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Abstract: 29 

Stabilizing sand with cement is considered to be one of the most cost-effective and useful 30 

methods of in-situ soil improvement, and the effectiveness is often assessed using unconfined 31 

compressive tests. In certain cases, zeolite and cement blends have been used; however, even 32 

though this is a fundamental issue that affects the settlement response of a soil, very few attempts 33 

have been made to assess the stress-strain behaviour of the improved soil. Also, the majority of 34 

previous studies that predicted the unconfined compressive strength (UCS) of zeolite cemented 35 

sand did not examine the effect of the soil improvement variables and strain concurrently. 36 

Therefore, in this paper, an initiative is taken to predict the relationships for the stress-strain 37 

behaviour of cemented and zeolite-cemented sand. The analysis is based on using the unconfined 38 

compression test results and Group Method of Data Handling (GMDH) type Neural Network 39 

(NN). To achieve this end, 216 stress-strain diagrams resulting from unconfined compression 40 

tests for different cement and zeolite contents, relative densities, and curing times are collected 41 

and modelled via GMDH type NN. In order to increase the accuracy of the predictions, the 42 

parameters associated with successive stress and strain increments are considered. The results 43 

show that the suggested two and three hidden layer models appropriately characterise the stress-44 

strain variations to produce accurate results. Moreover, the UCS values derived from this method 45 

are much more accurate than those provided in previous approaches. Moreover, the UCS values 46 

derived from this method are much more accurate than those provided in previous approaches 47 

which simply proposed the UCS values based on the content of the chemical binders, 48 

compaction, and/or curing time, not considering the relationship between stress and strain. 49 

Finally, GMDH models can be considered to be a powerful method to determine the mechanical 50 

properties of a soil including the stress-strain relationships. The other novelty of the work is that 51 

the accuracy of the prediction of the strain-stress behaviour of zeolite-cement-sand samples using 52 

the GMDH models is much higher than that of the other models. 53 

 54 

Keywords: Stabilisation, Zeolite, Cement, Unconfined Compression Test, Stress-Strain 55 

Behaviour, GMDH. 56 

 57 
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 58 

Notation 

Unconfined Compressive Strength UCS Absolute Fraction of Error 2R 
Cement Content C Mean Absolute Error MAPE 

Zeolite Replacement Percent Z Root Mean Square Error RMSE 

Relative Density Dr Mean Absolute Deviation MAD 

Strain  Total Number of Data M 

Stress in the Lower Level 
1nq

 
Constant Coefficient 

ia 

Curing Time day Input Vector X 

Strain Increment  Input Variable 
ix 

Measured Stress 
miq Output Vector Y 

Predicted Stress 
piq Output Variable 

iy 

 59 

1- Introduction 60 

With the increasing population of large cities, there is diminishing land space for new 61 

construction. Thus, there is an increasing need to build on any existing weak ground by first 62 

treating the site soil; for example, saturated loose sand and cement are widely used for this. In 63 

some cases, mixing cemented sand with other additives including fibres, glass, or nanoparticles, 64 

can make the stabilisation more efficient, especially in pavement construction projects as a 65 

support layer for shallow foundations to stabilise and strengthen slopes as well as to prevent sand 66 

liquefaction [1].  67 

The mechanical and physical properties of cemented sand in different subsections, such as 68 

constitutive models, cement blends together with other additives, and the usage of soft 69 

computing techniques in predicting the strength properties (e.g., tensile strength (qt) and 70 

unconfined compressive strength (UCS)) and stress-strain behaviour have been investigated by 71 

several researchers. In this paper, the mechanical behaviour of zeolite-cemented sand is 72 

examined (particularly in terms of predicting the stress-strain behaviour obtained from the 73 

unconfined compression test) using the Group Method of Data Handling (GMDH) type Neural 74 

Network (NN). This research aims to propose mathematical models for the stress-strain 75 

behaviour of zeolite-cemented sand resulting from unconfined compression tests. Careful 76 
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consideration is made to accommodate a range of input parameters, such as cement content, 77 

zeolite replacement percent, relative density, and curing time.  78 

The GMDH type NN is a combinational multi-layer algorithm that enables progressively 79 

improved models to be generated, through the continuous evaluation of performance against a 80 

series of multi-input single-output data pairs (Xi , yi) (i=1, 2,…, M). GMDH was first proposed by 81 

Ivakhnenko to determine the functional structure of a model within the empirical data [2]. 82 

GMDH would be applied to model complex systems despite the possibility that there would not 83 

be any kind of specific knowledge about them. A model would typically comprise a series (set) 84 

of neurons when employing the GMDH algorithm so that the different pairs distributed in each 85 

layer would be connected by a quadratic polynomial that results in producing new neurons for 86 

the next layer. The model would be applied to map inputs to outputs. 87 

The majority of previous studies that predicted the UCS of zeolite cemented sand did not 88 

examine the effect of the soil improvement variables and strain concurrently. Therefore, in the 89 

current study, GMDH-type NN optimised by genetic algorithms are developed to predict the 90 

axial stress (q) on the basis of the laboratory test results, which are the characteristics of the 91 

zeolite cemented sand properties. Furthermore, in spite of the acceptable performance of 92 

computational Intelligence Methods, such as SVM, FIS, ANN, ANDIS, and GEP, etc., the black-93 

box methods are not completely able to provide practical equations due to their weaknesses as 94 

well as their limited applicability and workability [10]. This problem is solved for GMDH-type 95 

NN in this study. 96 

In this paper, an initiative is taken to predict relationships for the stress-strain behaviour of 97 

cemented and zeolite-cemented sand. Therefore, the GMDH-type NN, optimised by genetic 98 

algorithms, is developed in the current study to estimate and predict the stress-strain of a zeolite 99 

cement sand mixture. Finally, the UCS values forming the predicted stress-strain diagrams have 100 

been compared to previously published empirical correlations. 101 

 102 

2- Materials and Methods 103 

Cemented sand has been studied by several investigators, mostly in terms of three aspects – 104 

proposition of constitutive models based on critical state, cement replacement by additives, and 105 
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using soft computing techniques to predict the mechanical properties of cemented sand. These 106 

aspects are briefly explained in the following sections. 107 

 108 

2-1- Constitutive Models 109 

In these studies, a constitutive model was proposed to provide the mechanical behaviour of 110 

cemented sand. The constitutive model was based on the separation and analysis of the 111 

behavioural mechanisms of cemented soils in terms of the distinct responses of the loose soil 112 

matrix and the interparticles as two entities. For the uncemented sand, a model was used based 113 

on the critical state theory. The model was able to simulate the behaviour of sandy soil in a wide 114 

range of confining pressures. An elastic-plastic shear bond model was also employed for the 115 

cemented bonds. This combination provided satisfactory results to model the characteristics of 116 

the cemented soil in both drained and undrained states. The constitutive model was then 117 

validated based on the use of the triaxial test results. The modelling output was a group of 118 

deviator axial stress-axial strain, volumetric strain-axial strain, and deviator axial stress-mean 119 

effective stress curves [11] and [12]. 120 

 121 

2-2- Mixture of Cement with Other Additives 122 

Some researchers introduced other additives, such as glass, nanoparticles and fibres, into the 123 

soils to enhance the strength and reduce the brittleness of the cemented soils [15-18]. Other 124 

researchers [17] considered the possibility of the partial replacement of cement by zeolite in the 125 

stabilised soils. Zeolite is a natural pozzolan that consists of high amounts of reactive SiO2 and 126 

Al2O3. The oxide components are important in the pozzolanic reactions involved in soil 127 

treatment. Table 1 provides some of the previous findings about the addition of zeolite to the 128 

cemented sand. 129 

 130 

Table 1. Previous studies on the zeolite-cement-sand blends. 131 

 132 

2-3- Soft Computing Techniques 133 
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Based on the utilisation of the actual soil test results measured in the laboratory, the strength 134 

parameters of cemented soils can be expressed by formulating appropriate empirical 135 

relationships. To this effect, several empirical correlations based on regression and neural 136 

networks have been suggested. Neural networks, being data-driven and of high mathematical/ 137 

statistical rigour, promise to be superior to regression based empirical correlation, even though 138 

the latter are more general in form. In the studies related to regression, Consoli et al. conducted 139 

considerable research between 2007 and 2017. In their research, the colouration between the 140 

different parameters, such as qt, and the UCS and triaxial strength to other parameters, including 141 

porosity(ɳ) and volumetric cement content (Cv), with the use of an exponential function aɳbcv
c (a, 142 

b, and c are constant) were analysed [24] and [25]. Similarly, in 2016, MolaAbasi et al. [21] 143 

showed that 
ɳ

𝐶𝑣
 is one of the key parameters in the assessment of UCS zeolite cemented sand. 144 

There are two approaches to using neural networks in geotechnical applications. In the first 145 

approach, the objective is to predict the soil strength properties more accurately than that 146 

presently possible with standard regression methods.  In the second approach, the aim is to 147 

develop stress-strain relationships and behavioural equations, which is the main aim of the 148 

current work. 149 

Kohestani and Hassanlourad [26] used the artificial neural networks and support vector machine 150 

in parallel to study the mechanical behaviour of different types of carbonate sand. The 151 

researchers formulated analytical models from an extensive database of triaxial tests performed 152 

on three carbonate sand samples. Elsewhere, MolaAbasi and Shooshpasha 2016 suggested a 153 

polynomial model for predicting the UCS based on the GMDH that used several input variables, 154 

such as cement content, relative density, curing time, and percentage of cement replacement by 155 

zeolite. It was observed that cement and zeolite contents strongly influence the UCS [22]. 156 

Other researchers; namely, Ellis et al. [27], Penumadu and Zhao [28], Zhao et al. [29], and 157 

Banimahd et al. [30] used soft computing techniques to model the mechanical behaviour of 158 

stabilised soils, but without producing new predictive equations. This kind of limitation is what 159 

the present work seeks to overcome for the benefit of engineers designing stabilised soil 160 

materials. 161 

 162 
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2-4- Modelling Using the GMDH Type Neural Network 163 

The steps of the creation and training processes of the GMDH polynomial neural network are 164 

summarised as follows [3]: 165 

 166 

 167 

Figure 1. A graphical example of the GMDH training process. 168 

 169 

Step 1: In the first step, the network’s first layer is created. Every single neuron is a partial 170 

description. The number of neurons is measured by 
𝑛(𝑛−1)

2
, where n is the total number of input 171 

parameters. Figure 1.1 depicts a layer created for a network with four inputs. 172 

Step 2: In this step, the performance evaluation should be done and the neurons providing the 173 

poorest results should be removed. Figure 1.2 shows the removed neurons in white (lighter 174 

colour). 175 

Step 3: Here, one more layer would be created as inputs of the previous layer outputs. The 176 

number of neurons for this layer can be also determined by 
𝑛(𝑛−1)

2
 (Figure 1.2).  177 

Step 4: This stage entails the training and selecting of the neurons on the recently created layer. 178 

After the selection, another layer needs to be added (Figure 1.3).  179 

Step 5: In this step, training should stop – after the selection process – if any layer includes only 180 

one neuron (Figure 1.4). 181 

Step 6: The training should be stopped if the best performance value of any layer, except for the 182 

first layer, would be poorer than that of the previous layer. In this case, the algorithm adopts the 183 

best neuron in the remaining last layer, and deletes the other nodes (Figure 1.5). 184 

Step 7: Finally, all the neurons of the previous layers that would not affect the output of the 185 

network are removed (Figure 1.6).  186 

Recently, genetic algorithms have been considered in a feed forward GMDH-type NN for each 187 

neuron to determine its optimal set of connections with the preceding layer. Recently, GMDH-188 

type NN, optimised by genetic algorithms, has been considered for different geotechnical 189 

applications, such as pile bearing capacity [4], undrained shear strength of clays [5], soil 190 
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compaction parameters [6], liquefaction potential [7], recompression index [8], compressibility 191 

indices of clayey soils [3], and shear strength parameters of marine soils [9]. 192 

 193 

3- Stress-Strain Curve Modelling 194 

In order to model the stress-strain response realistically, a series of unconfined compression test 195 

datasets are used. As an illustration, a stress-strain diagram is depicted in Fig. 2 and the variables 196 

of the dataset are presented in Table 2. To reserve some of the data for neural network training, 197 

considerable effort is made to link the indexes (input parameters) in the model to sample 198 

properties. To model GMDH generally, two groups of indexes for each case are selected in the 199 

database to include: 200 

- The features related to the physical properties of the samples; namely, cement content 201 

(C), zeolite replacement percent (Z), relative density (Dr), and curing time (t). 202 

- The features of the soil related to the unconfined compression test; namely, 203 

corresponding strain (𝜀), strain increment (∆𝜀), and stress in previous strain (qn-1).  204 

Additional to the above provisions, the appropriate selection of the stress and strain increments 205 

to pair with a previous strain is determined on the basis of neural network training and testing for 206 

that particular time series data. 207 

 208 

Figure 2. The stress-strain diagram resulting from unconfined compression tests. 209 

 210 

Table 2. Description of the soil, cement, zeolite, and sample preparations. 211 

 212 

To obtain the stress-strain relationship, an unconfined compression test of two different groups 213 

with different input variables are performed. 214 

- Input parameters of group 1 (GMDH I): including cement content (C), zeolite 215 

replacement percent (Z), relative density (Dr), corresponding strain (𝜀), strain increment 216 

(∆𝜀), and stress in previous strain (qn-1).  217 
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- Input parameters of group 2 (GMDH II): including cement content (C), zeolite 218 

replacement percent (Z), relative density (Dr), corresponding strain (𝜀), strain increment 219 

(∆𝜀), stress in previous strain (qn-1), and curing time (t). 220 

In order to model stress-strain curves, around 80% of the total database is employed for training 221 

and the other 20% is used for testing. The number of datasets in GMDH modelling of groups 1 222 

and 2 are given in Table 3. 223 

 224 

Table 3. The number of datasets in GMDH modelling for the training and testing sets. 225 

 226 

Table 4. Statistical parameters of the samples’ parameters considered for the GMDH. 227 

 228 

One of the fundamental factors to consider in modelling is the optimum percentage of data and 229 

the individual sets of values to use for the network training and testing series. For example, if the 230 

datasets are randomly dispersed, the model results will be more accurate [8] and [31]. As shown 231 

in Table 4, to ensure appropriate selection of the training and testing datasets, the statistical 232 

average and variance, as well as the training and testing series, are computed for the whole. As 233 

can be seen in Table 4, the statistical variants (the average and variance), training series, testing, 234 

and the total data are consistent, showing that the data range is suitable for training and testing.  235 

 236 

4- Results 237 

Different parameters could be accounted for the GMDH prediction process, such as the number 238 

of hidden layers, population size, the number of generations, and mutation and crossover 239 

probabilities. In optimizing the generalisation performance of the GMDH model, the parameter 240 

values had to be controlled. In the current study, a population consisting of 100 individuals with 241 

mutation and crossover probabilities of 0.01 and 0.95, respectively, was considered in 300 242 

generations. As for the hidden layers, the best results were achieved with two and three hidden 243 

layers for groups 1 and 2, respectively.  244 
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 245 

4-1- Results of modelling group 1 (GMDH I) 246 

For the first group, a two hidden layer GMDH was adopted to estimate and predict the 247 

unconfined compressive stresses of the samples cured for 7, 28, and 90 days. The combination of 248 

input variables C, Z, Dr, 𝜀, ∆𝜀, and qn-1 was found to yield the best correlation. Figure 3 provides 249 

a view of the structure of the evolved GMDH-type NN. Eq. (1) shows the polynomials 250 

corresponding to this model. 251 

 252 

2 2
51 1 2 3 4 6Y a a Dr a a Dr a a Dr                                                                                                       (1) 253 

2 2
52 1 2 3 4 6Y a a C a Z a C a Z a CZ       254 

2 2
53 1 2 3 4 6Y a a C a a C a a C         255 

2 2
54 1 2 1 3 4 1 6 1n n nY a a q a a q a a q             256 

2

2 2
5 51 2 1 3 2 4 1 2 6 1Y a a Y a Y a Y a Y a YY       257 

2 2
56 1 2 3 3 4 4 3 4 6 3 4Y a a Y a Y a Y a Y a Y Y       258 

2 2
5 5 5 51 2 3 6 4 6 6 6q a a Y a Y a Y a Y a Y Y       259 

 260 

Where ai are constant coefficients of Y1, Y2, Y3, Y4, Y5, and Y6; as presented in Table 5. Fig 4 261 

shows the relationship and comparison between the predicted results (from the training) and 262 

measured results (from the experimental tests). Based on the figure it can be concluded that the 263 

GMDH model can be certainly considered for predicting the strength properties. 264 

 265 

 266 

Figure 3. A view of the structure of the evolved single hidden layer GMDH-type NN. 

 267 

Table 5. Constant coefficients of Eq. (1). 268 
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Figure 4. Results obtained from the trained GMDH I with two hidden layers (curing time = 7, 28, and 90). 269 

 270 

4-2- Results of modelling Group 2 (GMDH II) 271 

For this group, the use of GMDH with a three hidden layer neuron connection is illustrated; as 272 

presented in Figure 5. The combination of C, Z, Dr, 𝜀, ∆𝜀, qn-1, and t as input parameters 273 

provides the best correlation, corresponding to the following equation: 274 

 275 

2 2
51 1 2 3 4 6Y a a a a a a                                                                                                             (2) 276 

2 2
52 1 2 3 1 4 1 6 1n n nY a a a q a a q a q           277 

2 2
53 1 2 3 4 6Y a a Dr a a Dr a a Dr            278 

2 2
54 1 2 3 1 4 1 6 1n n nY a a Z a q a Z a q a Zq         279 

2 2
5 51 2 3 4 6Y a a C a day a C a ady a Cday       280 

2 2
56 1 2 3 4 6Y a a Z a Dr a Z a Dr a ZDr       281 

2 2
7 51 2 1 3 4 1 6 1Y a a Y a a Y a a Y            282 

2 2
58 1 2 3 2 4 2 6 2Y a a a Y a a Y a Y            283 

2 2
59 1 2 3 3 4 4 3 4 6 3 4Y a a Y a Y a Y a Y a Y Y       284 

2 2
5 5 5 510 1 2 3 6 4 6 6 6Y a a Y a Y a Y a Y a Y Y       285 

2 2
7 7 5 711 1 2 3 8 4 8 6 8Y a a Y a Y a Y a Y a Y Y       286 

2 2
512 1 2 9 3 10 4 9 10 6 9 10Y a a Y a Y a Y a Y a Y Y       287 

2 2
51 2 11 3 12 4 11 12 6 11 12q a a Y a Y a Y a Y a Y Y       288 

 289 
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Here, ai are constant coefficients, values of which are presented in Table 6. Fig. 6 shows the 290 

relationship between the predicted values (using Eq. (2)) and the output target values. Based on 291 

the figure it can be concluded that the experimental results can be successfully modelled and 292 

predicted using the proposed GMDH model.  293 

 294 

 295 

Figure 5. GMDH II topology considering curing time. 296 

 297 

Table 6. Constant coefficients of Eq. (2). 298 

 299 

Figure 6. Results obtained from trained GMDH II with three hidden layers. 300 

 301 

4-3- Evaluating GMDH type NN Performance 302 

The predictability of the GMDH models is shown statistically. The mean absolute percent error 303 

(MAPE), mean absolute deviation (MAD), root mean squared error (RMSE), and absolute 304 

fraction of variance (𝑅2) have been applied to determine and evaluate the performance of the 305 

GMDH models [8]. 306 

 307 

𝑅2 = 1 − [
∑ (𝑞𝑚𝑖−𝑞𝑝𝑖)

2𝑀
1

∑ (𝑞𝑚𝑖)
2𝑀

1
]                                                                                                                                               (3) 308 

𝑀𝐴𝑃𝐸 = ∑ |
q𝑚𝑖−q𝑝𝑖

q𝑚𝑖
|𝑀

1 × 100                                                                                                                                 (4) 309 

𝑅𝑀𝑆𝐸 = √
1

𝑀
∑ (𝑞𝑚𝑖 − 𝑞𝑝𝑖)

2𝑀
1                                                                                                                                       (5) 310 
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𝑀𝐴𝐷 =
∑ |𝑞𝑚𝑖−𝑞𝑝𝑖|
𝑀
1

𝑀
                                                                                                                                                      (6) 311 

 312 

Where 𝑞𝑚𝑖 and 𝑞𝑝𝑖 are the measured and predicted values, respectively. The lower the RMSE, 313 

MAD, and MAPE values, the better the performance of the GMDH models. Based on the results 314 

of Table 7, it can be seen that the 𝑅2 values are very close to 1. Therefore, it can be concluded 315 

that the performance of the GMDH models is acceptable and promising, and that the 316 

experimental results can be modelled and predicted using the proposed GMDH models. 317 

Although the three hidden layer model provides the best results, the double hidden layer model is 318 

the most generalised and simplest model. 319 

 320 

Table 7. The performance of the GMDH models based on different statistical evaluations. 321 

 322 

 323 

The application of equations 1 and 2 and resulting plots of the stress-strain curves are explained 324 

as follows (see Figure 7): 325 

First, stress (q0) is considered to be zero when the strain is zero (Ɛ0 = 0). Next, having the strain 326 

increment (ΔƐ) and other input variables, such as stress at previous level (q0), the stress at the 327 

current point can be calculated. On completing this process, the stress-strain curve can be drawn. 328 

 329 

 330 

Figure 7. The way of plotting the stress-strain diagram or using equations 1 and 2. 331 

 332 
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One of the uses of equations 1 and 2 is to determine an appropriate relationship for the strain-333 

stress behaviour of both the cement-only and the zeolite-cement samples, without the need for 334 

unconfined compression tests. Hence, based on GMDH types 1 and 2, the stress-strain diagrams 335 

can be drawn. For instance, the stress-strain behaviour of the 90-day cured sample (C=8% and 336 

Dr=85%) has been presented in Figure 8. As clearly evident in Figure 8, GMDH types 1 and 2 337 

can predict the stress-strain behaviour accurately. 338 

 339 

 340 

Figure 8. Stress-strain relation for the 90-day sample with 8% cement content and 85% relative density 341 

(with the prediction of GMDH I, II). 342 

 343 

5- Discussion 344 

The geotechnical properties of stabilised soils can be estimated using analytical models. Several 345 

analytical models have been proposed for cemented sand based on the regression and neural 346 

networks. The neural networks approach is more accurate than the regression approach although 347 

the regression method is widely adopted since it is less complicated. The neural networks are 348 

considered to be powerful tools that come from our current knowledge about the neural networks 349 

of animals. Neural networks aim at finding the performance of an issue by using many simple 350 

computational elements that relate together with a huge number of connections. GMDH-type NN 351 

is one of the types of neural networks. Compared to the other neural network methods, the 352 

GMDH method has some advantages in that it (1) provides specific relations for the data, and (2) 353 

uses a genetic algorithm for optimisation for finding the neurons and constant coefficients of the 354 

model. 355 
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In order to model the strain-stress behaviour of the UCS test results, several input variables, such 356 

as strain increment and stress in previous strain, obtained from the NN model have been adopted. 357 

Based on the quantitative evaluation of the performance of the GMDH-type 1 (i.e., curing time of 358 

7, 28, and 90 days) and GMDH-type 2 (with considering the curing period parameter) according 359 

to the MAPE, MAD, and RMSE results, it can be stated that the GMDH-type NN is a powerful 360 

tool for modelling and evaluation of the relationship between the stress and strain. One of the 361 

main practical benefits of the proposed models for obtaining the relationships between the stress 362 

and strain of the zeolite-cemented sand based on the GMDH-types 1 and 2 is obtaining the stress-363 

strain curves of the samples without conducting the experimental tests. 364 

Equations 1 and 2 are also useful for considering the stress-strain relations from the unconfined 365 

compression test and the fact that failure occurs when the stress-strain curve reaches a plateau. 366 

Thus, the maximum stress (UCS) and its corresponding strain can be estimated. From this 367 

analysis, the UCS graph is drawn in Figure 9 based on the maximum stress of the stress-strain 368 

diagrams obtained. Hence, it can be concluded that this approach is completely suitable to 369 

estimate the UCS.  370 

Figure 9. Unconfined compressive strength with the prediction of GMDH I, II. 371 

 372 

Although MolaAbasi et al. have already assessed the UCS of the cemented and zeolite-cemented 373 

specimens using empirical correlations and GMDH [22], in this paper, the capability of the 374 

current approach is analysed. In Table 8, the employed method is compared with the predicted 375 

unconfined compressive strength, other neural networks, and polynomial models. It can be 376 

concluded that this method is considerably more accurate and reliable. 377 

 378 

Table 8. Quantitative comparison of previous proposed relations fitting. 379 

 380 
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6- Conclusions 381 

There is limited information about assessing and predicting the stress-strain behaviour of the 382 

cement-zeolite improved soil. To illustrate, the majority of previous studies that predicted the 383 

UCS of zeolite cemented sand did not examine the effect of the soil improvement variables and 384 

strain concurrently. Therefore, in this research, the mechanical behaviour of cemented and 385 

zeolite cemented sand, including the stress-strain behaviour resulting from the unconfined 386 

compression tests and unconfined compressive strength, were predicted. This was done using 387 

GMDH neural network analysis, from which the following results were established: 388 

1) Stress in the lower level as well as the strain increment are important parameters in high-389 

accuracy modelling of stress-strain curves. 390 

2) The optimum modelling for the data of group 1 and group 2 are two hidden layer and 391 

three layer modelling, respectively. 392 

3) Stress-strain diagrams of other parameters in this study range can be drawn based on the 393 

proposed equations. 394 

4) GMDH modelling is a high-accuracy approach to predict the stress-strain behaviour of 395 

materials. 396 

5) Unconfined compressive strength can be estimated based on the assessed stress-strain 397 

diagrams. 398 

6) Estimating the unconfined compressive strength based on the approach in this paper is 399 

much more accurate than that of previous studies.   400 

Finally, the equations presented in this paper are suggested as optimised equations that are 401 

applicable in the scope of this study. It is also suggested to consider soft computing methods. 402 

Moreover, the prediction of the triaxial behaviour of zeolite-cemented sand is recommended. 403 
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No. Results 

1 

Addition of zeolite reduced the porosity of the blended cement paste. It also improved the interfacial 

microstructure properties of the cemented pastes [18]. 

2 

Substitution of zeolite significantly increased the strength of cement because of the pozzolanic reactions 

with Ca (OH)2. Moreover, the addition of zeolite prevented the undesirable expansion due to alkali-

aggregate reactions [19]. 

3 The addition of a clinoptilolite kind of zeolite reduced the specific gravity of the cemented soil [20]. 

4 

The addition of zeolite to the cement-sand mixtures resulted in increasing the strain rate at failure and 

the ductility of the samples [21]. 

5 

The replacement of cement by zeolite at 30% led to providing the highest UCS value of the zeolite-

cement-sand blends after 28 days of curing [22]. 

6 

Compared to the cemented sand, the zeolite-cement-sand blends provided stronger adsorptive capacity 

of Chemical Oxygen Demand (COD). In addition, the replacement of cement by natural zeolite resulted 

in increasing the PH. Also, the addition of zeolite in the cemented sand mixtures improved the 

microstructure of the blends because of filling more pores as well as providing more pozzolanic 

reactions [25]. 

7 

It was proposed that the porosity/cement content ratio could be considered to be an acceptable 

parameter for evaluation of the UCS of zeolite-cemented sand. Also, a unique relationship was 

presented to relate the UCS to porosity as well as UCS to the zeolite and cement contents [1]. 

 

  

Table
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Variable and properties Descriptions and values 

Type of soil Poorly graded sand (SP) 

Type of cement Type II Portland cement 

Cement content 2, 4, 6, and 8% (by dry weight of the soil) 

Type of zeolite Natural clinoptilolite zeolite 

Zeolite content 0, 10, 30, 50, 70, and 90% of cement 

Void ratio Related to Dr = 50, 70, and 85% of sand 

Water content 10% (by dry weight of the soil) 

Size of the samples 76 mm height and 38 mm diameter 

Curing periods 7, 28, and 90 days 
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Set 7 days 28 days 90 days Total 

Training 1186 896 831 2914 

Testing 297 225 208 729 

Total 1483 1121 1039 3643 
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Cement 

content 

(C (%)) 

Zeolite 

replacement 

(Z (%)) 

Relative 

density 

(Dr 

(%)) 

Corresponding 

strain (𝜺 (%)) 

Stress in 

previous 

strain (kPa) 

(qn-1) 

Strain 

increment 

(%) 

Curing 

time 

(days) 

Stress 

(kPa) 

 

Set 

 

Statistical 

parameters 

 

Group 

5.13 39.10 68.12 0.69 99.80 0.06 7 110.81 Train Mean 

G
ro

u
p

 1
 G

M
D

H
I 

5.07 39.18 69.79 0.76 112.25 0.06 7 124.46 Test 

5.12 39.12 68.38 0.70 101.75 0.06 7 112.95 Total 

2.21 30.93 14.37 0.43 150.59 0.02 7 159.64 Train Variance 

2.12 30.92 14.10 0.42 161.09 0.02 7 171.80 Test 

2.20 30.92 14.33 0.42 152.30 0.02 7 161.62 
Total 

5.09 39.12 68.16 0.53 351.30 0.06 28 398.48 Train Mean 

5.09 39.71 69.41 0.50 301.83 0.06 28 348.00 Test 

5.09 39.21 68.35 0.53 343.79 0.06 28 390.82 Total 

2.24 30.60 14.32 0.31 459.36 0.01 28 487.68 
Train Variance 

2.24 30.14 14.50 0.33 409.07 0.02 28 433.34 Test 

2.24 30.52 14.35 0.32 452.26 0.01 28 479.99 Total 

5.09 39.04 68.58 0.54 510.43 0.06 90 581.10 Train Mean 

5.00 38.59 69.03 0.51 435.94 0.06 90 492.64 Test 

5.07 38.97 68.66 0.53 498.72 0.06 90 567.18 Total 

2.20 30.17 14.31 0.30 630.16 0.04 90 666.86 Train Variance 

2.17 31.65 13.99 0.32 603.72 0.03 90 634.61 Test 

2.19 30.39 14.26 0.30 626.15 0.03 90 662.10 Total 

5.10 39.14 14.35 0.37 448.52 0.06 34.67 480.84 Train Mean 

G
ro

u
p

 2
 G

M
D

H
 I

I 

5.00 39.01 14.31 0.37 465.20 0.06 34.48 497.61 Test 

5.07 39.10 14.31 0.37 461.12 0.06 34.62 493.65 Total 

2.22 30.60 14.35 0.37 448.52 0.02 34.67 480.84 Train Variance 

2.20 30.57 14.31 0.37 465.20 0.02 34.48 497.61 Test 

2.15 30.64 14.31 0.37 461.12 0.02 34.62 493.65 Total 
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7 days 

  a1 a2 a3 a4 a5 a6 

Y1 2.993316 -13.2598 1.436345 8.709119636 -0.0001 -0.29828 

Y2/100 0.082905 -0.37509 1.888064 0.036901252 -1.98379 0.495729 

Y3 -10.282 11.08636 0.687695 4.418622211 0.004183 -0.52284 

Y4/10000 -0.05414 0.000719 1.29376 -2.8633E-06 -9.7769 -0.00239 

Y5 0.729246 0.951207 0.010892 -3.1538E-05 -3.9E-05 0.000228 

Y6 26.24902 -0.26571 -0.0907 0.000102091 -0.00047 0.009367 

q -0.01297 0.980512 0.012481 -7.4979E-05 -6.7E-05 0.00022 

28 days 

Y1/100 0.389613 -1.15843 0.013952 0.791759356 -4.9E-07 -0.0036 

Y2/100 -1.5907 -0.49019 9.151163 0.095505468 -9.76299 1.637782 

Y3/100 -2.98565 1.257557 0.132167 0.050231261 -0.00148 -0.01063 

Y4/100000 -0.022 5.1E-05 0.781469 -8.653E-08 -5.8985 -0.00037 

Y5 -5.79414 0.954868 0.070322 -6.4801E-06 -5.4E-05 4.83E-05 

Y6 68.88962 -0.77483 0.28929 0.000315706 -0.00095 0.003281 

q -2.61946 0.956091 0.025773 -2.1089E-05 2.66E-06 6.09E-05 

90 days 

Y1/100 0.673826 -1.52856 0.013239 0.887138827 -2.5E-07 -0.00291 

Y2/1000 -0.11414 -0.1317 1.525918 0.021511191 -1.56807 0.191593 

Y3/100 -1.73283 0.277275 0.185731 0.261869734 -0.00191 -0.01846 

Y4/10000 0.041988 -0.00046 0.5381 3.81725E-06 -2.26203 0.001311 

Y5 -20.0219 0.884043 0.166401 1.0326E-05 -6.6E-05 3.87E-05 

Y6/100 1.011643 -0.005 -0.0005 3.10428E-06 6.1E-07 1.77E-05 

q -15.3777 0.980967 0.025687 8.13625E-05 0.0001 -0.00018 
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  a1 a2 a3 a4 a5 a6 

Y1/1000 -0.07685 1.470297 -0.1705 -0.78328 2.137749 -2.20962 

Y2 31.2116 -68.1412 1.34441 39.5187 -3.5E-05 -0.29896 

Y3/1000 1.857377 0.03273 -1.61657 -9E-05 -2.22975 -0.06111 

Y4 13.15049 0.326402 1.135228 -0.00561 -4E-05 -9.9E-05 

Y5 38.22687 -86.4872 9.540386 12.56871 -0.12973 1.865674 

Y6/100 1.949455 0.04468 0.035642 -0.00084 -0.00011 -9.9E-05 

Y7/100 0.014616 0.005503 3.087246 1.06E-05 0.964806 -0.00829 

Y8 -1.66218 0.839116 -0.10119 -3.2E-06 -0.00747 2.849645 

Y9 0.002415 0.390498 0.863348 -0.00119 -2.3E-06 0.000429 

Y10/100 1.333315 -0.00324 -0.01079 2.32E-06 2.03E-05 3.39E-05 

Y11 -8.66117 -0.00972 1.120966 8.97E-05 1.58E-05 -0.00033 

Y12 -10.171 0.943874 0.047539 1.85E-05 0.000101 -7.8E-05 

q -2.76225 0.613628 0.382686 0.00257 0.002393 -0.00496 
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q,    Model (stage) R2 MAPE RMSE MAD 

UCS Double hidden layer GMDH  0.999 3.350 20.056 13.273 

UCS Three hidden layer GMDH  0.999 3.212 20.488 12.731 

UCS MolaAbasi et al., [23] 0.976 13.791 140.177 93.864 

UCS MolaAbasi and Shooshpasha [31] 0.956 20.700 193.236 135.621 

UCS MolaAbasi and Shooshpasha [24] 0.968 18.309 174.881 126.676 

 




