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Correction: Shot and Patronin polarise microtubules to direct
membrane traffic and biogenesis of microvilli in epithelia
Ichha Khanal, Ahmed Elbediwy, Maria del Carmen Diaz de la Loza, Georgina C. Fletcher and Barry J. Thompson

There was an error published in J. Cell Sci. 129, 2651-2659.

In the abstract of this paper, there was a typographical error in the protein name CAMSAP3. The correct sentence should read:

Core apical-basal polarity determinants polarise the spectrin cytoskeleton to recruit the microtubule-binding proteins Patronin (CAMSAP1,
CAMSAP2 and CAMSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1 (also known as DST) in humans] to the apical membrane
domain.

The online version of the article has been corrected accordingly.

We apologise to the authors and readers for any confusion that this error might have caused.
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RESEARCH ARTICLE

Shot and Patronin polarise microtubules to direct membrane traffic
and biogenesis of microvilli in epithelia
Ichha Khanal, Ahmed Elbediwy, Maria del Carmen Diaz de la Loza, Georgina C. Fletcher and Barry J. Thompson*

ABSTRACT
In epithelial tissues, polarisation of microtubules and actin microvilli
occurs along the apical-basal axis of each cell, yet how these
cytoskeletal polarisation events are coordinated remains unclear.
Here, we examine the hierarchy of events during cytoskeletal
polarisation in Drosophila melanogaster epithelia. Core apical-basal
polarity determinants polarise the spectrin cytoskeleton to recruit the
microtubule-binding proteins Patronin (CAMSAP1, CAMSAP2 and
CAMSAP3 in humans) and Shortstop [Shot; MACF1 and BPAG1
(also known as DST) in humans] to the apical membrane domain.
Patronin and Shot then act to polarise microtubules along the apical-
basal axis to enable apical transport of Rab11 endosomes by the
Nuf–Dynein microtubule motor complex. Finally, Rab11 endosomes
are transferred to theMyoV (also known asDidum inDrosophila) actin
motor to deliver the key microvillar determinant Cadherin 99C to the
apical membrane to organise the biogenesis of actin microvilli.

KEY WORDS: Drosophila, Epithelia, Polarity, Microtubules,
Microvilli, Spectrin

INTRODUCTION
Cells in epithelial tissues are polarised and display distinct apical and
basolateral membrane domains (Martin-Belmonte and Mostov,
2008; Rodriguez-Boulan and Macara, 2014; St Johnston and
Ahringer, 2010; Tepass, 2012). How this fundamental apical-basal
polarity is elaborated to direct the polarisation of all other features of
epithelial cells remains amajor unsolved problem (Nance andZallen,
2011). For example, many epithelial cells exhibit polarisation of the
spectrin and microtubule cytoskeletons along the apical-basal axis,
as well as polarisation of the actin cytoskeleton to produce distinctive
apical microvilli. Although the molecular assembly of spectrins,
F-actin microvilli and acentrosomal microtubules have been
intensely studied, how these cytoskeletal features become polarised
remains unclear (Bartolini and Gundersen, 2006; Sauvanet et al.,
2015; Suozzi et al., 2012; Thomas, 2001).
In the case of the spectrin cytoskeleton, polarisation was first

observed in Drosophila epithelial cells, where an apical β-Heavy
(βH)-Spectrin subunit and basolateral β-Spectrin subunit segregate
into complementary cortical domains (Lee et al., 1997; Thomas
and Kiehart, 1994). Both types of β-subunit can dimerise with
α-Spectrin to form a spring-like network that interacts with FERM

domain proteins and transmembrane proteins such as Crumbs
(reviewed in Bennett and Healy, 2009). Spectrins have been shown
to function in maintaining membrane tension and in regulating
signalling through the Crumbs–Hippo pathway, but whether there is
a role for spectrins in controlling apical-basal polarity has proven
elusive (Deng et al., 2015; Fletcher et al., 2015; Krieg et al., 2014;
Médina et al., 2002; Thomas et al., 1998; Wong et al., 2015;
Zarnescu and Thomas, 1999). Recent work has suggested that
basolateral spectrins act with Integrins to promote columnar cell
shape in Drosophila follicle cells (Ng et al., 2016). The apical
FERM domain proteins have been linked to organisation of the actin
cytoskeleton and microvilli in both Drosophila and mammalian
cells, but whether the spectrin cytoskeleton is also involved in this
process remains unclear (Claret et al., 2014; Gloerich et al., 2012;
Hipfner et al., 2004; Karagiosis and Ready, 2004; Polesello et al.,
2002; Roch et al., 2010; Speck et al., 2003; ten Klooster et al.,
2009).

In the case of the microtubule cytoskeleton in epithelial cells, the
centrosomal nucleation of the mitotic spindle evident during mitosis
gives way to an acentrosomal nucleation of polarised microtubules
at the apical and basal plasma membranes during interphase, a
process first noticed by electron microscopy studies in Drosophila
(Mogensen and Tucker, 1987; Mogensen et al., 1993, 1989).
Acentrosomal nucleation of microtubules was later demonstrated to
occur in many eukaryotic organisms, from yeast to human cells
(Carazo-Salas and Nurse, 2006; Mahoney et al., 2006; Reilein et al.,
2005; Schuh and Ellenberg, 2007; Stiess et al., 2010). Nevertheless,
the molecular system responsible for polarising microtubules in
epithelial cells is still to be identified. Consequently, it has been
difficult to genetically test the functional role of polarised
microtubules in epithelia. Instead, mutation of the microtubule
minus-end-directed motor protein Dynein, or its adaptors, has been
used to demonstrate a requirement for polarised microtubules in
apical mRNA transport and positioning of the nucleus in
Drosophila epithelia (Bullock and Ish-Horowicz, 2001; Dix et al.,
2013; Holt and Bullock, 2009; Horne-Badovinac and Bilder, 2008;
Liu et al., 2013; Mosley-Bishop et al., 1999; Swan et al., 1999;
Wilkie and Davis, 2001). There also appears to be a role for Dynein
in trafficking E-cadherin during early polarity establishment and
during tracheal morphogenesis (Harris and Peifer, 2005; Le
Droguen et al., 2015). The overall apical-basal polarisation of
epithelial cells is sometimes affected in dynein mutants, which
resemble crumbs mutants, which mostly polarise normally but
occasionally lose polarity and become multilayered (Bullock and
Ish-Horowicz, 2001; Fletcher et al., 2012; Horne-Badovinac and
Bilder, 2008; Wilkie and Davis, 2001). Accordingly it has been
proposed that Dynein traffics mRNA encoding Stardust, a Crumbs-
binding partner (Horne-Badovinac and Bilder, 2008). These results
raise the question of whether polarised microtubules are truly
essential for polarised trafficking and localisation of membrane
proteins, as has often been suggested based on observations ofReceived 9 March 2016; Accepted 19 May 2016
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membrane trafficking in mammalian epithelial cells in culture
(Mostov et al., 2000; Rodriguez-Boulan et al., 2005).
In the case of apical microvilli, the specific microvillar

protocadherin PCDH15 was identified in human genetic studies
of Usher syndrome, an inherited deaf-blindness disease caused by
defects in stereocilia of the human ear cochlear cells and microvilli
of the eye photoreceptor cells (Alagramam et al., 2001a,b;
Ben-Yosef et al., 2003). PCDH15 interacts with CDH23 to form
tip-link filaments in stereocilia that are necessary for hearing
(Elledge et al., 2010; Geng et al., 2013; Kazmierczak et al., 2007;
Söllner et al., 2004). TheDrosophila PCDH15 homologue is named
Cadherin 99C (Cad99C) and is necessary for normal biogenesis of
microvilli, and is also sufficient to expand microvilli length when
overexpressed (Chung and Andrew, 2014; D’Alterio et al., 2005;
Schlichting et al., 2006). To perform its function, Cad99C/PCDH15
interacts with the actin motor protein Crinkled/MyosinVIIA, which
is encoded by the humanMYO7A gene that is also mutated in Usher
syndrome patients (Glowinski et al., 2014). However, it remains a
mystery how Cad99C/PCDH15 becomes localised to the apical
domain of epithelial cells.
Here, we show that polarised microtubules are essential to direct

trafficking of Cad99C to apical microvilli in Drosophila. We
identify the microtubule-binding proteins Patronin (CAMSAP1,
CAMSAP2 and CAMSAP3 in humans) and Shortstop [Shot;
MACF1 and BPAG1 (also known as DST) in humans] as acting in
parallel at the apical domain of epithelial cells to polarise
microtubules and delivery of Cad99C. We further show that
polarisation of Patronin and Shot is dependent on the apical spectrin
cytoskeleton, which in turn is dependent of determinants of cell
polarity. Cad99C is transported apically inside Rab11 endosomes,
which are linked to the Dynein microtubule motor protein through
its adaptor protein nuclear fallout (Nuf). Once at the apical cortex,
Rab11 endosomes are transferred to the MyoV (known as Didum in
Drosophila) actin motor complex to enable delivery of Cad99C to
the apical plasma membrane. Our findings reveal a new mechanism
linking epithelial cell polarity with the polarisation of the spectrin
and microtubule cytoskeleton to direct apical membrane trafficking
and biogenesis of microvilli.

RESULTS
We begun by examining the biogenesis of apical microvilli in the
Drosophila ovarian follicle cell epithelium. As previously reported
by others, we found that during mid-oogenesis, Cad99C localises
specifically to the apical domain of follicle cells that are initiating
biogenesis of apical microvilli (D’Alterio et al., 2005; Schlichting
et al., 2006). These Cad99C-positive microvilli are visible upon
staining for filamentous actin (F-actin) or with transmission electron
microscopy (TEM) (Fig. 1A–D). Interestingly, we also see Rab11
endosomes localising apically in follicle cells around the time of
microvilli biogenesis (Fig. 1E,F). Given that Rab11 endosomes are
known to be involved in endocytic recycling to the apical
membrane, as well as in trans-Golgi to plasma membrane
exocytic delivery (Jing and Prekeris, 2009; Rodriguez-Boulan and
Macara, 2014) and microvillus formation in enterocytes (Knowles
et al., 2015), we examined their role in trafficking Cad99C to the
apical membrane by inducing Rab11 RNA interference (RNAi) in
follicle cells. Knockdown of Rab11 resulted in loss of Cad99C from
the apical membrane, suggesting that trafficking of Cad99C
occurs through Rab11 endosomal transport (Fig. 1G). To rule out
an indirect effect of Rab11 on Cad99C trafficking through
misregulation of epithelial polarity, we tested the effect of Rab11
RNAi on markers of cell polarity. We found that the localisation of

atypical protein kinase C (aPKC) and Dlg is not affected upon
Rab11 knockdown (Fig. S1A). These results show that epithelial
polarity is retained in Rab11 RNAi cells.

Rab11 endosomes use an array of adaptor proteins to bind to
different motors for intracellular transport (Horgan and McCaffrey,
2009; Junutula et al., 2004; Meyers and Prekeris, 2002; Prekeris,
2003). Nuf has previously been shown to interact with Rab11 and to
be required for its correct localisation to the cleavage furrow during
cytokinesis (Cao et al., 2008;Riggs et al., 2003).Nuf is also known to
directly interact with the minus-end motor Dynein to transport cargo
towards microtubule minus-ends (Riggs et al., 2007). We found that
Nuf localises apically in follicle cells (Fig. 1H). We therefore tested
the requirement for Nuf and Dynein to transport Rab11 endosomes.
nufmutants and knockdown of Dynein both revealedmislocalisation
of Rab11 endosomes from the apical membrane to the cytoplasm
(Fig. 1I). These results demonstrate the importance of Nuf and
Dynein for correct apical localisation of Rab11 endosomes in the
follicle cell epithelium. We found that cell polarity is not affected in
nuf mutants or Dynein RNAi follicle cells, as aPKC and Dlg are
localised normally in both conditions (Fig. S1A,B).

We next studied the requirement for microtubules in Rab11
endosome trafficking and microvilli biogenesis. We induced
overexpression of the microtubule-severing protein Katanin 60 to
trigger depolymerisation of most microtubules (Diaz-Valencia
et al., 2011), and found that loss of microtubules led to
accumulation of Rab11 endosomes in the cytoplasm and failure
of Cad99C delivery (Fig. 2A,B). We also depolymerised the
microtubules in follicle cells by treating the egg chambers with
colchicine for 1 h. Control egg chambers had apical Rab11
localisation, whereas egg chambers treated with colchicine had
endosomes accumulating basally in the follicle cells (Fig. 2C,D).
Thus, the polarisation of Rab11 endosomes for delivery of Cad99C
is a microtubule-dependent process.

To explore how the microtubules become polarised in follicle
cells, we considered the roles of two microtubule-binding proteins
Patronin and Shot. Patronin has been reported to bind minus-ends of
microtubules through its C-terminal CKK domain and protect
them from Kinesin-13-mediated degradation (Baines et al., 2009;
Goodwin and Vale, 2010; Hendershott and Vale, 2014).
Furthermore, in mammalian cells CAMSAP3 and CAMSAP2
have been shown to cooperate to organise epithelial-specific
organisation of acentrosomal microtubules (Tanaka et al., 2012;
Toya et al., 2016). Shot is a spectraplakin cytoskeletal protein,
known to crosslink microtubules to the actin cytoskeleton
(Applewhite et al., 2010; Lee and Kolodziej, 2002). Shot can
bind F-actin through its N-terminal actin-binding domain and to
microtubules through its C-terminal GAS2 domain (Applewhite
et al., 2010; Lee and Kolodziej, 2002; Lee et al., 2000; Sun et al.,
2001). We found that GFP-tagged Patronin and Shot localised
apically in follicle cells, suggesting a potential role in polarising the
microtubule cytoskeleton along the apical-basal axis of epithelial
cells (Fig. 2E,F).

We depleted Patronin in follicle cells by RNAi, which produced a
moderately disordered microtubule cytoskeleton, mildly affecting
Rab11 trafficking (Fig. 2G). Cad99C localisation remained largely
unaffected, likely due to a slow turnover rate of the protein
(Fig. 2G). We next investigated the requirement of Shot by
analysing mutants with the null allele shot3, which has previously
been reported to cause occasional double layering in the follicle cell
epithelium (Gregory and Brown, 1998; Röper and Brown, 2003).
shot3 moderately affected microtubule polarisation and Rab11
endosome trafficking, with a minimal effect on Cad99C localisation
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(Fig. 2H). Owing to the weak phenotypes of losing Patronin and
Shot individually, we combined the two manipulations to see
whether this caused a stronger phenotype. We found that perturbing
both proteins severely affected microtubule organisation and led to
loss of Cad99C from the apical membrane (Fig. 2I–L). We found
that severe disruption of microtubule organisation often led to mis-
positioning of nuclei in follicle cells, giving cells the appearance of
multilayering, when they are actually still a monolayer. Our results
indicate that Patronin and Shot work in parallel to polarise
microtubules, and that microtubule polarisation is essential for
apical delivery of Cad99C in follicle cells.
We next investigated the mechanism by which Patronin and Shot

become polarised to the apical domain. We considered the role of
spectrins in polarising Patronin and Shot to the apical membrane.
The spectrin cytoskeleton is polarised in epithelial cells with α2βH2
heterotetramers localising to the apical domain and α2β2
heterotetramers localising to the basolateral domain (Thomas and
Kiehart, 1994; Thomas and Williams, 1999; Zarnescu and Thomas,
1999). Several lines of evidence suggest that apical spectrins
interact with Patronin and Shot. Firstly, a conserved region in

mammalian CAMSAP1, known as the CC1 region, has been shown
to bind the linker region adjacent to the PH domain of the long
C-terminal variant of βII-spectrin in vitro (Fig. 3A) (King et al.,
2014). Secondly, we identified α- and βH-Spectrin (also known as
Karst) in the mass spectrometry analysis of Patronin or Shot-
associated proteins in Drosophila (data not shown). Finally, Shot
contains multiple spectrin repeat domains, suggesting that it might
directly bind to spectrins (Fig. 3A) (Leung et al., 1999; Röper and
Brown, 2003; Sun et al., 2001).

To test the requirement for the spectrin cytoskeleton in localising
Shot and Patronin, we induced mutant clones for α-spectrin in the
follicle cell epithelium. We found that loss of α-Spectrin caused
mislocalisation of Shot from the apical domain, and also affected the
localisation of Rab11 and Cad99C (Fig. 3B–E). Our observation is
not an indirect affect of loss of polarity, as aPKC was not affected in
α-spectrinmutants (Fig. 3E; Fig. S2A). Although the apical polarity
was maintained, we found that α-spectrin mutant cells appeared to
lose their perivitelline space and associate closely with the oocyte
membrane, indicating that these cells might have defective
microvilli (Fig. 3E, bottom panel). Consistent with this finding,

Fig. 1. Cad99C is trafficked to the apical membrane via Rab11 endosomes during microvilli morphogenesis. (A) Schematic diagram of a stage 10
Drosophila egg chamber, highlighting cells that make microvilli. (B) Wild-type egg chambers at different stages of oogenesis stained for DAPI to mark nuclei
and F-actin to visualise the apical actin-rich microvilli (arrows). (C) TEM images of wild-type egg chambers at different stages of microvilli biogenesis. Arrows point
to apical microvilli in follicle cells. Oc, oocyte; FC, follicle cells; V.B., vitelline bodies. Cad99C (D) and Rab11 (E) become polarised apically during stages of
microvilli biogenesis in wild-type egg chambers. (F) Egg chambers expressing a knock-in Rab11–YFP insertion in the endogenous gene. (G) Expression of
Rab11 RNAi (GFP-positive clone) causes mislocalisation of Cad99C (arrows). (H) Nuf is localised apically during stages of microvilli biogenesis. (I) Mutation of
nuf (GFP-positive clone) or knockdown of Dynein (whole egg chamber) causes mislocalisation of Rab11 endosomes.
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we showed that loss of α-Spectrin prevented apical F-actin
microvilli formation, but did not affect cortical F-actin in follicle
cells (Fig. S2B,C). We confirm that loss of α-Spectrin or β-Spectrin
could also cause a reduction in cell height, as recently reported
(Fig. S2D–F; Ng et al., 2016).
We found that mutation of βH-spectrin or shot alone did not have

a strong affect on Cad99C localisation (Fig. S2G,H). Owing to the
similar structure and role of βH-spectrin and Shot in binding
microtubules, we anticipated that there might be redundancy
between the two proteins. To test this possibility, we analysed
Cad99C localisation in double mutants of shot and βH-spectrin.
Indeed, we found that Cad99C was lost from the apical membrane
in the double mutants (Fig. 3F; Fig. S2I).
We next tested for interactions of spectrins with Patronin and

Shot by performing co-immunoprecipitation experiments from
Drosophila embryos expressing endogenously YFP-tagged βH-
Spectrin. We found that tagged βH-Spectrin interacted strongly with
two isoforms of Shot (Fig. 3G). Pulling down tagged βH-Spectrin
also co-immunoprecipitated endogenous α-Spectrin. We also
performed co-immunoprecipitation experiments in embryos
expressing Shot–GFP and Patronin–GFP. We found that both
Shot and Patronin bound to βH-Spectrin and α-Spectrin (Fig. 3G).
Furthermore, we found that Patronin could bind to Shot (Fig. 3G).
These results indicate that apical spectrins bind to Patronin and Shot,
and act to recruit the two proteins to the apical membrane.
Consistent with the data from the co-immunoprecipitation
experiments, we showed that double mutants of shot and βH-

spectrin lost polarisation of Patronin from their apical domains
(Fig. 3H). In addition, these double mutants displayed severe
defects in microtubule organisation (Fig. 3I), further supporting the
notion that Shot and βH-Spectrin act redundantly to polarise
microtubules in the follicle cell epithelium.

In epithelial cells, fundamental determinants of apical-basal cell
polarity are responsible for polarising all other proteins in the cell.
We sought to determine whether two key apical and basal polarity
determinants, Cdc42 and Lgl [also known as L(2)gl], were
important to organise polarisation of apical spectrins to direct the
polarisation of downstream trafficking machinery for Cad99C.
We found that mutants of cdc42 and lgl exhibited mislocalisation of
apical spectrins, Patronin and Shot, and also exhibited loss of
Cad99C from the apical membrane (Fig. S3A–I). The loss of Cdc42
or Lgl caused a dramatic disruption of the epithelial tissue, making it
difficult to determine whether these determinants act directly or
indirectly to polarise spectrins, Patronin and Shot. Nevertheless,
these findings suggest that apical-basal polarity determinants act
upstream of Spectrin polarisation to control Patronin and Shot
localisation and microtubule polarisation, which then directs apical
trafficking of Cad99C for microvilli biogenesis (Fig. 3J).

Once Rab11 endosomes are transported apically along
microtubules by the Nuf–Dynein motor complex, they must
traverse the apical F-actin cortex to be delivered to the plasma
membrane. We found that a different motor complex is required to
transport the endosomes beyond the microtubule network. Myosin
V (MyoV; Myo5a and Myo5b in humans) is a known actin-based

Fig. 2. Cad99C is transported apically along microtubules that are polarised by Patronin and Shot. (A) Control egg chamber stained for Cad99C, Rab11,
DAPI and Tubulin to show polarisedmicrotubules. (B) Overexpression of Katanin60 causesmicrotubules to depolymerise, resulting in loss of Rab11 andCad99C
polarisation (arrows). Control egg chambers (C) or egg chambers treated with colchicine (D) to depolymerise microtubules; Rab11 polarisation is lost upon
colchicine treatment. Expression of Patronin–GFP (E) and Shot–GFP (F) shows both proteins localise apically. Expression of Patronin RNAi (G) or mutation of
shot (GFP-positive clone) (H) causes depolarisation microtubules, affecting Rab11 localisation and Cad99C protein levels. (I–L) Combined perturbation of
Patronin and Shot (GFP-positive clone) results in loss of Cad99C from the apical membrane and causes severe defects in microtubule polarisation. Loss of
polarised microtubules results in the mislocalisation of nuclei in these mutants, which gives the impression of multilayering of the follicle cells (arrows in I).
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motor that has been implicated in polarised membrane transport of
Rab11 endosomes in both mammals and flies (Lapierre et al., 2001;
Li et al., 2007). Additionally, the Drosophila Rab11-interacting
protein (Rip11, known as Rab11FIP1 in humans) has also
been shown to bind Rab11 endosomes, as well as interact in a
complex with MyoV during Rhodopsin transport in developing
photoreceptors in Drosophila (Li et al., 2007; Prekeris et al., 2000).
Based on these interactions, we investigated the roles of MyoV and
Rip11 in the apical delivery of Rab11 endosomes using dominant-
negative lines of both proteins, Rip11–CT-GFP and MyoV–CT-
GFP, which express a C-terminal GFP-tagged version of the
proteins (Li et al., 2007). Expression of Rip11–CT-GFP and
MyoV–CT-GFP caused accumulation of Rab11 and Cad99C in the
sub-apical region of follicle cells, with MyoV causing a more severe
effect (Fig. 4A–C). We found that Rab11 colocalised with Cad99C
in these accumulated endosomes (Fig. 4B,C). We showed that
disrupting the microtubules with colchicine in follicle cells

expressing MyoV–CT-GFP caused the accumulated endosomes to
redistribute basally (Fig. 4D), which is reminiscent of the basal
endosomes found in Dynein RNAi cells (Fig. 4E), where Rab11 and
Cad99C also colocalise. These results suggest that Rip11 and
MyoV are dispensable for apical transport of Rab11 endosomes
along microtubules but are required for their apical delivery through
the F-actin cortex to the plasma membrane (Fig. 4F).

DISCUSSION
Our results reveal a mechanism linking determinants of cell polarity
with stepwise polarisation of the spectrin cytoskeleton, microtubule
cytoskeleton and biogenesis of actin microvilli through apical
trafficking of Cad99C. The results suggest that polarisation of the
apical spectrin βH-Spectrin is dependent on polarity determinants,
likely through interactions with the FERM domain proteins and the
apical polarity determinant Crb (Fletcher et al., 2015; Médina et al.,
2002). The spectraplakin Shot is highly similar to βH-Spectrin, and is

Fig. 3. The spectrin cytoskeleton is required to polarise Patronin and Shot in response to apical-basal polarity determinants. (A) Schematic diagram of
protein domain structures of Patronin, βH-Spectrin (Karst) and Shot. (B) Control egg chamber stained for Shot and Cad99C. Mutation of α-spectrin (GFP-positive
clone) causes mislocalisation of Shot, Cad99C (C) and Rab11 (D) (arrows). (E) Top panel: α-spectrinmutants (GFP-negative clone) exhibit loss of Cad99C from
the apical membrane (arrow). Bottom panel: α-spectrin mutants (GFP-negative clone) have normal aPKC polarisation but show loss of perivitelline space
between the follicle cell membrane and the oocyte membrane (arrow), suggesting microvilli defects. (F) Double mutants for Shot and βH-Spectrin (GFP-negative
clone) show loss of Cad99C from the apical membrane (arrows). (G) Left panel: co-immunoprecipitation (IP) of endogenous βH-Spectrin–YFP (βHSpecYFP)
knock-in embryos with Shot and α-Spectrin. Middle panel: co-immunoprecipitation of UAS.Shot–GFP (ShotGFP) embryoswith βH-Spectrin and α-Spectrin. Right
panel: co-immunoprecipitation of Patronin–GFP (PatGFP) embryos with βH-Spectrin, α-Spectrin and Shot. (H) Top panel: double mutants for Shot and βH-
Spectrin (GFP-negative clone) exhibit loss of Patronin from the apical domain (arrow). Bottom panel: Shot staining in Shot and βH-Spectrin double mutants
(arrow). (I) Double mutants for Shot and βH-Spectrin (GFP-negative clone) show severe defects in microtubule polarisation (arrow). (J) Stepwise representation of
events leading to the polarisation of Cad99C at the apical membrane for biogenesis of microvilli.
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able to bind to and colocalisewith it at the apical domain of epithelial
cells, suggesting that the two proteins might have a similar function.
βH-Spectrin is linked tomicrotubules through Patronin, whereas Shot
can directly bind microtubules. Consequently, redundancy is
anticipated between βH-Spectrin and Shot, or between Patronin and
Shot. Accordingly, we found that mutation of βH-spectrin only had a
mild phenotype, whereas mutation of α-spectrin simultaneously
disrupted both pairs of proteins in parallel and caused a drastic
phenotype, completely disrupting the apical trafficking of Cad99C
and microvillar biogenesis. More importantly, double mutants for
shot and βH-spectrin had a more severe effect on microtubule and
Cad99C localisation than either alone, therefore demonstrating that
the two proteins act in a redundant fashion.
Downstream of the spectrin cytoskeleton, Patronin and Shot are

required in parallel to drive apical-basal polarisation of microtubules,
which is then responsible for orienting the apical transport of
Cad99C, within Rab11 endosomes, by the Dynein motor protein.
Eliminating microtubules from cells by overexpressing Katanin60
results in loss of Nuf–Dynein-based apical Rab11 endosome
transport and failure to efficiently deliver Cad99C to the apical

membrane. The effect onCad99C polarisation is not an indirect effect
of loss of polarity due to impaired Rab11 and Dynein function in
localising the apical polarity determinant Crumbs to the apical
membrane (Horne-Badovinac and Bilder, 2008; Li et al., 2008)
because, firstly, polarity is maintained in cells expressing Rab11 or
Dynein RNAi, as indicated by the normal localisation of aPKC and,
secondly, loss of Crb does not strongly affect cell polarity in the
follicle cell epithelium owing to redundancy with Bazooka (Fletcher
et al., 2012). Our results indicate that even under conditions with
severe depletion of microtubules, the overall shape of the follicle cell
epithelium is relatively normal, indicating that polarisedmicrotubules
are required to influence formation of apical microvilli, rather than for
other functions of the actin cytoskeleton in epithelial cells. Similarly,
we do not see strong effects on cell shape upon loss of either Patronin
or Shot (or both), raising questions over the claimed requirement for
Patronin homologs and microtubules in formation or maintenance of
adherens junctions epithelial cells in culture (Chen et al., 2003; Le
Droguen et al., 2015; Meng et al., 2008; Stehbens et al., 2006).

The final step in delivery of Cad99C to the apical membrane also
requires actin-based transport through the action of Rip11–MyoV

Fig. 4. The microvilli inclusion disease protein MyoV is required for apical delivery of Rab11 endosomes. (A) Control egg chamber expressing UAS.
CD8GFP and stained for Cad99C and Rab11. The arrows shows normal localisation in the control. Expression of dominant-negative Rip11–CT-GFP (B) or
MyoV–CT-GFP (C) causes accumulation of Rab11 endosomes and Cad99C (arrows) near the apical region. (D) Colchicine treatment of egg chambers
expressing dominant-negativeMyoV–CT-GFP causes basal accumulation of Rab11 endosomes and Cad99C in follicle cells (arrows). (E) Basal accumulation of
Rab11 endosomes and Cad99C also occurs in follicle cells expressing Dynein RNAi. (F) Model for normal trafficking and delivery of Cad99C to promote apical
microvilli biogenesis. Defects in trafficking or delivery of Cad99C results in loss of Cad99C function and leads to diseases such as Usher syndrome Type 1 and
microvillus inclusion disease.
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complex. Compromising normal MyoV function in Drosophila
follicle cells by expressing a dominant-negative version of the
protein, results in loss of Rab11 polarisation from the apical
membrane and its abnormal accumulation in the sub-apical region.
This phenotype in Drosophila shows similarities with the human
microvillus inclusion disease, where mutations in the Myo5b gene
also cause loss of Rab11 endosomes from the apical membrane
(Knowles et al., 2014; Lapierre et al., 2001).
In summary, our results reveal how the spectrin cytoskeleton acts to

polarise microtubules in epithelial cells, and how polarised
microtubules then direct trafficking of Rab11 endosomes carrying
Cad99C to the apical membrane. This process relies on a hierarchy of
events, and disruption at any stage can lead to failure in delivering
Cad99C to the apical membrane, resulting in defective biogenesis of
microvilli.Our findings are directly relevant to humandiseases such as
Usher’s Syndrome Type 1 and microvillus inclusion disease, helping
to outline the molecular and cellular basis for these conditions.

MATERIALS AND METHODS
Mitotic clones in follicle cells were generated using the FLP-FRT site-
specific recombination system and were either marked negatively (absence
of GFP) or positively (presence of GFP) with the mosaic analysis with a
repressible cell marker (MARCM) technique (Lee and Luo, 1999; Xu and
Rubin, 1993). Newly eclosed females were heat-shocked once at 37°C for
1 h and ovaries were dissected 5 days after heat-shock.

The ‘Flip-out’ actin.FRT.CD2.FRT.Gal4/UAS system was used to
express the UAS-Rab11IR construct. To express the transgenes, newly
eclosed females were heat-shocked at 37°C for 10 min and ovaries were
dissected 2 days after heat-shock. Expression of other UAS-driven
transgenes in follicle cells was achieved with the follicle-cell-specific
Gal4 drivers GR1.Gal4 and Traffic Jam.Gal4 (Tj.Gal4), as well as by using
the MARCM system. w OR flies were used as the wild-type stock.

Fly stocks
RNAi lines were ordered from the Vienna Drosophila Resource Center:
Patronin IR (VDRC27654) andDynein IR (VDRC28054). The Rab11RNAi
linewas generated byRuthBrain (our laboratory) in the laboratory. UAS.shot-
GFP, FRT42B shot3, Ubi.patronin-GFP, UAS.katanin60, GR1.Gal4,
FRT19A cdc423 and FRT40A lgl4 were ordered from Bloomington
Drosophila Stock Center. UAS.myoV-CT-GFP and UAS.dRip11-CT-GFP
lines were gifts from Don Ready (Purdue University, USA) (Li et al., 2007).
The Rab11–YFP line was a gift from Marko Brankatschk, MPI-CBG,
Dresden, Germany. Kst–YFP (DGRC 115-285), Tj.Gal4 (DGRC 104-055)
and FRT80Bnuf (DGRC111-536)were ordered from theDrosophilaGenetic
Resource Center, Kyoto. The following strains were used as in previous
studies: α-spece226 (Hüelsmeier et al., 2007), kstd1113 (Campos et al., 2010),
kst1 (Thomas and Kiehart, 1994), Nod.lacZ and Kin.lacZ (Clark et al., 1997).
A list of Drosophila genotypes used in each figure is presented in Table S1.

Immunostaining of ovaries and microscopy
Ovaries were dissected in PBS, fixed for 20 min in 4% paraformaldehyde in
PBS, washed for 30 min in PBS with 0.1% Triton X-100 (PBST) and
blocked for 30 min in 5% normal goat serum in PBST (PBST with NGS).
Primary antibodies were diluted in PBST with NGS and samples were
incubated overnight at 4°C.

For Crumbs staining, ovaries were fixed for 10 min in 8%
paraformaldehyde in PBS, washed in methanol for 5 min, washed for
three time for 20 min each in PBST and for 5 min in 1% SDS, rinsed in PBS
three times and blocked for 30 min in 5% PBST with NGS. The rest of the
staining was carried out as described previously (Fletcher et al., 2012).

Primary antibodies used were: rabbit anti-aPKC, mouse anti-Dlg, mouse
anti-α-Spectrin, rabbit anti-βH-Spectrin, rabbit anti-Cad99C, guinea pig
anit-Cad99C, guinea pig anti-Shot, rabbit anti-Rab11, mouse anti-Crumbs,
mouse anti-α-tubulin and rabbit anti-Nuf. Full details of the primary
antibodies are available in Table S2. Phalloidin-TRITC (Sigma) was used to
stain F-actin. Secondary antibodies (all from Molecular Probes, Invitrogen)

were used at 1:500 for 2 h at room temperature along with DAPI staining at
1 µg/ml and then washed multiple times in PBST. Samples were mounted
on slides in Vectashield (Vector labs). Images were acquired on a Zeiss
LSM710 confocal microscope using 40× or 63× oil immersion objectives,
and processed using Adobe Photoshop. Optical cross-sections through the
middle of egg chambers are shown in all figures.

Colchicine treatment
Wild-type egg chambers were cultured in imaging medium containing
Schneider’s medium (Invitrogen), Insulin (Sigma), heat-inactivated fetal calf
serum (FCS; GE Healthcare), Trehalose (Sigma), adenosine deaminase
(Roche),methoprene (Sigma) and ecdysone (Sigma) (Prasad et al., 2007),with
0.2 mg/ml of colchicine or ethanol (for control) for 1 h at room temperature.
After treatment, samples were fixed and processed normally for imaging.

Co-immunoprecipitation
For co-immunoprecipitation experiments, Drosophila Karst YFP knock-in
embryos (DGRC 115285), Wiso embryos, and embryos expressing
Patronin–GFP or Shot–GFP were collected over 24 h at 22°C before
being lysed in buffer containing 10 mM Tris-HCl pH 7.5, 150 mM NaCl,
0.5% NP-40 and 0.5 mMEDTA (Chromotek), plus PhosSTOP Phosphatase
Inhibitor Cocktail Tablets (Roche), protease inhibitor cocktail (Roche),
0.1 M NaF and 1 mM PMSF. Samples were left on ice to solubilise for
30 min, before being centrifuged at high speed (14,000 rpm in a desktop
centrifuge for 30 min at 4°C). The supernatant was collected, pre-cleared
and incubated with GFP Trap-M beads (Chromotek).

Western blots were probed with mouse anti-GFP, guinea pig anti-Shot,
rabbit anti-Patronin, mouse anti-α-Spectrin and rabbit anti-βH-Spectrin
antibodies (details in Table S3; see Fig. S4 for complete western blots and
for siRNA knockdown experiments in human cells), before being detected
with chemiluminescence (GE Healthcare).

Electron microscopy of Drosophila egg chambers
Drosophila egg chambers were fixed in 2.5% glutaraldehyde and 4%
formaldehyde in 0.1 M phosphate buffer (pH 7.4) and then processed for
transmission electron microscopy (TEM) and serial block-face scanning
electron microscopy (SBFSEM). Samples were prepared using the National
Center for Microscopy and Imaging Research (NCMIR) method (Deerinck
et al., 2010). For TEM, 70-nm sections were cut using a UCT ultramicrotome
(Leica Microsystems) and collected on formvar-coated slot grids. No post-
staining was required owing to the density of metal deposited using the
NCMIR protocol. Images were acquired using a 120 kV Tecnai G2 Spirit
Biotwin (FEI Company) and Orius CCD camera (Gatan Inc.).
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