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Abstract 

Aim: The aim of the thesis was to investigate the hypothesis that (i) Changes in endothelial cell 

insulin signalling occur in pre-eclampsia, secondary to underlying endothelial dysfunction, resulting 

in insulin resistance, (ii) Impaired endothelial cell insulin signalling results in reduced tissue 

delivery of insulin and reduced GLUT-4 activation, and (iii) Impaired microvascular blood flow 

results in insulin resistance.  

Methods: Filtrass strain-gauge plethysmograph was used to measure human calf blood flow in 

women with pre-eclampsia and normotensive controls. Biochemical markers of endothelial 

dysfunction, ICAM-1, VCAM-1. TNF, eSelectin, Thrombomodulin, and cellular marker, CEC, 

provided information regarding endothelial dysfunction. Insulin resistance was calculated using 

HOMA. Cells were cultured in normotensive and pre-eclamptic serum to study the insulin signalling 

pathway, using flow cytometry and western Blot.  

Results: In this cross-sectional study, microvascular blood flow was reduced in the pre-eclamptic 

cohort, compared to normotensive controls. Insulin resistance was also increased in women with 

pre-eclampsia. Endothelial cell insulin receptor expression and Akt expression were reduced in the 

pre-eclamptic participants, compared to normotensive pregnant controls. However, there was no 

significant difference in total insulin receptor protein and Akt protein in between the two groups. 

There was also no difference in endothelial cell GLUT 4 expression in between the groups.  

Conclusion: Insulin Resistance in pre-eclampsia, correlates with endothelial dysfunction and 

microvascular blood flow. Although expression of insulin receptors and Akt in endothelial cells, are 

reduced in pre-eclampsia, this does not correlate with insulin resistance. Furthermore, as there is 

no change in endothelial cell GLUT4 expression, in between the two cohorts, it is unlikely to 

explain the Insulin Resistance seen in pre-eclampsia.  

 

 

 



iv 
 

Contents 

 

Title page i 

Acknowledgement ii 

Abstract iii 

Contents iv 

List of figures x 

List of tables xiii 

Abbreviations xiv 

Chapter 1: General Introduction 1 

1.1.     Normal pregnancy 1 

1.1.1.     Maternal haemodynamic adaptation to pregnancy 1 

1.1.1.1.     Cardiac Output 1 

1.1.1.2.     Blood Pressure and systemic vascular resistance 1 

1.1.1.3.     Pulmonary circulation 2 

1.1.1.4.     The Microvascular System 2 

1.1.1.4.1.     General Structure and functions 3 

1.1.1.4.2.     Short-term regulation of tissue blood flow 5 

1.1.1.4.3.     Long term regulation of tissue blood flow 7 

1.1.1.4.4.      Angiogenic factors and tissue blood flow 7 

1.2.     Pre-eclampsia  8 

1.2.1.     Abnormal placentation in pre-eclampsia 8 

1.2.2.      Immunology of pre-eclampsia 11 

1.2.3.     Genetics of pre-eclampsia 11 

1.2.5.     Metabolic changes in pre-eclampsia 12 

1.2.6.     Haemodynamic changes in pre-eclampsia 13 

1.2.7.     Endothelial function in pre-eclampsia 13 

1.3.     Introduction to Insulin 15 



v 
 

1.3.1.     Historical background 15 

1.3.2.     Structure and function of Insulin 15 

1.3.2.1.      Distribution and Structure 15 

1.3.2.2.      Function 16 

1.3.3.3.      Role in vascular haemostasis 16 

1.3.3.      Insulin signalling pathway 17 

1.3.4.      Insulin Resistance in pregnancy and pre-eclampsia 19 

1.4.      The microcirculation in pre-eclampsia 19 

1.4.1.      Assessment of microvascular parameters 20 

1.4.2.      Clinical evidence of microvascular changes in pre-eclampsia 20 

1.4.3.       Angiogenic factors in pre-eclampsia 21 

1.5.           Aims and Objectives 21 

1.5.1        Aims and objectives of the study 21 

1.5.2.     Hypothesis of the study 22 

Chapter 2:    Material and Methods 23 

2.1.      Subjects/ Participants 23 

2.1.1.     Ethical approval and consent 23 

2.1.2.      Women with pre-eclampsia 23 

2.1.3.     Normal pregnant control 24 

2.1.4.     Inclusion and exclusion criteria 24 

2.2.      Sample collection and transport 24 

2.3.      Clinical measurement of microvascular blood flow 25 

2.3.1.     Plethysmography 25 

2.3.1.1.     Principles of plethysmography 26 

2.3.1.2.     Types of plethysmography 26 

2.3.1.3.     Principles of strain-gauge plethysmography 27 

2.3.1.4.     Assumptions made in this study 28 



vi 
 

2.3.1.5.     Merits and limitations of the study 28 

2.3.2.      The Filtrass strain gauge plethysmograph 29 

2.3.2.1.      Calibration of Filtrass plethysmograph 30 

2.3.3.      Protocol for measuring microvascular blood flow 31 

2.3.3.1.      Study environment and preparatory phase; arterial blood pressure 31 

2.3.3.2.      Filtrass protocol for measuring limb blood flow 31 

2.4.      Biochemical assay 33 

2.4.1.      Assay of biochemical markers of endothelial dysfunction 33 

2.4.1.1.      Plasma sICAM-1 34 

2.4.1.2.      Plasma sVCAM-1 34 

2.4.1.3.      Plasma E-selectin 34 

2.4.1.4.      Plasma TNF-α 34 

2.4.1.5.      Plasma Thrombomodulin 34 

2.4.2.      Assessment of insulin resistance 35 

2.4.2.1.      Estimation of fasting blood glucose 35 

2.4.2.2.      Assessment of plasma insulin  35 

2.4.2.3.      Calculation of HOMA 35 

2.4.2.4.      Other methods of assessing insulin resistance 36 

2.4.3.      Angiogenic and anti-angiogenic factors 37 

2.4.3.1.      Plasma PlGF 37 

2.4.3.2.      Plasma Endoglin 37 

2.4.3.3.      Plasma sFlt-1 37 

2.5.      Other methods for assessment of endothelial dysfunction 37 

2.5.1.      Circulating endothelial cells (CEC) 37 

2.6.      Endothelial cell types used for Insulin Signalling 38 

2.7.      Study of Insulin signalling pathway 38 

2.7.1.      Trypan Blue assay 38 



vii 
 

2.7.2.      Preparation of sample for insulin signalling protein 39 

2.7.3.      Flow-cytometry 39 

2.7.3.1.      Insulin receptor expression 40 

2.7.3.2.      Expression of intracellular Akt and GLUT-4 40 

2.7.4.      Estimation of signalling protein by western blot 41 

2.7.4.1.      Preparation of sample 41 

2.7.4.2.      Estimation of insulin receptor protein 41 

2.7.4.3.      Estimation of Akt 42 

2.8.      Statistical Analysis 42 

Chapter 3:    Results and Discussion 44 

3.1.      Micro-vascular tissue blood flow in pre-eclampsia 44 

3.1.1.      Introduction 44 

3.1.2.      Methods 45 

3.1.3.      Results 46 

3.1.4.      Discussion 48 

3.2.      Relationship of endothelial dysfunction and microcirculation in pre-eclampsia 51 

3.2.1.      Introduction 51 

3.2.2.      Methods 51 

3.2.3.      Results 52 

3.2.4.      Discussion 56 

3.3.      Relationship between micro-vascular blood flow and angiogenic factors in pre-

eclampsia 

59 

3.3.1.      Introduction 59 

3.3.2.      Methods 60 

3.3.3.      Results  61 

3.3.4.      Discussion 65 

3.4.      Relationship between insulin resistance, micro-vascular blood flow and 

endothelial dysfunction in pre-eclampsia 

70 



viii 
 

3.4.1.      Introduction 70 

3.4.2.      Methods 70 

3.4.3.      Results 71 

3.4.4.      Discussion 73 

3.5       Relationship between insulin resistance and CEC in pre-eclampsia 77 

3.5.1.      Introduction 77 

3.5.2.      Methods 78 

3.5.3.      Results 79 

3.5.4.      Discussion 80 

3.6.      Comparison of endothelial cell insulin receptors’ expression in relationship to 

endothelial dysfunction 

84 

3.6.1.      Introduction 84 

3.6.2.      Methods 85 

3.6.3.      Results 85 

3.6.4.      Discussion 87 

3.7.      Relationship between endothelial insulin receptor expression, insulin resistance, 

and micro-vascular blood flow in normal pregnancy and pre-eclampsia 

91 

3.7.1.      Introduction 91 

3.7.2.      Methods 92 

3.7.3.      Results 93 

3.7.4.      Discussion 94 

3.8. Differential expression of Akt by endothelial cell in normal pregnancy and pre-                                  

eclampsia, and its relationship with microcirculation and insulin receptor 

expression. 

98 

3.8.1.      Introduction 98 

3.8.2.      Methods 98 

3.8.3.      Results 100 

3.8.4.      Discussion 102 

3.9.    Endothelial Cell GLUT4 and relationship with insulin resistance in pre-eclampsia 106 



ix 
 

3.9.1.      Introduction 106 

3.9.2.      Methods 107 

3.9.3.      Results 108 

3.9.4.      Discussion 110 

Chapter 4:        General Discussion 113 

           4.1.     Summary of the Study 113 

  4.2.      Limitation of the study and future work 116 

   4.3.      Future works 117 

     4.3.1.   Long-term effect of pre-eclampsia 117 

     4.3.2. Qualitative assessment of the signalling pathway 117 

     4.3.3.  Postnatal effect of pre-eclampsia 118 

References 119 

Contribution to existing body of knowledge 141 

 Publication 141 

 Presentation to learned society 141 

Appendix 1:-  A.  Flow-cytometry pictures of insulin receptors 142 

                       B.    Flow-cytometry pictures of Akt receptors 147 

                       C.  Flow-cytometry pictures of GLUT4 receptors 152 

Appendix 2 :-     Western block of (a) Insulin Receptors, (b) Akt, and (c) Actin 157 

Appendix 3:-        Other graphs 161 

 

 

 

 

 

 

 

 



x 
 

List of figures: 

 

Chapter 1 

Number Description Page 

Figure 1.1 The structure of the microvascular system, showing the micro-structure 

of the vessels. 

4 

Figure 1.2:  Role of the insulin-signalling pathway on endothelial function in healthy 

pregnancy. 

17 

Figure 1.3: The Insulin Signalling Pathway 19 

 

Chapter 2 

Figure 2.1 The Filtrass Strain gauge Plethysmograph 29 

Figure 2.2 The transducer band used in Filtrass 30 

Figure 2.3 Filtrass protocol for measuring limb blood flow 31 

Figure 2.4 A plethysmograph reading. It shows the circumference of the limb, the 3 

readings and the mean, calculated automatically. 

32 

 

Chapter 3 

Figure 3.1 Comparison of resting maternal gastrocnemius muscle blood flow during 

third trimester of pregnancy in pre-eclamptic pregnancies and normal 

pregnant controls. 

47 

Figure 3.2.1 Comparison of (a) ICAM-1, (b) VCAM-1, (c) e-Selectin, (d) TNF-α, and 

(e) Thrombomodulin in pre-eclamptic pregnancies and normal pregnant 

controls. 

53 

Figure 3.2.2 Correlation of microvascular blood flow with (a) ICAM-1, (b) VCAM-1, (c) 

e-Selectin, (d) TNF-α, and (e) Thrombomodulin during third trimester of 

pregnancy in the two cohorts. 

54 



xi 
 

Figure 3.3.1 Comparison of (a) sFlt-1 (b) sEndoglin (c) PlGF (d) sFlt-1/PlGF and (e) 

sFlt-1+ sEng/PlGF during third trimester of pregnancy in normal pregnant 

controls and pre-eclamptic pregnancies. 

62 

Figure 3.3.2 Graph showing the correlation of microvascular blood flow, in the study 

groups, with (a) sFlt-1, (b) sEndoglin, (c) PlGF, (d) sFlt-1: PlGF, and (e) 

sFlt-1+ sEndoglin: PlGF. 

63 

Figure 3.4.1 Comparison of (a) HOMA (Homeostasis Model Assessment) and (b) 

Serum fasting insulin in normal pregnant controls and pre-eclamptic 

pregnancies. 

72 

Figure 3.4.2 Correlation of microvascular blood flow with (a) HOMA, (b) Insulin, during 

third trimester of pregnancy in the two cohorts. 

73 

Figure 3.4.3 Function of the insulin-signalling pathway in healthy condition and in 

insulin resistance. 

76 

Figure 3.5.1 Comparison of (a) CEC count and (b) HOMA during third trimester of 

pregnancy in normal pregnant controls and pre-eclamptic pregnancies. 

79 

Figure 3.5.2 Correlation of CEC count with HOMA in between the two groups. 81 

Figure 3.6.1 Comparison of (a) flow-cytometry and (b) western blot data on insulin 

receptors in normal pregnant controls and pre-eclamptic pregnancies. 

86 

Figure 3.6.2 Diagram showing the importance of Insulin receptors and the signalling 

pathway in healthy and in inflammatory conditions.  

89 

Figure 3.7.1 Correlation of cell surface insulin receptors determined by Flow-

cytometry with (a) HOMA and (b) fasting insulin level. 

93 

Figure 3.7.2 Correlation of total Insulin receptors protein determined by western 

blotting with (a) HOMA and (b) fasting insulin level. 

94 

Figure 3.8.1 Comparison of (a) flow-cytometry and (b) western blot data on Akt 

protein during in normal pregnant controls and pre-eclamptic 

pregnancies. 

100 



xii 
 

Figure 3.8.2 Correlation of (a) intracellular active Akt receptors with microvascular 

blood flow, determined by flow-cytometry (b) intracellular total Akt 

receptor protein with microvascular blood flow, determined by western 

blot. 

101 

Figure 3.8.3 Correlation of (a) intracellular active Akt receptors with surface insulin 

receptor, determined by flow-cytometry (b) intracellular total Akt receptor 

protein with total insulin receptor, determined by western blot. 

102 

Figure 3.9.1 Comparison of flow-cytometry of GLUT4 protein during third trimester of 

pregnancy in normal pregnant controls and pre-eclamptic pregnancies. 

108 

Figure 3.9.2 Correlation of GLUT4 receptor expression with (a) microvascular blood 

flow, (b) HOMA, (c) fasting Insulin level, and (d) cell surface insulin 

receptors. 

109 

 

Appendix 
 
1.A Flow-cytometry pictures of insulin receptors 142 

1.B Flow-cytometry pictures of Akt receptors 147 

1.C Flow-cytometry pictures of GLUT4 receptors 152 

2 Western blot of (a) insulin receptors, (b) Akt, and (c) actin 157 

3 Other graphs 161 

 
 

 

 

 

 

 

 

 

 



xiii 
 

List of tables: 

Number Description Page 

Table 3.1: Clinical and demographic characteristics of the subjects in the cross-

sectional study.  

48 

Table 3.2: Showing the tissue blood flow and markers of endothelial dysfunction in 

subjects in the cross-sectional study. 

55 

Table 3.3: Showing the tissue blood flow, angiogenic factors and markers of 

endothelial dysfunction in subjects in the cross-sectional study. 

64 

Table 3.5: Clinical and demographic characteristics of the subjects in the cross-

sectional study between IR and CEC. 

80 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

Abbreviations 

 

ATP Adenosine triphosphate 

APS Ammonium persulfate 

BMI Body Mass Index 

BSA Bovine serum albumin 

CD Cluster of differentiation 

CEC Circulating endothelia cell 

cGMP cyclic guanosine monophosphate 

DBP Diastolic blood pressure 

dd H2O double distilled water 

EDHF Endothelium derived hyperpolarizing factor 

EDTA Ethylenediaminetetraacetic acid 

ELISA Enzyme linked immunosorbent assay 

eNOS Endothelial Nitric Oxide synthase 

ET-1 Endothelin-1 

FFA Free fatty acids 

FMD Flow-mediated dilatation 

GLUT Glucose transporters 

HDL High density lipoprotein 

HDMEC Human Dermal Microvascular Endothelial Cells 

HLA-G Human Leucocyte Antigen-G 

HOMA Homeostasis Model Assessment 

ICAM-1 Inter-Cellular Adhesion Molecule-1 

IL Interleukin 

IR Insulin resistance 

LDL Low density lipoprotein 

MAP Mean arterial pressure 



xv 
 

NK Natural Killer cells 

NO Nitric Oxide 

PBS Phosphate buffered saline 

PGI2 Prostacyclin 

PI3K Phosphatidylinositol-3-kinase 

PlGF Placenta growth factor 

SBP Systolic blood pressure 

SDS Sodium dodecyl sulphate 

SEM Standard error of mean 

sEng soluble Endoglin 

sFlt-1 Soluble fms-like tyrosine kinase 1/ soluble Vascular Endothelial Growth 

Factor Receptor 1 

SGLT Sodium-dependent glucose transporters 

STBM Syncytiotrophoblast microvillous membrane particles 

SVR Systemic vascular resistance 

TEMED N,N,N’,N’-tetramethylethylene diamine 

TGF-β Transforming Growth Factor β 

T2DM Type 2 Diabetes Mellitus 

TNF-α Tumour Necrosis Factor-α 

TXA2 Thromboxane A2 

VCAM-1 Vascular Cell Adhesion Molecule-1 

VEGF Vascular endothelial growth factor 

VSMC Vascular smooth muscle cells 

 

 

 

 



1 
 

Chapter 1: General Introduction 

 

1.1. Normal pregnancy 

Pregnancy is defined as the time during which one or more offspring develops in the body of the 

females, from conception to delivery. A woman’s body undergoes changes to facilitate the growing 

foetus, including cardiovascular, haematological, metabolic, endocrine, renal and respiratory 

changes. All these become more important in the event of any complications. 

 

1.1.1. Maternal haemodynamic adaptation to pregnancy 

Maternal circulation also undergoes marked changes during pregnancy. These changes are 

mechanisms that the body has adapted to support the increased metabolic demands of the mother 

and the foetus, and to ensure adequate uteroplacental circulation for foetal growth and 

development. 

 

1.1.1.1. Cardiac output 

Cardiac output increases by 40-50% during normal pregnancy (Ouzounian and Elkayam, 2012; 

Sanghavi and Rutherford, 2014). Most of the increase occurs during the first trimester (Hibbard et 

al, 2015), with a distinct rise observed even within the first few weeks of pregnancy (Ouzounian 

and Elkayam, 2012; Carling and Alfirevic, 2008). Cardiac output increases with gestational age, 

plateaus at the end of second trimester (Ouzounian and Elkayam, 2012), and then remains at this 

level until delivery (Ouzounian and Elkayam, 2012; Carling and Alfirevic, 2008; Sanghavi and 

Rutherford, 2014). The increase in cardiac output is predominantly due to an increase in stroke 

volume initially, with a contribution from increase in heart rate later in gestation. Stroke volume 

increases gradually during the first and second trimester, and then either remains constant or 

decreases late in pregnancy (Sanghavi and Rutherford, 2014; Liu et al, 2014). 

 

1.1.1.2. Blood pressure and systemic vascular resistance 

Although blood pressure falls in pregnancy, the general agreement is that the fall in systolic blood 

pressure (SBP) is minor (Sanghavi and Rutherford, 2014). In contrast, the fall in diastolic blood 
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pressure (DBP) is substantial. It starts to fall in the first trimester (6-8 weeks gestational age), 

reaches its nadir in the second trimester (dropping 5-10mm below baseline), and gradually returns 

to non-pregnant values [120/80mm Hg] near term (Mahendru et al, 2014). There is evidence that 

the changes start from the luteal phase of the preceding menstrual cycle (Fu et al, 2009; Liu et al, 

2014). However, other work has challenged the concept of a decrease in blood pressure and 

demonstrated a progressive increase in blood pressure throughout gestation (Nama et al, 2011). 

Women with a body mass index (BMI) >25 kg/m2 pre-pregnancy, have been shown to have 

significantly higher SBP, DBP and mean arterial pressure (MAP), at any point during pregnancy 

and postpartum, compared to women with lower BMI [<25 kg/m2] (Grindheim et al, 2012). Also, 

there exist substantial ethnic differences in blood pressure levels observed during pregnancy, and 

the risk of gestational hypertension varies amongst the different ethnic groups (Bouthoorn et al, 

2012). 

 

The fall in blood pressure is due to reduced systemic vascular resistance (SVR) [the ratio of MAP 

to cardiac output], which decreases until mid-pregnancy, and then gradually rises until term. It 

follows the pattern of the changes observed by MAP. SVR is significantly lower than non-pregnant 

values as early as 5 weeks’ gestation (Ouzounian and Elkayam, 2012; Carling and Alfirevic, 2008; 

Sanghavi and Rutherford, 2014). Although the cause of the fall in SVR remains unknown, it is 

attributed to the increase release of endothelium-dependent mediators (Roberts et al, 2002). The 

contribution of utero-placental circulation acting as an arterio-venous shunt and decreasing SVR is 

modest (Sanghavi and Rutherford, 2014; Liu et al, 2014). 

 

1.1.1.3. Pulmonary circulation 

Longitudinal studies have shown that there is no change in pulmonary circulation blood pressure 

(Liu et al, 2014). To accommodate the increased cardiac output in normal pregnancy, pulmonary 

vascular resistance falls. There is no change in pulmonary artery pressure. Pulmonary flow 

increases during pregnancy. Values return to pre-pregnancy level with 6 months post-delivery 

(Ouzounian and Elkayam, 2012; Carling and Alfirevic, 2008; Sanghavi and Rutherford, 2014). 
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1.1.1.4. The Microvascular System 

Many of the key functions of the cardiovascular system occur at the level of the microcirculation, 

where nutritive exchange between blood and tissue occurs, there is a complicated relationship 

between maternal microvascular tissue perfusion and the imbalance of angiogenic factors during 

pregnancy. It has previously been shown that microvascular dysfunction occurs in pre-eclampsia 

(Anim-Nyame et al, 2003) and reduced tissue perfusion precedes the onset of the disease (Anim-

Nyame et al, 2001). 

 

The microvascular system is the collective name given to the smallest components of the 

cardiovascular system, comprising of the arterioles, capillaries and the venules. Unlike the arteries 

and the veins, which form distinctive anatomical entities, the microcirculation is part of the tissue 

they supply, both structurally and functionally. The microcirculation architecture is adapted to serve 

its special needs. In general, blood enters the capillary through an arteriole and leaves by way of a 

venule. The micro-vessels comprise of a continuous layer of endothelial cells, supported on a 

collagen basal lamina. These cells can perform a wide range of activities, depending on the type of 

micro-vessels they are in and their anatomical location (Ouzounian and Elkayam, 2012). 

 

1.1.1.4.1. General Structure and functions  

Arterioles: The arterioles (<100μm in diameter), together with small arteries (100-500μm in 

diameter), constitute the resistance vessels. They are important in the regulation of blood flow 

through the microcirculation, SVR and MAP (Simonsen and Aalkjaer, 2012; Park et al, 2001). They 

consist of one or multiple layers of vascular smooth muscle cells (VSMC) in their wall, making 

them capable of changing their diameter significantly. The intima consists of endothelium, basal 

lamina, sub-endothelium and internal elastic lamina (from inside outwards) (Latroche et al, 2015). 

There is a high density of nerve endings in the arterioles (Thomas 2011; Shoemaker et al, 2015), 

and there is pharmacological evidence that some vascular beds contain α- and β-adrenergic 

receptors (Jacob et al, 2016). Their dual control (neural and hormonal) facilitates regulation of 

microvascular blood flow, vascular resistance and local blood pressure, but there is marked 
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difference in sensitivity amongst the arteriolar branches (Tykochi et al, 2017; Thomas 2011; Jacob 

et al, 2016). (Figure 1.1) 

 

Capillaries: they are the smallest of the micro vessels (5-10μm), whose wall consists of a single 

layer of endothelial cells, basal membrane and a few pericytes. They are marked by the 

disappearance of VSMC from their walls. Adventitia is present, consisting of a thin layer of 

connective tissue, which is continuous with the host tissue. The composition of the adventitia 

connective tissue may influence capillary patency, and dynamics of the fluid exchange. The 

structure of the capillaries varies as per the host tissue (Laganowsky et al, 2014; Latroche et al, 

2015). 

 

Figure 1.1: The structure of the microvascular system, showing the micro-structure of the vessels.  

 

Venules: Blood flows from the capillaries to the venules. The transition is gradual, in terms of 

diameter and flow. The immediate post-capillary venules (10-50μm in diameter) are about 50-

700μm in length, have pericytes embedded in the basement membrane, and continues as venules 

(50-200μm in diameter), which are much wider, and have one to two smooth muscle layers in their 
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media. The post-capillary venules are lined by a relatively thin continuous endothelium (0.2-0.3μm 

in diameter), which may contain lysosomes, multivesicular bodies, microfilaments, and Weibel-

Palade bodies (Latroche et al, 2015). The intercellular junctions are loose and represent the 

weakest point in the entire vascular system, as maximum extravasation occurs here (Yannoustsos 

et al, 2014). The cells are particularly sensitive to prostaglandins, histamine, serotonin and 

bradykinin (Latroche et al, 2015). Here, bradykinin induce opening of the intercellular junction and 

it is the preferential site for extravasation and diapedesis seen in inflammation (Latroche et al, 

2015). The venules have a thin basal lamina, which envelopes the numerous pericytes, and in 

some venules are extensively branched and almost appear as a continuous layer (Yannoustsos et 

al, 2014).  

 

Venule in different muscular beds varies in ultrastructure and response to the vasoactive amines 

(Laganowsky et al, 2014; Jacob et al, 2016). They have a thin wall, and the lumen is lined by a 

continuous endothelial monolayer, which is thicker than those in post-capillary venules (Latroche et 

al, 2015). The endothelial cells of venules are particularly rich in microfilaments and organelles and 

have high-affinity histamine receptors. The endothelial cells rest on a thin basal lamina, which are 

perforated at the myo-endothelial junctions. The media consists of one to two layers of smooth 

muscle cells, thinner than the arterioles, and often forming an incomplete layer. The adventitial 

layer is thicker compared to the post-capillary venules and contains connective tissue components 

and specialised cells called veil cells. The veil cells are long, thin flattened fibrocytes, which are not 

surrounded by basal lamina (Tsioufis et al, 2015). Specific α- and β-adrenergic receptors are also 

present and are thought to promote contraction and relaxation of venular smooth muscle cells, 

indicating an active role in controlling capillary circulation. Unlike arterioles, venules have little 

sympathetic innervation (Thomas 2011; Shoemaker et al, 2015; Tsioufis et al, 2015). 

 

1.1.1.4.2. Short-term regulation of tissue blood flow 

One of the important characteristics of microcirculation is the ability of each tissue to control its 

own local blood flow in proportion to its needs (Shoemaker et al, 2015). In general, the greater the 

degree of metabolism, the greater is its blood flow. Similarly, it also ensures a minimal level of 
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blood to meet the nutritional supply, without over working the heart. In times of acute need, control 

is achieved by rapid changes in local constriction of precapillary smooth muscles, occurring in 

seconds, to maintain appropriate local tissue blood flow. Although tissue blood flow is influenced 

by tissue oxygen level and other metabolic requirements, the precise mechanism is unclear 

(Shoemaker et al, 2015; Tsioufis et al, 2015). 

 

The largest contribution of total resistance to blood flow comes from the arterioles. Significant 

reduction in resistance in these arterioles must occur; to achieve the increase in blood flow 

required to meet the increased metabolic needs of the tissues. Sometimes, these arterioles are not 

in direct contact with the metabolically active tissues, indicating other mechanisms control the 

tissue blood flow, such as (a) conducted vasodilatation (Tsai et al, 2003; Tsai et al, 2006), (b) flow-

mediated vasodilatation (Jacob et al, 2016; Hellsten et al, 2012), and (c) myogenic vasodilatation 

(Hudlincka, 2011).  

 

Arterioles and venules are closely paired in most tissues, suggesting that the proximity can allow 

diffusible metabolites in the venous blood to have a direct effect on diameter of the arterioles 

(Loukas et al, 2009; Hudlincka, 2011). The arteriolar diameter can be influenced by several factors, 

such as tissue metabolites, endothelial derived factors, and changes in flow and sheer stress 

(Hudlincka, 2011). There appears to be an inverse relationship between venous oxygen partial 

pressure (PO2) and blood flow during muscle stimulation. Although it is widely accepted that 

arterial endothelial cells release several vasoactive agents, such as nitric oxide (NO), 

prostaglandins and endothelium derived hyperpolarizing factor (EDHF) (Ozkor and Auyyumi, 2011; 

Félétou, 2016), there is evidence that venular endothelium also produces vasoactive agents, which 

influences arteriolar tone (Tsai et al, 2006; Hellsten et al, 2012), such as NO (Secomb, 2008) and 

prostanoids (Hammer et al, 2001). 

 

The mechanism(s) by which tissue can sense decreased oxygen tension remains unexplained. 

There is evidence that adenosine, released from the vascular endothelium during hypoxia 

(Edmund et al, 2001), acts on the endothelial A1 receptors to induce vasodilatation (Marshall, 
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2000). However, tissue oxygen partial pressure (PO2), rarely falls to such a low level (even in 

severe hypoxia), for such massive release of adenosine (Conley et al, 2000). Moreover, NO 

(Edmunds et al, 2003) and prostaglandins (Ray et al, 2002), are also released in hypoxia. There is 

evidence that adenosine causes vasodilatation partly by releasing NO from the endothelial cells 

(Hellsten et al, 2012, Nyberg et al, 2010). Ray et al (2002) suggested that adenosine released 

during systemic hypoxia, acts on endothelial A1 receptors, induces prostaglandin synthesis, which 

increases NO production, causing vasodilatation. 

 

1.1.1.4.3. Long-term regulation of tissue blood flow 

Long-term alteration in microvascular blood flow involves a change in tissue vascularity, by 

increasing or decreasing the number of micro-vessels in the tissue. It is more pronounced in new 

growth of tissue, than in well-established ones. Tissue hypoxia is one of the most important 

stimulants. The response involves angiogenesis, which is the growth of new vessels (Gutterman et 

al, 2016, Godo and Shimokawa, 2017). 

 

1.1.1.4.4. Angiogenic factors and tissue blood flow 

In normal pregnancy, there is a balance of pro-angiogenic factor, such as placenta growth factor 

(PlGF), and the anti-angiogenic factors, such as soluble fms-like tyrosine kinase 1 (sFlt-1) and 

soluble endoglin (sEng) (Levine et al, 2004). The pro-angiogenic factors are always more 

predominant than the anti-angiogenic factors, throughout pregnancy, helping in the safe working of 

the placenta (Venkatesha et al, 2006). The mechanism by which sEng works is thought to be via 

the prevention of the binding of transforming growth factor β (TGF-β) to its receptor, reducing the 

production of NO and thus, NO-mediated vasodilatation, and subsequent capillary formation by 

endothelial cells in vitro (Pipp et al, 2003). PlGF is a vascular endothelial growth factor (VEGF) 

homologue, which stimulates angiogenesis. Reduced levels impair collateral artery growth in 

mouse limbs and neovascularization in tumors and ischemic retinas, while exogenous PlGF 

delivery stimulates angiogenesis and collateral growth in ischemic hearts and limbs (Pipp et al, 

2003; Karunamichi et al, 2008; Mutter et al, 2008). 
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1.2. Pre-eclampsia 

Pre-eclampsia is a multisystemic disorder in the second half of pregnancy, which affects about 4-

5% of pregnant women (Sibai et al, 2003). It continues to be one of the leading causes of maternal 

morbidity and mortality (Knight et al, 2014 {CESDI. UK}). It also increases the risk of iatrogenic 

preterm delivery, intrauterine growth retardation (IUGR), and stillbirth (Knight et al, 2014 {CESDI. 

UK}).  It is responsible for about 15% of cot occupancy in the special care baby unit (Knight et al, 

2014 {CESDI. UK}). It is characterised by the development of hypertension, (SBP greater than 140 

mm Hg or DBP greater than 90 mm Hg on at least two successive occasions 4-6 hours apart), and 

proteinuria (presence of more than 300 mg of protein in 24 hrs urine), after 20 weeks gestation 

(National Blood Pressure Education Programme 2000). Pre-eclampsia is associated with long-term 

consequences for both the mother and her unborn child. Despite much research, the 

pathophysiology of pre-eclampsia is uncertain.  

 

Although, Hippocrates described the condition in ‘On the Sacred Disease’, he thought pre-

eclampsia was epilepsy, which was fatal during pregnancy. The term ‘eclampsia’ derived from the 

Greek word ‘eklampsia’ meaning ‘to flush out’, was first used by Varandaeus in 1619 to describe 

the symptoms complained of before a fit in pregnant women. In 1843, Lever observed that 

eclampsia was associated with proteinuria, which disappeared after delivery, unlike those seen in 

renal disease (Mol et al, 2016). Hypertension was first described as a feature in the late 19th 

century, but unlike essential hypertension (called ‘senile plethora’), occurred in a younger age 

group. Pregnancy-associated hypertension and proteinuria often preceded the convulsion and 

coma seen in eclampsia, therefore the term ‘pre-eclampsia’ was coined (Mol et al, 2016). 

 

1.2.1 Abnormal placentation in pre-eclampsia 

Although the primary pathology of pre-eclampsia remains unclear, there is considerable evidence 

that abnormal placentation might play a role in the pathogenesis of the disease. A two-stage model 

has been proposed to understand the pathophysiology of pre-eclampsia: 
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Stage 1: Reduced placental perfusion 

Marked vascular remodelling occurs at the uteroplacental bed during normal pregnancy because 

of trophoblastic invasion of the spiral artery. This process converts these resistance vessels to 

dilated tortious vessels. This results in low resistance circulation at the uteroplacental bed (Myatt, 

2002). The vascular pressure change is best described by using Poiseuille’s equation, [R = 8η / 

πr4, where ‘R’ is resistance of the vessel, ‘η’ is viscosity, ‘r’ is radius of the vessel]. Thus, resistance 

in a vessel is directly related to viscosity of the blood, and inversely related to the radius of the 

blood vessel. During pregnancy, plasma volume increases more than red cell mass, resulting in 

reduced blood viscosity (Ouzounian and Elkayam, 2012; Sanghavi and Rutherford, 2014). Since 

the blood viscosity decreases, and the radius of the blood vessel increases, the peripheral 

resistance decreases. In pre-eclampsia, the blood viscosity increases, secondary to extravasation 

of plasma in tissues. Since, the radius of the blood vessel is smaller in pre-eclampsia, it leads to 

increased peripheral vascular resistance (Roberts and Hubel, 2009) 

 

Placental perfusion is decreased in pre-eclampsia. Evidence for this came originally by direct 

measurement with radioactive washout studies demonstrating reduced placental perfusion in pre-

eclampsia (Siauve et al, 2015). Later, Doppler velocimetry studies have demonstrated increased 

resistance in the vessels that supply the intervillous spaces of women with pre-eclampsia, even in 

early gestation (Papageorghiou et al, 2002). 

 

In pre-eclampsia, trophoblast invasion is impaired, and spiral arteries keep their endothelial lining 

and musculature, therefore remaining reactive to vasoactive substances (Brennan et al, 2014; 

Godo and Shimokawa, 2017). Trophoblastic invasion of the spiral arteries is restricted to the inner 

third of the myometrium. (Myatt, 2002; Brosens et al, 2002). Between one-third and half the length 

of the spiral arteries in the placental bed are not affected by the endovascular trophoblastic 

invasion (Brosens et al, 2002). Microvascular density in the placental bed among the hypertensive 

pregnant women was observed to be lower than for the normotensive pregnant women in the 

decidual and myometrial segments (Coelho et al, 2006). 
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The exact mechanism for this vascular maladaptation is unknown. It is thought that local oxygen 

tension and immune-mediated interactions are the primary determinants of the process, the 

common mechanism being through apoptosis (Hung et al, 2002). Apoptosis leads to the release of 

syncitiotrophoblast fragments into the maternal circulation, which is accelerated in pre-eclampsia 

(Myatt, 2002). The disturbed placentation supposedly leads to hypo-perfusion of the placenta, 

resulting in release of one or more yet unidentified factors (Factor ‘X’) from the placenta, which 

causes late vascular dysfunction in pre-eclampsia, because of endothelial dysfunction (VanWijk et 

al, 2000).  

 

In pre-eclampsia, the invading cytotrophoblasts express different adhesion molecules and β2 

integrins, thereby failing to adapt their adhesion type from trophoblast cell characteristics to 

endothelial cell characteristics (Fisher 2015). Abnormal trophoblast invasion may also be the 

consequence of cytokine production by activated decidual leucocytes, such as Tumour Necrosis 

Factor-α (TNF-α), or altered growth factor production, like VEGF and PlGF (Shibuya 2013). 

 

Stage 2: More than pregnancy-induced hypertension  

The pathophysiology of pre-eclampsia is much more than hypertension and proteinuria, which 

facilitates diagnosis. Perfusion is decreased in virtually all organs, secondary to vasospasm, due to 

increased sensitivity to all the pressor agents (Brennan et al, 2014). It is further compromised due 

to activation of a coagulation cascade, especially platelets with attendant microthrombi, or due to 

decreased plasma volume, because of sequestration of fluid from the intravascular space (Roberts 

and Cooper, 2001; Roberts and Lain, 2002). Evidence of reduced perfusion is present in almost 

every organ of the body, including the uterus (Roberts and Lain, 2002). Reduced uterine blood flow 

further reduces placental perfusion, resulting in a feed-forward loop, consistent with the clinical 

course of pre-eclampsia. This is a disease, which never gets better, only worse, and when it 

begins to worsen, it worsens rapidly.  
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1.2.2. Immunology of pre-eclampsia 

The risk of pre-eclampsia is reduced by prior miscarriage, longer cohabitation period before 

conception, and immunisation with paternal lymphocytes; while the risk is increased during first 

pregnancy, change of partner, donor insemination and barrier contraception (Robillard et al, 2011). 

This strongly suggests that a prior immune response against paternal antigen protects against pre-

eclampsia. Hypo-responsiveness of lymphocytes seen in normal pregnancy is absent in women 

with pre-eclampsia (Robillard et al, 2011). The activity of circulating natural killer (NK) cells, 

neutrophils and cytokines, such as TNF-α, interleukin (IL)-6, IL-2 and IL-12, are increased 

(Robillard et al, 2011). Furthermore, human leucocyte antigen-G (HLA-G), a surrogate auto-

antigen known to prevent recognition by NK cells, is not expressed as usual in the placenta in pre-

eclampsia, as it is in normal pregnancy (Robillard et al, 2011; Fisher, 2015). Leucocyte activation 

in the decidua can cause release of cytokines, elastase and oxygen free radicals, all of which 

cause endothelial dysfunction. Whether the decreased HLA-G expression is caused by aberrant 

trophoblastic differentiation or results from an underlying genetic disorder is still unknown (VanWijk 

et al, 2000). 

 

1.2.3. Genetics of pre-eclampsia 

The cause of pre-eclampsia remains enigmatic, but there is a genetic component. It is a 

multifactorial disease in which the women’s genetic background, her partner and her environment 

all interacts. Daughters of pre-eclamptic or eclamptic women have a 1 in 4 chance of themselves 

developing pre-eclampsia, two-and-a-half times higher than that of daughters-in-law (Skjærven et 

al, 2005; Williams and Pipkin, 2011). There is an increased risk of pre-eclampsia in women who 

became pregnant by a man who has already fathered a pre-eclamptic pregnancy in another 

woman; this is presumably through foetal expression of paternal gene(s) (Skjærven et al, 2005; 

Williams and Pipkin, 2011). However, the GOPEC study disputes this, and has not found any 

correlation between genetics and pre-eclampsia (GOPEC consortium, 2005). 

 

 



12 
 

1.2.5. Metabolic changes in pre-eclampsia 

Profound maternal metabolic changes occur in pregnancies complicated by pre-eclampsia and the 

clinical picture is like that observed in other metabolic diseases, such as Syndrome “X”; a cluster of 

metabolic risk factors for cardiovascular disease, including hyperlipidaemia, hyperinsulinemia and 

hypertension (Irving et al, 2002). There is evidence of dyslipidaemia with elevated triglycerides, 

free fatty acids, LDL cholesterol, and reduced HDL cholesterol (Pignatelli et al, 2018). Women 

whose pregnancies are complicated by pre-eclampsia are therefore more likely to develop insulin 

resistance, Diabetes and cardiovascular disease, later in life (Wolf et al, 2004; Laivuori et al, 1996). 

Although the cause of this insulin resistance remains unclear there is accumulating evidence that 

this might be related to the underlying endothelial dysfunction of pre-eclampsia (Montagnami and 

Quon, 2000). There is also evidence that blood pressure increases with impaired glucose 

tolerance (Riemann et al, 2007) and that hypertension is an independent risk factor for diabetes. 

Elevated uric acid levels are also seen in pre-eclampsia (Robert and Lain, 2002). Uric acid has 

received increasing attention not only as a marker of cardiovascular disease, but also as an 

indicator of increased adverse foetal outcome even in the absence of proteinuria (Robert and Lain, 

2002). However, the clinical utility of uric acid in pre-eclampsia is still uncertain. 

 

In pre-eclampsia, lipid levels are increased even more than in normal pregnancy. In fact, the levels 

of circulating free fatty acids (FFAs) are higher in pre-eclamptic women, long before they show 

clinical signs of the disease (Villa et al, 2009). Amongst the FFAs, levels of oleic acid (18:1), 

linoleic acid and palmitic acid (16:0) are increased by 37%, 25% and 25% respectively (Villa et al, 

2009). These fatty acids interfere with endothelial cell functions. Additionally, linoleic acid reduced 

thrombin-induced prostacyclin (PGI2) release by 30-60%, oleic acid by 10-30%, whereas palmitic 

acid had no effect. The effect on PGI2 is concentration-dependent (Villa et al, 2009).  Endothelial 

levels of cGMP mainly reflect the synthesis of NO, since blocking of the endogenous production of 

NO with N-omega-nitro-L-arginine, resulted in about 90% reduction in cGMP-content of the 

endothelial cells. Incubation with linoleic acid reduced the endothelial cGMP level by 70%. Linoleic 

acid reduced the endothelial cells ability to inhibit platelet aggregation by 10-45% (p=0.0019), thus 
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impeding the ability of the endothelial cells to produce PGI2 and cGMP, and to inhibit platelet 

aggregation (Villa et al, 2009).  

 

1.2.6. Haemodynamic changes in pre-eclampsia 

Pre-eclampsia is characterised by vasoconstriction, metabolic changes, endothelial dysfunction, 

activation of coagulation cascade, and increase in inflammatory response, to mention only a few of 

the changes observed in this disease. A longitudinal study has shown that women, who 

subsequently develop pre-eclampsia, have increased cardiac output (Ouzounian and Elkayam, 

2012; Mahender et al, 2014). However, after development of pre-eclampsia, cardiac output 

variously decreases (Chaddha et al, 2004; Caniggia et al, 2000), remains the same (VanWijk et al 

2000) or increases (Hibbard et al, 2015; Sanghavi and Rutherford, 2014). The haemodynamic 

disease model for pre-eclampsia showed that whereas the increased cardiac output was not 

associated with significant changes in peripheral vascular resistance, there was a cross over to a 

low cardiac output and high resistance circulation coinciding with the clinical onset of the disease 

(Hibbard et al, 2015; Brennan et al, 2014). 

 

1.2.7. Endothelial function in pre-eclampsia 

There is overwhelming evidence of generalised endothelial dysfunction in pre-eclampsia (Godo 

and Shimokawa, 2017). Structural changes to the endothelium occur in the uteroplacental vessels 

(Brosen et al, 2002). In addition, there is extensive evidence of functional derangements, such as 

increased concentration of von Willebrand’s factor, endothelin, fibronectin, and an imbalance 

between PGI2 and thromboxane A2  (TXA2) (Roberts and Lain, 2002; Roberts and Hubel, 2009). 

Vascular tone and thus peripheral resistance are under the continuous influence of endothelial-

derived factors (Godo and Shimokawa, 2017).  

 

Furthermore, a myriad of markers for endothelial injury or dysfunction are present in women with 

pre-eclampsia and, in many cases, precede clinically evident disease (Mol et al, 2016; Esper et al, 

2006). Endothelial activation is only one component of a generalised activation of inflammatory 

responses that is characteristic of pregnancy (sometimes showing changes nearly as pronounced 
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as seen in sepsis) and further accentuated in pre-eclampsia (Roberts and Hubel, 2009). Thus, pre-

eclampsia may represent an exaggeration of the normal inflammatory state of pregnancy. (Roberts 

and Lain, 2002; Germain et al, 2007)  

 

The exact mechanism of widespread endothelial dysfunction encountered in pre-eclampsia is 

unknown. Evidence suggests the presence of several interacting factors, rather than a single 

agent. This might explain the heterogeneity of pre-eclampsia. One of the candidates for this is 

syncitiotrophoblast microvillous membrane particles (STBM), whose concentrations are increased 

in pre-eclampsia (Myatt, 2009). STBMs interfere with the growth of cultured endothelial cells, 

irrespective of whether a pre-eclamptic or normal placenta is used for their preparation (Chaddha 

et al, 2004). Oxidative stress has also been implicated as the cause of endothelial damage. 

Activated decidual large granulocytes produce cytokines, proteases and oxygen free radicals, 

induces lipid peroxidation, if not eliminated from the body (Steinberg and Baron, 2000; Villa et al, 

2009). All these may result in endothelial damage (Mol et al, 2016; Esper et al, 2006).  

 

In pre-eclampsia, the foetal and maternal mechanisms are not well understood. Endothelial 

dysfunction is considered to underlie many of the features of the disease, including hypertension 

and proteinuria (Robert et al, 2001). The strategic location of the endothelium permits it to 

modulate hemodynamic and humoral factors by synthesizing and releasing vasoactive substances. 

Thus, a critical balance exists between endothelium-derived relaxing and contracting factors that 

maintain vascular homeostasis. When this delicate balance is disrupted, the vasculature is 

predisposed to vasoconstriction, leukocyte adherence, mitogenesis, peroxidation, and vascular 

inflammation (Taylor and Roberts, 2007). The maternal vascular endothelium is an important target 

of factor(s) triggered by placental ischemia/ hypoxia in pre-eclampsia. Furthermore, markers of 

endothelial dysfunction may serve as predictors of pre-eclampsia, since many are elevated weeks 

before the clinical manifestations of the disease (Gilbert et al, 2008). 
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1.3. Introduction to Insulin 

Insulin (from the Latin, ‘insula’ meaning ‘island’) is a peptide hormone produced by beta cells of the 

pancreatic islets. It regulates the metabolism of carbohydrates, fats and protein by promoting the 

uptake of glucose from the blood into fat, liver and skeletal muscle cells. 

 

1.3.1. Historical background 

Insulin was the first hormone to be discovered, synthesized and used clinically. In 1869, Paul 

Langerhans, a medical student in Berlin, discovered a distinct collection of cells within the 

pancreas. These cells would later be called the Islets of Langerhans. In 1901, Eugene Opie 

discovered that the Islets of Langerhans produce insulin and that the destruction of these cells 

resulted in diabetes. In 1916, Romanian Professor Nicolae Paulescu, developed an extract of the 

pancreas and showed that it lowered blood sugar in diabetic dogs, but World War I prevented the 

experiments from continuing and it was not until 1921 that it was published. In 1921, in Toronto, 

Canada, Dr Frederick Banting and medical student Charles Best performed experiments on the 

pancreases of dogs. Professor John Macleod provided Banting and Best with a laboratory and 

dogs to carry out the experiments. The pancreas of a dog was removed, resulting in the dog 

displaying the signs of diabetes. The pancreas was sliced and ground up into an injectable extract 

and injected a few times a day into the dog, which helped the dog to regain health (Rosenfeld, 

2002). 

 

1.3.2. Structure and function of Insulin 

1.3.2.1. Distribution and Structure 

Insulin is secreted from the β-cells of the Islets of Langerhans, present in the pancreas. It is a 

polypeptide hormone, containing 2 chains of amino acids, α and β, linked by disulphide bridges 

that connect α7 to β7 and α20 to β19.  α and β chains have 21 and 30 amino acids, respectively. 

The gene for insulin is in the short arm of chromosome 11. Plasma glucose concentration, amino 

acids, free fatty acids and other hormones, like adrenal hormones, growth hormones, and 

placental lactogens, regulate insulin secretion. Once secreted, insulin is rapidly metabolised, 

mainly in the liver, kidneys and placenta (during pregnancy), and has a half-life of 3-5 minutes. It 

https://en.wikipedia.org/wiki/Latin
https://en.wikipedia.org/wiki/Peptide_hormone
https://en.wikipedia.org/wiki/Beta_cells
https://en.wikipedia.org/wiki/Pancreatic_islets
https://en.wikipedia.org/wiki/Metabolism
https://en.wikipedia.org/wiki/Carbohydrate
https://en.wikipedia.org/wiki/Fat
https://en.wikipedia.org/wiki/Protein
https://en.wikipedia.org/wiki/Glucose
https://en.wikipedia.org/wiki/Fat_cell
https://en.wikipedia.org/wiki/Liver
https://en.wikipedia.org/wiki/Skeletal_muscle
https://www.diabetes.co.uk/The-big-three-diabetes-signs-and-symptoms.html
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has no carrier protein, and in fact, 50% of the circulating hormone is removed in a single pass 

through the liver. (Granner, 2000; Ganong, 2005) 

 

1.3.2.2. Function 

Insulin produces a wide variety of effects on endothelial cells and plays an important role in 

glucose and vascular homeostasis. Muscle is the main peripheral site of insulin action (Saltiel and 

Kahn, 2001) and this is delivered to muscle cells from the circulation by both passive diffusion and 

trans capillary transport mechanisms involving endothelial cell surface binding (Posner, 2017). Its 

action is conveniently divided into immediate (within seconds), intermediate (within minutes) and 

delayed (within hours) effects. Its immediate actions are increased transport of glucose, amino 

acids and potassium into insulin sensitive cells. Its intermediate actions are increased protein 

synthesis and preventing their degradation, activation of glycogen synthetase and inhibition of 

glycolytic enzymes, and inhibition of phosphorylase and gluconeogenic enzymes. Its delayed 

actions include increase in mRNAs for lipogenic and other enzymes (Granner, 2000; Ganong, 

2005). 

 

Insulin has vasodilatory effects, which indirectly regulates tissue blood flow, peripheral insulin 

delivery and therefore uptake of glucose by skeletal muscle. Insulin binding to its receptor activates 

both PI3K/AKT and the Ras-MAP kinase pathway. In endothelial cells, the PI3K/AKT pathway 

mediates an anti-apoptotic effect and also results in an increase in gene expression and activation 

of eNOS (endothelial Nitric Oxide synthase). These effects are enhanced by VEGF and fluid shear 

stress (Zeng et al, 2000; Peach et al, 2018).  PI3K/ AKT also translocate GLUT-4 from the 

cytoplasm to the membranes, to enhance glucose uptake (Thong et al, 2005). [Figure 1.2] 

 

1.3.3.3. Role in vascular haemostasis  

Vasodilatation is achieved by relaxation of the resistance vessels, and the precapillary arterioles, 

thus increasing total blood flow (Grundmann et al, 2008, Strijbos et al, 2010). Insulin induces 

endothelial-mediated vasodilation, via PI3K/AKT/NO pathway (Roberts and Gammill, 2006) Thus, 

hyperinsulinemia in pre-eclampsia could be a reflex compensatory mechanism to cause the 
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decrease in blood flow to the tissue, that occurs in pre-eclampsia (McVeigh and Cohn, 2003). 

However, such an assertion has been contradicted, with an alternative explanation postulates that 

hyperinsulinemia is the cause of endothelial dysfunction (Wautier et al, 2001). 

 

Figure 1.2: Role of the insulin-signalling pathway on endothelial function in healthy pregnancy. (Yu 

et al, 2011)  

 

1.3.3. Insulin signalling pathway 

Insulin’s action begins when it binds to a specific cellular glycoprotein receptor, expressed by all 

tissues in the body in varying densities [Figure 1.3]. Insulin receptors have been demonstrated on 

endothelial cells, of both large and small blood vessels (Vincent et al, 2003) and participate in 

insulin-regulated glucose homeostasis. The insulin receptor is composed of two α- and two β-

subunits, covalently linked through disulphide bonds to form a α2β2-heterotetramer. Each subunit 

has a specific function; the extracellular α-subunit contains the insulin binding domain, while the 

transmembrane β-subunit possess an insulin-stimulated protein, tyrosine kinase, an auto-

phosphorylation site, essential for signal transduction (Granner, 2000).  The receptors appear to 
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regulate insulin action on vascular endothelium and control of glucose homeostasis by controlling 

trans-endothelial insulin transfer. 

 

Insulin receptors are unique in that not all receptors are always expressed on the cellular surface. 

Once bound to insulin, the receptors are internalised within the cell into endosomes, and remain 

there until insulin is degraded (Mol et al, 2016; Esper et al, 2006). Once insulin is degraded in the 

endosomes, the insulin receptors may recycle back to the cell surface, or form lysosomes where 

the receptors are degraded. Prolonged stimulation of the receptors by insulin, caused by increased 

doses of insulin, appears to accelerate the degradation of insulin receptors, leading to receptor 

down-regulation (Roberts and Lain, 2002; Posner, 2017). Insulin binding to its receptor activates 

both PI3K/AKT and the Ras-MAP kinase pathway. In endothelial cells, the PI3K/AKT pathway 

mediates an anti-apoptotic effect and results in an increase in gene expression and activation of 

eNOS (Zeng et al, 2000; Kuboki et al, 2000; Hermann et al, 2000) [Figure 1.3] 

 

Human cells use glucose for the generation of ATP (adenosine triphosphate), by metabolism. The 

lipid bilayer of the cell membrane is impermeable to carbohydrate. Glucose is transported from the 

blood across the cell membrane by a saturable transport system, which is of two types; 1) firstly 

sodium-dependent glucose transporters (SGLTs), which transport glucose against the 

concentration gradient, and 2) sodium independent glucose transporters (GLUTs), which transport 

glucose by facilitated diffusion along its concentration gradient (Jurcovicova, 2014). Currently, 

there are five established functional facilitative glucose transporter isoforms (GLUT1-4 and 

GLUTX1), with GLUT5 being a fructose transporter. The GLUT4 isoform is the major insulin-

responsive transporter that is predominantly restricted to striated muscle and adipose tissue 

(Watson and Pessin, 2001). In the basal state, GLUT4 cycles slowly between the plasma 

membrane and one or more intracellular compartments, with most of the transporter residing in 

vesicular compartments within the cell interior (Huang and Czech, 2005; Leto and Saltiel, 2012). 

Activation of the insulin receptor triggers a large increase in the rate of GLUT4 vesicle exocytosis 

and a smaller decrease in the rate of internalization by endocytosis (Huang and Czech, 2005; Leto 

and Saltiel, 2012). 
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Figure 1.3: The Insulin Signalling Pathway (Hale and Coward 2013)  

1.3.4. Insulin Resistance in pregnancy and pre-eclampsia 

Insulin resistance is a feature of pregnancy, though it is exaggerated in pre-eclampsia (von Versen-

Hoeynck and Powers, 2007; Thadhani et al, 2004). It is also been shown that reduced blood flow 

may play a role in the increased insulin resistance seen in pre-eclampsia (Anim-Nyame et al, 

2015). Himsworth has shown previously that insulin resistance can by itself be a cause of diabetes 

mellitus (Himsworth, 1949). Women with pre-eclampsia and insulin resistance are at risk of 

developing diabetes in later life (Laivuori et al, 1996; Lykke et al, 2009; Spaan et al, 2010; Feig et 

al, 2013). Although the cause of this remains unclear, there is accumulating evidence, that this 

might be related to the underlying endothelial dysfunction (Montagnani and Quon, 2000) [Figure 

1.2].  

 

1.4. The Microcirculation in pre-eclampsia 

Most of the functions of the cardiovascular system occur at the level of the microcirculation, where 

there is exchange of material between the plasma and the tissues.  
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1.4.1. Assessment of microvascular parameters 

There are several methods for the clinical assessment of the tissue blood flow. Over the last few 

decades, several non-invasive techniques have been described, making the study of 

microcirculation more accurate and reproducible. In this study, Filtrass strain gauge 

plethysmography has been used, as described by Christ et al (2000a & b).  A more detailed 

account of the technique is described in Chapter 3. 

 

1.4.2. Clinical evidence of microvascular changes in pre-eclampsia 

The microcirculation is essential for the delivery of nutrients and removal of waste products from 

tissues. It also plays a role in the control of the blood pressure and peripheral vascular resistance 

and is designed to serve each organ’s needs. The clinical picture of pre-eclampsia is suggestive of 

reduced tissue perfusion and end organ failure, as occurs in severe forms of the disease, 

resembling critically ill non-pregnant patients with multi organ failure. Thus, the end organ failure in 

pre-eclampsia may be preceded by a deterioration of the microcirculation (Qspina- Tascón et al, 

2017). 

 

There is increasing evidence of defective tissue extraction of oxygen in pregnancies complicated 

by the disease, leading to tissue anaerobic metabolism. This results in a degree of base deficit, 

which correlates with the end-organ injury and adverse foetal outcome in pre-eclamptic patients. 

Severe forms of pre-eclampsia closely resemble the pathophysiology of septic shock. Generalised, 

widespread, endothelial dysfunction is seen in both conditions. It results in end-organ ischemic 

injury, secondary to vasoconstriction, hypervolemia, and impaired tissue exchange of metabolites. 

This may explain the pattern of maternal end-organ injury seen in pre-eclampsia (Powe et al, 2011; 

Ince et al, 2016).  

 

There is evidence that endothelial dysfunction in pre-eclampsia might interfere with the regulating 

mechanisms for the microcirculation (Anim-Nyame et al, 2004). This is because the vascular 

endothelium acts as an organ driving vasomotor activity at the pre-capillary level, playing an 
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important role in sensing altered local tissue demand and adjusting flow to accommodate these 

needs (Hellsten et al, 2012; Sarelius, 2000). 

 

1.4.3. Angiogenic factors in pre-eclampsia 

Angiogenic imbalance with increased anti-angiogenic factors, such as sFlt-1 and sEng appear to 

play a pathogenic role in the aetiology of pre-eclampsia (Maynard et al, 2003; Venkatesha et al, 

2006). A rise in sFlt-1 and sEng and a reduction in the pro-angiogenic factors, such as PlGF, have 

been reported in maternal serum 5-10 weeks prior to the onset of pre-eclampsia (Levine et al, 

2004). It is proposed that these anti-angiogenic factors contribute to the maternal endothelial 

dysfunction seen in pre-eclampsia (Levine et al, 2004).  Moreover, levels of sFlt-1 directly correlate 

with the severity of pre-eclampsia and precede the onset of the disease (Karunamichi et al, 2008; 

Levine et al, 2004), as sFlt-1 circulates freely in serum, and binds to pro-angiogenic factors, such 

as VEGF and PlGF.  

 

Angiogenic imbalance is likely to affects microvascular function as the microvasculature is formed 

by the continuous tension between de novo angiogenesis and microvascular regression 

(rarefaction). It is possible that microvascular dysfunction in pre-eclampsia is related to the pro- 

and anti-angiogenic imbalance in pregnancies complicated by the disease. Furthermore, increased 

levels of sFlt-1 and sEng or low PIGF are associated with reduced microvascular flow whereas 

lower levels of the anti-angiogenic factors and higher pro-angiogenic PIGF levels correlate with a 

greater blood flow during normal pregnancy (Ghosh et al, 2017).  

 

1.5. Aim and Objectives 

1.5.1. Aims and objectives of the study 

1. To compare endothelial cell insulin signalling between normal pregnancy and pre-eclampsia. 

2. To investigate whether any changes in endothelial cell insulin signalling are related to insulin 

resistance and tissue blood flow in pre-eclampsia.  

3. To evaluate the extent of endothelial cell damage by investigating circulating endothelial cell (CEC) 

and soluble markers of endothelial cell function. 
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1.5.2. Hypotheses of the study 

1. Changes in endothelial cell insulin signalling occur in pre-eclampsia, secondary to underlying 

endothelial dysfunction, resulting in insulin resistance.  

2. Impaired endothelial cell insulin signalling results in reduced tissue delivery of insulin and reduced 

GLUT-4 activation.  

3. Impaired microvascular blood flow results in insulin resistance. 
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Chapter 2: Material and Methods 

 

All the work in this study is done by the author. All clinical parts of the study, like plethysmography, 

blood pressure measurements and blood collection were done at Kingston Hospital, UK; by the 

author. The laboratory part, like blood separation, cell culture, enzyme linked immunosorbent 

assay (ELISA) and flow cytometry, were done at Kingston University, UK, by the author 

 

2.1 Subjects/ Participants 

This is a prospective, case controlled and collaborative study between Kingston Hospital, and 

Kingston University. Pregnant women were recruited during the third trimester from Kingston 

Hospital’s maternity unit.  

 

2.1.1. Ethical approval and consent 

The London and Surrey Borders Research Ethics Committee approved the study, and informed 

consent was obtained from all the participants. The studies in this thesis conformed to the Helsinki 

Declaration. 

 

2.1.2. Women with Pre-eclampsia 

Women with pre-eclampsia were recruited in this study to compare changes in microcirculation 

and insulin signalling pathways with normotensive pregnant controls. Pre-eclamptic women were 

recruited from the antenatal ward of Kingston Hospital’s maternity unit. These were women who 

had no history of any previous disorder that was likely to affect their microcirculation or insulin-

signalling pathway, independent of pregnancy. Pre-eclampsia was defined as new-onset 

hypertension, (SBP greater than 140 mm Hg or DBP greater than 90 mm Hg on two successive 

occasions 4-6 hours apart), and new-onset proteinuria (presence of more than 300 mg of protein in 

24 hrs urine), after 20 weeks gestation (National Blood Pressure Education Programme, 2000). 

Blood pressure was determined using the first and the fifth Korotkoff sounds (appearance and 

disappearance) for measuring the systolic and diastolic blood pressure. Proteinuria was assessed 
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by collecting 24-hour urine in plastic jars using phenyl mercuric acetate as preservative and 

measuring protein by calorimetric reactions in an autoanalyzer (Watanabe et al 1986). 

 

2.1.3. Normal pregnant control 

Normal pregnant controls were recruited in this study to compare the changes in microcirculation 

and insulin signalling pathways, with pre-eclamptic pregnant women. These were healthy women 

without any history of medical and surgical disorders that were likely to affect their microcirculation 

or insulin-signalling pathways, independent of pregnancy. The women were recruited from the 

antenatal clinic of Kingston Hospital. These women were given leaflets and information about the 

study. Participation in the study was voluntary, and they could withdraw from the study at any time. 

 

2.1.4. Inclusion and Exclusion criteria 

All pregnant women who were registered at Kingston Hospital, UK, were invited to participate in 

the study. They had to be in their third trimester of pregnancy (more than 28 weeks gestation). 

They were chosen to be similar in maternal age, gestational age and BMI. Women with pre-

existing or gestational diabetes or any known metabolic, cardiovascular, inflammatory, immune, 

infectious or neoplastic conditions were excluded from the study. Smokers were also excluded 

from the study (Csordas and Bernhard, 2013). 

 

2.2 Sample collection and transport 

Fasting blood samples were collected from pre-eclamptic women from the antenatal ward, and 

from the normal pregnant controls in the antenatal clinic. Blood samples were obtained from a 

cubital vein of each participant aseptically, using Vacutainer™ vacuum test tubes (Becton 

Dickjenson, Vacutainer System, UK). Blood was collected in the tubes in the following order; 

Sodium Fluoride (2ml), Serum (4ml), Ethylenediaminetetraacetic Acid (EDTA) (2ml), Lithium 

Heparin (1ml), and Sodium Citrate (1.8ml). 

 

After drawing blood, the women had their breakfast and were made to rest for 30 minutes. 

Examinations were done on a bed in the left lateral position lasting for 15 minutes. Then their blood 
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pressure and pulse were measured in a semi-recumbent position. Maternal tissue blood flow was 

estimated in the gastrocnemius muscle using a Filtrass strain plethysmograph using an 

established protocol previously used in other studies on pregnant women (Christ et al, 2000a; 

Christ et al, 2000b) (described in section 2.3).   

 

The blood samples were transported from Kingston Hospital to Kingston University in a sealed 

container, over ice, in a car. The transport time was less than 30 minutes. On arrival, bloods were 

prepared as follows. 1 ml of EDTA was separated for determination of CEC, as described later 

(Section 2.5.1). 1 ml of heparinised blood and 1 ml of EDTA blood were centrifuged at 3000 rpm 

for 10 minutes (Thermo Scientific, UK). The supernatant was separated and stored at -80ºC in a 

freezer for later use. Sodium Fluoride blood was also centrifuged at 3000 rpm for 10 minutes and 

the supernatant stored in a -80ºC freezer for later use. Sodium citrate bloods were centrifuged at 

5000 rpm for 5 minutes, the supernatant separated and centrifuged for another 5 minutes at 5000 

rpm. The supernatants were stored in a -80ºC freezer for later use. 

 

2.3 Clinical measurement of microvascular blood flow 

There are different methods available for measuring microvascular blood flow. The different 

methods are plethysmography, of which there are different types; skin temperature and thermal 

clearance; clearance of radiolabelled particles, like microsomes, dyes, albumin and dextran; 

intravital microscopy; use of infrared spectroscopy or electrodes to study tissue oxygenation and/ 

or products of tissue metabolism; to name a few. The method used in the present study is 

plethysmography, which is described below. 

 

2.3.1 Plethysmography 

Plethysmography is a non-invasive diagnostic procedure, which measures changes in volume of 

certain body parts. The word ‘Plethysmograph’ is derived from the Greek words, ‘plethysmos’ 

(increase) and ‘graphein’ (to write).  Thus, the words describe the fundamental principle of this 

technique, to measure any change in volume of any portion of the body. 
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This technique was first described by Glisson (1622) and later by Swammerdam (1737) to study 

muscle contraction. It was first used by François- Frank (1876) to measure blood flow in limbs, 

using venous occlusion plethysmography. Since then, plethysmography has undergone refinement 

with new methods and instruments being invented (Hyman and Windsor, 1961) 

 

2.3.1.1 Principles of Plethysmography 

Plethysmography measures changes in volume of body parts. Apart from the lungs, the change in 

volume of other parts of the body is related to the blood flow through the body part. Thus, 

plethysmography measures changes in volume of blood in the body part being examined. Venous 

occlusion plethysmography is a non-invasive method used to measure blood flow through the 

limbs or other parts of the anatomy having a circular cross-section. The venous outflow is 

transiently interrupted for 7 to 9 seconds, without interrupting the arterial flow. The accumulating 

blood causes the limb to swell at a rate, which initially is directly proportional to the arterial blood 

flow.   

 

2.3.1.2 Types of Plethysmograph 

Plethysmography has come a long way since Glisson first described it in 1622. There are different 

devices and techniques used to measure the relevant information. They fall into one of the 

following categories (Joyner et al, 2001) 

• Water-filled plethysmography. It measures the amount of water displaced by a change in volume. 

• Air plethysmography. This works by measuring the change in air pressure caused by air 

compression due to a change in the volume of body parts. 

• Strain gauge plethysmography. This measures the change in circumference of a limb. 

• Impedance plethysmography.  This measures volume change by measuring the change in 

electrical resistance through tissues.  

• Photo-plethysmography. This uses the reflection of light from the blood cells flowing through the 

vessels to determine the change in volume of the tissue. 

In this experiment, the strain gauge plethysmography was used, as described below. 
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2.3.1.3 Principles of strain gauge plethysmography 

First described by Whitney, this method uses mercury-filled strain gauge to measure changes in 

limb volume. Recent models use fine silastic tubes filled with mercury and sealed with 

molybdenum pins. These are then balanced against an adjacent temperature compensation coil on 

a Wheatstone bridge. The tube is wrapped around the limb, with just enough stretch to ensure 

good contact. As the circumference of the limb changes, the length of the gauge changes 

accordingly. Since the resistance of the gauge varies with its length, which changes as the gauge 

is stretched, a difference in the limb circumference will be reflected by variations in the voltage 

drop across the gauge. 

 

A new protocol, developed by Gamble (Gamble et al, 1993), used the silastic strain gauge 

plethysmograph to measure the forces that govern microvascular exchange in the gastrocnemius 

muscle. It was based on Starling’s principle. It follows the following equation: 

Jv=Kf[(Pc-Pt)-σ(πc-πt)] 

Where Jv is fluid flux per 100 ml tissue per min 

 Pc is capillary hydrostatic pressure, 

 Pt is interstitial hydrostatic pressure, 

 πc is capillary oncotic pressure, 

 πt is interstitial oncotic pressure 

 Kf and σ are co-efficients. 

Kf is hydraulic conductance, and is a measure of permeability of the microvascular exchange to 

water, and 

σ is the osmotic reflection co-efficient, an index of microvascular impermeability to protein 

molecules. 

A σ value of 1.0 denotes total impermeability to proteins, while a value of 0.0 denotes a free 

permeability of proteins across the membrane. The Kf co-efficient depends on the permeability of 

the membrane per unit area (Lp), and the total surface area of membrane within 100g of tissue (A). 

Thus, changes in fluid flux (ΔJv) are due to either an alteration in membrane co-efficient (Lp or σ), 

an alteration of the total surface area available for exchange (ΔA), or variation in net transmural 



28 
 

forces across the membrane. However, this equation does not take lymphatic drainage (JL) into 

account. 

 

2.3.1.4 Assumptions made in this study 

• The major tissue component of the gastrocnemius muscle is made up of muscle, with a high 

muscle to skin ratio. Thus, the measured blood flow relates more to tissue metabolism, rather than 

in temperature regulation.  

• Since there are no visible arterio-venous malformations in the limbs, it is assumed that the arterial 

blood will flow through the microvascular beds. Thus, it is assumed that blood flow in the 

gastrocnemius muscle measures nutritive blood flow. 

• The gastrocnemius muscle pressure applied is equal to the deep venous pressure, so that the 

venous flow is occluded (40mm Hg) (Groothuis et al, 2003). 

• The gastrocnemius muscle pressure exerted does not occlude the arterial flow to the limbs. 

• The arterial blood causes the limb to swell in proportion to the rate of arterial inflow. 

 

2.3.1.5 Merits and Limitations 

The mercury used in silastic strain gauge is very sensitive with a high frequency response, capable 

of reproducing the magnitude of periodic stretch without loss up to 100Hz. It is also free of any 

resonance effect.  

 

The main drawback of the strain gauge plethysmography method is its sensitivity to temperature. 

Potentially, this could lead to a measurement error if calibration was carried out at a different 

temperature to that in which a recording was made. In practice, this does not happen, as the skin 

temperature is maintained. Another potential drawback of the technique is the mercury used in 

strain gauge plethysmography is toxic. The lifetimes of the gauges were variable, and there is a 

potential to produce an inaccurate calibration (Christ et al, 2000a; Christ et al, 2000b). 
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2.3.2 The Filtrass Strain Gauge Plethysmograph 

First described by Christ (Christ et al, 2000a, Christ et al, 2000b), this is a novel metal-free device 

for venous congestion plethysmography. The Filtrass device (Filtrass, Munich, Germany) is a 

modification of the system produced by Gamble (Gamble et al, 1993). Filtrass is mercury-free, with 

an automated calibration device, which allows a touch-free calibration; thus, reducing artefacts by 

the investigator. The sensor is automatically calibrated three times during each study, by a 

computer driven programme. It has a pre-recorded protocol for measuring blood flow, amongst 

others. [Fig 2.1] 

 

Figure 2.1: The Filtrass Strain gauge Plethysmograph (Filtrass, Munich, Germany)  

 

The principle of the Filtrass is like the strain gauge plethysmograph, except it doesn’t contain any 

mercury. An inelastic, flexible plastic line, with a diameter of 0.5 mm, detects the limb 

circumference. It spans the limb and connects the transducer with an inbuilt electric motor. It can 

detect changes in the limb circumference with an accuracy of ±5 µm. The plastic line glides over a 

silicon-coated flexible zigzag band [Fig 2.2]. This ensures low friction and good fixation of the 

electromechanical sensor to the limb. When the limb circumference increases, the passive 

transducer can be pulled out to a maximum of 4 mm, followed by the outward drive of the stepping 

motor, if the change in circumference exceeds 4 mm, allowing it to measure a maximum of 22 mm. 

The motor resets itself automatically to the initial position of passive transduction before each 

pressure reading, unlike the silastic tube system. This ensures that the sensor is always operating 
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over the same sensing range. Moreover, the calibration is touch free, thus reducing artefacts due 

to manipulation. Venous congestion pressure is induced with the help of an occlusion cuff, which is 

attached to a compressor pump built into the apparatus, and placed around the right thigh, 

enclosed in a tight corset, thus reducing the time by reducing the volume required to occlude the 

venous pressure (Christ et al, 2000a). 

 

Figure 2.2: The transducer band used in Filtrass (Filtrass, Munich, Germany) [own photo] 

 

2.3.2.1 Calibration of the Filtrass plethysmograph. 

The calibration of the Filtrass is touch-free, thus reducing errors due to manipulation. Before any 

study, the motor applies a pre-tension pull of 1mm, followed by a calibration pull of 4 mm. The 

response of the inductive transducer to the pull is sampled at 10 Hz and measured in arbitrary 

units. Deviations from the ideally linear relationship, between motor pull and the response to the 

passive transducer, are included in the calibration. Three repetitive measurements are 

automatically performed during each calibration procedure, and the second and the third are 

compared for the time delay of the response of the passive transducer. The maximum time delay 

value that is accepted is 500 ms. The calibration and data recording procedure are fully 

automated, and computer driven.  

 

Specific protocols can be written, saved and selected at the start of the study. They can also be 

modified during a study, thus enabling allowances to be made for changes in circumstances, e.g. 

for therapeutic interventions. 
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2.3.3 Protocol for measuring microvascular blood flow 

2.3.3.1 Study environment and preparatory phase; arterial blood pressure 

The studies were performed at Kingston Hospital, UK, in a quiet room at room temperature (22-

24ºC). The subjects were rested for about 30 minutes in a semi-recumbent position. Pedal oedema 

was assessed by applying firm pre-tibial pressure for 5 seconds for evidence of pitting. After 

resting for 30 minutes, arterial blood pressure was measured non-invasively in the ipsilateral arm. 

The average values of systolic, diastolic and mean arterial blood pressures were calculated from 

triplicate measurements. Observations were made in the left-lateral position, to prevent aorto-caval 

compression, with the right mid-gastrocnemius muscle supported by pillows, at the level of the 

heart [Fig 2.3]. 

 

Figure 2.3 Filtrass protocol for measuring limb blood flow 

 

2.3.3.2 Filtrass protocol for measuring limb blood flow 

The strain gauge plethysmograph has been widely used for non-invasive assessment of blood flow 

in the limbs (Christ et al, 2000a &b; Gamble et al, 1993). Both strain gauge plethysmograph 

(Carberry et al, 1992) and Filtrass (Anim-Nyame et al, 2000a, b & c, 2001) have been used before 

in pregnancy. 

 

In this study, the gastrocnemius muscle is used for the following reasons. Firstly, the 

gastrocnemius muscle is less likely to have artefacts due to involuntary movements. Secondly, in 

severe cases of pre-eclampsia, the arms may be used for administering intravenous therapy, and 

are therefore not readily available for investigation. Thirdly, the women are more rested, calm, and 

http://www.netterimages.com/image/1016.h
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co-operative when the gastrocnemius muscle is used. Finally, a large amount of control data has 

been gathered from the gastrocnemius muscle using strain gauge plethysmography (Anim-Nyame 

et al, 2000a, b & c, 2001; Gamble et al, 1998) 

 

Figure 2.4. A typical plethysmograph reading. It shows the circumference of the limb, the 3 

readings and the mean, calculated automatically.  

 

The gastrocnemius muscle blood flow was measured using a protocol that has been described 

previously (Anim-Nyame et al, 2000a, b & c, 2001). As per this protocol, the venous congestion 

pressure was raised rapidly by 40 mmHg, and the pressure held for 10 seconds. Assuming this 

pressure occludes venous return without hampering the arterial flow, as described previously 

(2.3.1.4), the initial swelling rate will be equal to the arterial blood flow (Groothuis et al, 2003). To 

avoid discomfort to the participants and prolongation of the protocol, no attempt was made to 
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exclude blood flow through the foot by applying supra-systolic congestion pressure via an ankle 

cuff. 

 

Blood flow was estimated from the slope of the first 3 seconds of the volume response to the 

pressure step. The procedure was repeated three times, with the congestion pressure kept at 0 in 

between each measurement. The inbuilt system analysis programme calculates the change in 

circumference and uses it to estimate volume change, assuming the gastrocnemius muscle to be a 

cylinder of uniform diameter and constant length. Units of blood flow were millilitres per 100 ml of 

tissue volume per minute [ml/100ml/min]. [Figure 2.4] 

 

2.4 Biochemical assays 

2.4.1 Assay of biochemical markers of endothelial dysfunction 

Blood samples were collected, processed and stored as described in Section 2.2. Biochemical 

markers of endothelial dysfunction were measured to evaluate the relationships between insulin 

signalling, insulin resistance, microvascular function and endothelial dysfunction (Petrák et al, 

2006). The biochemical markers studied were soluble Inter-Cellular Adhesion Molecule-1 (sICAM-

1)/ CD54 (Cluster of Differentiation 54); soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1)/ 

CD106; E-selectin/ CD62E; TNF-α, and Thrombomodulin/ CD141. The markers were assayed 

using ELISA. 

 

Assay: All the samples were assayed as per the manufacturer’s guidance. If any sample 

generated values higher than the highest standard, the sample was further diluted, and the assay 

repeated. For each assay, the mean absorbance values were calculated for each set of duplicate 

values. The test was done in a 96-well plate. The samples (100 µl) and the standard calibrators 

(100 µl) were done in duplicate.  To the samples, 100 µl of sICAM-1 conjugate was added, and 

then covered with adhesive strips, and incubated at room temperature for 1.5 hour, with constant 

shaking (500±50 rpm). The wells were washed four times with a wash solution (buffered surfactant 

with preservatives). Then 100 µl of substrate solution (an equal volume mixture of hydrogen 

peroxide and chromogen) was added, covered with a new adhesive strip, and incubated at room 
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temperature, protected from light. After 20 minutes, 50 µl of a stop solution was added (2-N 

sulphuric acid), and put on a shaker for approximately 5 seconds, for proper mixing. Readings 

were taken within 30 minutes using a plate reader at a wavelength of 450 nm and 570 nm (Labtech 

International, East Sussex, UK). The reading at 570 nm was subtracted from the reading at 450 

nm, to correct for optical imperfections in the plate. Concentrations obtained in each of the assays 

described below were determined using separate standard curves created for each assay using 

computer software (Graphpad Prism 7.0, CA, USA) 

 

2.4.1.1 soluble Inter-Cellular Adhesion Molecule-1 (sICAM-1)/ CD54:  

Blood was collected with EDTA as an anticoagulant. sICAM-1 was measured by ELISA as per the 

manufacturer’s protocol (R and D Systems Europe, UK), as described in section 2.4.1. 

 

2.4.1.2 soluble Vascular Cell Adhesion Molecule-1 (sVCAM-1)/ CD106 

Blood was collected with EDTA as an anticoagulant. sVCAM-1 was measured by ELISA as per the 

manufacturer’s protocol (R and D Systems Europe, UK), as described in section 2.4.1. 

 

2.4.1.3 E-selectin/ CD62E 

Blood was collected with EDTA as an anticoagulant. sEselectin was measured by ELISA as per 

the manufacturer’s protocol (R and D Systems Europe, UK), as described in section 2.4.1. 

 

2.4.1.4 Tumour Necrosis factor-α (TNF-α) 

Blood was collected with EDTA as an anticoagulant. TNF-α was measured by ELISA as per the 

manufacturer’s protocol (R and D Systems Europe, UK), as described in section 2.4.1. 

 

2.4.1.5 Thrombomodulin/ BDCA-3 

Blood was collected with EDTA as an anticoagulant. Thrombomodulin was measured by ELISA as 

per the manufacturer’s protocol (R and D Systems Europe, UK), as described in section 2.4.1. 
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2.4.2 Assessment of insulin resistance 

Fasting blood glucose levels, and the amount of free insulin, was measured as described below. 

These were used to calculate insulin resistance by using the Homeostasis Model Assessment 

(HOMA) method (Matthews et al, 1985). 

 

2.4.2.1 Estimation of Fasting Blood Glucose 

Blood was collected in sodium fluoride tubes, centrifuged and stored as described in Section 2.2. 

The samples were later analysed using a GL5 Analox analyser (Alpha Laboratories, Eastleigh, UK) 

(Virtanen et al, 2002). The analyser was first calibrated with glucose standards of 5 mmol/l and 10 

mmol/L. Samples (7 µl) were assayed by the analyser. 

Principle of the assay: Glucose present in the sample is oxidised by oxygen, to gluconic acid and 

hydrogen peroxide, by the enzyme, glucose oxidase (GOD). 

 

Thus, oxygen consumption is directly proportional to the glucose concentration in the sample. In 

this assay, oxygen consumption is used to measure glucose concentration.  

 

2.4.2.2 Assessment of free insulin 

Blood was collected with EDTA as an anticoagulant. Free insulin was measured by ELISA, as per 

the manufacturer’s protocol (Mercodia, Sweden), as described in section 2.4.1.  

  

2.4.2.3 Calculation of the Homeostasis Model Assessment (HOMA) 

HOMA was calculated from the fasting blood glucose level (mmol/l) and fasting plasma insulin 

level (µU/ml), by using the following formula (Matthews et al, 1985) 

HOMA= FI x FG/ 22.5 

Where FG is fasting blood glucose level 

  FI is fasting plasma insulin level 
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2.4.2.4 Other methods of assessing insulin resistance 

There are different methods used for measuring insulin resistance, as described below. In the 

broadest sense there are two approaches to measure insulin sensitivity and resistance: the 

dynamic intervention (glucose, insulin, and tolbutamide injection or infusion), and the steady-state 

(usually fasting) assessment (Radziuk et al, 2000; Wallace and Matthews, 2002). 

• The hyperinsulinemic euglycemic clamp: Often described as the ‘gold standard’, it measures 

the amount of glucose necessary to compensate for an increased insulin level without causing 

hypoglycaemia. The test usually lasts 2 hours. In this test, insulin is infused in a peripheral vein at 

rate of 10-120 mU/m2/min. To compensate for insulin, 20% glucose is infused, to maintain blood 

glucose between 5-5.5 mmol/L. The rate of glucose infusion is determined by measuring blood 

sugar level every 5- 10 minutes. The rate of glucose estimation in the last 30 minutes, and the 

glucose infusion rate (Ginf), determine insulin sensitivity. 

Though the gold standard, this method is not practicable in clinical practice, and is only used in 

research settings. This method is cumbersome, and lengthy, requiring frequent blood testing. It 

has a large operator dependent error, arising from the infusion rate (Katz et al, 2000). 

• Modified clamp: This method is a modification of the above method. In this method, glucose is 

labelled with either a stable or radioactive isotope. This method is not suitable in pregnancy 

(Wallace and Matthews, 2002).  

• Quantitative insulin-sensitivity check index (QUICKI): This is estimated from fasting blood 

glucose and fasting insulin levels. It has been pointed out (Skrha et al, 2004) that it is simply a 

logarithm of the HOMA equation. 

QUICKI = 1/ (log[HOMA]+ log[22.5]) 

The correlation coefficient between log (HOMA) and QUICKI is 0.98; however, the correlation is 

more likely between 1/QUICKI and log (HOMA) (Sarafidis et al, 2007). Moreover, QUICKI is a 

measure of insulin sensitivity, whereas HOMA is a measurement of insulin resistance (Radziuk et 

al, 2000). HOMA is used in this study, since there is insulin resistance in pre-eclampsia. 
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2.4.3 Angiogenic and anti-angiogenic factors 

The following markers were determined from the patients’ plasma by ELISA, as described below. 

 

2.4.3.1 Human Placental Growth Factor (PlGF) 

Blood was collected with EDTA as an anticoagulant. PlGF was measured by ELISA as per the 

manufacturer’s protocol (R and D Systems Europe, UK), as described in section 2.4.1. 

 

2.4.3.2 Human Endoglin (sEng)/ CD105 

Blood was collected with EDTA as an anticoagulant. Endoglin was measured by ELISA as per the 

manufacturer’s protocol (R and D Systems Europe, UK), as described in section 2.4.1. 

 

2.4.3.3 Human soluble Vascular Endothelial Growth Factor Receptor 1 (sFlt-1) 

Blood was collected with EDTA as an anticoagulant. sFlt-1 was measured by ELISA as per the 

manufacturer’s protocol (R and D Systems Europe, UK), as described in section 2.4.1. 

 

2.5 Other methods for assessment of endothelial dysfunction 

Endothelial cells can slough off the wall of blood vessels in several conditions. It is a marker of 

endothelial damage (Erdbruegger et al, 2010). The numbers of sloughed endothelial cells in the 

circulation (circulating endothelial cells; CEC), was also used to measure the damage to the 

endothelium. We used a technique described previously (Woywodt et al, 2006). 

 

2.5.1 Circulating Endothelial Cells (CEC)  

1 ml of EDTA blood collected from patients was mixed with 20 µl of FcR blocker (Mittenyi Biotech, 

Germany), to prevent any non-specific binding, for 5 minutes on ice. It was then incubated with 

CD146 (Biocytec, France) pre-bound to Dynal® magnetic beads (Invitrogen, Paisley, UK) for 30 

minutes, on a roller mixer (Appleton Woods, UK) at 4ºC. The tube was then fixed over a magnet 

(Invitrogen, Paisley, UK), to wash away the non-CD146 blood. The cells were then strained with 

the endothelial cell marker ULEX Europeus, labelled with FITC (Sigma-Aldrich, UK) for one hour, 

in the dark, at room temperature. The cells were washed further and then counted in a Nageotte 
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counting chamber (Hausser Scientific, USA), with a fluorescent microscope. CEC are defined as 

cells that form rosettes with at least five CD146-bound beads, bind ULEX, and are at least 15-20 

μm in diameter. CEC frequency was expressed as cell count per ml of whole blood.  The number 

of endothelial cells in a healthy individual should fall within values of 2-100 cells per ml blood, with 

a 10-100-fold increase reported in various disease states. (Brogan et al, 2006) 

 

2.6 Endothelial cells types used for insulin signalling 

Human Dermal Microvascular Endothelial Cells (HDMEC) was chosen for this study. This was the 

only primary adult endothelial cell line available. Human Umbilical Vein Endothelial Cells (HUVEC) 

was not used in this study as they were foetal in origin. HDMEC consequently were used as a 

model for the maternal endothelium. HDMEC has been used previously in in vitro studies (Bouïs et 

al 1992).  

 

The cells were cultured as per the manufacturer’s guidance (PromoCell, Germany). They were 

incubated in an incubator (Thermo Fisher Scientific, UK), at 37°C, at 5% Carbon dioxide (CO2). 

The cells were 80% confluent, they were split into two 25-cm2 tissue culture flasks (Becton 

Dickinson, UK). In this way, they were split and passaged until passage 4. The cells were plated 

onto 48-well plate and grown to 80% confluence. 

 

2.7 Study of the insulin signalling pathway 

For studying the insulin-signalling pathway, the cells were incubated in the serum of individual 

patients. Various signalling proteins were then studied in these cells. To study the effect of the 

serum on the viability cells, Trypan Blue assay was first undertken. 

 

2.7.1 Trypan Blue Assay 

The cells were passaged to passage 4. On passage 5, 5000 cells were incubated in each well of a 

48 well plate. Once the cells were 80% confluent; the cells were incubated in either the pre-

eclamptic serum, or a normotensive pregnant serum, or culture media or with 1% formaldehyde 

solution (to kill the cells). In each group, there were 15 wells, except for formaldehyde. While the 
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wells were incubated in serum for up to 60 hours, they were incubated with 1% formaldehyde for 

15 minutes. The wells were incubated at varying lengths of time. A well from each group was 

examined at 4 hourly intervals. The cells were then strained with 1% Trypan Blue. The number of 

dead cells (strained positive for Trypan Blue), was counted over 10 microscopic fields (with 10x 

magnification factor). 

 

Findings:- It was seen that after 44 hours the number of Trypan Blue positive cells in the sera 

incubated cohorts increased exponentially. That is why in this experiment, the incubation period 40 

hours was chosen. 

 

2.7.2 Preparation of samples for insulin signalling proteins 

Once the cells were 80% confluent in 48-well plates, the endothelial cells were washed thoroughly 

with phosphate buffered saline (PBS) (Gibco, UK) and incubated in 100% sera, from different 

participants. These included sera from pre-eclamptic women, normotensive pregnant women, and 

culture media. The serum was not changed. The cells were cultured for 40 hours and then 

expression of proteins relevant to insulin signalling pathways was analysed by flow cytometer, and 

western blotting as described below.  

 

2.7.3 Flow-cytometry 

Flow-cytometry was used to analyse the insulin receptor expression and other proteins of the 

signalling pathway. After growing the cells as described above, the cells were detached with the 

help of 0.25% Trypsin (Sigma-Aldrich, UK). The cells were mixed with 20 µl of FcR blocker 

(Mittenyi Biotech, Germany), to prevent any non-specific binding, for 5 minutes on ice. A portion of 

the sample was taken for a cell count, and 10,000 cells were used for further straining. They were 

then strained either for surface insulin receptor expression, or for intracellular Akt or GLUT-4 

expression. Flow-cytometry was done using the FACS Calibur machine (BD Biosciences, US). 
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2.7.3.1 Insulin receptor expression 

The cells were strained with rabbit anti-human insulin receptor antibody (Santa Cruz, US) [ratio 

1:25] for 30 minutes at room temperature. The cells were washed two times with buffer [PBS, 

bovine serum albumin (BSA), 0.1% sodium azide], and then incubated with anti-rabbit antibody-

FITC (SantaCruz, US) [ratio 1:25] and 1% providone iodide (Sigma-Aldrich, UK) [ratio 1:50]. The 

cells were also incubated with VE-Cadherin-PerCP (SantaCruz, US) [ratio 1:15], at the same time. 

VE-Cadherin is a cell surface marker for endothelial cells, while PerCP is the immunofluorescent 

marker. The cells were incubated in the dark for 1 hour. Afterwards, the cells were washed two 

times with buffer (PBS, BSA, 0.1% sodium azide), and then fixed with 200 µl of 1% formaldehyde 

(Becton Dickinson). Acquisition was done with the CellQuest software (Becton Dickinson, US) 

within 1 hour. 

 

2.7.3.2 Expression of intracellular Akt and GLUT-4 

The cells were washed with buffer (PBS, BSA, 0.1% azide) and centrifuged at 2500 rpm for 5 

minutes. Then ice-cold permeabilization buffer [1% Saponin in buffer (PBS, BSA, 0.1% azide)] was 

added drop by drop, over a vortex. The cells were incubated in the permeabilization buffer for 10 

minutes at 4ºC, and then washed with buffer two times to remove the excess permeabilization 

buffer. The pellet was suspended in 100µl of permeabilization buffer containing primary antibody, 

either rabbit anti-human Akt antibody (Santa Cruz, US) [ratio 1:25], or rabbit anti-human GLUT-4 

antibody (Santa Cruz, US) [ratio 1:25]. The cells were incubated in the primary solution for 30 

minutes at room temperature, and then washed two times with buffer [PBS, BSA, sodium azide], 

and incubated with anti-rabbit antibody-FITC (SantaCruz, US) [ratio 1:25] and Vimentin-PE 

(SantaCruz, US) [ratio 1:15], at the same time. Vimentin is an intracellular marker, while PE is the 

immunofluorescent marker. The cells were incubated in the dark for 1 hour. Afterwards, the cells 

were washed two times with buffer (PBS, BSA, Sodium Azide), and then fixed with 200 µl of 1% 

formaldehyde. Acquisition was done with the CellQuest software (Becton Dickinson, US) within 1 

hour. 
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2.7.4 Estimation of signalling proteins by western blot. 

2.7.4.1 Preparation of samples. 

After the cells were incubated in the patient’s serum for 40 hours, they were washed with PBS 

three times to remove any trace of serum. To each 48-well plate 55 µl of sample buffer (Tris, SDS, 

ß-marcaptoethanol, glycerol, dd H2O, and Bromophenol blue) was added. Each sample was then 

heated to 100ºC for 2 minutes. The samples were kept at -80ºC until analysed. 

 

2.7.4.2. Estimation of insulin receptor protein  

Western blotting was done using a 9% SDS-PAGE gel (dd H2O, Tris, Bisacrylamide, SDS, APS, 

TEMED), using a molecular weight marker (Bio Rad, UK) in the first lane. 25 µl of sample were 

used in each well. Cells grown in culture media were used as control in each gel. The transfer was 

done using a Mini-Protean Tetra electrophoresis system (Bio Rad, UK). The proteins were 

transferred onto hydrophobic polyvinylidene diflouride (PVDF) membranes (Amersham GE 

Healthcare UK), using a semi dry blotting system (Amersham GE Healthcare UK). After transfer, 

the membrane was blocked with 3% BSA (Sigma UK) in Tween buffer solution [1% Tween 20 in 

Tris, sodium chloride solution], for 2 hours. Following blocking, the membrane was cut into two at 

the level of the 70kD molecular weight marker. The top part of the membrane was incubated with 

rabbit anti-human IgG insulin receptor antibody [ratio 1:500] (Santa Cruz, Germany), while the 

bottom part of the membrane was incubated with goat anti-human IgG actin antibody [ratio 1:1000] 

(Santa Cruz, Germany).  

 

The membranes were incubated overnight at 4ºC on a rotatory shaker. The next morning, the 

membranes were washed with 1% Tween buffer solution every 10 minutes for 1 hour. After 

washing, they were incubated in their respective secondary antibodies; the top part with goat anti-

rabbit IgG- Horse radish peroxidase (HRP) [ratio 1:1000] (Santa Cruz, Germany), while the bottom 

part of the membrane was incubated with donkey anti-goat IgG- HRP [ratio 1:1000] (Santa Cruz, 

Germany), for 1 hour at room temperature, with gentle shaking. The membranes were again 

washed with Tween buffer solution every 10 minutes for 1 hour. The membranes were analysed 

within 30 minutes using a chemiluminescent buffer (Amersham GE Healthcare UK), on a 
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GeneGnome system (Syngene, UK), with software Gene Snap image acquisition software 

(Syngene, UK). The results were analysed using the Gene Tool image analysis software 

(Syngene, UK). 

 

Stripping the membrane 

Following image capture, the bottom part of the membrane was washed two times with 1% Tween 

buffer. It was then incubated in stripping buffer (Thermo Scientific, UK), on a rotatory mixture for 15 

minutes. The membranes were then checked on a Gene Gnome to make sure that the stripping 

was complete. The membranes were stripped for estimation of Akt on the same blot as Actin. 

 

2.7.4.3. Estimation of Akt.  

Following stripping, the membranes were again blocked with 3% BSA (Sigma UK) in Tween buffer 

solution [1% Tween 20 in Tris, sodium chloride solution], for 2 hours. After blocking, the membrane 

was incubated with rabbit anti-human IgG Akt antibody [ratio 1:500] (Santa Cruz, Germany). The 

membranes were incubated overnight at 4ºC on a rotatory shaker. The next morning, the 

membranes were washed with Tween buffer solution every 10 minutes for 1 hour. After washing, 

they were incubated in secondary antibodies; the top part with goat anti-rabbit IgG- HRP [ratio 

1:1000] (Santa Cruz, Germany), for 1 hour at room temperature, with gentle shaking. The 

membranes were again washed with Tween buffer solution every 10 minutes for 1 hour. The 

membranes were analysed within 30 minutes using a chemiluminescent buffer (Amersham GE 

Healthcare UK), on the GeneGnome system (Syngene, UK), with Gene Snap (Syngene, UK). The 

results were analysed using the Gene Tool software programme (Syngene, UK). 

 

2.8 Statistical Analysis 

The demographic data were normally distributed and were summarised as mean and SEM [Table 

3.1]. All the other data are presented as median and inter-quartile range. The differences between 

the groups were calculated using Mann Whitney tests, as the clinical data was not normally 

distributed (P-P plots). The demographic data were compared using t-test. Correlation was done 

using the Spearman’s formula, since the data was non-parametric. P-values of <0.05 were 
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considered statistically significant. Statistical analysis was performed using Statistical Package for 

Social Sciences version 22 (SPSS Inc., Chicago, ILL, USA) and Graphpad Prism Version 7.0 

(Graphpad Prism 7.0, CA, USA). 
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Chapter 3: Results and Discussion 

 

Chapter 3.1 

Microvascular Tissue Blood Flow in Pre-eclampsia 

 

3.1.1 Introduction 

Pre-eclampsia is a multi-system disorder of the second half of pregnancy characterised by 

hypertension and proteinuria and is a leading cause of maternal and perinatal morbidity and 

mortality (Sibai et al, 2003). It is characterised by increased peripheral vascular resistance (Anim-

Nyame et al, 2015), and the clinical presentations are suggestive of impaired blood flow to the 

affected vascular beds (Bosens et al, 2002). Although the exact cause(s) are unknown, abnormal 

implantation of the foetus has been implicated. It results in impaired placental perfusion 

(Papageorghiou et al, 2002; VanWijk et al, 2000). The mechanism by which the impaired placental 

perfusion translates into deranged maternal physiology and metabolism is still unclear. It was 

suggested that unidentified factor(s) released by the ischemic placenta into the maternal circulation 

causes generalised endothelial cell dysfunction, causing widespread circulatory changes, leading 

to the changes commonly seen in pre-eclampsia (Roberts and Lakin, 2002). Though there has 

been ongoing extensive research in this field, the factor(s) are still elusive. 

 

Peripheral blood flow increases in both the resting condition (Liang et al, 2018; Oyama-Kato et al, 

2006) and under stress challenges (Jacob et al, 2016; Hellsten et al, 2012) in normal pregnancy. 

The mechanism of regulation of microvascular blood flow has been described earlier in this work 

(Chapter 1.1.2.4). This mechanism of control of peripheral blood flow under stress, mediated by 

the endothelium, is reduced in pre-eclampsia (Anim-Nyame et al, 2003). Thus, the control of the 

microcirculation is very much dependent on the presence of an intact endothelium. Pre-eclampsia 

is associated with endothelial dysfunction (Levine et al, 2004; Levine et al, 2006). Thus, the 

mechanism of fine-tuning the microcirculation control is impaired in pre-eclampsia. The end organ 

failure associated with severe pre-eclampsia may be a result of severe impaired blood flow to 

these organs; although this has yet to be demonstrated. 
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In the present study, strain gauge plethysmography was used to compare peripheral blood flow in 

pre-eclampsia and normal pregnancies. This technique was first proposed by Whitney (1953) and 

has been described in detail by both Gamble (Gamble et al 1998) and Christ (Christ et al, 2000a). 

It is a non-invasive technique to assess limb blood flow used previously in normal pregnant women 

and women with pre-eclampsia (Anim-Nyame et al, 2003). It has also been used previously to 

study endothelial-dependent vascular response to pharmacological agents (Christ et al, 2000b). 

The gastrocnemius muscle was chosen over skin to study the peripheral microvascular blood flow, 

because the gastrocnemius muscle has a high muscle to skin ratio, which means that the blood 

flow through it relates more to the support of metabolism. Moreover, since the skeletal muscle 

vasculature lacks visible arterio-venous channels, most of the blood flow will traverse 

microvascular beds, representing microvascular blood flow. Skin, on the other hand, provides an 

accessible and convenient organ for investigating peripheral haemodynamics. However, its 

usefulness as a measure of metabolic flow, is limited by the dual function of skin, which is both 

nutritional and thermoregulatory. Moreover, the surrounding temperature regulates the cutaneous 

perfusion. In the present study, the resting blood flow was measured in pre-eclamptic and 

normotensive pregnancies, using strain gauge plethysmography as described in Chapter 2.3.  

 

3.1.2  Method  

Participants 

In this study, microvascular blood flow was compared between pre-eclamptic women (n=16), and 

women with normotensive pregnancies (n=18), who were recruited from the maternity department 

at Kingston Hospital, UK, as described previously (Section 2.1) 

 

Measurement of Microvascular blood flow 

Filtrass strain-gauge plethysmography (Filtrass; DOMED, Munich, Germany) was used as 

described previously (Chapter 2.3). Briefly, the patients were rested for about 30 minutes in a 

semi-recumbent position. Observations were made in the left-lateral position, to prevent aorto-

caval compression, by the gravid uterus. The right mid-gastrocnemius muscle was supported by 

pillows, at the level of the heart. (Figure 2.3) 
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Power calculations were based on a previous cross-sectional study showing that resting blood flow 

was significantly reduced in pre-eclampsia compared to normal pregnant controls (1.95 ± 0.9 

ml/min/100ml versus 3.9 ±1.4 ml/min/100ml, p = 0.004, for pre-eclampsia and normal pregnancy 

respectively) (Anim-Nyame et al, 2000). This study showed that a sample size of 10 in each group 

was sufficient to achieve statistical significance with α of 0.05 and β of 0.02.  

 

Statistical Analysis:  

The demographic data were summarised as mean and SEM [Table 3.1]. All the other data are 

presented as median and inter-quartile range. The differences between the groups were calculated 

using Mann Whitney tests, as the data was not normally distributed (P-P plots). Cor-relation was 

done using the Spearman’s formula. The demographic data between the groups was compared 

using t-tests. P-values of <0.05 were considered statistically significant.  

 

3.1.3 Results  

Participants were only recruited in this study, if they were healthy pre-pregnancy. Smokers were 

also excluded from the study, because smoking alters endothelial cell function (Ozaki et al, 2010; 

Zeiher et al, 2005; Csordas and Bernherd 2013).  Some of the participants suffered from asthma, 

but their disease was well controlled. None of them had any exacerbation within the last 3 years. 

None of them had used their inhalers within a year prior of becoming pregnant. 

 

The clinical and demographic characteristics of the participants are shown in Table 3.1. There was 

no significant difference in age, booking BMI, gestational age or haematocrit between the two 

groups. Babies born to the pre-eclamptic women were smaller in weight than the normal pregnant 

group, which was statistically significant (p = 0.023). As expected from the recruitment criteria, 

women with pre-eclampsia, had higher systolic, diastolic, and mean arterial pressure, compared 

with the normotensive pregnant women (p<0.001). 

 

Tissue blood flow was significantly reduced in the pre-eclamptic group when compared with the 

normal pregnant controls [1.13 (0.94– 1.54) and 4.03 (3.05 -5.35) ml·min-1·100 ml-1, p <0.0001; for 
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pre-eclampsia and normal pregnancy respectively] (Figure 3.1). None of the participants in the 

normotensive pregnancy control group tested positive for protein in a urinary dipstick test. The 24-

hour urinary protein concentration was increased in all the pre-eclamptic women [0.64(0.37- 1.66)] 

{p-value was not calculated as 24-hour urinary protein was not done in the normal pregnant 

cohort}; although it did not correlate with the microvascular blood flow [rs=-0.05 (p=0.854)]. In the 

pre-eclamptic group, microvascular blood flow showed statistically significant correlations with 

gestational age [rs=0.558 (p=0.025)], systolic blood pressure [rs= -0.96 (p<0.001)], mean arterial 

pressure [rs= -0.73 (p=0.001)], and platelet count [rs=0.674 (p=0.004)]. There was no statistically 

significant correlation with any other parameters in the pre-eclamptic group. In the normotensive 

pregnancy group, there was no statistically significant correlation with any of the parameters. 
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Figure 3.1: Comparison of resting maternal gastrocnemius muscle blood flow in pre-eclamptic 

pregnancies and normal pregnant controls. 

 

There was no difference in liver and renal functions in between the two groups. The serum albumin 

level was lower in the pre-eclamptic group [22 (19.25-23) g/L;)], than normal pregnant control [24 

(23-26.5) g/L]. There was no statistically significant correlation of albumin with microvascular blood 

flow (rs= 0.01; p=0.97), in the pre-eclamptic group. In the pre-eclamptic group, serum urate level 

was higher than the normal pregnant women [0.34 (0.285- 0.425) mol/L]. There is a significant 
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direct correlation with microvascular blood flow and serum urate level (rs= 0.512; p=0.043). 

[Appendix 3] 

 

Variable Normal Pregnancy 
 (n=18) 

Pre-eclampsia 
(n=16) 

P value * 

Age (years) 32.94± 1.24 32.31± 1.16 0.7145 

Gestational age (weeks) 34.42± 0.48 34.11± 0.52 0.6705 

BMI (kg/m2) 25.97± 0.91 23.87± 0.91 0.1125 

Systolic BP (mmHg)  
    

113.6± 2.83 140.6± 2.06 <0.0001* 

Diastolic BP (mmHg) 
            

75.83± 1.81 94.56± 1.16 <0.0001* 

Mean Arterial Pressure 
(mmHg) 

88.43± 1.88 109.9± 1.24 <0.0001* 

Haematocrit 0.341± 0.01 0.3259± 0.01 0.2425 

Platelet (x106/ml) 270.9± 11.98 147.1± 9.2 <0.0001* 

Birth weight (g) 3337.78± 158.3 2742+ 197.99 0.0238* 

  
*= P- value less than 0.05 are considered significant. 
 
Table 3.1: Clinical and demographic characteristics of the subjects in the cross-sectional study.  
 

3.1.4 Discussion 

In this present study, the hypothesis was tested that nutritive microvascular blood flow is reduced 

in pregnancies complicated by pre-eclampsia. The result shows that there was a significant 

reduction in the tissue blood flow in pre-eclamptic patients, supporting the hypothesis. There was a 

strong inverse correlation with both SBP and MAP. Since SBP is an accepted index of disease 

severity, a decrease in microvascular blood flow is also an indicator of the disease severity. 

 

In normal pregnancy, tissue blood flow is increased by vasodilatation resulting from relaxation of 

the resistance vessels, and relaxation of precapillary arterioles (Thadbani et al, 2004, Barret et al, 

2009, Vincent et al, 2004). In pre-eclampsia, there was a marked reduction in the peripheral blood 

flow. As expected, the results showed an inverse relationship with SBP and MAP. There was also 
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a direct relationship between tissue blood flow and platelet function and serum urate level. 

Reduction in the microvascular circulation in pre-eclampsia, mirrors the reduction in perfusion of 

other vital organs in the body (Christ et al 1998). This may also explain the impaired blood flow in 

other organs such as liver and kidneys and result in intrauterine growth reduction in pregnancies 

complicated by pre-eclampsia. Therefore, this data strengthens the case for inclusion of 

measurement of resting blood flow in the estimation of severity of pre-eclampsia. This might help 

clinicians in planning the management of pre-eclampsia. 

 

In this study, gastrocnemius muscle was chosen for measuring microvascular blood flow. It is 

assumed that the blood flowing through the gastrocnemius muscle is mainly microvascular and 

used for nutritive purposes. Previous plethysmography studies on gastrocnemius muscle 

microvascular function demonstrated that blood flow changes in the gastrocnemius muscle tissue 

provided a realistic index of parallel changes in vital organs of patients in critical care (Christ et al 

1998). Gamble et al (1993) showed similar results using measurements in the forearm and 

gastrocnemius muscle; however Altenkirch et al (1989) demonstrated that the results obtained 

from the gastrocnemius muscle were more reproducible than from the forearm.  

 

Pregnancy is associated with considerable changes in the circulation of the mother. This is to 

facilitate the growing foetus. Maternal blood flow increases gradually during normal pregnancy, 

because of the vaso-relaxing effect of oestrogen and other substances (Nevo et al, 2010). The 

peripheral vascular resistance is reduced in normal pregnancy. Women who have chronic 

hypertension or pre-eclampsia, have impaired autoregulation (van Veer et al, 2015).  Because of 

reduced blood flow, tissues suffer from chronic hypoxia, resulting in intrauterine growth retardation 

of the foetus (Karanam et al, 2014). It may also affect other organs, and in severe disease can 

lead to HELLP (Haemolysis, Elevated Liver enzymes, and Low Platelet) syndrome (Aloizos et al, 

2013). Delivery is the only effective treatment of pre-eclampsia. 

 

All the changes seen in pre-eclampsia, revert to the pre-pregnancy state post-delivery. Tissue 

blood flow also returns to normal. All the organ functions revert back, except the maternal 
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endothelium. Markers of endothelial dysfunction will always be elevated in women with a history of 

pre-eclampsia (Tuzcu et al, 2015). Women with previous history of pre-eclampsia are at increased 

risk of hyperinsulinaemea and diabetes (Laivuori et al 1996), or cardiovascular disease (Wolf et al, 

2004). 
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Chapter 3.2 

Relationship of endothelial dysfunction and microcirculation in pre-eclampsia 

 

3.2.1. Introduction 

In pre-eclampsia, structural changes of the endothelium have been seen in the uteroplacental 

vessels (Brosens et al, 2002). There is extensive evidence of biochemical changes, such as 

increased concentration of von Willebrand’s factor, endothelin, fibronectin, and an imbalance 

between PGI2 and TXA2
 in pre-eclampsia (Roberts 1998). Vascular tone and thus peripheral 

resistance are known to be under the continuous influence of endothelial-derived factors. 

Furthermore, many markers for endothelial injury or dysfunction, present in women with pre-

eclampsia, precede clinically evident disease (Esper et al, 2006, Mol et al, 2016). Endothelial 

activation is only one component of a generalised activation of inflammatory responses that is 

characteristic of pregnancy (sometimes showing changes nearly as pronounced as seen in sepsis) 

and further accentuated in pre-eclampsia (Robert and Hubel 2009). Thus, pre-eclampsia may 

represent an exaggeration of the normal inflammatory state of pregnancy (Germain et al, 2007). 

 

There are ever-evolving bodies of evidence for using different markers in determining the 

endothelial dysfunction. One of these is the decrease/ derangement in microcirculation function in 

pregnancies complicated by pre-eclampsia (Anim-Nyame et al, 2000a, 2001), as described 

previously (Chapter 3.1). The other evidence is an increased soluble marker of endothelial 

activation and injury, which will be assessed in this chapter. The aim of this chapter is to 

investigate whether a relationship exists between soluble markers of endothelial dysfunction and 

changes in microvascular function in pregnancies complicated by pre-eclampsia.  

 

3.2.2. Method 

Participants, Blood Sampling and Assays 

In this study, participants were recruited from the maternity department at Kingston Hospital, UK, 

to compare microvascular blood flow and correlate it with markers of endothelial dysfunction as 

described in Chapter 2.1. Blood samples were obtained from the ante-cubital vein of each 
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participant aseptically, as described in Chapter 2.2. Markers of endothelial dysfunction, s-ICAM-1, 

s-VCAM-1, e-Selectin, Thrombomodulin and TNF-α were measured by ELISA (R and D Systems 

Europe, UK), as described previously in Chapter 2.4. 

 

Measurement of blood flow 

In this study, Filtrass strain-gauge plethysmography (Filtrass; DOMED, Munich, Germany) was 

used as described previously (Chapter 2.3).  

 

Statistical Analysis:  

The demographic data were normally distributed and were summarised as mean and SEM [Table 

3.1]. All the other data are presented as median and Inter-quartile range. The differences between 

the groups were calculated using Mann Whitney tests, as the clinical data was not normally 

distributed (P-P plots). The demographic data were compared using t-test. Correlation was done 

using the Spearman’s formula. P-values of <0.05 were considered statistically significant.  

 

3.2.3. Results 

The clinical and demographic characteristics of the participants are shown in Table 3.1 (Chapter 

3.1). There was no significant difference in age, BMI, gestational age or haematocrit between the 

two groups. Babies born to the pre-eclamptic women were smaller in weight than the normal 

pregnant group, which was statistically significant. (p = 0.023). As expected from the recruitment 

criteria, women with pre-eclampsia, had higher systolic and diastolic blood pressures, and mean 

arterial pressure compared with the normal pregnant controls (p<0.001). 

 

Tissue blood flow and markers of endothelial dysfunction are shown in Table 3.2. As already 

described and discussed in the previous chapter (Chapter 3.1), tissue microvascular blood flow 

was significantly reduced in the pre-eclamptic group in comparison to the normal pregnant cohort. 

As expected, all the biochemical markers of endothelial dysfunction were significantly raised in the 

pre-eclamptic group (Table 3.2; Figure 3.2.1). In the normal pregnant cohort, the biochemical 

endothelial markers did not show any significant statistical correlations with maternal age,  
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Figure 3.2.1: Comparison of (a) ICAM-1, (b) VCAM-1, (c) e-Selectin, (d) TNF-α, and (e) 
Thrombomodulin in pre-eclamptic pregnancies and normal pregnant controls. 
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(a)         (b) 

            
(c)            (d) 

 
(e) 

 
Figure 3.2.2: Correlation of microvascular blood flow with (a) ICAM-1, (b) VCAM-1, (c) e-Selectin, 
(d) TNF-α, and (e) Thrombomodulin  in the two cohorts. 
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gestational age, BMI, MAP, haematocrit, and the birth weight. However, in the pre-eclamptic 

group, ICAM-1 showed a statistically significant inverse correlation with gestational age [rs= -0.676; 

p=0.004], and platelet count [rs= -0.694; p=0.003], but a direct correlation with systolic blood 

pressure [rs= 0.883; p<0.0001], and MAP [rs= 0.588; p=0.017]. Furthermore, VCAM-1 had a 

statistically significant inverse correlation with platelet count [rs= -0.559; p=0.024], but a direct 

correlation with systolic blood pressure [rs= 0.854; p<0.0001], and MAP [rs= 0.673; p=0.004]. 

Thrombomodulin showed a statistically significant inverse correlation with platelet count [rs= -

0.764; p=0.006], and a direct correlation with systolic blood pressure [rs= 0.91; p<0.0001], in the 

pre-eclamptic cohort. 

Variable Normal pregnant 
(n=18) 

Pre-eclampsia 
(n=16) 

P value * 

Tissue Blood Flow 
(ml·min-1·100 ml-1) 

4.03 (3.05 -5.35) 1.13 (0.94– 1.54) <0.0001* 

sICAM-1 (ng/ml) 59.35 (44.94 – 81.28) 195.2 (184.9 - 239.3) <0.0001* 

sVCAM-1 (ng/ml) 296.55 (241.33- 365.85) 808.3 (703.37- 866.11) <0.0001* 

sEselectin (ng/ml) 12.63 (5.64 – 23.48) 24.35 (14.6 – 49.25) 0.042* 

TNF- α (pg/ml) 14.43 (13 – 15.94) 20.82 (19.23 – 22.71) <0.0001* 

Thrombomodulin (pg/ml) 10984 (9301- 13234) 27115 (26448- 28192) <0.001* 

*= P- value less than 0.05 are considered significant. 

Table 3.2: Showing the Tissue blood flow and markers of endothelial dysfunction in subjects in the 

cross-sectional study.  

 

Microvascular tissue blood flow showed a statistically significant correlation with the endothelial 

markers. In the pre-eclamptic cohort, microvascular blood flow had an inverse correlation with 

ICAM-1 [rs= -0.915; p<0.0001], VCAM-1 [rs= -0.903; p<0.0001], eSelectin [rs= -0.546; p=0.028], 

and Thrombomodulin [rs= -0.773; p=0.005]. However, TNF-α did not show statistically significant 

correlation with microvascular tissue blood flow [rs= 0.062; p=0.82]. In the normal pregnant control 

group, microvascular tissue blood flow has a statistically significant inverse correlation with VCAM-

1 [rs= -0.591; p=0.01], and Thrombomodulin [rs= -0.637; p=0.004], but there is no statistically 
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significant correlation with ICAM-1 [rs= -0.193; p=0.443], eSelectin [rs= -0.162; p=0.549], and TNF-

α [rs= -0.034; p=0.893] (Figure 2.2.2).  

 

3.2.4. Discussion 

In this present study, the hypothesis that endothelial dysfunction present in pregnancies 

complicated by pre-eclampsia correlates with impaired microvascular blood flow, was tested. The 

results demonstrated that there was significant increase in the soluble markers of endothelial 

dysfunction in pre-eclampsia, supporting this hypothesis. Furthermore, this correlates with MAP, 

platelet count and systolic blood pressure. As described previously (Chapter 3.1), microvascular 

blood flow was also reduced in pre-eclampsia. 

 

Normal pregnancy is associated with marked anatomical and functional changes of the 

cardiovascular system to accommodate the increased demands of pregnancy. Generalised 

vasodilatation begins developing from the luteal phase after conception, and peripheral vascular 

resistance starts falling substantially after 5 weeks gestation (Liu and Arany, 2014; Fu and Levine, 

2009).  As a result, peripheral blood flow increases substantially, particularly in the cutaneous, 

renal and uteroplacental circulation (Hibbard et al, 2015; Caniggia et al, 2000). Alteration in 

synthesis or response to vasoactive substances, like NO, prostaglandins, endothelins and 

angiotensins, may be involved in the fall in peripheral resistance in normal pregnancy (Chaddha et 

al, 2004).  During early pregnancy, trophoblast cells invade the placental bed, leading to 

remodelling of the spiral arteries into maximally dilated low resistance vascular channels, which 

are unable to respond to vasoactive mediators, thereby guaranteeing a high flow volume to the 

uteroplacental bed (Brosens et al, 2002). In pre-eclampsia, this vascular remodelling seen in 

normal pregnancy is impaired. This results in reduction of uteroplacental circulation, with the 

placenta becoming increasingly ischemic as pregnancy progresses (Frusca et al, 2003). This is 

evidenced by observations that placentae from women with pre-eclampsia have infarcts on 

histology, and there is rapid recovery from this condition following delivery (Mol et al, 2016; Fisher 

2015).  
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The vascular endothelium has many important functions, including control of smooth muscle tone 

through release of vasoconstrictor and vasodilatory substances, regulation of anticoagulation, 

antiplatelet, and fibrinolysis functions via release of different soluble factors (Roberts and Lain 

2002). Release of factors, from the placentae, results in endothelial dysfunction of maternal 

circulation in pre-eclampsia (Roberts and Hubel 2009). Since evidence of endothelial dysfunction 

precedes the clinical onset of the disease; it has been suggested to be the cause, and not the 

result, of pre-eclampsia. Additionally, in women with pre-eclampsia, preexisting maternal factors 

such as chronic hypertension, diabetes and hyperlipidemia, predisposes the maternal endothelium 

to further damage (Roberts and Hubel 2009). 

 

Pre-eclampsia is thought to be an exaggerated inflammatory response of pregnancy, to yet 

unknown factor(s). Inflammatory endothelium may, in response to unknown mediators, express 

new cell surface molecules that are adhesive for leukocytes, helping its adhesion and 

extravasation. Several such molecules are known, like ICAM-1, VCAM-1, eSelectin, which have 

specific ligands on the leukocytes. These molecules are expressed after stimulation of endothelial 

cells with cytokines, such as TNF-α and inlerleukin-1β (Chaiworapongsa et al, 2002, Chavarria et 

al, 2008). In pre-eclampsia, there is an increase in proteins of the coagulation cascade. Circulating 

levels of fibronectin are significantly increased in women who develop pre-eclampsia, as early as 

20 weeks gestation (Chaiworapongsa et al, 2002). Thrombomodulin, an anticoagulant factor, also 

increases in pre-eclampsia, and is detected as early as 24 weeks gestation. Von-Willebrand factor 

is also elevated in pre-eclampsia. Platelets play an important role in the etiology of pre-eclampsia. 

Increased platelet activation occurs in the disease (Roberts and Lain, 2002). The increased 

expression of endothelial inflammatory factors and cell adhesion molecules will increase post-

capillary pressure resulting in reduced microvascular blood flow (Anim-Nyame et al, 2004). 

 

Biomarkers of endothelial dysfunction, like ICAM-1, VCAM-1, are elevated several weeks before 

the onset of the disease. Their levels are higher in early onset pre-eclampsia, than in late onset 

disease (Dogan et al, 2014). If the levels are elevated at 20 weeks gestation, it can predict the 

development of severe pre-eclampsia later (Chavarria et al, 2008). Since our pre-eclamptic cohort 
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had mild late-onset pre-eclampsia, that’s why the levels reported here are lower than those 

reported elsewhere (Szarka et al, 2010). They are also elevated a few weeks before in patients 

with preterm delivery (Chen and School 2014). All these are markers of endothelial dysfunction in 

pre-eclampsia (Szarka et al, 2010). These markers are present in the sera from pre-eclamptic 

patients, but there is no detectable increase in the supernatant of cultured endothelial cells, 

suggesting that sera from the pre-eclamptic participants stimulate the endothelial cells (Heyl et al, 

1999). Therefore in this study, the cells were incubated in 100% sera from the participants. 

 

Patients with history of pre-eclampsia are at increased risk of cardiovascular disease in later life 

(Wolf et al, 2004). However, Gaugler-Senden et al (2012) showed that there was no difference in 

the endothelial markers between pre-eclamptic and uncomplicated pregnancy, 10 years later. 

Therefore, these angiogenic factors will not contribute to the early detection of women at risk for 

future cardiovascular disease. This finding has been disputed by others. Another study showed 

that the markers were markedly increased in pre-eclamptic pregnancy, than uncomplicated 

pregnancy, even after 20 years (Freeman et al, 2004, Tuzcu et al, 2015) 

 

In summary, results from this chapter shows that reduced microvascular blood flow in pre-

eclampsia, might be related to the endothelial dysfunction seen in pregnancies complicated by the 

disease. There is a positive correlation between microvascular blood flow and markers of 

endothelial dysfunction.  
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Chapter 3.3 

Relationship between microvascular blood flow and angiogenic factors in pre-eclampsia. 

 

3.3.1 Introduction 

Pre-eclampsia is a multi-systemic disorder of the second half of pregnancy. Angiogenic imbalance 

with increased anti-angiogenic factors, such as sFlt-1 and sEng, appear to play a pathogenic role 

in the aetiology of pre-eclampsia (Maynard et al, 2003; Venkatesha et al, 2006). A rise in sFlt-1 

and sEng and a reduction in the pro-angiogenic factors, like PlGF, have been reported in maternal 

serum 5-10 weeks prior to the onset of pre-eclampsia (Levine et al, 2004). It is proposed that these 

anti-angiogenic factors contribute to the maternal endothelial dysfunction seen in pre-eclampsia 

(Levine et al, 2004). Moreover, levels of sFlt-1 directly correlate with the severity of pre-eclampsia 

and precede the onset of the disease (Levine et al, 2004; Karunamichi et al, 2008), as sFlt-1 

circulates freely in serum, and binds to pro-angiogenic factors, such as VEGF and PlGF.  

 

The mechanism by which sEng works is thought to be via the prevention of the binding of TGF-β to 

its receptor, reducing the production of NO and its mediated vasodilatation, and subsequent 

capillary formation by endothelial cells in vitro (Pipp et al, 2003). Conversely, a reduction in PlGF 

has been reported in pre- eclampsia (Levine et al, 2004). PlGF is a VEGF homologue and 

stimulates angiogenesis. Reduced levels impair collateral artery growth in mouse limbs and 

neovascularization in tumors and ischemic retinas, while exogenous PlGF delivery stimulates 

angiogenesis and collateral growth in ischemic hearts and limbs (Karunamichi et al, 2008; Mutter 

et al, 2008).  

 

There is evidence that an alteration in the balance of pro- and anti- angiogenic factors contributes 

to the generalized endothelial dysfunction and increased vascular resistance in pre-eclampsia 

(Venkatesha et al, 2006; Levine et al, 2004). However, Noori et al (2011) did not observe any 

correlation between sFlit-1, sEng and PIGF levels and maternal endothelial function, as measured 

by brachial artery flow-mediated dilatation (FMD). It was proposed that the lack of correlation was 
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possibly due to the differential effects of these circulating angiogenic factors on large and 

resistance vessels.  

 

Angiogenic imbalance is likely to affect microvascular function as the microvasculature is formed 

by the continuous tension between de novo angiogenesis and microvascular regression 

(rarefaction). Several anti-angiogenic cancer therapies have been implicated in the development of 

hypertension by inducing microvascular rarefaction (Mourad et al, 2008; Steeghs et al, 2008).  The 

multisystem manifestations of pre-eclampsia with end-organ dysfunction suggest underlying 

microvascular dysfunction. Microvascular dysfunction occurs in pre-eclampsia (Anim-Nyame et al, 

2003) and reduced tissue perfusion precedes the onset of the disease (Anim-Nyame et al, 2001). 

Although many of the key functions of the cardiovascular system occur at the level of the 

microcirculation, where nutritive exchange between blood and tissue occurs, there are yet no 

reported studies on the relationship between maternal microvascular perfusion and angiogenic 

balance.  

 

In this study, it was hypothesized that there is an imbalance in the levels of the pro- and anti- 

angiogenic factors in pre-eclampsia, which affects microvascular function, and these circulating 

factors correlate with reduced tissue blood flow. The aim of the following study was to determine 

the relationship of microvascular tissue blood flow to circulating angiogenic factors in pre-

eclampsia. Although the role of sFlt-1, PlGF, and its ratio in pre-eclamptic patients has been 

reported before (Verlohren et al, 2012, Chaiworapongsa et al, 2013), this is the first time the 

correlation of the disease with microvascular blood flow, has been investigated. 

 

3.3.2. Method  

Participants, Blood Sampling and Assays 

In this study, participants were recruited from the maternity department at Kingston Hospital, UK, 

to compare microvascular blood flow and correlate this with markers of endothelial dysfunction as 

described in Chapter 2.1. Blood samples were obtained from the ante-cubital vein of each 

participant aseptically, as described in Chapter 2.2. Human PlGF, s-Eng, sFlt-1, and markers of 
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endothelial dysfunction, s-ICAM-1, s-VCAM-1, e-Selectin, Thrombomodulin and TNF-α were 

measured by an ELISA (R and D Systems Europe, UK), as described previously in Chapter 2.4. 

 

Measurement of blood flow 

In this study, Filtrass strain-gauge plethysmography (Filtrass; DOMED, Munich, Germany) was 

used as described previously (Chapter 2.3).  

 

Statistical Analysis:  

The demographic data were normally distributed and were summarised as mean and SEM [Table 

3.1]. All the other data are presented as median and Inter-quartile range. The differences between 

the groups were calculated using Mann Whitney tests, as the clinical data was not normally 

distributed (P-P plots). The demographic data were compared using t-test. Correlation was done 

using the Spearman’s formula. P-values of <0.05 were considered statistically significant.  

 

3.3.3. Results 

The clinical and demographic characteristics of the participants are shown in Table 3.1 (Chapter 

3.1). There was no significant difference in age, BMI, gestational age or haematocrit between the 

two groups. Babies born to the pre-eclamptic women were smaller in weight than the normal 

pregnant group, which is statistically significant. (p = 0.023). As expected from the recruitment 

criteria, women with pre-eclampsia, had higher systolic and diastolic blood pressures, and mean 

arterial compared with the normal pregnant controls (p<0.001). 

 

Tissue blood flow, angiogenic factors and markers of endothelial dysfunction are shown in Table 

3.3. Microvascular tissue blood flow and pro-angiogenic factor, PlGF, were significantly reduced in 

the pre-eclamptic group compared to the normal pregnant controls. The anti-angiogenic factors, 

sFlt-1 and sEng, were raised in the pre-eclamptic group compared to the normal pregnant controls 

(Figure 3.3.1). The ratio of anti- and pro- angiogenic factors, sFlt-1: PlGF and (sFlt-1+ sEng): PlGF, 

was elevated in the pre-eclamptic group compared to the normal pregnant controls. As expected,  
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Figure 3.3.1: Comparison of (a) sFlt-1 (b) sEndoglin (c) PlGF (d) sFlt-1/PlGF and (e) sFlt-1+ 
sEng/PlGF  in normal pregnant controls and pre-eclamptic pregnancies. 
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 (b) 

 
   (c)      (d) 

 
(e) 

Figure 3.3.2: Graph showing the correlation of microvascular blood flow, in the study groups, with 

(a) sFlt-1, (b) sEndoglin, (c) PlGF, (d) sFlt-1:PlGF, and (e) sFlt-1+ sEndoglin: PlGF. 
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all the markers of endothelial dysfunction, such as sICAM-1, sVCAM-1, sEselectin and TNF-α, 

were elevated in the pre-eclamptic group. 

Variable Normal Pregnancy 
(n=18) 

Pre-eclampsia 
(n=16) 

P value * 

Tissue Blood Flow  
           (ml·min-1·100 ml-1) 

4.03 (3.05 -5.35) 1.13 (0.94– 1.54) <0.0001* 

sFlt-1 (pg/ml) 758.8 (639.2 – 1256.5) 1449 (1173 – 1585) 0.0056* 

sEndoglin (ng/ml) 4.448 (3.841 – 5.274) 9.678 (9.498 – 10.02) <0.0001* 

PlGF (pg/ml)  74.61 (58.98 – 179.8) 26.54 (15.72 – 43.07) <0.0001* 

sFlt-1: PlGF           9.227 (4.219 – 15.39) 45.16 (28.06 – 99.59) <0.0001* 

(sFlt-1+ sEng): PlGF           72.68 (29.03 – 117.9) 420.3 (250.2 – 728.7) <0.0001* 

sICAM-1 (ng/ml) 59.35 (44.94 – 81.28) 195.2 (184.9 - 239.3) <0.0001* 

sVCAM-1 (ng/ml) 296.55 (241.33- 365.85) 808.3 (703.4 – 866.1) <0.0001* 

sEselectin (ng/ml) 12.63 (5.637 – 23.48) 24.35 (14.6 – 49.25) 0.0404* 

TNF- α (pg/ml) 14.43 (13 – 15.94) 20.82 (19.23 – 22.71) <0.0001* 

*= P- value less than 0.05 are considered significant. 

Table 3.3: Showing the tissue blood flow, angiogenic factors and markers of endothelial 

dysfunction in subjects in the cross-sectional study.  

 

There was a strong inverse correlation between microvascular tissue blood flow and sFlt-1 in the 

pre-eclamptic group [rs= -0.738 (p=0.001)], but there was no such significant correlation in the 

normal pregnant controls [rs= -0.02 (p= 0.938)] (Figure 3.3.2a). A strong inverse correlation was 

also observed between blood flow and sEng in the two groups of women [rs= -0.806 (p<0.001) and 

rs= -0.641 (p= 0.004); for pre-eclamptic and normal pregnant controls, respectively] (Figures 

3.3.2b). There was a positive correlation between microvascular blood flow and PIGF in normal 

pregnancy [rs= 0.882 (p< 0.001)] and pre-eclampsia [rs= 0.921 (p<0.001)] (Figures 3.3.2c). Blood 

flow also showed a strong inverse correlation with the sFlt-1: PIGF ratio in normal pregnancy [rs= -

0.692 (p= 0.001)] and pre-eclampsia [rs= -0.868 (p<0.001)] (Figures 3.3.2d). Microvascular tissue 
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blood flow also showed a strong inverse correlation with the sFlt-1+ Eng: PIGF ratio in normal 

pregnancy [rs= -0.697 (p= 0.001)] and pre-eclampsia [rs= -0.924 (p<0.001)] (Figures 3.3.2e). 

 

In the pre-eclamptic group, microvascular blood flow showed a significant inverse correlation with 

SBP [rs= -0.96 (p < 0.001)] and MAP [rs= -0.73 (p= 0.001)], and a direct correlation with platelet 

count [rs= 0.674 (p=0.004)]. Levels of sFlt-1 showed significant positive correlations between SBP 

[rs= 0.685 (p= 0.003)], and an inverse correlation with gestational age [rs= -0.586 (p=0.017)]. 

Similarly, serum levels of Endoglin showed significant direct correlations with SBP [rs= 0.753, (p= 

0.001)], and MAP [rs= 0.541 (p= 0.031)], but an inverse correlation with platelet count [rs= -0.679, 

(p= 0.004)]. Serum PlGF showed significant inverse correlations with SBP [rs= -0.874 (p <0.001)], 

and MAP [rs= -0.546, (p= 0.029)], but a direct correlation with platelet count [rs= 0.624, (p= 0.01)] 

and gestational age [rs= 0.666 (p=0.005)]. The sFlt-1: PlGF ratio showed a significant direct 

correlation with SBP [rs= 0.805 (p <0.001)], but inverse correlation with platelet count [rs= -0.562, 

(p= 0.024)] and gestational age [rs= -0.742 (p=0.001)]. The sFlt-1+ Eng: PlGF ratio showed a direct 

correlation with SBP [rs= 0.869 (p <0.001)], and MAP [rs= 0.538, (p= 0.032)], but inverse correlation 

with platelet count [rs= -0.609, (p= 0.012)] and gestational age [rs= -0.682 (p=0.004)]. In the normal 

pregnant controls, there was no correlation between SBP and DBP, MAP, platelet count and 

gestational age with either the microvascular tissue blood flow or any of the angiogenic factors. 

[Appendix 3] 

 

3.3.4. Discussion 

This study provides the first report on the relationship between maternal microvascular tissue 

perfusion and the imbalance of angiogenic factors during pregnancy. Data shows that angiogenic 

factors correlate inversely with microvascular blood flow during normal pregnancy and pre-

eclampsia. Increased levels of sFlt-1 and sEng or low PIGF are associated with reduced 

microvascular flow whereas lower levels of the anti-angiogenic factors and higher pro-angiogenic 

PIGF levels correlate with a greater blood flow during normal pregnancy.  
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Increased tissue blood flow is a feature of normal pregnancy as an adaptive response to meet 

increased metabolic requirements. This implies that a pro-angiogenic profile during normal 

pregnancy would enhance angiogenesis, resulting in the vascular changes seen in normal 

pregnancy such as increased microvascular perfusion and  a fall in peripheral vascular resistance 

and blood pressure. Elevations in sFlt-1+sEng: PlGF ratio, as observed in pre-eclampsia would 

impair angiogenesis, resulting in reduced capillary density and tissue blood flow. This would lead 

to increased peripheral vascular resistance and hypertension (Humar et al 1989), reduced 

microvascular perfusion (Verlohren et al, 2012), impaired end-organ function and possibly 

contribute to the multi-system manifestations of pre-eclampsia. Indeed, strong correlations 

between elevated mean arterial pressures and elevated sFLT-1 and sEng and decreased PlGF 

have been demonstrated in pre-eclamptic patients (Noori et al, 2010). Since impaired tissue 

perfusion precedes organ dysfunction and correlates with severity of pre-eclampsia (Anim-Nyame 

et al, 2001), measurement of these angiogenic factors could provide a simple clinical test for 

assessing the severity of end-organ dysfunction, which is a feature of pre-eclampsia.  

 

Augmented levels of anti-angiogenic factors and decreased levels of pro-angiogenic factors in pre-

eclampsia correlated with a decreased microvascular blood flow in this study. This decrease in 

blood flow in pre-eclampsia was also associated with elevations in circulating markers of 

endothelial activation and inflammation. Increases in circulating inflammatory markers like TNF-α 

are associated with endothelial cell activation in pre-eclamptic patients. Indeed, serum from 

pregnant women with pre-eclampsia can induce endothelial dysfunction and injury in-vitro, 

suggesting that circulating factors underlie the pathology of the disease (Myers et al, 2005). 

 

Increases in sFlt-1 are associated with decreases in circulating PlGF and VEGF, attributable in 

part to sFlt-1 binding (Levine et al, 2004). Thus standardising this relationship by expressing a ratio 

of anti-angiogenic: pro-angiogenic factors in maternal plasma is a better prognostic marker for pre-

eclampsia than either measure alone  (Levine et al, 2004, Verlohren et al, 2012a & b) and is better 

at identifying pre-eclamptic patients in the third trimester (Chaiworapongsa et al, 2013). Increases 

in the anti-angiogenic: pro-angiogenic factor ratio in the maternal circulation have been associated 
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with endothelial dysfunction, related to the pathogenesis of pre-eclampsia (Noori et al, 2010) 

although no direct correlations have been observed between circulating factors and brachial artery 

endothelial function (Myers et al, 2005). The proportion of sFlt-1+sEng: PlGF not only increased 

with pre-eclampsia but also correlated inversely with microvascular perfusion in both cohorts, with 

PlGF significantly predicting microvascular blood flow.  

 

Angiogenic factors and their receptors are important regulators of placental vascular development, 

and neovascularisation (Savvidou et al, 2008). Among the angiogenic factors expressed by the 

placenta, VEGF and PlGF appear to play a central role in vascular development. Increased 

circulating levels of angiogenic receptor inhibitor (sFlt-1) are believed to compromise angiogenesis 

by inhibiting mutagenic and homeostatic actions on endothelial cells (Kendall et al, 1993).  

Angiogenic imbalance contributes to abnormal placenta vascular development and also endothelial 

cell function in pre-eclampsia (Levine et al, 2004), although others have failed to show a direct 

correlation between angiogenic factors and large vessel endothelial dysfunction assessed by 

brachial artery FMD (Savvidou et al, 2008). 

 

Currently no validated test exists that reliably predicts progression of pre-eclamptic pathology and 

therefore pre-eclamptic women who do not require immediate delivery are monitored as inpatients 

until timely delivery (Visintin  et al, 2010).  The ratio of sFlt-1:PlGF has been used previously to 

assess the severity (Verlohren et al, 2012a) and prognosis (Verlohren et al, 2012b) of pre-

eclampsia, as well as to assess the increased risk of stillbirth (Chaiworapongsa et al, 2013). The 

data presented here demonstrates that microvascular blood flow (which precedes end-organ 

dysfunction) inversely correlates with both sFlt-1:PIGF and sFlt-1+ sEng:PlGF. Thus, the data 

supports the clinical use of an anti-angiogenic: pro-angiogenic ratio to identify pre-eclamptic 

women who may be at risk of underlying organ dysfunction and more likely to deteriorate, requiring 

urgent intervention and early delivery (Verlohren et al, 2012a &b, Chaiworapongsa et al, 2013). 

 

This study did not investigate the mechanism underlying the inverse correlation between the anti-

angiogenic factors sFlt-1 and sEng and microvascular blood flow. However, it is possible that the 
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elevated sFlt-1 and sEng could reduce capillary formation in pre-eclampsia leading to a decreased 

capillary density. Increased levels of sFlt-1 and sEng or reduced levels of PlGF in pre-eclampsia 

could impair angiogenesis, resulting in reduced capillary density and tissue blood flow. Reduced 

capillary density (microvascular rarefaction) is a feature of arterial hypertension and increases or 

aggravates peripheral resistance (Humar et al, 2009). Microvascular rarefaction also occurs in pre-

eclampsia and precedes the onset of the disease (Myers et al, 2005). In pregnant rats, 

administration of sFlt-1 and sEng causes a pre-eclampsia-like syndrome and vasoconstriction of 

renal micro vessels (Levine et al, 2005).  Moreover, anti-angiogenic cancer therapy inhibits 

angiogenesis and results in rarefaction leading to increased peripheral vascular resistance and 

hypertension (Mourad  et al, 2008; Steeghs et al, 2008).  Thus, increased sFlt-1 and sEng and 

reduced PlGF levels in pre-eclampsia could increase peripheral resistance, reduce microvascular 

perfusion, impair end-organ function and possibly contribute to the multi-system manifestations of 

pre-eclampsia.  

 

There is evidence that adipose tissue expresses sFlt-1 (Herse et al, 2011), and that levels of anti-

angiogenic factors vary with gestational age (Noori et al, 2011) and impaired angiogenesis 

increases with age (Wagatsuma, 2006). However, it is unlikely that the differences in sFlt-1, sEng 

and PlGF between the two groups are due to any of these variables as there is no difference in 

maternal age, BMI and gestational age between the groups. In spite of the significant correlation 

between the angiogenic factors and microvascular blood flow reported in this study, there are 

potential limitations to these findings. Firstly, the pre-eclampsia group in this study had mild 

hypertension and ideally a 24-hour ambulatory blood pressure monitoring would have allowed a 

full evaluation between blood pressure and the angiogenic factors.   Secondly, gastrocnemius 

muscle blood flow was presumed to represent nutritive flow blood flow, and although the blood flow 

values are similar to those in other reports (Anim-Nyame et al, 2001),  an ankle occlusion cuff was 

not used to exclude arterio-venous shunts of the feet. This was done to prevent discomfort to the 

participants that might have had hemodynamic consequences and interfered with other aspects of 

the protocol. Furthermore, although the gastrocnemius muscle circumference between the two 
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groups were similar, differences in adipose tissue composition could, by adding heterogeneity, 

influence the applicability of the findings more generally. 

 

In summary, this study has provided convincing evidence of an inverse correlation between anti-

angiogenic factors and microvascular blood flow in pre-eclampsia. Lower levels of anti-angiogenic 

and higher levels of pro-angiogenic factors are associated with a greater blood flow during normal 

pregnancy. Measurement of circulating angiogenic factors could be used to assess the severity of 

multisystem dysfunction in pre-eclampsia as reduced tissue perfusion precedes end organ 

dysfunction.  

 

 

[Data from this chapter is published. Ghosh A, Freestone N et al . Microvascular function in pre-

eclampsia is influenced by insulin resistance and an imbalance of angiogenic mediators. Physiol 

Rep. 2017 Apr;5(8). pii: e13185. doi: 10.14814/phy2.13185. Epub 2017 Apr 28.] 
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Chapter 3.4 

Relationship between insulin resistance, microvascular blood flow and endothelial 

dysfunction in pre-eclampsia 

 

3.4.1. Introduction 

Pre-eclampsia, a multi-systemic disorder of the second half of pregnancy is a leading cause of 

maternal and perinatal morbidity and mortality (Sibai et al, 2003). Generalised endothelial 

dysfunction is also a feature of the disease (Levine et al, 2004; Levine et al, 2006). In previous 

chapters, reduced blood flow in pre-eclampsia (Chapter 3.1), and its relationship with endothelial 

dysfunction (Chapter 3.2), has been demonstrated. Insulin resistance is a feature of the disease 

(Laivuori et al 1996; Anim-Nyame et al, 2015), and persists after delivery (Laivuori et al, 1996). It 

has also been attributed to endothelial dysfunction (Montagnani and Quon, 2000; Ranganath and 

Quon, 2007).  

 

Muscle is the main peripheral site of insulin action (Saltiel and Kahn 1988), where insulin is 

delivered by both passive diffusion and trans-capillary transport after binding to the receptors on 

the endothelial surface (Posner 2017). It also helps in glucose uptake by the muscles. The insulin 

delivery process is the rate-limiting factor for insulin’s action (Ranganath and Quon, 2007; Barrett 

et al, 2011). Although insulin uptake is not related to the blood flow, glucose uptake does correlate 

to the microvascular blood flow (Wallis et al, 2002). Thus, changes in the microvascular 

environment, including endothelial dysfunction and tissue blood flow, may affect insulin delivery 

and insulin resistance (St-Pierre et al, 2010). 

 

In this chapter, it will be investigated whether a relationship exist between insulin resistance, 

microvascular blood flow and endothelial dysfunction in pregnancies complicated by pre-

eclampsia. 

 

3.4.2. Method  

Participants, Blood Sampling and Assays 
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In this study, participants were recruited from the maternity department at Kingston Hospital, UK, 

to compare microvascular blood flow and correlate with markers of endothelial dysfunction as 

described in Chapter 2.1. Blood samples were obtained from the ante-cubital vein of each 

participant aseptically, as described in Chapter 2.2. Human PlGF, s-Eng, sFlt-1, and markers of 

endothelial dysfunction, (s-ICAM-1, s-VCAM-1, e-Selectin, Thrombomodulin and TNF-α) were 

measured by an ELISA (R and D Systems Europe, UK), as described previously in Chapter 2.4. 

Fasting insulin and blood glucose were measured to estimate insulin resistance by HOMA as 

described previously in Chapter 2.4.1. 

 

Measurement of blood flow 

In this study, Filtrass strain-gauge plethysmography (Filtrass; DOMED, Munich, Germany) was 

used as described previously (Chapter 2.3).  

 

Statistical Analysis:  

The demographic data were normally distributed and were summarised as mean and SEM [Table 

3.1]. All the other data are presented as median and Inter-quartile range. The differences between 

the groups were calculated using Mann Whitney tests, as the clinical data was not normally 

distributed (P-P plots). The demographic data were compared using t-test. Correlation was done 

using the Spearman’s formula. P-values of <0.05 were considered statistically significant.  

 

3.4.3. Results 

As already discussed in Chapter 3.1, there was no significant difference in age, BMI, gestational 

age or haematocrit between the two groups. As already discussed previously, microvascular tissue 

blood flow was reduced in the pre-eclamptic cohort, than in the normal pregnant cohort (Chapter 

3.1). Also, levels of biochemical markers of endothelial dysfunction were elevated in the pre-

eclamptic cohort, than in the normal pregnant cohort (Chapter 3.2). The insulin resistance (IR), as 

calculated from HOMA, was higher in the pre-eclamptic cohort [5.496 (5.015 – 5.906)], than in the 

normal pregnant cohort [1.849 (1.18 – 2.58); p <0.001] (Figure 3.4.1a). The fasting free serum 

insulin level was higher in the pre-eclamptic group [18.22 (16.985 – 21.559)], in comparison to the 
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normal pregnant controls [7.09 (5.471 – 10.816); p <0.001] (Figure 3.4.1b). Fasting serum glucose 

was also elevated in the pre-eclamptic cohort [6.733 (6.192 – 7.134)], compared to the normal 

pregnant cohort [5.134 (4.65 – 5.908); p <0.001).  
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                                            (a)                                                                      (b) 

Figure 3.4.1: Comparison of (a) HOMA (Homeostasis Model Assessment) and (b) Serum fasting 
insulin in normal pregnant controls and pre-eclamptic pregnancies. 
 

There is a statistically significant inverse correlation between microvascular tissue blood flow and 

both fasting insulin concentration (rs= -0.8, p<0.0001), and HOMA (rs= -0.997, p<0.0001), in the 

pre-eclamptic group. No significant relationship was observed in the normal pregnant controls, 

between the microvascular blood flow and either the serum fasting insulin concentration (rs= -

0.013, p=0.958), or with HOMA (rs= -0.03, p=0.906) [Figure 3.4.2]. Serum fasting glucose did not 

show any statistically significant correlation with microvascular blood flow in nether the pre-

eclamptic group (rs= -0.334, p=0.206), nor in the normal pregnant group (rs= -0.206, p=0.413). 

HOMA showed a statistically significant correlation with gestational age (rs= -0.57, p=0.021), 

platelet count (rs= -0.65, p=0.006), and MAP (rs= 0.719, p=0.002); but there was no correlation in 

the normal pregnant group with these measures. Serum fasting insulin showed a positive 

correlation with MAP (rs= 0.719, p=0.002), in the pre-eclamptic group, but this relationship was not 

observed in the normal pregnant group. Fasting plasma glucose did not show any significant 

correlation with any of the groups.  
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  (a)      (b) 

Figure 3.4.2: Correlation of microvascular blood flow with (a) HOMA, (b) insulin, in the two cohorts. 
 

Insulin resistance showed statistically significant correlations with the markers of endothelial 

dysfunction. In the pre-eclamptic group, HOMA elicited statistically significant positive correlations 

with ICAM-1 (rs= 0.906, p<0.0001), VCAM-1 (rs= 0.897, p<0.0001), eSelectin (rs= 0.561, p=0.03), 

and Thrombomodulin (rs= 0.736, p=0.01). In the normal pregnant group, HOMA exhibits correlation 

with only VCAM-1 (rs= 0.507 p=0.032), and Thrombomodulin (rs= 0.511, p=0.03). Similarly, in the 

pre-eclamptic group, serum fasting free insulin displayed a statistically significant positive 

correlation only with ICAM-1 (rs= 0.641, p=0.007), and VCAM-1 (rs= 0.759, p=0.001), however 

there was no statistically significant correlation in the normal pregnant group. Serum glucose failed 

to elicit any correlation in either of the groups. [Appendix 3] 

 

3.4.4.Discussion 

This study found a significant correlation between insulin resistance, microvascular blood flow and 

markers of endothelial dysfunction in the pre-eclamptic group, which was absent in the normal 

pregnant cohort. The results showed an inverse correlation between microvascular blood flow with 

both insulin resistance (HOMA) and hyperinsulinemia in pre-eclamptic pregnancies, but not in the 

normal pregnant cohort. Insulin resistance, a feature of pre-eclampsia, has been reported before 

(Laivuori et al, 1996; Anim-Nyame et al, 2015), and other studies (Anim-Nyame et al, 2004) have 
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reported a relationship with microvascular blood flow. The finding in this study supports these 

findings. There is a strong relationship between insulin resistance and blood flow, in pre-eclampsia 

(Anim-Nyame et al, 2015). Since muscle is the main site of peripheral insulin action, blood flow is 

important for the peripheral utilisation of insulin and glucose. A healthy endothelium is required for 

effective transport of insulin to the muscles across the capillary cell wall (Saltiel and Kahn 1988). 

Reduced blood flow, endothelial dysfunction and insulin resistance are seen in pre-eclampsia. 

Thus, the endothelial dysfunction seen in pre-eclampsia, may contribute to insulin resistance, by 

altering the trans-capillary transport of insulin across the endothelial cells.  

 

Vasodilatation is achieved by relaxation of the resistance vessels, following relaxation of 

precapillary arterioles, thus increasing total blood flow (Barret et al, 2009, Vincent et al, 2004). 

Insulin induces endothelial-mediated vasodilation, via a NO pathway (Kuboki et al, 2000). Thus, 

hyperinsulinemia in pre-eclampsia can be a reflex compensatory mechanism to increase the blood 

flow to the tissue (Vincent et al, 2003, Barrett et al, 2011) (Figure 3.4.3). However, such an 

assertion has been contradicted, with an alternative explanation postulated as the cause of 

endothelial dysfunction (Arcaro et al, 2002). Thus Arcaro et al (2002) has shown that modest 

hyperinsulinemia causes endothelial dysfunction, as seen in insulin resistant states, predisposing 

to atherosclerosis. Irving et al (2002) showed that there was no significant correlation between 

tissue blood flow and insulin resistance in healthy control, which is the same as the data obtained 

in this study. The changes in microcirculation observed by Irving et al (2002) were measured in 

skin capillaries, whereas, the findings in this study reflected changes in skeletal muscle blood flow, 

which are the main peripheral site of insulin action. Gastrocnemius muscle blood flow, used here, 

mainly reflects flow through the muscles. Skin circulation serves the dual purpose of nutrition and 

temperature regulation, functions which are facilitated by the presence of arteriovenous shunts. In 

contrast, flow through the calves lacks these arteriovenous shunts, and are therefore, 

predominantly nutritional (Anim-Nyame et al, 2015). 

 

The skeletal muscle is a major target organ of insulin action and plays an essential role in insulin-

induced glucose uptake, and therefore insulin resistance. In obesity and type 2 diabetes (T2DM), 



75 
 

insulin delivery to the skeletal muscles, as well as insulin-dependent glucose uptake by skeletal 

muscles is delayed and impaired (Kubota et al, 2011). Insulin is delivered by the blood to the 

skeletal muscles, by the blood vessels. In obesity and T2DM, insulin delivery through the 

endothelial cells is the rate-limiting step in insulin-mediated glucose uptake by cells, leading to 

insulin resistance. This is thought to be due to reduced insulin-receptor substrate 2 (IRS2) 

expression and reduced insulin-induced eNOS production, resulting in reduced insulin-induced 

capillary recruitment and insulin delivery [Fig 3.4.3] (Kubota et al, 2011, Yu et al, 2011). This in 

turn, reduces glucose uptake by skeletal muscles, increasing insulin resistance. Studies have 

shown, that restoration of insulin-induced phosphorylation in the endothelial cells, completely 

reverses the process, restoring normal glucose delivery to the muscles (Kubota et al, 2013). 

 

As expected, insulin resistance also showed a statistically significant correlation with gestational 

age (Anim-Nyame et al, 2015). There is some degree of insulin resistance in normal pregnancy, 

which is exacerbated in pre-eclampsia and it becomes more severe as the gestational age 

progresses. Factors known to affect insulin resistance (as described in Chapter 1.3 and 1.4), such 

as BMI and age, did not appear to show any statistically significant correlation in this stydy. This 

can be explained by the strict inclusion criteria, intended to exclude the confounding effects of 

these variables on gastrocnemius muscle blood flow. There is evidence that insulin resistance is 

increased in obesity and older age. Furthermore, several medical disorders and smoking 

predisposes to either endothelial dysfunction or insulin resistance. By choosing our criteria for 

patient selection, these confounding variables were excluded.  

 

Although this study has shown a significant relationship between insulin resistance, microvascular 

blood flow and endothelial dysfunction, it is possible that the actual mechanism of insulin 

resistance is multifactorial (Hseuh et al, 2003). Other factors, such as the presence of hypertension 

and other atherosclerotic risk factors, like increased vascular angiotensin II generation and activity 

(Dzau 2001), abnormal lipid profile (Laight et al, 2000), increased leptin levels and oxidative stress 

(Nick-Anim et al, 2000a), may all play significant roles in the development of insulin resistance in 

pre-eclampsia. The role of reduced blood flow and endothelial dysfunction, in the development of 
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insulin resistance in pre-eclampsia, may represent just one facet of a multifactorial disorder. 

Further studies are required to investigate the interaction between any such factor(s), and the 

relationship between insulin resistance and the evolution of pre-eclampsia.  

 

Figure 3.4.3: Function of the insulin-signalling pathway in normal conditions and in insulin 

resistance. (Yu et al, 2011)  

 

In summary, insulin resistance in pre-eclampsia is related to microvascular blood flow and 

endothelial dysfunction. Insulin resistance in pre-eclampsia is more pronounced than that in normal 

pregnancy. Also, there is reduced microvascular blood flow in pre-eclampsia. All these are thought 

to be secondary to endothelial dysfunction. The cause of endothelial dysfunction is unknown in 

pre-eclampsia. In obesity and T2DM, it is thought to be secondary to the insulin-signalling 

pathway. Whether that is true for pre-eclampsia is unknown. Once the endothelial dysfunction can 

be rectified, insulin resistance and microvascular blood flow returns nearly back to normal (Kubato 

et al, 2011, 2013). The same happens in pre-eclampsia, so that after delivery, insulin resistance 

and microvascular blood flow nearly return to the pre-pregnancy state.  
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Chapter 3.5 

Relationship between insulin resistance and circulating endothelial cells in pre-eclampsia 

 

3.5.1. Introduction 

In pre-eclampsia, generalized endothelial cell dysfunction appears to underlie all the pathological 

manifestations of the disease (Roberts and Hubel 2009). Insulin resistance is a feature of the 

disease (Laivuori et al, 1996; Anim-Nyame et al, 2015). Furthermore, profound metabolic changes 

occur in pre-eclampsia, like those observed in metabolic syndrome (Scioscia et al, 2009). Insulin 

resistance (IR) is more pronounced in pre-eclamptic women than normotensive women 

(Stefanovic´ et al, 2009) and there is evidence mid-trimester insulin resistance may predict 

subsequent development of pre-eclampsia (Hauth et al, 2011). Although the mechanism of 

increased insulin resistance in pre-eclampsia remains unexplained, this has been attributed to the 

underlying generalised endothelial dysfunction (Montagnani and Quon, 2000; Ranganath and 

Quon, 2007). 

 

CEC are sloughed endothelial cells with a low count in healthy individuals (Woywodt et al, 2006). 

The number in circulation is significantly increased with age (Fabbri-Arrigoni et al, 2012) and in 

conditions associated with endothelial dysfunction, such as systemic lupus erythomatosus (Clancy 

et al, 2001), myocardial infarction (Mutin et al,1999), vasculitis (Clarke et al, 2010) and familial 

hypercholesterolemia (Fabbri-Arrigoni et al, 2012). The CEC count appears to correlate with the 

degree of endothelial dysfunction (Gignat-George et al, 2000), and inversely with endothelial repair 

(Fabbri-Arrigoni et al, 2012). Recent evidence suggests the CEC count may be used as a 

diagnostic biomarker of myocardial infarction (Bethel et al, 2014). CEC count is increased in Type 

II Diabetes independent of HbA1c level (McClung et al, 2005) and this is attributed to the underling 

endothelial dysfunction.  

 

There is also increasing evidence that circulating endothelial cell levels are higher in pre-eclampsia 

compared to normal pregnancy (Canbakan et al, 2007) and may be used as a surrogate marker to 

assess the degree of endothelial damage (Karthikeyan et al, 2011). However, it is unclear whether 
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the elevated circulating CEC numbers correlate with insulin resistance in pre-eclampsia as both 

are related to endothelial dysfunction. If this was the case, then the CEC count in pre-eclampsia 

could be a simple test for assessing the degree of insulin resistance in pre-eclampsia and may be 

used to predict the risk of type II diabetes in pregnancies complicated by the disease. In this 

chapter, the hypothesis that circulating endothelial cells correlates with insulin resistance in pre-

eclampsia, will be investigated. 

 

3.5.2. Method  

Participants and insulin resistance 

In this study, 10 women with pre-eclampsia and 10 normal pregnant controls were recruited from 

the maternity department at Kingston Hospital, UK, as described in Chapter 2.1. (This was a 

subset of the total participants). Fasting blood samples were obtained from women to measure 

CEC count and insulin resistance from insulin and glucose measurements. Blood was obtained 

from the ante-cubital vein of each participant using aseptic techniques, as described in Chapter 

2.2. Insulin resistance was calculated in each patient as described previously in Chapter 2.4.2, 

using serum free Insulin and fasting blood glucose. 

. 

Measurement of CEC 

CEC was measured using an established technique, as described previously in Chapter 2.5. 

 

Statistical Analysis:  

Circulating endothelial cell numbers and insulin resistance were summarised as mean and 

standard error of mean and the differences between the groups were calculated using t-test. 

Correlation was performed using Pearson’s correlation coefficient. P-values of <0.05 were 

considered statistically significant. Statistical analysis was performed using Statistical Package for 

Social Sciences version 22 (SPSS Inc., Chicago, ILL, USA) and Graphpad Prism Version 6.0 

(Graph Pad Software, Inc. CA, USA). 
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3.5.3. Results  

The clinical and demographic characteristics of the two groups are shown in Table 3.5. There were 

no significant differences in maternal age, BMI, ethnicity and gestational age between the two 

groups. Each group had eight Caucasian women, one Asian and one black African woman. As 

expected from the recruitment criteria, women with pre-eclampsia had higher systolic and diastolic 

blood pressure, and lower platelet counts compared to the normal pregnant controls. There was no 

significant difference in haematocrit between the two groups. 

 

CEC numbers were significantly increased in pre-eclampsia compared to normal pregnancy 

(21.54± 3.4 versus 14.2± 2.35; p=0.035 for pre-eclampsia and normal pregnancy respectively). 

Insulin resistance was also significantly greater in pre-eclampsia compared to the normal pregnant 

controls (5.06± 0.13 versus 2.2± 0.4; p<0.0001, for pre-eclampsia and normal pregnancy 

respectively) [Fig 3.5.1].  
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Figure 3.5.1: Comparison of (a) CEC count and (b) HOMA in normal pregnant controls and pre-

eclamptic pregnancies. 

 

However, there was no significant correlation between CEC count and insulin resistance, in 

pregnancies complicated by pre-eclampsia, (r=0.56; p=0.96). There was also no correlation 

between the CEC and insulin resistance in the normal pregnant controls (r=-0.21, p=0.56) [Fig 

3.5.2].  
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Variable Normal Pregnancy 
 (n=10) 

Pre-eclampsia 
(n=10) 

P value * 

Gestational age (weeks) 32.61± 0.29 32.44± 0.25 0.677 

Age (years) 32.75± 0.7 32.57± 0.83 0.85 

BMI (kg/m2) 24.34± 0.58 24.62± 0.57 0.73 

Systolic BP (mmHg)  109.2± 3.25 146± 2.18 0.0002* 

Diastolic BP (mmHg) 72.3± 2.8 95.2± 1.85 0.0002* 

Haematocrit 0.339± 0.009 0.351± 0.016 0.54 

Platelet (x106/ml) 252.7± 9.91 143.9± 7.66 0.0002* 

Birth weight (g) 3735± 187.65 2358+ 204.1 <0.0001* 

  
*= P- value less than 0.05 are considered significant. 
 
Table 3.5: Clinical and demographic characteristics of the subjects in the cross-sectional study 

between IR and CEC. 

 

3.5.4. Discussion 

This study investigated the relationship between insulin resistance and CEC count during the third 

trimester of pregnancies complicated by pre-eclampsia. Although CEC count (Canbakan et al, 

2007) and insulin resistance (Laivuori et al, 1996; Anim-Nyame et al, 2015) in pre-eclampsia have 

been reported, to our knowledge this is the first study to investigate the relationship between them 

in pregnancies complicated by the disease. Previous studies have shown that CEC count 

correlates with endothelial dysfunction and severity of pre-eclampsia (Karthikeyan et al, 2011). 

Data from this study shows that there is no significant correlation between insulin resistance and 

the CEC count in pre-eclampsia. 

 

In a similar fashion to previous studies (Grundmann et al, 2008), CEC numbers reported here 

increased significantly in pre-eclamptic women when compared to normotensive pregnancies, with 

the baseline CEC number in normotensive pregnancies also comparable. Normal CEC levels are 

around the 20 cells/ml mark in healthy individuals (Woywodt et al, 2006) and under pathological 
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conditions can increase up to 204 cells/ml, as seen in cases of vasculitis (Clarke et al, 2010). In 

pre-eclampsia, a range of CEC numbers has been reported from between 53- 88 cells/ml 

(Grundmann et al, 2008; Strijbos et al 2010). Increased CEC numbers correlate with markers of 

increasing endothelial dysfunction (Clarke et al, 2010) as they represent the sloughed endothelial 

lining; although that is not always the case at lower levels (Fabbri-Arrigoni et al, 2012). Pre-

eclamptic women in this study had CEC numbers that although elevated from control groups would 

not be considered overtly pathophysiological, as seen in other inflammatory conditions (Fabbri-

Arrigoni et al, 2012). This may be because the pre-eclamptic women in this study only had 

moderate disease and consequently less severe endothelial injury. In fact, Strijbos et al (2010) did 

not observe any significant difference in CEC counts between pre-eclampsia and the control 

groups. He observed more correlation of the disease frequency with the biochemical markers of 

endothelial dysfunction, than with CEC count. 

 

Intuitively, it is expected that CEC count would correlate with insulin resistance because the two 

are related to endothelial dysfunction in pre-eclampsia. Data from this study has shown this is not 

the case.  This may reflect the lower CEC levels in our pre-eclamptic group compared to previous 

studies (Grundmann et al, 2008), and therefore the disease severity. Strijbos et al (2010) did not 

observe any correlation between CEC and markers of endothelial dysfunction in a cross-sectional 

study.  

 
Fig 3.5.2: Correlation of CEC count with HOMA between the two groups. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Strijbos%20MH%5BAuthor%5D&cauthor=true&cauthor_uid=20533384
http://www.ncbi.nlm.nih.gov/pubmed?term=Strijbos%20MH%5BAuthor%5D&cauthor=true&cauthor_uid=20533384
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The results from the present study show that the pathological levels of IR can exist independently 

of marked endothelial dysfunction as there was limited endothelial sloughing in the pre-eclamptic 

women. In general, endothelial dysfunction can be found in both pre-eclampsia and insulin 

resistance states (Cousins, 1991), like obesity and dyslipidemia in the absence of diabetes mellitus 

(Roberts and Gammill, 2006). Moreover, endothelial dysfunction and IR have been found to 

correlate independently with the severity of pre-eclampsia (Roberts and Gammill, 2006), although 

this has not always been observed (McVeigh et al, 2003). Hyperglycemia causes endothelial 

dysfunction in IR states via oxidative stress and the formation of advanced glycation end-products 

(AGEs) (Wautier et al, 2001). However, hyperglycemia is unlikely to explain the endothelial 

dysfunction and increased CEC in pre-eclampsia since hyperglycemia is not a common feature of 

pre-eclampsia, in the absence of diabetes. As in type II diabetes, it is possible the elevated CEC in 

pre-eclampsia reflect ongoing vascular injury, independent of glucose control (McClung et al, 

2005). 

 

This study suggests that in the cohorts, high levels of IR can exist alongside an initiation of 

vascular damage, but that they might be independent of each other at low levels of damage. In a 

similar fashion, while the CEC count from the normal pregnant group in this study was similar to 

that reported for non-pregnant women by other studies (Gignat-George et al, 2000), in spite of 

relative IR (Powe et al, 2011), there was no correlation between IR and CEC number. In normal 

pregnancy, the mechanism of IR may be different and unlikely to be related to endothelial 

dysfunction (Powe et al, 2011). 

 

It is more than likely that the levels of IR in the normotensive and pre-eclamptic pregnancies did 

not correlate with vascular dysfunction, as in these subjects, the levels of vascular damage, 

although detectable was less severe. Further studies are required to investigate this relationship in 

early onset pre-eclampsia, which represents severe disease. It is unlikely that the lack of 

correlation between CEC count and IR is due to the small number of women in the study as others 

have reported significant differences between CEC counts (Canbakan et al, 2007) and IR 

(Stefanovic´ et al, 2009) using similar sample sizes and the same methodology. It is also unlikely 
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that the relationship between CEC and IR would have been different if the blood samples had been 

obtained at later gestational ages since levels of endothelial dysfunction in term pre-eclampsia are 

lower than those found in preterm disease (Powers et al, 2012). 

 

In summary, it has been shown that although IR and CEC counts are increased in pre-eclampsia, 

there is no correlation between the two. However, the CEC count on its own in pre-eclampsia is 

unlikely to be useful as a surrogate measure of IR and not appropriate for detecting persistent IR 

or predicting the risk of type II diabetes in women whose pregnancies are complicated by pre-

eclampsia. (Anim-Nyame et al, 2015). Post-delivery, CEC numbers are similar to the age-matched 

non-pregnant women with a history of normal pregnancy (Tuzcu et al, 2015). 

 

 

 

[Data from this study is published in Anim-Nyame N, Ghosh A, Freestone N, Arrigoni FI. 

Relationship between insulin resistance and circulating endothelial cells in pre-eclampsia. Gynecol 

Endocrinol. 2015; 31(10): 788-91] 

 

 
 

 

 

 

 

 

 

 

 

 

 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Anim-Nyame%20N%5BAuthor%5D&cauthor=true&cauthor_uid=26172933
https://www.ncbi.nlm.nih.gov/pubmed/?term=Ghosh%20A%5BAuthor%5D&cauthor=true&cauthor_uid=26172933
https://www.ncbi.nlm.nih.gov/pubmed/?term=Freestone%20N%5BAuthor%5D&cauthor=true&cauthor_uid=26172933
https://www.ncbi.nlm.nih.gov/pubmed/?term=Arrigoni%20FI%5BAuthor%5D&cauthor=true&cauthor_uid=26172933
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Chapter 3.6 

Comparison of endothelial cell insulin receptors expression in normal pregnancy and pre-

eclampsia 

 

3.6.1. Introduction 

Although the pathophysiology of pre-eclampsia remains an enigma, generalized endothelial cell 

dysfunction appears to underlie all the pathological manifestations of the disease (Levine et al, 

2004; Levine et al, 2006).  This is evident from increased endothelial cell sloughing (Grundmann et 

al, 2008) and increased inflammatory and angiogenic markers in pre-eclampsia (Grundmann et al, 

2008; Erdbruegger et al, 2010; Brennan et al, 2014; Masoura et al, 2014). Profound metabolic 

changes occur in pre-eclampsia, like those observed in metabolic syndrome (Scioscia et al, 2009). 

Women whose pregnancies are complicated by pre-eclampsia are therefore more likely to develop 

diabetes and cardiovascular disease, later in life (Laivuori et al, 1996; Wolf et al, 2004; Lykke et al, 

2009). Although the cause remains unclear, there is accumulating evidence that it might be related 

to the underlying endothelial dysfunction (Montagnani and Quon, 2000), which persists after the 

pre-eclamptic delivery (Sandvik et al, 2013). 

 

Insulin resistance is a feature of the disease and may persist after delivery. Insulin plays an 

important role in glucose and vascular homeostasis (Saltiel and Kahn, 2001). Insulin receptors 

have been demonstrated on endothelial cells of both large and small blood vessels (Vincent et al, 

2003), which participate in insulin-regulated glucose homeostasis. Although muscle is the main 

peripheral site of insulin action (Saltiel and Kahn, 2001), insulin is delivered to muscle cells from 

the circulation via both passive diffusion and trans-capillary transport mechanisms involving 

endothelial cell surface binding (Vincent et al, 2003; Posner 2017). 

 

This chapter investigates the hypothesis that there is a change in endothelial cell insulin receptor 

expression in women with pre-eclampsia, because of underlying endothelial dysfunction. These 

changes may predispose these women to long-term risk of type II diabetes and cardiovascular 

disease, in pregnancies complicated by pre-eclampsia.  
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3.6.2. Method  

Participants, Blood Sampling and Assays 

In this study, participants were recruited from the maternity department at Kingston Hospital, UK, 

to compare microvascular blood flow and correlate with markers of endothelial dysfunction as 

described in Chapter 2.1. Blood samples were obtained from the ante-cubital vein of each 

participant aseptically, as described in Chapter 2.2. Human PlGF, s-Eng, sFlt-1, and markers of 

endothelial dysfunction, (s-ICAM-1, s-VCAM-1, e-Selectin, Thrombomodulin and TNF-α) were 

measured by an ELISA (R and D Systems Europe, UK), as described previously in Chapter 2.4.  

 

Cell culture 

HDMEC were grown as per the supplier’s guidance (Promo Cell, Germany), as described in detail 

in Chapter 2.6. The cells were then incubated separately in sera from the different participants. 

 

Study of insulin signalling pathway 

Endothelial cell insulin receptor expression was studied using flow-cytometry (Chapter 2.7.3) and 

western blotting (Chapter 2.7.4). Flow cytometry helped to estimate the amount of insulin receptor 

expression on the surface of HDMEC cells, while western blot estimated the total amount of 

receptor protein in the endothelial cells. 

  

Statistical Analysis:  

The demographic data were normally distributed and were summarised as mean and SEM [Table 

3.1]. All the other data are presented as median and Inter-quartile range. The differences between 

the groups were calculated using Mann Whitney tests, as the clinical data was not normally 

distributed (P-P plots). The demographic data were compared using t-test. Correlation was done 

using the Spearman’s formula. P-values of <0.05 were considered statistically significant.  

 

3.6.3. Results 

The clinical and demographic characteristics of the participants are shown in Table 3.1 (Chapter 

3.1). There were no significant differences in age, BMI, gestational age or haematocrit between the 
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two groups, all the biochemical markers of endothelial dysfunction were significantly raised in the 

pre-eclamptic group (Table 3.2; Figure 3.2.1; Chapter 3.2). Briefly, levels of endothelial markers, 

like sICAM-1, sVCAM-1, eSelectin, TNF- α and Thrombomoduin levels, were significantly higher in 

the pre-eclamptic cohort compared to the normal pregnant controls. 

 

Using flow-cytometry, the endothelial cell surface insulin receptor expression in the pre-eclamptic 

group [60.82 (58.75- 61.73)] was found to be statistically significantly lower than the normal 

pregnant cohort [71.13 (70.47 – 71.73); p<0.0001]. Using western blotting, there was no 

statistically significant difference in the total amount of insulin receptor protein between the two 

groups [0.1264 (0.0533 - 0.2073) versus 0.1434 (0.0809 - 0.1899); p= 0.646 for pre-eclampsia and 

normal pregnancy respectively]. 
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   (a)       (b) 
 
Figure 3.6.1: Comparison of (a) Flow-cytometry and (b) western blot data on insulin receptors in 
normal pregnant controls and pre-eclamptic pregnancies. 
 

Endothelial surface insulin receptors showed an inverse correlation with haematocrit in the pre-

eclamptic group (rs= -0.732, p= 0.001) only. Amongst the normal pregnant women, there was a 

statistically significant correlation between the surface insulin receptors and foetal birth weight 

(rs=0.553; p=0.017). This was not present in the pre-eclamptic group. Endothelial surface insulin 

receptors do not show any other statistically significant correlation with any other parameters, in 



87 
 

either group. The total cellular protein of the cells also did not show any statistically significant 

correlation with any parameters, in either group. Neither the endothelial surface insulin receptors, 

nor the total receptor proteins, showed any statistically significant correlation with any biochemical 

markers of endothelial dysfunction, in either group.  

[Appendix 1A for FACs graph, and Appendix 2 for western blot pictures] 

 

3.6.4. Discussion 

This study was designed to investigate the hypothesis that a change in insulin receptor expression 

by endothelial cells occurs during pre-eclampsia because of endothelial dysfunction. Since 

endothelial dysfunction in pre-eclampsia appears to result from a yet unknown circulatory factor(s), 

the effects of sera from pre-eclamptic and normotensive pregnancies, on insulin receptor 

expression by vascular endothelial cells were studied. The study showed that surface insulin 

receptor expression on the vascular endothelial cells was down regulated in pre-eclamptic 

pregnancies compared to those in normotensive pregnancies; however there was no change in the 

total amount of receptor protein between the two groups. This is the first study to report changes in 

insulin receptor expression in pregnancies complicated by pre-eclampsia.  

 

Insulin receptors have been demonstrated on endothelial cells of both large and small blood 

vessels (Vincent et al, 2003) and participate in insulin-regulated glucose and vascular 

homeostasis. Although muscle is the main peripheral site of insulin action (Kubota et al, 2011), 

insulin is delivered to muscle cells from the circulation via both passive diffusion and trans-capillary 

transport mechanisms (Kubota et al, 2013). Insulin receptor binding is the initial step for trans-

endothelial insulin transport (Kubota et al, 2013). Insulin receptors are unique in that not all 

receptors are expressed on the cellular surface at all times. Once bound to insulin, the receptors 

are internalised within the cell into endosomes, and remain there until insulin is degraded (Posner 

2017). Once insulin is degraded in the endosomes, the insulin receptors may recycle back to the 

cell surface, or form lysosomes where the receptors themselves are degraded. Prolonged 

stimulation of the receptors by insulin, caused by increased doses of insulin, appears to accelerate 
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the degradation of insulin receptors, leading to receptor down-regulation (Roberts and Gammill, 

2002; Posner 2017).  

 

Although it was hypothesized changes in endothelial cell insulin receptor expression resulted from 

endothelial dysfunction, there was no correlation between the insulin receptors expression and any 

of the biochemical markers of endothelial dysfunction. It possible that altered endothelial function 

alone is not enough to result in changes in insulin receptor expression regardless of the severity of 

endothelial dysfunction/ injury. In normal pregnant participants, the surface insulin receptors have 

a direct correlation with the birth weight of the baby. However, this relation was not seen in the pre-

eclamptic group, showing that there are other factors that influence the birth weight. Reduced 

placental blood flow and microcirculation (Brandão et al, 2012), seen in pre-eclampsia, may result 

in intrauterine growth retardation (IUGR) (Karanam et al, 2014). 

 

In addition to the effects of endothelial cell function on insulin receptor expression, it is also 

possible that the impaired microvascular blood flow seen in pre-eclampsia may have contributory 

effects on insulin receptor expression (Anim-Nyame et al, 2015; Posner, 2017). In this study, flow-

cytometry was used to demonstrate endothelial surface insulin receptors, and western blot for the 

total cellular receptor protein.  

 

Insulin plays a major role in placental modulation in pregnancy (Cvitic et al, 2014). In normal 

pregnancy, maternal insulin levels increase during the third trimester, which stimulates placental 

vascular angiogenesis, to meet the increasing demand of the rapidly growing foetus (Cvitic et al, 

2014; Posner 2017). In diabetic pregnancies, elevated foetal insulin levels stimulate placental 

hyper-vascularisation via the phosphatidylinositol 3-kinase/ Akt/ eNOS pathway (Hiden et al, 2009; 

Lassance et al, 2013). Scioscia et al (2006) has demonstrated decreased levels of inositol 

phosphoglycan P type (P-IPG) in the pre-eclamptic placenta, thus demonstrating a down-

regulation of the phosphatidylinositol 3-kinase/ Akt/ eNOS pathway. But Ferreira et al (2011) have 

demonstrated that there is no difference in insulin response to Akt/ PKB phosphorylation in 

between the placentae of the two groups. Thus, in pre-eclampsia, there is widespread 
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vasoconstriction, despite increased serum insulin levels. This may be due to altered cellular insulin 

receptor expression, which in turn fails to stimulate the phosphatidylinositol 3-kinase/ Akt/ eNOS 

pathways, resulting in vasoconstriction, so widespread in the disease (Kubota et al, 2013) (Fig 

3.6.2). 

 

 

Figure 3.6.2: Diagram showing the importance of Insulin receptors and the signalling pathway in 

healthy and in inflammatory conditions. 

 

Endothelial dysfunction is one of the reasons for insulin resistance seen in obesity and T2DM 

(Bakker et al, 2009). Endothelial dysfunction also plays a key role in the development of 

hypertension (Konukoglu and Uzun, 2017), and is a major risk factor for cardiovascular disease 

(Ormazabai et al, 2018). Our study failed to demonstrate any correlation between the markers of 

endothelial dysfunction and insulin receptor expression. Insulin receptors and the insulin signalling 

pathway are downregulated in hypoxia (Regazzetti et al, 2009). In our study, microvascular blood 
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flow is reduced in pre-eclamptic cohort, but it has no correlation with the blood flow. This can be 

due to the fact, that the patients in the pre-eclamptic cohorts had only mild disease.  

 

It is known that women whose pregnancies are complicated by pre-eclampsia are more likely to 

develop diabetes and cardiovascular disease, later in life (Laivuori et al, 1996; Wolf et al, 2004; 

Lykke et al, 2009). Though the cause is unknown, it is thought to be the sequence of events 

encountered during the development of pre-eclampsia, which makes them more prone to diabetes 

and cardiovascular disease. Further studies are required to investigate how down-regulation of 

endothelial cell insulin expression in pre-eclampsia might affect insulin-mediated vascular and 

metabolic homeostasis. Further studies are also required to investigate whether down-regulation of 

insulin receptor expression affects downstream down insulin signalling pathways. 

 

In summary, it has been shown that there is reduced expression of surface insulin receptors in pre-

eclampsia compared to normal pregnancy, although the total amount of insulin receptor protein in 

the cells in the two groups was equal. This was hypothesized to be due to the widespread 

endothelial cell dysfunction seen in pre-eclampsia, but it shows that there are other factor(s) 

affecting the insulin receptors in this condition. It is possible the effect on insulin receptor 

expression explains the long-term risk of cardiovascular disease in women whose pregnancies are 

complicated by pre-eclampsia.  
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Chapter 3.7 

Relationship between endothelial insulin receptor expression and insulin resistance in 

normal pregnancy and pre-eclampsia 

 

3.7.1. Introduction 

Insulin Resistance is a feature of pregnancy, although it is exaggerated in pre-eclampsia (von 

Versen-Hoeynck et al, 2007; Thadhani et al, 2004). It is also been shown that reduced blood flow 

may play a role in the in increased insulin resistance seen in pre-eclampsia (Anim-Nyame et al, 

2015). Himsworth (1949) have shown previously that insulin resistance can by itself be a cause of 

diabetes mellitus. There is now evidence that women with pre-eclampsia and insulin resistance are 

at risk of developing diabetes in later life (Laivuori et al, 1996; Wolf et al, 2004; Lykke et al, 2009). 

Although the cause of this remains unclear, there is accumulating evidence that this might be 

related to the underlying endothelial dysfunction (Montagnani and Quon, 2000). 

 

Muscle is the main peripheral site of insulin action (Feig et al, 2013) and insulin is delivered to the 

muscle cells from the circulation via both passive diffusion and trans capillary transport 

mechanisms involving endothelial cell surface binding (Kubota et al, 2011; Kubota et al, 2013). 

Insulin stimulates glucose uptake by its action to increase cellular permeability to glucose largely 

by recruiting and activating glucose transport proteins to the cell membrane (Reaven, 2011). In 

additional to increasing its own ability to promote glucose uptake (Barrett et al, 2011), it also 

increases skeletal muscle blood flow (Montagnani and Quon, 2000; Ranganath and Quon, 2007).  

Insulin exhibits a gradient from the feeding capillary to the interstitium (Barrett et al, 2011); 

therefore, a large intercapillary distance will lead to a greater insulin action gradient. Insulin-

mediated increases in skeletal muscle blood flow are accompanied by capillary recruitment, as 

seen in obese individuals (Barrett et al, 2011; Saltiel and Kahn, 2001). This would increase 

functional capillary density and reduce the insulin action gradient, resulting in enhanced access of 

insulin to muscle for metabolism and an amplification of insulin action. 
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In this chapter, it is hypothesized that in pre-eclampsia, down regulation of endothelial cell insulin 

receptor expression, reported in the previous chapter (Chapter 3.6), will result in insulin resistance. 

 

3.7.2. Method  

Participants and Measurement of Insulin Resistance  

In this study, participants were recruited from the maternity department at Kingston Hospital, UK, 

to compare microvascular blood flow in pre-eclamptic and normotensive pregnancies, and 

correlate them with markers of endothelial dysfunction as described in Chapter 2.1. Blood samples 

were obtained from the ante-cubital vein of each participant aseptically, as described in Chapter 

2.2. Fasting insulin and blood glucose were measured to estimate insulin resistance by HOMA as 

described previously in Chapter 2.4.1. 

 

Cell Culture 

HDMEC were grown as per the supplier’s guidance (Promo Cell, Germany), as described in detail 

in Chapter 2.6. The cells were then incubated separately in sera from the participants. 

 

Study of Insulin Signalling Pathway 

Endothelial cell insulin receptor expression was studied using flow-cytometry (Chapter 2.7.3) and 

western blotting (Chapter 2.7.4). Flow cytometry helped to estimate the amount of insulin receptor 

expression on the surface of HDMEC cells, while western blot estimated the total amount of 

receptor protein in the endothelial cells. 

  

Statistical Analysis:  

The demographic data were normally distributed and were summarised as mean and SEM [Table 

3.1]. All the other data are presented as median and Inter-quartile range. The differences between 

the groups were calculated using Mann Whitney tests, as the clinical data was not normally 

distributed (P-P plots). The demographic data were compared using t-test. Correlation was done 

using the Spearman’s formula. P-values of <0.05 were considered statistically significant.  
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3.7.3. Results 

As discussed, there was no significant difference in age, BMI, gestational age or haematocrit 

between the two groups. Insulin resistance, measured by HOMA, was raised in the pre-eclamptic 

group, than in the normal pregnant cohort (Chapter 3.4), and endothelial cell surface insulin 

receptor expression was reduced in the pre-eclamptic group, then in the normal pregnant cohort. 

However, there was no significant difference in total expressions of receptor proteins in the 

endothelial cells between pre-eclampsia and normal pregnancy (Chapter 3.6). 

 

In the normal pregnant cohort, there was no statistically significant correlation between endothelial 

cell surface expression of insulin receptors (as detected by flow-cytometry), with insulin resistance 

(rs= -0.034, p= 0.893), or serum fasting insulin level (rs= -0.201, p= 0.423), or fasting serum 

glucose level (rs= 0.402, p= 0.098). Similarly, in the pre-eclamptic cohort, there was also no 

statistically significant correlation between endothelial cell surface expression of insulin receptors 

with either insulin resistance (rs= -0.029, p= 0.914), or serum fasting insulin level (rs= -0.035, p= 

0.897), nor fasting serum glucose level (rs= 0.163, p= 0.546) [Fig 3.7.1].  

 
   (a)      (b) 
 
Figure 3.7.1: Correlation of cell surface Insulin receptors determined by flow-cytometry with (a) 

HOMA and (b) fasting Insulin level. 

 

In terms of total cellular insulin receptor protein (as measured by western blot), in the pre-eclamptic 

group, there is no statistically significant correlation with any of the variables, like insulin resistance 
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(rs= 0.262, p= 0.327), serum fasting insulin level (rs= 0.2, p= 0.458), or serum fasting glucose level 

(rs= 0.172, p= 0.524). In the normal pregnant controls, there was no statistically significant 

correlation with any of the variables, like insulin resistance (rs= -0.247, p= 0.324), serum fasting 

insulin level (rs= -0.234, p= 0.349), or fasting serum glucose level (rs= -0.054, p= 0.832) [Fig 3.7.2]. 

The analysis was repeated, by removing the outlier, but the correlation was unchanged. [Appendix 

3] 

 

        
   (a)            (b) 
Figure 3.7.2: Correlation of total Insulin receptors protein determined by western blotting with (a) 

HOMA and (b) fasting Insulin level. 

 

[Appendix 1A for FACs graph, and Appendix 2 for western blot pictures] 

 

3.7.4. Discussion 

This study tests the relationship between cellular insulin receptor, and insulin resistance in pre-

eclamptic pregnancies, compared to normal pregnancies. It tested the hypothesis that altered 

endothelial insulin receptor expression can explain the potential mechanism for insulin resistance 

in pre-eclampsia. As explained previously, tissue perfusion is reduced (Chapter 3.1), while insulin 

resistance is increased (Chapter 3.4) in pre-eclampsia. Surface insulin receptor expression is 

down regulated in pre-eclampsia, while the amount of total insulin receptor protein in the 

endothelial cells, remains unchanged (Chapter 3.6). There was a statistically inverse correlation 

between tissue blood flow and insulin resistance in pre-eclampsia (Chapter 3.4). There was no 

statistically significant correlation between insulin receptor expression and biochemical markers of 
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endothelial dysfunction (Chapter 3.6). This study also shows no statistically significant correlation 

in between insulin receptor expression (either cell surface expression or the total protein) with 

insulin resistance. 

 
Maternal tissue perfusion decreases during pre-eclampsia (Anim-Nyame et al, 2001; Anim-Nyame 

et al, 2015). Insulin resistance is seen in normal pregnancy; however this is far greater in pre-

eclampsia (Hodson et al, 2013). Although, Salamalekis et al (2005) have reported that there is no 

association between insulin resistance and pre-eclampsia, others have not reported such an 

association (von Versen-Hoeynck et al, 2007; Thadhani et al, 2004). Insulin resistance is seen to 

some extent in the first trimester in all pregnancies, its rise is more pronounced by the third 

trimester in pre-eclampsia (Abhari et al, 2014); and precedes the onset of pre-eclampsia (Hauth et 

al, 2011). It is suggested that pre-eclampsia per se is not a risk factor for development of insulin 

resistance (Sinha et al, 2014), thus the cause and effect relationship between insulin resistance 

and pre-eclampsia is unclear. 

 

The association between insulin resistance and hypertension is well established but the 

mechanism remains unexplained (Reaven, 2011; Barrett et al, 2011). One theory postulates that 

insulin resistance causes blood pressure elevation, and there is compensatory hyperinsulinemia to 

overcome generalized vasoconstriction (Reaven, 2011). An alternative theory states that 

microvascular function, as a common antecedent, determines both blood pressure and insulin 

sensitivity (Roberts and Hubel, 2009; Brandão et al, 2012). In several tissues, capillary density has 

been found to correlate inversely with blood pressure and peripheral resistance in hypertensive 

and normotensive subjects (Nama et al, 2012), and a decrease in capillary density may contribute 

to an increase in vascular resistance (Humar et al, 2009; Pozrikidis 2009). Although previous 

investigations in skeletal muscle preparations from insulin-resistant subjects have convincingly 

shown the existence of insulin receptor and post receptor defects (DeFronzo, 2010), there is also 

evidence that both reduced capillary surface area and impaired microvascular endothelial function 

may contribute to insulin resistance (Kim et al, 2006; Thadhani et al, 2004). Muscle capillary 

density is positively correlated with insulin sensitivity, and diffusion distance of insulin and glucose 



96 
 

from capillary to muscle cells (which increases with decreased capillary density) may play a role in 

determining insulin sensitivity (Snijders et al, 2017; Fisher et al, 2017; Barrett et al, 2011). This 

decrease in capillary density may be a consequence of reduced endothelium-dependent 

vasodilatation at the pre-capillary level. Small pre-capillary vessels are considered the main 

regulators of capillary recruitment and in addition contribute to total peripheral resistance. Indeed, 

reduced endothelium-dependent vasodilatation of resistance vessels is associated with insulin 

resistance (McVeigh and Cohn, 2003; Barrett et al, 2011) and hypertension (Tsioufis et al, 2015). 

In pre-eclampsia, it has been shown that there is structural rarefication of the capillary density, 

before the actual onset of the disease (Nama et al, 2012). This may explain the reported inverse 

correlation between insulin resistance and microvascular perfusion (Anim-Nyame et al, 2015). 

 

This study clearly shows that there are altered insulin receptors on the endothelial cell surface in 

pre-eclampsia. There is growing evidence that hyperinsulinemia is the link between diabetes and 

hypertension (Montagnani and Quon, 2000; Ranganath and Quon, 2007; Lykke et al, 2009). This 

link is also implicated in dyslipidaemia, obesity and cardiovascular disease (Palanjappan et al, 

2004). Hyperinsulinemia is observed secondary to decreased insulin receptor expression (Obisi et 

al, 2002). However, cellular inflammatory changes have also been implicated as the cause of 

insulin resistance (Wolf et al, 2004), including those seen in pre-eclampsia (Anim-Nyame et al, 

2003). It might also be the cause of endothelial dysfunction (Ridker et al, 2003).  Kubota et al 

(2011, 2013), have suggested that defects in cellular insulin receptors and post receptor defects 

are the main reason for insulin resistance in Type 2 diabetes mellitus. 

 

In normal pregnancy, during the third trimester, increased levels of maternal insulin greatly 

stimulate the placental vascular angiogenesis, to meet the increased demand of the rapidly 

growing foetus (Hiden et al, 2009). There is evidence that insulin plays a major role in this 

placental modulation. The placental arterial endothelial cells have a high expression of insulin 

receptors (Hiden et al, 2009). In diabetic pregnancies, elevated foetal insulin level may stimulate 

placental hyper vascularisation via the phosphatidylinositol 3-kinase/ Akt/ eNOS pathway 

(Lassance et al, 2013). In pre-eclampsia, there is widespread vasoconstriction, and there is 
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increased insulin resistance and subsequently increased serum insulin levels. This may be due to 

altered cellular insulin receptor expression, and post-receptor defects. This in turn fails to stimulate 

the phosphatidylinositol 3-kinase/ Akt/ eNOS pathways, which causes vasodilatation (Lassance et 

al, 2013). 

 

In summary, this study provides some evidence that there is decreased endothelial cell insulin 

receptor expression in pre-eclampsia. Insulin delivery to the skeletal muscle occurs through the 

endothelial cells, which is the rate-limiting step (Kubota et al, 2011). Therefore, this study tested 

the hypothesis of a correlation between the insulin receptors and insulin resistance, but there is no 

correlation between insulin receptor expression and insulin resistance, in pre-eclampsia. Further 

research is required to explain the downstream effect of this on insulin signalling pathway and its 

clinical implications. 
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Chapter 3.8 

Differential expression of Akt by endothelial cell in normal pregnancy and pre-eclampsia, 

and its relationship with microcirculation and insulin receptor expression. 

 

3.8.1. Introduction 

In pre-eclampsia, there is impaired blood flow to the affected vascular beds (Brosens et al, 2002), 

and generalised endothelial dysfunction (Levine et al, 2004; Levine et al, 2006). It is a leading 

cause of maternal and perinatal morbidity and mortality (Sibai et al, 2003) and its association with 

long-term risk of Type 2 Diabetes.  

 

Insulin-mediated glucose uptake occurs principally in skeletal muscles (Kubota et al, 2011, 2013), 

and there is convincing evidence that Insulin increases skeletal muscle perfusion (Barrett et al, 

2011). Insulin receptors have been demonstrated on endothelial cells of both large and small blood 

vessels (Vincent et al, 2003). They are also found in vascular smooth muscle cells; and modulate 

vascular tone and tissue blood flow (Barrett et al, 2011). Insulin binding to its receptor activates 

both PI3K/AKT and the Ras-MAP kinase pathways. In endothelial cells, the PI3K/AKT pathway 

mediates an anti-apoptotic effect and results in an increase in gene expression and activation of 

eNOS (Kuboki et al, 2000; Zeng et al, 2000; Hermann et al, 2000). (Figure 1.3) 

 

In chapter 3.6, it was demonstrated that down-regulation of endothelial surface insulin receptors 

occurs, without any change in total insulin receptor proteins in pre-eclampsia. In this chapter, it is 

hypothesized, that there will be changes in the Akt protein, which might affect the tissue perfusion 

in pre-eclampsia. 

 

3.8.2. Method  

Participants  

To investigate the hypothesis, endothelial cell Akt expression was measured in 16 women with 

pre-eclampsia and 18 normal pregnant controls and correlated with endothelial cell insulin receptor 

expression and microvascular blood flow as described in chapter 3.6 and 3.1 respectively. All the 
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women were recruited from the maternity department at Kingston Hospital, UK, as already 

described in Chapter 2.1. Blood samples were obtained from the ante-cubital vein of each 

participant using aseptic techniques, as described in Chapter 2.2.  

 

Measurement of blood flow 

In this study, I used Filtrass strain-gauge plethysmography (Filtrass; DOMED, Munich, Germany) 

as described previously (Chapter 2.3).  

 

Culture 

HDMEC were grown as per the supplier’s guidance (Promo Cell, Germany), as described in detail 

in Chapter 2.6.  

 

Study of Insulin Signalling Pathway: Insulin 

Endothelial cell insulin receptor expression was studied using flow-cytometry (Chapter 2.7.3) and 

western blotting (Chapter 2.7.4). Flow cytometry helped to estimate the amount of insulin receptor 

expression on the surface of HDMEC cells, while western blot estimated the total amount of 

receptor protein in the endothelial cells. 

 

Study of Insulin Signalling Pathway: Akt 

Endothelial cell Akt receptor expression was studied using flow-cytometry (Chapter 2.7.3) and 

western blotting (Chapter 2.7.4). Flow cytometry estimated the active receptor protein, while 

western blot estimated the total amount of receptor protein in the endothelial cells. 

 

Statistical Analysis:  

The demographic data were normally distributed and were summarised as mean and SEM [Table 

3.1]. All the other data are presented as median and Inter-quartile range. The differences between 

the groups were calculated using Mann Whitney tests, as the clinical data was not normally 

distributed (P-P plots). The demographic data were compared using t-test. Correlation was done 

using the Spearman’s formula. P-values of <0.05 were considered statistically significant.  
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3.8.3. Results 

The clinical and demographic characteristics of the participants are shown in Table 3.1. As already 

discussed, there were no significant difference in age, BMI, gestational age or haematocrit 

between the two groups. Microvascular tissue blood flow was reduced in pre-eclamptic group, 

compared to normal pregnant control (Chapter 3.1). Cell surface insulin receptor expressions were 

reduced in the pre-eclamptic group compared to normal pregnancy, though there was no change 

in the total amount of cellular receptor protein (Chapter 3.6). Intracellular Akt was measured by 

both Flow-cytometry and western blot. Flow cytometry estimated the active receptor protein, while 

western blot estimated the total amount of receptor protein in the endothelial cells. Using Flow-

cytometry, the endothelial cell intracellular Akt receptor expression in the pre-eclamptic group 

[44.02 (41.08 – 46.52)] was significantly lower, when compared to the normal pregnant group 

[49.52 (45.35 – 50.87; p=0.002)] {Fig 3.8.1a}. However, using western blotting, there is no 

statistically significant difference in total amount of Akt protein in between the two groups, i.e. pre-

eclampsia [0.3757 (0.2178 - 0.744)], and normal pregnant [0.6042 (0.332 - 0.9156); p= 0.144] {Fig 

3.8.1b} 
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                                        (a)                                                                            (b) 

 Figure 3.8.1: Comparison of (a) Flow-cytometry and (b) western blot data on Akt protein in normal 

pregnant controls and pre-eclamptic pregnancies. 
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In the normal pregnant group, Akt shows statistically significant correlation with foetal birth weight 

(rs= 0.545, p= 0.019), using Flow-cytometry. In normal pregnant cohort, there was no significant 

correlation of Akt with both methods with haematocrit, BMI, MAP, gestational age, and maternal 

age. In the pre-eclamptic cohort, there was no statistically significant correlation with any 

parameters using either Flow-cytometry or western blotting. 

        
 
  (a)       (b) 

Figure 3.8.2: Correlation of (a) intracellular active Akt receptors with microvascular blood flow, 

determined by Flow-cytometry (b) intracellular total Akt receptor protein with microvascular blood 

flow, determined by western blot. 

 

In the normal pregnant group, there was no statistically significant correlation between endothelial 

cells Akt expression (as detected by Flow-cytometry), and microvascular tissue flow (rs= 0.088, p= 

0.729). Also, in the pre-eclamptic group, there was also no statistically significant correlation 

between endothelial cells active Akt expression with microvascular tissue flow (rs= 0.465, p= 0.07) 

[Figure 3.8.2a]. In comparing the correlation of the total Akt proteins and microvascular blood flow 

in the endothelial cells, there is no significant correlation in either the normal pregnant group (rs= 

0.074, p= 0.787), or the pre-eclamptic group (rs= 0.467, p= 0.108) [Figure 3.8.2b]. In the normal 

pregnant group, there was a significant correlation between the cell surface insulin receptor 

expression and the active Akt protein (rs= 0.872, p< 0.001) [Figure 3.8.3a]. However, there was no 

correlation between the cell surface insulin receptors and the active Akt protein (rs= -0.062, p= 

0.82), in the pre-eclamptic group. In comparing the correlation of the total insulin receptor and Akt 
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proteins in the endothelial cells, there is no significant correlation in either the normal pregnant 

group (rs= -0.232, p= 0.387), or the pre-eclamptic group (rs= 0.148, p= 0.629) [Figure 3.8.3b]. 

[Appendix 3] 

  
 
   (a)       (b) 

Figure 3.8.3: Correlation of (a) intracellular active Akt receptors with surface insulin receptor, 

determined by Flow-cytometry (b) intracellular total Akt receptor protein with total insulin receptor, 

determined by western blot. 

 

[Appendix 1B for FACs graph, and Appendix 2 for western blot pictures] 

 

3.8.4. Discussion 

This study evaluated the relationship between intracellular Akt receptor expressions, microvascular 

blood flow and insulin receptors in pre-eclampsia, compared to normal pregnancy. The hypothesis 

that altered endothelial insulin signalling pathway results in impaired microvascular perfusion in 

pre-eclampsia was tested. 

 

The data showed no significant difference in total Akt protein (as determined by western blot) in 

between normal pregnancy and pre-eclampsia. However, there was a significant reduction in 

functional activity of the Akt protein in the pre-eclamptic group (as demonstrated by Flow-

cytometry). There was no correlation between Akt expression and microvascular blood flow in 

normal pregnancy and pre-eclampsia. However, there was significant correlation between Akt 
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expression and endothelial cell surface insulin receptor expression, in the normal pregnant group. 

On the contrary, there was no correlation between Akt expression and endothelial cell surface 

insulin receptor expression, in the pre-eclamptic group. There was no correlation of total Akt 

protein and total insulin receptor protein in either group. These observations suggest that in pre-

eclampsia, there is down-regulation of functional Akt protein in the endothelial cells. From the 

insulin signalling pathway, activation of the insulin receptor up-regulates Akt expression. In chapter 

3.6 and 3.7, it is shown that there is down-regulation of insulin receptor protein expression in pre-

eclampsia, compared to normal pregnancy, which in turn, down-regulates the active Akt, which 

results in impaired peripheral uptake of glucose and therefore insulin resistance. 

 

Akt plays an important role in both the glucose metabolism, via the insulin pathway, and the tissue 

blood flow, via the eNOS pathway (Figure 1.2). Data from this study also shows that there is a 

direct correlation of cellular insulin receptor expression, and functionally active Akt receptors in the 

endothelial cells, in normal pregnancy. This correlation is not seen in pre-eclampsia. This shows 

that while in normal pregnancy, activation of the insulin receptor up-regulates Akt expression, this 

is lost in pre-eclampsia. Other unknown factor(s) controls Akt expression in endothelial cells in pre-

eclampsia. This adds weight to the fact that pre-eclampsia is a multi-factorial disease.  

 

Activation of the insulin-signalling pathway is expected to result in increased tissue blood flow via 

the activation of eNOS (Vincent et al, 2003). It is possible the increased serum insulin in pre-

eclampsia is a compensatory response to overcome the insulin resistance, and decreased 

microvascular blood flow. However, this may be explained by other mechanism(s). Barrett et al 

(2011) demonstrated a dose dependent effect of insulin to increase leg blood flow in insulin 

sensitive subjects. Other studies demonstrated that hyperinsulinemia, increases cardiac output, 

without changing systolic blood pressure (Steinberg et al, 2000). It simultaneously increases blood 

flow to the leg (Steinberg et al, 2000). Capillary recruitment in response to insulin is more important 

than bulk flow to determine rates of tissue insulin-mediated glucose uptake (Vincent et al, 2003, 

Barrett et al, 2011).  
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Impaired insulin signalling in endothelial cells, leads to reduced insulin-induced eNOS, 

phosphorylation, leading to reduce NO formation (Kubota et al, 2011). NO is the most potent 

endogenous vasodilator known (Hellsten et al, 2012). It also inhibits platelet adherence and 

aggregation (Richey, 2013; Vanhoutte, 2016), reduces adherence of leukocytes to the endothelium 

(Vanhoutte 2016), and suppresses proliferation of vascular smooth muscle cells (Napoli et al, 

2013). Several disorders are associated with reduced synthesis and/or increased degradation of 

vascular NO, like hypercholesterolemia (Esper et al, 2006; Brennan et al, 2014), diabetes mellitus 

(Kubota et al, 2013), hypertension (Richey 2013; Vanhoutte 2016), and tobacco use (Ranganath 

and Quon, 2007). Since, endothelial dysfunction causes attenuation of insulin-induced capillary 

recruitment and insulin delivery. This in turn reduced glucose uptake by skeletal muscles, 

increasing insulin resistance (Kabuto et al, 2011) 

 

In addition to NO dependent vasodilatation of the arterioles, Insulin also exerts a vasoconstrictor 

effect via the peptide endothelin-1 (ET-1) (Ranganath and Quon, 2007; Eringa et al, 2002). Insulin 

stimulates ET-1 induced vasoconstriction of skeletal muscle arterioles, via PI3K/AKT pathway 

inhibition (Eringa et al, 2002). Unlike insulin-mediated vasodilatation, it remains functional during 

insulin resistance (Kim et al, 2006; Sarafidis and Bakris 2007). Insulin also induces 

vasoconstriction by activation of extracellular signal-regulated kinase 1/2 (ERK1/2) present on the 

endothelial cells. Removal of the arteriolar endothelium abolishes the insulin-induced 

vasoconstriction, suggesting that activation of endothelial ERK1/2 is required in acute insulin-

induced vasoconstriction (Eringa et al, 2004). Insulin induces dose-dependent vasoconstriction of 

skeletal muscle arterioles during PI3-kinase inhibition (Eringa et al, 2002). In normal endothelium, 

insulin causes vasodilation via the the IR/PI3K/Akt pathway, and it suppresses the endothelial 

ERK1/2 pathway which causes vasoconstriction. In conditions, when the IR/PI3K/Akt pathway is 

suppressed or downregulated, the insulin causes vasoconstriction via the endothelial ERK1/2 

pathway (Yu et al, 2011). 

 

In summary, there is reduction of Akt in pre-eclampsia, compared to the normal pregnancy. This 

may result in decreased eNOS and subsequently NO in the pre-eclamptic arterioles. Thus, the 
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vasodilatory effect of insulin, via the IR/PI3K/Akt pathway, is reduced (Fig 1.3). On the other hand, 

Yu et al (2011) has shown that when there is down-regulation of IR/PI3K/Akt pathway, there is 

stimulation of ERK1/2 pathway, resulting in vasoconstriction and reduced microvascular blood 

flow, which is a feature of the disease. Furthermore, in pre-eclampsia, there is more insulin 

resistance, leading to increased serum insulin, which can predispose to more widespread 

vasoconstriction (Figure 3.4.3). As ERK1/2 was not part of this study, further research is needed. 
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Chapter 3.9 

Endothelial Cell GLUT4 receptor and relationship with insulin Resistance in pre-eclampsia 

 

3.9.1. Introduction 

Pre-eclampsia is a multi-systemic disorder of the second half of pregnancy. Women whose 

pregnancies are complicated by pre-eclampsia have increased risk of diabetes and cardiovascular 

disease, later in life (Laivuori et al 1996; Wolf et al, 2004; Lykke et al, 2009). Although the cause of 

insulin resistance remains unclear, there is accumulating evidence that this might be related to the 

underlying endothelial dysfunction, which persists after the pre-eclamptic delivery (Sandvik et al, 

2013). 

 

Skeletal muscle is one of the major target organs of insulin and plays a vital role in insulin 

mediated glucose update. Insulin delivery to the muscles interstitium through the vascular 

endothelial cells is the rate-limiting step in insulin-stimulated glucose uptake (Kubota et al, 2013). 

Glucose uptake is mainly via GLUT4 in muscles (Govers, 2014). GLUT4 is regulated by its 

intracellular localization. In the absence of insulin, GLUT4 is retained in the intracellular storage 

compartments, unlike the other isomers of GLUT (Watson and Pessin, 2001). On stimulation by 

insulin or muscle contraction, GLUT4 translocate to the cell surface where it transports glucose 

into the cells (Brewer et al, 2014). Thus, GLUT4 is not only an important player in glucose 

homeostasis, but also a key element in insulin resistance and T2DM.  

 

In pre-eclampsia, microvascular blood flow to tissues is reduced (Chapter 3.1). Insulin resistance is 

increased in pre-eclampsia (Chapter 3.4). Endothelial cell surface insulin receptor expression is 

down regulated without any change in total insulin receptor proteins, in pre-eclampsia (Chapter 

3.6). Also, there is down-regulation of endothelial Akt receptor expression in pre-eclampsia 

(Chapter 3.8). There is evidence that GLUT4 expression is reduced in arteries of hypertension 

(Park et al, 2005; Atkins et al, 2001). In this chapter, it is hypothesized that changes in the 

endothelial GLUT4 receptor protein expression occur, and this might explain the insulin resistance 

in pre-eclampsia. To investigate this hypothesis, endothelial cells were incubated in the sera from 



107 
 

women with pre-eclampsia and normal pregnancy, and GLUT4 protein expression were correlated 

with insulin receptor expression and insulin resistance.  

 

3.9.2. Method  

Participants and Measurement of Insulin Resistance  

In this study, I recruited women with pre-eclampsia (n=16), and normal pregnant controls (n=18) 

from the maternity department at Kingston Hospital, UK, as described in Chapter 2.1. Blood 

samples were obtained from the ante-cubital vein of each participant using aseptic techniques, as 

described in Chapter 2.2. Insulin resistance was calculated in each patient as described previously 

in Chapter 2.4.2, using serum free Insulin and fasting blood glucose.  

 

Measurement of blood flow 

As described previously in Chapter 2.3, blood flow was measured using a Filtrass strain-gauge 

plethysmography (Filtrass; DOMED, Munich, Germany).  

 

Cell Culture 

HDMEC were grown as per the supplier’s guidance (Promo Cell, Germany) as already described 

in detail in Chapter 2.6.  

 

Study of Insulin Signalling Pathway: Insulin receptors and GLUT4 

Flow cytometry was used to analyse the insulin receptors and GLUT4 expression in the endothelial 

cells. The method is described in Chapter 2.7.3. 

 

Statistical Analysis:  

The demographic data were normally distributed and were summarised as mean and SEM [Table 

3.1]. All the other data are presented as median and Inter-quartile range. The differences between 

the groups were calculated using Mann Whitney tests, as the clinical data was not normally 

distributed (P-P plots). The demographic data were compared using t-test. Correlation was done 

using the Spearman’s formula. P-values of <0.05 were considered statistically significant.  
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3.9.3. Results 

The clinical and demographic characteristics of the participants are shown in Table 3.1. There was 

no significant difference in age, BMI, gestational age or haematocrit between the two groups. 

Babies born to the pre-eclamptic women were smaller in weight than the normal pregnant group, 

which is statistically significant. (p = 0.023). 

 

Previously, insulin resistance, measured by HOMA, was increased in pre-eclamptic group, 

compared to the normal pregnant group (Chapter 3.4). Insulin receptor expression was down 

regulated in pre-eclamptic group, compared to the normal pregnant group (Chapter 3.6). GLUT4 

expression, as measured by Flow-cytometry, was not significantly different in between the two 

groups [46.61 (43.55 – 49.21) versus [51.97 (42.62 – 54.75); p= 0.326 for pre-eclampsia and 

normal pregnant groups respectively]. {Fig 3.9.1} 
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Figure 3.9.1: Comparison of Flow-cytometry of GLUT4 protein in normal pregnant controls and 

pre-eclamptic pregnancies. 

 

In the normal pregnant group, no significant correlation exists between GLUT4 expression and 

HOMA (rs= 0.044, p=0.861), serum insulin (rs= -0.059, p=0.817), or endothelial cell surface insulin 

receptor expression (rs= -0.197, p= 0.433) [Figure 3.9.2]. Furthermore, there was no significant 

correlation of GLUT4 expression with maternal age (rs= 0.199, p= 0.428), gestational age (rs= 
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0.032, p= 0.899), platelet count (rs= 0.049, p= 0.848), haematocrit (rs= -0.364, p= 0.138), MAP (rs= 

0.31, p= 0.21), BMI (rs= -0.092, p= 0.717). and birth weight (rs=-0.196, p= 0.435).  

     
                              (a)                                                                           (b) 

                
   (c)       (d) 

Figure 3.9.2: Correlation of GLUT4 receptor expression with (a) microvascular blood flow, (b) 

HOMA, (c) fasting Insulin level, and (d) cell surface Insulin receptors. 

 

In the pre-eclamptic group, there was no significant correlation between GLUT4 expression and 

HOMA (rs= 0.071, p=0.795), serum insulin (rs= 0.332, p=0.208), or endothelial cell surface insulin 

receptor expression (rs= -0.224, p= 0.405) [Figure 3.9.2]. Furthermore, there was no significant 

correlation of GLUT4 expression with maternal age (rs= -0.373, p= 0.155), platelet count (rs= -

0.082, p= 0.762), haematocrit (rs= 0.188, p= 0.485), MAP (rs= 0.381, p= 0.145), BMI (rs= -0.006, p= 

0.983). and birth weight (rs= 0.468, p= 0.068). However, GLUT4 has a statistically significant 

correlation with gestational age (rs= 0.543, p= 0.03), in pre-eclampsia. [Appendix 3] 
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[Appendix 1C for FACs graph, and Appendix 2 for Western Blot pictures] 

 

3.9.4. Discussion 

In this chapter, endothelial cell total GLUT4 receptor, and its relationship with insulin resistance 

and insulin receptor expression were compared in pre-eclamptic pregnancies and normal 

pregnancies. This study tested the hypothesis, that altered endothelial insulin signalling pathway 

and changes in downstream expression of GLUT4, might be the possible mechanism for insulin 

resistance in pre-eclampsia. The study did not show a significant difference in endothelial cell 

GLUT4 between the two groups. Furthermore, there was no correlation between GLUT4 and 

insulin resistance, serum fasting Insulin, and surface expression of insulin receptors, in the two 

groups.  

 

Human cells use glucose for the generation of ATP, by metabolism. The lipid bilayer of the cell 

membrane is impervious to carbohydrate. Glucose is transported from the blood across the cell 

membrane by saturable transport system, which is of two types; 1) firstly, SGLTs, which transport 

glucose against the concentration gradient, and 2) sodium independent glucose transporters 

(GLUTs), which transport glucose by facilitated diffusion along its concentration gradient 

(Jurcovicova, 2014). Currently, there are five established functional facilitative glucose transporter 

isoforms (GLUT1-4 and GLUTX1), with GLUT5 being a fructose transporter. The GLUT4 isoform is 

the major insulin-responsive transporter that is predominantly restricted to striated muscle and 

adipose tissue (Watson and Pessin, 2001). In the basal state, GLUT4 cycles slowly between the 

plasma membrane and one or more intracellular compartments, with the vast majority of the 

transporter residing in vesicular compartments within the cell interior (Govers 2014; Brewer et al, 

2014). Activation of the insulin receptor triggers a large increase in the rate of GLUT4 vesicle 

exocytosis and a smaller decrease in the rate of internalization by endocytosis (Huang and Czech 

2005; Leto and Saltiel 2012). 

 

Once insulin attaches to the cell, it stimulates GLUT4 via the PI3K/ Akt pathway. This results in 

mass exocytosis of the receptors to the cell surface facilitating glucose metabolism (Huang and 
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Czech 2005; Leto and Saltiel 2012). GLUT4 are constitutionally expressed in arteries and 

arterioles, where they participate in basal glucose uptake. Here it is utilised for VSMC contractions, 

thus maintaining the tone of the vascular tree (Park et al, 2005). They also are present by the 

muscles and adipose tissue, which helps insulin to maintain its function as anabolic and anti-

catabolic hormone in humans (Govers 2014). Insulin resistance has been recognized as a main 

pathogenic factor in the development of type 2 diabetes, and has been associated with endothelial 

dysfunction, inflammation hypercoagulable state, dyslipidemia, and hypertension. The current 

thinking is that there is impaired insulin signalling pathway that leads to beta cells dysfunction, and 

its progression to Type 2 Diabetes (González-Sánchez et al, 2007). The key-step of this pathway is 

binding of insulin to its receptors, and subsequent activation of insulin receptor substrate proteins 

(González-Sánchez et al, 2007). 

 

Although insulin dependent GLUT4 is the main transporter of glucose in endothelium, GLUT4 also 

participates in constitutive, noninsulin-dependent glucose uptake in arterial cells (Park et al, 2005; 

Atkins et al, 2001). Although Glut 4 mainly resides in intracellular vesicles in normal cells; in 

arterioles, they mainly reside on the cell surface only (Atkins et al, 2015). Also, there is evidence 

that GLUT4 expression is reduced in large arteries in hypertension (Park et al, 2005; Atkins et al, 

2001). Arterial reactivity of GLUT4-knockout mice in increased, compared to other hypertensive 

animals (Park et al, 2005). 

 

As previously discussed, GLUT4 resides on the surface and intracellular on the vessel wall. Once 

the cells are stimulated by insulin, the vesicles undergo exocytosis, and the surface GLUT4 

receptors are increased, thus facilitating glucose uptake. It is likely that down-regulation of both 

insulin receptors (Chapter 3.6), and Akt protein (Chapter 3.8), in pre-eclampsia due to endothelial 

dysfunction does not make difference in the basal expression of GLUT 4. Therefore, changes in 

endothelial cell expression of GLUT 4 are unlikely to explain insulin resistance and impaired 

microvascular blood flow in pre-eclampsia. Prolonged exposure of cells to insulin, without enough 

glucose can lead to impaired GLUT4 translocation to the cell surface (Khalique et al, 2016). 
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In summary, this study failed to show a significant difference in endothelial cell GLUT4 receptors 

expression during normal pregnancy and pre-eclampsia. There was no correlation between GLUT 

4 expression and both insulin resistance and endothelial surface insulin receptor expression.  

Therefore, altered endothelial expression of GLUT 4 is unlikely to explain insulin resistance in 

pregnancies complicated by pre-eclampsia.  
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Chapter 4: General Discussion 

 

4.1 Summary of the study 

Pre-eclampsia is a multisystemic disease of the second half of pregnancy whose cause(s) and 

effect(s) is still an enigma to modern science. It is associated with generalised endothelial 

dysfunction (Levine et al, 2004; Levine et al, 2006), and impaired tissue blood flow (Anim-Nyame 

et al, 2001, 2003). Women whose pregnancies are complicated by pre-eclampsia are more likely 

to develop diabetes and cardiovascular disease, later in life (Laivuori et al, 1996; Wolf et al, 2004; 

Lykke et al, 2009).  

 

These studies were designed to investigate the hypothesis that changes in endothelial cell insulin 

signalling occur in pre-eclampsia, secondary to underlying endothelial dysfunction, resulting in 

insulin resistance. Impaired endothelial cell insulin signalling results in reduced tissue delivery of 

insulin and reduced GLUT-4 activation. This in turn might affect the altered microcirculation and 

insulin resistance seen in pre-eclampsia. 

 

Microvascular blood flow 

The cross-sectional study (chapter 3.1), showed that microvascular blood flow was reduced in the 

pre-eclamptic pregnancies, compared to normal pregnancies. Statistical correlation exists in the 

pre-eclamptic group with the gestational age, systolic blood pressure, mean arterial pressure and 

platelet count. Since SBP is an accepted index of disease severity, a decrease in microvascular 

blood flow is also an indicator of the disease severity. 

 

Reduction in microcirculation seen in peripheral tissue, mirrors the reduction to vital organs, like 

liver, kidneys, uterus, etc. It precedes the alteration in the liver and renal blood tests. Also, our 

study confirms that the microvascular blood flow reduces with the gestational age in pre-

eclampsia. It is like studies done previously (Anim-Nyame et al, 2001). Thus, it can be used as a 

marker to predict the severity of the disease. 
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Endothelial Dysfunction and angiogenic factors 

Generalized endothelial dysfunction occurs in the disease (Chapter 3.2). It has already been 

shown previously that it is a known element to pre-eclampsia, secondary to yet unidentified 

factor(s) (Levine et al, 2004; Levine et al, 2006). Microvascular blood flow shows inverse 

correlation with the endothelial markers, like ICAM-1, VCAM-1, eSelectin, and Thrombomodulin, in 

the pre-eclamptic cohort. The endothelium plays an important role in control of smooth muscles 

tone through release of vasoconstrictor and vasodilatory substances, regulation of anticoagulation, 

antiplatelet, and fibrinolysis functions via release of different soluble factors (Roberts and Lain 

2002; Mol et al, 2016). Since markers of endothelial dysfunction precede the clinical onset of the 

disease; it has been suggested to be the cause, and not the result, of pre-eclampsia. 

 

Angiogenesis plays an important role in pregnancy. It is required for placentation, and pre-

eclampsia is thought to be a disease due to defective placentation (Brennan et al, 2014). 

Angiogenic imbalance plays a pathogenic role in the aetiology of pre-eclampsia (Maynard et al, 

2003; Venkatesha et al, 2006). This study has provided convincing evidence of an inverse 

correlation between anti-angiogenic factors and microvascular blood flow in pre-eclampsia 

(Chapter 3.3). Measurement of circulating angiogenic factors could be used to assess the severity 

of multisystem dysfunction in pre-eclampsia as reduced tissue perfusion precedes end organ 

dysfunction. 

 

Insulin resistance and CEC 

Insulin resistance is a feature of pre-eclampsia (Laivuori et al 1996; Anim-Nyame et al, 2015) and 

persists after delivery (Laivuori et al 1996). It has been attributed to endothelial dysfunction 

(Montagnani and Quon 2000; Ranganath and Quon 2007). Muscle is the main peripheral site of 

insulin action, where delivery process is the rate-limiting factor (Barrett et al, 2011). Changes in the 

microvascular environment, including endothelial dysfunction and tissue blood flow, may affect 

insulin delivery and insulin resistance, seen in pre-eclampsia (St-Pierre et al, 2010).  
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This study showed that insulin resistance is more pronounced in the pre-eclamptic group (Chapter 

3.4). In the pre-eclamptic group, there is a statistically significant inverse correlation between 

microvascular tissue blood flow and insulin resistance, which was not demonstrated in the normal 

pregnant controls. Though there is some degree of insulin resistance in normal pregnancy, it is 

exacerbated in pre-eclampsia and becomes more severe as the gestational age progresses (Anim-

Nyame et al, 2015). Mid-trimester insulin resistance may predict subsequent development of pre-

eclampsia (Hauth et al, 2011). 

 

Although the mechanism of increased insulin resistance in pre-eclampsia remains unexplained, 

this has been attributed to the underlying generalised endothelial dysfunction (Montagnani and 

Quon 2000; Ranganath and Quon 2007). Circulating endothelial cells (CEC) are sloughed 

endothelial cells (Woywodt et al, 2006). CEC count appears to correlate with the degree of 

endothelial dysfunction (Gignat-George et al, 2000), and inversely with endothelial repair (Fabbri-

Arrigoni et al, 2012). This study has shown that insulin resistance and CEC counts are increased in 

pre-eclampsia (Chapter 3.5). Although, there is no correlation in between insulin resistance and 

CEC in pre-eclampsia (Chapter 3.5), insulin resistance showed positive correlation with the 

biochemical markers of endothelial dysfunction (Chapter 3.4). 

 

Insulin receptor expression 

Although muscle is the main peripheral site of insulin action (Saltiel and Kahn, 2001), insulin is 

delivered via both passive diffusion and trans-capillary transport mechanisms involving endothelial 

cell surface binding (Vincent et al, 2003; Posner 2017). The trans-capillary transport is initiated 

when insulin binds to its receptors on endothelial cells. The study showed that there is reduced 

expression of surface insulin receptors in pre-eclampsia compared to normal pregnancy; however, 

the total amount of insulin receptor protein in the cells in the two groups was equal (Chapter 3.6). 

This may be due to widespread endothelial cell dysfunction seen in pre-eclampsia despite lack of 

correlation between insulin receptor expression and markers of endothelial dysfunction. It is 

possible the effect of endothelial dysfunction on insulin receptor expression explains the long-term 

risk of cardiovascular disease in women whose pregnancies are complicated by pre-eclampsia.  
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Decreased insulin receptor expression in pre-eclampsia on vascular endothelial cells can explain 

the increased insulin resistance and reduced blood flow seen in this condition (Chapter 3.7). The 

association between insulin resistance and hypertension is well established but presently 

unexplained (Barrett et al, 2011). There is growing evidence that hyperinsulinemia is the link 

between diabetes and hypertension (Lykke et al, 2009), which can be secondary to decreased 

insulin receptor expression (Obisi et al, 2002). 

 

Akt and GLUT4 

Insulin increased tissue perfusion (Kubota et al, 2011, 2013).  Insulin binding to its receptor 

activates both PI3K/AKT and the Ras-MAP kinase pathway, and the PI3K/AKT pathway mediates 

activation of eNOS (Kuboki et al, 2000; Zeng et al, 2000; Hermann et al, 2000). (Figure 1.3) 

Moreover, Insulin may also induce vasoconstriction by activation of extracellular signal-regulated 

kinase 1/2 (ERK1/2) present on the endothelial cells (Eringa et al, 2004). This study (Chapter 3.8), 

has demonstrated a reduction of Akt in pre-eclampsia, compared to the normal pregnancy, which 

can result in decreased eNOS and subsequently NO in the pre-eclamptic arterioles. Thus, the 

vasodilatory effect of insulin, via the IR/PI3K/Akt pathway, is reduced. On the other hand, there is 

stimulation of ERK1/2 pathway, resulting in vasoconstriction, which is evident in pre-eclampsia. 

 

Once insulin attaches to its receptors, it activates GLUT4 via the PI3K/ Akt pathway, which then 

facilitates glucose metabolism (Huang and Czech 2005; Leto and Saltiel 2012). This study didn’t 

show a significant difference in endothelial cell GLUT4 receptors expression during normal 

pregnancy and pre-eclampsia. There was no correlation between GLUT 4 expression and both 

insulin resistance and endothelial surface insulin receptor expression (Chapter 3.9).  Therefore, 

altered endothelial expression of GLUT 4 is unlikely to explain insulin resistance in pregnancies 

complicated by pre-eclampsia. 

 

4.2. Limitation of the study 

There are some limitations to my study: 
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1. Firstly, the gastrocnemius muscle was studied, as it is presumed to have a high muscle to skin 

ration, meaning that the blood flow through it was more to support metabolism in the muscles, 

rather than temperature control by the skin (Anim-Nyame et al, 2001). Moreover, skeletal muscles 

lacked visible AV channels, so most of the bloods pass through the capillaries and 

microcirculation. An ankle occlusion cuff was not used to exclude arterio-venous shunts of the feet. 

This was done to prevent discomfort to the participants that might have had hemodynamic 

consequences and interfered with other aspects of the protocol.  

2. Secondly, although the gastrocnemius muscle circumference between the two groups were similar, 

differences in adipose tissue composition could, by adding heterogeneity, influence the 

applicability of the findings more generally. 

3. Ideally the flow-cytometry for GLUT4 should have been done on live whole cells, as GLUT4 

receptors are expressed on the surface after stimulation of insulin receptors with Insulin via the 

PI3K/ Akt pathway. Also, the total GLUT4 protein should have been assessed by western blot. 

 

4.3 Future work 

4.3.1 Long-term effect of pre-eclampsia 

I have incubated the endothelial cells in pre-eclamptic and normal pregnant sera for only 40 hours. 

This is because of cell senescence as detected by trypan assay. In future, the sera needed to be 

changed, and the cells passaged, to test the long-term effect on cell signalling. Following that, the 

cells should have been reverted to culture media to see if the effects were reversible or long 

lasting. 

 

4.3.2 Qualitative assessment of the signalling pathway 

In this study, only the quantity of the receptors was assessed, and the receptor proteins. It may be 

possible that the receptors are malfunctioning due to endothelial dysfunction. Further study is 

needed to look at the downstream effects of the receptors, once stimulated. 
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4.3.3 Postnatal effect of the pre-eclampsia 

Ideally, the participants needed reassessment 6 months post- delivery. Their plethysmograph, 

ELISA for markers of endothelial dysfunction, and cell signalling pathway proteins, were repeated. 

Ideally, in pre-eclampsia all changes should revert, but evidence proves otherwise (Laivuori et al, 

1996; Wolf et al, 2004; Lykke et al, 2009). It would have been ideal if the women were tested 

during their pregnancies (pre-eclampsia and normotensive cohorts), and after 6 months post-

delivery of the same patients 
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Appendix 1. 

A. Flow-cytometry pictures of insulin receptors 
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B. Flow-cytometry pictures of Akt receptors 
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C. Flow-cytometry pictures of GLUT4 receptors 
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Appendix 2 
 
 
Western block of (a) Insulin Receptors, (b)Akt, and (c) Actin 
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B: Patients AG10-AG19 
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C: Patients AG20-AG27.1 
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D: Patients AG28-AG35 
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Appendix 3 

            
Comparison of foetal birth weight with BMI and Systolic blood pressure 

 
 

        
Comparison of foetal birth weight with diastolic blood pressure and mean arterial pressure 

 
 

                
Comparison of foetal birth weight with maternal age and tissue blood flow 
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Comparison of foetal birth weight with sICAM-1 and sVCAM-1 

 

               
Comparison of foetal birth weight with eSelectin and Thrombomodulin 

 
 

              
Comparison of foetal birth weight with TNF-α and sFlt-1 
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Comparison of foetal birth weight with PlGF and Endoglin 

 
 

        
Comparison of foetal birth weight with sFlt-1: PlGF and sFlt-1+Eng: PlGF 

 
 

        
Comparison of foetal birth weight with serum Insulin and HOMA 
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Comparison of foetal birth weight with insulin receptor and activated Akt (estimated by FACs) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison of foetal birth weight with activated GLUT4 (estimated by FACs) 
 

     
Comparison of foetal birth weight with Insulin receptor: Actin ration and Akt: Actin (estimated by WB) 
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