63.7641 | -0.66796 -3.49175 | -0.97568
-0.18627 -1.22278 -29.2345 | -2.80445 -13.5366 | -5.3369
[-3.43773] | [0.08561] - [-0.23818] - [-0.18282]
2.18113] 0.25795]
DLOG(PBRA(-3)) -0.11974 0.08268 -21.5148 | -1.22243 -8.48606 | -0.08844
-0.19527 -1.28188 -30.6473 | -2.93997 -14.1907 | -5.59481
[-0.61320] | [ 0.06450] - [-0.41580] - [-0.01581]
0.70201] 0.59800]
DLOG(PBRA(-4)) -0.17503 -0.66971 54221 | 1.871178 -28.7315 | 0.904799
-0.16538 -1.08564 -25.9557 | -2.48991 -12.0183 | -4.73833
[-1.05835] | [-0.61688] - [0.75151] - [0.19095]
2.08899] 2.39064]
DLOG(MBRA_D11(- | 0.030531 -0.70857 3.334608 | -0.38737 -1.23705 | 0.445273
1
: -0.03072 -0.20164 -4.82086 | -0.46246 -2.23222 | -0.88007
[0.99397] | [-3.51400] [ [-0.83762] - [0.50595]
0.69170] 0.55418]
DLOG(MBRA_D11(- | 0.05914 -0.41333 7.109911 | -0.3501 0.902908 | 2.415929
2))
-0.0342 -0.2245 -5.36736 | -0.51489 -2.48527 | -0.97984
[1.72934] | [-1.84112] [ [-0.67996] [ [ 2.46564]
1.32466] 0.36330]
DLOG(MBRA_D11(- | 0.127499 -0.25542 7.110853 | -0.10436 4.928344 | 3.083513
3
! -0.04004 -0.26283 -6.28367 | -0.60279 -2.90955 | -1.14711
[3.18456] | [-0.97180] [ [-0.17312] [ [ 2.68806]
1.13164] 1.69385]
DLOG(MBRA_D11(- | 0.096886 -0.31859 9.749591 | -1.12315 7.034013 | 0.583007
4
! -0.05082 -0.33364 -7.97668 | -0.7652 -3.69347 | -1.45618
[1.90632] | [-0.95490] [ [-1.46780] [ [ 0.40037]
1.22226] 1.90444]
D(RBRA(-1)) 0.00137 -0.004 0.26786 | -0.00868 0.067052 | -0.04629
-0.00102 -0.00672 -0.16075 | -0.01542 -0.07443 | -0.02935
[1.33768] | [-0.59541] [ [-0.56309] [ [-1.57720]
1.66627] 0.90082]
D(RBRA(-2)) -0.00069 -0.00597 -0.25438 | 0.011572 0.094198 | -0.01369
-0.00117 -0.00766 -0.18324 | -0.01758 -0.08485 | -0.03345
[-0.59352] | [-0.77832] [- [0.65833] [ [-0.40923]
1.38821] 1.11022]
D(RBRA(-3)) 0.004033 -0.00591 0.187726 | -0.01648 0.122438 | 0.027893
-0.00112 -0.00734 -0.17549 | -0.01683 -0.08126 | -0.03204
[3.60703] | [-0.80534] [ [-0.97883] [ [0.87066]
1.06974] 1.50681]
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D(RBRA(-4)) 0.00043 -0.00598 -0.07125 | -0.00886 0.1961 | 0.004426
-0.00076 -0.005 -0.11963 | -0.01148 -0.05539 | -0.02184
[0.56435] | [-1.19496] - [-0.77238] [ [0.20265]

0.59563] 3.54022]
DLOG(REEBRA(-1)) | -0.05491 -0.02813 -3.05574 | 0.158792 -1.07576 | 0.857222
-0.01557 -0.10223 -2.44422 | -0.23447 -1.13176 | -0.4462
[-3.52560] | [-0.27511] - [0.67723] - [1.92114]

1.25019] 0.95053]
DLOG(REEBRA(-2)) | -0.04935 0.24348 -6.91508 | -0.42095 0.275846 | 0.396617
-0.01983 -0.13016 -3.11182 | -0.29851 -1.44088 | -0.56808
[-2.48921] | [1.87066] - [-1.41016] [ [0.69817]

2.22220] 0.19144]
DLOG(REEBRA(-3)) | -0.05803 0.28468 -3.34386 | -0.11563 0.492672 | 0.34053
-0.02247 -0.14748 -3.52598 | -0.33825 -1.63265 | -0.64369
[-2.58318] | [1.93029] - [-0.34184] [ [0.52903]

0.94835] 0.30176]
DLOG(REEBRA(-4)) | -0.04455 0.191369 -3.84498 | -0.21947 -2.15527 | -0.35162
-0.02394 -0.15718 -3.75785 | -0.36049 -1.74001 | -0.68601
[-1.86060] | [1.21753] - [-0.60881] - [-0.51255]

1.02318] 1.23865]
D(UBRA(-1)) -0.00315 0.027035 -0.24267 | 0.063859 -0.54615 | -0.02537
-0.0029 -0.01902 -0.45471 | -0.04362 -0.21055 | -0.08301
[-1.08590] | [1.42148] [- [ 1.46397] - [-0.30567]

0.53368] 2.59394]
D(UBRA(-2)) -0.006 0.038407 -0.99963 | 0.053643 -0.26842 | -0.07914
-0.00285 -0.01869 -0.44686 | -0.04287 -0.20691 | -0.08158
[-2.10758] | [2.05489] [- [1.25140] - [-0.97013]

2.23702] 1.29728]
D(UBRA(-3)) -0.00468 0.038277 -0.36425 | 0.050164 -0.47173 | -0.08278
-0.00288 -0.01888 -0.45131 | -0.04329 -0.20897 | -0.08239
[-1.62820] | [2.02774] [- [1.15870] [- [-1.00468]

0.80710] 2.25738]
D(UBRA(-4)) -0.00169 0.029846 -0.66812 | 0.020312 -0.73462 | -0.13526
-0.00294 -0.01928 -0.46089 | -0.04421 -0.21341 | -0.08414
[-0.57483] | [1.54824] [- [0.45941] [- [-1.60760]

1.44965] 3.44236]
DLOG(OILP(-1)) 0.003258 -0.00556 0.823192 | 0.016615 -0.82134 | -0.36459
-0.00877 -0.05758 -1.37652 | -0.13205 -0.63738 | -0.25129
[0.37151] | [-0.09649] [ [0.12583] - [-1.45087]

0.59802] 1.28862]
DLOG(OILP(-2)) 0.008811 -0.09016 1.845928 | 0.037176 -0.94655 | -0.54557
-0.00802 -0.05264 -1.25855 | -0.12073 -0.58275 | -0.22975
[1.09880] | [-1.71264] [ [0.30792] [- [-2.37459]

1.46671] 1.62428]
DLOG(OILP(-3)) -0.0015 -0.07368 -0.76849 | 0.069967 -0.46031 | -0.34807
-0.00862 -0.05659 -1.35285 | -0.12978 -0.62642 | -0.24697
[-0.17421] | [-1.30203] - [0.53913] - [-1.40935]

0.56805] 0.73483]
DLOG(OILP(-4)) -0.00302 -0.07522 -0.60699 | -0.08065 -0.50957 | -0.28783
-0.00873 -0.05734 -1.37091 | -0.13151 -0.63478 | -0.25027
[-0.34564] | [-1.31180] - [-0.61325] - [-1.15008]

0.44277] 0.80276]
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LOG(PBRA(-5)) -0.17045 0.652487 -16.8 1.428985 -7.99718 | 0.439702
-0.05783 -0.37966 -9.07688 | -0.87074 -4.2029 -1.65703
[-2.94722] [1.71862] [- [1.64112] [- [ 0.26536]
1.85086] 1.90278]
LOG(MBRA_D11(- 0.093528 -0.29722 9.530508 | -0.57464 3.81829 | 0.056674
5))
-0.02896 -0.19014 -4.54584 | -0.43608 -2.10488 | -0.82986
[3.22912] [-1.56318] [ [-1.31775] [ [ 0.06829]
2.09653] 1.81402]
RBRA(-5) 0.002147 -0.00984 0.038328 | -0.01984 0.250899 | 0.01918
-0.00095 -0.00623 -0.14903 | -0.0143 -0.06901 | -0.02721
[ 2.26065] [-1.57798] [ [-1.38801] [ [ 0.70497]
0.25718] 3.63589]
LOG(REEBRA(-5)) -0.06122 0.21591 -6.69862 | 0.178297 -2.48866 | -0.17408
-0.02176 -0.14287 -3.41566 | -0.32766 -1.58157 | -0.62355
[-2.81288] [1.51128] [- [ 0.54415] [- [-0.27917]
1.96115] 1.57354]
UBRA(-5) -0.00674 0.028098 -0.45536 | 0.051163 -0.48722 | -0.09761
-0.00227 -0.0149 -0.35628 | -0.03418 -0.16497 | -0.06504
[-2.96777] [ 1.88551] [- [ 1.49697] [- [-1.50082]
1.27810] 2.95341]
LOG(OILP(-5)) -0.01134 -0.07256 -1.50277 | -0.08445 0.357234 | -0.36792
-0.0065 -0.04264 -1.01943 | -0.09779 -0.47203 | -0.1861
[-1.74642] [-1.70170] [- [-0.86357] [ [-1.97700]
1.47413] 0.75680]
R-squared 0.88738 0.697224 0.884123 | 0.6062 0.739249 | 0.654417
Adj. R-squared 0.745381 0.315462 0.738017 | 0.109669 0.410475 | 0.218683
Sum sq. resids 0.000526 0.022665 12.9551 | 0.119218 2.777579 | 0.431745
S.E. equation 0.004782 0.031391 0.75051 | 0.071996 0.347512 | 0.137009
F-statistic 6.249191 1.826332 6.051247 | 1.220871 2.248503 | 1.501871
Log likelihood 230.0931 130.3631 -37.8705 | 86.36913 2.937135 | 52.26687
Akaike AIC -7.55068 -3.78729 2.561151 | -2.12714 1.02124 | -0.84026
Schwarz SC -6.43542 -2.67203 3.67641 | -1.01188 2.1365 0.275
Mean dependent 0.0159 0.033944 -0.23962 | 0.007017 -0.15173 | 0.031932
S.D. dependent 0.009477 0.037941 1.46629 | 0.076301 0.452604 | 0.155002
Determinant resid covariance 2.66E-14
(dof adj.)
Determinant resid covariance 1.77E-16
Log likelihood 509.8871
Akaike information criterion -12.4486
Schwarz criterion -5.75701

For the VECM to be valid to forecast, we apply the standard diagnostic check and test

the model for autocorrelation (of order 1, 2, ... 10). The probability values of the residual

autocorrelation tests are reported in Table 7.2.1.D. There is no evidence of

autocorrelation at the 5% level because all of the tests’ probability values are more than

0.05. Therefore, this model is valid to forecast Brazil inflation since there is no evidence

of autocorrelation.
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Table 7.2.1.D. Probability value of the residual autocorrelation

Prob.

—
Q

(0]
()

0.1745
0.7827
0.8204
0.1111
0.6912
0.6926
0.5209
0.2921
0.4999
0.9144
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In this section, we seek to produce a VECM for Brazil where we treat the stationary
transformation of oil prices as exogenous and all other variables as endogenous (which
are I(1)). We first seek to find the appropriate lag length and start with a level’s VAR
using the maximum possible lag-length that can be estimated for Brazil (P*=9). The VAR
model considered includes five nonstationary endogenous variables (InP, InM, R,
InREE and UN ) with the difference of the log of oil prices as exogenous (AIn0Oilp). The
results are given in Table 7.2.1.E column 1 and 2 where the lag length selected by both
the AIC and SC is 9. There is evidence of autocorrelation at the 5% level in this 9-lag
model because all the tests’ probability values are less than 0.05 (see column 3). The
standard reaction would be to believe that the lag length is too short and add lags.
However, because a VAR model cannot be estimated for Brazil with more than 9 lags
and because experience suggests that models with too many lags can exhibit
autocorrelation we consider lower lag length VARs. As a result, we re-estimate VAR
models with 8,7 and 6 lags and report the autocorrelation tests in columns 4, 5 and 6 of
Table 7.2.1.E, respectively. The VAR models with 8 and 7 lags indicate evidence of
autocorrelation whereas the VAR with 6 lags exhibits no evident autocorrelation. Hence,

we select the 6 lag VAR of this model for cointegration analysis.
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Table 7.2.1. E

Endogenous: [nP, InM, R, InREE and UN
Exogenous: AInOilp

1 2 3 4 5 6

AIC SC Prob. Prob. Prob.
Lag 9 8 7 6
0 6.051451 6.237327
1 -9.49954 -8.38428 0.000 0.0284 0.0321 0.1575
2 -9.47911 -7.43447 0.000 0.0348 0.4982 0.1833
3 -9.64925 -6.67523 0.000 0.367 0.1017 0.3612
4 -9.8226 -5.91919 0.000 0.9978 0.1355 0.5404
5 -10.739 -5.90624 0.000 0.0138 0.8474 0.9888
6 -11.4478 -5.68559 0.000 0.3043 0.7347 0.4096
7 -12.5219 -5.83038 0.000 0.8661 0.7619 0.8324
8 -14.4782 -6.85723 0.000 0.8875 0.2745 0.2845
9 -19.58900* -11.03868* 0.000 0.9024 0.9127 0.9355
10 0.000 0.8407 0.7105 0.7257

AIC = Akaike information criteria, SC = Schwarz information criteria and Prob., is the probability value.

Using a VECM based on 6 lagged level terms (5 lagged differenced terms) we apply the
standard Johansen cointegration tests with unrestricted intercept and no trend (option
3 in EVlews) to determine the cointegrating rank. The results of Johansen’s trace and
maximum eigenvalue tests are reported in Table 7.2.1.F. Based on the trace and
maximum eigenvalue statistics, we reject the null hypothesis of no cointegrating
equations at the 5% level. However, the null hypothesis of at most 4 cointegrating
equations cannot be rejected at the 5% significance level. Therefore, we assume one
cointegrating equation because it is not theoretically obvious how we should specify
more cointegrating equations and the Johansen procedure tends to indicate too many

cointegrating equations (see the discussion above).

213



Table 7.2.1.F Johansen’s cointegration rank tests

Test (Trace) maximum eigenvalue

Hypothesized Trace Critical Prob.** Max-Eigen | 0.05 Prob.**
Statistic Value Statistic Critical
test Value

None * 176.6939 69.8189 0.0000 63.5116 33.8768 0.0000

At most 1* 113.1823 47.8561 0.0000 42.5288 27.5843 0.0003

At most 2* 70.6535 29.7970 0.0000 31.5575 21.1316 0.0012

At most 3* 39.0960 15.4949 0.0000 25.5497 14.2646 0.0006

At most 4* 13.5462 3.8415 0.0002 13.5462 3.8414 0.0002

Because there is evidence of cointegration this suggests that long-run information

should be included in our model. Hence, we will use the estimated VECM, reported in

Table 7.2.1.G to forecast inflation. This specification does not impose the number or

form of cointegrating equations on the model.

214



Table 7.2.1.G. The Vector Error Correction Model

Standard errors in () & t-statistics in [ ]
DLOG(PBRA) DLOG(MBRA_D11) D(RBRA) DLOG(REEBRA) D(UBRA)
DLOG(PBRA(-1)) -0.22833 0.550628 15.92621 6.707261 -3.36615
-0.23504 -1.51386 -39.7417 -3.64915 -19.1466
[-0.97145] [0.36373] [ 0.40074] [ 1.83803] [-0.17581]
DLOG(PBRA(-2)) -0.61565 0.80644 -46.4207 -2.04527 -15.0712
-0.2029 -1.30686 -34.3075 -3.15018 -16.5285
[-3.03422] [0.61708] [-1.35308] | [-0.64925] [-0.91183]
DLOG(PBRA(-3)) -0.35833 -0.26896 -24.4989 3.069599 -3.31068
-0.23682 -1.52534 -40.0431 -3.67683 -19.2918
[-1.51308] [-0.17633] [-0.61181] [ 0.83485] [-0.17161]
DLOG(PBRA(-4)) -0.27821 0.065003 -62.0859 0.229944 -28.7151
-0.16374 -1.05462 -27.6859 -2.54217 -13.3384
[-1.69908] [0.06164] [-2.24251] | [0.09045] [-2.15281]
DLOG(PBRA(-5)) -0.33275 0.548354 -69.6121 2.654713 -1.71647
-0.20626 -1.32849 -34.8754 -3.20232 -16.8022
[-1.61324] [0.41277] [-1.99602] [ 0.82900] [-0.10216]
DLOG(MBRA_D11(-1)) 0.055006 -0.76841 3.80544 -0.28874 -0.77874
-0.03391 -0.21841 -5.73366 -0.52647 -2.76234
[1.62212] [-3.51822] [0.66370] [-0.54844] [-0.28191]
DLOG(MBRA_D11(-2)) 0.094216 -0.43396 8.990891 -0.20847 0.939916
-0.03916 -0.25224 -6.62173 -0.60802 -3.1902
[2.40578] [-1.72046) [1.35778] | [-0.34287] [ 0.29463]
DLOG(MBRA_D11(-3)) 0.182573 -0.30003 16.23415 0.056639 1.961149
-0.03697 -0.23814 -6.25167 -0.57404 -3.01191
[4.93791] [-1.25989] [2.59677] [ 0.09867] [0.65113]
DLOG(MBRA_D11(-4)) 0.165389 -0.56076 23.42301 -1.35653 4.238154
-0.0537 -0.34587 -9.07983 -0.83373 -4.37445
[ 3.07986] [-1.62130] [2.57967] [-1.62707] [ 0.96884]
DLOG(MBRA_D11(-5)) 0.168829 -0.65018 22.42615 -0.66791 3.744489
-0.06017 -0.38756 -10.1742 -0.93422 -4.90171
[2.80574] [-1.67762] [2.20421] | [-0.71494] [0.76391]
D(RBRA(-1)) 0.002927 -0.00671 0.032361 -0.00591 -0.01983
-0.00125 -0.00802 -0.21055 -0.01933 -0.10144
[2.35093] [-0.83648] [0.15370] [-0.30554] [-0.19552]
D(RBRA(-2)) -0.0004 -0.01036 -0.40443 -0.00101 0.110014
-0.00117 -0.00757 -0.19862 -0.01824 -0.09569
[-0.34332] [-1.36967] [-2.03616] [-0.05516] [1.14966]
D(RBRA(-3)) 0.004297 -0.0089 -0.07483 -0.00339 0.116696
-0.00128 -0.00827 -0.21701 -0.01993 -0.10455
[3.34777] [-1.07663] [-0.34481] [-0.17014] [1.11618]
D(RBRA(-4)) 0.003661 -0.00901 0.11791 -0.02578 0.08291
-0.00138 -0.00887 -0.23279 -0.02138 -0.11215
[2.65934] [-1.01609] [ 0.50650] [-1.20588] [ 0.73925]
D(RBRA(-5)) 0.003431 -0.01634 0.091489 -0.01094 0.188937
-0.00103 -0.00664 -0.17426 -0.016 -0.08395
[3.32952] [-2.46187] [0.52503] [-0.68351] [ 2.25052]
DLOG(REEBRA(-1)) -0.04162 0.020023 -3.25675 0.112973 -1.56708
-0.01435 -0.09244 -2.42661 -0.22282 -1.16908
[-2.90028] [0.21662] [-1.34210] [ 0.50702] [-1.34043]
DLOG(REEBRA(-2)) -0.05716 0.184606 -6.45632 -0.08169 -1.05372
-0.01979 -0.12745 -3.3457 -0.30721 -1.61188
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[-2.88853] [ 1.44850] [-1.92974] | [-0.26590] [-0.65372]
DLOG(REEBRA(-3)) -0.06114 0.206331 -6.41581 0.027907 -0.66153
-0.01868 -0.1203 -3.15823 -0.28999 -1.52156
[-3.27341] [1.71507] [-2.03146] | [0.09623] [-0.43477)
DLOG(REEBRA(-4)) -0.0738 0.072569 -6.36373 0.087077 -3.03819
-0.02243 -0.14448 -3.79278 -0.34826 -1.82727
[-3.28994] [0.50229] [-1.67785] | [0.25003] [-1.66269]
DLOG(REEBRA(-5)) -0.10528 0.115865 -14.7356 0.292799 -0.88359
-0.02434 -0.15676 -4.1153 -0.37787 -1.98265
[-4.32556] [0.73912] [-3.58070] | [0.77486] [-0.44566]
D(UBRA(-1)) -0.00628 0.033757 -0.95329 0.072754 -0.28129
-0.00316 -0.02036 -0.53456 -0.04908 -0.25754
[-1.98492] [1.65776] [-1.78332] | [1.48221] [-1.09223]
D(UBRA(-2)) -0.01095 0.046217 -1.76546 0.062539 -0.13762
-0.0035 -0.02254 -0.59164 -0.05433 -0.28504
[-3.13057] [2.05073] [-2.98401] | [1.15119] [-0.48281]
D(UBRA(-3)) -0.01039 0.031164 -1.04321 0.10108 -0.33214
-0.00376 -0.02419 -0.63503 -0.05831 -0.30594
[-2.76557] [1.28831] [-1.64277] | [1.73351] [-1.08564]
D(UBRA(-4)) -0.00761 0.028342 -1.52258 0.054157 -0.55844
-0.00365 -0.02351 -0.61712 -0.05667 -0.29731
[-2.08504] [ 1.20565] [-2.46723] | [0.95573] [-1.87828]
D(UBRA(-5)) -0.0088 0.040856 -2.09478 0.054035 -0.36201
-0.004 -0.02573 -0.67554 -0.06203 -0.32546
[-2.20324] [1.58769] [-3.10089] | [0.87112] [-1.11231]
C -0.00094 1.938028 43.13157 -2.22898 1.790133
-0.14002 -0.90184 -23.675 -2.17388 -11.4061
[-0.00670] [ 2.14897] [1.82182] | [-1.02534] [0.15695]
LOG(PBRA(-6)) -0.30203 0.774999 -31.4358 1.854344 -6.87639
-0.08491 -0.54691 -14.3576 -1.31834 -6.91714
[-3.55694] [1.41704] [-2.18949] | [1.40658] [-0.99411]
LOG(MBRA_D11(-6)) 0.153826 -0.48194 14.92527 -0.73317 3.355336
-0.04436 -0.2857 -7.50014 -0.68868 -3.61339
[3.46787] [-1.68687] [1.99000] | [-1.06460] [0.92858]
RBRA(-6) 0.005166 -0.01674 0.236499 -0.0245 0.141011
-0.0014 -0.00899 -0.23611 -0.02168 -0.11375
[3.69913] [-1.86109] [1.00164] | [-1.13021] [1.23962]
LOG(REEBRA(-6)) -0.10031 0.128217 -16.3053 0.487939 -2.3447
-0.03043 -0.19597 -5.14471 -0.4724 -2.4786
[-3.29677] [0.65426] [-3.16932] | [1.03290] [-0.94598]
UBRA(-6) -0.01278 0.01875 -1.66752 0.106514 -0.33277
-0.0037 -0.02385 -0.62606 -0.05749 -0.30162
[-3.45228] [0.78624] [-2.66350] | [1.85287] [-1.10328]
DLOG(OIL_EXOG(6)) 0.003883 -0.00839 -0.1242 0.013946 -0.42059
-0.00595 -0.03829 -1.00525 -0.0923 -0.48431
[0.65318] [-0.21920] [-0.12355] | [0.15109] [-0.86844]
R-squared 0.904085 0.751771 0.885459 0.643363 0.720968
Adj. R-squared 0.762496 0.385339 0.716376 0.116899 0.309064
Sum sq. resids 0.000448 0.018581 12.80568 0.107968 2.972307
S.E. equation 0.004618 0.029746 0.780893 0.071703 0.376216
F-statistic 6.385291 2.051595 5.236811 1.222046 1.750328
Log likelihood 234.3479 135.6272 -37.5631 88.99596 1.141524
Akaike AIC -7.63577 -3.91046 2.625021 -2.15079 1.164471
Schwarz SC -6.632457 -2.72085 3.814631 -0.96118 2.354081
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Mean dependent 0.0159 0.033944 -0.23962 0.007017 -0.15173
S.D. dependent 0.009477 0.037941 1.46629 0.076301 0.452604
Determinant resid covariance (dof adj.) 3.43E-12
Determinant resid covariance 3.35E-14
Log likelihood 446.2034
Akaike information criterion -10.8001
Schwarz criterion -4.85208

For the VECM to be valid to forecast, we apply the standard diagnostic check and test
the model for autocorrelation (of order 1, 2, ... 10). The probability values of the residual
autocorrelation tests are reported in Table 7.2.1.H. There is no evidence of
autocorrelation at the 5% level because all of the tests’ probability values are more than
0.05. Therefore, this model is valid to forecast Brazilian inflation since there is no

evidence of autocorrelation.

Table 7.2. 1. H. Probability value of the residual autocorrelation

Lags Prob.

1 0.1635
2 0.0623
3 0.6131
4 0.6911
5 0.2286
6 0.9306
7 0.9577
8 0.8703
9 0.4300
10 0.5233

A similar procedure was applied for all countries and the tables of results are available
in appendix section 7.3 page 603 - 671. A summary of the unrestricted VECM models
and their selected lag lengths for all countries is given in Table 7.2.1.1. Forecasts will be
produced for all models summarised in Table 7.2.1.1 where a valid specification (that is

free from evident autocorrelation) could be found.
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Table 7.2.1. I.

Summary of the VECM equations specification

Countries Sample Variable specifications Chosen lag length | Number of
cointegration
Brazil 199994 201294 | Endogenous: InP, InM, R, InREE,UN | 5 4
and InOilp
Brazil 199994 201294 | Endogenous: InP, InM, R, INREE and | 6 4
UN
Exogenous: AInOilp_f
Russia 2003Q2 201294 | Endogenous: InP, InM, InREE, gap | No models free
and InOilp from
autocorrelation
Russia 2003Q2 201294 | Endogenous: [nP, InM, InREE, UN | 3 1
and InOilp
Russia 2003Q2 2012g4 | Endogenous: [nP, [nM, InREE | 5 4
and gap
Exogenous: AInOilp_f
Russia 2003Q2 201294 | Endogenous: InP, InM, INREE and UN | 6 3
Exogenous: AInOilp_f
India 1963q1 201294 | Endogenous: InP and InM 9 2
India 1984q1 201294 | Endogenous: InP InM and InOilp 9 1
India 198491201294 | Endogenous: InP and [InM 1
Exogenous: AInOilp_f
China 1992q1 201294 | Endogenous: InP, InM, R, INREE and | 10 1
InOilp
China 1992q1 201294 | Endogenous: InP, InM, R, and InREE 10 2
Exogenous: AInOilp_f
South Africa 199592 - | Endogenous: [nP, InM, R, INREE and | 2 1
201294 InOilp
South Africa 199592 - | Endogenous: InP, InM, R and InREE 2 1
2012q4 Exogenous: AlnOilp_f
Algeria 1999g2 201294 | Endogenous: InP, InM, R, INREE and | 7 5
InOilp
Algeria 1999g2 201294 | Endogenous: InP, InM, R, and InREE | 10 4
Exogenous: AInOilp_f
Angola 2002g4 201294 | Endogenous: InP, InM, R and InOilp
Angola 2002qg4 201294 | Endogenous: InP, InM, and R
Exogenous: AInOilp
Nigeria 199894 201294 | Endogenous: InP, InM, R, INREE and | No models free
InOilp from
autocorrelation
Nigeria 1998g4 2012qg4 Endogenous: InP, InM, R, and INREE | No models free
Exogenous: AInOilp_f from
autocorrelation
Saudi Arabia 1983q1 201294 Endogenous: [nP, InM, InREE and | 11 4
InOilp
Saudi Arabia 1983q1 2014q4 Endogenous: InP, InM and InREE 5 1
Exogenous: AInOilp_f

Where P= consumer price, M =money supply, REE= real exchange rate, GAP = output gap, R = interest rate, UN =unemployment,
Oilp = oil price and AInOilp_f is the ARIMAX forecast of the oil price. Note that all the models in this table passed the diagnostic
tests for autocorrelation at the 5% level of significance except those where “No models free from autocorrelation” is specified. In
these cases, the models did not pass the diagnostic test for autocorrelation for all available lag lengths.
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7.3.0. Modelling Vector Error Correction (VEC) model

In this section, we focus on the main problem of the vector error correction model
(VECM) discussed in the previous section (7.2) with the aim of improving our inflation
forecast performance. The problem with the VECM model is the large number of
parameters that must be estimated. Each equation involves estimating m x k lagged
coefficients plus one or more parameters for the deterministic components. For
example, with a maximum of 6 lags, if six variables are treated as endogenous, each
equation requires estimating 36 parameters, and the system as a whole has 216
coefficients. However, the large number of parameters in a model could cause over-
parameterisation, loss of degrees of freedom, model misspecification and poor
forecasting performance (Sa-ngasoongsong et al.2012). In practice, this problem can be
addressed by imposing restrictions on the VECM. For example, testing the cointegrating
rank in the system and imposing restrictions on the cointegrating vector [, long-run
matrix ( IT ), short-run dynamic coefficients I' and cointegrating rank. Another approach
is to form a single equation and impose zero restrictions on insignificant coefficients.
Based upon the cointegration results from the VECM models discussed in the previous
chapter (chapter 7.2) we estimate a restricted VECM specification (called the VEC). The
restriction that we impose on the VECM is to specify the cointegrating equations and
thereby produce the VEC. In particular, for the models where there is evidence of at
least one cointegrating equation we impose a single cointegrating equation on the
model to produce the VEC. We assume one cointegrating equation because it is not
theoretically obvious how we should specify more cointegrating equations. Further, the
Johansen procedure is known to tend to reject the less cointegration null more often
than it should when the null is for the number of cointegrating equations being greater
than zero.??! The difference between the previous model in section (7.2) (VECM) and
the VEC model is that that cointegrating equations are imposed in the latter case and

not the former.

121 see Hanck C (2006 p. 6). “Cross-Sectional Correlation Robust Tests for Panel Cointegration”, Mimeo,
Department of Economics, University of Dortmund.
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7.3.1. Brazilian Modelling Vector Error Correction (VEC) Model

In this section, we describe the process of modelling a VEC model for Brazil and focus
only on those valid models where the variables were found to be cointegrated in section
7.2. First, we consider the cointegration results for the VECM model reported in (Table
7.2.1.1) for Brazil where the stationary form of the oil price is treated as exogenous and
all other variables as endogenous (which are I(1)). In this case, there was evidence of
four cointegrating equations; therefore, we accept that there is one equilibrium
relationship among the variables because it is not theoretically obvious how we should
specify more cointegrating equations. The estimation results for the error-correction
term (denoted CointEq1), its associated cointegrating equation (CE1) and its VEC model
are reported in Table 7.3.1.A and 7.3.1.B respectively. Note that the only difference in
the coefficients of the error-correction term and the cointegrating equation is that their
signs are reversed. The error-correction term (CointEq1) has a negative and significant
coefficient in the inflation equation [in the column headed D(LOG(PBRA) Table
7.3.1.1.B)] suggesting that inflation is forced back to the cointegrating equation defined
by CE1. All the explanatory variables in the cointegrating equation are significant
(because their t-ratios exceed approximately 2 in magnitude). Based on the
cointegrating equation results (CE1) in the Table 7.3.1.A it can be said that most of the
signs of the equation parameters are in accordance with suggested economic theory as
expected. The positive sign on the coefficients for the money supply supports the
guantity theory of money. This implies that increases in money leads to rising prices in
the long-run. The coefficient shows that a 1% increase in the money supply results in a
0.51% increase in prices. Surprisingly, there is a positive relationship between the
interest rate and prices in Brazil which does not appear to be consistent with the basic
economic theory. This result indicates that a 1%-point increase in the interest rate

results in a 0.02% increase in prices.

We expect a positive long-run relationship between the exchange rate and inflation
However, the negative sign contradicts our expectations. The coefficient indicates that
a 1% increase in the exchange rate (currency depreciation) decreases the prices by
0.31%. Considering the Phillips curve, we would expect unemployment to have a
negative influence on the rate of inflation over a long run. Our estimation results show
that unemployment has a negative influence on the prices which is in line with our
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theoretical expectations. This implies that a 1%-point decrease in unemployment leads

to 0.042% increase in prices in the long run.

We expect a positive short-run relationship between the exogenous oil price and

inflation. Our results indicate that the oil price has positive short-run impact on prices;

however, this is insignificant at the 5% level, but significant at 10% level. Hence, while

oil prices have the expected sign it is not expected that their effect would be

insignificant.

Table 7.3.1.A. Cointegrating equation.

122

1 2
Cointegrating Eq: CointEql CE1
LOG(PBRA(-1)) 1
LOG(MBRA_D11(-1)) -0.51207 0.51207
[-43.0127] [43.0127]
RBRA(-1) -0.01756 0.01756
[-14.6649] [14.6649]
LOG(REEBRA(-1)) 0.31263 -0.31263
[10.9281] [-10.9281]
UBRA(-1) 0.04204 -0.04204
[9.7558] [-9.7558]
C 0.19989 -0.19989
Where [ ] = the t statistics
Error Correction: D(LOG(PBRA)) D(LOG(MBRA_D11)) D(RBRA) D(LOG(REEBRA)) D(UBRA)
CointEql -0.32473 0.967426 -21.582 1.361218 -2.94749
-0.07028 -0.54213 -14.8918 -1.11563 -5.38306
[-4.62030] [1.78449] [-1.44926] [1.22013] [-0.54755]
D(LOG(PBRA(-1))) 0.030065 0.799288 47.64822 3.060759 18.02426
-0.17334 -1.33704 -36.7271 -2.75145 -13.2761
[0.17345] [ 0.59780] [1.29736] [1.11242] [1.35765]
D(LOG(PBRA(-2))) -0.25654 -0.41991 -50.3474 -2.13264 -15.7947
-0.16831 -1.29824 -35.6614 -2.67161 -12.8908
[-1.52428] [-0.32345] [-1.41182] [-0.79826] [-1.22527]
D(LOG(PBRA(-3))) -0.04491 -0.0685 -5.09861 2.007329 13.02149
-0.1571 -1.21179 -33.2865 -2.49369 -12.0324
[-0.28588] [-0.05653] [-0.15317] [ 0.80496] [1.08221]
D(LOG(PBRA(-4))) 0.083827 -0.51799 -34.3806 -0.84522 -25.1915
-0.13028 -1.00491 -27.604 -2.06798 -9.97825
[ 0.64345] [-0.51546] [-1.24549] [-0.40872] [-2.52464]
D(LOG(PBRA(-5))) -0.00563 1.351132 -1.55782 0.738437 14.23351
-0.10603 -0.81786 -22.4658 -1.68305 -8.12092
[-0.05313] [1.65203] [-0.06934] [0.43875] [1.75270]
D(LOG(MBRA_D11(- -0.09359 0.086796 -2.76808 0.231685 -1.77358
1))

122 Column 1 in the table 7.3.1.A is the equation that describe the error-correction term and Column 2 is
the cointegrating equation. Note that the only difference in the coefficients of the error-correction term
and cointegrating equation is that their signs are reversed.
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-0.03229 -0.24905 -6.84122 -0.51252 -2.47295
[-2.89851] [0.34851] [-0.40462] | [0.45205] [-0.71719]
D(LOG(MBRA_D11(- | -0.05875 0.536467 3.352753 | -0.00652 1.576656
2)))
-0.03462 -0.26707 -7.33605 -0.54959 -2.65182
[-1.69688] [ 2.00874] [0.45702] | [-0.01185] [ 0.59456]
D(LOG(MBRA_D11(- | 0.020484 0.521586 4.011097 | 0.344894 2.676611
3)))
-0.03225 -0.24874 -6.83262 -0.51187 -2.46984
[0.63521] [ 2.09692] [0.58705] | [0.67379] [1.08372]
D(LOG(MBRA_D11(- | 0.017821 -0.16072 1.787225 | -0.14817 -0.12839
4))
-0.0295 -0.22754 -6.2502 -0.46824 -2.25931
[ 0.60414] [-0.70635] [0.28595] | [-0.31644] [-0.05683]
D(LOG(MBRA_D11(- | 0.019859 -0.28127 1.044583 | 0.56876 -0.64271
5)))
-0.02971 -0.2292 -6.29597 -0.47167 -2.27586
[ 0.66833] [-1.22716] [0.16591] | [1.20585] [-0.28240]
D(RBRA(-1)) -0.00241 0.012606 0.081015 | 0.020555 -0.12714
-0.00143 -0.011 -0.3021 -0.02263 -0.1092
[-1.69306] [1.14623] [0.26817] | [0.90820] [-1.16422]
D(RBRA(-2)) -0.00598 0.005914 -0.56012 0.020291 0.014307
-0.00114 -0.00882 -0.24236 -0.01816 -0.08761
[-5.22604] [0.67027] [-2.31112] | [1.11755] [0.16331]
D(RBRA(-3)) -0.00142 0.013539 0.023159 | 0.000268 0.077277
-0.00141 -0.01086 -0.29833 -0.02235 -0.10784
[-1.01013] [ 1.24656] [0.07763] | [0.01198] [0.71658]
D(RBRA(-4)) -0.00141 0.007549 -0.15675 0.005206 -0.06343
-0.00072 -0.00555 -0.15256 -0.01143 -0.05515
[-1.96245] [1.35918] [-1.02742] | [0.45547] [-1.15013]
D(RBRA(-5)) -0.00217 0.000127 -0.07732 0.00724 0.097467
-0.00074 -0.00569 -0.1563 -0.01171 -0.0565
[-2.94058] [0.02234] [-0.49472] | [0.61832] [1.72515]
D(LOG(REEBRA(-1))) | 0.059506 -0.24959 5741729 | -0.26926 0.058135
-0.02598 -0.20037 -5.50409 -0.41234 -1.98961
[2.29073] [-1.24562] [1.04317] | [-0.65300] [0.02922]
D(LOG(REEBRA(-2))) | 0.044882 -0.02756 3.236278 | -0.47452 0.695389
-0.01602 -0.12355 -3.39379 -0.25425 -1.22678
[ 2.80213] [-0.22308] [0.95359] | [-1.86637] [ 0.56684]
D(LOG(REEBRA(-3))) | 0.041149 -0.08981 4.117703 | -0.25811 0.488141
-0.0171 -0.13186 -3.62219 -0.27136 -1.30934
[ 2.40708] [-0.68110] [1.13680] | [-0.95117] [0.37281]
D(LOG(REEBRA(-4))) | 0.02784 -0.23064 3.14604 -0.12376 -1.84714
-0.01338 -0.10319 -2.83455 -0.21235 -1.02463
[ 2.08105] [-2.23507] [1.10989] | [-0.58281] [-1.80274]
D(LOG(REEBRA(-5))) | 0.000714 -0.11841 -1.70401 0.10803 0.451376
-0.01217 -0.09391 -2.57951 -0.19325 -0.93244
[0.05864] [-1.26094] [-0.66060] | [0.55903] [0.48408]
D(UBRA(-1)) 0.007642 0.012935 0.242379 | 0.016083 0.00983
-0.00252 -0.01942 -0.53334 -0.03996 -0.19279
[ 3.03598] [0.66622] [0.45446] | [0.40253] [ 0.05099]
D(UBRA(-2)) 0.001998 0.011599 -0.68404 -0.01093 0.10984
-0.00199 -0.01537 -0.42232 -0.03164 -0.15266
[1.00252] [0.75446] [-1.61972] | [-0.34534] [0.71951]
D(UBRA(-3)) 0.00193 -0.00387 0.236347 | 0.016364 -0.04374
-0.00201 -0.01552 -0.42628 -0.03194 -0.15409
[0.95943] [-0.24932] [0.55444] | [0.51241] [-0.28385]
D(UBRA(-4)) 0.004983 -0.01107 -0.12605 -0.02061 -0.3412
-0.00187 -0.01439 -0.39538 -0.02962 -0.14292
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[2.67023] [-0.76928] [-0.31879] [-0.69589] [-2.38733]
D(UBRA(-5)) 0.004013 0.011579 -0.10744 -0.02995 -0.0848
-0.00187 -0.01445 -0.39703 -0.02974 -0.14352
[2.14165] [0.80108] [-0.27062] [-1.00696] [-0.59085]
C 0.018528 0.016349 -0.21274 -0.05505 -0.29713
-0.00393 -0.03028 -0.8317 -0.06231 -0.30064
[4.72027] [ 0.53997] [-0.25579] [-0.88353] [-0.98834]
DLOG(OILP_EXOG) 0.006747 -0.03865 -0.72811 0.238065 -1.10628
-0.00578 -0.04458 -1.22461 -0.09174 -0.44267
[1.82874] [-0.86695] [-0.59456] [2.59493] [-2.49911]
R-squared 0.904344 0.64493 0.820616 0.628202 0.75399
Adj. R-squared 0.801035 0.261454 0.626882 0.22666 0.4883
Sum sq. resids 0.000447 0.026579 20.05519 0.112558 2.620547
S.E. equation 0.004227 0.032606 0.89566 0.067099 0.323762
F-statistic 8.753793 1.6818 4.235775 1.564474 2.837851
Log likelihood 234.4194 126.1411 -49.4509 87.89268 4.479342
Akaike AIC -7.78941 -3.70344 2.922677 -2.2601 0.887572
Schwarz SC -6.7485 -2.66253 3.963586 -1.21919 1.928481
Mean dependent 0.0159 0.033944 -0.23962 0.007017 -0.15173
S.D. dependent 0.009477 0.037941 1.46629 0.076301 0.452604
Determinant resid covariance (dof adj.) 3.77E-12
Determinant resid covariance 8.79E-14
Log likelihood 420.6304
Akaike information criterion -10.4012
Schwarz criterion -5.01073

For the model to be valid to forecast, we apply the standard diagnostic check and test
the model for autocorrelation (of order 1, 2, ... 10). The probability values of the residual
autocorrelation tests are reported in Table 7.3.1.C. There is no evidence of
autocorrelation at the 5% level because all of the tests’ probability values are more than
0.05. Therefore, this model is valid to forecast Brazilian inflation since there is no

evidence of autocorrelation.

Table 7.3 1.C Probability value of the residual autocorrelation

Prob.

0.1278
0.4065
0.4941
0.6218
0.9122
0.2788
0.6143
0.8679
0.8799
0.5094
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A similar procedure was applied for all countries (to avoid similar repetition, the details

these tables are available on request, to save space). A summary of the VEC models,
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adjustment coefficients on the error correction term in the inflation equation and the
cointegrating equations for all countries are given in Table 7.3.1.D, 7.3.1.E and 7.3.1.F
respectively. The forecasts will be produced for all models summarised in Table 7.3.1.D.
where a valid specification that is free from evident autocorrelation and cannot reject

cointegration could be found.
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Table 7.3.1.D Summary of the VEC specifications

Countries | Sample Variable specifications Chosen | Number of | SC AIC
lag cointegration rank
length | imposed
Brazil 199994 Endogenous: InP, InM, R, | 5 1 -6.5481 -7.7377
201294 InREE, UN and InOilp
Brazil 199994 Endogenous: InP, InM, R, | 5 1 -6.7485 -7.7894
201294 InREE and UN
Exogenous: InOilp_f
Russia 2003Q2 Endogenous: [nP, InM, | 2 1 -6.5293 | -7.0412
201294 InREE, UN and InOilp
Russia 2003Q2 Endogenous: InP, InM, | 4 1 -5.93014 | -6.8685
2012q4 InREE, gap and InOilp
Russia 2003Q2 Endogenous: [nP, InM, | 6 1 -5.78105 | -6.9327
201294 InREE and gap
Exogenous: [nOilp_f
Russia 2003Q2 Endogenous: [nP, [nM, | 6 1 -12.5695 | -16.6645
201294 InREE and UN
Exogenous: InOilp_f
India 196391 Endogenous: InP and | 13 1 -5.3968 | -5.8618
201294 InM
India 1984q1 Endogenous: InP InM | 8 1 -5.2883 -5.9054
2012q4 and [nOilp
India 1984q1 Endogenous: InP and | 16 1 - -11.7488
20124 InM 10.7993
Exogenous: InOilp_f
China 1992q1 Endogenous: InP, InM, R, | 10 1 -6.9911 -14.657
2012q4 InREE and InOilp
China 1992q1 Endogenous: InP, InM, R, | 12 1 -7.6633 -13.7252
201294 and InREE
Exogenous: InOilp_f
South 199592 Endogenous: InP, InM, R, | 2 1 -9.97811 | -11.2523
Africa 2012q4 InREE and InOilp
South 199592 Endogenous: InP, InM, R | 2 1 -9.03415 | -10.0539
Africa 201294 and InREE
Exogenous: [nOilp_f
Algeria 1999q2 Endogenous: InP, InM, R, | 7 1 -10.1217 | -
201294 InREE and InOilp 16.14376
Algeria 1999q2 Endogenous: InP, InM, R, | 8 1 -10. -16.5009
201294 and InREE 6614
Exogenous: [nOilp_f
Angola 200294 Endogenous: InP, InM, R | 5 1 -6.1447 -7.06425
2012qg4 and InOilp
Angola 2002qg4 Endogenous: InP, InM, | 6 1 -5.4583 -6.3340
201294 and R
Exogenous: [nOilp_f
Nigeria 1998q4 Endogenous: InP, InM, R, | 5 1 -3.6665 -4.6343
2012qg4 InREE and InOilp
Nigeria 1998q4 Endogenous: InP, InM, R, | 7 1 -3.5021 -
201294 and InREE 4.61333
Exogenous: InOilp
Saudi 1983q1 Endogenous: [nP, InM, | 9 1 -11.7962 | -15.7916
Arabia 2012qg4 InREE and InOilp
Saudi 1983q1 Endogenous: [nP, InM | 10 1 -6.1675 | -6.5160
Arabia 201494 and InREE
Exogenous: InOilp_f

Where P= consumer price, M =money supply, REE= real exchange rate, GAP = output gap, R = interest rate, UN =unemployment,

Oilp = oil price. Note that all the models in this table passed the diagnostic tests for autocorrelation at the 5% level of

significance except those where “No valid model” is specified. In these cases, the models did not pass the diagnostic

test for autocorrelation for all available lag lengths.
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7.3.1.E. The summary of the adjustment coefficient on the error correction terms in the

inflation equation (where the stationary transformation of the oil price is treated as

exogenous)
Brazil Russia Russia India China South Nigeria Algeria Angola Saudi
(Un') (gap") Africa Arabia
CointEql -0.3247 -0.0894 -0.1118 -0.0281 0.0129 -0.0052 0.0546 -0.0250 -0.1389 -0.0089
t [Jratio | [-4.6203] | [-1.5458] [-1.1178] [-1.6829] [2.068] | [- [1.2095] | [- - [-
statistics 0.6501] 1.3898] 3.6324] 3.0094]

Where [] = t ratio statistics, Russia (gap') = when the output gap is excluded and Russia (Un')= when the unemployment variable is
excluded.

7.3.1.F. The summary of the estimated cointegrating equations (where the stationary
transformation of the oil price is treated as exogenous)

CE1 Brazil Russia Russia India China South Algeria Angola Nigeria Saudi
(gap’) (Un') Africa Arabia
InP
InM 0.51207 0.20096 | 0.18827 | 0.47112 -0.83780 0.08997 | 0.82095 0.4466 0.5161 0.47582
[43.0137] | [4.7798] | [3.5071] | [15.9553] | [-2.9561] [0.6202] | [9.52665] | [11.8215] | [14.0402] | [2.62970]
R 0.01756 -0.26812 -0.0519 0.30119 0.00274 0.0108
[14.6649] [-1.3309] | [- [4.9237] [2.4888] [1.3798]
1.9619]
InREE | -0.31263 0.67519 | 0.55554 5.16488 1.1295 3.24607 0.4010 -0.63910
[-10.928] | [3.4647] | [2.4541] [2.83337] | [2.3671] | [4.81036] [4.4520] [-1.5618]
UN -0.04204 0.02153
[-9.7558] [2.7635]
GAP -0.41819
-
2.1665]
C -0.19989 3.56E-01 | 1.0969 -10.2708 8.67335 -0.72231 | -37.07347 | -1.811372 | 12.7541 -5.178497

Where [] = t ratio statistics, Russia (gap’) = when the output gap is excluded and Russia (Un')= when the
unemployment variable is excluded.

The summary of the adjustment coefficient on the error correction terms in the inflation
equation and the cointegrating equations (where the stationary transformation of the
oil price is treated as exogenous) are provided in the Table 7.3.1.E and 7.3.1.F
respectively. Table 7.3.1.E indicates that for Brazil, Angola and Saudi Arabia, the error-
correction term (CointEq1) has a negative and significant coefficient in the inflation
equation. This result shows evidence of a long-run equilibrium relationship between
prices and the other selected macroeconomic variables in these countries. This long-run
relationship implies that the selected variables move together over time such that the
short-term deviations of prices from its long-run trend will be corrected. For Russia,
India, South Africa and Algeria, the coefficient on the error-correction term (CointEq1)
is negative however it is not significant. Hence, while the price is forced towards its long-
run value the adjustment is statistically insignificant. For China and Nigeria, the

coefficient on the error-correction term (CointEql) is positive and significant for China
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but insignificant for Nigeria, neither of which are consistent with theory. This suggesting
that the price variable is continually forced away from its long-run value as defined by
the estimated cointegrating equation. This raises questions over the validity of specified
cointegrating equation as an equilibrium specification for prices and as such might be
expected to adversely affect the accuracy of inflation forecasts from this model for China

and Nigeria.

Table 7.3.1.F reports the estimated cointegrating equations. For Brazil, Russia (both
models), India, Algeria, Angola, Saudi Arabia and Nigeria, the money supply variable has
the theoretically expected positive and significant long-run relationship with prices.
However, for China the coefficient on money supply is negative and significant while for
South Africa this coefficient is positive and insignificant. Most of these countries’
estimates are consistent with the quantity theory of money and this general consistency

may be expected to enhance the forecasts for inflation.

For China and South Africa, interest rates have the theoretically expected negative long-
run relationship with prices; however, the coefficient estimates are insignificant which
suggests caution in interpreting these results as consistent with theoretical
expectations.'?> For Nigeria, the coefficient on the interest rate is positive and
insignificant. However, the coefficient on the interest rate is positive and significant for
Brazil, Algeria and Angola which is not consistent with theory. The general inconsistency
of the interest rate coefficient may have an adverse impact on these models’ forecasts
of inflation. The real exchange rate has the theoretically expected positive and
significant coefficient for Russia (both equations), China, South Africa, Algeria and

Nigeria. However, the coefficient on the real exchange rate is negative and significant

123 According to monetary economics (for both Money demand and Money supply theory), there is an
inverse relationship between inflation and interest rate. For example, interest rates are determined by
the interaction of the quantity supplied and the quantity demanded of money. For supply of money, if
interest rates are reduced, consumers will be able to borrow more money. The result is that consumers
have more money to spend, causing the economy to grow and inflation to increase. The opposite holds
for demand for money. If government increase the interest rate, consumers tend to save more to get
higher returns. The result is that consumers will have less money to spend, causing the economy to slow
and inflation to decrease.
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for Brazil and negative and insignificant for Saudi Arabia, neither of which are consistent

with theory.

The coefficient on unemployment is negative and significant for Brazil, which is
consistent with economic theory. However, the coefficient on unemployment is positive
and significant in the Russian cointegrating equation which is not consistent with
theoretical expectations. Finally, the output gap has a theoretically unexpected negative

and significant coefficient in the Russian cointegrating equation.

We now consider the plausibility of the cointegrating equations by country. When a
coefficient is significant and has the expected coefficient sign it is regarded as fully
consistent with an equilibrium equation for prices and is assigned a value of 1 in Table
7.3.1.F2 below. When a coefficient is insignificant and has the expected sign it is
regarded as semi-consistent with an equilibrium equation for prices and is assigned a
value of 0.5 in Table 7.3.1.F2. Finally, a coefficient that has an unexpected coefficient
sign and is insignificant is considered as completely inconsistent with an equilibrium
equation for prices and is assigned a value of 0 in Table 7.3.1.F2. Based on these assigned
values we report a percentage of coefficients that are consistent with an equilibrium
equation for prices for each country in the row labelled “plausible” to provide an
indication of each cointegrating equation’s plausibility for each country. This should also
give some indication of the likely forecasting performance of the inflation equation in
the VEC for each country. It may well be that the potential benefits (in terms of
forecasting accuracy) of using theory to build multivariate VEC models of inflation may
be undermined by the practical difficulty in securing statistically valid and theoretically
consistent specifications. This is an issue that we will assess when the forecasting
performance of multivariate and univariate models are compared and evaluated. It may
be that such practical difficulty in producing valid multivariate specifications justifies the

use of univariate models for forecasting purposes.
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7.3.1.F2. The plausibility of the estimated cointegrating equations as long-run inflation models (where the
stationary transformation of the oil price is treated as exogenous)

CE1 Brazil | Russia | Russia | India | China | South | Algeria | Angola | Saudi | Nigeria | Consistent
(gap') | (Un') Africa Arabia
InP
InM 1 1 1 1 0 0.5 1 1 1 1 85%
R 0 0.5 0.5 0 0 0 16.6%
InREE | 0O 1 1 1 1 1 0 1 75%

UN 1 50%

GAP 0 0%
CointEql | 1 0.5 0.5 0.5 0 0.5 0.5 1 1 0 55%
Plausible | 60% | 62.5% | 62.5% | 75% | 37.5% | 62.5% | 62.5% | 66.7% | 66.7% | 50%

Where Russia (gap') = when the output gap is excluded and Russia (Un')= when the unemployment
variable is excluded. Values of 0, 0.5 and 1 indicate coefficients that are completely inconsistent, semi
consistent and completely consistent with a plausible long-run equation for inflation. The row and column
labelled Plausible indicates the percentage of coefficients that are consistent with a plausible long-run
equation for inflation.

Our results from the row labelled “Plausible” in Table 7.3.1.F2 indicates that the most
plausible cointegrating equation as a long-run model of inflation is for India with 75% of
the coefficients being plausible. The next most plausible equations are for Angola and
Saudi Arabia (66.7% plausibility); followed by Russia (both equations), South Africa and
Algeria (62.5%), Brazil (60%) and Nigeria. The least plausible cointegrating equation is
for China (37.5%). It will be interesting to see whether the relative plausibility of the
different countries” VEC models (as measured above) is reflected in their forecasting

performance.

We also assess the relative theoretical consistency of each variable’s long-run coefficient
in the VEC in the column headed “Consistent” of Table 7.3.1.F2. The coefficient on the
money supply has the highest consistency rating at 85%, followed by the real exchange
rate (75%), unemployment (50%), interest rates (16.6%) and the output gap (0%).
Finally, we note that in 55% of models the equation is forced to its long-run equilibrium

model of prices as defined by the cointegrating equation.
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7.3.1.G. The summary of the adjustment coefficient on the error correction terms in the

inflation equation (where all variables are included as endogenous)

Brazil Russia (gap') | China India South Algeria Nigeria Angola Saudi
(gap') Africa Arabia
Error -0.18864 0.002438 -0.0088 -0.01519 -0.00053 0.042605 -0.01115 -0.27439 0.006082
Correction
(CointEql)
t- statistics | [-1.8099] [ 0.46400] [-0.6739] [-0.72605] [-0.2820] [1.19416] [-0.2483] [-6.7085] [ 3.59405]
Where [] =t ratio statistics and (gap') = when the output gap is excluded
7.3.1.H. The summary of the estimated cointegrating equations (where all variables
are included endogenous)
CE1 Brazil Russia India China South Algeria Angola Nigeria Saudi
(gap") (gap') Africa Arabia
InP
InM 0.57787 - 0.55395 0.3469 -1.1292 0.46909 0.26359 0.3693 4.46189
2.679846
[34.5678] | [-5.1112] | [31.3397] | [2.2419] | [1.97561] | [6.41509] | [1.6940] [7.4333] | [3.99688]
R 0.00233 -0.2780 0.020597 0.09369 0.00201 -00456
[11.5847] [3.8548] | [0.18569] | [2.62987] | [4.32512] | [3.9024]
InREE | 0.36215 18.8124 3.8339 2.09799 1.07726 0.2247 8.35233
[10.5416] [5.8172] [4.3998] [0.97392] [2.71960] [5.2953] [4.43181]
UN -0.05602 -
0.235514
[9.59924] | [-2.5977]
InOilp | 0.0769 -10.8959 -0.00351 -1.2456 1.91205 -0.16232 0.35191 0.1354 -4.777097
[5.09120] | [-4.6990] | [-3.5685] | [3.6547] | [2.94489] | [-2.1170] | [6.59163] | [1.5650] | [-4.3012]
C -0.18864 -52.1268 -12.5968 17.059 -0.14245 -14.3692 -0.82686 8.1215 -138.2281

Where [] =t ratio statistics and (gap’) = when the output gap is excluded

The summary of the adjustment coefficient on the error correction terms in the inflation
equation and the cointegrating equations (where all the variables are treated as the
endogenous) are provided in the Table 7.3.1.G and 7.3.1.H respectively. In the Table
7.3.1.G, for Angola, the error-correction term (CointEql) has a negative and significant
coefficient in the inflation equation. This result shows evidence of a long-run equilibrium
relationship between prices and the other selected macroeconomic variables in these
countries. The long-run relationship implies that the selected variables move together
over time such that the short-term deviations of price from its long-run trend will be
corrected. For Brazil, India, China, South Africa and Nigeria, the coefficient on the error-
correction term (CointEql) is negative however it is not significant. Hence, while the

price variable is forced towards its long-run value the adjustment is statistically

230



insignificant. For Saudi Arabia, the coefficient on the error-correction term (CointEq1) is
positive and significant suggesting that the price variable is continually forced away from
its long-run value as defined by the estimated cointegrating equation. This raises
questions over the validity of specified cointegrating equation as an equilibrium
specification for prices and as such might be expected to adversely affect the accuracy

of inflation forecasts from this model in this country.

Table 7.3.1.H reports the corresponding estimated cointegrating equations. For Brazil,
India, China, Algeria, Angola, Nigeria and Saudi Arabia, the money supply has the
theoretically expected positive and significant long-run relationship with prices.
However, for Russia the coefficient on money supply is negative and significant. Most of
these countries’ estimates are consistent with the quantity theory of money and this

general consistency may enhance the forecasts for inflat