
LNG/Fuel cascades and
flammable cloud formation

Marco Macchi

Thesis submitted for the Degree of Doctor of
Philosophy of Kingston University London

Faculty of Science, Engineering and Computing

Kingston University London
April 2018





To my fiancée Marta





Acknowledgements

I would like to express my sincere gratitude to my supervisory team, Prof. Jen-

nifer Wen, Dr Konstantin Volkov, Dr Yongmann Chung and Dr Ali Heidari for

the continuous support during my PhD. Their help and knowledge have been

fundamental in order to produce the work presented in this thesis.

I would also like to thank the European Commission for allowing me to take

on such an important research project and for supporting me and Kingston Uni-

versity during these 4 years.

My sincere thanks also go to all my colleagues in the SafeLNG project for the

helpful discussions on the topic and the pleasant time spent together.

I thank my family for their continuous support even far from home, and for

helping me during the difficult relocation to the UK.

Last but not the least, I would like to thank my fiancée Marta, for helping

me with any difficulty and supporting all my choices. Without her, none of this

work would have been possible.





All truths are easy to understand once they

are discovered; the point is to discover them.

Galileo Galilei





Contents

1 Introduction 3

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . 3

1.2 Aim of the current work . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Liquefied Natural Gas . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Floating Liquefied Natural Gas . . . . . . . . . . . . . . . 6

1.3.2 Hazards and Risks . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3 Transportation . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Research Topics of the SafeLNG Project . . . . . . . . . . . . . . 9

1.4.1 LNG/Fuel Cascades and Flammable Cloud Formation . . . 10

1.4.2 LNG Spill and Dispersion in the atmosphere . . . . . . . . 10

1.4.3 LNG Rollover . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4.4 LNG Flashing Jets . . . . . . . . . . . . . . . . . . . . . . 11

1.4.5 LNG Pool Fires . . . . . . . . . . . . . . . . . . . . . . . . 11

1.4.6 DDT in non-uniform LNG vapour mixtures . . . . . . . . 11

1.5 Physics of the process . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Literature Review 17

2.1 Previous work on fuel cascades . . . . . . . . . . . . . . . . . . . . 17

2.1.1 Tank design and effect on liquid discharge . . . . . . . . . 20

2.1.2 Investigation of tank section . . . . . . . . . . . . . . . . . 21

2.1.3 Effect of liquid properties on the spray structure . . . . . . 23

2.1.4 Effect of obstacles in the vapour accumulation . . . . . . . 23

2.1.5 CFD analysis . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.6 Splashing of droplets . . . . . . . . . . . . . . . . . . . . . 26

2.2 Previous work on droplet impact onto solid surfaces . . . . . . . . 27

2.2.1 Splashing-deposition limit . . . . . . . . . . . . . . . . . . 29

i



CONTENTS

2.2.2 Dry and wet impact . . . . . . . . . . . . . . . . . . . . . 29

2.2.3 Temperature of the wall . . . . . . . . . . . . . . . . . . . 30

2.2.4 Numerical simulations of droplet impact . . . . . . . . . . 31

2.3 Previous work on LNG modelling . . . . . . . . . . . . . . . . . . 32

2.4 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Computational methodology and governing equations 34

3.1 Conservation Principles . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Material Derivative . . . . . . . . . . . . . . . . . . . . . . 35

3.1.2 Continuity Equation . . . . . . . . . . . . . . . . . . . . . 36

3.1.3 Momentum Equation . . . . . . . . . . . . . . . . . . . . . 36

3.1.4 Energy Equation . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.5 Conservation of Scalar Quantities . . . . . . . . . . . . . . 38

3.1.6 Summary of the Conservation Equations . . . . . . . . . . 39

3.2 Simplified forms of the equations . . . . . . . . . . . . . . . . . . 39

3.2.1 Incompressible Flow . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Inviscid Flow . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Simulation of Multiphase Flows . . . . . . . . . . . . . . . . . . . 41

3.3.1 The Eulerian-Eulerian Approach . . . . . . . . . . . . . . 43

3.3.2 The Lagrangian-Eulerian Approach . . . . . . . . . . . . . 44

3.3.3 Lagrangian formulation in OpenFOAM . . . . . . . . . . . 46

3.4 Turbulence Modelling . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 RANS Models . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 LES Models . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.3 DNS Models . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.5 Numerical Methods for Fluid Dynamics . . . . . . . . . . . . . . . 58

3.5.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . 59

3.5.2 Discretisation Method . . . . . . . . . . . . . . . . . . . . 59

3.5.3 Computational Grid . . . . . . . . . . . . . . . . . . . . . 60

3.5.4 Finite Approximations . . . . . . . . . . . . . . . . . . . . 62

3.5.5 Solution Method . . . . . . . . . . . . . . . . . . . . . . . 62

3.5.6 Convergence Criteria . . . . . . . . . . . . . . . . . . . . . 62

3.6 Convergence, Consistency and Stability . . . . . . . . . . . . . . . 62

3.7 Discretisation approaches . . . . . . . . . . . . . . . . . . . . . . . 63

3.7.1 Finite Difference Method . . . . . . . . . . . . . . . . . . . 63

3.7.2 Finite Volume Method . . . . . . . . . . . . . . . . . . . . 63

ii



CONTENTS

3.7.3 Finite Element Method . . . . . . . . . . . . . . . . . . . . 64

3.8 The Finite Volume Method . . . . . . . . . . . . . . . . . . . . . 64

3.8.1 Flux Integration . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8.2 Source Term Integration . . . . . . . . . . . . . . . . . . . 68

3.8.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . 69

3.9 Resolving the System of Algebraic Equations . . . . . . . . . . . . 69

3.9.1 Direct methods . . . . . . . . . . . . . . . . . . . . . . . . 70

3.9.2 Iterative methods . . . . . . . . . . . . . . . . . . . . . . . 71

3.9.3 Under-Relaxation . . . . . . . . . . . . . . . . . . . . . . . 73

3.10 Pressure-Velocity coupling . . . . . . . . . . . . . . . . . . . . . . 73

3.10.1 The pressure equation . . . . . . . . . . . . . . . . . . . . 74

3.10.2 The SIMPLE algorithm . . . . . . . . . . . . . . . . . . . 74

3.10.3 The PISO algorithm . . . . . . . . . . . . . . . . . . . . . 75

3.10.4 The PIMPLE algorithm . . . . . . . . . . . . . . . . . . . 76

3.11 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4 Cascade Solver Development 77

4.1 Interaction of parcels with solid surfaces . . . . . . . . . . . . . . 77

4.2 Buoyancy effects . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 Development of the cascadeFoam solver . . . . . . . . . . . . . . . 81

4.3.1 Liquid Film Region . . . . . . . . . . . . . . . . . . . . . . 81

4.3.2 Enhanced Buoyancy . . . . . . . . . . . . . . . . . . . . . 83

4.3.3 Comparison of the two solvers . . . . . . . . . . . . . . . . 84

4.4 Solver Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . 85

4.4.2 Computational Model used by HSL . . . . . . . . . . . . . 86

4.4.3 Computational Model . . . . . . . . . . . . . . . . . . . . 86

4.4.4 Droplet Setup . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4.5 Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.4.6 Simulation without splashing . . . . . . . . . . . . . . . . 92

4.4.7 Simulation with splashing . . . . . . . . . . . . . . . . . . 95

4.4.8 Large Eddy simulation setup . . . . . . . . . . . . . . . . . 101

4.4.9 Mesh size . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.4.10 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

iii



CONTENTS

5 Splashing Model Development 106

5.1 Numerical analysis of the process . . . . . . . . . . . . . . . . . . 106

5.1.1 Volume of Fluid method . . . . . . . . . . . . . . . . . . . 107

5.1.2 Level Set method . . . . . . . . . . . . . . . . . . . . . . . 109

5.1.3 Coupled LS-VOF methods . . . . . . . . . . . . . . . . . . 109

5.2 Contact angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3 Physics of the process and model formulation . . . . . . . . . . . 112

5.3.1 Transition Criteria . . . . . . . . . . . . . . . . . . . . . . 113

5.3.2 Post-impingement characteristics . . . . . . . . . . . . . . 114

5.4 Description of interFoam solver . . . . . . . . . . . . . . . . . . . 117

5.5 Validation of the solver for inertia-dominated flows . . . . . . . . 118

5.5.1 Water droplet impact on flat surface . . . . . . . . . . . . 118

5.5.2 Crown Evolution of Droplet Impact . . . . . . . . . . . . . 120

5.5.3 Conservation of mass . . . . . . . . . . . . . . . . . . . . . 121

5.5.4 Effect of liquid properties on splashing . . . . . . . . . . . 121

5.6 Splashing of Droplets . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6.1 Model Development . . . . . . . . . . . . . . . . . . . . . . 126

5.6.2 Development of the Correlations . . . . . . . . . . . . . . . 128

5.7 Implementation of the new model in the lagrangian solver . . . . 136

5.8 Validation against experiments . . . . . . . . . . . . . . . . . . . . 139

5.9 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

6 Implementation of LNG 142

6.1 Liquid Library for Lagrangian solvers . . . . . . . . . . . . . . . . 143

6.1.1 NSRDS Functions . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Properties of Liquid Methane . . . . . . . . . . . . . . . . . . . . 146

6.2.1 Calculation of the coefficient for vapour pressure . . . . . . 148

6.3 Simulation of liquid spill in an LNG plant . . . . . . . . . . . . . 149

6.3.1 Geometry setup . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3.2 Turbulence modelling . . . . . . . . . . . . . . . . . . . . . 150

6.3.3 Mesh sensitivity analysis . . . . . . . . . . . . . . . . . . . 150

6.3.4 Evaporation of droplets . . . . . . . . . . . . . . . . . . . . 152

6.3.5 LFL and cloud contour . . . . . . . . . . . . . . . . . . . . 154

6.3.6 Spray Pattern . . . . . . . . . . . . . . . . . . . . . . . . . 158

6.4 LNG dispersion in a plant and Explosion . . . . . . . . . . . . . . 161

6.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

iv



CONTENTS

6.5 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

7 Conclusions 167

v



List of Figures

1.1 Buncefield Cloud . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 An LNG terminal facility (source: www.thenews.com.pk) . . . . . 6

1.3 LNG Transporation Process . . . . . . . . . . . . . . . . . . . . . 9

1.4 All the scenario addressed in the SafeLNG project . . . . . . . . 12

1.5 Schematic picture of a jet spray . . . . . . . . . . . . . . . . . . . 13

1.6 Definition of flammability limits . . . . . . . . . . . . . . . . . . 15

2.1 Video frames of the site showing the cloud formation . . . . . . . 18

2.2 5 stages modelled . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Types of tank and release scenarios . . . . . . . . . . . . . . . . . 21

2.4 Model 1 (left) and Model 2 (right) . . . . . . . . . . . . . . . . . . 22

2.5 Spray structure of water (left) and petrol (right). Observations

made 14m below the plane of release . . . . . . . . . . . . . . . . 24

2.6 Average vapour concentration and temperature within the bund . 25

2.7 Contours of the vapour concentration at the LFL. The surfaces are

coloured by their height from the ground . . . . . . . . . . . . . . 26

2.8 Difference between dry and wet splashing . . . . . . . . . . . . . . 27

3.1 Definition of a Control Volume . . . . . . . . . . . . . . . . . . . 35

3.2 Drag Coefficient for a sphere as a function of Reynolds number for

rough and smooth surface . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Deformation of a droplet undergoing a bag-breakup . . . . . . . . 51

3.4 Filtering operation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.5 Structured Grid around a semi-cylinder . . . . . . . . . . . . . . 60

3.6 Unstructured Grid around a cylinder . . . . . . . . . . . . . . . . 61

3.7 Hybrid Grid used to model the boundary layer . . . . . . . . . . 61

3.8 General shape of a control volume . . . . . . . . . . . . . . . . . 64

3.9 Notation for a 2D Control Volume . . . . . . . . . . . . . . . . . 67

vi



LIST OF FIGURES

4.1 Schematic of the different impact regimes . . . . . . . . . . . . . 78

4.2 Methane (main component of LNG) density at atmospheric pres-

sure compared to the air one . . . . . . . . . . . . . . . . . . . . 80

4.3 Splashing of droplets onto the liquid region . . . . . . . . . . . . . 82

4.4 Liquid Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Experimental setup for the solver validation . . . . . . . . . . . . 85

4.6 Geometry given in the HSL report . . . . . . . . . . . . . . . . . 87

4.7 OpenFOAM Geometry . . . . . . . . . . . . . . . . . . . . . . . . 87

4.8 Cumulative Distribution and Probability Density Functions of the

setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.9 Mesh zoom obtained with the blockMesh utility . . . . . . . . . . 91

4.10 Parcels of Hexane droplets injected in the domain coloured by tem-

perature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.11 Comparison of the cascade shape between Experiments and CFD

(droplets are coloured according to their temperature) . . . . . . 93

4.12 Side view fo the spray pattern . . . . . . . . . . . . . . . . . . . 94

4.13 Front view fo the spray pattern . . . . . . . . . . . . . . . . . . . 94

4.14 Maximum diameter of the droplets with height . . . . . . . . . . 95

4.15 Average velocity of the droplets with height . . . . . . . . . . . . 95

4.16 Domain showing the zones where the comparison was made . . . 96

4.17 Temperature predictions in the bulk of the cascade (Point A) . . 97

4.18 Temperature predictions far from the cascade (Point B) . . . . . 98

4.19 Velocity predictions on the line 0.15m from ground . . . . . . . . 98

4.20 Comparison of the predicted droplet splashing with the experimen-

tal observation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.21 Temperature predictions on the line 0.15m from ground . . . . . 99

4.22 Hexane mass fraction predictions on the line 0.15m from ground . 100

4.23 Contour plot of Hexane mass fraction in a slice . . . . . . . . . . 100

4.24 Contour plot of Temperature in a slice . . . . . . . . . . . . . . . 101

4.25 Contour plot of Turbulent Kinetic Energy in a slice . . . . . . . . 101

4.26 Contour plot of the predicted fuel concentration at 0.5 LFL . . . 102

4.27 Concentration of hexane on a symmetry plane through the domain 104

5.1 Definition of the phase fraction . . . . . . . . . . . . . . . . . . . 107

5.2 Local refinement used in OpenFOAM . . . . . . . . . . . . . . . 108

5.3 Results obtained with the coupled solver . . . . . . . . . . . . . . 110

vii



LIST OF FIGURES

5.4 Definition of contact angle . . . . . . . . . . . . . . . . . . . . . . 111

5.5 Impinging and Ejecting droplet main parameters . . . . . . . . . 114

5.6 Qualitative comparison between CFD and experiment . . . . . . 119

5.7 Droplet diameter evolution with time . . . . . . . . . . . . . . . 120

5.8 Crown evolution with time . . . . . . . . . . . . . . . . . . . . . 121

5.9 Droplet mass evolution with time . . . . . . . . . . . . . . . . . . 122

5.10 Comparison between simulations (left) and experiments (right) for

velocities of 2.17 m/s (a) and 4.22 m/s (b) and non-dimensional

film thicknesses of 1. Diameter of droplet is always 2mm. . . . . 123

5.11 Comparison between simulations (left) and experiments (right) for

velocities of 2.17 m/s (a) and 4.22 m/s (b) and non-dimensional

film thicknesses of 0.1. Diameter of droplet is always 2mm. . . . 124

5.12 Mass splash ratio for the validation testcases . . . . . . . . . . . 124

5.13 Splash angle for the validation testcases . . . . . . . . . . . . . . 125

5.14 Mesh detail on the droplet and underlying film . . . . . . . . . . 127

5.15 Initial Condition for the simulation . . . . . . . . . . . . . . . . . 128

5.16 Droplet absorbed in the film (left, test 33)and droplet splashed

(right, test 49) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.17 Splash Regimes for H = 0.5mm . . . . . . . . . . . . . . . . . . . 133

5.18 Splash Regimes for H = 1mm . . . . . . . . . . . . . . . . . . . . 133

5.19 Splash Regimes for H = 2mm . . . . . . . . . . . . . . . . . . . . 134

5.20 Correlation for the splashing angle . . . . . . . . . . . . . . . . . 135

5.21 Correlation for the mass splash ratio . . . . . . . . . . . . . . . . 136

5.22 Droplets splashing at t=0.053 s using the Bai and Gosman model

(left) and the new model (right) . . . . . . . . . . . . . . . . . . 138

5.23 Droplets splashing at t=0.067 s using the Bai and Gosman model

(left) and the new model (right) . . . . . . . . . . . . . . . . . . 138

5.24 Droplets splashing at t=0.1 s using the Bai and Gosman model

(left) and the new model (right) . . . . . . . . . . . . . . . . . . 138

5.25 Temperature predictions in the bulk of the cascade (Point A) . . 139

5.26 Temperature predictions far from the cascade (Point B) . . . . . 140

6.1 Composition of LNG . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2 Domain used for the CFD calculations (D=70m, A=50m, L=300m,

H=100m) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.3 Mesh showed on the symmetry plane . . . . . . . . . . . . . . . . 151

viii



LIST OF FIGURES

6.4 Temperature profile on line 1 . . . . . . . . . . . . . . . . . . . . 152

6.5 Velocity profile on line 1 . . . . . . . . . . . . . . . . . . . . . . . 153

6.6 Temperature profile on line 2 . . . . . . . . . . . . . . . . . . . . 153

6.7 Velocity profile on line 2 . . . . . . . . . . . . . . . . . . . . . . . 154

6.8 Cascade Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 154

6.9 Droplets evaporation mass flow rate . . . . . . . . . . . . . . . . 155

6.10 Contours showing the cloud and the LFL at 5s . . . . . . . . . . . 155

6.11 Contours showing the cloud and the LFL at 10s . . . . . . . . . . 156

6.12 Contours showing the cloud and the LFL at 15s . . . . . . . . . . 156

6.13 Contours showing the cloud and the LFL at 20s . . . . . . . . . . 156

6.14 Contours showing the cloud and the LFL at 25s . . . . . . . . . . 157

6.15 Contours showing the cloud and the LFL at 30s . . . . . . . . . . 157

6.16 Contours showing the cloud and the LFL at 35s . . . . . . . . . . 157

6.17 Contours showing the cloud and the LFL at 40s . . . . . . . . . . 158

6.18 Human presence close to the tank . . . . . . . . . . . . . . . . . 158

6.19 Front view of the spray . . . . . . . . . . . . . . . . . . . . . . . 159

6.20 Side view of the spray . . . . . . . . . . . . . . . . . . . . . . . . 159

6.21 Average diameter of the droplets . . . . . . . . . . . . . . . . . . 160

6.22 Maximum diameter of the droplets . . . . . . . . . . . . . . . . . 161

6.23 Average velocity magnitude of the droplets . . . . . . . . . . . . 161

6.24 Geometry used for the CFD calculation (tank diameter is 70m,

height is 50m, plant base area is A=150m, B=80m and domain

size is 450x450x100m) . . . . . . . . . . . . . . . . . . . . . . . . 162

6.25 Mesh obtained by snappyHexMesh . . . . . . . . . . . . . . . . . 163

6.26 Contours showing the LFL for the 12 kg/s case . . . . . . . . . . 164

6.27 Contours showing the LFL for the 36 kg/s case . . . . . . . . . . 165

ix



List of Tables

1.1 Flammable limits for different substances . . . . . . . . . . . . . . 16

4.1 Differences between standard solver and cascadeFoam . . . . . . . 84

4.2 Properties of Hexane . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3 Turbulence quantities calculated for different locations . . . . . . 103

5.1 Properties for the different liquids analysed . . . . . . . . . . . . 122

5.2 Results for Bai and Gosman validation . . . . . . . . . . . . . . . 125

5.3 Setup quantities range for the simulations . . . . . . . . . . . . . 127

5.4 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.4 Simulation Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.5 Coefficients of the linear interpolation . . . . . . . . . . . . . . . . 137

6.1 Properties of Methane (CH4) . . . . . . . . . . . . . . . . . . . . 146

6.2 Properties of Methane to be considered constant with temperature 147

6.3 Grid level and number of computational cells used . . . . . . . . . 151

6.4 Definition of line 1 and 2 for the mesh sensitivity results . . . . . 152

x



Nomenclature

A Area [m2]

a Acceleration [m/s2]

Bo Bond Number

CD Drag Coefficient

cp Specific Heat Capacity at Constant Pressure [J/(kg ·K)]

D Drag Force [N ]

d Droplet Diameter [m]

E Energy [J ]

e Specific Internal Energy [J/kg]

F Force [N ]

f Volume Force [N/m3]

g Gravitational Acceleration [m/s2]

h Specific Enthalpy [J/kg]

H∗ Dimensionless Film Thickness

hfg Latent Heat of Formation [J/kg]

J Flux

k Thermal Conductivity [W/(m ·K)]

k Turbulent Kinetic Energy [J/kg]

xi



NOMENCLATURE

lm Turbulence Length Scale [m]

La Laplace Number

m Mass [kg]

Ns Number of Secondary Droplets

Nu Nusselt Number

Oh Ohnesorge Number

p Pressure [N/m2]

Pr Prandtl Number

rm Splashing Mass Ratio

Re Reynolds Number

S Lagrangian Source Term

T Temperature [K]

t Time [s]

u Velocity [m/s]

We Weber Number

α Contact Angle [o]

β Thermal Expansion Coefficient [1/K]

∆t Time Step [s]

∆x Grid Spacing [m]

δij Kronecker Delta

ε Turbulence Dissipation Rate [J/(kg · s)]

λ Second Coefficient of Viscosity [N · s/m2]

µ Dynamic Viscosity [Pa · s]

xii



NOMENCLATURE

ν Kinematic Viscosity [m2/s]

ω Specific Turbulent Dissipation Rate [s−1]

Φ Dissipation Function

ϕ Velocity Potential [m2/s]

ρ Density [kg/m3]

σ Surface Tension [N/m]

τ Stress Tensor [N/m2]

θ Droplet Impact Angle [o]

xiii



Glossary

BC Boundary Condition
CDF Cumulative Distribution Function
CFD Computational Fluid Dynamics
CSF Continuum Surface Model
CV Control Volume
DDT Deflagration to Detonation
DNS Direct Numerical Simulation
FD Finite Difference
FE Finite Element
FLNG Floating Liquefied Natural Gas
FV Finite Volume
HSE Health and Safety Executive
HSL Health and Safety Laboratory
LE Lagrangian Eulerian
LEL Lower Explosive Limit
LES Large Eddy Simulation
LFL Lower Flammability Limit
LNG Liquefied Natural Gas
LS Level Set
PDE Partial Differential Equation
PDF Probability Density Function
PISO Pressure Implicit with Splitting of Operator
RANS Reynolds-averaged Navier-Stokes
SIMPLE Semi Implicit Method for Pressure Linked Equations
TLS Turbulent Length Scale
UEL Upper Explosive Limit
UFL Upper Flammability Limit
VOF Volume of Fluid

xiv



Abstract

The aim of the current work is to reproduce spills of fuel from storage tanks in

order to better understand and replicate the effects of this phenomenon which

can cause several damages. The vapour production that occurs when there is a

failure in a storage tank could cause an explosion if there is any source of heat

such as an electrical power failure.

The vast increase in computational resources that we experienced in the last

years has given the Computational Fluid Dynamics (CFD) community growing

resources to simulate difficult flow problems that were impossible to solve 20 years

ago.

In order to solve the multiphase flow which represents the spilling of fuel

from a storage tank a Lagrangian-Eulerian approach is adopted, as with most of

the work done in the literature. The importance of splashing of droplets on flat

surfaces has also led to the development of an adapted splashing model based

on existing correlations. This was done by the use of a volume-of-fluid (VOF)

methodology to characterise splashing.

Comparison of experimental results with the ones obtained by numerical sim-

ulation show good agreement (less than 10% error) and confirm that CFD could

be an advantageous tool in the prediction of this type of flow.

Moreover, the computational simulations give an overview of what is happen-

ing and more specifically physical quantities in each point of the computational

domain, while the experimental facilities are restricted to some points and the

presence of some tools invade the flow.

The main findings of this work are related to the splashing of liquid droplets

into solid surfaces and the differences between cascades of hydrocarbons that

have a boiling point above normal ambient temperatures and liquids such as

Liquefied Natural Gas (LNG) that are boiling when they come in contact with

the atmosphere. The splashing of liquid droplets in the current application was

found to be significantly different respect to most of the work discussed in the
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literature. Because of the large size of the droplets simulated, the parameters of

interest such as splashing threshold, angle and mass splash ratio were found to

be out of the previous ranges predicted by other authors. These parameters were

then put back into the splashing model which showed improved results, giving a

higher accuracy regarding vapour produced.

Liquid cascades of Liquefied Natural Gas were found to be significantly differ-

ent than gasoline ones, with most of the liquid being vapourised before hitting the

ground. This is due mostly to the boiling of the liquid and also on the different

layout of the storage tanks, these being much larger in an LNG plant than in a

typical fuel plant.

The models formulated in the current application can be used for the predic-

tion of the flammable cloud in a spill scenario in a plant, where the vapour can

reach high concentration and the risk of an explosion is not remote. The physical

models mentioned above were implemented within the framework of the open-

source tool OpenFOAM by modifying and/or adding new models in the code.

2



Chapter 1

Introduction

1.1 Background and Motivation

Cascades of liquid flow can be observed every day, such as the flow coming out

from the tap of a kitchen sink, waterfalls, the rain and plenty of other phenomena.

The multiphase nature of these flows makes it hard for numerical modellers to

reproduce accurately the physics of such phenomenon and this is a challenge for

the Computational Fluid Dynamics (CFD) community.

Multiphase flows are complex to model and there are different approaches

based on the characteristics of the problem, where priority is given to one aspect

or another.

In the primary framework of liquid cascades, the ones resulting from Liquefied

Natural Gas (LNG) or fuel tanks overfilling or rupture of elevated pipes create a

source of flammable vapour cloud, although other processes can lead to a similar

vapour formation such as aircraft impacts [1]. There is a lack of adequate models

treating the underlying physics of this phenomenon and the SafeLNG project 1

aims to bridge this knowledge gap. It involved developing robust and accurate

models for the instabilities and aerodynamic breakup in the cascade which con-

tributes to the formation of the cloud, air entrainment and liquid impingement

on deflector plates. The predictions of the developed models were validated with

some proprietary liquid fuel cascade experimental data.

One of the examples of the catastrophic consequences that a tank spill can

produce is the well-known Buncefield fire [2], a conflagration that occurred on

1SafeLNG is an Innovative Doctoral Programme (IDP) funded by the Marie Curie Action of
the 7th Framework Programme of the European Union on the Numerical characterization and
simulation of the complex physics underpinning the Safe Handling of Liquefied Natural Gas
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the 11th of October 2005 at the Hertfordshire Oil Storage Terminal which caused

important damages but fortunately no fatalities. The explosion (the black cloud

shown in Figure 1.1 was visible from the satellite) was caused by a tank that over-

filled, which created a significant flammable cloud eventually ignited by an elec-

trical power failure. This catastrophic event caused substantial economic losses

and also increased awareness of the safety of fuel plants and the consequences of

a safety failure, especially in the UK.

Figure 1.1: Buncefield Cloud [3]

Another example of the catastrophic consequences of an explosion is the fire

that occurred the 23rd of October 2009 at the Caribbean Petroleum Corporation

oil refinery and oil depot in Bayamón, Puerto Rico (this event is best known as

Cataño oil refinery fire [4]). The fire lasted for two days and was extinguished

the 25th of October. Fortunately, no fatalities occurred, but three people were

injured. The size of the fire was enormous and 11 tanks containing gasoline, jet

fuel and diesel were completely destroyed.

Because of the complex physics involved in such scenario, the CFD model has

to address a large number of problems, including the multiphase nature of the

flow, turbulence, splashing of droplets on the ground and on other surfaces, and

obviously all of these need to be coupled in one solution, which is challenging

from the modeller point of view.
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1.2 Aim of the current work

The aim of the current work is the development of a tool able to reproduce spills

of fuel from storage tanks. The complex physics involved means that the compu-

tational model will need to address a number of problems and accurately describe

the multiphase nature of the flow, turbulence, and the interaction between the

liquid and solid surfaces. The models available in the literature are limited to

different types of applications and limited work to this specific problem can be

found. The main goals of this work are to develop an accurate model to simulate

fuel and LNG cascades as well as the development of a tailored model for liquid

droplets wall interaction.

1.3 Liquefied Natural Gas

LNG is natural gas that has been converted into liquid form for ease of transport

and storage. It is primarily made of methane (CH4), which contributes to more

than 90% of its composition, and its boiling point is -162°C. Before it is liquefied,

LNG is purified in order to remove the higher-boiling hydrocarbons and the im-

purities, and in this way the percentage of methane becomes around 95% or more.

LNG is clear, colourless and essentially odourless and it is neither corrosive nor

toxic. The main advantage of this product is that it occupies a very small fraction

of the volume occupied at its gaseous state and it is therefore more economical

to transport across large distances, and makes it storable in large quantities. In

the liquid state LNG is neither flammable nor explosive, but if it vaporises and

mixes with air in the proper proportions (the flammable range for methane which

is the main component of LNG is about 5 - 15% [5]) and is then ignited, it burns.

The interest in LNG safety is growing, because even though it has quite a good

record in terms of safety [6], accidents still occur and they can be catastrophic.

Moreover, the usage of LNG is increasing by approximately 5% every year [7].

This means that from the 2016 demand of 258 million tonnes per annum [8] it

could go as high as 430 million tonnes per annum in 2025. In 1964, when the

LNG was traded for the first year, only 80,000 tonnes of LNG were shipped.

This is mainly because global economies are choosing LNG over other resources

because it is a relatively cleaner and flexible source of power generation. For

example China LNG consumption has increased dramatically recently. On the

other hand, economies that have been using LNG for a large period, such as
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Japan and North Korea, are quite stationary as other resources find their slice in

the energy market.

Figure 1.2: An LNG terminal facility (source: www.thenews.com.pk)

1.3.1 Floating Liquefied Natural Gas

A large number of natural gas resources are located offshore, and therefore the

extraction of resources is challenging and problematic with the current technology.

For this reason, starting from the 90s, some oil companies began developing

facilities that could extract natural gas offshore and convert it to its liquid form

to then ship it to the mainland. These take the name of Floating Liquefied

Natural Gas (FLNG), and they produce, liquefy and store natural gas at sea.

Although there is no FLNG ship in production, a large number of oil companies

are developing FLNG facilities to face the increase in LNG demand using offshore

resources.

Although it may seem an easy process, the construction of FLNG facilities is

challenging and uses extremely advanced technology. The two significant chal-

lenges are the considerable size of the facility (Shell has produced Prelude FLNG,

which is 488m long [9]), and the fact that all the elements present in a conven-

tional LNG facility must be present in a moving object, on a much more confined

space. This is obviously a major problem regarding safety, as the FLNG needs

to comply with the same safety level of a land facility. Another major problem
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is the movement of the sea, which can damage the storage tanks due to sloshing.

At the same time, the construction of FLNG facilities has a good impact on the

environment and economy. First, it has a much smaller footprint if compared to

a conventional land-based plant, and also it eliminates the need for long pipelines

on land.

1.3.2 Hazards and Risks

As most hydrocarbons, there are some hazards related to LNG, the main ones

being:

� Rapid Phase Transition: when LNG comes in contact with water, it could

vaporize violently, due to the heat absorbed from the water, causing what

is known as a physical explosion, or cold explosion. Because of the small

fraction occupied by LNG, the expansion is very fast and strong, and can

cause damages to the equipment.

� Asphyxiation: when the LNG vaporise, it starts occupying a fraction of the

air. Due to this behaviour, the concentration of oxygen in the air starts

decreasing. If the concentration in the air is less than 6 volume %, a human

can die due to asphyxiation (this corresponds to a concentration of gas

about 71 volume %). The normal concentration of oxygen in the air is

about 21 volume %. If the concentration is reduced to less than 15 volume

% the breathing is impaired and vomiting occurs when it is less than 10 %

(corresponding to values of 28 and 52 volume % of LNG in the air).

� Roll over in storage tanks: The hydrostatic pressure of LNG exerts a force

in a tank, so the LNG at the bottom of the tank is at a pressure and

equilibrium temperature higher than the one on the top, and due to the

buoyancy effects it can rise to the top of the tank. What happens is that a

small fraction of LNG would rapidly vaporize, and since the LNG vapour

liquid ratio is about 600:1, a huge volume of gas would be formed and could

lead to a failure of the roof or wall of the tank.

� Pool and Jet fires: If a leak occurs in a pipe or storage tank, the liquid

formed on the ground surface or the high pressurised spray could be at risk

of ignition and if a fire does occur, the consequences can be catastrophic and

hard to control. In the case of liquid formed onto the ground surface the
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phenomenon takes the name of pool fire, while if the source of combustion

is a high pressurised jet this is called jet fire.

� Explosion: if a vapour cloud is formed as a consequence of a spill and is

ignited, this could be a risk of explosion if there is a dense presence of

obstacles (such as trees or close buildings). Again the consequences of such

phenomenon are severe and practically impossible to control.

1.3.3 Transportation

The process that brings natural gas from the extract point to the user depends on

the specific geographic location, but it usually takes on average around 12 days.

The main steps involved in the process are the following:

� The gas is extracted from the reserve

� The gas is cleaned from impurities and water while being carried through

pipes and vessels

� The gas is liquefied being cooled to -162°C and its volume is reduced by 600

times, turning to LNG

� LNG is stored in tanks

� LNG is pumped into vessel tanks to be carried overseas by carriers

� LNG is pumped into onshore storage tanks close to its final destination

� LNG is warmed back and returns to the gaseous state

� Natural gas is distributed to the user via pipeline

During the processes involved in the handling of natural gas, a number of

possible scenarios can occur that can lead to catastrophic consequences. There-

fore safety measures have to be implemented in order to avoid any damage to the

facility or worse human casualties.
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1: Gas Field 2: Pipeline 3: Liquefaction Plant 4: LNG Storage Tank

5: LNG Tanker6: LNG Storage Tank7: Vapourizers8: Pipeline to Users

Figure 1.3: LNG Transporation Process

1.4 Research Topics of the SafeLNG Project

The current work was sponsored by the European Commission under a project

called SafeLNG, which aims to develop strong computational models that can

predict the consequences of a risk scenario. The project is an innovative doctoral

programme funded by the Marie Curie Action. The research topics are 6 and are

related to the following:

� To gain insight of the complex physics in LNG/fuel cascades and flammable

cloud formation, and develop predictive tools;

� To characterize different LNG release scenarios and develop robust source

term models;

� To develop a robust model for accurate prediction of rollover;

� To develop and validate Large Eddy Simulation (LES) based predictive

tools for LNG flashing jet;

� To develop and validate LES based predictive ools for large LNG pool fires;

� To validate and improve models for explosions in non-uniform LNG vapour

mixtures.

In order to better understand the possible hazards that can arise during the

handling of Natural Gas from the extract point to the user, all the topics are

discussed more in details.
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1.4.1 LNG/Fuel Cascades and Flammable Cloud Forma-

tion

This is the scenario analysed in the current work, and will be discussed much

more in details in the following chapters. To give an overview of the process, in

storage tanks there is a possibility that some sensors fail or break, in this case

there is an overfilling of the tank which leads to a liquid cascade on the side of the

tank and consequently vapour formation of a flammable cloud. This is precisely

what happened in Buncefield and the consequences were catastrophic. For this

reason, some industrial plants have bounds surrounding storage tanks to avoid

that the cloud formed by evaporating liquid spreads around.

1.4.2 LNG Spill and Dispersion in the atmosphere

The failure of an LNG ship could result in a massive release of LNG and pool

formation onto water surfaces, and consequently dispersion of Natural Gas into

the atmosphere because of a high rate of vaporisation of LNG due to its cryogenic

nature. Modelling of such scenario is essential and a large number of authors have

investigated dispersion of natural gas in the atmosphere, using both commercial

and open source software.

1.4.3 LNG Rollover

Rollover is a process during which a rapid release of vapour in a storage tank takes

place due to stratification of LNG. It is one of the most delicate topics because of

a number of accidents recorded in the LNG industry (the most catastrophic one

occurred in La Spezia, Italy, in 1971). The main reason why rollover happens is

the presence of two layers of different density present in a tank [10]. This could

be caused by different things such as temperature difference inside the tank, and

when a difference in density occurs, such as the liquid at the top of the tank

becoming heavier than the one at the bottom, rollover takes place. The main

consequences of this are the increase in boil off rate by an order of magnitude,

the growth of over pressurisation of the tank and the lift of the relief valve in the

tank. There are some measures present in industrial plant and transport ships

to avoid rollover, and CFD can be used to understand the risks and improve the

safety of LNG plants.
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1.4.4 LNG Flashing Jets

Pipes that carry LNG have a very high pressure, and therefore in the case of a

spill there would be a flashing jet which vaporises very rapidly, highly difficult to

model computationally.

The fast dynamics of the problem makes it difficult to model because cavi-

tation can occur within the spill and consequent rapid atomization of the liquid

[11, 12, 13], which complicates the modelling even furthermore. Such problems

are usually approached using hybrid combinations of computational models, to

model appropriately both regions of the domain (the zone where cavitation occurs

and the zone after the high atomization of the liquid).

1.4.5 LNG Pool Fires

If there is a pool of flammable gas, being fuel or LNG, and a source of heat in

the nearby region, this liquid region can start burning, and these fires are usually

extraordinarily violent and difficult to control [14]. The modelling of such fires is

delicate and the need to use an appropriate turbulent model is fundamental as

well as modelling the radiation model, since the soot formed by such fires is at

the same temperature as the gas, strongly emitting thermal radiation which can

damage the surrounding structures and be lethal to the human.

1.4.6 DDT in non-uniform LNG vapour mixtures

Fires in industrial plants can occur and are usually controlled by the action of

trained personnel, but the presence of artificial or natural obstacles can acceler-

ate the burning speed of a flame leading to a point where its speed excesses a

certain value and the flow becomes supersonic (one of the physical processes that

could occur is called Deflagration to Detonation (DDT) transition), leading to

a huge pressure jump and destroying the plant facilities (clearly evident in the

Buncefield accident), not mentioning casualties if anyone is present on site. The

modelling of such phenomenon is delicate and the mesh size in order to capture

the microscopic scales of the process has to be enormous (the cell length has to

be in the order of microns). The time step is also extremely small because of

the combustion process which is taking place, leading to simulation times which

sometimes exceed months. Being the flow usually fully turbulent, there is a need

to model turbulence. LES simulations are usually used, because RANS cannot
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give a detailed map of the pressure in each point of the domain, fundamental when

designing containment surfaces. A large number of authors in the literature use

a 2D approach to model DDT, mostly because a 3D approach is computationally

very expensive.

LNG

LNG Spill Spreading

and Dispersion
Pool Fire

Flashing Jet

Cascade and Flammable Cloud Formation

De agration to DetonationRollover

Figure 1.4: All the scenario addressed in the SafeLNG project

This study focuses on liquid cascades (pictured in Figure 1.4) of flammable

liquid such as gasoline or LNG. The main risk of a liquid cascade of a hydrocarbon

is that there is a high evaporation rate due to the presence of a large number of

droplets which will eventually form a flammable cloud that if ignited can lead to

catastrophic consequences.

1.5 Physics of the process

The physics of liquid sprays is highly complicated and their modelling is chal-

lenging from both an experimental and computational point of view.

Figure 1.5 shows a generic spray. The initial liquid discharged through an

orifice starts deforming due to external pressure and hydrodynamic instabilities,

and ligaments will detach from the bulk of the liquid. These ligaments are unsta-

ble and will later form droplets of quite a large diameter. This initial process is

called primary breakup, or also atomization, and it is difficult to model because

the timescales related to the process are small and the mechanism depends widely
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Figure 1.5: Schematic picture of a jet spray

on the orifice size, pressure at which the liquid is discharged and material used.

Once the droplets have become spherical, the forces acting around them due

aerodynamics cause the droplets to deform, and if the shape they assume dur-

ing the deformation is unstable, breakup will take place, shattering the bigger

droplets in smaller ones [15]. This process is defined as secondary breakup and

several models exist in the literature to account for it [16]. Depending on the We-

ber number (We = ρu2d/σ, where d is the droplet diameter, ρ is the fluid density,

u is the droplet velocity and σ its surface tension) of the droplet, a different kind

of breakup will take place.

Another force acting on liquids in contact with gases is the capillary pressure.

This is defined as the pressure difference across the interface between two im-

miscible fluids. This is a result of forces such as surface tension and interfacial

tension acting on the fluids. In a wide range of applications the capillary pressure

is of high importance, but in the current work it will be neglected mainly because

the liquid phase, made primarily by droplets, is at a pressure equal or similar to

the one of the surrounding air, therefore the capillary pressure can be neglected.

The importance of gravity acting on the droplets is best represented by the

Morton and Eotvos numbers. These numbers are usually very important in the

simulation of rising bubbles in liquids and their shape, but in the current appli-

cation they will not be considered, mainly because the problems examined are

driven by inertia and surface tension.

In order to model a spray completely, two main approaches are ideally used,
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depending on the region modelled. In the area close to the nozzle, where the bulk

of the liquid is present, a Eulerian formulation is advantageous, in order to model

properly all the hydrodynamic instabilities due to surface tension and inertia. In

the region far from the nozzle, where the droplets have ideally broken up to a

stable condition and spherical shape, a Lagrangian approach is more suitable and

computationally achievable. Due to growing computational resources, in the past

years some researchers [17, 18] have developed hybrid solvers capable to handle

both Eulerian and Lagrangian formulations in the same application, where the

Eulerian model is used in the close region to the nozzle, while when the droplets

have reached a diameter small enough for the cell size the solver switches to a

Lagrangian formulation.

In industrial applications, spray can occur widely and their structure and

droplet diameter distribution varies case-by-case. For example, in the beauty

industry, the nozzle is built in such a way to have the finest droplet distribution

possible, so to maximise the vapourisation. This is achieved by controlling the

primary atomization using a specific pressure and nozzle diameter. In the current

work, atomization and droplet breakup is not attained by the willing of the user,

but the liquid release through some kind of orifice in a storage tank is such that

the atomization process takes place and the bulk of liquid forms a large number

of droplets in the very early stage of the cascade. This is also eased by the fact

that hydrocarbons have a low surface tension if compared to water and other

liquids, therefore it is easier for the ligaments to break up. Due to the large size

of the domain to be analysed, it would be too costly in terms of computational

resources to use a Eulerian approach to model the cascade, even only in the spill

region in order to model the primary atomization. For this reason, and also using

the results available in the literature, a known profile for the droplets diameter

is used and a fully Lagrangian approach will be used in the following chapters.

It is worth mentioning that although the two phenomena have few things in

common, sprays from pressure nozzles and fuel cascades have some fundamental

differences. Although for both cases droplets are formed from the breakup of

liquid due to hydrodynamic instabilities, in the case of a fuel cascade droplets

accelerate constantly until reaching an asymptotic velocity or hitting the ground.

The size of the droplets and the spill size is also such that liquid formed onto

the ground or any solid surface evaporates slowly therefore creating a large pool

where droplets interact with a relatively thick liquid region if compared to more

conventional sprays where the liquid region is very limited and evaporates much
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faster. This means that the interaction between liquid particles and walls can

lead to different outcomes in the two applications, and that models cannot be

exported from one to another easily.

Specific limits

LEAN

FLAMMABLE

RICH

LFL

UFL

0%

100%

Figure 1.6: Definition of flammability limits

In the presence of a flammable substance such as methane, there are some

important numbers that define the limits for which the mixture of air can be

ignited or not. These numbers are the Lower Flammability Limit (LFL), Upper

Flammability Limit (UFL), Lower Explosive Limit (LEL) and Upper Explosive

Limit (UEL) (Figure 1.6 illustrates the concept of flammability limits).

The definition of such numbers is that a flammable mixture will ignite only

if the concentration of the substance is between the LFL and UFL for the given

temperature and pressure, which means that if the concentration is lower than

the LFL or higher than the UFL the mixture cannot ignite. These values are in

most cases equivalent to the LEL and UEL and the terms are most of the time

used interchangeably.

These values are usually defined in terms of volume percentage and usually

the LFL is the most important one since it is improbable for a mixture to reach

the UFL, especially in an open domain such as an LNG/fuel plant where there

is enough air change to dilute the mixture. The flammable limits for the most

important hydrocarbons and hazardous substances are shown in Table 1.1.
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Table 1.1: Flammable limits for different substances

Substance LFL UFL

Methane 4.4 16.4
Benzene 1.35 6.65
n-Butane 1.86 8.41
Decane 0.8 5.4

Diesel Fuel 1.35 6.65
Ethane 3 12.4

Gasoline 1.4 7.6
Hexane 1.1 7.5

Hydrogen 4 75

1.6 Chapter summary

The information given in this chapter regarding liquid spills from storage tanks

have demonstrated that although the likelihood of such an event is profoundly

low, the consequences could be catastrophic by considering previous accidents

that happened in the past 20 years. The physics of such process is such that

computational models are complicated to derive. There is also a lack of models

available to reproduce the effects of splashing in fuel liquid cascades, mainly

because the main formulations were adopted in a scenario were droplet sizes and

velocities are smaller than the ones experienced in a tank spill. Liquid spills

of Liquefied Natural Gas also lack of models, primarily because of the excellent

safety record of such industry. The present work will be focused on these two

aspects of the problem, deriving appropriate physical models and highlighting

the findings and the differences with what is present in the literature.
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Chapter 2

Literature Review

2.1 Previous work on fuel cascades

Although a large number of researchers have worked in the study of sprays [19,

20, 21, 22], there is not much work done concerning the modelling of fuel cascades

and almost no data are available for LNG. This is because the physics of such

phenomena is complex and the LNG industry has a quite good safety record

[23], being the reason for such poor research. Nonetheless, the possibility of an

accident in an LNG facility is real, and the consequences could be catastrophic.

Therefore the safety can be improved understanding the factors that affect vapour

production in the case of a spill. Research has been carried out using integral

models [24], but their applicability is limited and local quantities cannot be easily

estimated.

Prior to the Buncefield accident, there had not been any serious study related

to the safety of fuel tanks, and the understanding of how flammable vapour clouds

could be formed was very limited. It was common opinion that a spill from a fuel

storage tank would lead to the formation of a liquid pool that would evaporate

very slowly [25], therefore not likely to form any sort of fire. The night of the

accident, the release of fuel from the opening vents of the roof of the storage tank

led to a cascade of gasoline droplets which produced a flammable cloud at a very

high rate (Figure 2.1 shows two frames of the site at the beginning of the discharge

and after 11 minutes and 40 seconds, the cloud is clear). HSL reported [25] that

it took 25 minutes for the vapour to fill an area of 500m by 400m from 2m to

4m high. As reported from sensors around the plant, wind intensity was very

low, therefore the cloud spread mainly because of the slope of the ground. The
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explosion that took place was strong and fortunately there was not any casualty,

but the damage on the plant accounted for around $1.5 billion [25].

Figure 2.1: Video frames of the site showing the cloud formation [3]

Other incidents followed Buncefield around the world, the main ones taking

place in Jaipur (India) [26], San Juan (Puerto Rico) [27] and the Amuay Refinery

(Venezuela) [28].

It was therefore clear after the Buncefield accident that tank spills can indeed

produce a significant amount of vapour, no matter what the evaporation rate of

the pool is, and Computational Fluid Dynamics can surely be a strong item for

this purpose.

Following Buncefield accidents, Health and Safety Executive (a public body of

the United Kingdom) was appointed to investigate and understand what caused

the massive explosion. One of the main issues related to this is also how the indus-

try reacts and what kind of new rules and regulations have to be issued in order

to raise the safety of industrial plants. The sponsored programme investigated

the formation of flammable clouds due to tank spills using both experiments and

computational models. Even though these reports do not take into consideration

for LNG tank spills, they are essential for the validation of the tool that would

eventually be used to analyse a risk scenario in an LNG plant, due to the lack of

work done regarding LNG spills.

The technical problem investigated by HSL [29] was divided into several stages

that required different types of analysis:

1. Initial liquid discharge

2. Liquid fragmentation

3. Developed cascade flow
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4. Impact zone

5. Splash evaporation and/or fall out zone

6. Near field dispersion

7. Bund interactions

8. Long range dispersion

The attention in the current work will be focused in the first five stages ( a

diagram showing them is depicted in Figure 2.2), as the last three are out of the

scope of the present research.

1. Initial Liquid Discharge

5. Splash Evaporation

2. Liquid Fragmentation 3. Developed Cascade Flow

4. Impact Zone

Figure 2.2: 5 stages modelled

The initial liquid discharge depends on the design of the tank, the layout of

the top of it, and how much is the mass flow rate. However, most industrial

tanks present a similar layout, therefore the liquid will overtop the deflection

plate and fall as a free cascade, while the rest of the flow, if there is any, will fall

down on the tank walls and may eventually hit a wind girder, a part of the tank

designed to make the structure stronger and able to stand strong wind currents.

After the liquid starts flowing from the top of the tank, liquid fragmentation will

take place, due to the Plateau-Rayleigh instability, leading to the formation of a

considerable amount of droplets. Photographs and high-speed videos of hexane

and decane cascades under a range of conditions have shown that the bulk of

mass is concentrated in droplets with diameters of around 2mm [30] but there is

also a range of smaller size droplets. Droplets of a few hundred microns tend to
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vaporise completely. The developed cascade flow will be the one modelled by the

Lagrangian solver, and once the cascade comes in contact with the ground there

will be an impact zone, which is probably the most challenging region in terms

of CFD modelling, because of the lack of models available for such a big scale

problem. The last stage of the problem is to model the splash evaporation and

fall out zone.

As discussed already, the last three stages of the analysis are not part of the

scope of this research, but the results obtained from the first stages such as the

velocity field and composition of the vapour flow driven by the falling liquid spray

can be used in a later stage as an input for large-scale dispersion modelling.

2.1.1 Tank design and effect on liquid discharge

In order to correctly simulate the liquid discharge of fuel from a storage tank,

a study on the tank design and possible pattern of liquid cascade has to be

undertaken. Although most storage tanks share a number of characteristics, the

structure at the top can change depending on the country, supplier and human

choice.

If we consider only how the liquid is discharged, we can differentiate the tanks

only on their external structure, neglecting the internal design. In the UK there

are three main classes of tanks used to store hydrocarbons [31]:

� Fixed roof tanks with vents (FRV)

� Fixed roof tanks with pressure/vacuum valves (FRPVV)

� Floating deck tanks with no fixed roof (FD)

In the first type of tanks (FRV), the liquid will hit the deflector plate and run

down the tank walls, but if the flow is sufficiently high part of the liquid flow will

overtop the deflector plate forming a liquid cascade, which is what happened in

Buncefield.

The dynamics of a liquid discharge in the second type of tanks (FRPVV) is

such that a crack will form on the pressure valves because it is not designed to

contain a high liquid discharge. The overtopping flow in this type of tank is likely

to be well structured with high density.

The last type of tank (FD) will be likely releasing the liquid in the whole

perimeter hitting the wind girder and falling free down to the ground. Figure 2.3

shows the types of tank and their possible release scenario.
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Figure 2.3: Types of tank and release scenarios [31]

In the present work (and in the research conducted by HSE), the second type

of tank will be investigated, because of the availability of experimental results,

but the models developed can be applicable to all the three types of tank.

2.1.2 Investigation of tank section

In the first stages of the research carried out by HSE, the dynamics of the fall

of liquid from a tank was investigated from an experimental point of view [30].

Even though the set up represented only a small section of a tank, the findings are
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useful for future use and give a better understanding of the dynamics of cascades.

Figure 2.4: Model 1 (left) and Model 2 (right) [30]

Figure 2.4 shows the two sections of a full tank that have been modelled. The

main findings from the investigation are:

� The width of the flow overtopping the deflector plate increases with the

increase of the flow rate

� Depending on the volume of liquid released the amount of overtopping flow

changes together with the flow that runs onto the tank walls

� The main effect of the wind girder was to deflect the wall flow and also

dispersing the overtopping flow

� Experiments with water showed that the droplet size of the cascade is vari-

able, but usually greater than 5 mm above the wind-girder, while their size

is reduced to few millimetres below it

� Petrol sprays tend to have a droplet spectrum much smaller than the one

achieved with water. This is due to the difference in surface tension and

dynamic viscosity (smaller in petrol)

� Surprisingly, the rate of vapour production is insensitive to the droplet size
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� Results obtained from preliminary CFD simulations show that the value of

hydrocarbon vapour concentration achieved in the bulk of the cascade is

around 70%

2.1.3 Effect of liquid properties on the spray structure

The liquids that pose a threat to the safety of an LNG/fuel plant are mostly

hydrocarbons, which have a well-defined set of physical properties if compared

to a more familiar liquid such as water. In the event of a spill, the structure

formed by the liquid highly depends on such properties, and different liquids can

show different behaviour, therefore it is fundamental to understand the different

dynamics. The parameter that controls the breakup of a droplet that is moving

through air with a certain velocity is the Weber number, defined as the ratio

between inertial and surface tension forces. It is clear that different liquid can

give a wide range of Weber numbers if there is a substantial difference in terms

of surface tension. HSE [30] has run some experiments comparing the cascade

structure for water and petrol. The different droplet distribution is shown in

Figure 2.5.

The main observations that can be made are that the spray produced by water

releases is usually composed by larger droplets and more variable in diameter,

while on the other hand sprays produced by petrol (and hydrocarbons in general)

are more uniform in terms of droplets distribution and the droplet diameter is

significantly smaller. They also reported that the sound made by the petrol

cascade was softer than the one produced by water.

The fact that different liquids show different spray structures can also be

understood by analysing the empirical formula of Brodkey [32].

2.1.4 Effect of obstacles in the vapour accumulation

An essential aspect in the formation of a flammable cloud in a fuel or LNG plant

is the presence of obstacles surrounding the liquid spill, which can be neighbour

tank, pipes or most importantly bund walls. Bund walls are solid surfaces built

around a talk for the purpose of containing flammable liquid or gas coming out

from the tank. This problem was investigated by HSL [29] by the use of CFD.

In the report, the spreading of a flammable cloud around a circular tank was

simulated using different bund configurations (the bund height was fixed for all
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Figure 2.5: Spray structure of water (left) and petrol (right). Observations made
14m below the plane of release [30]

the simulations at 2 m), monitoring the vapour concentration within and outside

the bund as well as the liquid temperature.

Results showed that in terms of liquid temperature the effect was minimal

for different bund configurations, and the same can be said regarding the vapour

temperature inside the cascade region.

The results for the configurations with the bund were analysed in terms of

vapour concentration and temperature inside the bund region.

Figure 2.6 clearly shows that for cases E,F,G the effect of the different bund

design was minimal, while case D shows that concentration was higher than all

the other cases and temperature lower, mainly because the small distance of the

bund respect to the tank did not allow the vapour to dilute enough.

Figure 2.7 shows the contour of vapour concentration at the LFL coloured by

its height, with a maximum equivalent to the height of the bund. The increase

of the bund distance results in a decrease of the cloud height outside the bunded

region. For case D, the cloud is highly irregular outside the bunds.
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Figure 2.6: Average vapour concentration and temperature within the bund [29]

2.1.5 CFD analysis

As a part of the investigation of the Buncefield accident, HSE has also approached

the problem by using CFD analysis, because even though modelling is challeng-

ing, the results obtained can give a more detailed view of the driving factors and

how to improve the safety of fuel plants. A large number of simulations were run

in order to first validate the model against the experiments and then to show the

effect of bunds and close obstacles on the vapour dispersion [33]. The software

used in their calculation was ANSYS CFX, a general purpose commercial soft-

ware which had the limitation of fixed physical modelling from the ones available

already in the package. As mentioned earlier, in the case of fuel cascades the

large number of droplets and big size of the domain to analyse limits the use of

Eulerian approaches, therefore a Lagrangian method is the most advantageous

option available, and it was the one adopted by HSL. The main limitation of

their work is the fact that they did not adopt a full splashing model, and used a

dummy one to simulate the impact of liquid droplets onto flat surfaces. In the

current work, on the other hand, a full splashing model was implemented, which

includes the capability of simulating a liquid 2D region that represents the pool

formed by the liquid droplets impacting onto the ground.
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Figure 2.7: Contours of the vapour concentration at the LFL. The surfaces are
coloured by their height from the ground [29]

2.1.6 Splashing of droplets

Among the findings from the CFD calculations, one of the most important is the

effect of impinging droplets on the ground. The limitation of applicability of the

models available in the software was the reason why they modelled the splashing

region with a secondary inlet of particles representing the splashed droplets.

Several studies have been done in the past 50 years regarding droplet impact

on solid surfaces [34, 35, 36, 37, 38, 39, 40] which varies from the coating industry

to internal combustion engine applications. The recent development of high-speed

cameras which can now shoot at millions of frames per seconds has speeded up

the process and given us a more detailed analysis of the whole process. Also, in

parallel, there has been a huge development in computational facilities which has

allowed accurate and detailed numerical simulations as well [41].

Among all the parameters that influence the outcome of the splashing pro-

cess, the condition of the impact surface is one of the most important, and the
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phenomenon can assume different outcomes if the droplet hits a dry surface or a

pre-formed liquid film. Even though dry impacts are significant in some appli-

cations, in most sprays after an initial transitory phase a liquid film is formed,

therefore, the droplets will hit a wet surface (the difference between the two types

of splashing is shown in Figure 2.8).

Figure 2.8: Difference between dry and wet splashing [42, 43]

The main difference observed is that for dry impact the droplet starts spread-

ing on the solid surface, and the thickness of the lamella (this is how the shape

assumed by the droplet is called) decreases up to a certain point where the surface

tension is not able to keep the liquid together anymore, and consequently some

satellite droplets start detaching. After the droplet has reached its maximum

extension, the satellite droplets will continue to move outwards while the centre

of the liquid will begin receding towards the middle. Although this is the most

common splashing outcome for dry impact, other types may be observed. For

example, as the impact velocity increases, a more and more violent disruption

takes places and eventually no liquid is present in the centre of splashing any-

more. Also, the process is profoundly influenced by the solid surface properties

such as the roughness, where an increase in this value facilitates the splashing

process.

2.2 Previous work on droplet impact onto solid

surfaces

In the modelling of liquid cascades using a Lagrangian approach, one of the most

delicate things to model is the splashing of droplets once they come in contact

with solid surfaces.
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Investigation of droplet impact onto solid surfaces is more than 100 years old.

One of the first researchers to investigate this phenomenon was A. M. Worthing-

ton in 1876, who investigated the behaviour of droplet impact [44]. However,

after his studies, authors did not find the topic attractive for research purposes

until 50 years later where the phenomenon was analysed in more details. The rea-

sons that led the researchers to investigate droplet impact were mainly two: the

development of technological tools to examine the process and also the interest

in a variety of applications were the topic had great importance.

In the early second half of the 20th century, the main contribution was made

by the use of experimental apparatus, because the computational tools available

at the time were utterly insufficient to give a detailed analysis of the process.

The use of high-speed cameras was fundamental in understanding the splashing

process, and quantitative analysis of the process can be found in Engel [45], Savic

& Boult [46], Levin & Hobbs [47] and Stow & Stainer [48]. The results obtained

showed that a droplet impinging on a flat surface produces ligaments as described

by Worthington [44]. Although the findings from such papers are interesting,

Stow & Hadfield [49] were the first one to describe the structure of the substrate on

which the droplet was impacting in details, with the exception of Stow & Stainer

[48], which also pointed out that a high polished target reduces dramatically the

possibility of a splashing event. Within their work, a significant finding was also

that if the surface roughness is negligible compared to the thickness of the film

liquid formed onto the surface, the critical velocity above which splashing occurs

shows a precise range of definition.

If at the beginning of the splashing process the outcome of splashing seemed

completely unpredictable, with the advance of technology a number of researchers

started to understand that the outcome parameters were primarily driven by

the input parameters, and showed a trend that fits in a number of correlations.

The most famous correlations for splashing are those obtained by Bai & Gosman

[50, 51], Kalantari & Tropea [52], Stanton & Rutland [53]. These correlations have

been obtained considering for a single droplet impact on a flat surface because

multiple droplet splashing analysis is challenging to perform as well as studying

the effect of the surface geometry. It is worth mentioning, however, that a single

droplet impact will behave differently than a group of droplet splashing within

a very close region, mainly because the effect of neighbour splashing droplets

is to affect the gas flow surrounding the droplet and because splashing crown

are mostly non-symmetrical, due to previous impinging droplets, whereas in a
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single droplet analysis the resulting flow will be completely symmetrical on a flat

surface.

Although the splashing correlations fit well with the experimental data under

specific circumstances [54], the chaotic behaviour of splashing limits the appli-

cability of such models if the input parameters are changed to lay outside the

values chosen by the authors. For this reason, the applicability of each splashing

model is recommended only in a specific range of values, while outside there is

no guarantee that the model will behave correctly.

2.2.1 Splashing-deposition limit

When a droplet impacts onto a solid surface, the outcomes can be several depend-

ing on the physical properties of the droplets and its velocity. The most critical

transition regime is the one between deposition and splashing. A large number of

correlations is available which define a critical Weber number above which splash-

ing occurs, as a function of the Laplace or Ohnesorge number (La = dρσ/µ2,

Oh = La−1/2).

While for the dry impact the literature is consistent with the definition of the

critical Weber number, in the presence of a thin liquid a number of correlations

can be found [55]. For example, in the Bai and Gosman model [50], the critical

condition for wet splashing is independent of the film thickness, mainly because

the model was developed under the assumption that the liquid film is very thin

and evaporates quickly. Cossali et al. [56], have on the other hand produced

a correlation for the critical Weber number which takes into account the non-

dimensional film thickness (δ), but it is only valid for values of δ < 1. A correlation

that considers for different regimes of the film thickness can be found in the model

developed by Kalantari [57].

2.2.2 Dry and wet impact

As mentioned earlier, the properties of the surface on which the droplet impacts

could change the outcome of the process entirely. The main effect of surface

roughness is to trigger splashing at lower velocities. If a large number of droplets

impact on a surface, it is likely that a layer of liquid will form on the surface,

and this can affect the outcome of the next incoming droplets. In this case, the

effect of the surface roughness is essential only when the liquid layer is ’thin’
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if compared to the surface roughness. On the other hand, when the thickness

increases, the effect of the solid surface properties are negligible.

The difference between dry and wet impact is not only in the structure of

the surface but also in the dynamics of splashing. While on a dry surface the

splashing is observed through the formation of ligaments on the droplet surface

as the latter spreads onto the surface, with the presence of an existing film it is

usually observed the formation of a ’crown’, which expands in a radial direction

until it becomes unstable, and ligaments are formed with consequent formation

of satellite droplets.

Although dry impact can be observe in la large number of applications, this

is usually limited in time because eventually a thin liquid film will be formed

[58, 59, 60, 61, 62]. Some authors have also investigated the effect of a deep

liquid pool, in which bouncing can be experienced [63].

Cossali et al. [64], carried out a series of experiments in which single water

droplets impacted onto a pre-existing film. Among their findings, they showed

that the crown evolution follows a law which is independent of the droplet velocity

and film thickness while being affected by the Weber number. Also, in terms of

secondary droplets formed, it was demonstrated that for high impact velocity

the secondary droplets size increases with time, while for smaller velocities the

droplet size is almost constant with time. On the other hand, the film thickness

showed no significant effect in defining the secondary droplet diameter.

2.2.3 Temperature of the wall

While most of the experiments regarding droplet impact were carried out under

an isothermal condition, the growing interest in boiling liquids has drawn the

attention on droplet impact for hot surfaces [39, 65, 37, 66].

The effect of high temperature on the wall is well documented in Fujimoto et

al. [67], where experiments of a single droplet impinging onto a hot metal surface

were analysed.

The parameter that plays a vital role in such regimes is the Leidenfrost tem-

perature, which is the temperature above which a gas layer would be formed

between a liquid droplet and a solid surface. This is of extremely importance for

LNG spills not only from a splashing point of view, but also for the vapourisation

rate when a spill occurs in water or solid ground, because the low temperature of

LNG in contact with a relatively ’hot’ surface creates a layer of gas which lowers
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the heat exchange between solid and liquid, therefore decreasing the vapourisation

rate.

2.2.4 Numerical simulations of droplet impact

The growing computational resources available, as well as strong mathematical

formulation capable of simulating free surface flows, led a number of authors to

investigate droplet impact using numerical simulations.

The modelling presents a large number of challenges above which the most

important is the correct solution of the interface movement. The liquid-vapour

interface is a theoretically zero thickness region, and in most approaches, this is

spread along several computational cells, but there is also a number of authors

who implemented a zero thickness interface by using moving meshes, which ob-

viously presents some limitations for large movements of the interface. For this

reason, static meshes are currently the most widely used along with adaptive

mesh refinement in the region where small droplets could be formed and high

resolution is needed.

Another problem is the large mesh to be used. In the splashing event, a

droplet with a diameter in the order of millimetres will produce a large number

of splashed droplets with much smaller diameter, some of which in the order of

microns, especially in the early stages of a wet splashing (the so-called prompt

splashing). In such situation, the numerical simulation will need to capture every

single droplet. Therefore the mesh needs to be fine enough to correctly capture

the interface for such particles, and this would need a considerable amount of

computational cells. If we consider that in the study of impinging droplets a set

of simulations have to be run in order to understand the effect of input parameters

on the outcome, the computational time for such study becomes out of reach, and

therefore a compromise between accuracy of the simulations and simulation time

has to be agreed. This can also be justified if we consider that in the splashing

process the most important quantities are the splashing threshold, angle, mass

ratio and other quantities that can be correctly computed without the need to

capture all the smaller droplets.

The main approaches used in the literature can be divided into Volume of

Fluid (VOF) methods and Level Set (LS) methods. Yokoi [68] have developed a

coupled approach using both methods that utilise the advantages of both. The

approach has proved to be reliable in a number of applications such as bub-
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ble rising [69], droplet impact onto dry and liquid surfaces and multiple droplet

splashes.

In the framework of OpenFOAM, the well validate solver interFoam which

uses a VOF approach has been widely used by a range of authors [70, 71] for

different applications in which the interface tracking plays an important role.

Mahulkar et al. [42] have used a commercial software to produce a number of

data and correlation for a dry splashing regime using droplets with a diameter of

50 and 100 µm.

2.3 Previous work on LNG modelling

To conclude this literature review chapter, existing work on LNG modelling will

be introduced. Liquefied natural gas is a relatively new component of the world

energy production. This is one of the reasons why modelling of such fuel is be-

ing investigated only recently [72]. The LNG industry has a good safety record,

mainly because the technology used to transport has evolved and is highly de-

veloped, and secondly the hazards that it can cause are known, and therefore

companies make sure that these are prevented.

Still, the hazards that could arise from the transport of LNG can be catas-

trophic, and the challenges are many in the modelling [73].

One of the topics that attracted the interest of a large number of researchers is

the modelling of LNG dispersion in open atmosphere. Since the density of LNG

depends highly on temperature, the behaviour observed when a there is a large

release of LNG resulting from a spill from a storage tank or ship is the dispersion

of the vapour cloud close to the ground at the beginning of the spill, when the low

temperature of gas makes it heavier than air. The increase in temperature due

to mixing with fresh air results in a decrease of the density of the vapour cloud

which therefore starts rising in the atmosphere, and in the presence of wind, the

atmospheric boundary layer drives the cloud away from the release point.

Gavelli et al. [74] have studied the dispersion of LNG for several applications

and type of spills. The software used was FLACS, developed by GexCon and

validated against experimental data for a different application. One of the re-

quirements that the US government imposes on the LNG terminal developers is

that in the case of an accidental spill the flammable vapour cloud (defined by 1/2

of the LFL) does not extend beyond the property boundary. Typical scenarios

they analysed are the ones resulting from pipe ruptures that result in flashing jets
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or tank failures that lead to a pool formation and consequent evaporation of nat-

ural gas. The physics involved in such scenarios is complex and different models

have to be applied depending on the type of spill and dispersion to analyse.

Commercial codes such as Ansys CFX and Fluent have been used to model

stratification in LNG storage tank [75].

Another topic of large interest is the simulation of pool fires, were the im-

portance of turbulence has drawn the attention of researchers on Large Eddy

Simulation.

2.4 Chapter summary

Existing work related to the simulation of fuel cascade was discussed at the be-

ginning of this chapter. A number of investigations have been carried out by

HSL from both an experimental and numerical point of view. The advantages

of a numerical formulation are obvious in terms of cost, scenarios that can be

analysed and range of data available in each point of the computational domain.

The fact whether we can rely on these results depends on the validation against

experiments. Experiments on such phenomena are limited to the ones obtained

from the investigation that followed Buncefield and the hazards and cost of these

somehow restrict the type of problems that we can study. For these reasons the

experiments are usually carried out on much simpler cases than the ones that we

would experience in a real plant. These can be however used in the validation

of CFD codes which accuracy is usually in doubt by the large number of models

to be used. Both experimental and numerical results obtained by HSL will be

used in the current work in order to obtain a tool capable of simulating various

scenarios. The models used include but are not limited to the primary breakup of

the initial liquid discharge, droplet distribution, effect of splashing and the liquid

film on the total vapour cloud formation. The importance of the splashing model

adopted to compute the impact of droplets with solid surfaces was reviewed. This

led to the introduction of the state of art on interaction of liquid droplets with

solid surfaces and current limits of the existing computational models. At last

a brief review of previous work on LNG modelling was discussed, pointing to

the fact that very limited work is available on computational method on safety

of LNG plants, mainly because it is a relatively new source of energy and also

because of its very positive safety record.
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Chapter 3

Computational methodology and

governing equations

Computational Fluid Dynamics is currently used worldwide to describe a vast

variety of processes from the Oil and Gas industry to the semiconductor one.

The development that supercomputers have witnessed in the past 10-20 years

has allowed researchers and engineers to reproduce flows with such an accuracy

that we could not have achieved a few years back.

The base concept behind CFD is to solve the equations of fluid dynamics

using a discretisation process [76]. In the current application, the open source

software OpenFOAM [77] was used because of the possibility of implementing

new models and for its reliability as demonstrated by the broad application in

several industries.

In order to explain the computational methodology, the equations that de-

scribe the state of a fluid will be defined first.

To define the conservation equations, instead of following a parcel as we do

in classical mechanics, it is more convenient to establish a Control Volume (CV)

which will be our region of interest [78, 79] (Figure 3.1).

A Control of Volume is defined as a large and finite region of the flow. The

conservation principles are applied to the control volume and to the fluid that

crosses the control surface. Using this procedure we obtain the conservation

equations in the so-called Integral form, but we can easily derive the differential

form from the integral one.
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Control Volume V

Figure 3.1: Definition of a Control Volume

3.1 Conservation Principles

In order to define the conservation equations a quantity that is widely used in

Fluid Dynamics, the so-called Material Derivative, has to be determined first.

This will be of particular use in order to simplify the equations and use them in a

computational context. The conservation principles that will be derived are the

conservation of mass, momentum and energy. These three principles are enough

to calculate the state of a fluid, and the equations derived are usually coupled

with each other, although some simplifications can be made in some instances,

where the number of dependent variables reduces and therefore it is easier to find

a solution to the particular mathematical problem.

3.1.1 Material Derivative

The Material Derivative (also known as Substantial Derivative) of a variable is

defined as the instantaneous change of the variable itself of a fluid element and

it is calculated in the following way:

Dψ

Dt
=
∂ψ

∂t
+ u · ∇ψ (3.1)

Where ψ can be any tensor field and u is the velocity field. Focusing on

the last equation, we can therefore conclude that the variable change rate in

time following a fluid element (Dψ/Dt) is equivalent to the local time derivative

(∂ψ/∂t) plus the convective derivative of the same variable (u ·∇ψ). This means
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that the state of a fluid element is changing as the element moves in the domain

because the flow could change in time in that point and also because the element

is moving to another point where the fluid has different properties.

3.1.2 Continuity Equation

One of the most important principles in fluid dynamics is the conservation of mass.

This follows the chemical principle that mass is neither created nor destroyed

in any chemical reaction. Following the above, the continuity equation can be

defined. If we consider a fluid region, the conservation of mass tells us that the

sum of the mass that comes into a closed domain, the mass that leaves the domain

and the mass change inside the domain equals to zero. In a differential form, the

equation can be written using the material derivative as:

Dρ

Dt
+ ρ∇ · u = 0 (3.2)

The Continuity Equation could be also written developing the Material Deriva-

tive introduced before, and it assumes the following form:

∂ρ

∂t
+∇ · (ρu) = 0 (3.3)

If we assume that the flow is incompressible, that is a flow where we can expect

that the density is constant both in space and time (ρ = const), the equation

becomes much more straightforward:

∇ · u = 0 (3.4)

3.1.3 Momentum Equation

In the study of mechanics of solid objects, Sir Isaac Newton derived in 1686 the

second law of motion which correlates the change in momentum of an object to

the external force applied to it. In a mathematical for this assumes the following

equation:

F = ma (3.5)

The last equation can be used in our application as it can be easily applied

to fluids as well. In the case of a fluid, this equations states that the momentum
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change of a fluid element varies accordingly to the resultant forces applied to that

element. For a fluid element, the forces applied to it include volume forces (such

as gravity) and surface forces (i.e. viscous and pressure forces).

If we assume an infinitesimal fluid element and all the forces acting on each

surface of the element, we can write Newton’s equation for all the three Cartesian

axes in the following form:

ρ
Dux
Dt

= −∂p
∂x

+
∂τxx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

+ ρfx x axis (3.6)

ρ
Duy
Dt

= −∂p
∂y

+
∂τxy
∂x

+
∂τyy
∂y

+
∂τzy
∂z

+ ρfy y axis (3.7)

ρ
Duz
Dt

= −∂p
∂z

+
∂τxz
∂x

+
∂τyz
∂y

+
∂τzz
∂z

+ ρfz z axis (3.8)

Where p is the pressure, τ is the viscous stress tensor and f are the volume

forces. These three scalar equations are usually called Navier-Stokes equations

because the two scientists discovered them independently during the nineteenth

century. The viscous stress tensor components are calculated in the following

way:

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

)
+ δijλ

∂uk
∂xk

(3.9)

where i, j and k assume values of x, y, z, δij is the Kronecker delta, µ is the

first coefficient of viscosity (usually simply called dynamic viscosity) and λ is the

second coefficient of viscosity. The latter is typically assumed to be zero in most

cases, but if assumed different from zero the most common approximation is:

λ = −2

3
µ (3.10)

With these assumptions, and developing the material derivative on the left

hand side, we obtain the following vectorial form of the Navier-Stokes Equations:

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · (µ(∇u+∇uT )) +∇

(
−2

3
µ∇ · u

)
+ ρg (3.11)
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3.1.4 Energy Equation

The main principle behind the energy equation is that energy is conserved, mean-

ing that the energy rate of change in a material particle is equal to the energy

received by heat and work to the particle. The equation can be written in the

following way:

ρ
De

Dt
+ ρ

DK

Dt
+∇ · (up) = −∇ · q +∇ · (τ ⊗ u) + ρφ (3.12)

where e is the specific internal energy, K = |u|2/2 is the local kinetic energy,

q represents the heat flux, τ is the mechanical stress tensor and φ the heat

source from other processes than the ones mentioned. Developing the material

derivatives the equation becomes:

∂ρe

∂t
+∇· (ρue)+

∂ρK

∂t
+∇· (ρuK)+∇· (up) = −∇·q+∇· (τ ⊗u)+ρφ (3.13)

Sometimes the equation can be expressed in terms of enthalpy, assuming a

similar expression to the one presented for the internal energy.

3.1.5 Conservation of Scalar Quantities

In several applications of fluid mechanics, in addition to the standard quantities

(ρ,u, T ), a number of secondary scalar quantities can be present, such as chemical

species or for example soot in the presence of a fire. These quantities evolve

according to a transport equation (also called convection-diffusion equation for

obvious reasons) where the change in time of the scalar is linked to convection and

diffusion of the quantity itself and any other source term that could be present.

For a general scalar quantity φ it is possible to obtain a conservation equation

as the ones derived before.

Dρφ

Dt
+ ρφ∇ · u−∇2(ρDφ) = qφ (3.14)

where D is the diffusion coefficient of the scalar φ and qφ is a source terms

that represent the transport of φ by mechanisms other that convection or diffusion

and any sources or sinks of the scalar. Developing the material derivative with

its definition the equation becomes:
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∂ρφ

∂t
+∇ · (ρφu)−∇2(ρDφ) = qφ (3.15)

This equation can be applied for example to species mass fractions in reacting

flows where more than one component is present. In this case, the equation is

applied to φ = Yn quantities (n is the number of species present in the domain).

The source term qφ represents the combustion process and mass fraction coming

from any lagrangian phase where evaporation takes place.

3.1.6 Summary of the Conservation Equations

We have described in this section all the conservation equations for a generic

fluid, expressed using their conservative form, which will be repeated here for a

better visualization:

∂ρ

∂t
+∇ · (ρu) = 0 (3.16)

∂ρu

∂t
+ u · ∇(ρu) = −∇p+∇ · (µ(∇u+∇uT )) +∇

(
−2

3
µ∇ · u

)
+ ρg (3.17)

∂ρe

∂t
+∇ · (ρue) +

∂ρK

∂t
∇ · (ρuK) +∇ · (up) = −∇ · q+∇ · (τ ⊗u) + ρφ (3.18)

These are partial differential equations for any generic unsteady flow. In

practical applications, these equations are usually simplified by assumptions that

arise from the type of flow that we are analysing. For example, in the assumption

of incompressible flow, the energy equation is decoupled from the momentum and

continuity ones.

3.2 Simplified forms of the equations

The conservation principles introduced are a very general description of a flow

and their solution is complicated because the equations involved are in general

non-linear and coupled with each other. Therefore there is no general solution

and the uniqueness of the solution for a specific set of boundary conditions has

not been proved yet.
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An exact solution exists only for very specific cases (flows in pipes or parallel

plates for example), and even though these are important in order to understand

some of the basic concepts of fluid dynamics, their relevance is limited in real

applications.

In order to solve the complex set of equations, a number of simplifying as-

sumptions can be made, a common practice in all the branches of engineering.

With these assumptions, some terms become equal to zero, and still, an analytical

solution does not exist for the equations, but their numerical solution is much

simpler to obtain. Inevitably, these assumptions introduce an error because the

flow analysed is not ideal, but the error introduced is in most cases negligible.

3.2.1 Incompressible Flow

In a wide range of flows observable in nature, the value of density can be assumed

constant, for example for flows of liquids and for gasses where the much number

does not exceed 0.3. These flows are called incompressible, and if we also consider

that the flow is isothermal, the conservation equations are simplified as:

∇ · u = 0 (3.19)

∂u

∂t
+ u · ∇u = −1

ρ
∇p+∇ · (ν(∇u+∇uT )) + g (3.20)

These are still very complex but their numerical solution is easier to obtain if

compared to the full equations.

3.2.2 Inviscid Flow

Considering a flow far from any solid surface, the viscosity effects are usually

negligible, therefore the stress tensor reduces to T = −pI and the Navier-Stokes

equations reduce to the Euler equations (this is the reason why inviscid flows are

also called Euler flows):

∂ρ

∂t
+∇ · (ρu) = 0 (3.21)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ ρg (3.22)
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This simplification is widely used in Aeronautical flows far from walls because

at high Reynolds number the effect of viscosity is restricted to regions close to

solid surfaces. The solution of such flows allows coarse grids close to walls and

therefore much faster to obtained if compared to a viscous solution. However, as

said, the lack of any viscosity on walls allows for a slip condition (u 6= 0) which

leads to non-physical solutions.

3.3 Simulation of Multiphase Flows

The conservation equations obtained so far are valid for any type of fluid problem,

and depending on the complexity of the physics involved these can simplify into

forms that are easier to solve numerically. For example, the assumption that

a single phase is present throughout the domain is in most cases acceptable,

especially in aerospace and external aerodynamics applications. On the other

hand, a broad set of industrial problems involve the presence of two or more

distinctive phases in the domain, which introduces a more complex phenomenon

to solve and the need to use different equations according to the properties of

the phases present. A multiphase flow is defined as a flow in which two or more

separate fluids with separate phases and physical properties are present, that can

be either in independent states (gas or liquid) or the same state. A multiphase

flow is therefore defined by one of the following:

� Materials that have different states or phases (gas, liquid or solid)

� Materials that have the same state or phase but have different physical

properties (such as density)

The main difficulties encountered in the analysis of multiphase flows are the

different physical properties of the phases and the tracking of the interphase

between them. Although the term multiphase flow refers to a flow where two or

more phases are present, in the current section the solution of two-phase flows will

be investigated, because of simplicity and the applicability to the current work,

but the formulation can be extended to n-phase flows with some adjustments in

the equations.

Although there is a wide variety of numerical approaches for the solution of

multiphase flows, the most used methods are the so-called Lagrangian-Eulerian

[80] and Eulerian-Eulerian formulation [81]. The terms Lagrangian and Eulerian
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refer to how a single phase is solved. In a Lagrangian framework, the phase is

modelled using points which usually represent droplets, while the Eulerian frame-

work uses the standard approach of the fluid being represented by a continuum

with specific properties. In a Lagrangian-Eulerian (LE) approach, one of the

two phases is described using a Lagrangian framework while the other one us-

ing a standard Eulerian framework. On the other hand, in a Eulerian-Eulerian

approach, both the phases are represented with a standard Eulerian framework.

Whether a problem is more suitable for one approach or the other has to be

determined by the physics involved. In most cases, in a multiphase problem, it

can be observed that there is a primary and a secondary phase, meaning that one

phase occupies a larger volume than the other. Defining the volume fraction of a

phase by:

Volume Fraction =
Volume of one phase

Total Volume
(3.23)

one primary phase can be determined by calculating this value and also one

can obtain some information on the secondary phase as to whether the latter is

dilute or dense respect to the primary one (usually dilute regimes are charac-

terised by values of volume fraction in the order of 1-5%, while dense regimes are

everything above that value).

As in every engineering application, the two methods mentioned earlier have

their advantages and drawbacks respectively. Eulerian formulations have usually

higher accuracy and are widely used in free surface flows or in the case of dense

phase but need higher computational cost compared to Lagrangian formulations

which are generally cheaper and utilised in dilute phases such as spray and coating

applications.

A whole study of a liquid cascade formed by an overfilling tank would have

to simulate the whole physical process involved, starting from the bulk of fluid

formed at the top of the tank, where obviously the liquid phase is dense, to the

breakup of such liquid into smaller droplets and the impact of these on the ground,

where a more dispersed phase can be observed. This is obviously computationally

expensive and difficult to model. A simplification can be made if we consider

for the experimental observations of such problem which have shown that the

jet spilling from the top of a tank breaks up almost immediately into smaller

droplets, meaning that one could skip the modelling of the primary atomization

of the jet and directly take into account for the bulk of the flow which is composed
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entirely by small droplets. This means that a pure Lagrangian approach could

be used because of the nature of the flow, simplifying the problem and opening

the opportunity to a much faster simulation.

3.3.1 The Eulerian-Eulerian Approach

If the dispersed phase occupies a large volume in the domain, treating both the

dispersed and carrier phase using a Eulerian approach is the most used method

in the literature. Among a large number of models available, the two where the

attention will be focused here are the free surface flow and the Eulerian two-phase

modelling.

The first method mentioned applies to problems where two immiscible fluids

are separated by a well-defined interface, such as droplets of liquid immersed

in a gas or bubbles moving into a liquid. Two main classes of methods exist

among the free surface approaches, the interface tracking and interphase cap-

turing approaches. The interphase tracking approach is used in a wide range

of applications for the chemical industry. The central concept underlying this

method is to identify the interface between the two fluids and moving it accord-

ing to its velocity field. Obviously, in order to do that, a re-meshing of the domain

has to be applied, according to the new position of the interface. This method

provides high accuracy regarding tracking the interface, but its main drawback

it the applicability to cases where the interface is not moving largely, therefore it

cannot simulate any breakup or coalescence of droplets or bubbles. On the other

hand, the interface capturing methods are able to simulate these type of flows, be-

cause the interface is ’captured’ by the solver and no re-meshing is needed (apart

from cases where the mesh could be refined in some regions of the domain). The

most used capturing methods are the Volume of Fluid (VOF) and Level Set (LS)

approaches.

The VOF method was developed by Hirt and Nichols [82] and can easily

capture topologies changes of the moving surfaces, such as coalescence or breakup

of droplets. It is based on the definition of a function called volume fraction which

is solved using a transport equation.

∂ψ

∂t
+ u · ∇ψ = 0 (3.24)

Such method is highly conservative in mass but presents the drawback of

smearing the interface, which also has to be reconstructed from the volume frac-
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tion field, making the process even more complicated. However, its simplicity and

high mass conservation have made it one of the most used methods for a broad

set of application.

The other method mentioned for interface capturing approaches is the Level

Set method. Based on a one fluid approach as the VOF method, the former

relies on the definition of a level set function, which assumes a value of zero on

the interface surface and has to satisfy the transport equation mentioned earlier.

This method has proved to be more reliable than VOF concerning the accuracy

of the interface, but its lack of mass conservation has limited its applicability.

Some authors [83, 84] have tried to couple the advantages of both the VOF and

LS methods to overcome the limits of both, obtaining satisfactory results.

Free surface approaches cannot be used when the two liquids are well mixed

and therefore a two-phase eulerian approach is more suitable. While in the former

methods one equation only is solved for both fluids, the latter approach uses

two separate equations for the continuity, momentum and energy conservation

equations, which contain additional terms to account for the interface between

the two fluids.

3.3.2 The Lagrangian-Eulerian Approach

If one of the two phases is highly dispersed in the other one, for example a spray

in the region far from the nozzle, the representation of the dispersed phase can

be done using a Lagrangian approach, to avoid the use of a large number of

computational cells, which is in most cases unachievable. The primary phase is

solved using a standard Eulerian approach. The LE approach uses a statistical

description of the dispersed phase, and the two phases are coupled using source

terms in the conservation equations for the carrier (main) phase. This formulation

requires that the particles have to be considerably smaller than the grid size

(dp << ∆x), otherwise the effect of the dispersed phase on the carrier phase is

too significant to be taken into account in a single grid cell.

One of the critical points in such formulation is the choice of the level of

interaction between the two phases [85]. Depending on the application and on

the degree of accuracy, there can be significant differences. For example, for

solid particles such as dust, there is no source term in the continuity equation

for the carrier phase as the mass of the droplets is constant. For this reason, LE

approaches can be divided into three groups depending on the level of interaction
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between the phases:

� One-Way coupling: the carrier phase affects the dispersed phase, but the

latter does not influence the former. This is usually the approach used when

the droplets size and their number is not large enough to affect the carrier

phase significantly.

� Two-Way coupling: there is mutual coupling between the droplets and the

carrier fluid. This is used when there is a significant effect on the carrier

from the dispersed phase.

� Four-Way coupling: This is the most complicated approach and includes

interactions between different droplets (collision and/or coalescence) in ad-

dition to the interactions between droplets and carrier phase.

The choice between the three levels of interaction can profoundly affect the

solution and the computational effort increases as the number of interactions

considered increases too.

As mentioned before, the Lagrangian approach is mostly used in the solution

of dispersed flows, especially for spray applications where the droplet size is in

the order of microns [86, 87]. This approach gives us a good compromise between

accuracy of the solution and cost. One of the key points of this formulation is

the choice of adequate submodels that describe how the two phases interact, and

this can practically change the outcome of a simulation completely.

The Lagrangian phase is represented through Ns particles and their physical

variables such as position, velocity, radius (which is directly linked to the mass

by the density) and any other quantity depending on the needs of the modeller

(X(i)(t),u(i)(t), R(i)(t), i = 1, .., Ns(t)). The position of the particles is repre-

sented using Lagrangian coordinates, which are completely independent of the

grid used in the Eulerian phase. All the quantities mentioned above can change

during time (position, velocity, radius) because of the motion of the droplet and

because of thermophysical processes such as evaporation.

The Eulerian phase, on the other hand, is solved as usual using the Navier-

Stokes Equations but introducing source terms arising from the Lagrangian phase

in the Continuity, Momentum and Energy equations.
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3.3.3 Lagrangian formulation in OpenFOAM

The Lagrangian-Eulerian approach in OpenFOAM is available for both solid and

fluid particles. Even though the two formulations are quite similar, we are going

to concentrate mainly on liquid droplets because of the interest in our application.

As in every lagrangian formulation, the representation of the dispersed phase

is done using a certain number of parcels, which consist in much reduced number

respect to the actual number of droplets present in the domain, this because

representing each droplet would be too demanding and we can obtain accurate

results even with such approximation. Each parcel contains an amount of particles

ns. The equations that describe the Eulerian phase for a compressible flow are

the following:

∂ρ

∂t
+∇ · (ρu) = Sρ (3.25)

ρ
∂u

∂t
+∇ · (ρuu) = −∇p+∇(µ∇u− 2

3
µ∇ · u) + Su (3.26)

∂ρe

∂t
+∇ · (ρue) +

∂ρk

∂t
+∇ · (ρuk) +∇ · (up) + αeff∇2e = Se (3.27)

These are the Mass, Momentum and Energy Equation with an additional

term in each of them to take into account for the Lagrangian phase (αeff is the

thermal diffusivity that takes into account for the laminar and turbulent terms).

In the mass conservation equation, the source term is present because due to

evaporation of parcels there can be some mass introduced into the carrier phase

or subtracted from it due to evaporation and/or condensation. In the momentum

equation, the source term represents the influence of the parcels on the velocity

field due to drag and lift forces, and other forces that may act on the droplets.

At last, we find the source term in the energy equation due to heat transfer and

phase change on the parcels that affect the Eulerian phase. These three terms

can be different from zero but can also assume a null value if we consider only

one-way coupling where the dense phase affects the dispersed one while the latter

has negligible or no influence on the Eulerian phase.

The Lagrangian phase is solved by the use of a different set of equations.

These take into account the fact that the particles are considered spherical, and

that the mass changes due to evaporation/condensation. We can then write the
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equations that describe the evolution of the particles:

dmd

dt
= ṁ (3.28)

dXd

dt
= ud, (3.29)

md
dud
dt

=
∑

(Fi + fi). (3.30)

where the subscript d refers to the parcel. These three equations are solved

for each parcel. For this reason, the solution of a given cloud can become really

expensive if we increase the number of parcels to be closer to the real solution.

The sum over the vectors of the forces acting on the droplet can be simplified if

we assume that the primary forces are gravity and aerodynamic drag. Gravity is

simple to define wile for the drag force we need a bit more detailed analysis. As

commonly done in Aerodynamics theory, a drag coefficient CD can be determined

for the parcel, using the following equation:

CD =
FD

ρF
2
|uF − ud|2Ad

, (3.31)

with FD being the aerodynamic drag acting of the parcel, ρF the density of

the surrounding fluid, uF and ud are the velocities of the fluid and the droplet

respectively, and Ad = d2
Pπ/4 is the cross-section of the spherical droplet.

The mass of the droplet can be expressed as:

md = ρd
1

6
πd3 (3.32)

therefore calculating the drag force from Equation 3.31 and multipling and

dividing by md we obtain:

FD =
3

4

mdρF
ρdd

CD|uF − ud|(uF − ud) (3.33)

The calculation of the drag force relies on the drag coefficient only because

all the other quantities are given.

The drag coefficient is calculated as a function of the Reynolds number (the

ratio between inertia and viscous forces):
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Re =
ρF |uF − ud|d

µF
(3.34)

Results obtained from experiments of flow around a sphere show that the

drag coefficient does not have a simple correlation with the Reynolds number

and also CD depends on the surface shape of the sphere, as shown in Figure 3.2.

When the sphere surface is not smooth, experimental observations showed that

the transition from laminar to turbulent flow occurs at lower Reynolds number

respect to a smooth sphere.
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Figure 3.2: Drag Coefficient for a sphere as a function of Reynolds number for
rough and smooth surface

Mainly three regimes are observed: the laminar, transitional and turbulent

regimes. For each regime, a different correlation is used. For small values of

the Reynolds number (Re < 0.5), i.e. a laminar regime, the drag coefficient is

calculated as:

CD =
24

Re
(3.35)

This is also called Stokes regime because he found an analytical solution for

the drag. For the transitional regime (0.5 < Re < 1000) several correlations have

been proposed, and in OpenFOAM the one obtained by Schiller and Neumann
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[88] can be found:

CD =
24

Re
(1 +

1

6
Re2/3) (3.36)

At last we find the turbulent regime (Re > 1000) which is characterized by

an almost constant value of the drag coefficient, which is expressed by:

CD = 0.424 (3.37)

For higher values of the Reynolds number (Re > 105) the drag coefficient

has a drop and eventually recovers. These values are usually not experienced in

spray applications and therefore not modelled. It was also mentioned that the

shape of the sphere could affect the value of the drag coefficient, and usually,

for rough spheres, this results in an earlier drop in drag respect to the smooth

sphere. This is why golf balls have small holes on the surface because the drag

is highly reduced at a typical speed and they can cover longer distances. In the

case of a liquid droplet, the surface can be considered smooth and therefore we

can use the standard correlations.

For differently shaped droplets (non-spherical) the drag coefficient is more

complicated and different assumptions have to be made.

After the calculation of the drag coefficient, the solver has to calculate the

drag force and makes use of it in the momentum equation to solve the motion of

the droplet. This would be enough to describe the status of a solid droplet where

heat transfer does not play an important role, but in the case of a liquid droplet,

boiling and evaporation can take place. Therefore we need to introduce two more

equations, the energy and mass conservation principles. The first one takes into

account for all the types of heat exchange that can affect the temperature of the

droplet and calculates the temperature change accordingly, while the second one

gives the change in mass of the droplet which can be positive (condensation) or

negative (evaporation).

The equation that calculates the change in temperature for the droplet is the

following:

mdcp
dTd
dt

= Q̇+ hfg
dmd

dt
+ Adσε(T

4
a − T 4

d ) (3.38)

where hfg is the specific enthalpy of condensation/vapourisation, σ is the

Stefan-Boltzmann constant and ε is the emissivity of the droplet surface for the
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liquid analysed.

On the left-hand side of this the equation we find the temperature change

of the droplet weighted by its mass and heat capacity, while on the right-hand

side the three main contributors to the temperature change due to conduction-

convection, latent heat and radiation. The first term, the convective heat transfer

(Q̇) is usually calculated by using the heat transfer coefficient:

Q̇ = htc(Ts − Td)A; A = 4πr2(Droplet surface area) (3.39)

htc =
Nu · λ
d

(3.40)

where Nu is the Nusselt number, λ is the thermal conductivity of the liquid

droplet, and d is the diameter of the droplet. The value of the Nusselt number is

calculated with the correlation obtained by Ranz-Marshall [89]:

Nu = 2 + 0.6Re1/2Pr1/3 (3.41)

where Pr = cpµ/λ is the Prandtl number, defined as the ratio between mo-

mentum and thermal diffusivity (Pr = ν/α).

The second term is the temperature change due to evaporation/condensation,

because of latent heat. When a droplet evaporates, there is heat released due

to the evaporation process, and this causes a temperature drop for the droplet.

The third and last term in the temperature equation is heat exchange due to

radiation. This term can assume essential values when a combustion process is

taking place, while it is mostly negligible for any other type of application.

One of the assumptions of the models presented here is about the shape of

the droplets. All the droplets are considered to be spherical in order to simplify

the problem and make some assumptions on parameters such as the aerodynamic

drag. This highly depends on the shape of the droplet, and a maximum defor-

mation of the droplet can lead to an increase in drag by a factor of 4 [90], which

obviously is not negligible when a single droplet is considered. The change in the

shape also depends on the Reynolds number, because an increase in the latter

leads to an increase in the shear stress on the droplet surface, therefore modifying

its shape. From a breakup point of view, this is somehow linked to the deforma-

tion of the droplet, because during the breakup process the droplet experiences

a time-dependent deformation until it reaches a value where the surface tension
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cannot hold the droplet together anymore, as shown in Figure 3.3. In the current

application, the large number of droplets and the relatively low Reynolds num-

bers involved are such that accounting for the droplet deformation would be too

demanding and the results obtained would not show significant differences, for

this reason, the droplets are all considered spherical (this assumption comes into

the droplet drag and heat transfer), which simplify our approach to the problem.

Figure 3.3: Deformation of a droplet undergoing a bag-breakup [91]

3.4 Turbulence Modelling

In the study of fluid flows, one significant distinction can be made based on

their nature: laminar and turbulent flows. The term laminar refers to cases that

are simpler to model and where the physical quantities have a particular value in

space. Also, the streamlines that characterise a laminar flow do not intersect each

other at any time, because the flow field is characterized by molecules moving

in parallel layers, without interacting with the adjacent layers, from which the

term laminar. On the other hand, turbulent flows are characterised by chaotic

movement of the fluid, and this makes the modelling of such problems much

more complicated and computationally challenging. Turbulence modelling in

multiphase flows is even more challenging due to the interaction between the

turbulent structures of the primary phase with the secondary one. Therefore it

is easy to conclude that laminar flows are easier to solve, but the fact that most

flows observable in nature are turbulent somehow limits the number of application

for which a laminar approach is suitable.
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It is therefore crucial for a computational model to be able to solve the turbu-

lence associated with a specific flow, and as with every other method the accuracy

comes with a cost.

In the literature, a large variety of turbulent models can be found, and their

applicability depends on the type of problem analysed and on the accuracy that

the modeller wants to achieve. In the framework of OpenFOAM, the choice is

between three approaches, which are usually the most adopted ones in general,

respectively called RANS, LES and DNS. The three methods will be discussed

individually in the following paragraphs.

A variety of turbulent models developed by numerous people is available,

but the two main categories available in OpenFOAM are the RANS (Reynolds-

averaged Navier-Stokes) and LES (Large Eddy Simulation) models. It is worth

also mentioning about DNS (Direct Numerical Simulation) methods, which are

the most accurate ones, where each scale of the turbulent motion is solved, but

these are usually too expensive for most types of applications, especially for large-

scale problems.

3.4.1 RANS Models

Reynolds-averaged Navier-Stokes (RANS) methods are probably the most used in

industry because they give acceptable results and relatively small computational

times. They are by definition the least accurate of the three methods presented

here but nonetheless can provide very good results when a specific set of values

in the domain are investigated.

The idea behind the RANS models, from which they take their name, is to

calculate a time average of the conservation equations in order to obtain a mean

value for the physical variables, which is the value that will eventually be obtained

from solving the set of equations. The equations obtained by such averaging are

very similar to the initial equations that describe the ’full’ quantities but present

an additional term due to the averaging procedure which is the term that has to

be modelled.

The velocity field can be decomposed into its mean and fluctuating compo-

nents:

u(x, t) = ū(x) + u′(x, t) (3.42)

where the term ū(x) represents the time averaged velocity field while u′(x, t)
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its fluctuating component. We can apply this decomposition to the continuity

and momentum equations. For simplicity equations are shown for incompressible

flows only.

∇ · (ū+ u′) = 0 (3.43)

∂(ū+ u′)

∂t
+ (ū+ u′) · ∇(ū+ u′) = −1

ρ
∇(p̄+ p′) + ν∇2(ū+ u′) (3.44)

Averaging the last equation in time, and considering that ū′ = 0, we obtain

the averaged form of the continuity and momentum equations:

∇ · ū = 0 (3.45)

∂ū

∂t
+ ū · ∇ū = −1

ρ
∇p̄+ ν∇2ū+ u′ · ∇u′ (3.46)

The continuity equation is the same as the initial one, while the momentum

one differs only by the last term in the equation (u′ · ∇u′) which arises from the

averaging of non-linear terms. This last term is an added source term that con-

tributes to the momentum of the mean velocity and comes from the transport of

fluctuating momentum by turbulence velocity fluctuations. This term obviously

introduces a new unknown variable to the problem. Therefore we need to close

the equation by using another equation that describes this term. This term is

commonly known as the Reynolds stress and can be represented using Einstein’s

notation as:

τ ′ij = ρu′iu
′
j (3.47)

A number of solutions for the Reynolds stress have been obtained, but the

most commonly used one are the linear eddy viscosity models, where the Reynolds

stresses are modelled by a linear constitutive relationship with the mean flow

straining field, such as:

τ ′ij = −2µtSij +
2

3
ρkδij (3.48)

where µt represents the turbulent viscosity, k is the mean turbulent kinetic

energy and Sij is the strain rate tensor.
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Plenty of linear eddy viscosity models exist, but probably the most known is

the k− ε model which gives two additional transport equations for the turbulent

kinetic energy (k) and turbulent dissipation (ε) [92]. The equations used in the

standard model are the following:

∂(ρk)

∂t
+ u · ∇(ρk) = ∇ · [(µ+ µt)∇k] + Pk + Pb − ρε+ Sk (3.49)

∂(ρε)

∂t
+ u · ∇(ρε) = ∇ · [(µ+ µt)∇ε] + C1ε

ε

k
(Pk + C3εPb)− C2ερ

ε2

k
+ Sε (3.50)

in which a number of constants have been introduced, as well as the effect of

the mean flow in the production of k (Pk) and the impact of buoyancy as well.

The k − ε model has been successfully used in the presence of sizeable adverse

pressure gradients such as regions where the flow detaches from a wall. The main

drawback of such model is the limit of applicability where the wall effects become

significant. For the latter case, another two-equation model has been derived and

widely used in the solution of flows where wall effects are predominant, the k−ω
model. This solves an equation for the turbulent kinetic energy as well as one

equation for the specific rate of dissipation of kinetic energy (ω).

A successful model has been obtained by combining the k − ε and k − ω

models, in order to take advantage of both formulations in regions where wall

effects are dominant or where these are negligible. This model takes the name

of k − ω SST model and is widely used in industrial problems due to the higher

accuracy respect to a standard k − ε model.

Within the framework of OpenFOAM, a number of RANS turbulence models

are available, including the k − ω SST model, which will be the one used in

the current application. The latter model combines both the k − ε and k − ω

turbulence models using the advantages of both. The equations used are one for

the turbulent specific dissipation rate ω and the turbulent kinetic energy k [93].

The equation used for k is:

∂(ρk)

∂t
+ u · ∇(ρk) = ∇ · [(µ+ µt)∇k] + ρg − 2

3
ρk(∇ · u)− ρβ∗ωk + Sk (3.51)

While for ω:
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∂(ρω)

∂t
+u·∇(ρω) = ∇·[(µ+µt)∇ω]+

ργg

ν
−2

3
ργω(∇·u)−ρβ∗ω2−ρ(F1−1)CDkω+Sω

(3.52)

where a lot of constants have been introduced. The values used for these

constants vary from application to application, but standard values are available

and used in most applications. The main advantage of this model is the ability

to capture flow separation and at the same time compute the free streams eddies,

which has proven to be of enormous benefit on a large number of industrial

applications.

3.4.2 LES Models

The idea behind the LES turbulence models is to model the larger unsteady tur-

bulent motions while the effects of the smaller-scale motions are modelled. This

leads to higher computational cost respect to the RANS models, but naturally

higher accuracy. LES use in CFD has grown in the past years due mostly to the

increase in computational resources, being applied to a large number of applica-

tions [94, 95, 96, 97]. In LES the larger-scale motions, which are usually affected

by the flow geometry, are solved, while as stated before the smaller-scale motions

are modelled, this mainly because these motions have to some extent a universal

behaviour and modelling decrease the cost of the solution by orders of magnitude.

The LES models are obtained by four steps:

� The velocity field u(x, t) is filtered and results into the sum of a resolved

component ū(x, t) and a residual component u′(x, t). The resolved com-

ponent represent the motion of the large eddies.

� The evolution of the velocity field is obtained by filtering the Navier-Stokes

equations. This lead to an additional term in the momentum equation that

has to be modelled.

� The term arising from the filtering operation in the momentum equation is

modelled by an eddy-viscosity model.

� The velocity field is solved using the eddy-viscosity model in the momentum

equation to obtain the large-scale motions of the flow.

55



3.4. TURBULENCE MODELLING

One of the most delicate operations in LES formulations is, therefore, the

filtering, and in the next paragraph, a brief description on the topic will be given.

Filtering

The filtering operation was introduced by Leonard in 1974 [98] and is defined by:

ū(x, t) =

ˆ
G(r,x)u(x− r, t)dr (3.53)

with the integration over the whole fluid domain, and the filter function G

satisfying the normalization condition

ˆ
G(r,x)dr = 1 (3.54)

We can simplify the filter function by assuming that it is homogeneous, inde-

pendent of x. The residual field is defined as:

u′(x, t) ≡ u(x, t)− ū(x, t) (3.55)

So that the velocity field is obtained as the sum of a filtered quantity plus a

residual field. This operation appears to be similar to the Reynolds decomposition

obtained for RANS models. However, the latter is a time-averaged decomposition,

while the filtering operation operates in space and therefore the filtered velocity

is time-dependent.

In order to understand the meaning of the filtering operation, a plot repre-

senting the filtering operation in one dimension is shown in Figure 3.4.

Figure 3.4: Filtering operation

In CFD, the filtering operation usually depends on the volume of the cell used,

meaning that instead of an explicit filtering on the single terms of the equations,

an implicit filtering is carried out by the computational domain. In this case, the

filter assumes the form:
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G(r,x) = ∆ (3.56)

where ∆ is the cell volume of the computational grid used.

Filtered Conservation Equations

The filtering operation is applied to the conservation equations [99] in order to

obtain the evolution of the filtered velocity ū. The equations will be derived for

compressible flows, which are of interest in the current application. The filtered

continuity equation is:

∂ρ

∂t
+∇ · (ρu) =

∂ρ

∂t
∇ · (ρu) = 0 (3.57)

From this equation, assuming the limit of incompressible flow we obtain the

following:

∇ · u′ = ∇ · (u− u) = 0 (3.58)

The filtered compressible momentum equation leads to:

∂(ρu)

∂t
+ u · ∇(ρu) = −∇p+∇(µ∇ū− 2

3
µ∇ · ū) (3.59)

This equation is not equivalent to the N-S equation applied to the filtered

velocity because of the non-linear advection term appearing on the left hand

side. If we define the residual-stress tensor as:

τij = uiuj − ūiūj (3.60)

we can then derive the N-S to be solved for the filtered velocity field:

∂(ρu)

∂t
+ u · ∇(ρu) = −∇p+ µ∇2ū−∇ · (ρτ ) (3.61)

Equivalently to the RANS equations, the filtered N-S equations need to be

closed, meaning that we have to model the residual stress tensor τ . A variety of

models exist for the SGS term, the most used ones representing the term τ dev as

a function of the rate of strain of the rate of strain of the large scales. This can

be expressed in mathematical terms as:

τ dev = −2νsgsS̄ (3.62)

57



3.5. NUMERICAL METHODS FOR FLUID DYNAMICS

with νsgs being the kinematic eddy viscosity. The most known formulation for

the eddy viscosity was obtained by Smagorinsky in 1963 [100] and is represented

by the following equation:

νsgs = (Cs∆)2|S̄| (3.63)

with |S̄| =
√

2S̄S̄, ∆ being the filter width (volume of the cell) and Cs a

constant that usually takes a value between 0.1 and 0.2. This model assumes

that an equilibrium exists between the energy production in the large scales and

dissipation in the small scales, which is not always a correct assumption.

3.4.3 DNS Models

The main concept behind DNS modelling is to solve the Navier-Stokes equation

on the fluid domain without the use of any turbulence model. This means that

the mesh is fine enough in all the regions of the domain to be able to solve the

smallest dissipative scales (Kolgomorov scales). The increasing availability of

computational resources has increased the use of DNS simulations in the liter-

ature, but these are usually restricted to simple geometries and low Reynolds

numbers, therefore not yet universally used. The number of mesh points (N) has

to respect the following [92]:

N3 ≥ Re2.25 (3.64)

therefore we can understand the enormous amount of resource needed in order

to simulate even a flow with low Reynolds number. DNS simulations are however

used in many cases to validate turbulence models because they represent techni-

cally the real flow and give much more information respect to experiments, where

physical quantities are usually measured in a point.

3.5 Numerical Methods for Fluid Dynamics

As stated in the previous section, there is currently no universal analytical solu-

tion for the conservation equations. Therefore one approach used to solve fluid

dynamics problems is by Computational Fluid Dynamics (CFD), by solving the

equations numerically using modern computers. There are other approaches for

the solution of fluid dynamics problems, such as the use of experimental facili-
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ties, which have the advantage of representing the real physics, in the limitations

given by the apparatus. Experimental analysis provides excellent results in the

measurements of flow quantities such as the lift of an object, or the velocity field

in a domain. The main problems are the intrusion caused by the measurement

tools, and the limitation on the number of quantities and points that can be

measured, not to mention the difficulty in reproducing real flows by matching the

non-dimensional quantities.

On the other hand, CFD has theoretically no limitations in the representa-

tion of a problem, and the quantities given are available in all the mesh cells of

the domain, providing a more detailed view of the whole flow field. Still, there

are issues related to CFD solutions, such as the mesh sensitivity, stability and

convergence of the solutions. In the past years, due to the exponential increase of

computational resources, CFD solutions have become much more accurate, and

the number of users taking advantage of them has grown massively.

Any method used for a numerical solution needs to go through some base com-

ponents such as the mathematical model, the discretisation method, the choice

of a computational grid, finite approximations of physical quantities, a solution

method and eventually a convergence criterion. All these steps will be discussed

briefly.

3.5.1 Mathematical Model

The first step for the solution of a CFD problem is the choice of a specific set

of equations. The general conservation equations are too complicated, and one

needs to make some assumptions in order to simplify them (2D flows, incom-

pressible, isothermal, etc.). This is done because it is unachievable to obtain a

set of equations valid for every type of problem, and some simplifications are only

valid for a particular kind of flows (for example assuming that the flow around a

supersonic aircraft is incompressible would lead to entirely wrong results).

3.5.2 Discretisation Method

The next step to be taken is to choose which type of discretisation to apply to the

specific set of equations. This usually means to build a specific set of algebraic

equations that represent the original partial differential equations in particular

points of the domain. The solution of algebraic equations is easier and obtained

by the use of iterative methods. There is a wide range of approaches that lead
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to different formulations, but the most used ones are the Finite Difference (FD),

Finite Volume (FV) and Finite Element (FE) methods. All three methods lead

to the same solution if the mesh is fine enough in all the approaches. The choice

of one or the other depends on the type of problem and the developer.

Most of the commercial and open-source software is currently using the Finite

Volume Method, because it is highly conservative, and this will be the only one

described in details.

3.5.3 Computational Grid

As the CFD process leads to a set of discretised equations, the solution is available

in determined points or cells, depending on how the grid was obtained. A wide

range of types of grid exists, but the primary classification is: structured or

unstructured.

• A structured grid is usually defined by regular connectivity, and each point

or cell of the grid can be numbered consecutively, allowing a high space efficiency,

better convergence and higher resolution. An example of a 2D structured grid is

shown in Figure 3.5.

Figure 3.5: Structured Grid around a semi-cylinder

Even though they are advantageous from a solution point of view, structured

grids are limited to simple geometries, and due to their nature, a fine spacing in

one specific area of interest leads to a waste of resources in other zones where fine

spacing is not required, increasing the data size and computational time.

• Unstructured grids are the most flexible because they can fit any arbitrary

solution domain boundary. Connectivity is irregular in such grids. Therefore

it is not simple to express them as an array of points in a simple way, such as
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structured grids, and for this reason, the solution is usually slower if compared to

a structured mesh. The most used types of unstructured grids are triangular in

2D domains and tetrahedral in 3D ones, but there is no restriction in the shape

of the elements nor the number of neighbours of each cell. An example of an

unstructured grid is shown in Figure 3.6.

Figure 3.6: Unstructured Grid around a cylinder

• Structured and unstructured grids can be used in the same domain, defining

a so called ”hybrid” grid. These type of grids are somehow advantageous.

Figure 3.7: Hybrid Grid used to model the boundary layer

To conclude this section on computational grids, it is worth mentioning the

meaning and use of staggered grids. While on collocated (also known as non-

staggered) grids the variables are all stored in the same location, in staggered

grids the scalar variables are stored in the cell centres of the control volume, while

vectorial quantities such as velocity are located at the cell faces. This allows to

face coupling problems between pressure and velocity. On the other hand, the
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main disadvantage of staggered grids is that variables are stored in different places

bringing complications in the code. In the current work collocated grids will be

used as it is the standard method used in OpenFOAM.

3.5.4 Finite Approximations

After having defined a computational grid, it is necessary to determine how to

approximate mathematical quantities in the discretisation process. For example,

in the Finite Volume Method, one has to define how to approximate the surface

and volume integrals. The choice depends on the user and how approximate

they want the solution to be. Higher approximations require more nodes for the

calculation of the derivative for example, but they are not always a better choice

over lower approximations.

3.5.5 Solution Method

The system to be solved to obtain the physical solution is non-linear and contains

a large number of quantities. The solution method depends pretty much case by

case but the general rule is that for steady state flows a pseudo-time marching

iterative scheme is used, while for unsteady flows each time steps is solved through

an iterative process.

3.5.6 Convergence Criteria

The last step in the solution of a CFD problem is the choice of a convergence

criterion. Usually, this is made by choice of residual values below which the

solution is considered converged to its exact value, or by a number of maximum

iterations above which the solver will not go.

3.6 Convergence, Consistency and Stability

Every solution method should follow some rules, in order to obtain the correct

physical solution. This is usually achieved by the observation of three properties,

the convergence, consistency and stability (the Lax equivalence theorem states

that a consistent numerical method for a well-posed linear initial value problem

is convergent if and only if it is stable).
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• A numerical method is convergent if the solution of the discretised equations

tends to the exact solution with the grid spacing and time step tending to zero.

• A numerical method is consistent if the truncation error (defined as the

difference between the discretised equation and the exact one) of a discretised

equation tends to zero with the grid spacing and time step tending to zero. The

truncation error is usually proportional to the power of the grid spacing and/or

time step ∆xn,∆tm. Consistency is therefore fulfilled if the values of n,m are

greater than 0. It can also happen that the truncation error is a function of

the ratio between ∆x and ∆t, and in this case the condition of n,m > 0 is not

enough, and other approaches have to be used to prove consistency.

• A numerical method is stable if an error in the solution is not magnified

during the calculation process.

3.7 Discretisation approaches

When an engineering problem where partial differential equations (PDE) have to

be solved is approached, one can choose between different approaches, depending

on how the domain of interest is discretised and the equations solved.

3.7.1 Finite Difference Method

Historically this was the first method used, and it is easy to implement in very

simple geometries. The conservation equations are solved in their differential

form on a grid by approximating the derivatives at the nodes of the grid. This

is usually achieved by using Taylor’s series. This method is typically applied

to structured grids. Despite this method is easy and high order approximations

are not complicated to implement, the limitation on a simple grid and the lack

of conservation regarding physical quantities are the main reasons why it is not

widely used.

3.7.2 Finite Volume Method

This is the method most used in the literature [101], and it is the one used in

the current work. The main advantages are the enforced conservation and its

flexibility to adapt to any type of grid. Main disadvantages are the difficulty in

implementing high order schemes and the more complex formulation.
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3.7.3 Finite Element Method

This method is relatively similar to the finite volume one, but the main difference

is that the equations are weighted on each element before being solved. It is

highly adaptive on any type of mesh and is mostly used in structural analysis

problems, while its use is limited in CFD applications.

3.8 The Finite Volume Method

The discretisation method for the equations of fluid dynamics has a difficult task

because the equations are coupled and non-linear. Although there is a wide range

of methods to approach this, as stated in the previous section the Finite Volume

Method is the most widely used in commercial codes and by OpenFOAM, the

software used in the current work.

xy

z

n

C

Figure 3.8: General shape of a control volume

The Finite Volume Method, often abbreviated with FVM, is an approach

used in Computational Fluid Dynamics to discretize and calculate the solution

of a defined flow problem. Its great flexibility as a discretization method and its

conservativness make it the most used method in commercial CFD codes.

The main concept behind this method is to divide the domain into subvolumes

(Figure 3.8 shows a general control volume with the cell centre and the normal

of one of its faces) where the discretised Navier-Stokes equations are solved. All

the equations are then put together into a system and solved simultaneously.

Introducing the conservation equation for a given scalar variable φ:
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∂(ρφ)

∂t
+∇ · (ρuφ) = ∇ · (Γφ∇φ) + Sφ (3.65)

Where we can identify the transient term, convective term, diffusion term and

source term. If we define a closed volume, we can integrate the previous equation.

To simplify the problem, we are going to assume also that the problem is steady

state. Therefore the conservation equation becomes:

∇ · (ρuφ) = ∇ · (Γφ∇φ) + Sφ (3.66)

The terms φ,Γφ, Sφ vary with the equation that we are considering and assume

the following values:

φ = 1,Γφ = 0, Sφ = 0 for the continuity equation (3.67)

φ = u,Γφ = µ, Sφ = −∇p for the momentum equation (3.68)

φ = e+K,Γφ = α, Sφ = ∇ · (~up) for the energy equation (3.69)

Considering the element defined by its centre C shown in Figure 3.8 we can

then integrate:

˚
VC

∇ · (ρuφ) =

˚
VC

∇ · (Γφ∇φ) +

˚
VC

Sφ (3.70)

This equation is valid for all the single volumes in which the domain is divided,

and if we sum up all the integrals for all the volumes in the domain, we obtain

a conservation equation for the whole domain, because the surface integrals in

neighbour cells cancel out.

Using the divergence theorem, we can transform the volume integrals in sur-

face integrals:

‹
∂VC

(ρuφ) · dS =

‹
∂VC

(Γφ∇φ) · dS +

˚
VC

Sφ (3.71)
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3.8.1 Flux Integration

As evidenced in the last equation, the convective and diffusive terms have to

be integrated on the volume surfaces, and this is one of the fundamental dis-

cretisations in the FVM. If we introduce the convection and diffusion flux terms

respectively with Jφ,C and Jφ,D, the total flux on a certain cell is defined by the

sum of the two:

Jφ = Jφ,C + Jφ,D (3.72)

The surface integrals of the fluxes can be obtained by the sum of the fluxes

over the faces of the volume element, leading to:

‹
∂VC

Jφ,C · dS =
∑

faces(VC)

(¨
Si

(ρuφ) · dS
)

(3.73)

‹
∂VC

Jφ,D · dS =
∑

faces(VC)

(¨
Si

(Γφ∇φ) · dS
)

(3.74)

‹
∂VC

Jφ · dS =
∑

faces(VC)

(¨
Si

Jφf · dS
)

(3.75)

where Si represents one of the faces of the volume considered. In order to

obtain conservation, it is fundamental that the volumes do not overlap with each

other.

These equations, instead of integrating the quantities within the volume, cal-

culate the fluxes on the faces of the element, making the Finite Volume Method

conservative.

In order to understand how these surface integrals are calculated, only one

face of a specific cell will be considered. Figure 3.9 shows a typical layout for

a structured 2D grid in order to simplify the problem (3D grids are equivalent

and the process is the same). To calculate the surface integral on the cell, it

is necessary to know the values of the fluxes along the whole surfaces. This is

obviously not feasible in the FV method as the values of the variables are stored

only in the cell centres, for this reason, some approximations have to be made.

The first approximation is that the surface integrals are approximated by using

the variable value only at one point of a cell face. The second is that the cell

face values of the quantities are calculated using the cell centre values via an
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Figure 3.9: Notation for a 2D Control Volume

interpolation process.

The approximation of surface integrals can be done for example using a Gaus-

sian quadrature procedure. This is a numerical tool used to approximate the

definite integral of a given function by using known values at specific points of

the element.

For example, given a function f(x) (one dimensional just to simplify) known

over the interval [a, b], we can use the Gaussian quadrature to calculate its integral

over the interval in the following way:

ˆ b

a

f(x)dx =
n∑
i=1

ωif(xi) (3.76)

therefore using the function value in the point i and its weighting function ωi.

The accuracy of the integration process depends on the number of points

available and the weighing function. The simplest possible integration is the so-

called trapezoidal rule, where only one point on the face is used, and the weighting

function is equal to 1. This is second order of accuracy and can be extended to

2D and 3D cases.

For example, considering the face e in Figure 3.9, the surface integral of the
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flux Jφ can be obtained as:

¨
Se

Jφ · dS = Jφe · neSe (3.77)

There are also other possibilities to choose from in order to calculate surface

integrals, for example the trapezoidal rule, a second order of accuracy integration

that uses the values in two points of the surface:

¨
Se

Jφ · dS = (Jφne · ne + Jφse · ne)
Se
2

(3.78)

Another possibility is to use a higher order of accuracy interpolations, where

the values at more than 2 points are needed, such as the Simpson’s rule:

¨
Se

Jφ · dS = (Jφne · ne + 4Jφe · ne + Jφse · ne)
Se
6

(3.79)

As mentioned, the value of the variables (and therefore the fluxes) are usually

stored in the cell centre (this is valid for most commercial and open-source soft-

ware), consequently a second interpolation has to take place in order to calculate

the values on the cell faces. The above mentioned trapezoidal rule has a second

order of accuracy. Therefore one needs to interpolate the surface values with at

least the same order of accuracy.

3.8.2 Source Term Integration

In the conservation equations, after having evaluated the surface integrals, there

might be some source terms that have to be integrated within the control volumes.

Making use again of the Gaussian quadrature integration we can compute the

integral in the following way:

˚
V

QφdV = Qφ
CVC (3.80)

where C denotes the cell and the value of Qφ is calculated in the cell centre.

Since this value is available, no interpolation is needed as in the surface integration

terms. The calculation of volume integrals with the above equation is exact if the

solution is constant or varies linearly within the cells. If not, it has an accuracy

of second order.
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3.8.3 Boundary Conditions

Every computational cell provides an algebraic equation, and if summed up alto-

gether these equations give a system to be solved. Some of the cells in a compu-

tational domain are not entirely surrounded by other cells, and these are called

boundary cells. Therefore the system requires that the values on such faces have

to be specified by the user. These values take the name of boundary condition

(B.C.), and they have to be set in such a way as to represent the computational

model the closest possible to the real one.

Although there is a wide range of boundary conditions available, they can be

all described by two types: the Dirichlet and the Neumann boundary condition.

The Dirichlet B.C. specifies the value of a quantity on the boundary, while the

Neumann B.C. specifies the gradient of the variable on the boundary. All the

other B.C. are a combination of these.

In CFD it is common practice to use standard B.C., but there is no general

rule. For example, on solid walls, the value of the relative flow velocity is set

to be zero, because particles cannot cross the surface and because the tangential

velocity is null because of viscosity, and the pressure gradient is set to be zero, as it

can be easily demonstrated using the boundary layer equations. Inlet boundaries

are usually defined by a constant value of velocity set according to the flow

properties and zero gradient for pressure. The presence of outlets is necessary for

the domain so that the conservation of mass can be respected.

3.9 Resolving the System of Algebraic Equa-

tions

It was shown earlier that the discretisation process of the conservation equations

leads to a system of algebraic equations, which can be linear or non-linear de-

pending on the nature of the problem and the equation discretised. The matrices

obtained from such procedure are most of the time sparse, meaning that a large

number of elements are zero. This is not always valid, especially when using

unstructured grids. For this reason, the solution of fluid dynamics problems us-

ing structured grids is faster, because the structure of the matrices is used to

accelerate the solution procedure. On the other hand, unstructured grids are

more straightforward to make, but the solution of the algebraic system is usually

slower, leading to longer computational times.
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The general structure of an algebraic system can be expressed as:

Aφ = Q (3.81)

In order to solve such equation two main approaches are used, the direct and

iterative method. Direct methods are usually effective when the matrix A is very

sparse while iterative methods (the most used) are effective when the matrix has

a general structure, and the number of coefficients is very high.

3.9.1 Direct methods

Direct methods aim to solve the algebraic system with a finite number of oper-

ations. In theory, in the absence of rounding errors (which cannot be neglected

in computer calculations), the solution obtained with such methods is equal to

the exact solution. While this seems of significant advantage, the increase of

computational costs for large sparse systems of equations is too demanding and

therefore direct methods are rarely used.

The basic method adopted in direct methods [102] is named after the German

mathematician Carl Friedrich Gauss. The base concept behind this method is

to reduce the large system of equations to smaller ones. During this procedure,

only the coefficient matrix A is modified. Therefore the method can be described

without involving the vector of the dependent variable. The general structure of

the matrix A can be expressed as:

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
...

. . .
...

an1 an2 . . . ann

 (3.82)

The concept is to eliminate the coefficient a21, replacing it with a 0. This

can be achieved by multiplying the first row by a21/a11 and subtracting it from

the second row. By using this procedure, all the elements in the second row

are modified as well as the vector on the right-hand side of the system Q. The

same process can be used to eliminate the first coefficient of the other rows, just

multiplying the first row by an1/a11 and subtracting it from the nth row. This

procedure is then applied to the second coefficient of the third row on, and so on.

At the end of such operation, one obtains a matrix with the following structure.
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U =


a11 a12 . . . a1n

0 a22 . . . a2n

...
...

. . .
...

0 0 . . . ann

 (3.83)

This is called in algebra an upper triangular matrix. As mentioned before

all the elements of the vector on the right-hand side of the equations are also

modified. It is therefore possible solve all the equation starting from the last one:

φn =
Qn

Ann
(3.84)

The next equation contains therefore only one unknown variable φn−1 since

φn has been just calculated, hence the unknown variable can be obtained. This

procedure can be applied moving upwards and consequently the value of a general

jth component of the vector φ is obtained as:

φj =
Qj −

∑n
k=j+1Aikφk

Aii
(3.85)

This procedure of obtaining the solution starting from the last row is called

back substitution.

It can be demonstrated that if the number of equations n is large, the com-

putational cost by mean of a number of operations is proportional to the value

n3/3. For this reason, and also because this method is hard to implement in

parallel codes, Gaussian elimination is rarely used in CFD codes. A number of

methods derived from the Gaussian elimination have been therefore proposed in

order to decrease the number of operations and take advantage of any sparse

structure of a matrix, and also to avoid the numerical errors that are accumu-

lated in the diagonalisation of the matrix. Among these, the most used one is the

LU decomposition, which is basically the matrix form of Gaussian elimination.

Other effective methods worth mentioning are the multigrid method and some of

its derivatives such as the Krylov subspace methods, which most of the time are

associated with orthogonalisation schemes.

3.9.2 Iterative methods

Iterative methods are mostly used in non-linear systems, where the direct meth-

ods cannot be adopted, but they are also used in linear systems because direct
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methods are computationally too demanding for large grids and the error is such

that their usage is not advantageous if compared to iterative methods.

The basic concept is to guess an initial solution and calculate the next one

by using the previous one and the equations to improve it. Each solution is,

therefore, more accurate than the previous one, and if the iteration process is

cheap and the number of iterations is relatively small, then iterative methods are

way faster than direct methods. The iterative process leads to an nth guess of

the solution which differs from the exact one by an error εn defined as:

εn = φ− φn (3.86)

where φ is the exact solution and φn the solution obtained by the iterative

process. The system of equations applied to the guessed solution differs therefore

from the exact one by a residual ρn = Aεn:

Aφn = Q− ρn (3.87)

The aim of the method is to drive the residual to zero, and this has to be ob-

tained in the simplest and fastest way possible, in order to speed up the simulation

calculation. This is achieved by what is called fast convergence, and the choice

of the iterative method is fundamental to have an optimal value of convergence.

The calculation of the exact solution is never achieved in an iterative method,

this because the residual will go to zero for an infinite number of iterative pro-

cedures, and this is obviously unachievable in reality. Therefore in CFD codes

usually the final solution is traditionally calculated by setting a maximum number

of iteration and/or a minimum value of the residual to be obtained.

Another method widely used in modern CFD codes is a variant of the Gauss-

Seidel method, and it is called successive over-relaxation (SOR), used for solving

a linear system of equations. For an algebraic system defined by Ax = b, the

SOR method can be written in matrix terms as:

xn = (D − ωL)−1[ωU + (1− ω)D]xn−1 + ω(D − ωL)−1b (3.88)

with D,−L,−U being the diagonal, strictly lower-triangular and strictly

upper-triangular parts of A, respectively and ω being the relaxation factor. Usu-

ally the choice of such factor is not easy and highly depends on the type of

matrix of the problem analysed, but usually to achieve fast convergence a value
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of 1 < ω < 2 is used.

3.9.3 Under-Relaxation

Stability is one of the core issues in the solution method. While the condition

of having a Courant number smaller than 1 is enough in most problems, another

technique is also used to control stability, especially in steady-state problems

where the lack of a temporal term, which has a stabilising effect, can lead to

instability problems. The concept of under-relaxation was developed by Patankar

[79] and basically limits the change of a variable during an iteration. For a general

variable φ this can be expressed as:

φn+1 = φn + α(φn+1 − φn) (3.89)

Therefore the new value of a variable is replaced using its own value, the value

at the previous iteration and a coefficient α which is called the under-relaxation

factor. This value has to be in the range [0 : 1], where a value of 1 corresponds

to no relaxation and a value of 0 to complete relaxation. An optimal value for

this coefficient is problem dependent but as a general rule, we can assume a small

value for α in the early iterations when a large change of the variables has to be

controlled while changing to a value closer to unity once the solution gets close

to convergence.

3.10 Pressure-Velocity coupling

The methods introduced in the previous section take into consideration for the

general solution of a system of equations. In the momentum equation, there is a

term that contains the gradient of pressure, in all the three components. This is

an additional term that has to be known or calculated from another equation. In

compressible flows, the continuity equation contains the variable ρ and its value

changes within the computational grid. In these flows, the continuity equation

is used to calculate the density and the pressure is then obtained by using the

equation of state. This type of approach is called density-based approach. On

the other hand, in incompressible flows, where the continuity equation is more a

constraint on the other equations rather than something that adds information to

the solution, the density cannot be calculated and is usually considered constant.

Therefore another equation has to be obtained for the pressure so that there is an
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equal number of variables and equations. This approach is called pressure-based

and is largely used in incompressible flows even though it finds applications in

compressible flows as well.

3.10.1 The pressure equation

In order to obtain an equation that can be solved to obtain the pressure, one

can think of using the continuity equation and somehow use it along with the

momentum equation. Calculating the divergence of the momentum equation,

some terms cancel out (because ∇ · u = 0), leading to the Poisson equation for

pressure:

∇ · ∇p = −∇ ·
[
∇ · (ρuu− S)− ρg +

∂ρu

∂t

]
(3.90)

In the case of incompressible flows, with constant density, and also considering

that the viscosity is constant, the equation simplifies as:

∇2p = −∇ · (∇ · (ρuu)) (3.91)

This equation is therefore solved along with the momentum equation. The

discretisation process is the same used for the conservation equations described

already. The difficulty of solving such equation along with the momentum equa-

tion is that the pressure and the velocity are coupled, therefore a segregated

approach (where one equation is solved first and then the other one) cannot be

used.

3.10.2 The SIMPLE algorithm

For steady state problem, Patankar and Spalding have developed an algorithm

[103] which takes the name of SIMPLE (Semi Implicit Method for Pressure Linked

Equations) [104]. This consists of several steps:

1. An initial guess for the pressure and velocity fields is considered, which can

be either the value of such quantities at the previous time step or a general

field believed to give faster convergence of the solution (usually only in the

first step of the solution)

2. The momentum equation is then solved to obtain the new value of the

velocity field. Because the pressure used in this equation is not the exact
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one at the new time step, it will not satisfy the continuity equation

3. The values of the velocity field are used to calculate the mass fluxes on the

cell faces

4. With the new mass fluxes calculated from the previous step, new values for

the pressure are obtained from the solution of the pressure equation

5. The pressure and velocity fields are updated with new values using the

continuity equation

6. The process starts again from step 2 until convergence is obtained

3.10.3 The PISO algorithm

Issa [105] developed an algorithm as an extension of the SIMPLE algorithm for

unsteady flows, which is called PISO (Pressure Implicit with Splitting of Opera-

tor) [104]. The algorithm is computed using the following steps:

1. The solver sets the boundary conditions for the problem considered

2. The momentum equation is solved to obtain an intermediate velocity field

3. The values of the velocity field are used to calculate the mass fluxes on the

cell faces

4. With the new mass fluxes calculated from the previous step, new values for

the pressure are obtained from the solution of the pressure equation

5. The mass fluxes on the cell faces are updated again using the new values of

the pressure field

6. The velocity is corrected using the new values of the pressure field

7. The boundary conditions are updated with the new fields values

8. The solver starts again from step 3 for a number of times specified by the

user

9. The solution time is increased with the time step value and the process

starts again from step 1

The PISO algorithm can give more stable results and usually takes less com-

putational resources and can also be used for steady state problems.
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3.10.4 The PIMPLE algorithm

The solution of coupled pressure momentum equations can be solved by the SIM-

PLE or PISO algorithm as shown in the previous section. In OpenFOAM, this

can also be achieved by using a method which is a combined version of the two

together, called PIMPLE [106].

The PIMPLE algorithm takes, therefore, advantage of both methods, and

better stability can be achieved over the PISO method, allowing for larger time

steps and therefore bigger courant numbers. The number of outer correctors is

usually defined by the user, and the solver will iterate over the solution until

convergence is reached. This is advantageous because if the solution is stable a

low number of iteration will take place, but if there is high instability the solver

will try to converge using a higher number of iterations.

The relaxation factor is fundamental in such method, and can be used as an

advantage when unstable solutions are present, giving room for higher time steps,

in change of a high number of iterations.

3.11 Chapter summary

In this chapter, the principal methodology used in the current work was explained,

starting from the basic concepts of fluid dynamics, especially the solution of

multiphase flows, up to the computational fluid dynamic approach. The main

turbulence models were introduced, which will be mentioned later on. In the

next chapter the development of the cascadeFoam will be presented and validated

against experimental data, showing the limits of the currently available models

and areas of improvement.
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Chapter 4

Cascade Solver Development

In this section, the development of the cascadeFoam solver is explained and val-

idated against numerical experiments. The solver was developed starting from

the standard one available in OpenFOAM (sprayFoam) and then modified to ac-

curately reproduce the physics of liquid spills from storage tanks. OpenFOAM

has been previously used for a number of applications, including the dispersion

of heavy gas into the atmosphere [107].

The sprayFoam solver is available in the standard version of OpenFOAM and

was developed primarily for diesel internal combustion engines [108] (in fact it was

previously called dieselFoam). It uses a Lagrangian approach to solve dispersed

sprays of liquid droplets. The standard continuity and momentum equations

along with the energy equation are solved for the continuum phase. For all the

three equations source terms are added to take into account for the lagrangian

phase. An additional transport equation is solved for all the species present in

the flow (the continuum phase is composed of a mixture of gases) and source

terms are present here as well relating the amount of liquid that evaporates for

the selected component. The solver is capable of solving combustion using a

list of models available in OpenFOAM. The lagrangian phase is solved using

the equations described in the previous chapter and two way coupling can be

activated between continuum and discrete phase.

4.1 Interaction of parcels with solid surfaces

Following the investigation carried out by HSL on Buncefield accident, the need

for an appropriate tool to model the interaction between droplets and ground
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turned out to be one of the most important key points of the solver development

[109]. The standard sprayFoam solver does not allow any splashing of droplets

onto solid surfaces, confining the user to use standard wall interaction models such

as rebound, stick or simply disappearing. In reality, the regimes experienced in

a droplet-wall interaction are vast and a good overview is represented in Figure

4.1.

(a) Stick (b) Rebound (c) Spread

(d) Boiling-Induced

Break-up
(e) Rebound with

Break-up

(f) Break-up

(g) Splash

Figure 4.1: Schematic of the different impact regimes

The outcome of such interaction depends highly on a number of input param-

eters such as droplet velocity, diameter, physical properties, and also on the solid

surface roughness, temperature and any existing liquid film present on the wall.

Although in the literature a large number of models applicable to lagrangian

solvers are available [110, 111], the lack of appropriate wall-interaction modelling

for the current application has to be addressed and a splashing model has to

be introduced, in order to correctly model the interaction between droplets and

walls, which can be either wet or dry.

4.2 Buoyancy effects

A second problem that had to be faced within the solver was the effect of buoy-

ancy. The standard sprayFoam solver cannot model movements of air due to

78



4.2. BUOYANCY EFFECTS

density differences accurately, mainly because it was developed within a frame-

work where this effect had a minor impact on the quality of the results.

The effects of gravity on the atmosphere are understandable if we think about

the change in pressure, density and temperature with altitude. In applications

where multispecies are present (in fact the Eulerian phase is solved as a mixture of

components), or where the height of the domain is such that density varies within

the vertical coordinate, the latter can vary in different regions of the domain and

therefore air can move in the absence of external forces. This has to be taken

into account in the solver with appropriate terms in the momentum equation. In

the case of hexane, a liquid that will be used to validate the solver developed,

its density is higher than the one of standard atmosphere, leading to a vapour

cloud that tends to stay close to the ground in the absence of other obstacles.

On the other hand, if we consider Liquefied Natural Gas, the vapour formed has

different densities depending on the temperature at which it is stored. When it

comes in contact with the atmosphere, the gas has a temperature equivalent to

the one at which the liquid is stored, and the gas has a density higher than the

atmosphere. While the temperature of Natural Gas gradually increases, getting

close to normal atmospheric temperature, its density starts to lower and gets to

a lower value respect to the atmospheric one (the dependency of density with

temperature is shown in Figure 4.2), leading to a lighter gas that tends to rise.

This is easily observed in the dispersion of natural gas in very big domains,

where the gas tends to stay close to the ground while it is cold, and with heat

exchange with the surrounding air warming it up, becomes lighter than air and

therefore tends to rise in the atmosphere.

The modelling of density-driven flows (also known as buoyancy-driven flows)

can be done in several ways, depending on the accuracy and needs of the solution.

The effect of buoyancy is also highly important in the solution of turbulence, and

a number of models are available in the literature [112].

For many applications such as natural ventilation or gas dispersion, the dif-

ferences in density are only present because of temperature gradients. For such

flows, the mathematician Joseph Valentin Boussinesq developed an approxima-

tion named after him. Density variations are only considered in the terms multi-

plied by the gravity while inertia related effects are negligible. The conservation

of mass is expressed by:

∂ρ

∂t
+∇ · (ρu) = 0 (4.1)
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Figure 4.2: Methane (main component of LNG) density at atmospheric pressure
compared to the air one

If variation of density is ignored, this simply leads to:

∇ · u = 0 (4.2)

The general momentum conservation equations is:

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u+

1

ρ
Fg (4.3)

where Fg represents the body force due to gravity. Density in the Boussinesq

approximation is expressed as a sum of a fixed part and a term that depends on

temperature. The gravity force can be therefore calculated as:

Fg = ρg = (ρ0 − βρ0∆T )g (4.4)

where β is the thermal expansion coefficient and ∆T = T − T0 is the temper-

ature difference. In the current application, this approximation is not used, and

buoyancy is adequately treated in the momentum equation, leading to a more

accurate solution.
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4.3 Development of the cascadeFoam solver

Within the framework of OpenFOAM, the presence of a class able to solve liquid

films and consequently the splashing process was implemented in the cascade-

Foam solver. Along the development of a splashing model, the possibility to use

enhanced buoyancy in the momentum equation was implemented too.

4.3.1 Liquid Film Region

In order to implement and allow the solver to model the splashing, a new region

has to be introduced in the domain of solution, so that the droplet interacts with

a liquid region representing the film formed by the splashed particles [113]. This

is a 2.5D (two and a half dimensional) region where the conservation equations

are solved for the thin liquid film. The assumption of thin-film is that [114]:

� The wall-normal velocity is equal to zero

� The wall-tangential diffusion (momentum, energy) is negligible compared

to the wall-normal diffusion

With these assumptions the conservation equations for the film region can be

written as:

∂ρδ

∂t
+∇ · (ρδu) = Sρδ (4.5)

∂ρδu

∂t
+∇ · (ρδuu) = −δ∇p+ Sρδu (4.6)

∂ρδh

∂t
+∇ · (ρδuh) = Sρδh (4.7)

where δ is the thin film thickness, and S represents the source term for mass

momentum and energy arising from the other phases or the solid surface where the

film is located. These terms include the interaction with the splashed droplets,

evaporation and condensation, heat transfer with the gas phase and with the solid

substrate. Other secondary effects such as the capillary effect can be taken into

account, but their impact is limited in the current application, while it cannot be

avoided in another type of problems [115]. In order to ’couple’ the two regions,

the gas and liquid one, the solutions variables have to be mapped to/from the
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gas phase mesh. A picture showing droplets splashing onto the liquid film region

and the film thickness is shown in Figure 4.3.

Figure 4.3: Splashing of droplets onto the liquid region [116]

impinging droplet

splashed droplets

boiling

heat conduction
viscous shear

convective heat transfer
evaporation

Figure 4.4: Liquid Region

The mechanism of the splashing model is such that any droplet whose path in

the computational time step crosses the film region is considered to interact with

the liquid. At the start of the simulation, where no liquid is present, particles

will interact with the solid surface and a splashing model for dry surface will be

applied. All the particles that do not splash will start to form the liquid pool.

The model will then calculate some quantities and evaluate as to whether the

droplet will be absorbed, rebounded, spread or splash.

The film region is solved at each time step alongside the gas region, and the
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timestep depends on which of the two areas requires a smaller timestep with the

set Courant number.

The mesh of the liquid phase is obtained by extruding the gas phase mesh on

the patch where the film liquid is present. This is because in order to map the

two solutions together the cells have to be superimposed one on the other.

The importance of the implementation of the liquid region is primarily because

of the splashing model, while a second effect is the evaporation that takes place

in this region [117], affecting the vapour production within the domain. For a

very cold liquid such as LNG, the heat transfer that takes place when this liquid

comes in contact with a solid surface at a normal temperature (20°C) makes the

boiling/evaporation process really fast, and the presence of the liquid can have a

considerable impact on the vapour formation and consequently the risk analysis

of an accidental spill. On the other hand, when considering liquids that have a

boiling point well above normal temperature, the evaporation that takes place is

very slow and can be negligible. The role of the film is in this case merely for

splashing purposes. Also, in the case of a boiling liquid, as it will be demonstrated

in Chapter 6, the likelihood of any droplet to get to the ground is very low or

equal to zero. Consequently, the film and splashing modelling are not necessary.

For this reason and the other mentioned above, the equations describing the film

were not modified, and the standard one available in OpenFOAM were used.

4.3.2 Enhanced Buoyancy

As mentioned earlier, buoyancy plays an important role in the current applica-

tion, therefore gravity had to be accounted fully in the cascadeFoam solver. The

original version of sprayFoam did not consider the gravity term in the momentum

equation, for this reason the latter had to be modified along with the pressure

equation. If we define a modified pressure prgh as:

prgh = p− ρgh (4.8)

where h is the value of the coordinate of the axis where gravity is acting

(usually the y or z axis). The modified pressure is often more conveniently used to

solve the pressure equation in place of the standard pressure, with some terms to

be modified respect to the standard equation. When we calculate the gradient of

the modified pressure (prgh) in the momentum equation, an additional term arises

which has to be removed in order to compute the correct momentum equation.
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The gradient is obtained as:

∇(p− ρgh) = ∇(p) + ρg + gh∇(ρ) (4.9)

The last term does not appear in the momentum equation, therefore it has to

be removed for consistency.

These changes were introduced in the momentum and pressure equation,

which allowed the solver to accurately reproduce buoyancy effects due to den-

sity variation within the domain.

4.3.3 Comparison of the two solvers

The implementation of the buoyancy terms and splashing modelling in the spray-

Foam were discussed in the previous sections, and in order to understand the main

differences between the new solver implemented and the standard one available

Table 4.1 shows the main differences and capabilities of the new solver.

Table 4.1: Differences between standard solver and cascadeFoam

Feature sprayFoam cascadeFoam

Droplets Modelling X X
Turbulence Modelling X X

Buoyancy Effects X X
Standard Wall Interaction X X

Splashing Interaction X X

4.4 Solver Validation

The validation of the cascadeFoam solver was carried out comparing the results

obtained from the Health and Safety Laboratory (HSL) [33], part of Health and

Safety Executive (HSE), the UK body responsible for the regulation and enforce-

ment of workplace health, safety and welfare. They investigated both experimen-

tally and numerically the spill of liquid fuel from a storage tank as part of the

Buncefield investigation.
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4.4.1 Experimental Setup

Due to safety restriction, the experimental analysis carried out by HSL could not

represent fully what happened in Buncefield, but the experiments can be used

to validate the computational model and then the CFD model can be applied to

different scenarios to evaluate the safety of a spill and the likelihood of a fire.

The experimental setup is shown in Figure 4.5.

Figure 4.5: Experimental setup for the solver validation [33]

A liquid (Hexane) is injected through an aperture from a height of 10m, and

a solid surface representing the tank walls goes from the injection point until
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the ground where the liquid splashes and the vapour produced is dispersed in

the nearby region. Temperature measurements were taken at the base of the

cascade using an array of collecting pots each equipped with a thermocouple at

their base. In addition to the cascade measurements, an array of thermocouples

was also positioned downstream of the cascade to record the temperature of the

vapour current.

4.4.2 Computational Model used by HSL

A general-purpose CFD software, CFX 12.1, was used by HSL to model the

experiment described in the previous section. A Lagrangian approach was used

to model the dispersed phase (droplets formed by the liquid spill at the top of

the tank), while a Eulerian representation was used for the gas phase. They

have also carried out some sensitivity studies where the response to numerical

inputs like mesh size, time step, inlet speed, iterations and number of particles

was measured in terms of output parameters such as vapour volume, liquid and

vapour temperature. The results showed that the parameter that influenced the

results the most was the mesh size, which accounted for about 20% variation

of the output parameters (the effect of each input variable was calculated from

the difference between the high and low values for each input parameter, as a

percentage of the mean overall eight simulations). The other parameters showed

little impact on the solution. As a consequence of that, the mesh size needs to

be chosen carefully, as in every Lagrangian simulation.

4.4.3 Computational Model

The simulation setup was chosen to be the closest possible to the one used by

HSL to avoid any discrepancy arising from the setup rather than the physical

modelling. The geometry was obtained from the pictures available in their report

and the dimensions that were not specified were calculated manually trying to

achieve the highest accuracy possible (the geometry given in their report is shown

in Figure 4.6).

The size of the domain was chosen to be quite large (30m × 30m × 20m)

to account for the large dispersion of the vapour cloud and to affect the least

the solution by the boundary conditions. A structured hexahedral mesh was

used throughout the whole domain to avoid the use of non-orthogonal correctors

which damage the solution, and this led to a higher number of cells if compared to
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Figure 4.6: Geometry given in the HSL report
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Figure 4.7: OpenFOAM Geometry

an unstructured mesh, but the increase in the simulation time was justified by a

higher accuracy. A second mesh was also obtained using the snappyHexMesh tool

available in OpenFOAM to reduce drastically the number of cells while keeping
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a fine mesh in the cascade region and close to the ground where the vapour cloud

would spread.

The boundaries surrounding the tank were all set as open boundaries where

the air could move freely in both direction, and at constant total pressure so

that the pressure and density vary with height. No wind was modelled in the

simulation, because even though it affects the movement of the flammable cloud,

it diffuses it concentration thus reducing the risk for a fire or explosion.

Turbulence interaction with droplets is fundamental for the correct prediction

of the spray behaviour [118], and in the current work it was first modelled with

a RANS approach using the standard SST model widely adopted in industrial

applications [93, 119], also to compare the results obtained by HSL, while later a

Large Eddy Simulation approach was used to show and compare the differences.

The air surrounding the tank was considered to be quiescent (velocity equal to

zero) and initial turbulence of 5% (based on a reference velocity of 0.01 m/s) with

a turbulent to fluid viscosity equal to 10.

Earlier we introduced the splashing phenomenon, and the modifications made

on the solver to take into account for the splashing process. HSL did not use

any splashing model because the ones available are mostly used for internal com-

bustion applications and not suitable for a fluid cascade where the scale of the

domain and droplet sizes are orders of magnitude larger. Therefore, instead of

using a splashing model, they have simulated the liquid impact on the ground

introducing a second injection area at the bottom of the cascade as clearly visible

in Figure 4.6. In this area, the droplets size, mass flow, temperature and velocity

were prescribed in such a way as to match the pattern observed in the experiment.

Unlike HSL, a splashing model was adopted in the current simulation, which can

be assumed to be correct in terms of modelling, and in the following chapter the

improvement in the splashing model will be introduced to obtain better results.

The use of a secondary droplet inlet can lead to better results for a single simu-

lation, but this is feasible only with the experimental results available, therefore

not universally applicable, and resources consuming.

Simulations were run with and without the splashing model to show the capa-

bilities and improvement of the use of it. In the simulation without the splashing

model the droplets simply disappear when their trajectory crosses any boundary.

The liquid used in all the simulation was Hexane (Table 4.2 shows its main

properties), which is a major constituent of gasoline. The use of multi-component

mixture such as petrol can lead to different results because the evaporation tem-
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perature of each component is different and therefore the evolution of the droplet

diameter changes.

Table 4.2: Properties of Hexane

Property Value

Chemical Formula C6H14

Molar Mass 86.18 g ·mol−1

Density 654.8 Kg ·m−3

Boiling Point 68.5 to 69.1 ◦C
Dynamic Viscosity 0.3 mPa · s

Surface Tension 0.0184 N ·m−1

4.4.4 Droplet Setup

An important step in the simulation process was the setup of the Lagrangian

cloud. In the theoretical description of the Lagrangian formulation, the central

submodels were introduced, such as the evaporation, breakup, force, dispersion,

heat transfer, atomization, stochastic collision and radiation model. Although in

a correct approach of a spray simulation all the previous parameters have to be

addressed correctly, in the following application some of them can be neglected by

the nature of the flow or just by physical assumptions. The model was chosen to

be as close as possible to the simulations carried out by HSL, but the cascadeFoam

solver requires additional submodels, which were selected as to have the most

accurate results compared with the experiments.

The forces acting on the droplets are gravity and aerodynamic drag, the heat

transfer between droplets and surrounding air which affects the evaporation rate

depends on the Nusselt number, calculated with the Ranz-Marshall correlation

for spheres [89] following HSL, and last the breakup model used, which is widely

recognised as one of the most reliable, was the Reitz-Diwakar model [120].

Radiation is important and cannot be neglected in case of a fire where the high

temperature of the gas can irradiate the liquid droplets (and this is what water

mists are trying to achieve in active protection systems for fires, in order to protect

walls and solid surfaces from high radiation). In the following application, since

no fire is modelled, no radiation model needs to be introduced for the Lagrangian

phase, but the solver has the capability of modelling it.

Turbulence is produced by the droplets which transfer momentum to the car-

rier phase, and turbulence itself affects the droplets, and this is taken into account
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by the dispersion models available in the solver. Usually, these models consider

for a stochastic dispersion, randomly assumed by the turbulence intensity in the

cell where the droplet is located. In the current application, this was neglected

because low influence on the results was recorded.

The droplet size distribution is among the most important parameters in

the set up of the Lagrangian cloud [121]. The function chosen to represent the

distribution is the Rosin-Rammler distribution (which has been applied to a large

number of different applications [122, 123]), which is an application of the Weibull

distribution to particles.

The probability density function (PDF) of the Rosin-Rammler distribution

used in OpenFOAM can be expressed as:

f(d, d̄, n) =
1− e−[(x−dmin)/d̄]n

1− e−[(dmax−dmin)/d̄]n
(4.10)

where d is the droplet diameter, d̄, dmin, dmax are respectively the mean, min-

imum and maximum droplet diameter, and n is the spreading factor. The cu-

mulative distribution function (CDF) is obtained by integrating the probability

density function:

F (d, d̄, n) =

ˆ d

0

f(t, d̄, n)dt (4.11)

In the simulation setup the parameters used for the droplets distribution are

the following:

d̄ = 2 mm; dmin = 0.1 mm; dmax = 2 mm; n = 3;

and the PDF for these parameters is shown along with the CDF in Figure 4.8.

4.4.5 Meshing

It was mentioned earlier that two types of meshes were investigated, one devel-

oped by blockMesh, a simple utility available in the OpenFOAM package that

allows developing parametric meshes with grading and curved edges. The cen-

tral concept behind this utility is to divide the domain into one or more three

dimensional, hexahedral blocks [116]. It is a useful utility to create structured

orthogonal meshes but only works with simple geometries. If a more complex ge-

ometry has to be meshed, it is not possible to create a mesh using blockMesh. In
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Figure 4.8: Cumulative Distribution and Probability Density Functions of the
setup

the latter case, OpenFOAM has a utility called snappyHexMesh, able to generate

3-dimensional meshes containing hexahedra (hex) and split-hexahedra (split-hex)

automatically from surface geometries. Obviously if considering split-hex meshes,

the accuracy is lower if compared to a fully hexahedral mesh, but the numbers of

cells are lower, leading to fastest times of simulation.

Figure 4.9: Mesh zoom obtained with the blockMesh utility

Independently from the tool used to obtain the mesh, the mesh presented

a refined region in the zone occupied by the droplets, as well as in the region

close to the ground where the vapour cloud initially dispersed. In order to use

the k − ω SST turbulence model, the mesh size close to the ground had to be

refined until a value of y+ around 2 was obtained. Cell size in the regions far

from the regions of interest was kept in the order of half a meter only to consider

for large movements of air in the cascade, but the quantity gradients were small
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in such region therefore no refinement was needed. A mesh sensitivity analysis

was carried out and the most efficient mesh size was found to be the same one

used by HSL in their calculations.

4.4.6 Simulation without splashing

Figure 4.10: Parcels of Hexane droplets injected in the domain coloured by tem-
perature

A first simulation without the use of a splashing model was carried out, in

order to verify and better understand the effect of splashing in the vapour pro-

duction and the flow field. Particles were injected through the rectangular region

shown in Figure 4.7 with an initial temperature of 6.4oC while the temperature

in the whole domain was set at 6oC. Some factors were not explicitly specified

in Atkinson and Coldrick [29] such as the maximum and minimum sizes of the

droplets, which are requested by the solver in the case set up. The trial and error

practice was adapted to select the values which would lead to a good agreement

with the experimental and previous CFD results in Atkinson and Coldrick [33].

The huge cloud of droplets produced in the cascade is represented by a finite

number of parcels in the CFD simulation, each parcel containing a limited figure

of droplets of the same size.
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A picture showing the droplet being injected into the domain is shown in

Figure 4.10. The droplets are obviously scaled with respect to their real size

(with a factor of 20), and just a finite number of them are represented because of

limitations in the postprocessing software. The droplets are coloured with their

temperature and it can be seen how the temperature decreases during the cascade

process, this is due to the latent heat released during the evaporation process.

Figure 4.11: Comparison of the cascade shape between Experiments and CFD
(droplets are coloured according to their temperature)

Figure 4.11 shows a comparison of the cascade shape in the Experiments

and the CFD analysis carried out by cascadeFoam. Good agreement in terms of

cascade shape and impact point was achieved, with the main difference evident

in the impact region because of the absence of a splashing modelling.

A clearer picture of the spray pattern can be observed in Figure 4.12 and 4.13.

The axes are not scaled therefore the dimensions of the spray do not represent

the real aspect ration.

The acceleration of the droplets and greater heat exchange on the sides of

the spray gives it a bottleneck effect visible on the y − z plane. On the x − y
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Figure 4.12: Side view fo the spray pattern
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Figure 4.13: Front view fo the spray pattern

plane the higher deceleration and faster evaporation of the smaller droplets can

be observed, where the spray spreads on its path to the ground and the inner

part of it (closer to the wall) has a much less density of droplets, due to reasons

mentioned above.

Figure 4.14 and 4.15 show the maximum droplet diameter with respect to the

height and the average velocity (calculated simply by averaging the velocity of

each parcel within a fixed range of heights without weighting the values by the

droplet diameter) of the droplets. It is clear how the maximum droplet diameter

changes by less than 0.05mm during the fall, and this means that the greater

part of the vapour cloud comes from the smaller droplets which evaporate much

faster than the larger ones, especially at the sides of the cascade. The velocity

shows a parabolic growth to a maximum value of around 9.5 m/s.
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Figure 4.14: Maximum diameter of the droplets with height
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Figure 4.15: Average velocity of the droplets with height

4.4.7 Simulation with splashing

As evidenced by the results obtained without any splashing modelling, the need

for improved results in the impact region is fundamental. The simulation with

splashing is equivalent to the one without any droplet impact modelling, apart

from two main differences, the droplets splash when impact any solid surface,

and there is an additional region in the domain to be solved, which is the film

formed on the ground. Clearly, the computational time of the simulation with

splashing is bigger than the one without splashing, mainly due to the solver that

has to calculate which droplets are going to splash and the splashed quantities,

and also due to the film that has to be modelled. As it was mentioned already,

and confirmed by Atkinson and Coldrick [29], the film modelling only had small
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contributions to the vapour production, and in this case, approximately less than

2 g/s to the total vapour production.

Point A
Point B

Sym Line

Figure 4.16: Domain showing the zones where the comparison was made

Figure 4.16 shows the points and the line where data was taken in the predic-

tions in order to compare the results obtained from Coldrick et al. The location

of the points and the line is as follows:

� Point A: Located in the symmetry plane at the centre of the cascade and

0.5 m from the ground

� Point B: Located in the symmetry plane 5 m from the tank wall and 0.5 m

from the ground

� Sym Line: Located in the symmetry plane at 0.15 m from the ground

The predictions obtained from the simulation with splashing are shown in

Figures 4.17,4.18,4.19,4.21,4.22 altogether with the results from the one with-

out splashing. These are compared with the experimental results obtained by

Coldrick et al. when available, and the CFD results from their CFX simula-

tion. The main effect noticed from the results obtained from the simulation with

splashing modelling was to decrease the temperature in the region close to the

ground and increase the vapour production. From Figure 4.17 it is clear that

splashing does not affect the temperature in the impact region, probably because
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Figure 4.17: Temperature predictions in the bulk of the cascade (Point A)

a saturation condition is reached in both the simulation with and without splash-

ing, while in the region far from the impact zone (Point B is shown in Figure 4.18)

there is an evident decrease in temperature. The difference for the temperature

steady state values between experiments and cascadeFoam is less than 1% for

Point A and around 10% for Point B.

In terms of the flow field, this was not significantly affected by the splashing,

mainly driven by the bulk flow in the cascade, as evidenced in Figure 4.19. While

some initial simulations were run reproducing the droplet inlet used by Coldrick et

al., in order to calibrate the simulation parameters, the main simulation was run

trying to reproduce the closest set up from the experiments, with the droplets

forming a parabolic trajectory rather than a straight line as from Coldrick et

al. [33] experiments. A closer look on the impact region from both the CFD

results obtained from cascadeFoam and the experiments is shown in Figure 4.20.

Clearly, the splashing particles did not eject as far from the splashing region in

the predictions as in the experiments, where they spread out further after hitting

the ground, thus affecting the vapour temperature in the far region from the wall.

Another set of simulations was run with the same geometric conditions but

different initial values of air and fuel temperature. The temperature of the air at

the beginning of the simulation was set at 10°C while the hexane was injected at
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Figure 4.18: Temperature predictions far from the cascade (Point B)
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Figure 4.19: Velocity predictions on the line 0.15m from ground

12.6°C with a mass flow rate of 15 kg/s. The results obtained (shown in Figures

4.21 and 4.22) without any splashing modelling are in good agreement with the

predictions of Coldrick et al., for both temperature and concentration predictions.
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Figure 4.20: Comparison of the predicted droplet splashing with the experimental
observation

On the other hand, the predictions obtained with the Bai and Gosman splashing

model differ from their predictions. However, in Figure 4.18, the predictions for

Point B are somehow in between the current and their predictions, and from this

one could deduce that if experimental results were available for the second set of

conditions, these would fall between the results obtained with cascadeFoam and

CFX.
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Figure 4.21: Temperature predictions on the line 0.15m from ground

In order to understand the cascade dynamics, a slice cutting the domain into

half showing the temperature and turbulent kinetic energy is shown in Figures

4.24 and 4.25. The plots show that in the splashing region the lowest temperature
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Figure 4.22: Hexane mass fraction predictions on the line 0.15m from ground

is achieved, while the turbulent kinetic energy has a maximum. It is also clear

the cloud formed by the evaporated hexane in the far region from the tank. In

between the tank and the cascade, a recirculation zone is formed shown in details

in Figure 4.24. Because the impact zone has the highest turbulence intensity, the

predictions would benefit from local mesh refinement in that region.

Figure 4.23: Contour plot of Hexane mass fraction in a slice

A clearer picture of the flammable cloud formed is evidenced in Figure 4.26.

The cloud stays close to the ground because of the higher density of hexane in
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Figure 4.24: Contour plot of Temperature in a slice

Figure 4.25: Contour plot of Turbulent Kinetic Energy in a slice

comparison with the surrounding air. The recirculation zone mentioned before

between the tank walls and the cascade is also evident.

4.4.8 Large Eddy simulation setup

The predictions obtained in the last sections were made using a RANS turbulence

modelling approach. This proved to give acceptable results especially in terms of

mean quantities measured in determined points. In order to show any unsteady

local behaviour of the flow an LES approach was used and compared with the

results previously obtained. Obviously, the use of such turbulence model requires
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Figure 4.26: Contour plot of the predicted fuel concentration at 0.5 LFL

much more significant computational resources and time. To achieve a value of

y+ close to the unity, the mesh in the droplets impact region had to be refined.

4.4.9 Mesh size

In problems were turbulence is present, a quantity named Turbulent Length Scale

(TLS) can be defined as:

lm = C3/4
µ

k3/2

ε
(4.12)

where Cµ is a model constant that in most turbulence models is equal to

0.09, k is the turbulent kinetic energy and ε is the turbulent dissipation. This

quantity identifies the size of the large energy-containing eddies in a turbulent

flow. In an LES simulation, the model aims to capture and calculate these eddies

while leaving a subgrid model for anything that lies in the universal length scale.

Following the criteria discussed by Addad et al. [124], the grid used in an LES

simulation needs to have cells with a width of 2 or 5 times smaller than the

turbulence length scale lm. Following the predictions obtained from the RANS

simulations, the turbulence length scale was calculated at different points of the

domain, defined as the following:

� Point A: at ground level in the bulk of the cascade
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� Point B: 5 m from the ground in the bulk of the cascade

� Point C: 9 m from ground in the bulk of the cascade

� Point D: at ground level 10 m from the tank walls

The results obtained are summarized in Table 4.3 with the values of ε calcu-

lated as ε = ωκCµ.

Table 4.3: Turbulence quantities calculated for different locations

Point ω (1/s) κ (J/kg) lm (m)

A 153 4.65 0.026
B 42 3.5 0.08
C 25.5 1.1 0.068
D 21 0.125 0.03

The mesh was then derived using these values reduced by a factor of 2 or

more. Structural hexahedral cells were used with a total number of cells of 6

million.

4.4.10 Results

Results obtained using the LES turbulence model were compared to the ones

available for the RANS modelling. The extent of the vapour cloud was found to

be very similar in both formulations, with the LES showing local variation due to

the nature of the method. The temperatures in the monitor points were slightly

different with LES showing better agreement locally, but with the steady state

values getting close to each other.

A contour plot showing the concentration of hexane on a symmetry plane is

shown in Figure 4.27. It is clear how eddies are formed straight after the liquid

comes out of the tank, due to the coupling of the Lagrangian phase with the

surrounding gas. Due to the gasoline vapour being heavier than air, this liquid

moves close to the ground, due also to the momentum given to the air by the

droplets, and then spreads away from the impact region, forming eddies that

disperse in a semi-circular pattern. The recirculation region between the liquid

and the tank wall is also clear, where the vapour rises along the tank because it

is constrained to.
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Results obtained by the LES formulation show therefore an improvement with

respect to a RANS approach, but the increment in computational time (a typical

run time for the RANS simulation was in the order of 1-2 days, while the LES

simulation took around 3 weeks) due to the large mesh to be used and the con-

sequent low time step are very large and it was not found to be justified in the

current application, mainly because the quantities of interest are the extent of

the vapour cloud and the temperatures across it, these being very close in both

formulation.

Figure 4.27: Concentration of hexane on a symmetry plane through the domain

4.5 Chapter summary

The development of the cascadeFoam solver was explained in the current chapter.

The solver was obtained using a Lagrangian-Eulerian approach starting from the

existing sprayFoam solver, capable of solving multi-species flows with evaporating

or boiling liquid particles. The solver was modified to solve buoyant flammable

cloud changing the momentum and pressure equations, as well as allowing a

splashing model to be used in conjunction with a liquid film region. Results

were in good agreement with the experimental data, and the use of a splashing

model improved the accuracy of the flammable cloud formed. RANS turbulence

modelling proved to be reliable in order to calculate the mean quantities, and

although the LES modelling showed an improvement in the unsteady quantities
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estimated, the increase in computational time did not justify the improvements,

especially considering that the values of interest were captured with the RANS

model too. As mentioned before, the splashing model improved the results, but

this showed limits, mainly because the Bai & Gosman model was built for a

different type of application (the main limit of their model is the limited applica-

bility to the range of Weber number, droplet size and other physical parameters

which are significantly different in the current application than the characteristic

values where their model was obtained). For this reason, the improvement of a

splashing model is of primary importance and it will be addressed in the next

chapter, using the Volume of Fluid approach.
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Chapter 5

Splashing Model Development

In this chapter, a new splashing model is developed starting from the correlations

available in the literature and on the model available in OpenFOAM [125], the

Bai and Gosman splashing model [50, 51]. This is because the standard Bai and

Gosman model has proven not to be reliable in a scenario such as the spill of a

fuel tank [126]. The model was developed mainly for internal combustion engine

applications where the droplet sizes are much smaller (100 µm at most) than the

ones in fuel spills application where droplets can be as big as 2mm [127], and also

the film thickness and droplet impact velocity are far from being comparable. The

splashing process is highly complicated [128] and a large number of authors have

investigated the process from an experimental point of view [129]. Nevertheless,

currently there is no global correlation available in the literature that can take

into account for all the values of the droplet size, film thickness, impact velocity

and type of fluid (the properties of the fluid such as dynamic viscosity, surface

tension and density can change completely the outcome of splashing [130] as well

as the geometrical configuration of the impacting surface [131]). All these reasons

have led different researchers to create their custom splashing model that works

in a specific range of applications.

5.1 Numerical analysis of the process

With the increase of computational resources, many researchers started to inves-

tigate the process using CFD [132]. The main approaches used in the literature

will be now discussed more into details.
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5.1.1 Volume of Fluid method

In the VOF approach, a function called phase fraction is introduced, which as-

sumes a value between 0 or 1. This function assumes a value of 1 in the liquid

region and a value of 0 in the gas region. The points where this function is be-

tween 0 and 1 are considered to be the interface. This concept is better illustrated

in Figure 5.1.

Figure 5.1: Definition of the phase fraction

Theoretically, this concept can be extended to a formulation with n fluids,

and for each fluid, a phase fraction is defined. The main advantage related to

such model is that conservation of mass is enforced by the formulation, while

the main drawback is the fact that the interface is not sharply resolved, but is

distributed over a finite number of cells. The main consequence of that is that in

order to track the interface with a certain level of accuracy a high number of cells

have to be used, or as an alternative adaptive mesh refinement can be adopted

in the interface region (defined with values of α between 0 and 1). The second

approach is usually more efficient in terms of the number of total cells used but

more complicated from a formulation point of view. Figure 5.2 shows a refined

local region in the interface with two levels of refinement (each level of refinement

splits the cell into 8).

One of the most delicate parts in the formulation of a VOF solver is how the

surface tension is implemented in the momentum equation. The main difference
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Figure 5.2: Local refinement used in OpenFOAM

between the momentum equation of a single phase solver and a two-phase one

is the term that has to be implemented in the momentum equation due to the

surface tension on the interface. Although this term is null in the rest of the

domain, its value on the interface has to be implemented correctly. A number

of different formulations exist for such purpose and the one used in the current

application will be discussed in details later.

The main purpose of a multiphase solution is to track the interface. The VOF

method uses an interface capturing approach, meaning that the interface is not

directly solved by the use of a moving mesh, but it is ’captured’ by solving the

phase equation and then a method to compute the interface. A number of meth-

ods exist for this purpose and the most used ones are the donor-acceptor scheme

which was the first one developed historically and the geometric reconstruction

scheme, which usually achieve a better reconstruction of the interface. In the

current work, as in most of the literature found on VOF methods, the interface

is assumed to be located where the phase fraction assumes a value of 0.5. For

this reason, all the results presented in the following sections will show a phase

fraction obtained by an iso surface of phase fraction at value of 0.5.
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5.1.2 Level Set method

The other principal approach to the simulation of multiphase flows where interface

tracking is important is the Level Set method. This method was developed to

overcome the problems arising from other formulations such as the VOF regarding

oscillation problems at the interface using higher order schemes and the sharpness

of the interface [133]. It is part of the interphase capturing methods.

The method starts from the definition of the level set function (φ), which

is a smooth function that can define the interface quickly without the need to

reconstruct the interface. This function assumes a value of zero on the interface,

and positive or negative values if the point is located inside or outside the liquid

phase. The evolution of the interface is therefore calculated using the following

equation:

∂φ

∂t
+ u · ∇φ = 0 (5.1)

This equation is relatively simple to solve as the level set function is smooth.

As compared to the VOF method, the level set method has a better resolu-

tion of the interface, which makes it especially suitable for splashing simulations

where the high number of droplets produced makes it necessary to solve the in-

terface with a certain level of accuracy. However, this method presents its own

drawback as well, the main one being the low mass conservativeness, which limits

its application for a number of problems.

5.1.3 Coupled LS-VOF methods

A number of researchers have tried to use the advantages of both the Level Set and

Volume of Fluid methods in one single formulation [84, 83, 134, 68, 135], namely

the Coupled Level Set Volume of Fluid method. In the current application such

method was implemented within OpenFOAM [136] and improvements were clear

in the interphase computation but strong instabilities were experienced in the

simulation of a splashing droplet. Both the phase fraction from the VOF (α) and

the Level Set function (φ) are solved in the formulation, which can be summarized

in the following for a single time step:

1. α is reconstructed from φ

2. α advection is solved
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3. Properties such as density and viscosity are update with the α field

4. φ is reconstructed from α

5. the momentum equation is solved using the level set function for the calcu-

lation of the surface tension source term

The fact that α is advected makes sure that mass conservation is ensured

and the use of the level set function in the momentum equation makes sure that

the interphase is sharply resolved. Results of a single bubble rising in a column

domain are shown in Figure 5.3. It is clear how the coupled solver calculates

the interphase more sharply while the standard VOF method presents smearing

of the interphase, especially in the ligaments detaching from the bottom of the

bubble.

Figure 5.3: Results obtained with the coupled solver

5.2 Contact angle

The term wetting is usually used to describe the ability of a liquid to maintain

contact with a solid surface, and the process deals with the three phases present
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in the problem: solid, liquid and gaseous. When a liquid is in contact with a solid

surface, the contact angle can be defined as the angle formed by the liquid-gas

interface and the solid (Figure 5.4).

Figure 5.4: Definition of contact angle

The value of this quantity is usually calculated by the use of the Young-

Laplace equation. When this angle has a low value, it means that the liquid

spreads widely on the surface and therefore the wettability is high, while if this

value is large, the wettability is low and the surface is said to be hydrophobic.

The contact angle is highly important in droplet impact applications, because

its value determines the shape of the droplet in contact with a solid surface,

affecting its dynamic [137, 138]. The contact angle is also found to be dependant

on the droplet size [139]. One of the biggest challenges in the modelling techniques

is the implementation of boundary condition for the phase fraction that accurately

reproduces the behaviour of the contact angle. The main issue is that the latter

depends on many parameters, the main one being the liquid properties and the

solid surface material, which affects this value from both a macroscopic and a

microscopic point of view. Another challenge is the fact that such value assumes

a constant value for a static droplet, but for an unsteady calculation the angle

varies, and this takes the name of dynamic contact angle.

In experimental analysis, a number of techniques are available to measure

the value of the contact angle [140], the most widely used being the sessile drop

method [141], the Wilhelmy plate method [142] and the capillary rise method

[143]. In terms of numerical techniques, a widely used approach is to use a

constant contact angle even for unsteady problems, but this obviously can lead

to uncertainty in the calculations, and for this reason a number of models to
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calculate the dynamic contact angle based on the droplet conditions are used

[144, 145]. Although the formulations can use different methods, the base concept

that all of them share is to use the value of the velocity of the contact line to

calculate the contact angle value. Obviously, the value for a static contact line

has always to give the static contact angle.

5.3 Physics of the process and model formula-

tion

As we mentioned earlier, the splashing process is extremely complex, and no uni-

versal correlations are currently available to model all the types of splashing. As

it is done in many other CFD applications, it is standard procedure to introduce

some non-dimensional quantities that will help us in defining splashing regimes.

In order to determine the outcome of a droplet splash, the following variables and

fluid properties are needed: the initial diameter of the impinging droplet (D0),

the droplet impact velocity (V0), the viscosity of the liquid (µ), the density (ρ),

the surface tension (σ) and the film thickness (h). By applying the Buckingham

theorem we can define four non-dimensional numbers:

The Weber number We =
ρU2

0D0

σ
(5.2)

which defines the ratio between inertia and surface tension forces;

The Ohnesorge number Oh =
µ√
D0ρσ

(5.3)

which defines the ration between the viscous forces and the inertial and surface

tension forces;

The dimensionless film thickness h∗ =
h

D0

(5.4)

which defines how thick is our liquid film compared to the droplet size;

The Bond number Bo =
∆ρgd2

σ
(5.5)

which defines the ratio between body forces (gravity) and surface tension.

Splashing is defined as the formation of secondary droplets from the impact

of one single droplet into a solid surface that can be dry or wet. The interaction
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between a droplet and a wall can also feature other outcomes such as rebounding,

adhesion or simple spreading. The transition regions between all these regimes are

very hard to define, but some empirical correlations are available in the literature.

Also, for these correlations to be used in any CFD applications, they have to be

determined for certain specific values.

It has to be mentioned that most of the existing splashing models have been

obtained from observation of single droplet impact onto a solid dry or wetted

wall and that in reality spray impacts onto surfaces have a different dynamic

because impinging droplets are affected by neighbours, and the outcome can be

much different. Nonetheless, simulating this kind of process is complicated with

the current experimental tools and correlations are much simpler to obtain in the

observation of single droplet impact. Also, in the case of CFD applications, the

simulation of multi-drop impact is too demanding and practically impossible.

The main steps in the formulation of any splashing model are explained below.

5.3.1 Transition Criteria

First of all, the model has to evaluate if the droplet is going to splash or if other

regimes are going to be observed. The threshold between the two regimes is called

transition criteria and is usually defined by an expression that includes the Weber

number and one between the Ohnesorge and the Laplace number (the Laplace

number is related to the Ohnesorge number with the following relationship La =

Oh−2). Usually a factorK is considered to be the reference point for the transition

and is defined the following way:

K = We ·Ohα (5.6)

Where the value alpha varies between different models but most of the ones

available agree with a value of α of around 0.2. In the Bai and Gosman model,

which is the one implemented in OpenFOAM, the transition criteria is defined

slightly differently respect to the other model and relates the critical Weber num-

ber with the Laplace number in the following way:

Wecr = A · La−0.183 (5.7)

where A is a coefficient that varies with the surface roughness of the wall.

They state that a wetted surface acts like a very rough surface and therefore
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the value of alpha is the same as a very rough surface (A = 1320). One of the

limitations of their model is that it does not take into account the film thickness

which plays a fundamental role in the transition criteria and also in the outcome

of splashing. In Kalantari model [57], the film thickness is taken into account

and the transition criteria is varied accordingly. Four film thicknesses regimes are

defined and reported in the table along with the value of K which correspond to

the splashing threshold.

Film Thickness Film Thickness Regime Splashing Threshold (K)

h∗ ≤ 0.1 Wetted K = 1770÷ 1840

0.1 < h∗ ≤ 1 Thin Liquid Film K = 5032h∗ + 1304

1 < h∗ ≤ 2 Shallow Liquid Film K = 6100(h∗)−0.54

h∗ > 2 Deep Liquid Layer K = 4050

5.3.2 Post-impingement characteristics

Once the model has evaluated whether the droplet will splash or not, if splashing

occurs, it needs to calculate the quantities of the splashed dropped. It is therefore

convenient to identify the main quantities that define the status of a droplet.

di

dsui

vi us
vs

θi θs

Figure 5.5: Impinging and Ejecting droplet main parameters

As it can be seen in Figure 5.5, both the impinging and the splashing droplets

are characterised by their diameter (di and ds), velocity (which can be decomposed

in normal velocity u and tangential velocity v) and impact angle (θi and θs). In

order to simplify the calculations, in numerical codes, the solver considers for

parcels (which represent a group of droplets) rather than droplets, because it is

usually too demanding to reproduce all the droplets in a computational domain.
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For this reason, we have to introduce another parameter, the number of droplets

in each parcel n, for both the impinging and splashing droplet.

Starting from the impinging characteristics, the splashing model has to evalu-

ate post-impingement quantities such as splashing-to-incident mass ratio, droplet

size, velocity, number of secondary droplets and ejection angle.

Considering the splashing-to-incident mass ratio (which is as the name sug-

gests the ratio between the total mass of all the splashed droplets and the incident

droplet mass), the Bai and Gosman model assumes the following value as observed

from experiments:

rm =
ms

mI

=

[0.2 : 0.8], for a dry impact

[0.2 : 1.1], for a wet impact
(5.8)

Other authors use a different approach for the mass ratio, being a function

of the Weber number or the K variable. The main problem for applying these

models to applications such as the spill of a fuel tank [126] is that the Weber

number range investigated in their applications is much smaller than the ones

that characterize fuel cascades, where the droplet diameters and velocities are

much higher. Therefore a new correlation has to be developed to be applied in

higher Weber numbers.

Another parameter that has to be given as an input is the droplet ejection

angle. One of the main advantages of having a normal impact is that we do not

need to consider the impact angle, therefore, the splashed droplet are symmetric.

Most of the models available in the literature agree that the ejection angle depends

strongly on the time of the ejection, meaning that early ejected droplet tend to

have a bigger angle and higher velocities, while droplets ejected later are more

likely to be slower and with a smaller angle. The experimental results analysed

by Bai and Gosman report that droplets ejection angles are likely to lie in the

range [5°; 50°], and outside this range, the probability is very low. Other models

use a different range and also use the impingement angle in their calculations. It

is worth mentioning that the azimuthal angle (being the circumferential direction

within the plane tangential to the wall) is chosen to be randomly between 0 and

2π, which is supposed to conserve tangential momentum statistically.

Velocity and size of the ejected droplets are also fundamental parameters to

evaluate. Their calculation from the experiments is challenging, and statistical

models can be used. Since each splash event produces hundreds or even thou-
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sands of secondary droplets, focusing the attention on all of them is prohibitive

with the current tools. In Bai and Gosman formulation, each splashing droplet is

considered to produce p secondary droplets where p is a value greater than one.

All of this secondary droplets contain the same amount of mass ms/p where ms is

total the mass of the incoming splashing droplets. The value of p is usually chosen

to be accurate and not too computationally costly. Experiment observations typ-

ically show that the secondary droplets follow characteristic distributions, similar

to the general Rosin-Rammler distribution commonly used in spray simulations.

First, the mean diameter is calculated from other parameters in the following

way:

d̄ =
dv

61/3
=

1

61/3

(
rm
Ns

)1/3

dI (5.9)

where dI is the incident droplet diameter, Ns is the total number of secondary

droplets per splash and rm is the splashing-to-incident mass ratio as mentioned

before. Starting from the splashed mean diameter the distribution function of

the splashed droplets diameter is calculated as:

f(d) =
1

d̄
e−d/d̄ (5.10)

Along with the droplets sizes, we have to calculate their velocities. It was

already mentioned before how to calculate the azimuthal angle and the ejection

angle of the droplets, therefore the last quantity that has to be evaluated is the

velocity magnitude which is done by energy considerations. The splash kinetic

energy is calculated as:

EKS = EKI + EIσ − ED − ESσ (5.11)

where EKI is the incident kinetic energy, EIσ the incident droplet surface

energy, ESσ the surface energy of all the splashing droplets and ED the dissipa-

tive energy loss. Even though this equation is physically right, the evaluation of

the dissipated energy is complex and some of the formulations available seem to

underestimate its value. The calculation of the splash kinetic energy is straight-

forward only if one parcel is considered (p = 1), but for more parcels we need to

provide an additional equation:(
VSN,1
VSN,i

)
≈ ln

(
d1

dI

)
/ln

(
di
dI

)
(i = 2, .., p) (5.12)
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At last, this equation can be coupled with the one above to calculate the

droplet velocity and therefore all the right quantities for the splashing model are

available to implement the splashed droplet in the Lagrangian calculation.

5.4 Description of interFoam solver

The calculation of the physical solution is achieved by the use of a Volume of

Fluid (VOF) solver part of the toolbox OpenFOAM. The solver uses a modified

Volume of Fluid approach with an additional term in the momentum equation to

account for the smearing of the interface.

If we consider a physical domain where both a gas and a liquid phase are

present, we can define a function that indicates which phase the cell belongs to:

α =

1, if cell belongs to the liquid phase

0, if cell belongs to the gas phase
(5.13)

Also, the function can assume values between 1 and 0, and those points are

representative of the interface between gas and liquid. The conservation of mass

can now be defined:

∂ρ

∂t
+∇ · (uρ) = 0 (5.14)

In this equation density is calculated using the function α:

ρ(x, t) = ρlα(x, t) + ρg(1− α(x, t)) (5.15)

where ρl and ρg are the density of the liquid and the gas phase, respectively.

Introducing this definition in the continuity equation, we obtain:

(ρl − ρg)
∂α(x, t)

∂t
+∇ · ((ρl − ρg)α(x, t)u(x, t)) + ρg∇ ·U(x, t) = 0 (5.16)

Now if we consider incompressible flow, the equation can be simplified into

the following:

∂α

∂t
+∇ · (uα) = 0 (5.17)

As already mentioned before, numerical diffusion is one of the major problems
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encountered in VOF formulations, therefore in interFoam an additional term is

introduced in the phase fraction equation, to compress the interface and avoid

high diffusion. The equation becomes:

∂α

∂t
+∇ · (uα) +∇ · [Ucα(1− α)] = 0 (5.18)

where Uc is a the velocity compression term calculated in an appropriate way.

The momentum equation is defined in the following way:

∂(ρu)

∂t
+∇(ρuu) = −∇p+∇ · T + Fσ (5.19)

where T is the stress tensor and Fσ is the source term arising from the surface

tension. The calculation of this term is one of the most important steps in the

formulation of a VOF solver and in interFoam is achieved in the following way

(using the continuum surface model (CSF) of Brackbill et al [146]):

Fσ = σk∇α, k = −∇ · n, n =
∇α
|∇α|

(5.20)

5.5 Validation of the solver for inertia-dominated

flows

The solver interFoam has been validated for a wide range of applications [70],

and in the following section it will be validated for inertia dominated flows (flows

in which the inertia effects dominate the surface tension ones), such as droplet

impact onto a solid surface. The main limitations of the solver, which represents

the VOF limitations in general, are the smearing of the interface, which is partially

corrected by the above-mentioned compression term, and the calculation of the

normal and curvature of the interface. On the other hand, the main advantages

are an easy implementation and the high mass conservativeness which cannot be

achieved in any other formulation such as the Level Set method.

5.5.1 Water droplet impact on flat surface

The first testcase reproduced is the impact of a water droplet on a flat surface

at low speed, so that no splashing occurs and the droplet sticks to the surface

oscillating up and down.
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A distilled water droplet of 2.28mm diameter impacts the ground at 1m/s.

The experiments were reproduced by [145] along with numerical results using

their Level Set solver with dynamic contact angle implementation. The contact

angle is defined as the angle formed when a liquid-vapour interface meets a solid

surface. In the formulation of a Eulerian solver, the contact angle implementation

is one of the most delicate and uncertain, this because the evolution of it during

time is difficult to predict and is driven by several parameters, the main one

being the surface roughness. The contact angle assumes a constant value when

the contact line is not moving and the so-called advancing and receding contact

angles when the contact line is moving. As stated by many authors and also

by Yokoi, these two values assume a maximum and a minimum, and the values

assumed between these two depend on the interface velocity, leading to a value

equal to the equilibrium one when the velocity approaches zero.

Figure 5.6: Qualitative comparison between CFD and experiment

Yokoi proposed a model for the dynamic contact angle which is supposed

to represent the real values assumed more realistically. The contact angle θ is

calculated from its equilibrium value θe, the maximum dynamic advancing angle

θmda, the minimum dynamic receding angle θmdr,the velocity of the contact line

UCL and the capillary number Ca = µUCL/σ. The equation used is the following:
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θ(UCL) =


min

[
θe +

(
Ca
ka

)1/3

, θmda

]
if UCL ≥ 0

max

[
θe +

(
Ca
kr

)1/3

, θmdr

]
if UCL < 0

(5.21)

the constants ka and kr are material related to advancing and receding, respec-

tively. These are chosen to fit the curve from experimental data. Quantitative

and qualitative results obtained from CFD calculations are compared with the

experimental data and shown in pictures.
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Figure 5.7: Droplet diameter evolution with time

Results show overall a good agreement with the experiments and the droplet

diameter reaches its theoretical value at the end of the simulation, following the

Experiment evolution with only some discrepancies after 20ms from the start of

the simulation.

5.5.2 Crown Evolution of Droplet Impact

Single droplet impact on a thin film was investigated by Cossali et al. [64]. The

liquid crown propagation of a droplet impacting a thin liquid film is investigated.
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A single droplet of diameter D = 3.82mm with speed U = 3.56m/s impacts a pre-

existing film of thickness T = 2.3mm. The Weber number is 670. Liquid crown

diameter obtained from the CFD simulation is compared with the experimental

results. A very good agreement (the error on the calculation was kept below 10%)

was found.
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Figure 5.8: Crown evolution with time

5.5.3 Conservation of mass

One of the advantages of the VOF formulation is the conservation of mass. This is

fundamental in the simulation of splashing of droplets because a decay or increase

in the droplet mass would lead to an error in the evaluation of the splashed mass

of the droplet as well as the number of secondary droplets and other parameters.

A simulation with a droplet splashing onto a solid surface was run in order

to demonstrate that the interFoam solver is mass conservative. Figure 5.9 shows

the integral value of the droplet volume computed in the whole domain and

normalised to its initial value. It is clear that the droplet mass is conserved and

the error is well below 0.1%.

5.5.4 Effect of liquid properties on splashing

It was mentioned earlier that the outcome of splashing depends on many pa-

rameters, among which the properties of the liquid considered. For this reason

the effect of surface tension, kinematic viscosity and density were analysed by

simulating two splashing droplets using water and hexane. Table 5.1 shows the

difference in properties for the two liquids (values for LNG are also shown to

illustrate the similarity with hexane).
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Figure 5.9: Droplet mass evolution with time

Table 5.1: Properties for the different liquids analysed

Property Water Hexane LNG

ν(m2/s) 1 · 10−6 5.7 · 10−7 3.12 · 10−7

ρ(kg/m3) 1000 654.8 468.1
σ(N/m) 0.07 0.01843 0.014

The results for water and hexane look quite different. Results with water

show an earlier formation of droplets and the droplets are bigger than in the

case of hexane. The physical demonstration behind this behaviour is that the

higher surface tension and viscosity of water limit the extension of the ligaments

which therefore break earlier. This is a further confirmation of the findings of

HSE which showed how droplets formed from hydrocarbons are smaller and more

homogeneous. The effect of density should not play an important role as there is

no direct effect on the splashing phenomenon.

5.6 Splashing of Droplets

To develop the splashing model, the solver was first validated against experimen-

tal analysis and the Bai and Gosman correlation within their range of validity.
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Vander Wal [147] investigated droplet impact on variable film depths and for

different liquids.

The paper presents numerous results obtained varying the film thickness, im-

pact velocity and properties of the liquid used. The most interesting ones from

the current work point of view were the simulations of Heptane (C7H16), a hy-

drocarbon which possesses similar properties to hexane. Numerical simulations

were therefore carried out using four different impact velocities and film depths,

comparing them with the experiments. The results are shown in Figure 5.10 and

5.11 and the experiment settings described in the figure caption.

Figure 5.10: Comparison between simulations (left) and experiments (right) for
velocities of 2.17 m/s (a) and 4.22 m/s (b) and non-dimensional film thicknesses
of 1. Diameter of droplet is always 2mm.

Regarding the Bai and Gosman model, the range of applicability of their

model is not applicable in the current work, but in order to validate the solver

for splashing simulations VOF calculations were carried out for different Weber

and Laplace number ranges and compared with the correlations of the Bai and

Gosman model. The range of parameters used is reported in Table 5.2, as well as

the results obtained in the simulations in terms of mass splash ratio and splashing

angle.

Figure 5.12 and 5.13 show a 3 dimensional view of the mass splash ratio and

splash angle as a function of the Weber and Laplace number (the points coloured

in green are the ones for which the results are in agreement with the Bai and
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Figure 5.11: Comparison between simulations (left) and experiments (right) for
velocities of 2.17 m/s (a) and 4.22 m/s (b) and non-dimensional film thicknesses
of 0.1. Diameter of droplet is always 2mm.

Gosman model, on the other hand, the red points show a non-conformity of the

results with the model), which give a much clearer view of how the increase of

such parameters affects the validity of the model.
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Figure 5.12: Mass splash ratio for the validation testcases
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# La We rm θ(°)

1 35000 257 0.905 38

2 35000 714 1.05 45

3 164374 320 0.825 25

4 164374 1212 2.5 30

5 164374 714 2.14 30

6 164374 1400 2.72 65

Table 5.2: Results for Bai and Gosman validation
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Figure 5.13: Splash angle for the validation testcases

The results for the mass splash ratio (rm) point out that for small Weber

numbers (We < 700) the CFD predictions are in agreement with the model,

while increasing its value leads to ratios well above the limit imposed by the

model (rm < 1.1) which confirms the fact that the model gives wrong results for

such range. The effect of the Laplace number is very similar, where an increase

of its value leads to a much higher number for the mass splash ratio, outside the

limit of applicability of the model.

For the splashing angle things are slightly more stable, meaning that for sig-

nificant variation of the Weber and Laplace number the values obtained for θ fall
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in the range of applicability of the model, with the only exception of case #6,

where the values obtained are however pretty close to the one given in the model.

This is a further confirmation that in the simulation of large spills from a

tank, the Bai and Gosman model is entirely out of range in terms of Weber and

Laplace number, and it would give wrong values for the splashed quantities which

would affect the solution for the Lagrangian phase as this is heavily influenced

by the output values of the splashing model.

5.6.1 Model Development

In order to improve the current model available in OpenFOAM a set of simulations

were carried out with different input parameters such as the droplet diameter (d),

impact velocity (U0) and initial film thickness (H). Although the splashing phe-

nomenon is influenced by other parameters as well, such as the liquid properties,

these parameters were assumed to be constant, for two main reasons; the first

one is that the number of simulations to run in order to obtain the model would

increase dramatically, unachievable from a realistic point of view, and the second

reason is that the properties of most hydrocarbons are very similar (especially in

terms of surface tension), therefore the outcome of splashing would not lead to ob-

servable differences (this means that although the correlations will be developed

starting from simulations of hexane, they can be extended to a large number of

hydrocarbons with similar properties). It has to be mentioned that one quantity

that could lead to remarkable variations is the boiling temperature of the liquid.

The contact angle of the droplet is highly dependant on the temperature of the

solid surface, and the threshold is the boiling temperature of the liquid, above

which the contact angle shows critical differences. This could be of particular in-

terest in terms of LNG droplet impact, but it will be shown later that a cascade

of LNG will most likely evaporate well above the ground level, therefore splashing

would not be experienced at all. For this reason, it was assumed that the three

parameters mentioned above are a good representation of all the conditions that

can be obtained in a hydrocarbon spray impact.

These three parameters can be represented by non-dimensional quantities,

more convenient and historically correct. These are the Weber number, Laplace

number and non-dimensional film thickness. In order to cover the range of pa-

rameters that are observed in the type of application we are trying to develop

the model for, a wide range of quantities was adopted, summarised in the table
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below:

d(mm) U0(m/s) H(mm) La We H∗

0.2-3 1-11 0.5-2 (0.17− 2.6) · 105 7.1-130000 0.2− 2

Table 5.3: Setup quantities range for the simulations

The same mesh was adopted in all the simulations, a structured hexahedral

mesh made of 4 million cells, scaled according to the different droplet sizes.

This was assumed to be a good compromise between accuracy of the simula-

tion and computational time. Although an increase in the number of cells results

in a higher number of splashed particles that can be captured, especially for the

smaller droplets. Nonetheless, the quantities of interest in the splashing model

development are the splashing threshold, splashing angle and mass splash ratio.

These three quantities are not much influenced by the mesh size as long as a

certain number of cells is used to represent the droplet. A zoom on the mesh is

shown in Figure 5.14 for the droplet and the film below.

Figure 5.14: Mesh detail on the droplet and underlying film

The initial condition for the different simulations is shown in Figure 5.15.

The three quantities (splashing threshold, splashing angle and mass splashing

ratio) were extrapolated in the following way:

� The droplet was considered to splash if any ligament or secondary droplet

was formed on the splashed surface
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H

d

U0

Figure 5.15: Initial Condition for the simulation

� The angle varies from the beginning until the end of the simulation, and the

maximum and minimum values were recorded using isosurfaces at α = 0.5

which represents the surface of the liquid

� The mass splash ratio was obtained integrating the droplet volume frac-

tion at the beginning of the simulation and the volume fraction of all the

secondary droplets

Figure 5.16: Droplet absorbed in the film (left, test 33)and droplet splashed
(right, test 49)

Figure 5.16 shows two different testcases (test 33 and 49), where in the first

a clear absorption in the liquid film was observed, while splashing can be seen in

the second, where a large number of droplets was formed due to the high-velocity

impact.

5.6.2 Development of the Correlations

All the simulations were postprocessed and analysed to obtain the desired quanti-

ties. For the testcases where the droplet did not splash, the equivalent simulation

where only the film thickness was increased was assumed not to splash and there-

fore not run. This is in agreement with the fact that an increase in the film
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thickness increases the splashing threshold and consequently a droplet with fixed

diameter and velocity will not splash if the film is increased. Table 5.4 summarises

the results obtained in terms of splash regime, splashing angle and mass splash

ratio. For some of the testcases an accurate calculation of the mass splash ratio

could not be done because of the high number of droplets exiting the domain, for

which only the splashing angle was calculated.

Table 5.4: Simulation Setup

Sim. Num. h (mm) U (m/s) d (mm) Splash θ(°) ms

#1 0.5 1 0.2 × - -

#2 0.5 1 0.5 × - -

#3 0.5 1 1 × - -

#4 0.5 1 2 × - -

#5 0.5 1 3 × - -

#6 0.5 3 0.2 × - -

#7 0.5 3 0.5 × - -

#8 0.5 3 1 × - -

#9 0.5 3 2 X 25 2.8

#10 0.5 3 3 X 30 3.47

#11 0.5 6 0.2 × - -

#12 0.5 6 0.5 × - -

#13 0.5 6 1 X 45 6.42

#14 0.5 6 2 X 40-60 5.63

#15 0.5 6 3 X 10-50 5.03

#16 0.5 9 0.2 × - -

#17 0.5 9 0.5 × - -

#18 0.5 9 1 X 20-60 -

#19 0.5 9 2 X 20-45 9.3

#20 0.5 9 3 X 25-35 7.9

#21 0.5 11 0.2 × - -

#22 0.5 11 0.5 X 60 1.01

#23 0.5 11 1 X 20-45 -

#24 0.5 11 2 X 10-45 10.71

#25 0.5 11 3 X 20-40 7.62

#26 1 1 0.2 × - -

#27 1 1 0.5 × - -

129



5.6. SPLASHING OF DROPLETS

Table 5.4: Simulation Setup

Sim. Num. h (mm) U (m/s) d (mm) Splash θ(°) ms

#28 1 1 1 × - -

#29 1 1 2 × - -

#30 1 1 3 × - -

#31 1 3 0.2 × - -

#32 1 3 0.5 × - -

#33 1 3 1 × - -

#34 1 3 2 × - -

#35 1 3 3 X 20-30 5.48

#36 1 6 0.2 × - -

#37 1 6 0.5 × - -

#38 1 6 1 × - -

#39 1 6 2 X 30-50 13.54

#40 1 6 3 X 20-55 20.35

#41 1 9 0.2 × - -

#42 1 9 0.5 × - -

#43 1 9 1 X 50 0.66

#44 1 9 2 X 20-55 19.7

#45 1 9 3 X 20-50 23.64

#46 1 11 0.2 × - -

#47 1 11 0.5 X - -

#48 1 11 1 X 50 -

#49 1 11 2 X 40-50 -

#50 1 11 3 X 25-50 27.2

#51 2 1 0.2 × - -

#52 2 1 0.5 × - -

#53 2 1 1 × - -

#54 2 1 2 × - -

#55 2 1 3 × - -

#56 2 3 0.2 × - -

#57 2 3 0.5 × - -

#58 2 3 1 × - -

#59 2 3 2 × - -

#60 2 3 3 × - -
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Table 5.4: Simulation Setup

Sim. Num. h (mm) U (m/s) d (mm) Splash θ(°) ms

#61 2 6 0.2 × - -

#62 2 6 0.5 × - -

#63 2 6 1 × - -

#64 2 6 2 X 55 1.24

#65 2 6 3 X 35-50 27.04

#66 2 9 0.2 × - -

#67 2 9 0.5 × - -

#68 2 9 1 X 50 0.598

#69 2 9 2 X 45-55 -

#70 2 9 3 X 40-55 -

#71 2 11 0.2 × - -

#72 2 11 0.5 × - -

#73 2 11 1 X 55 -

#74 2 11 2 X 40-55 -

#75 2 11 3 X 30-50 -

In order to implement the splashing model in the upper lagrangian solver

starting from the results obtained from the VOF simulations, correlations had

to be developed for the quantities mentioned above in function of the three non-

dimensional numbers (La,We,H∗).

The correlations were obtained using the regression analysis. This approach is

able to model the relationship between a scalar quantity (such as splashing angle θ

or mass splash ratio rm) and a series of one or more independent quantities. If the

relationship between these quantities is linear we talk about linear regression, if a

polynomial expression is used the regression is called non-linear, which can make

use of squares, cubes etc. of the independent variables to obtain a correlation.

The method is here explained for a simple linear regression for simplicity, but for

a more complex case, the approach is similar and easily obtained.

Lets consider two quantities related to each other, the independent quantity x

and the dependent quantity y. If we consider n paired data {(xi, yi), i = 1, .., n},
an equation that describes the relation between the two quantities can be derived

with an additional term that describes the error as:
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yi = α + βxi + εi (5.22)

where εi represents the error for the i − th set of data. The aim of a linear

regression model is to obtain the values of α and β that best fit the data, where

the best fitting is achieved by minimising the global error. For a wide range of

applications, the minimisation of the error is obtained by using the line that min-

imises the sum of the squares of the errors (the so-called least-squares approach).

The mathematical expression of the error can be obtained as:

E(a, b) =
n∑
i=1

εi =
n∑
i=1

(yi − a− bxi)2 (5.23)

the regression analysis tells us how to obtain the values of a, b that minimise

such function. These are obtained by expanding the above equation, giving the

optimal values as:

α = ȳ − βx̄ (5.24)

β =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
(5.25)

where x̄ and ȳ are the mean values of the sampled variables.

Splashing Threshold

The splashing threshold for most of the splashing models was presented before,

and can be expressed as:

A = We · La−0.183 (5.26)

The Bai & Gosman model uses a fixed value for the A parameter, and this

does not take into account for the change in film thickness that can affect the

splashing behaviour. The CFD predictions showed a clear trend of an increase

of the splashing threshold when the film thickness (both dimensional and non-

dimensional) was increased. In short terms this means that a droplet will need a

higher velocity (and therefore higher Weber number) in order to splash if the film

thickness increases. Cossali et al [64] have developed a correlation considering

the dependency of A on H∗, expressed in the following equation:
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Figure 5.17: Splash Regimes for H = 0.5mm
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Figure 5.18: Splash Regimes for H = 1mm

A = La0.2We = 2100 + 5880H∗1.44 (5.27)

The exponential value of the Laplace number is slightly different respect to the
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Figure 5.19: Splash Regimes for H = 2mm

classical Bai and Gosman one, but in the literature, both values are used. Results

for the splashing threshold obtained from the VOF simulations are compared with

Cossali’s correlation and for correctness Bai and Gosman correlation is shown as

well.

As it can be seen, the threshold obtained from the Bai & Gosman correlation

overestimates splashing for all the conditions, while the correlation proposed by

Cossali show good agreement with the simulations.

Splashing Angle

The splashing angle is fundamental in the splashing process because it can change

the spray pattern completely. In the literature, the angle is sampled between two

values and chosen randomly. From the angles measured in the VOF calculations,

these values change with the film thickness. These values are usually a function of

many parameters such as Weber number, Laplace number, film thickness and also

the impact angle of the droplet. In the type of application that we are developing

the model for, the impact is usually perpendicular, meaning that we can neglect

any effect coming from the tangential component of the droplet velocity.

Figure 5.20 shows the angles obtained from the VOF simulations and the

correlations obtained with such data. The correlation takes into account for the
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Figure 5.20: Correlation for the splashing angle

non-dimensional film thickness only because the splash angle did not show any

dependency on the Laplace and Weber number for the range investigated.

While the maximum value of the splashing angle did not change much in-

creasing H∗, the minimum value showed a strong dependency on the latter, and

a quadratic correlation was obtained with the use of the regression analysis. The

following equation describes it:

θmin = −11.6H∗2 + 46.98H∗ + 2.797 (5.28)

Splash Mass Ratio

The splash mass ratio is probably the most complicated quantity to evaluate and

in the literature this value is sampled in a wide range, depending on the type of

splash (dry or wet). In a dry splash process, this value can assume a maximum

value of 1, while in a wet condition, some mass can be introduced back from

the film in the air by the splashing process. Therefore a value greater than 1

can be adopted. Extrapolating this value from our simulations, we obtained a

wide range of values that sometimes exceeded 25. It was observed that this value

depended on all the non-dimensional quantities (We,La,H∗) unlike the splashing

angle, therefore a correlation that is a function of all the three quantities had to
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be obtained.

Two different correlations were extrapolated from the data, linear and expo-

nential, shown in the following expressions:

rm = a0 + a1La+ a2We+ a3H
∗ (5.29)

rm = b0La
b1Web2H∗b3 (5.30)

The values obtained from the correlations are shown in Figure 5.21 for both

the linear and the exponential correlations.
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Figure 5.21: Correlation for the mass splash ratio

The two different correlations show similar results with the linear one being

more accurate for higher values of rm while the exponential seems to give better

results in the region of low splashed mass.

5.7 Implementation of the new model in the la-

grangian solver

The correlations obtained from the VOF simulations are here presented. For the

splashing threshold the correlation obtained by Cossali [56] is used:
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A = La0.2We = 2100 + 5880H∗1.44 (5.31)

Values of A higher than the one calculated from this equation result in a

splashing outcome, while smaller values result in absorption or spreading of the

droplet onto the film.

The splashing angle was varied only in terms of its minimum value, while the

maximum one was kept unchanged:

θmin = −11.6H∗2 + 46.98H∗ + 2.797 (5.32)

This means that an increase in the non-dimensional film thickness results in

an increase of the minimum splashing angle, for values of H∗ less than 2. At last

the mass splash ratio correlation is expressed using a linear correlation as:

rm = a0 + a1La+ a2We+ a3H
∗ (5.33)

or using an exponential correlation as:

rm = b0La
b1Web2H∗b3 (5.34)

where the values for the linear coefficient (which are the ones implemented in

the solver for simplicity) terms are reported in Table 5.5.

Parameter Value

a0 -4.98

a1 5.32e-05

a2 8.26e-04

a3 1.67

Table 5.5: Coefficients of the linear interpolation

In order to understand and show the effect of the new splashing model on

a problem with splashing of particles a simple testcase has been set up using

both the old Bai and Gosman model available in OpenFOAM and the new one

implemented using the correlations mentioned above. A series of single droplets

are splashed onto a solid surface which is initially dry, which eventually develops

a thin liquid film due to the incoming droplets. Because the new model differs

from the old one only in the wet regime, the two behave the same way in the
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early stage of the simulation. As soon as the wet film is formed, the new model

starts to show differences respect to the standard one, as it can be seen in Figure

5.22.

Figure 5.22: Droplets splashing at t=0.053 s using the Bai and Gosman model
(left) and the new model (right)

Figure 5.23: Droplets splashing at t=0.067 s using the Bai and Gosman model
(left) and the new model (right)

Figure 5.24: Droplets splashing at t=0.1 s using the Bai and Gosman model (left)
and the new model (right)

Comparison at later stages of the simulation shows the main differences be-

tween the two models in a more explicit way. The new model produces a smaller

amount of droplets (because the splashing threshold increases with the film thick-

ness, therefore a droplet is less likely to splash if the film is thicker), which are
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however bigger in size, and also the angle of splashing is wider, leading to a wider

shape of the splashing process. It has to be mentioned that the amount of parcels

produced from a single impacting droplet has not changed in the new model, be-

ing fixed at two. This parameter can assume different values as reported by Bai

[51], but two is the number that is more widely adopted.

5.8 Validation against experiments

The new model was tested and validated against the experimental results used in

the validation of cascadeFoam, obtained by the HSL for a pure hexane cascade.

The setup was the same used in the computational model used in chapter 3, the

difference being only in the splashing model used. Results are shown for the

experimental measurements, the ones obtained with the CFD model using the

Bai and Gosman splashing model and the ones obtained with the new model

implemented. Two points within the domain of interest are considered. The first

one is within the core of the cascade in the impact point, while the second one is

placed 5 meters from the tank walls at 0.5 m from ground level.
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Figure 5.25: Temperature predictions in the bulk of the cascade (Point A)

Figure 5.25 and 5.26 present the results. The point placed in the impact region

of the cascade show similar results for the two models used (for both the error is
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Figure 5.26: Temperature predictions far from the cascade (Point B)

kept below 1% between computational results and experiments), which confirms

the findings discovered in chapter 3, where the splashing model was found to

have a very little influence on the temperatures measured in the splashing zone,

as well as for the concentration of hexane, mainly because the two are somehow

correlated.

The point located far from the impact region shows, on the other hand, the

differences between the two models. The new model predicts the temperature

in such region with much higher accuracy (with an error of approximately 5%),

leading to results which are close to the experimental measurements. The time

at which the temperature drops is unchanged between the two models, due to

the fact that this reflects the time at which the cloud reaches the point analysed.

However, the temperature drops more in the new model, because the amount

of mass splashed back into the gas phase is much higher and also the angle of

splashing is much wider than in the previous model.

5.9 Chapter summary

The development of a modified splashing model was obtained using a large num-

ber of simulation by using the VOF method. The solver has been validated by
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a large number of people and was compared to available experimental data and

splashing models. The results obtained showed significant differences if compared

to existing Bai & Gosman model, especially in terms of splashing threshold, an-

gle and splash mass ratio. These values were interpolated in order to create a

modified splashing model and implemented in the cascadeFoam solver, showing

improved accuracy in the region far from the impact zone.
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Chapter 6

Implementation of LNG

In this chapter, the development of Liquefied Natural Gas in the Lagrangian

liquid library is described followed by a testcase where a liquid discharge from an

LNG storage tank is simulated.

In the first Chapter the hazards that the handling of Natural Gas evidences

were described, and in the previous chapters a tool capable of simulating a sce-

nario in which a cascade of fuel creates a flammable cloud was developed. The liq-

uids available in OpenFOAM in the Lagrangian library are many and include wa-

ter, hexane, butane, nitrogen and other carbohydrates. Unfortunately, methane

(the main component of LNG) is not present, mainly because very few researchers

have simulated LNG with a Lagrangian approach. On the other hand, thermo-

physical properties are available for methane in its gaseous state, allowing the

simulation of LNG dispersion in the atmosphere.

Figure 6.1: Composition of LNG

In the following, the assumption that LNG is equivalent to pure Methane will

be made. This is because the composition of LNG is such that Methane accounts
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for 85-95% plus of the total, meaning that the presence of other components

(Ethane, Propane, Butane and Nitrogen) is much less important.

The class that implements the liquid properties of compounds in the La-

grangian formulation will be first described, then the development of methane

will be introduced, and eventually, simulations of a possible scenario in an LNG

plant will be carried out, showing the main differences with an oil plant.

6.1 Liquid Library for Lagrangian solvers

In some of the solvers available in OpenFOAM, the description of the thermo-

physical properties of a liquid compound have to be introduced in the simulation

folder, allowing to simulate any type of liquid if the quantities required by the

solver are available. Unfortunately, for the nature of Lagrangian solvers, any

liquid to be used needs to be present in a library, and any new liquid has to be

introduced in that library using a determined set of function that will be described

later.

The class is defined in such a way to have the quantities that do not depend

on temperature or pressure on the top. These are the following:

� Molecular Weight

� Critical Temperature

� Critical Pressure

� Critical Volume

� Critical Compressibility Factor

� Triple Point Temperature

� Triple Point Pressure

� Normal Boiling Temperature

� Dipole Moment

� Pitzer’s Accentric Factor

� Solubility Parameter
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These quantities are defined by their numerical value and do not necessitate

any function. Therefore the implementation of new liquid is straightforward

if these values are known. Some of these parameters, however, are not going

to affect the solution, such as the dipole moment, the accentric factor and the

solubility parameter, and the lack of information regarding the liquid analysed

can be neglected as these values are sometimes not present in the literature.

After having defined the constant quantities for the liquid, the class requires the

definition of quantities that depend on temperature and/or pressure, being the

following:

� Density

� Vapour Pressure

� Heat of Vapourisation

� Heat Capacity

� Enthalpy

� Ideal Gas Heat Capacity

� Second Virial Coefficient

� Dynamic Viscosity

� Vapour Dynamic Viscosity

� Thermal Conductivity

� Vapour Thermal Conductivity

� Surface Tension

� Vapour Diffusivity

The dependency of these values on pressure is currently not implemented

within the class, and therefore the functions are purely temperature dependant.

The dependency on pressure is important when there are significant pressure

changes in the domain, but considering our specific application, pressure is almost

completely constant in the whole domain, therefore the assumption of considering

the quantities at standard atmospheric pressure is acceptable.
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In literature, we can find a wide range of functions describing the quantities

listed above in function of temperature and pressure. OpenFOAM uses a set of

functions called NSRDS developed by the National Institute of Standards and

Technology (NIST) [148].

6.1.1 NSRDS Functions

In order to evaluate the value of the liquid properties at a certain temperature,

OpenFOAM uses NSRDS functions. There are 9 functions called respectively:

NSRDSfunc0, NSRDSfunc1, NSRDSfunc2, NSRDSfunc3, NSRDSfunc4, NSRDS-

func5, NSRDSfunc6, NSRDSfunc7, NSRDSfunc14. There is also an additional

function called API that is used only for vapour mass diffusivity, developed by

the American Petroleum Institute.

The NSRDS functions need a specific set of values in order to compute the

thermophysical values. For example, the NSRDSfunc0 is computed as:

NSRDS0 = a+ bT + cT 2 + dT 3 + eT 4 + fT 5 (6.1)

where T is the temperature of the liquid and a, b, c, d, e, f are the 6 values

required by the function.

The other functions are very similar and calculated as:

NSRDS1 = exp(a+ b/T + c log(T ) + d T e) (6.2)

NSRDS2 = a T b/(1 + c/T + d/T 2) (6.3)

NSRDS3 = a+ b exp(−c/T d) (6.4)

NSRDS4 = a+ b/T + c/T 3 + d/T 8 + e/T 9 (6.5)

NSRDS5 = a/b1+(1−T/c)d (6.6)

NSRDS6 = a (1− Tr)((e Tr+d)Tr+c)Tr+b (6.7)
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NSRDS7 = a+ b ((c/T )/sinh(c/T ))2 + d ((e/T )/cosh(e/T ))2 (6.8)

for which a different number of parameters need to be specified. The function

NSRDS14 has a longer formulation and was not reported here but it is based on

the same concept and definition of constants.

6.2 Properties of Liquid Methane

As it was discussed already earlier, in order to implement and simulate spills

of Liquefied Natural Gas, liquid methane properties have to be developed for

the lagrangian library. LNG composition varies depending on its source and

processing history but roughly 85 to 95 % of it is methane, the simplest of the

hydrocarbons, with the rest of it being made mostly of ethane and some propane

and butane, along with trace amounts of nitrogen.

The properties required by the liquid library in the lagrangian solvers are

reported in Table 6.1.

Table 6.1: Properties of Methane (CH4)

Property Value

Molecular Weight (W ) 16.04 Kg/Kmol

Critical Temperature (Tc) 190.85 K

Critical Pressure (pc) 4640170 Pa

Critical Volume (Vc) 0.0062 m3/Kmol

Critical Compressibility Factor (Zc) 0.29

Triple Point Temperature (Tt) 90.66 K

Triple Point Pressure (pt) 11679 Pa

Normal Boiling Temperature (Tb) 111.66 K

Dipole Moment (dipm) 0.0668 ·10−30 C ·m
Accentric Factor (ω) 0.012 (J/m3)0.5

Solubility Parameter (δ) -

The solubility parameter could not be found, but since its value will not affect

the solution the value used for Ethane (C2H6) will be assumed.
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These properties are easily implemented for methane in the lagrangian library.

Moving now onto the thermophysical properties that depend on the temperature,

these are a bit more complicated to implement, because of the NSRDS functions.

In order to simplify the implementation, we will assume that all the liquid prop-

erties are constant with respect to temperature, so that the coefficients for the

functions do not need to be calculated using a curve fitting procedure. This as-

sumption comes from the fact that in the simulations that will be run for LNG the

temperature at which the liquid is stored is exactly at the boiling point, therefore

the liquid will not have temperatures lower than that. This means that we can

assume constant properties (such as density) with respect to temperature. These

properties are listed in Table 6.2.

Table 6.2: Properties of Methane to be considered constant with temperature

Property Value

Density (ρ) 422.59 Kg/m3

Heat of Vapourisation (hl) 510000 J/Kg

Specific Heat Capacity (cp) 3479.9 J/Kg ·K
Specific Enthalpy (h) -557.34 J/Kg

Second Virial Coefficient (B) -

Dynamic Viscosity (µ) 1.172·10−4 Pa · s
Thermal Conductivity (K) 0.18409 W/m ·K

Surface Tension (σ) 0.014 N/m

The second virial coefficient could not be found but again its dependency is

negligible therefore the value assumed for Ethane is used. In order to implement a

constant value for these properties, all of them are calculated using the NSRDS0

function, which formula was shown before, therefore if we assume a value of 0 for

the coefficients b− f then the coefficient a can be assumed to be the exact value

of the property, leading to a null dependency on temperature.

The only values that are left to define in order to implement methane in

the lagrangian library are the gas properties such as vapour pressure, ideal gas

heat capacity, vapour dynamic viscosity and vapour thermal conductivity. In the

lagrangian solver, there seems not to be any use of the gas properties other than

the vapour pressure, and this means that the only parameter to be fit using a

NSRDS function is the latter, while the rest of the properties can be taken from
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any other liquid, better if this is an hydrocarbon, so that the values will not be

too different.

6.2.1 Calculation of the coefficient for vapour pressure

In order to calculate the coefficient to be used for the NSRDS function for the

vapour pressure, we need to calculate the dependency of it with temperature or

take the values from a table. The vapour pressure can be expressed for example

using Antoine’s equation, expressed by the following equation:

pv = 10A−
B

C+T (6.9)

This equation is valid for temperature values expressed in Celsius and the

pressure obtained is in mmHg (millimetres of mercury). The values of A,B,C

for methane depend on the temperature range selected, meaning that we can

define two regimes with different coefficients. The values obtained for the two

regimes are:

(1) A = 6.34159, B = 342.22, C = 260.221, 181oC ≤ T ≤ −163oC

(2) A = 6.7021, B = 394.48, C = 264.609, 162oC ≤ T ≤ −83oC

In terms of the functions used in OpenFOAM, the vapour pressure is in most

cases calculated with the use of the NSRDS1 function, which expression is:

NSRDS1 = exp(a+
b

T
+ c log(T ) + d · T e) (6.10)

Fitting the coefficients present in this equation with the values obtained by

Antoine’s Equation we obtain the following:

a = b = 0, c = 1.26, d = 4.4655 · 10−4, e = 2
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6.3 Simulation of liquid spill in an LNG plant

After having implemented liquid methane in the lagrangian library, it is possible

to simulate a likely scenario in an LNG plant, regarding liquid spill from a storage

tank.

It was previously shown what are the consequences if a storage tank fails and

liquid starts to come out from its top. The liquid vaporised and hits the ground,

leading to a flammable cloud that if ignited can lead to an explosion.

Even if an LNG plant has some characteristics in common with a fuel plant,

there are some significant differences such as tank size, tank distribution, piping

and other facilities. In a typical fuel plant, tanks usually do not exceed 20m in

height, meaning that the maximum distance before the liquid hits the ground is

not more than that; on the other hand, LNG storage tanks are usually bigger,

ranging from 30 to 50 meters in terms of height. Also, their structure is signifi-

cantly different because the risk associated with it, therefore the tank walls are

built to stand very high pressures.

In terms of droplets behaviour, the lack of experimental data for LNG spills

makes the setup complicated, meaning that an assumption for the droplet diam-

eter distribution has to be made. As noted by HSL [30], surface tension affects

the droplet diameter and distribution. For example, considering water, whose

surface tension is about 0.07 N ·m, being one of the fluid with the highest surface

tension due to the strong attraction between its molecules, in case of a cascade,

the atomization process that leads to the formation of droplets creates a wide

spectrum of diameter with a high mean diameter (around 5mm) if compared to

most hydrocarbons whose surface tension is much smaller. In the simulation of

hexane spills, HSL reported that droplets usually have a more uniform spectrum

and their mean diameter is 2mm. Methane (LNG is very similar) has a surface

tension of 0.014 N ·m, similar to the one of hexane (0.018 N ·m), therefore the

droplet size and distribution can be assumed to be analogous. As mentioned al-

ready, the decrease in surface tension usually leads to smaller droplets, therefore

an LNG cascade could result in smaller droplet compared to a fuel one. Dynamic

viscosity of the fluid has the same effect, meaning that a decrease in the value of

it leads to a decrease of the droplet size.
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6.3.1 Geometry setup

A very basic geometry comparable to the one obtained for the fuel tests was made.

A typical size for the LNG storage tank was assumed, with a tank height of 50 m

and a 70 m diameter. The size of the domain was chosen to be large enough to

consider for air movements, although the mesh was coarse in the far region from

the cloud formation. A picture showing the domain analysed is shown in Figure

6.2.

Figure 6.2: Domain used for the CFD calculations (D=70m, A=50m, L=300m,
H=100m)

The droplets release point was chosen at the top of the tank, as it is the most

likely scenario that can be obtained in an accidental spill.

6.3.2 Turbulence modelling

A RANS approach was used for the turbulence modelling with the κ − ω SST

standard model. Due to the size of the domain and cloud formed an LES approach

was somehow prohibitive and would not lead to an improvement of the results in

terms of vapour production and cloud dispersion other than on local points.

6.3.3 Mesh sensitivity analysis

Mesh sensitivity tests were run in order to obtain a grid independent solution.

Five levels of mesh refinement were analysed with a number of computational

cells showed in Table 6.3.
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Grid density Number of cells

1 162651

2 349272

3 687619

4 1196559

5 2091647

Table 6.3: Grid level and number of computational cells used

Figure 6.3: Mesh showed on the symmetry plane

The mesh was developed using the OpenFOAM utility snappyHexMesh which

defined different zones where the initial grid was refined up to a certain level

depending on the importance of the region. A symmetry cut of the domain in

Figure 6.3 shows a close look on the mesh and part of the refinement regions.

The results obtained from the mesh sensitivity analysis are shown from Figure

6.4 to 6.7. These were obtained at 40 seconds after the beginning of the simulation

on two sets of lines defined in Table 6.4.

Results clearly show that a grid independent solution was obtained with level

4 and 5, therefore a further refinement of the mesh would not lead to significant

improvements for this type of analysis.
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Line Number Starting Point (m) End Point (m) Direction

1 (38,-49.5,0) (60,-49.5,0) x axis

2 (39,-49.5,0) (39,10,0) y axis

Table 6.4: Definition of line 1 and 2 for the mesh sensitivity results
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Figure 6.4: Temperature profile on line 1

6.3.4 Evaporation of droplets

Due to the temperature conditions, the methane droplets are all boiling, con-

sequently they start to evaporate quickly, as shown in Figure 6.8 (the droplets

diameter is scaled by a factor of 50 with the real value for more understandable

results).

Figure 6.9 shows the evaporation mass flow rate of the liquid phase (blue

line) within the first 8 seconds of the simulation. The green line represents the

mass flow rate of the liquid (droplets phase) introduced in the domain. It is clear

that an equilibrium is reached within 2 seconds since the start of the simulation,

where the evaporation flow rate matches the introduced mass flow rate, meaning

that after an initial transient condition the amount of mass that entrains the

domain in liquid form matches the amount of vapour formed due to evaporation.

This means that a huge amount of vapour is produced within the cascade, which
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Figure 6.5: Velocity profile on line 1
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Figure 6.6: Temperature profile on line 2

eventually will spread on the ground due to buoyancy.
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Figure 6.7: Velocity profile on line 2

Figure 6.8: Cascade Evolution

6.3.5 LFL and cloud contour

One of the most important aspects when analysing the dispersion of flammable

gas is the extent of the LFL profile. For methane, the LFL is 5% in volume. The

contour of such value along with the vapour cloud extension are shown every 5
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Figure 6.9: Droplets evaporation mass flow rate

seconds from Figure 6.10 to 6.17.

(a) Cloud (b) LFL Contour

Figure 6.10: Contours showing the cloud and the LFL at 5s

It is clear that in the region close to the droplets where the vapour is produced

and therefore high concentration of methane is present the LFL is very close

to the cloud extension, while when the cloud moves close to the ground and

starts spreading (15-20 seconds) the LFL contour is confined to a smaller radius

compared to the cloud, because of mixing and dispersion in the air. This is a

positive effect in terms of the safety of the plant because it limits the extent to

which an ignition source in the proximity of the cloud can produce a fire.

Another important aspect of the dispersion of LNG in the air is asphyxiation,
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(a) Cloud (b) LFL Contour

Figure 6.11: Contours showing the cloud and the LFL at 10s

(a) Cloud (b) LFL Contour

Figure 6.12: Contours showing the cloud and the LFL at 15s

(a) Cloud (b) LFL Contour

Figure 6.13: Contours showing the cloud and the LFL at 20s

which occurs when the concentration of oxygen in the air drops below a certain

value. This phenomenon is independent of any risk of fire because it is only

related to the presence of LNG vapour in the air. Due to the large size of the

domain used it can be somehow difficult to understand the height of the vapour

cloud. Because the total amount of liquid is vaporised within seconds, a large

vapour cloud is produced, and the height at which it spreads close to the ground
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(a) Cloud (b) LFL Contour

Figure 6.14: Contours showing the cloud and the LFL at 25s

(a) Cloud (b) LFL Contour

Figure 6.15: Contours showing the cloud and the LFL at 30s

(a) Cloud (b) LFL Contour

Figure 6.16: Contours showing the cloud and the LFL at 35s

can be appreciated in more details looking at Figure 6.18, where a sample of a

human being is introduced in the domain, to shown that the cloud height is well

higher, therefore breathing can be difficult.
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(a) Cloud (b) LFL Contour

Figure 6.17: Contours showing the cloud and the LFL at 40s

Figure 6.18: Human presence close to the tank

6.3.6 Spray Pattern

The dataset that OpenFOAM gives back to the user for post-processing of droplets

is very complex and it can be easily read only on Paraview. For this reason a

utility called foamToMatlabLagrangian was developed which takes all the infor-

mation stored for the lagrangian phase and converts them in a more readable

format which can be used in data processing software.

The spray pattern is examined in details in Figure 6.19 and 6.20. The front

view shows that the spray becomes narrower while being driven down by gravity,

this is because the droplets at the side of the spray are subject to higher heat ex-

change, therefore higher evaporation/boiling rate, also because the concentration
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Figure 6.19: Front view of the spray
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Figure 6.20: Side view of the spray

of CH4 in the bulk of the cascade is higher, meaning less mass evaporated in the

same time step.

The side view shows how the spray forms a parabola shape due to gravity
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and aerodynamic drag acting on the droplets. The spray becomes wider, because

the drag/weight ratio is higher for smaller droplets meaning that these will slow

down more quickly than bigger droplets. At the same time, the smaller droplets

evaporate completely much before the bigger ones, which is why the spray pattern

present a thin shape at the very end of it.

The average diameter of the spray for different heights is shown in Figure

6.21. The evolution of such quantity is such that from an initial value of 1.4 mm,

due to the evaporation of methane the mean diameter changes almost linearly

reaching a value of 0.2 mm at the end of the spray.
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Figure 6.21: Average diameter of the droplets

A very similar shape can be observed in Figure 6.22 which shows the maximum

diameter for different heights. From an initial value of 2 mm, the maximum

diameter decreases down to a value of about 0.3 mm at the bottom of the cascade.

Figure 6.23 shows the average velocity of the droplets respect to their height.

The initial condition for all the parcels was set at 2 m/s (to match the spill mass

flow rate) on a direction parallel to the ground. While the horizontal compo-

nent of the velocity starts decreasing due to aerodynamic drag, the vertical one

starts increasing due to gravity, up to a certain value (the so-called asymptotic

velocity), where the aerodynamic drag and gravity forces cancel out. Under such

circumstances, the velocity should be kept constant, but due to evaporation of

the droplet, its volume shrinks, and because the drag is a function of the square

of the droplet radius while gravity is a function of the cube of the radius, the ve-

locity starts decreasing again. This is well shown in the figure where the average
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Figure 6.22: Maximum diameter of the droplets
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Figure 6.23: Average velocity magnitude of the droplets

velocity reaches a maximum value greater than 8 at -10 m, and decreases again

down to a value of 7 m/s at the end of the cascade.

6.4 LNG dispersion in a plant and Explosion

Although the case examined in the previous section is interesting from a physical

point of view, because it gives an insight of what the vapour cloud size is and the

shape of the liquid spill, it does not show how the cloud will disperse in a real

plant, where obstacles are present. In a real LNG plant, there is a wide range of
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building and facilities which makes the risk of a spill from a tank more hazardous

and with a higher probability of detonation. Although there is not a universal

design, some of the characteristic facilities present in a plant are the same for

different cases, such as storage tanks, high-pressure pumps, regaseifiers, metering

stations, compressors and pipes.

Figure 6.24: Geometry used for the CFD calculation (tank diameter is 70m, height
is 50m, plant base area is A=150m, B=80m and domain size is 450x450x100m)

Figure 6.24 shows the geometry used for the testcase, where the same tank

is used from the previous calculations while some of the components of a typical

power plant are introduced in front of the release point. The size of the tank is

50 m is height with a radius of 35 m. The plant occupies an area of 200mx125m,

with a height varying from building to building, with a peak of 60 m for the

tower. The minimum distance from the tank to the plant is about 25 m, in the

direction where the spill is supposed to take place, to account for the worst-case

scenario.

The mesh was obtained using the tool snappyHexMesh, with refinement boxes

in the region of the liquid spill and close to the ground where the cloud will spread.

The number of cells used was around 4 million. The k−ω SST model was used to

model the effects of turbulence. Regarding wall treatment, due to the constraints

on the geometry size, resolving the turbulence up to the wall would have been too

demanding. Therefore a wall treatment approach was used. The values obtained

for y+ were satisfactory and between the range 30 < y+ < 300 throughout the

whole simulation.

No mesh sensitivity analysis was studied, because the same mesh size used in

the single tank analysis was assumed, and the same level of accuracy was assumed
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in the current case.

Figure 6.25: Mesh obtained by snappyHexMesh

Initial conditions considered for a quiescent domain, with a low turbulence

intensity and a constant temperature of 6°C. Regarding boundary conditions, the

tank, ground and power plant were considered as no-slip walls, with an adiabatic

condition for the temperature.

In order to study the effect of different spills on the evolution of the LFL,

two cases have been simulated using a different spray pattern and mass flow rate.

The risk of an explosion is directly related to the presence of obstacles within the

domain and how far the cloud spreads within these obstacles. The first case used

the same set-up adopted for the case where only the tank was present, with a

mass flow rate of methane around 12 Kg/s. The second testcase assumed a wider

inlet for the Lagrangian phase and a mass flow rate of 36 Kg/s.

6.4.1 Results

Figure 6.26 shows a countour of the LFL for different times for the 12 Kg/s case.

The mass flow rate is such that a steady condition in terms of the LFL is reached

at around 150 s since the start of the simulation. In terms of cloud dispersion, the

simulation was run for 10 minutes and the vapour cloud keeps expanding within

the domain, but as mentioned earlier the properties of methane are such that this
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(a) 10 s (b) 50 s

(c) 100 s (d) 150 s

Figure 6.26: Contours showing the LFL for the 12 kg/s case

cannot be ignited, due to the LFL being confined in a region close to the tank

walls.

Figure 6.27 shows the contour of the LFL for the 36 Kg/s case. Different

times are chosen because of the larger mass flow rate. Here the flammable cloud

develops on a much bigger area covering the plant facilities as well.

The results obtained for the 12 kg/s case show consequently that the flammable

cloud formed is such that within the highly congested area the volume concen-

tration is lower than the LFL, therefore it could not be ignited. This, however,

does not mean that a fire is less likely to happen, but only that the damage and

fire size could be confined in the area close to the tank, with a low probability

of a detonation to occur, which would extend the damage on a larger area and

intensity.

Increasing the spill size in terms of area and volume released (which could

be a consequence of a larger failure in the tank structure or higher flow rate

injected in the tank), leads to a larger area covered by the LFL contour. This

is particularly obvious analysing the results of the 36 kg/s case, where the LFL

depicted in red penetrates the plant facilities to a large extent. This means not

only that the cloud is more likely to be ignited due to a large amount of electrical
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(a) 50 s (b) 100 s

(c) 150 s (d) 600 s

Figure 6.27: Contours showing the LFL for the 36 kg/s case

equipment present in the buildings and facilities, but also that if a fire occurs

in such area, the large number of obstacles (various in size) could enhance the

combustion process and lead to a Deflagration to Detonation transition (DDT),

with catastrophic consequences.

Results obtained varying the spill size show therefore that the extent of the

cloud formed increased with the mass flow rate, and that although the cloud keeps

dispersing in the domain, the LFL contour is limited and reaches a maximum size,

from which one could determine the risk of a potential fire. Also, the amount

of liquid that evaporates matches the mass flow rate released after an initial

transitory period, after which the whole liquid mass introduced in the domain

is converted into vapour that initially moves close to the ground due to the

movement of air consequent the liquid cascade and density differences with the

surrounding air.
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6.5 Chapter summary

Liquid Methane was implemented in the lagrangian library of OpenFOAM using

data available at its boiling point. The approximation of LNG being made entirely

of methane was made and has been used already in the literature. Due to the lack

of data available, no validation could be done with the numerical data, leading to

a purely numerical analysis of the simulation. A simple testcase with a circular

tank was first assumed and the characteristics of the cascade analysed. The main

findings were the liquid to be fully evaporated well above the vertical mid section

of the tank, which is not surprising considering the fact that LNG is boiling when

in contact with room temperature. The initial density of LNG vapour is such that

the flammable cloud moves close to the ground, and heats up to a point where it

starts behaving as a buoyant cloud. A second testcase was analysed, similar to the

previous one but in the context of an LNG plant. An stl file containing standard

facilities present in a plant were incorporated in the mesh and different spill sizes

were analysed. The LFL contour of the vapour cloud was found to be highly

affected by the spill size, were an increase of this value leads a higher penetration

in the plant facilities of the flammable cloud. If compared to a gasoline cascade,

the main difference was found in the amount of liquid evaporated (all the liquid

that comes out vapourises within a fall of 20m), as well as in the pattern of the

spray, with LNG at the sides of the cascade vapourising much quicker than the

one in the core of the liquid region.
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Chapter 7

Conclusions

The aim of the present work is the development of a computational tool capable

of solving and predicting liquid spills of hydrocarbons, called cascadeFoam.

The first part of the work is based on the development of a solver that was able

to deal with the physics involved in the liquid spill of a volatile substance. The

main effects that needed to be considered were the multiphase nature of the flow,

the buoyancy effects, the splashing of liquid droplets on solid surfaces and the

turbulence formed by the interaction of the droplet with the gas phase. The solver

was developed within the OpenFOAM toolbox, starting from the existing solver

sprayFoam which however lacked important models for the current application.

The buoyancy effects were fundamental for all the type of spills analysed,

starting from heavy hydrocarbons such as hexane or decane which will tend to

stay close to the ground once a vapour cloud is formed from a spill, because their

vapour density is higher than the one of standard air at room temperature. At

the same time, if not more important, the buoyancy plays a fundamental role in

the liquid spill of Liquefied Natural Gas, because the density of the gas phase

of such material varies with temperature. LNG vapour is heavy once the liquid

vapourises, at very low temperatures (at its boiling point), and the density starts

decreasing while the temperature of the gas rises until it reaches a point where

the two density equalises, and after that, the LNG becomes lighter than air. This

has to be approached within the computational model, and that is why explicit

buoyancy modelling was implemented in the momentum and pressure equation,

in order to simulate the spreading of buoyant vapour clouds appropriately.

The second thing that was approached was the multiphase nature of the flow,

and the method used to solve this was consistent with the literature, using a
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Lagrangian-Eulerian approach. This is because the method is a good compromise

of accuracy and speed of the results. The cascade was modelled as an array of

droplets from their source at the top of the tank down to the ground. However,

the cascade is not composed entirely of droplets from the beginning, but it is

rather a uniform liquid spill that due to hydrodynamic instabilities starts breaking

into smaller ligaments and eventually into small droplets. This process is very

complicated to model and it requires the use of other approaches such as the

Eulerian-Eulerian method, and was outside the scope of the current research.

For this reason, the primary breakup of the liquid spill was neglected, and the

droplets were considered to be formed right at the beginning of the spill, also

using experimental findings from the HSL, which showed how liquid spills of

hydrocarbons form almost immediately an array of droplets with a remarkably

constant diameter distribution.

As pointed out in reports from the HSL, one of the fundamental effects to be

modelled and investigated within the CFD model was the interaction between

droplets and solid surfaces, such as the concrete ground at the bottom of the

tank. The outcome of such process has been investigated by a large number of

authors, and there is no universal model currently available that gives accurate

results for any type of interaction. Among the different types of outcome, the

most difficult to model and the most interesting is the so-called splashing. The

process depends on a high number of parameters such as impact velocity, droplet

diameter, properties of the liquid, which are usually described by non-dimensional

quantities. Previous work done by HSL did not include any splashing modelling

within the Lagrangian solver they used, which resulted in the use of predefined

droplet inlet at the bottom of the cascade to mimic the effect of splashing. In the

current work a splashing model available within OpenFOAM was used, the Bai

and Gosman model, which proved to improve the comparison with experimental

results. However, the model was developed for applications in which the droplet

sizes and impact velocities were far from the ones experienced in cascades of

hydrocarbons. It was therefore fundamental to improve the current splashing

model to apply to the current application and give satisfactory results.

The development of a modified splashing model was approached using the

Volume of Fluid method, using a large number of simulations of single droplet

impact onto thin liquid films. Although in real applications a large number of

droplets splashes almost simultaneously, single droplet simulations are easier to

analyse and although they do not give the exact outcome, they are statistically
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conservative. Three main parameters were varied within the large set of simu-

lations, such as the droplet diameter, impact velocity and liquid film thickness.

The results were analysed in terms of splashing mass ratio, splashing angle and

splashing threshold. For the latter, a correlation developed by Cossali was used

and proved to be reliable for the current application. For the splashing angle,

the values were consistent with the previous model for small values of the Weber

number, but as this increased, the lower limit of the angle increased to an asymp-

totic value. The splashing mass ratio showed a similar behaviour with values

increasing with the Laplace and Weber number, as well as the non-dimensional

film thickness. All the values that were extrapolated from the simulations were

used to produce a number of correlations that were then implemented in a new

splashing model.

The new splashing model was then used to improve the results of the La-

grangian solver against experimental data, which showed an improvement of the

temperature measurements in the far region of the cascade, as well as increasing

the vapour formation from the liquid cascade.

The last part of this work was about LNG cascades using the Lagrangian

solver developed previously. First liquid methane had to be implemented because

it is not available in the standard version of OpenFOAM. Liquid properties of

methane were considered at its boiling point and interpolated using functions

available within the liquid library. First simulations were carried out on a single

tank to understand the differences with other types of hydrocarbons. The size

of LNG tanks is usually larger than gasoline tanks, and usually, reach 50 m in

height. Such height demonstrated to be enough for a liquid spill to vaporise

completely before hitting the ground, showing that the liquid droplets cease to

exist before 20 m from the spill at the top of the tank. The vapourisation rate

is such that after a transitory period of few seconds the whole amount of liquid

spilled is transformed into a heavy vapour that is driven down to the ground by

gravity and spreads low, leading to the risk of explosion if any source ignition is

present. This is obviously a much greater risk than any other hydrocarbon spill

where much of the fluid is spread on the ground as a liquid film as the fluid is

usually at a lower temperature than its boiling point.

At a second stage, the tank was put into a more realistic context, being sur-

rounded by a number of facilities which are usually present in a power plant,

which would confine the flammable cloud and form obstacles that could lead to

a deflagration to detonation transition, the effect of which are catastrophic, as
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it happened in Buncefield. Two different spill flow rates were analysed, to un-

derstand the effect on the flammable cloud and whether the Lower Flammability

Limit would spread at the same rate. The first spill analysed showed that al-

though the vapour cloud spreads largely into the power plant and beyond its

limits, the LFL contour, which is the one we are ultimately interest in, remains

confined within the tank region, and does not spread into the plant facilities. The

second larger spill, showed differences with the first one when it comes to the LFL

contour. Although the cloud dispersion shows significant similarities between the

two cases, in the second one the LFL moves into the plant, and keeps growing,

which has obviously a much higher risk if the cloud is ignited.

Proposed future work

The work developed dealt with the spill of flammable liquids and showed that

among the fundamental things to capture within the computational model the

splashing model and spreading of the buoyancy-driven cloud are essential.

The physics of the topic is highly complicated and a series of assumptions had

to be made in order to build a solid tool within the timescale of the project. Such

assumptions include the atomization region of the liquid spill and the multiple

interactions of the splashed droplets. The atomization region is of interest for a

large number of applications, but the large size of spills presented in this work

has little if no previous work in the literature. Future work could be done on this

topic, analysing how different spills and liquids develop into droplets, and if the

assumptions and conclusion led by the HSL are applicable or not.

Research could also be oriented towards understanding the effect of multiple

droplets splashing on a liquid film, following the assumption made to develop the

splashing model adopted in the current work. Several droplets impacting on a

pre-existing liquid film behave differently from single droplet impacting, mainly

because of the craters formed by previous impacts. I would also be interesting to

analyse the effect on averaged properties such as mass splash ratio or splashing

angle, and understanding if these effects are somehow similar between single and

multiple splashing.

Work is currently being done on the other topics of the SafeLNG project, and

the effect on igniting the cloud analysed in the current work. This will give a

better understanding of the whole process and provide more detailed results on

whether the flammable cloud could lead to catastrophic consequences for an LNG
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spill as it happened with gasoline in Buncefield.
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nukiyama–tanasawa distribution function and a rosin–rammler model for

the particle-size-distribution analysis,” Powder Technology, vol. 186, no. 3,

pp. 278 – 281, 2008.

[124] Y. Addad, D. Laurence, C. Talotte, and M. Jacob, “Large eddy simula-

tion of a forward–backward facing step for acoustic source identification,”

International Journal of Heat and Fluid Flow, vol. 24, pp. 562–571, 08 2003.

[125] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach

to computational continuum mechanics using object-oriented techniques,”

Computers in Physics, vol. 12, no. 6, pp. 620 – 631, 1998.

[126] M. Macchi, J. X. Wen, K. Volkov, A. Heidari, and Y. M. Chung, “Modeling

liquid fuel cascades with openfoam,” Process Safety Progress, vol. 35, no. 2,

pp. 179 – 184, 2016.

[127] S. Coldrick, G. Atkinson, and S. Gant, “Large scale evaporating

liquid cascades–an experimental and computational study,” in Proc.

IChemE Hazards XXII Symposium, Liverpool, UK. IChemE, Rugby, ISBN,

vol. 1212422483, 2011.

183



REFERENCES

[128] R. D. Deegan, P. Brunet, and J. Eggers, “Complexities of splashing,” Non-

linearity, vol. 21, no. 1, pp. C1–C11, 2008.

[129] M. Angioletti, R. D. Tommaso, E. Nino, and G. Ruocco, “Simultaneous

visualization of flow field and evaluation of local heat transfer by transitional

impinging jets,” International Journal of Heat and Mass Transfer, vol. 46,

no. 10, pp. 1703 – 1713, 2003.

[130] K.-L. Pan and C.-Y. Hung, “Droplet impact upon a wet surface with var-

ied fluid and surface properties,” Journal of Colloid and Interface Science,

vol. 352, no. 1, pp. 186 – 193, 2010.

[131] Y.-S. Shim, G.-M. Choi, and D.-J. Kim, “Numerical and experimental study

on effect of wall geometry on wall impingement process of hollow-cone fuel

spray under various ambient conditions,” International Journal of Multi-

phase Flow, vol. 35, no. 10, pp. 885 – 895, 2009.

[132] K. Yokoi, “A density-scaled continuum surface force model within a bal-

anced force formulation,” Journal of Computational Physics, vol. 278,

pp. 221 – 228, 2014.

[133] M. Sussman, P. Smereka, and S. Osher, “A level set approach for comput-

ing solutions to incompressible two-phase flow,” Journal of Computational

Physics, vol. 114, no. 1, pp. 146 – 159, 1994.

[134] C. Kunkelmann and P. Stephan, “Modification and extension of a stan-

dard volume-of-fluid solver for simulating boiling heat transfer,” in Proceed-

ings ECCOMAS CFD 2010 – Fifth European Conference on Computational

Fluid Dynamics, 2010.

[135] M. Dianat, M. Skarysz, and A. Garmory, “A coupled level set and volume

of fluid method for automotive exterior water management applications,”

International Journal of Multiphase Flow, vol. 91, pp. 19 – 38, 2017.

[136] T. Yamamoto, “Setting and usage of openfoam multiphase solver (s-

clsvof),” in 30th OpenCAE study meeting, Kansai, Japan, 2014.

[137] M. Griebel and M. Klitz, Simulation of Droplet Impact with Dynamic Con-

tact Angle Boundary Conditions, pp. 297–325. Springer International Pub-

lishing, 2014.

184



REFERENCES
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