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Abstract 

This study investigates the application and evaluation of existing indirect methods, namely point-based 

registration techniques, for the estimation and compensation of observed motion included in the 2D image 

plane of Contrast-Enhanced Ultrasound (CEUS) cine-loops recorded for the characterization and diagnosis of 

focal liver lesions (FLL). The value of applying motion compensation in the challenging modality of CEUS is 

to assist the quantification of the perfusion dynamics of an FLL in relation to its parenchyma, allowing for a 

potentially accurate diagnostic suggestion. Towards this end, this study also proposes a novel quantitative 

multi-level framework for evaluating the quantification of FLLs, which to the best of our knowledge remains 

undefined, notwithstanding many relevant studies. Our results suggest the ‘compact and real-time descriptor’ 

as the optimal indirect motion compensation method in CEUS, following a quantitative evaluation of nineteen 

other indirect algorithms and configurations, while also considering the requirement for computational 

efficiency. 
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Introduction 

Contrast-Enhanced Ultrasound (CEUS) is an important imaging technique used for assessing focal 

liver lesions (FLLs), with the ability to differentiate benign and malignant tumors. CEUS is an extension of 

the ultrasound (US) modality, which has inherent high temporal resolution, but the CEUS examination 

requires an intravenous (IV) injection of a contrast agent (Harvey, et al. 2001, Schneider, et al. 1995) that 

accentuates the returning echoes (increased brightness) from blood and with the ability to differentiate 

patterns of enhancement of FLL compared to surrounding healthy liver (i.e., the parenchyma) in the image 

frames. Interpretation of CEUS cine-loops is time-consuming, labor-intensive and subjective, as it is based 

on manual offline/post-examination assessment by expert radiologists following the CEUS guidelines by the 

World Federation for Ultrasound in Medicine and Biology (WFUMB) (Claudon, et al. 2013). 

Considering the beneficial impact that CEUS can have in FLL evaluation and the bottleneck imposed 

by the cumbersome interpretation of its recorded cine-loops, computer-aided automation of the process may 

be advantageous. Various attempts have been made towards such automation, including the identification of 

the optimal reference frame in the acquired CEUS cine-loop (Bakas, et al. 2013, Bakas, et al. 2017b), the 

delineation of the CEUS image plane (i.e., the sector-shaped area including the ultrasonographic image) 

(Bakas, et al. 2012b), as well as the delineation of the FLL (Bakas, et al. 2017a). Once these “initialization” 

tasks have been performed, monitoring the relative changes of brightness intensity of the different regions of 

interest (ROIs) over time (i.e., the perfusion temporal dynamics) is of particular importance, as such 

information leads to the vascular signature (VS) of individual FLLs that forms the basis of diagnostic 

decisions. 

Monitoring these perfusion dynamics through a 2D CEUS cine-loop entails many different 

challenges, primarily due to the nature of the US examination (Tang, et al. 2011) which includes much 

unpredictable motion, and depends on the experience of the operator, as well as the patient’s underlying 

physiological status. The IV injection of contrast-enhancing agents results in dramatic changes of tissue 

appearance during the examination (Fig.1), when captured in a non-linear contrast-specific mode that cancels 
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linear tissue echoes. Appearance variations may also depend on noise, intensity changes, or out-of-plane 

movements of the captured structures that lead to changes of their apparent location, orientation and/or size. 

Such movements may be due to the free-hand acquisition approach (i.e., the relative motion between a hand-

held transducer and the liver), as well the patient’s inner organ deformation and physiological motion due to 

cardiac movements and breathing (Derek, et al. 2001). For this reason, the standard care protocol suggests a 

fixed sagittal view to maintain breathing motion in-plane during an examination, refraining from changing 

any acquisition parameters, such as the zoom level or the field of view. In addition, to minimize the effect of  

such motion, the patients are asked to breath shallowly, which can result in a breathing pattern with low 

amplitude but still rather irregular movement, such that no motion pattern that could be directly exploited for 

motion compensation is present (Wollny, et al. 2012). The continuous irregular repetitive nature of all these 

disturbances inevitably degrades the quality of the acquired data, and if no action is taken to compensate for 

the observed motion, the estimated VS of the FLL(s) may be inaccurate, as it may consider intensity from 

pixels corresponding to different tissues, and hence may lead to inaccurate diagnostic suggestions. Therefore, 

the main challenge and primary aim for automatically assessing the FLL perfusion dynamics is to 

compensate for the apparent motion and without any acquisition standards (e.g., patient’s breath-hold) being 

instructed by the radiologists beforehand, beyond the ones used on standard clinical practice (Claudon, et al. 

2013). 

 

Figure 1. Example frames from an FLL CEUS cine-loop illustrating the dramatic appearance changes of the 

liver and the FLL. 

 

Towards this end, this study focuses on compensating for the observed FLL motion within the 2D 

CEUS image plane and through a CEUS cine-loop using automated motion estimation methods. Motion 
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estimation approaches are divided into two major categories (Makela, et al. 2002); the direct (Irani and 

Anandan 2000) and the indirect methods (Torr and Zisserman 1999). The former recover information 

directly from measurable image quantities at each pixel in the image plane, based on either the intensity itself 

or its gradient (i.e., the edge-based energy), for estimating motion vectors in successive frames of a sequence. 

These algorithms are also known as correlation or template matching algorithms (Althof, et al. 1997). 

Examples of direct methods are based on block matching (Rognin, et al. 2006, Ta, et al. 2012), phase 

correlation (Castro and Morandi 1987), and normalized cross-correlation or its modifications (Ding, et al. 

2001). Direct methods share the ‘intensity constancy constraint’, where the intensity of an initialized ROI 

must be constant over a sequence of frames, and are sensitive to noise and illumination changes (Irani and 

Anandan 2000). Therefore, considering the local and global dramatic intensity changes over the duration of a 

CEUS recording due to the use of contrast-enhancing agents, such methods may not be considered optimal 

for estimating motion in CEUS cine-loops. On the other hand, the latter, indirect methods employ a sparse 

set of distinct geometric image features, matching across successive frames, to estimate motion over a 

sequence. These geometric image features describe local structural information and are either manually or 

automatically selected “landmarks” (e.g., corners (Harris and Stephens 1988) or lines (Rothwell, et al. 1995)) 

robustly characterized for saliency by statistical multi-dimensional local feature descriptors. Specifically, 

point-based registration techniques (PBRTs) are considered as the most suitable methods for automatic 

detection of “landmarks” when illumination changes occur, and in multi-modal analysis (e.g., MRI/US 

(Correas 2014)), mainly due to their invariance to changes in illumination, scale, orientation, contrast and 

viewpoint (Khajone, et al. 2014, Torr and Zisserman 1999). 

The aim of this study is to facilitate the automated accurate quantification of the FLL’s perfusion in 

CEUS scans and hence allow for an accurate diagnostic suggestion. In previous work, we have used the 

Scale Invariant Feature Transform (SIFT) as a PBRT alone (Bakas, et al. 2012b), as well as coupled with a 

direct method (Bakas, et al. 2011, Bakas, et al. 2012a), to compensate for motion in CEUS cine-loops.  The 

contributions of the present study are two-fold; a) an extensive investigation of a wide range of existing 

PBRTs (Ambai and Yoshida 2011, Bay, et al. 2006, Dalal and Triggs 2005, Evans 2009, Harris and Stephens 
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1988, Lowe 2004, Rosten and Drummond 2005, Rosten and Drummond 2006, Rublee, et al. 2011, Shi and 

Tomasi 1994, Vedaldi and Fulkerson 2010), and their configurations, and the identification of the optimal 

one for motion compensation in FLL CEUS cine-loops, and b) a novel quantitative multi-level framework of 

metrics for evaluating motion compensation techniques in CEUS scans involving FLLs. Results are 

computed and compared for all applied PBRTs, based on the proposed evaluation protocol, demonstrating 

the value of the applied methods as a useful advisory tool for a radiologist to forge his own evaluation. 

Background 

This section reviews existing work relevant to the scope of the present study. Firstly, the standard 

clinical workflow for FLL characterization in CEUS is presented, followed by existing computational 

studies, considering approaches without and with motion compensation. The latter are all based on direct 

methods, which we argue that they might not be appropriate for CEUS cine-loops. For this reason, we review 

indirect methods that have not been applied for motion compensation in FLL CEUS cine-loops by other 

researchers before. The matching strategies and distance metrics used by these methods are also presented. 

Standard Clinical Workflow for FLL Characterization 

A CEUS examination starts with the identification of a FLL, and then proceeds onto a targeted CEUS 

assessment of the lesion over several minutes, initially (60-90 seconds) recording the examination on a cine-

loop, with static images thereafter. Following this acquisition, a radiologist assesses the acquired CEUS cine-

loop “offline” by an exhaustive visual inspection, assessing the vascular pattern and sequence of lesion 

enhancement in the arterial phase and throughout the recorded cine-loop, and any static images from the 

late/portal venous phase of the examination, eventually characterizing the FLL (Burrowes, et al. 2017, 

Claudon, et al. 2013, Dill-Macky, et al. 2002, Wilson and Burns 2010, Wilson, et al. 2018). Besides being 

time consuming, this workflow does not produce a quantitative analysis, requires considerable effort and the 

expert knowledge of experienced and specially-trained radiologists, yet still prone to misinterpretation as 

diagnostic results are dependent on experience for interpretation of the data. Computational studies for 

assessing the quantification of FLLs using CEUS are discussed, below. 
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Computational Studies Without Motion Compensation 

Approaches of this type perform analysis of CEUS cine-loops after i) excluding frames with motion, 

or ii) using only static images, or iii) acquiring the data following strict instructions being given to the 

radiologists beforehand. 

Lemke et al. (2004) conducted a prospective study, where patients previously scanned by CT and 

MRI were re-scanned with US and CEUS, aiming to clinically evaluate the diagnostic accuracy of CEUS in 

comparison with CT and MRI. Static images were obtained for each patient at predefined intervals and, after 

having the FLL(s) manually annotated, the discrete signal of each FLL’s VS was used to assist with 

classification. 

Huang-Wei et al. (2006) analyzed cine-loops of the arterial phase, with an approximate duration of 7-

12 seconds, of CEUS examinations using the QontraXt software (AMID, Italy). Information was obtained 

after performing background subtraction (Piccardi 2004), and the use of a parametric image to improve the 

visualization. However, background subtraction is expected to work satisfactory only if the transducer is 

static and the patient’s breathing is negligible. Also, the background (i.e., the parenchyma) intensity values 

change continuously, further constraining the applicability of background subtraction. Considering that 

brightness intensity reflects the log compression used for creating the CEUS image, and that the QontraXt 

software does not linearize pixel amplitude, rendering background subtraction is potentially a 

problematic/hazardous operation. Furthermore, only a particular type of FLL (i.e., Focal Nodular 

Hyperplasia) was included in their analysis and without motion correction. 

Shiraishi et al. (2008) developed a computer-aided diagnostic scheme for the classification of three 

very specific types of FLLs with hyper-enhanced VS (i.e., Metastasis, Hemangioma, and Hepatocellular 

Carcinoma). FLL delineation was obtained manually in each frame of the acquired cine-loops by a physician, 

obviously labor-intensive and time consuming. A cascade of six independent Artificial Neural Networks was 

then used for the task of classification. 
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Goertz et al. (2010) performed CEUS quantification of FLLs after excluding 77 case studies out of 

110 due to various motion-related challenges, e.g., ‘wiggly’ recording, patient’s fragile holding of breath, 

FLL getting lost in depth. The Sonoliver software (V.2.6.8/2.7.0 – Tomtec, Unterschleissheim, Germany) 

was used, for semi-automatic motion compensation by combining manual delineation of the FLL and the 

parenchyma, background subtraction, and automatic alignment of ROIs. The outcome of their study implies 

that Sonoliver could only work with data obtained according to particular acquisition standards, where 

motion is minimal, due to the use of background subtraction. 

Computational Studies with Motion Compensation Using Direct Methods 

Rognin et al. (2006) described an approach to automatically compensate for rigid motion in CEUS 

cine-loops and obtain perfusion curves by iteratively maximizing a pixel-based similarity criterion, using 

steepest gradient descent optimization. This approach requires substantial manual input for: i) selecting a 

reference frame, ii) delineating an analysis region within the CEUS image, iii) delineating the FLL, and iv) 

delineating the parenchyma. The similarity criterion used was mutual information (MI) (Shekhar and 

Zagrodsky 2002), based on intensities of the manually delineated image plane. Although MI has been shown 

to be useful (accurate and robust) when attempting to register frames from different modalities (Lu, et al. 

2008, Maes, et al. 1997, Pluim, et al. 2001), it cannot be considered optimal  when the intensity and the 

apparent shape of the ROIs change dramatically over time, as the `intensity constancy constraint’ criterion is 

not met and such pixel-based analysis is susceptible to noise (Irani and Anandan 2000). Another study 

(Anaye, et al. 2011) has also used multiple region annotation but for parametric maps of perfusion curves, 

and to differentiate between various FLLs. 

Ta et al. (2012) have shown that a pixelwise (i.e., fine-grained resolution) analysis, for CEUS cine-

loops, is more informative for FLL diagnostics than ROI-based analysis. However, their main purpose was to 

compare differences between the dynamics of benign and malignant FLLs, as well as to quantify the spatial 

heterogeneity of FLLs, by performing a pixelwise analysis within manually initialized ROIs. Motion 

compensation was performed by maximization of MI of the manually initialized ROI between successive 

frames, in a similar manner to the approach of (Rognin, et al. 2006). 
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Such approaches based on “direct” methods give results that are neither repeatable nor reproducible, 

as they are heavily dependent on manual input. 

Indirect Motion Estimation Methods 

Indirect (or feature-based) methods register a sparse set of either manually or automatically selected 

“landmarks”, e.g., points, or lines, as distinct geometric image features between two frames, in order to 

estimate the apparent motion. Since no lines are detectable in our datasets, we focus entirely on PBRT 

methods.  

Once the “landmark” points are detected, a statistical multi-dimensional local feature descriptor is 

employed to robustly characterize a “landmark” as a salient point at a higher level, to facilitate matching the 

corresponding landmark point in another frame, leading to the estimation of a motion vector between them. 

These single “point/vector” representatives of distinct geometric image features are generally described in 

the literature as “interest points”. Ideally, such points should be distinct, spread over the whole image, easily 

distinguishable amongst other points within the image plane, detectable in both frames and sufficiently stable 

to avoid influence by slight unexpected feature variation due to changes in the imaging conditions, i.e., noise, 

intensity variations, scaling, or rotation. 

A variety of PBRTs have been introduced for this purpose (Ambai and Yoshida 2011, Bay, et al. 

2006, Dalal and Triggs 2005, Harris and Stephens 1988, Leutenegger, et al. 2011, Lowe 2004, Mikolajczyk 

and Schmid 2005, Shi and Tomasi 1994) and most of them employ statistical multi-dimensional descriptors 

(e.g., in 64, 128, or 256 dimensions) to characterize the saliency of each “interest point” robustly and find 

more efficient correspondences in the descriptor space than in the image space, while being rendered 

independent of intensity constancy constraints. PBRTs are usually applied when local structural information 

is more meaningful than brightness intensity. PBRTs, compared to direct methods, do not require an 

initialized ROI, and hence can allow ‘global’ transformation estimation, providing information for what is 

usually called ‘image registration’ (Sotiras, et al. 2013). Such a statistically robust feature can itself be 

treated as a landmark with subpixel accuracy. Additionally, salient points found in one image without any 



Evaluation of Indirect Methods for Motion Compensation in FLL CEUS Imaging  Page 10 of 39 

 

correspondences in the other image should not affect the performance of the registration (Fitzpatrick and 

West 2001). 

Existing Point-Based Registration Techniques (PBRTs) 

In 1988, the Harris corner detector (Harris and Stephens 1988) was introduced as one of the earliest 

mathematically rigorous point extraction techniques, where the extraction of a point is based on eigenvalues 

(λ1,λ2). The Harris detector has an extremely high repeatability score (Schmid, et al. 2000), defined as the 

number of corresponding points detected in both images, over the total number of observed points overall. 

Note that the repeatability criterion conflicts with that of localization, as smoothing might improve the 

former but deteriorate the latter (Canny 1986). 

In 1994, Shi & Tomasi (1994) suggested another technique where the extraction of a point, similarly 

to Harris’ method, is based on eigenvalues. The two methods differ in the “interest point” selection criterion, 

but share the same two limitations: i) lack of a multi-dimensional descriptor; ii) extraction of points at the 

pixel level instead of a subpixel resolution. According to (Schmid, et al. 2000), if Shi & Tomasi’s method is 

combined with a multi-dimensional descriptor (e.g., the ‘Histogram of Oriented Gradients’, HOG), then the 

result is expected to give higher saliency points than Harris’ method. 

In 2004, the Scale Invariant Feature Transform (SIFT) (Lowe 2004) was proposed, which uses a set 

of Difference of Gaussians (DoG) filters at different scales as a method to extract “interest points” invariant 

to scale, orientation, illumination changes and camera viewpoint. Furthermore, SIFT provides a 128-

dimensional descriptor, inspired by a model of biological vision, i.e., a complex of neurons in the primary 

visual cortex. These neurons react to gradients in specific orientations and spatial frequencies, where the 

gradient can change on a relatively small field. The outcome is a set of highly distinctive descriptors 

providing robust matches and being invariant to scale, rotation, noise, illumination, and viewpoint. 

In 2005, the HOG (Dalal and Triggs 2005) was proposed as a descriptor extraction method that works 

in a similar manner to SIFT, but using a denser grid of overlapping blocks over a detection window. 
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Normalization of gamma, contrast and color is also performed, and the HOGs are extracted for each block 

and combined in a local descriptor over a detection window. 

In 2006, the Features from Accelerated Segment Test (FAST) approach (Rosten and Drummond 

2005, Rosten and Drummond 2006) was introduced, as a high-speed test for identifying salient points, with 

the intention to use it in real-time applications. Its potential speed efficiency is due to the use of decision 

trees to form a set of rules for deciding if a potential “interest point” should be kept. 

In 2006, the Speeded Up Robust Features (SURF) (Bay, et al. 2006) method was presented as a scale- 

and rotation-invariant point detector and descriptor that works similarly to SIFT. However, SURF has lower 

computational cost than SIFT, especially for its descriptor extraction, due to the use of the ‘integral image’ 

(Viola and Jones 2004) for convolution operations, the extraction of points using a measure based on the 

Hessian matrix, and the use of a shorter (64 dimensions) descriptor. 

In 2011, the Binary Robust Invariant Scalable Keypoints (BRISK) technique (Leutenegger, et al. 

2011) was proposed, as a scale-invariant ROI and point detector. Detection was based on the FAST 

optimization, and localization was achieved by quadratic function fitting. A binary descriptor is formed by 

concatenating results of intensity comparisons, selected in such a way as to maximize saliency. Scale and 

rotation normalization make the BRISK descriptors invariant to distortions of scale and orientation. 

Also in 2011, the Oriented FAST and Rotated Brief (ORB) approach (Rublee, et al. 2011) was 

published, based on FAST and BRIEF (Calonder, et al. 2010). This feature algorithm uses FAST (or Harris) 

in pyramids to detect salient points based on the “cornerness” response. The orientation of these points is 

then assessed by first-order moments and BRIEF descriptors are obtained, rotated according to the measured 

orientation. 

The Compact And Real-time Descriptors (CARD) method (Ambai and Yoshida 2011) was also 

proposed in 2011 as another point detector and descriptor that also works similarly to SIFT. Its extension 

over SIFT is that initially a multi-scale image pyramid is employed and then “interest points” are obtained 
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using a corner detector (Shi and Tomasi 1994). Although CARD avoids using DoG filters for time 

efficiency, it manages to efficiently detect salient scale-invariant points. The CARD descriptors are extracted 

using a combination of SIFT and Gradient Location-Orientation Histogram (GLOH) (Mikolajczyk and 

Schmid 2005) methodologies. Two speed improvements are proposed in CARD: i) bilinear interpolation of 

pixel values is avoided; ii) look-up table use for the computation of oriented gradients. The descriptors are 

converted to binary using a binary hashing function, leading to highly salient descriptors extracted in very 

low computational time. 

Matching Strategies 

Typically, a strategy is needed to match the statistical descriptors of salient points between two 

frames. After considering an evaluation of matching strategies for statistical descriptors (Mikolajczyk and 

Schmid 2005) comprising i) a threshold-based approach, ii) a nearest-neighbor based approach and iii) the 

nearest-neighbor distance ratio (NNDR), this study utilizes only the latter for all experiments. In the first 

approach, two points (pi(t1), pj(t2)) at frames t1 and t2 are accepted as a matched correspondence if the 

distance between their descriptors (D(pi,t1) and D(pj,t2)) is below a certain threshold, where 

D(pi,t)=[w1,i(t),w2,i(t),…,wN,i(t)] and D(pj,t)=[w1,j(t),w2,j(t)…,wN,j(t)] are both N dimensional vectors, 

respectively, describing the two points pi and pj at time t. Thus, a point’s descriptor may have several 

matches in another frame and some of these will be incorrect correspondences. In the second approach, 

points are accepted as corresponding if their descriptors are nearest-neighbors and the distance between them 

is below a specified threshold. In this second case a point’s descriptor should have fewer false matches and 

hence higher precision. The third approach (NNDR) extends the second by applying the threshold to the 

distance ratio between the two first nearest-neighbors, and hence keeps only robust correspondences. 

‖𝐷(𝑝𝑖, 𝑡1) − 𝐷(𝑝𝑗, 𝑡2)‖

‖𝐷(𝑝𝑖, 𝑡1) − 𝐷(𝑝𝑘, 𝑡2)‖
< 𝑇 (1) 

where T is the threshold value and D(pj,t2), D(pk,t2) are respectively the first and second nearest-

neighbors to D(pi,t1). 
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Distance Metrics 

All above matching strategies are based on the application of a threshold to a measurable “distance” 

between two different descriptors and, depending on their nature, different metrics can be used to measure 

the distance between descriptors. The neighborhood of each point is used through the descriptors to rank 

potential matches by estimating the Euclidean distance between two descriptors as: 

𝑑𝐷(𝑝𝑖,𝑡1),𝐷(𝑝𝑗,𝑡2) = √∑(𝑤𝑚,𝑖(𝑡1) − 𝑤𝑚,𝑗(𝑡2))2

𝑁

𝑚=1

 (2) 

Alternatively, by considering the descriptors (D(pi,t1) and D(pj,t2)) as points in the descriptor space 

with position vectors of unit length, then the Euclidean distance between them is closely related to their inner 

(or “dot”) product, which in turn provides a measure of the angle between these vectors. For small angles 

(≤30o), it can be shown that the Euclidean distance between two such unit position vectors is analogous to the 

angle between them. Therefore, the dot product of the two descriptors may be used as an alternative to the 

Euclidean distance, as calculating dot products between unit vectors can be more computationally efficient 

than finding Euclidean distances. 

𝑑𝐷⃗⃗ (𝑝𝑖,𝑡1),𝐷⃗⃗ (𝑝𝑗,𝑡2)
~(𝐷⃗⃗ (𝑝𝑖,𝑡1) • 𝐷⃗⃗ (𝑝𝑗,𝑡2)) (3) 

Finally, the Hamming distance (Norouzi, et al. 2012) can be used to measure the ‘distance’ between 

two binary strings of the same length as the number of positions where the corresponding strings are different 

(i.e., the number of substitutions required to change from one string to the other). This offers a high 

computational efficiency in finding the distance between binary descriptors. 

Materials 

Equipment 

This study utilizes multi-institutional data from the Department of Diagnostic Radiology of King’s 

College Hospital at Denmark Hill, London, UK and from the Radiology & Imaging Research Centre of 

Evgenidion Hospital, part of the National and Kapodistrian University of Athens in Greece. Both datasets 

were acquired using ACUSON Sequoia US Systems (Siemens, Mountain View, CA) with curvilinear 
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transducers (UK: S2000, 4~6MHz, GR: C512, 6-2MHz). All the GR cases were captured at the same frame 

rate of 25 frames per second (fps), whereas the UK cases were captured at different frame rates (namely 6-25 

fps). The examinations in both datasets performed employing a low (≤0.1) mechanical index (AIUM. 2000, 

Ding, et al. 2005) technique (Cadence Contrast Pulse Sequencing, Siemens, Mountain View, CA), in order to 

avoid breaking the contrast-enhancing agents (Claudon, et al. 2013, Skyba, et al. 1998). The mechanical 

index roughly indicates and is related to the acoustic pressure of the US system (Averkiou, et al. 2003, 

Tiemann, et al. 1999). 

All examinations included administration of the second-generation contrast medium, called SonoVue 

(Schneider 1999) (Bracco S.p.A., Milan, Italy), in a 2.4 ml bolus intravenous injection (at maximum 1 ml per 

second into an arm vein). SonoVue consists of sulphur hexafluoride microbubbles stabilized by a 

phospholipid monolayer shell. This contrast medium has demonstrated excellent depiction of FLL 

vascularity and perfusion (Wilson and Burns 2010), and generally improves the detection and 

characterization of liver and renal masses (Correas 2014). 

Additional specific acquisition settings (e.g., selected scan plane, field depth, acoustic gain) of the 

equipment for each patient are unknown, as they were set by each radiologist individually at the start of each 

examination. These settings of the US equipment, as well as the scanning mode, have an important role in 

avoiding artefacts (Dietrich, et al. 2011), which could jeopardize the success of an examination. The 

acquisition method of the provided data reflects true clinical practice (Claudon, et al. 2013) and leads to 

increased variability within the datasets, as well as to a wide variety of different lengths of the cine-loops. 

Additionally, all the algorithms tested in this study run in Matlab v.7.12 without parallelism, on an 

Intel i7-2620M platform with 8GB RAM. 

Data 

The retrospective multi-institutional CEUS cine-loops used in this study describe 64 FLL cases 

(nUK=50, nGR=14). Local Ethics Board approval waivers are attained in King’s College Hospital (UK) and 

Evgenidion Hospital (GR), where maintenance of randomization codes for each case and hence 
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confidentiality of patients’ records was secured by anonymizing the screened data. Consent for using the 

recordings and diagnostic results for research purposes was acquired from all patients. 

The median patient age was 50 years (range: 19-91 years). Each clinical case includes a CEUS digital 

cine-loop with median duration of 24.35 seconds (rangeUK: 3.1-89.83 seconds, rangeGR 5.96-19.64 seconds) 

of the arterial and the portal-venous phases of the CEUS examinations, with at least one static image of the 

late phase. The image size for the UK Dataset is 1024×768 pixels, while for the GR Dataset is 768×576 

pixels. Examples of 44 benign and 20 malignant FLLs were included in both datasets. 

Each examination/acquisition within the UK Dataset was performed by one of two experienced 

radiologists with respectively nineteen and fourteen years of experience in use of CEUS, whilst all cases in 

the GR Dataset were obtained by a single radiologist with fifteen years of experience using CEUS. The 

radiologists acquired all data following the standard clinical practice (Claudon, et al. 2013), and without 

being instructed any additional specific criteria nor knowing that these data will be subsequently processed 

by computational tools. As well as being carried out retrospectively, analysis of the data was also performed 

“blind” to clinical diagnoses. Each cine-loop of the provided data included only a single FLL within the liver 

of each patient, of diameter between 0.5 and 8 cm. Also, the physical condition of the patients (e.g., 

proportion of body fat) varied considerably, which therefore increases the intrinsic variability of the provided 

data. 

Ground Truth 

The ground truth (GT) labels were manually delineated by a radiologist, at every frame t, for the FLL 

(i.e., FGT(t)) and the liver (i.e., LGT(t)) areas, based on the local intensity and shape information varying over 

the duration of the cine-loop. Then, the GT of the parenchyma (i.e., PGT(t)) was obtained, which is defined as 

the relative complement of FGT(t) in LGT(t), i.e., the set of pixels in LGT(t), but not in FGT(t) (Fig.2). 

The GT provided for the evaluation of this study was distinguished into two different types, i.e., rigid 

and non-rigid. The former was provided for all 64 cases and describe rigid transformations of the initialized 
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contours in frame t0 across subsequent frames. The latter were provided for 11 cases of the UK Dataset only 

and includes non-rigid deformations of the shapes of the ROIs throughout the duration of each cine-loop. 

In addition to the ROI shape descriptors, the diagnostic decisions for all cases of both datasets were 

provided retrospectively. These ‘diagnostic decisions’ describe the clinical classification of each FLL as 

either benign or malignant. In our study, the “Reference Standard” (RS) is used to validate the applied 

methods at the level of the clinical decision, i.e., decision level. RS defines a term used when additional 

imaging (e.g., MRI or CT) and consensus between radiologists were used as the means for diagnosing an 

FLL. 

 

Figure 2. Manually annotated contour of different ROIs in an example reference frame (a-d), and the 

corresponding binary masks of their silhouettes (e-h). Left to right we note the CEUS image plane, the liver 

(LGT(t)), the FLL (FGT(t)) and the parenchyma (PGT(t)). 

 

Proposed Methods 

This section describes the technical details of our proposed contributions. Specifically, in subsection 

“Tracking FLL Contours in CEUS Cine-loops” we describe a framework to use PBRTs for motion 



Evaluation of Indirect Methods for Motion Compensation in FLL CEUS Imaging  Page 17 of 39 

 

estimation and compensation in FLL CEUS cine-loops. Then, our quantitative evaluation methodology is 

described, where we introduce a novel quantitative framework to evaluate the performance of motion 

compensation in CEUS at three different levels: pixel, behavioral, and decision. Based on this framework, we 

evaluate the complexity of transformations essential to capture the apparent motion in a CEUS cine-loop, as 

well as the computational efficiency of the applied PBRTs. Finally, we identify an appropriate compromise 

between the required frame-rate and the performance of a computational method for real-time motion 

compensation. 

We applied a range of various existing PBRT configurations and implementations (S.Table 1) in 2D 

CEUS cine-loops and compared them according to the proposed evaluation criteria. Specifically, for ‘Harris 

corner detector’ (Harris and Stephens 1988) and the method of (Shi and Tomasi 1994), the MATLAB built-

in implementations were used. Note that the original methods of ‘Harris’ and ‘Shi & Tomasi’ are not 

equipped with a statistical multi-dimensional local feature descriptor, therefore we individually combined 

them with the HOG descriptor (Dalal and Triggs 2005) as implemented in OpenCV and subpixel accuracy is 

achieved by applying an existing routine (Bradski 2000) before and after application of the descriptor. The 

PBRT of SIFT (Lowe 2004), using an 128-dimensional descriptor, was applied using the officially provided 

implementation by the author, as well as by OpenCV (Bradski 2000) and VLfeat (Vedaldi and Fulkerson 

2010). The FAST (Rosten and Drummond 2005, Rosten and Drummond 2006), with and without subpixel 

accuracy, and the ORB (Rublee, et al. 2011), using a 32-dimensional descriptor, were used through OpenCV 

implementations. For SURF (Bay, et al. 2006), both its OpenCV and OpenSURF (Evans 2009) 

implementations were used, while considering both 64- and 128- dimensional descriptors. Last, but not least, 

CARD (Ambai and Yoshida 2011) was used through the official implementation, provided by the authors, 

while considering 64-, 128- and 256-bits descriptor. 

Tracking FLL Contours in CEUS Cine-loops 

PBRTs are tested in this study, to capture the changes in the FLL and the parenchyma contours over 

the frames of the provided CEUS cine-loops based on sparse optical flow and local feature descriptors 

(Fig.3). 
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Figure 3. Pipeline of the motion estimation approach based on indirect methods. Where tϵ{1,...,N}, N = 

number of frames. 

 

The FLL contour at frame t is described by ΨFLL(t), which is a 2×K matrix, comprising K number of 

2D points as the points of the FLL contour. The transformations of these contours for two consecutive frames 

t and t+1 can be estimated by localizing and registering matching sets of salient points Q(t) and Q(t±1). Q(t) 

is a 2×V(t) matrix, comprising V(t) 2D salient points qv(t) at frame t, where vϵ[1,V(t)]. Equivalently, Q(t+1) 

is a 2×V(t+1) matrix, comprising V(t+1) 2D salient points qγ(t+1) at frame t+1, where γϵ[1,V(t+1)]. In order 

to register matching sets of points, each localized 2D point qv(t) and qγ(t±1) is assigned a descriptor of N-

dimensions, D(qv,t) and D(qγ,t±1), respectively. 

The localized correspondences between the two frames are then estimated by minimizing the NNDR 

between D(qv,t) and D(qγ,t±1) and selecting the nearest point in the descriptor space. Different metrics may 

be used for finding the distance between two descriptors, in the descriptor space, depending on the PBRT 

applied. Specifically, for every point qv(t), another point qλ(t±1), where λϵ[1,V(t±1)], is found that their 

descriptors fulfil the following equation: 

𝑞𝜆(𝑡 ± 1) = argmin
𝑞𝜆(𝑡±1)ϵQ(t±1)

[𝑎𝑟𝑐cos(𝐷𝑇(𝑞𝑣, 𝑡) • 𝐷(𝑞𝜆, 𝑡 ± 1))] 
(4) 

Similarly, a second point qλ΄(t±1) is found, where λ΄ϵ[1,V(t+1)] and λ΄≠λ, such that: 

𝑞𝜆′(𝑡 ± 1) = argmin
𝑞𝜆′(𝑡±1)ϵQ(t±1)

[𝑎𝑟𝑐cos(𝐷𝑇(𝑞𝑣 , 𝑡) • 𝐷(𝑞𝜆′, 𝑡 ± 1))] 
(5) 

It is then accepted that there is a correspondence between points qv(t) and qλ(t±1) in the two frames t 

and t±1, if: 
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arccos(𝐷𝑇(𝑞𝑣, 𝑡) • 𝐷𝑇(𝑞𝜆, 𝑡 ± 1))

arccos(𝐷𝑇(𝑞𝑣, 𝑡) • 𝐷𝑇(𝑞𝜆′ , 𝑡 ± 1))
< 𝛧 (6) 

where Zϵ[0,1] is a threshold value (Lowe 2004, Mikolajczyk and Schmid 2005). If a point qλ(t±1) is 

the best match for more than one point qv(t), then all correspondences of qλ(t±1) are rejected. Consequently, 

only reliable correspondences are registered. 

These registered correspondences can assist in approximating the 2D geometric transformations on 

the image plane, i.e., Rotation, Translation, Euclidean, Similarity, Affine, Projective. The transformation 

matrix of these approximations Tt→t±1 is computed by the following equation: 

𝑈(𝑡 ± 1) = 𝑇𝑡→𝑡±1𝑈(𝑡) ⇒ 𝑇𝑡→𝑡±1 = 𝑈(𝑡 ± 1)𝑈(𝑡)−1 (7) 

where U(t) and U(t±1) are 2×R(t,t±1) matrices, comprising R(t,t±1) 2D registered correspondences 

between frame t and t±1, respectively. As matrix U(t) is not square, U(t)-1 is its Moore-Penrose inverse 

(Penrose 2008), computed using the singular value decomposition. 

Tt→t±1 is then applied to ΨFLL(t), in order to obtain their corresponding contours in the subsequent 

frame, estimated as: 

𝛹𝐹𝐿𝐿(𝑡 ± 1) = 𝑇𝑡→𝑡±1𝛹𝐹𝐿𝐿(𝑡) (8) 

Therefore, the contours are tracked in subsequent frames, while their shape and size can also be 

updated based on the transformation of subsequent frames. 

Evaluation Methodology 

Novel Multi-Level Quantification Framework 

Quantitative evaluation at three levels, i.e., pixel-, behavioral- and decision-level, is performed, to 

assess both the technical contribution and the clinical value of the tested methods. The first two levels of 

evaluation are used to assess the effectiveness of the computer-aided motion compensation aspect, whilst the 

decision level is used to assess the effectiveness of the ability of the proposed methods for computer-aided 

diagnosis. 

All PBRTs are firstly evaluated at the pixel level by calculating the accuracy of the proposed 

methods’ decision of segmented ROIs in terms of the mean overlap metrics of i) Jaccard coefficient (Jt), ii) 

Precision (Pt), and iii) Recall (Rt), across the frames of the provided sequence. Secondly, the segmented ROIs 
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are validated at the behavioral level, to investigate the level of confidence of the methods’ decision, as their 

signals are the means that the radiologists use to make a diagnosis. For this purpose, we introduce, Signal 

Quantification Metrics (SQM) that are based on the difference between the signal obtained from the 

manually annotated GT (SignalG) and the signal obtained from the automated decision (Signald). The FLL 

VS signal is obtained by subtracting the perfusion curve of the parenchyma from this of the FLL. 

The first SQM proposed here is the Maximum Signal Difference Ratio (MSDR) and is described by 

the ratio of the maximum normalized difference between SignalG and Signald, to SignalG in a frame of the 

cine-loop (Fig.4). 

𝑀𝑆𝐷𝑅 = max
𝑡

|
𝑆𝑖𝑔𝑛𝑎𝑙𝐺(𝑡) − 𝑆𝑖𝑔𝑛𝑎𝑙𝑑(𝑡)

𝑆𝑖𝑔𝑛𝑎𝑙𝐺(𝑡)
| (9) 

 

 

Figure 4. Example of the Maximum Signal Difference Ratio (MSDR). The red lines indicate the absolute 

signal difference, between SignalG (light green) and Signald (dark green) for the FLL VS, and the blue line 

indicates the value of SignalG at these same points in time. Note that although the maximum signal difference 

occurs at frame 56 with 8.9 units of difference, the MSDR occurs at frame 13 (MSDR=1), even though the 

signal difference at this frame is 3.4 units. 
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The second SQM considered is the Normalized Cumulative Signal Difference (NCSD), which 

describes the ratio of the difference between the integrals of SignalG and Signald, over the time period of 

interest, to the integral of SignalG (Fig.5). 

𝑁𝐶𝑆𝐷 =
∫ (|𝑆𝑖𝑔𝑛𝑎𝑙𝐺 − 𝑆𝑖𝑔𝑛𝑎𝑙𝑑|)d𝑡

𝑡𝑓
𝑡𝑖

∫ 𝑆𝑖𝑔𝑛𝑎𝑙𝐺d𝑡
𝑡𝑓
𝑡𝑖

 (10) 

where ti and tf define the time of the initial and the final frames, respectively. It is worth noting that in 

contrast with the pixel level overlap metrics smaller values for each of these SQM metrics correspond to 

better performance. 

 

Figure 5. Example of the Normalised Cumulative Signal Difference (NCSD). NCSD is the yellow area 

divided by the pale blue area. 

 

Finally, a validation at the level of the radiological decision is performed, to assess the final 

automated decision in comparison with that of a human expert and confirm the usability of the proposed 

method as a second-opinion tool. This is a binary classification of the FLLs as either benign or malignant, 

based on their perfusion dynamics and quantified using the Accuracy metric, i.e., the proportion of true 

results in the whole population. 
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Evaluation of Degrees of Freedom 

To evaluate how many degrees of freedom (DoFs) are needed to sufficiently describe the 

transformations occurred due to observed motion within the CEUS image plane and therefore obtain 

sufficiently accurate FLL localizations, the Generalized Procrustes Analysis (GPA) (Gower 1975) has been 

used in all provided cases. 

Firstly, only the cases with the provided non-rigid GT were evaluated. FGT(t0) has been used as the 

reference shape, and the FGT(t) of all the frames have been aligned with FGT(t0) using different 

transformations, i.e., translation (T), Euclidean (TR) and Similarity (TRS). Specifically, all FGT(t) contours 

have been sub-sampled to a specified number of points, i.e., half the minimum number of points across all 

contours. Then, for the transformation of T, the center of gravity (CoG) of each contour FGT(t) was translated 

to the origin and the overlap of each with FGT(t0) was assessed. Furthermore, for the TR and the TRS 

transformations, the minimization of the sum of square distances of the points of each FGT(t) with the points 

of FGT(t0) was employed through GPA to find the best fit. 

A second experiment is performed on all the provided cases to evaluate the number of DoFs only at 

the decision level. FGT(t) and PGT(t) are tracked using the same PBRT (i.e., CARD) with different DoFs, 

producing contours of the FLL and parenchyma for all the frames of the sequence. Then, after using the best 

mean shape of the FLL, as estimated by the GPA, in the late phase image, the final decision of the FLL’s 

category by the proposed method is compared with the RS. 

Finding the Optimal PBRT for the Modality of CEUS 

The framework described in the Section “Tracking FLL Contours in CEUS Cine-loops” has been 

tested with the different PBRTs (Ambai and Yoshida 2011, Bay, et al. 2006, Dalal and Triggs 2005, Evans 

2009, Harris and Stephens 1988, Lowe 2004, Rosten and Drummond 2005, Rosten and Drummond 2006, 

Rublee, et al. 2011, Shi and Tomasi 1994, Vedaldi and Fulkerson 2010), described in Section “Existing 

Point-Based Registration Techniques (PBRTs)”, to find the optimal one for CEUS. For this evaluation, only 

the pixel level metrics are considered, as we are mainly interested in the correct localization of the FLL at 

each frame, given its FGT(t) at one of these frames. To assess the saliency and the descriptiveness of the 

“interest points” detected in the CEUS data, and driven by the results of the section “Evaluation of Degrees 
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of Freedom”, a translation transformation is considered. Furthermore, the computational efficiency (i.e., the 

elapsed time) for each PBRT is estimated to assess its usability for real clinical application. 

Firstly, the elapsed time required for each PBRT method to run is used to calculate the number of 

frames processed per second by each of the applied PBRTs as a measure of the efficiency of each one. The 

numbers shown in Fig.6 are obtained after running the method described in Section “Tracking FLL Contours 

in CEUS Cine-loops” with each of the different PBRTs (S.Table 1) overall the cases of the GR Dataset. Only 

the GR Dataset was used due to the expectation that most PBRTs will give significantly low performance and 

therefore only the ones with an acceptable performance allowing for potential clinical application will be 

evaluated in all the cases. 

 

Figure 6. Frames processed per second for different PBRTs, over the total number of frames of the GR cases. 

OCV and VLF stand for OpenCV and VLFeat libraries, respectively. 

 

Furthermore, the effectiveness of each PBRT is quantitatively evaluated at the pixel level. 

Specifically, smoothed and unsmoothed CEUS cine-loops of all the GR cases are evaluated using the Jaccard 
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and Precision metrics for the FLL region (Fig.7). Note that the Recall results are omitted, as they are 

identical to those for Precision, since the decision shape is identical with the GT shape. 

 

Figure 7. Quantitative evaluation for the FLL region at the pixel level for all the cases of the GR Dataset. 

 

Frame Rate Sampling 

The frame rate and the total number of frames in a sequence impacts the time needed for its offline 

assessment. Considering the potential advantages of real-time processing, here we attempt to identify 

redundancies in sequentially acquired frames and set the lower bound for the rate of acquisition of “essential” 

frames. 

Noting that the frame rate of the UK Dataset varies, only the GR Dataset was considered that was 

captured at 25 fps. This frame rate is down-sampled to decide whether 25 fps are essential, or if this number 

could be reduced, enabling reduction of the time required for processing the sequence. To evaluate this 

experiment, the NCSD is used as it considers changes throughout the whole duration of a sequence. 
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FGT(t) for each of the cases is used and a specified number of frames is employed to obtain its 

Signal’G. This signal slightly differs from the original SignalG due to the different number of frames used to 

derive it. NCSD is used to compare Signal’G with SignalG and provide an error rate that describes the 

deviation between these signals. 

Results 

Evaluation of Degrees of Freedom 

Two experiments were performed and results were assessed using evaluation metrics from all levels. 

The validation results at the pixel, behavioral and decision level of the evaluation of only the cases with the 

non-rigid GT are summarized in Table 1, using median values, with the best of them being in bold. Decision 

level results are identical across the different number of DoFs, due to the small number of cases used. Results 

for the evaluation of the different DoFs on all cases are provided in Table 2. 

 

Table 1. Results on the number of DoFs useful for CEUS data using all cases (n=11) with non-rigid GT. The 

provided numbers are the median values of results at pixel and behavioral level metrics. Both indicate that use 

of 2 DoFs produce better results than the use of 3 (or even 4) DoFs. 

  Transformations 

Validation 

Level 

Metric 2DoF, 

T 

3DoF, 

T+R 

4 DoF, 

T+R+S 

Pixel 

Precision (P) 0.9441 0.9423 0.9178 

Recall (R) 0.9698 0.9508 0.9341 

Jaccard (J) 0.8709 0.8576 0.8702 

F1 score 0.9491 0.9426 0.9301 

Behavioral 
MSDR 0.1743  0.1593 0.2889 

NCSD 0.0473  0.0634 0.0532 

Decision Decision/GT 1 1  

 

 

Table 2. Results on the number of DoFs useful for CEUS data. Evaluation of different DoFs at the decision 

level considering all available clinical cases and evaluating only with the RS. 

  Transformations 

Validation 

Level 

Metric 2DoF, 

T 

3DoF, 

T+R 

4 DoF, 

T+R+S 

Decision Accuracy 92% 92% 92% 
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Finding the Optimal PBRT for the Modality of CEUS 

The top-ranked PBRTs were CARD and SIFT (OpenCV implementation) that can process at least 4 

and up to 6.5 fps, respectively, whilst the next best performing PBRTs (i.e., ORB and SURF OpenCV 

implementations) are able to process approximately 2.5 fps that is between 37.5% and 61.5% slower than the 

best performing PBRT (Fig.6).  

From the pixel level evaluation (Fig.7), we note a very similar performance between CARD (128- 

and 256-bit), the OpenCV implementation of SIFT (128-dims) and OpenSURF (64-dims). However, 

OpenSURF processing speed is just 0.5 fps (Fig.6), which is considered impractical for clinical use and 

therefore not further evaluated. The other three PBRTs, including CARD (64-bits) (i.e., the last four PBRTs 

of Fig.6, 7) are included in a further pixel level evaluation in the complete cohort. Therefore, all cases (n=64) 

with a GT from both datasets were used to evaluate the performance of the methods and the results are 

shown in Fig.8. After considering the combination of both the elapsed time and the overlap metrics at the 

pixel level, CARD with a 128-bit descriptor seems to be the most appropriate method for CEUS recordings. 

Also, it is shown below that analysis of CEUS recordings in real-time requires a frame processing rate of at 

least 5 fps. 

 

Figure 8. Quantitative evaluation for the FLL region at the pixel level on all available cases, for the four best 

performing PBRTs, after considering both overlap and run-time performance. 
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Frame Rate Sampling 

As shown in Fig.9, if the sampling rate is less sparse (i.e., greater) than 5 fps, then the median error is 

below 1%. This, in conjunction with the results of the previous section, supports the applicability of CARD 

in real-time analysis of CEUS cine-loops at a frame rate of 5 fps. 

 

Figure 9. Results on the NCSD for various sampling rates overall cases of the GR Dataset. The values given 

in the x axis represent the number of samples (numerator) considered per the number of frames specified in 

the denumerator. Note that all these have been acquired at a frame rate of 25 fps. 

 

Discussion 

This study focused on the systematic application and evaluation of nineteen configurations and 

implementations of existing indirect methods (i.e., PBRTs) for motion compensation in CEUS cine-loops, 

and introduced a novel multi-level quantitative evaluation framework, to facilitate the process of 

quantification of FLLs in CEUS cine-loop obtained using standard clinical practice. To the best of our 

knowledge, the present study is the first to systematically evaluate such a wide range of PBRTs in the context 

of CEUS. All previous approaches for motion compensation in CEUS (e.g., (Anaye, et al. 2011, Rognin, et 

al. 2006, Ta, et al. 2012)) appear to have employed direct methods, and these tend to give results which are 

not precisely repeatable or reproducible since they depend on the manual initialisation used. Similarly, 

previous CEUS studies of FLL assessment and classification which did not employ any motion 

compensation have either relied on manual annotation of the FLL within each image frame (Goertz, et al. 
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2010, Lemke, et al. 2004, Shiraishi, et al. 2008), or relied on the US transducer being held static and the 

patient remaining very still, and breathing in a way to allow the associated motion to be negligible (Huang-

Wei, et al. 2006). Such issues limit the applicability of their approaches and require much input from expert 

radiologists and/or technician-operators. In contrast, our approach aims to only rely on standard (Claudon, et 

al. 2013) clinical procedures for CEUS data acquisition and to automate many of the “routine” tasks so that 

only a modest effort is required on the part of the expert clinician. 

In this present paper, a multi-level evaluation framework - at each of the levels of individual pixel 

changes over time, the overall dynamics of perfusion change, and of final diagnosis - has been proposed to 

assess the performance of indirect methods for motion compensation, in terms of both their computational 

efficiency and clinical applicability for CEUS scans applied to the detection and quantification of FLLs. As 

noted above, this is the first such evaluation of indirect motion compensation methods within this domain. 

The potential for successful quantification of FLLs that the applied methods can provide to radiologists, 

prompting further investigation when appropriate, was also evaluated, as well as their potential clinical 

benefits via partially automating the FLL diagnosis process, saving the time and effort of expert radiologists 

whilst maintaining reliability. 

The experiments performed show evidence that only considering displacements of the FLL contours 

in the x and y directions within the 2D image plane (i.e., changes with 2 DoFs – namely translation 

transformations), without adjusting the shapes of the ROIs, are sufficient to describe the motion observed in 

the image plane of a CEUS cine-loop. No consideration of rotations, scalings or distortions were required, at 

least for the data we had available. However, these results are based on data acquired using standard clinical 

practice (Claudon, et al. 2013) - no additional specific instructions were imparted to the patient or the 

operator. For example, possible rotation of the US transducer during a scan might make allowing for 

rotations an essential element of the compensation method. 

Our results also showed that real-time analysis of CEUS recordings requires a frame processing rate 

of at least 5 fps. Of the 19 different variations of PBRTs considered here, 128-bit CARD (Ambai and 

Yoshida 2011) appears to be the optimal for motion compensation in CEUS. Based on the given multi-

institutional cohort dataset, it provided the best results, in terms of the computational time required for 
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processing a sequence of frames (Fig.6), along with its evaluation at the pixel, behavioral and decision levels 

(Fig.7). Specifically, CARD can process and analyze CEUS cine-loops sampled at 5 fps in real-time, whilst 

use of such a reduced frame rate leads an FLL’s apparent dynamic behavior to deviate, on average, less than 

1% (according to the NCSD metric) from the corresponding behavior within CEUS cine-loops captured at 25 

fps. 

Although our study is benefited by the use of real clinical data for its evaluation and this can reflect 

its potential value in the clinical setting, its design is also limited by the provided data. Specifically, our study 

did not evaluate any metastatic lesions as they were not part of the provided data. Moreover, the available 

CEUS cine-loops included only a single FLL within the liver of each patient, and therefore the proposed 

methodology was not evaluated on scans of multiple lesions. This may be considered a limitation of the 

current form of “tracking” only two annotated ROIs, e.g., the FLL and the parenchyma. However, this can be 

easily addressed by defining multiple distinct labels to obtain multiple perfusion curves and it is not an actual 

limitation of the proposed method, but of its software design that asks only for two ROIs and can be easily 

adapted, subject to available data for evaluation. Furthermore, the ability of PBRTs to allow for ‘global’ 

transformation estimation without requiring the manual annotation of an ROI, and instead of “tracking” an 

initialized ROI the method will be applied in the principle of “registration”. This means that the same 

methodology will first be applied for estimating and compensating the motion in a CEUS cine-loop by 

registering the successive frames according to the ‘global’ estimated transformation, and then the user will 

annotate multiple ROIs with distinct labels to obtain the multiple perfusion curves. It should also be noted 

that the provided data available to us from the beginning of this study did not include the B-mode, and hence 

the focus of this study was to conduct the motion compensation analysis using only the CEUS mode. It is 

expected that inclusion of the B-mode image plane would offer complementary information to the CEUS 

plane, particularly about the local structure, and hence analysis of the two planes in tandem should improve 

the motion compensation even further.  
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Conclusion 

In this paper, we have introduced the first extensive application and evaluation of indirect motion 

compensation methods for facilitating the process of identification, quantification and diagnosis (as benign or 

malignant) of a focal liver lesion (FLL) from a CEUS cine-loop obtained using standard clinical practice 

(Claudon, et al. 2013), without requiring any unusually specific data acquisition procedures. Previous 

approaches applied to CEUS for the diagnosis of FLLs have required substantial manual input from an expert 

radiologist, and our proposed semi-automatic framework should thus reduce effort and time required per case 

on the part of the clinician. Amongst the various Point-Based Registration Techniques (PBRTs) considered 

for motion compensation, the 128-bit CARD (Ambai and Yoshida 2011) approach appears to be the most 

suitable for this type of CEUS application, offering sufficiently rapid processing of frames for real-time 

processing whilst maintaining reliability with respect to the perfusion dynamics. Furthermore, based on the 

clinically-acquired data available to us, it has been demonstrated that considering only translation 

transformations is normally sufficient to describe the apparent motion of the liver and any FLL observed 

during a CEUS cine-loop, rather requiring more complex transformations in the motion compensation 

process. 

Future directions for the work presented here include a) further evaluation in prospective FLL CEUS 

cine-loops following the standard of care protocol and including metastases, b) requesting the B-mode image 

plane recording with the intention of analyzing it in tandem with the CEUS plane, c) automatic initialisation 

of ROIs (i.e., parenchyma, FLL). Furthermore, upon packaging of the presented algorithm into a software 

tool, its design will be adapted to allow analysis of multiple lesions/ROIs. In favor of reproducibility and 

considering the benefit that readily available tools for computer-aided automation could offer in clinical FLL 

evaluation, the work described in this paper is part of a larger on-going publicly available open source 

software toolkit repository (https://github.com/sbakas/FLL_CEUS_analysis). The overarching goal of this 

repository is to potentially offer a useful advisory approach saving time and effort to expert clinicians, while 



Evaluation of Indirect Methods for Motion Compensation in FLL CEUS Imaging  Page 31 of 39 

 

allowing them to forge their own evaluation, and also use it as a training/educational tool for the reliable 

quantification of FLLs in CEUS cine-loops. 
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