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DNA methyltransferases and gastric cancer: insight into 

targeted therapy 

Abstract 

Gastric cancer is a major health problem worldwide occupying most frequent causes of cancer-

related mortality. In addition to genetic modifications, epigenetic alterations catalyzed by DNA 

methyltransferases (DNMTs) is a well-characterized epigenetic hallmark in gastric cancer. The 

reversible nature of epigenetic alterations and central role of DNA methylation in diverse 

biological processes provides an opportunity for using DNA methyltransferase inhibitors to 

enhance the efficacy of chemotherapeutics. In this review, we discussed key factors or 

mechanisms such as SNPs, infections, and genetic modifications that trigger DNMTs level 

modification in gastric cancer, and their potential roles in cancer progression. Finally, we 

focused on how inhibitors of the DNMTs can most effectively be used for the treatment of 

gastric cancer with multidrug resistance.  

  

Keywords: DNA methyltransferase (DNMT); epigenetic alterations; gastric cancer; drug 

resistance; chemotherapy 

 

Introduction  

Gastric cancer is caused in part by genetic and epigenetic alterations in oncogenes and tumor 

suppressor genes (TSGs) [1]. Although epigenetic modifications are regulators and natural 

phenomenon occurring during normal development, tissue-specific gene expression, and cell 

functions; aberrant epigenetic modifications can have harmful effects that can contribute to 

cancer development [2-3]. New and ongoing researches are continuously uncovering the 

interaction between genes and environment through epigenetic alterations which make a person 
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susceptible to develop gastric cancer [4-5]. Aberrant epigenetic modifications can dysregulate 

the transcription level of TSGs and oncogenes through different mechanisms, without any 

changes in DNA nucleotide sequences of the genes [1]. Epigenetic alterations including histone 

modification, non-coding RNA, and DNA methylation may initiate and sustain changes which 

lead to the inactivation of tumor suppressor and other cancer-related genes in gastric cancer [6-

8]. Histone proteins determine the chromatin structure and function through a variety of 

modifications like acetylation and methylation in their N-terminal domain. These 

modifications have effects on a number of pivotal molecular processes including gene 

transcription, DNA replication, and nucleosome positioning. Depending on the type of histone 

modification, transcription is either activated or repressed. Histone hyper-acetylation is linked 

with transcriptional activation, but the outcome of histone methylation relies completely on the 

type of modified amino acid residue, and the degree of methylation. For instance, 

trimethylation of H3K4 may promote gene expression, while trimethylation of H3K9 and 

H3K27 suppresses gene expression. Interestingly, tumor suppressive and oncogenic miRNAs 

are well-known epigenetic hallmarks of gastric cancers [3]. One third of miRNAs dysregulation 

is associated with histone modifications and hypo/hypermethylation of CpG islands which are 

located in their promoter and 5' regulatory end regions. MiRNAs bind to the 3’ untranslated 

region of their target genes and cause post-transcriptional gene inactivation [9]. Among the 

epigenetic processes, DNA methylation is a fundamental mechanism which plays a pivotal role 

in biological functions responsible for DNA stability preservation such as genomic imprinting, 

and X-chromosome inactivation. It is not unexpected that aberrant DNA methylation induce 

the development of numerous malignancies, especially gastric cancer [10-12]. DNA 

methylation in gastric epithelia can also be influenced by several factors including age, diet, 

physical activity, chronic inflammation, and infectious agents [13]. Global DNA hypo/hyper 

methylation frequently occur in gastric tumors, which make contribution to genomic instability 
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[10, 12]. In fact, aberrant hyperactivation of DNA methyl transferases (DNMTs) is responsible 

for TSGs silencing or inactivation, and eventually gastric cancer development [14-15].  

 

DNA methyltransferases classification 

Based on their structure, DNMTs are composed of three main types, DNMT1, DNMT2, and 

DNMT3. Maintenance methyltransferase (DNMT1) and de novo methyltransferases 

(DNMT3a, DNMT3b, and DNMT3L) are two major enzyme types with m5C methyltransferase 

activity (C-5 cytosine-specific DNA methylase or C5 Mtase), which trigger the transfer of a 

methyl group to C-5 carbon of cytosines in mammalian DNA [16-17]. DNMT1 is responsible 

for maintenance of DNA methylation status of newly synthesized daughter strands during 

replication, leading to full DNA strands methylation. DNMT3 consists of three subtypes 

comprising DNMT3a, DNMT3b, and DNMT3-Like protein (DNMT3L). DNMT3a and 

DNMT3b contribute to catalyze DNA methylation pattern throughout the nucleus without 

distinguishing hemi-methylated from methylated CpG sites during embryogenesis and germ 

cell development. DNMT3L is known as a regulatory protein for de novo methylation. It has 

been shown that DNMT3L participates in regulating the DNMT3a and DNMT3b activity for 

de novo methylation. DNMT2 is known as a DNA methyltransferase which lacks regulatory 

domain, but new findings showed the implication of this enzyme in adding methyl groups to 

tRNA anti-codon loop [18]. In general, the DNMTs consist of a C-terminal catalytic domain 

and an N-terminal regulatory domain (Fig. 1). The catalytic domain is conserved between 

DNMTs while the regulatory domain is variable in size and amino acid sequence. These two 

domains are linked by glycine-lysine repeats (GK)n. The catalytic domain in DNMTs consists 

of six motifs including I, IV, VI, VIII, IX and X. Motifs I and X are S-adenosylmethionine 

(SAM) binding site while motifs VIII and IX are implicated in DNA binding. DNMT3L lacks 

motifs IX and X in its catalytic domain. The N-terminal regulatory region of DNMT1 is 
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composed of several domains that are DNA methyltransferase associated proteins (DMAP); 

Proliferating cell nuclear antigen (PCNA) binding domain (PBD), nuclear localization signal 

(NLS), replication foci targeting sequence (RFTS), cysteine rich, zinc finger DNA-binding 

motif (CXXC), and bromo-adjacent homology Dmap1-binding region (BAH1 and BAH2).  

DMAP1 domain is responsible for binding of DNMT1 with the transcriptional repressor 

DMAP1 [19]. The PBD domain is able to interact with PCNA, and recruits DNMT to the 

replication foci in S phase. Relatively, the absence of PBD domain delays the methylation after 

replication [20]. RFTS domain is responsible for replication-coupled DNA methylation at the 

differentially methylated regions of imprinted genes through binding to SRA domain of 

UHRF1 (ubiquitin like with PHD and ring finger domains 1) protein that is a replication-

coupled methylation factor. In addition, RFTS domain protects the genome against aberrant 

methylation. It was reported that, truncated DNMT1 which lacks parts of the RFTS domain is 

unable to perform replication-coupled DNA methylation at the differentially methylated 

regions of imprinted genes, and can trigger global methylation of the genome as well [21-22]. 

The CXXC domain binds to unmethylated CpG dinucleotides, and is crucial for DNMT1 

enzymatic activity [23]. Both BAH motifs in PBHD domain are essential for the folding of 

DNMT1 [24-25]. Structurally, the N-terminal region of DNMT3 contains a variable region 

(280 amino acids in DNMT3a, and 220 amino acids in DNMT3b), and two conserved PWWP 

(tetrapeptide domain containing proline-tryptophan-tryptophan-proline motif) domains and the 

ATRX-Dnmt3-Dnmt3L (ADD) domain [26-27]. The PWWP domain that contains 100-150 

amino acids is conserved in both DNMT3a and DNMT3b [25]. This domain is responsible for 

the methylation of major satellite repeats at pericentromeric chromatin, and recognizes the 

H3K36me3 mark [28-29]. The ADD domain is composed of three cysteine-rich subdomains, 

and recognizes the unmethylated state of lysine 4 and 9 in histone H3 [30-32]. 
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Targets of DNMT in gastric cancer  

Aberrant DNA methylation due to the DNMTs up regulation may trigger tumor progression, 

invasion, and metastasis through down regulation of genes that have a role in proliferation 

inhibition and apoptosis-related pathway [33]. Several studies indicate that aberrant expression 

of DNMTs is closely linked to hypermethylation of TSGs. A series of genes which may become 

hypermethylated during gastric cancer development are listed in table 1. Many of these genes 

are involved in cell cycle regulation, apoptosis, proliferation, migration and major cell 

signaling pathways such as epithelial mesenchymal transition (EMT) ), notch, Wnt/β-

catenin, and AKT/mTOR. Investigations suggested that deregulation of these types of genes 

would significantly affect cancer progression. Wnt/β-catenin signaling pathway has a 

fundamental role in controlling the cellular processes such as cell proliferation, cell cycle 

control, and migration of epithelial cells of gastric mucosa. Alteration of Wnt signaling has 

been found to be implicated in gastric cancer development. Hypermethylation of Wnt related 

inhibitor genes including sFRP1, sFRP2, sFRP4, sFRP5, DKK-1, DKK-2, DKK-3, SOX10, 

SOX17, WIF-1, NKD1, HSULF-1, RUNX3, PRDM5, RASSF10, OSR1, and APC at the CpG 

island contribute to tumor progression through Wnt pathway activation [34-35]. It is known 

that AKT/mTOR pathway together with other signaling pathways acts as a crucial regulator of 

cell growth, metabolism, apoptosis, metastasis, and angiogenesis [36]. The alteration of 

AKT/mTOR pathway is associated with gastric tumor progression. Methylation of the TSGs 

that are responsible for inhibition of AKT signaling can lead to AKT activation and apoptosis 

evasion in tumor cells. Phosphatase and tensin homolog (PTEN) and A disintegrin-like and 

metalloprotease with thrombospondin type 1 motif, 9 (ADAMTS9) which act as suppressors 

for AKT pathway have been indicated to be silenced in gastric cancer [37-39]. Moreover, it 
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has been reported that notch signaling is a conserved pathway that plays a critical role in 

cellular functions vital for cell survival. Notch may act as both an oncogene and a suppressor 

in gastric cancer [40]. Epigenetic alterations of this pathway may lead to gastric cancer 

progression. Studies in gastric cancer cell lines demonstrate that promotor methylation of delta-

like canonical notch ligand 1 (DLL1) which encodes for a ligand of NOTCH1 was restored 

following treatment with 5-Aza-2'-deoxycytidine (5-Aza-dC), a DNMTs inhibitor [41-42]. 

Conversely, other investigations show that NOTCH1 can promote tumorigenesis by 

cyclooxygenase-2 activation [43]. It seems that the function of notch pathway components is 

ambiguous as they were reported either as suppressor or activator of gastric carcinoma, and 

their exact effect on different steps of gastric cancer pathogenesis still remains unclear [40, 42, 

44-45]. Iroquois homeobox 1 (IRX1) is a member of Iroquois homeobox factors family that is 

required for embryonic development [46]. Down-regulation of IRX1 has been reported in 

several cancers including gastric cancer.  Guo et al. have shown that exposure with 5-Aza-dC 

could restitute IRX1 protein level in gastric cancer cells [47]. Reprimo (RPRM) has been 

reported to be inhibited by DNMTs and its function was restored by treatment with zebularine, 

a DNMT inhibitor [48].  Moreover, a possible association between DNMT1 amplification, 

triggering hypermethylation of CpG islands and down-regulation of TSGs including human 

MutL homolog 1 (hMLH1), thrombospondin 1 (THBS1), cadherin 1 (CDH1) has been 

suggested in gastric cancer [49]. Besides, due to adverse effects of chemical drugs, DNMT-

targeted inhibition with small interfering ribonucleic acids (siRNAs) for reactivation of 

silenced genes including cyclin-dependent kinase inhibitor 2A (CDKN2A), A-kinase anchoring 

protein 12 (AKAP12B), runt related transcription factor 3 (RUNX3), helicase-like transcription 

factor (HTLF), and ras association domain family member 1 (RASSF1A) was used as a potential 

therapeutic strategy [50]. 
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Expression of DNMTs and susceptibility to infections in gastric 

cancer 

Although some clinical evidence show the elevated expression of DNMTs in gastric cancer, 

and consequent silencing of TSGs during tumorigenesis,  little is known about the mechanisms 

that trigger or cause aberrant methylations [14-15]. APC is a TSG that was introduced as a gate 

keeper, and mutation in this gene plays an important role in gastric cancer as well as in 

colorectal carcinogenesis [100]. The role of APC in regulating DNMTs level was examined in 

colorectal cancer, and it was found that full-length APC but not truncated APC is able to 

suppress DNMT1 activity [101]. Mutations in APC gene lead to the production of truncated 

protein which cannot suppress DNMT1 expression, and may be responsible for DNMT1 

upregulation in gastric cancer [100]. It has been also reported that exposure of gastric cancer 

cells to nitric oxide (NO) produced induced DNA methylation by enhancing DNMT enzymatic 

activity [102-103]. Furthermore, infectious agents can induce epigenetic modifications, and be 

the most common complications in gastric cancer [104-105]. Infections hijack the host DNA 

methylation mechanism via increasing DNMTs in order to control host transcription to their 

benefit. Figure 2 summarizes different ways through which infections increase DNMTs 

expression in gastric cancer.  Helicobacter pylori and Epstein-Barr virus (EBV) are well-

known carcinogenic risk factors in gastric cancer that facilitate DNMTs function and 

hypermethylation of CpG islands of various cancer-associated genes. Furthermore, several 

studies have indicated the presence of HPV (Human papillomavirus) in patients with gastric 

cancer, suggesting its potential role as risk factor for gastric cancer [106-107]. Study on human 

cervical carcinoma SiHa and CaSki cell lines has shown that P53 TSG suppresses DNMT1 

expression [108]. DNMT1 was also transcriptionally suppressed by P53 in non-small cell lung 

cancer (NSCLC) patients and A549 cell lines. P53 could repress DNMT1 expression by 
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interacting with SP1. This complex binds to both P53 and SP1 putative binding sites on 

DNMT1 promoter. Unlike P53, SP1 can lead to increased DNMT1 expression. Thus, mutation 

in P53 and overexpression of SP1 can trigger DNMT1 mediated hypermethylation of TSGs 

promoters [109]. Study on cervical cancer has shown that HPV-16 E6 protein probably 

upregulates DNMT1 expression by repressing P53 [108]. In addition to P53, RB could 

negatively regulate DNMTs expression through interaction with DNMT3a. Murine double 

minute 2 (MDM2) which encodes a nuclear-localized E3 ubiquitin ligase targets both P53 and 

RB, and therefore causes overexpression of DNMTs in cancer cells [110]. Infections increase 

the DNMTs expression by secreting proteins able to activate various signaling pathways [111]. 

In addition, chronic inflammation which occurs in the presence of infections in cancer cells 

promotes differentiation and polarization of monocytes into tumor-associated macrophages 

(TAMs). TAMs, as abundant inflammatory cells in tumor microenvironment, increase DNMT1 

expression by secreting chemokine (C-C motif) ligand 5 (CCL5) [112]. CCL5 a known 

biomarker in late stage of gastric cancer is upregulated in cells infected by H. pylori, EBV, and 

HPV [113-117].  Therefore, by inducing CCL5 chemokine, these infections may upregulate 

DNMTs in gastric cancer tissue. H. pylori infection is the main factor that causes gastric 

inflammation, and promotes aberrant DNA methylation. DNMT3a was indicated as a poor 

prognostic hallmark for gastric cancer infected with H. pylori [118]. Induction of AKT 

phosphorylation as the main contributor in AKT-NFκB pathway by H. pylori can stimulate 

DNMTs overexpression leading to TSGs hyper-methylation. Promoter hyper-methylation of 

TSGs is important in tumorigenesis. CagA the important gene of H. pylori, could increase AKT 

phosphorylation by activated PDK1. Phosphorylated AKT (P-AKT) induces DNMT1 

expression by NFκβ activation. Therefore, NFκβ could play a role in up-regulating the 

expression of DNMT by binding directly to its promoter [111].  H. pylori infection can also 

induce IL-1β as an important pro-inflammatory cytokine that has considerable function in 
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initiating and amplifying the inflammatory response. Increased IL-1β is followed by DNMT 

induction by activated inducible nitric oxide synthase (iNOS) and NO production which have 

an important role in aberrant DNA methylation and gastric carcinogenesis [103, 119-120]. H. 

pylori infection may directly effect on gastric cells by inducing macrophages activation, which 

causes an increase of NO production in gastric cells. Overproduction of NO can activate 

DNMTs to promote DNA methylation [121]. H. pylori infection through increased expression 

of IL-6 and IL-11 can activate signal transducer and activator of transcription 3 (STAT3) [122]. 

STAT3 can affect gene expression through epigenetic changes including DNA methylation and 

chromatin modulation. This transcription factor increases CpG island methylation of TSGs 

through interacting with DNMT1 [123].  

Interestingly, aberrant DNA methylation is strongly induced even in normal tissues by exposure to 

chronic inflammation due to H. pylori infection. Maekita et al. found that some CpG islands regions 

were significantly highly methylated in gastric mucosae of H. pylori-infected individuals in comparison 

with non-infected individuals [124]. Moreover, methylation levels of three tumor-suppressor miRNAs 

were found to increase in non-cancerous individuals infected with  H. pylori in comparison with non-

infected healthy subjects [125]. Furthermore, in vivo study indicated that inflammations triggered by H. 

pylori infection has a strong potential to induce aberrant DNA methylation in gastric epithelial cells 

[126]. Inflammation due to H. pylori infection induced the expression of chemokine (C-X-C motif) 

ligand 2 (CXCL2), IL-1b, NOS2, and tumor necrosis factor-alpha (TNF-) genes, in parallel to DNA 

methylation [126-127]. Accumulation of aberrant DNA methylation in gastric epithelial cells due to 

inflammatory response associated with H. pylori infection may favor cancerogenesis [126].  

In addition, TAMs can induce DNMT1 expression through CCL5/CCR5/STAT3 signaling 

pathway in gastric cancer cells. Overexpression of DNMT1 mediated by TAMs also induces 

gelsolin silencing and may lead therefore to gastric cancer progression [128-131]. The 

molecular mechanism of aberrant DNA methylation caused by EBV infection is not still clear. 
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However, at least 2 mechanisms by which EBV can effect DNA methylation have been 

proposed. One mechanism is that viral latent membrane protein 2A (LMP2A) can increase the 

phosphorylation of STAT3, which up regulates the DNMT1 and DNMT3b expression and cause 

epigenetic changes in gastric cells [132-133]. Also, EBV can induce DNMT1 expression 

through the viral oncoprotein LMP1 via JNK/AP1-signaling. LMP1 has two main regions 

called C-terminal activating region (CTAR1 and CTAR2). The YYD domain in CTAR2 can 

play an important role in activating DNMT1 gene expression. The YYD domain activates JNK 

kinase and upon phosphorylation of c-Jun, in turn c-Jun binds to AP1 site of DNMT1 promoter 

[134]. 

 

Polymorphisms in DNMTs and gastric cancer development 

Accumulating evidence demonstrate that genetic variations of DNMTs particularly single 

nucleotide polymorphisms (SNPs), and their haplotype blocks are associated with the 

occurrence rate of many cancers including gastric cancer [135]. SNPs may be responsible for 

promoter activity alteration, gene expression modulation, splice site change, transcription 

factor binding site change, and epigenetic modification [136]. Conspicuously, finding relevant 

polymorphisms can be used as a potential biomarker for gastric cancer prediction. Wang et al. 

indicated that the GG genotype of DNMT3A rs1550117 variant decreased the death risk of 

gastric cancer, and may therefore be a potential prognostic marker in gastric cancer [137]. 

Many studies have described the association of two common polymorphisms rs1569686 (-

579G>T) and rs2424913 (-149C>T) on the promoter of DNMT3B which alter the promoter 

activity [138-139]. However, there is conflicting evidence on the contribution of these two 

SNPs in different cancers [140-143]. Hu et al. [144] and Chen et al. [145] reported the 

association of rs1569686 with gastric cancer risk in the Chinese population, while Wang et al. 

[146] and Ahmadi et al. [147] did not observe any significant association in the Chinese and 
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Iranian population, respectively. Likewise, other studies demonstrated that rs2424913 was 

irrelevant to the risk of gastric carcinogenesis [144-145, 148-150]. Moreover, haplotype 

analysis showed that a haplotype block between rs1569686 and rs2424913 in DNMT3B locus 

[145] which carries -149T/-579T increased the susceptibility to gastric cancer. However, few 

other studies have shown no significant association between DNMTs variants and the risk of 

gastric cancer development. Table 2 summarizes the associated and non-associated variants of 

DNMTs with the risk of gastric carcinogenesis. Some studies have found that DNMTs variants 

can alter the survival rate of gastric cancer. Correspondingly, TG/GG genotypes of DNMT3B 

rs1569686 and AG/AA genotypes of DNMT3A rs1550117 were associated with poor survival 

of gastric cancer [137, 146], while GA/AA genotypes of DNMT1 rs2228611 were associated 

with higher rates of gastric cancer survival [151]. The effect of H. pylori infection as the main 

cause of gastric atrophy and gastric cancer, depends on host characteristics such as SNPs of 

DMNTs [152]. However, few studies have investigated the correlation between H. pylori 

infection with DNMTs SNPs in gastric cancer occurrence. Relatively, Jiang et al. [152] studied 

DNMT1 polymorphisms and demonstrated that the AA genotype of rs2228349 had higher risk 

of H. pylori infection whereas, the GG genotype of rs10420321 and the CC genotype of 

rs8111085 had lower risk of H. pylori infection but a higher risk for gastric atrophy 

susceptibility [152]. Furthermore, Cao et al. [153] found that the AA genotype of rs1550117 in 

DNMT3A had higher risk of H. pylori infection, but they did not observe any association of 

this SNP with gastric cancer and gastric atrophy. Among the studied SNPs, the 3’UTR SNPs 

can be recognized by miRNAs. Nevertheless, the key impact of miRNAs on posttranscriptional 

regulation of gastric cancer regulator genes via binding with their target sites on 3’UTR, and 

the influence of polymorphisms in miRNAs target sites haven’t been studied yet. Therefore, 

we looked for miRNA target sites alteration through studied DNMTs SNP via bioinformatics 

tools (DIANA-microT v5.0 [159], PolymiRTS Database 3.0 [160], miRNASNP v2.0 [161], 
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and RNAhybrid v2.1.2 software) to enlighten the molecular mechanisms that underlie the 

effect of DNMTs variants in gastric cancer. Yang et al. reported that DNMT3A rs13420827 is 

associated with gastric cancer risk [150], which was in disagreement with the results of two 

earlier studies [137, 153]. Bioinformatics tools revealed that rs13420827 is potentially targeted 

by 3 different miRNAs which are depicted in figure 3. The C allele generates putative miR-24-

3p and miR-4263 target sites while it disrupts miR-574-3p target site. MiR-574-3p participates 

in several cancers including colorectal, breast, lung, liver, and prostate cancer as a tumor 

suppressor. Su et al. used miRNA microarray and quantitative real-time PCR techniques, and 

found that miR-574-3p expression was down-regulated in gastric cancer patients at early stage 

or higher levels of differentiation. They also demonstrated that miR-574-3p suppresses cell 

proliferation, migration, and invasion of gastric cancer cells [162]. Recently, they also 

demonstrated that TGF-β1-treated AGS cells show miR-574-3p up-regulation through binding 

of Mothers against decapentaplegic homolog 4 (SMAD4) to miR-574-3p promoter which 

might mediate the inhibition of cell proliferation in AGS cells by TGF-β1 [163]. Moreover, 

mir-24-3p was demonstrated to be involved in gastric cancer inhibition and apoptosis 

induction, suggesting a tumor suppressive role for this miRNA. [164]. Thanks to the 

importance of SNPs located in crucial genes like DNMTs, further studies might validate their 

potential effect as a biomarker for early detection of gastric cancer. 

Dysregulation of DNMTs in gastric cancer  

The 5-year relative survival rate for gastric cancer patients is 10–20%, and the detection of the 

tumor at a late stage could be associated with poor prognosis and metastases in gastric cancer 

[165]. Mutation in DNMTs can cause some inherited diseases. DNMT1 mutations are 

associated with autosomal dominant cerebellar ataxia-deafness and narcolepsy (ADCA-DN), 

and hereditary sensory neuropathy with dementia and hearing loss [166]. ADCA-DN is a 

nervous system disorder with late onset (30-40 years old) caused by mutations in the C-
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terminus end of the DNMT1 gene. Mutations within the targeting-sequence domain of DNMT1 

cause hereditary sensory neuropathy with dementia and hearing loss [167]. Generally, DNMT 

inhibition prevents DNA replication. Knock down of DNMT1 dysregulates P21 (a cyclin 

dependent kinase inhibitor 1, tumor suppressor) and the apoptosis inducer BIK (BCL2-

interacting killer) [168]. Another study shows that a cascade of genotoxic stress checkpoint 

proteins activates and induces cell cycle arrest following knock down of DNMT1 [168]. 

Mutations in DNMT3A may cause acute myeloid leukemia (AML) by epigenetic reactivation 

of the leukemogenic factor MEIS1 (myeloid ecotropic viral integration site 1 homolog) [169] 

Knockdown of DNMT3a was shown to inhibit embryonic cardiomyocytes function [170]. 

Also, depletion of DNMT3A may speed up lung tumor progression [171]. Aberrant promoter 

methylations found during early tumorigenesis are promising biomarkers for screening, early 

detection, and prognosis of cancer [172]. It has been indicated that hypermethylation of 

suppressor of cytokine signaling 1 (SOCS-1) and death associated protein kinase 1 (DAPK) 

correlated with tumor stage [58, 173-174]. Also, Asada et al. used methylation level of miR-

124a-3, EMX1, and NKX6-1 to predict the risk of metachronous gastric cancer after endoscopic 

resection [175]. It seems that a better knowledge of genes involved in epigenetic alterations in 

gastric cancer can pave the way for designing an informative epigenetic biomarker panel for 

early detection of gastric cancer, and reduce mortality similar to what was accomplished in the 

bladder and lung cancers [176-177]. A series of methylated genes and correlation with clinical 

outcomes in gastric cancer are indicated in figure 4. 

 

DNMTs as target in gastric cancer chemotherapy  

One of the main treatment strategies for gastric cancer is chemotherapy. Commonly used 

chemo drugs  for gastric cancer treatment include 5-FU (fluorouracil), cisplatin, irinotecan, and 

oxaliplatin [178]. The main problem with using this therapeutic approach is drug resistance. 
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Drug resistance in cancer is related to various factors such as epigenetic changes, mutations, 

signaling pathways, and microenvironmental alterations. Methylation pattern alterations play 

important roles in response to treatment, and patient survival [179]. Many evidence showed 

the positive correlation between DNMTs expression levels especially DNMT1 and DNMT3b, 

with hypermethylation of CpG islands in gastric cancer [14]. Hypermethylated genes involved 

in chemotherapy resistance in gastric cancer are represented in figure 5. These genes are mainly 

involved in cell cycle regulation, genomic instability, epithelial-mesenchymal transition, 

apoptosis, and tumor suppression to eventually escape programmed cell death and acquire 

chemo-resistance (Fig 5). 

Regarding the importance of DNA methylation in gastric cancer progression, anticancer drug 

sensitivity, and gastric cancer patient survival, DNMT inhibitors (DNMTis) can be useful in 

promoting the quality of treatment. Correspondingly, DNMT1 knockdown by short hairpin 

RNA in gastric cancer cell line led to increased chemo-sensitivity [180]. There are few studies 

on combining DNMTis with chemotherapy for gastric cancer [181-182]. However, the results 

are optimistic to accelerate remedy for this cancer by synergistic effect of DNMTis and 

anticancer drugs. Two clinical trials in phase I and phase II, focus on gastric cancer treatment 

with DNMTis [183-184]. In these clinical trials, researchers investigated the pretreatment with 

5-azacytidine as hypomethylating agent  in advanced gastrointestinal cancer [183]. They used 

5-azacitidine (V) prior to EOX (epirubicin, oxaliplatin, capecitabine) neoadjuvant 

chemotherapy in gastric and esophageal adenocarcinoma. This study showed a 

hypomethylation of tumor-associated loci such as hyperpigmentation progressive 1 (HPP1), 

tissue inhibitor of metalloproteinases 3 (TIMP3), CDKN2A, estrogen receptor 1 (ESR1), and 

O-6-methylguanine-DNA methyltransferase (MGMT).  Neoadjuvant VEOX treatment was 

well-tolerated in all patients with significant clinical and epigenetic responses, with preliminary 

evidence that priming with V prior to chemotherapy may augment chemotherapy efficacy. 
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DNA hypomethylation of tumor loci was seen at all dose levels, with greater staining for HPP1 

in the resected specimen compared with the pre-treatment specimen. Moreover, the expression 

of HPP1 as TSG marker was induced during neoadjuvant chemotherapy. 6 out of 12 treated 

patients became disease-free, had complete histologic response, and remained alive. [184]. 

DNMTis are divided into three general categories which include nucleoside analogs, non-

nucleoside analogs, and nucleic acid-based components (Fig 6). 

 5-azacytidine and 5-aza-2’-deoxycytidine (decitabine) are chemical analogs of cytidine, and 

important DNMTi drugs approved by FDA for myelodysplastic syndrome (MDS), acute 

myeloid leukemia (AML), and chronic myelomonocytic leukemia (CMML) [185]. Many 

studies used azacytidine and decitabine as DNMTi for improving the treatment of gastric 

cancer alone or in combination with chemotherapy drugs such as 5-FU and cisplatin. Results 

of these studies demonstrate that azacytidine induces apoptosis and inhibits proliferation in 

gastric cancer cells, and improves the sensitivity of gastric cancer cells to 5-FU. Also, 

azacytidine upregulates death associated protein kinase 2 (DAPK2), DAPK3, RASSF1, and 

THBS1 genes that might be associated with the synergistic effect of chemotherapy. [186-188]. 

Other types of non-nucleoside analog or nucleic acid-based DNMTi's such as procainamide, 

procaine [189], hydrazone-gallate [190], genistein [191], microRNA-21 [192], microRNA-335 

[193], microRNA-148a [192, 194], and microRNA-155-5p [195] were also used for targeting 

gastric cancer cells with or without anticancer drug, but further studies are necessary before 

approving their clinical use. Due to the side effect of chemical drugs, it has been demonstrated 

that DNMT-targeted inhibition with small interfering ribonucleic acids (siRNAs) may be used 

as a novel approach for reactivation of silenced genes. In support of this claim Jung et al. 

indicated that DNMT1 siRNAs inhibited cell proliferation and increased cell death rate in 

cancer cells without DNA damage, in comparison with azacytidine that increased DNA damage 

in human gastric adenocarcinoma cell lines [50, 196]. Interestingly, all of these DNMTis 

https://www.researchgate.net/profile/Yeonjoo_Jung
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enhanced the chemotherapy efficacy or programmed cell death in gastric cancer in in vitro and 

in vivo models. Table 3 summarizes DNMTis and their mechanism of action in gastric cancer. 

 

 

Radiotherapy is another type of treatment which is commonly used for stage IV gastric cancer. 

In this method of treatment, the sensitivity and resistance of cells are important. Many studies 

showed the effects of epigenetic changes, especially methylation in cancer cells radioresistance 

[202]. Hypermethylation and inactivation of some genes involved in programmed cell death, 

cell cycle regulation, DNA repair, and TSGs can cause radiotherapy resistance in gastric cancer 

cells [188]. Treatment with  5-aza-2'-deoxycytidine (5-aza-CdR)  showes a positive impact on 

gastric cancer cells radiosensitivity by increasing the expression of some genes such as p53, 

RASSF1, and DAPK [203]. Nowadays, combination of routine cancer therapy methods such as 

radiotherapy or chemotherapy with epigenetic modulation drug is a hot topic in cancer therapy. 

The epigenetic modulation drugs had a powerful potential to improve cancer treatment. DNA 

methylation pattern changing can lead to increase or decrease of the expression of genes 

involved in tumorigenicity, invasion, and programmed cell death. Some clinical and preclinical 

data detected the toxicity of epigenetic modulating drugs, but other evidence indicate the 

benefits of epigenetic modulating drugs to cancer remedy. Therefore, in order to achieve an 

efficient radiotherapy or chemotherapy combination with   epigenetic modulating drugs as well 

as DNMTis, a deeper knowledge of molecular mechanisms, long-term safety, effective dose of 

usage, limitations, off-targeting, and side effects of these drugs should be attained. 

 

Future Perspective 
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Gastric cancer remains one of the major causes of morbidity and mortality in the world. 

Disruption of epigenetic processes can cause abnormal activation of oncogenes or silencing of 

TSGs as a hallmark of gastric cancer. Studies on epigenetic alterations occurring before or 

during gastric cancer have been the subject of great interest and could become a starting point 

for the development of future therapeutics tools in gastric cancer. Among epigenetic 

modifications, DNA methylation plays an important role in the tumorigenesis of gastric cancer. 

Emerging evidence shows that cancer cells exhibit aberrant DNA methylation relative to 

normal cells during gastric cancer development. The DNMTs are responsible for DNA 

methylation, and have a central role in epigenetic control of gene expression. Up-regulation of 

DNMTs leads to the increased hypermethylation of genes, which contributes to the promotion 

of tumor growth, invasion, and metastasis. Infections such as EBV, H. pylori, and HPV may 

directly effect tumorigenesis through secretion of proteins to increase the DNMTs expression 

in gastric cancer. Also, infections indirectly via TAMs increase DNMT1 expression. In addition 

to infections, some SNPs in DNMTs are associated with the survival rate of gastric cancer but 

little is known about miR-SNPs. Bioinformatics analysis revealed rs13420827 in the 3′-UTR 

of DNMT3A as part of a target site for three miRNAs including miR-24-3p, miR-4263, and 

miR-574-3p, which miR-24-3p and miR-574-3p have been found to be significantly associated 

with risk of gastric cancer. Moreover, epigenetic alterations are associated with chemo-

resistance in gastric cancer. Interestingly, as DNA methylation is a reversible process, 

restoration of the aberrant epigenetic changes may represent a promising strategy to 

overcoming chemo-resistance. Therefore, DNMTis such as shRNAs, miRNAs, 5-azacytidine, 

and 5-aza-2’-deoxycytidine can be useful in treating gastric cancer multidrug resistance. 

Another approach for improving efficacy is to combine the DNMTis with chemo drugs. 

However, epigenetic inhibitors such as 5-azacytidine and 5-aza-2’-deoxycytidine are not a 

specific inhibitor of DNMTs. CRISPR-Cas9 (clustered regularly interspaced short palindromic 



19 
 

repeats-CRISPR associated nuclease 9) system has found a widespread use in biological and 

medical research, and becomes a promising strategy for editing DNA methylation. Recently, it 

has been indicated that CRISPR/Cas9 DNA methyltransferase fusion with a catalytically 

inactive Cas9 can lead to site-specific induction of DNA methylation [204-207]. Therefore, 

site-specific silencing of genes that contribute to the development of cancer via CRISPR/Cas9 

system can be potentially superior to DNMTis, and appears to be a promising therapy in cancer 

patients. 

 

Executive Summary 

 DNA methyltransferases (DNMTs) consist of a catalytic and regulatory domain; the 

catalytic domain is conserved while the regulatory domain is variable. 

 Aberrant expression of DNMTs is tightly associated with promoter hypermethylation of 

tumor suppressor genes.  

 Infections such as EBV, HPV, and H. pylori facilitate DNMTs function by secreting 

oncogenic proteins or promoting differentiation and polarization of monocytes into tumor-

associated macrophages. 

 Genetic polymorphisms in DNMTs and their haplotype blocks may be potential biomarkers 

for gastric cancer prediction. 

 Drug resistance in gastric cancer is triggered by hypermethylation of various genes. 

 DNA hypomethylation of tumor loci via DNMT inhibitors may facilitate targeting gastric 

cancer multidrug resistance 

 Site-specific DNA methylation through CRISPR/Cas9 system appears to be a promising 

targeting approach in cancerous cells. 
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