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Human fall detection methodologies: from machine learning using

acted data to fall modelling using myoskeletal simulation

by GEORGIOS MASTORAKIS

Human Fall Detection is a research area with interest from many disciplines and

aims to perform for many assisted-living monitoring applications to promptly iden-

tify life-threatening situations. A fall occurs when a person is unable to maintain

balance due to a variety of issues; physical; mental or environmental. The accurate

detection of the fall is crucial as a missed detection can be fatal. Variability of hu-

man physiological characteristics is currently unstudied as to the impact on a fall

detector’s performance as young adults and elderly are expected to fall differently.

Another important issue is the scene occlusions. In the use of visual sensors, an

occluded fall is treated as a missed detection as the whereabouts of the person is

unknown when occluded. Finally, current studies are based on acted fall datasets

on which algorithms are trained. These dataset are unrepresentative of real fall

events and illustrate the events without occlusions or other scene influences.

Several fall detection algorithms were developed during the study aiming to achieve

accuracy in detection falls while fall-like actions such as lying down remain un-

detected. Human fall datasets were used for training and testing purposes of A

machine learning algorithm using data from depth cameras which captured the

fall events from different views. A new pathway was introduced tackling the is-

sues of availability issues of data-driven machine learning approaches which was

achieved with the use of simulation data. The use of myoskeletal simulation was

then selected as a closer representation of the human body in terms of structure

and behaviour. With the use of a simulation model, a personalised estimation of

the fall event can be achieved as it is parametrised on a physical characteristic such

g.mastorakis@ieee.org
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as the height of the falling person. Alternative technologies such as accelerometers

have been used for fall detection to prove the validity of this approach on other

modalities. A study regarding the impact of occlusions for fall detection which

is one of the issues not properly investigated in current work is proposed and

examined. Synthetic occlusions were added to existing depth data from publicly

available datasets.

The research methodologies were evaluated using the most representative depth

video and accelerometer data from existing datasets, as well as YouTube videos

of real-fall events. The machine learning methodologies achieved good results on

similar body variability datasets. A discussion regarding the proof of concept of the

simulation-based approach for fall modelling is mentioned given the comparative

results against existing methodologies which achieves better than any existing

work evaluated against known datasets. The simulation approach is also evaluated

against occluded fall and non-fall event data, proving the further robustness of

the approach. This platform can be expanded to analyse any type of fall, or body

posture (e.g. elderly), without the use of humans to performs fall events.
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Chapter 1

Introduction

Ever since our humanoid ancestors evolved to bipedal walking, nearly 2 million

years ago, we have been vulnerable to falling over. This brings a significant risk

of injury, according to the severity of the fall and the well-being of the individual.

A fall is an incident which results in a person coming to rest inadvertently on the

ground or floor or other lower level as defined by the World Health Organisation

(WHO) [14]. A fall occurs due to internal or external factors when a person

loses conciousness or accidentally slips or stumbles while walking or standing.

Internal causes include underlying medical conditions, such as neurological, cardiac

or other disabling conditions; side effects of medication, physical inactivity and

loss of balance, particularly among older people; poor mobility, cognition, and

vision, particularly among those living in an institution, such as a nursing home

or chronic care facility. External factors are also responsible for inducing falls such

as overcrowded housing, poorly maintained footpaths, banana skins etc. Other

unsafe environments may particularly affect those with poor balance and limited

vision and also those working at elevated heights or other hazardous working

conditions. More types of falls are observed in the working environment, due to

walking surface condition, low visibility and lack of concentration, tiredness, etc.

There are some clearly identifiable groups of people who are more likely to fall

such as athletes. Some people may also fall after a violent attack.

A person who is young and healthy can experience a fall without it resulting in se-

rious injury and they can heal relatively fast. Those who are more vulnerable, such

as the elderly or disabled and patients in rehabilitation, may be more susceptible

1
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to serious injuries and take longer to heal. In some cases immediate assistance is

required yet the faller may not have the ability to call for help.

The elderly though are the most vulnerable to fall and due to their living cir-

cumstances of isolation are more prone to have a fatal progression after falling.

Age is a significant factor that is closely linked to severe falls [15]. Several studies

have shown [16] that elderly people experience at least one fall every year. Also,

falls are the main cause of accidental death in adults aged 65 or more, based on a

review of 90 epidemiological studies [17]. Other resources show the injuries caused

by falls in the general population [18].

Other studies characterise the severity, frequency, risk factors [19] and cost [20]

of fall incidents which are attributed to be the leading cause of fatal [21] and

non-fatal injuries among adults over the age of 65 [22]. Other studies discuss the

acceptance of applied fall detection systems for the elderly [23]. [24] discuss the

different types of accidental walking falls (slip, trip, and step) and their potential

causes. [25] discuss the various health conditions that may cause falls in relation

to falls in the elderly population. A study discussing the potential of video-based

fall detection is given in [26] where participants with a fall history approve the

life-saving benefits of a monitoring system.

Currently deployed technologies for alerting a fall incident are manual and self-

activated, based on push-button devices which the person wears as a pendant or

bracelet. This device is given to the elderly living alone and also those who are

vulnerable to and have a history of falls. It is required to be worn constantly

during day and night. In the event of a fall, the fallen person has to push the

button to generate a signal that is then transmitted to a crisis telecare centre.

However, this approach relies on the individual being conscious, in full possession

of their mental faculties and cognisant of the required response, otherwise it is

simply an unattractive ornamentation.

Similar modalities exist in assisted living houses, where push-button alarms are

supplied to the occupants. Constant surveillance is available in such places and in

the case of a fall incident, the response time is expected to be less than for those

independently living in their own homes.

Automatic human fall detection systems are required to take over these manual

technologies for monitoring vulnerable people who are prone to falling. A plethora

of new methodologies for fall detection have been developed in the past few years,
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with a strong motivation to enable the elderly and the infirm to live independently

in their own homes, whilst providing an unobstructed and non-invasive means

of monitoring their well-being. A large-scale monitoring strategy is required to

maintain those in need in their homes. Ideally, a home monitoring system would

provide a comprehensive detection capability, whilst preserving the privacy of the

individuals being monitored.

The variety of fall types is ignored by many of these fall detection systems, which

produce a solution without assessing the human individual or the scene charac-

teristics. People fall for a variety of reasons related with their physical or mental

health (e.g. ageing/disability) or due to abnormalities of the walking surface (e.g.

slippery/uneven floor). An effective fall detection system should accurately and

robustly detect a fall when it occurs, without false detections (e.g. lying on the

floor for the purpose of an exercise) for application in the general population. The

investigation in this study will first focus on data-driven trained algorithms and

then proceed to physics-based myoskeletal algorithms performing fall modelling.

Several sensor technologies were used for detecting falls such as cameras, infra-red

sensors, acoustic and pressure sensors accelerometers and others. A further discus-

sion of these is given in Chapter 2. The development of these sensors contributed

to the development of fall detection algorithms, particularly with the falling cost

of cameras and the development of new image acquisition technologies such as the

inexpensive depth cameras (Kinect, Xtion, etc.). Also, the maturity of the com-

puter vision domain has simplified the development and deployment of computer

vision applications. The use of depth data was beneficial for this work since the

level of certainty and accuracy has increased due to the introduction of an extra

dimension (in reality it is 2.5D) and also the high level of data provided by OpenNI

and Kinect SDK which simplifies person segmentation. With the arrival of Kinect

in 2011, new fall detection research utilised the functionalities of depth sensors

such as 3D analysis and privacy protection. As a result, using Kinect (depth)

data provided a more acceptable solution of a fall detection system.

Another major issue of fall detection systems is the use of human fall data for train-

ing which introduces many complications and results in questionable algorithmic

performance. This is due to the difficulty in performing such falls in a realistic

manner which imitates the actual behaviour, particularly for samples of elderly

falling – which is one of the target groups of this study. Current fall data are acted

by young adults, acting pre-defined patterns of how a fall should look, causing the
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minimum risk on impact. Also, the size and variability of these samples is limited

as it is performed by a small group of people for a specific geographical region.

Current fall detection algorithms employ a generic one-size-fits-all solution and

overlook the individual characteristics such as the height, weight or posture. Every

fall event appears to be different according to the height, weight distribution,

centre of mass (CoM) location, the orientation of the person or other parameters.

In this study, the investigation will focus on the fall events (i.e. rigid or collapsing)

which are introduced by internal physical issues caused by lack of consciousness

and the faller does not recover from the fall i.e. remains on the ground. This work

investigates several fall detection algorithms which try to overcome the issues

of accurate and robust detection of falls using depth sensors while the privacy

of the fallers is preserved. It also evaluates alternative approaches to modelling

falls taking into account the human variability of falling people, as well as indoor

scene occlusions. An evaluation of accelerometer-based fall detection is also briefly

studied in order to provide a general applicability of a proposed approach on non-

vision based studies.

New methods are proposed: a) a machine learning approach where the fall decision

is learnt by training on fall and non-fall data, b) a machine learning method where

the decision is learnt by using physics-based myoskeletal data and human non-fall

data, which is customised to the person’s height only for falls and c) a myoskeletal

fall modelling approach which relies on a single observation without a learning

procedure that is fully customised on the person’s height. The simulation based

techniques were developed to eliminate the use of unrepresentative human-fall-

data for training purposes. Furthermore, occlusion protocols are also proposed to

evaluate the later approach against simple and complex synthetic occlusions.

1.1 Challenges

The accuracy and robustness of a fall detector is crucial when a human life relies

on it. Several actions, such as lying down may confuse the detection algorithm

and as a result, a non-fall may be detected as a fall and cause an unnecessary alert

to be raised. These are described as activities of daily living (ADL) or non-falls.

Therefore, algorithms should minimise the effect these events have, to increase the

reliability of the system, reducing false positives (FPs). Different types of falls
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exist which depend on the direction the body has when falling and each of them

has different motion. Hence, a detection algorithm is required to detect all types

and minimise missed-detections. Monitoring in general and particularly at home

can be invasive and consideration of the issues of personal privacy may negatively

influence the choice of a vision-based fall detection system. The monitoring system

must have some privacy features such as to hide recognisable characteristics as the

face.

Existing research into fall detection systems usually relies on (or are adjusted/-

trained) using limited quantities of human fall data (that is non-representative

of the real fall events). Capturing real-life fall events is a rigorous process which

involves a costly infrastructure in order to capture the event – whenever it hap-

pens. A few research groups have succeeded in recording falls in hospitals and

care homes, but such data is limited and not publicly available due to privacy

and copyright constraints. The alternative approach uses human-simulated fall

video recordings where participants attempt to act the fall following specific guid-

ance from a researcher. The approach of data collection is quite common in data

science, nevertheless, collecting fall detection videos raises the following issues in

terms of how representative data are:

1. Demographic. Data samples from falls and ADL should include people of

different ages. Similarly, people with different physical characteristics (e.g.

height, weight, posture) should be participating in these datasets. Finally,

further samples should be included of people with behavioural characteristics

such as gait patterns.

2. Sample quality, quantity and availability These recordings should show

real fall events or human-simulated ones which are representative. The size

of these datasets should be enough in permutations, fall types, visual scenes

(e.g. home), etc. Finally, the data (either real fall or human-simulated)

should be publicly available and easily adaptable/readable.

3. Scene conditions. Visual occlusion is another issue to be taken into ac-

count. Coffee tables, chairs, or sofas and other furniture can act as obstruc-

tions in a home scene.

These issues on the quality and quantity of fall data were only recognised later in

the research, and the initial work exploited conventional datasets focusing mainly
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on the accuracy, robustness and privacy of approaches. The more recent work for

this thesis focuses on the use of simulation technologies to address the issues.

1.2 Aims & Objectives

The aim of this project is to investigate robust methods for detecting falls, and

particularly their applicability to support independent living for elderly and infirm

people. Specific technical objectives that will guide the research are the following:

1. Investigate features for fall detection and develop reliable and robust detec-

tion algorithm(s) for rigid and collapsing falls.

2. Investigate the use of fall simulation to obviate the need for acted fall datasets

and the effect of physical body characteristics and fall direction on the fall

behaviour

3. Investigate the impact of occlusion in the detection of fall and ADL events

4. Investigate the use of simulation for other modalities such as accelerometer-

based fall detectors

1.3 Contributions and Thesis Overview

The initial research developed a machine learning approach to detecting rigid fall

events using video depth data [27]. Subsequently other fall types such as collapsing

were investigated as part of a generalised fall detector and as a result alternative

features were examined to deliver a robust multi-fall-type fall detector. Public

datasets have become available and a thorough examination of their videos [28]

raised several issues in terms of how representative data is. It was also found that

such datasets were relatively small in the number of subjects and fall permutations,

with a minimum variation of falling behaviour and lack of realism. This introduced

the search for other means in order to replace the human factor from the training

of fall detection algorithms. The use of physical models starting with a falling rod

and extending to a full myoskeletal model are introduced and investigated [29].

The use of velocity profiles rather than a single value (e.g. peak velocity) is utilised
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as the simulation modelling can provide a full velocity profile. The detection of a

fall is expressed as a comparison between velocity profiles of simulated falls and

non-falls using the Hausdorff distance. The simulation using a myoskeletal model is

shown to be a closer representation of a human performing falls without worrying

about injuries. Also, it provides continuous data when an event occurs, that

makes the simulation approach occlusion robust. Finally, a validation protocol

against occlusions is proposed in order to assess the performance of simulation

based approach under occlusions [30].

The following list itemises the contributions:

• Data driven Approaches

Two real-time machine learning based fall detection algorithms: 1. A rigid

fall detection algorithm based on the analysis of fall and ADL depth data

from Microsoft Kinect I with the use of X,Y,Z velocities of the 3D bounding

box; 2. A rigid and collapsing fall detection algorithm based on the analysis

of fall and ADL depth data with the use of 3D angular velocity derived from

a modified bounding box.

• A review, critique and evaluation of fall data

A study examining the issues of current human fall datatets with an evalu-

ation of acted data against real falls. This evaluation determined the poor

acting observed within the fall samples, particularly for collapsing falls.

• Simulation based approaches

Demonstrate the capability of a physics-based myoskeletal model to simulate

a fall, and to use this simulation to replace the need for recorded human

fall data to detect falls. Thus, three personalised myoskeletal simulation

based fall detection algorithms: 1. A hybrid fall detection algorithm using

myoskeletal simulation and human ADL data which is customised by the

person’s height and by using the estimated falling direction. This approach is

applied on depth data; 2. An occlusion robust fall detection algorithm based

explicitly on myoskeletal simulation which is only customised by the person’s

height and utilises the comparison of velocity profile using the Hausdorff

distance. The evaluation used depth and YouTube real fall data. 3. An

approach similar to 2, applied on accelerometer data.
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• A framework to evaluate the impact of occlusion

A methodology of evaluating fall detection algorithms under occlusions using

synthetic ones which are inserted on videos of existing fall datasets. Such

synthetic occlusions tested the performance under variable degree (i.e. rigid

shaped) of occlusion as well as the performance when complex occlusions

were used such as chairs, coffee tables etc.

The chapters structure outline of the remainder of this thesis is presented:

Chapter 2 — Literature review

A literature survey of fields related to this research including existing fall detection

systems using a variety of technologies.

Chapter 3 — Datasets

A study examining the issues of current human fall datatets with an evaluation of

acted data against real falls.

Chapter 4 — Learning to detect falls

Methodologies based on machine learning to detect rigid and collapsing falls cap-

tured by a depth camera.

Chapter 5 — Simulation: Modelling falls

Demonstrates the capability of a physics-based myoskeletal model to simulate a

fall.

Chapter 6 — Fall detection using myoskeletal simulation

Considers three personalised myoskeletal simulation based fall detection algo-

rithms.

Chapter 7 — Occlusion robust fall detection

A framework of evaluating fall detection algorithms under occlusions using syn-

thetic ones.

Chapter 8 — Conclusion and future work

A summary of contribution and future work.



Chapter 2

Literature Review

This chapter will serve as a general review of fall detection systems as each follow-

ing chapter includes a chapter specific review of the covered topic. Research into

fall detection systems have studied a wide range of sensor modalities, including

accelerometers, acoustic, ultrasonic, infra-red, radar, RGB cameras, depth sensors

etc. The bulk of the methods rely on those principal approaches; detecting the

velocity of the falling body or the changing shape of a person’s projected silhouette

e.g. from an upright to prone position, on the floor.

The chapter covers several features, hardware technologies and algorithmic tech-

niques reported for fall detection. The discussion of features specifies the most

dominant approaches developed in computer vision. Another discussion specifies

the technologies used and divides systems into two groups, one for wearable solu-

tions and another based on static sensors. Since this work was initially based on

3D vision and then on both 3D vision and then extented to include accelerometer

measurements, this topic is included in the discussion. Since the development of

Kinect in 2011, the topic of fall detection flourished under the use of cheap depth

sensors, mobile phone gyroscopes and accelerometers and also the developed small

accelerometer devices, which were then embedded on a range of wearable devices

for monitoring heart rate, activity etc. Finally, a discussion will focus on the

algorithmic approaches which classify the events as falls or ADLs.

9
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2.1 Fall detection features

Several features were employed for fall detection and other studies have performed

feature selection in order to select the best ones [31]. Such features include bound-

ing boxes, shape descriptors, velocity, height of the person from the floor, fall angle

and more as discussed in recent review studies [32]. The use of bounding boxes,

either 2D [12] where changes in the motion of the bounding box are analysed and

3D [27], where the velocities of the height, width and depth of a 3D bounding box

are calculated. The aspect ratio is discussed in [33] and [34]). The aspect ratio is

computed as the ratio of the width and height of the bounding box around of the

extracted person. A small aspect ratio implies that person’s posture is upright,

whereas a high aspect ratio means a lying down posture.

Ellipse detection appears in several studies: in [35] the 3D position of the center

of the ellipse was employed as a feature defined as the distance between the center

of the ellipse and the plane floor in 3D space. In [36] an ellipse is fitted over the

person in order to calculate the fall angle which is found between one of the major

axis (e.g. long axis) of the ellipse and the floor. A similar approach using fall

angle is also described in [33] where a small angle is used to decide that a person

has fallen.

The studies in [37–39] use the head location to measure the distance from the

floor, the velocity of the head, the distance to the ground and the 3D velocity.

The velocity of the head is found to exceed certain thresholds for the event to be

classified as a fall. A simplier approach [37] uses the head’s height from the floor

which classifies an event as a fall if the head is located below the threshold.

The shape of a person is analysed in several studies on 2D or 3D data and an

event is assessed using data samples during the event or by using data from the

initial/final state. In [36] the method determines the direction and position of

the individual based on the shape of the human silhouette. The centroid of the

silhouette and the angle between the human body and the floor plane are also

calculated for fall incident detection. In [5] curvature scale space features are

extracted from the depth maps of the human silhouette. The features appear as

approximations of the silhouette edge and are recorded during the event in order

to capture the shape change over time. In [40], the authors use the silhouette to

fit a bounding box, where the aspect ratio is calculated as well as a covariance

matrix, which provide adequate features for fall detection.
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Skeleton data, either derived from 2D or 3D data of conventional cameras or Kinect

sensors was used for this subject. In [41] Kinect data were processed using the

Microsoft Kinect SDK where the skeleton joints are extracted and tracked. The

joint velocities are measured together with the distances of these joints to the floor.

The fall is detected when velocities and distances are below defined thresholds. In

[42] a 2D skeleton is extracted by running the well-known graph traversal Depth-

first search algorithm on the human contour which is partitioned into triangular

meshes. In [43] the 3D skeleton information is also used. The orientation of the

major axis is calculated using the coordinates of the head, shoulder, spine, hip and

knee joints. Then the angle between this line and the horizontal line is calculated

which determines the inclination of the body after the fall.

The bounding box alone does not provide enough information regarding the human

motion and the performance of this technique relies on the camera view angles,

particularly for the 2D methods. The aspect ratio can be inaccurate due to the

position of the person, camera, and occluding objects, if present. The silhouette

based features have the same issues as they can be occluded and rely on the

viewing angles. The head location appears a more stable feature as it is occlusion

robust due to its location and does not rely on the rest of the body to be detected.

But, head detection can be problematic in cases where there is rotation or tilt of

the head or camera viewing angle. Skeleton data derived by Kinect are unstable

especially when the person is falling and it is noted that the skeleton shape does

not recover to its original shape after the fall. In Chapter 4 several features are

discussed and a re-evaluation of a feature-selection study for fall detection analyses

the significance of fall data (i.e. fall types) for selecting and developing a feature.

2.2 Wearable sensors

The most common approach to generating an alert in event of a fall is a push-

alarm such as [44]. Those devices are carried by a person prone to falls and are

activated by pushing the alarm after the fall. This technology can be very weak as

the person may not be carrying the device or may be unable to push the button

if they are unconscious. Nevertheless, this technology is widely used by many

Councils in the UK as they are easily installed, maintained and are cost-effective.
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In general, wearable devices are automatic in terms of data processing. They

capture motion continuously using motion detectors with accelerometers and gy-

roscopes [45, 46]. Such sensors are capable of detecting the rapid motion changes

of the person who wears them. A study in [47] discusses the use of a wearable

sensor to detect unseen falls. In the same context, other studies use a mobile

phone’s [48] accelerometer and magnetic field sensor data, accelerometer and data

from the wearable camera [49], and energy sensor such as a triboelectric generator

[50].

Although this seems promising, it is questionable how effective the wearable ap-

proaches are when it comes to such a life-threatening event, as the person has to

wear the device continuously. If the person who is supposed to use the device

forgets (e.g. elderly due to memory issues) or ignores the importance of wearing

it, a fall is not detected rendering the approach useless. Other issues of portable

device is the requirement to recharge or replace the batteries every now and then

in order to continuously operate or even remove them when in shower due to lack

of waterproof capabilities. Mobile phones already contain the technology to de-

tect the fall (i.e. an accelerometer, gyroscope exists in most of the phones) while

having the capability to call for help whether the user is indoors or outdoors.

Nevertheless, the location of the phone is crucial as the user may hold it on a

jacket’s pocket, a pocket near the waist or inside a purse. Benefits of wearables

are that the sensor is personalised and moves with the person, therefore there is

no need to have a sensor in every room. Also, these devices are entirely private

and not affected by occlusions, as are camera-based ones, but they can be affected

by wireless communications.

2.3 Fixed location sensors

Acoustic and ambient sensors systems use microphones or vibration sensors. Such

systems detect the loudness and height of the sound to recognise a fall [51]. Other

approaches detect the floor vibration [52] or use features extracted from the radar

signal [53]. A microphone array system is presented in [54] where it is found that

the fall signal has highest frequency component around 1000 Hz. Using the height

of the sound source, sound classification techniques such as mel-frequency cepstral

coefficients (MFCCs) and a nearest neighbour (NN) algorithm are used to classify

falls from non-falls. A ceiling of infrared sensors is proposed in [55], where each
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sensor produces a binary response given the existence of a person underneath.

The set of signals produce an 5 by 4 pixel image where an assessment is performed

on how different a stream of pixel values are from the previous frame in order to

determine a fall event.

Smart tiles containing force sensors and 3-axis accelerometers is presented in [56].

The force sensors allow the detection of falls as well as recognition of other hu-

man activities such as walking, standing, sitting, lying down, and the transitions

between them. However, the detection accuracy on human fall data returns false

positives caused by lying postures. This issue is resolved by a fusion between the

force sensor measurements and the accelerometer sensor decisions. Another floor

based sensor is proposed in [57] where pressure-sensitive fibre sensors are embed-

ded underfloor with an application focus on fall detection in the bathroom. The

fibre sensor is low cost, unobtrusive, and waterproof, making it especially useful

in a bathroom. The assumption of the system relies on the fact that when a fall

occurs, the target must be lying on the floor, as people do not normally lay on the

bathroom floor to exercise or sleep.

Static mounted sensors may have the advantage of monitoring without the re-

quirement to wear a device constantly while surveillance can be unobstructed and

continuous without the person’s concern. The assumption for many studies is that

the monitoring area has to be clean from objects and occlusions. Such systems

are limited to indoor use only due to their restrictive application range. Also, the

cost and complications of deployment and maintenance are discouraging factors

for using such approaches.

2.3.1 RGB systems

Some systems use image analysis to detect falls. They require one [58, 59] or

several cameras [2, 60]. They do not require a device attached to the person

as they are able to detect the human motion, using computer vision algorithms.

Thermal cameras are also used to locate and track a thermal target and analyse

its motion in order to detect a fall’s characteristic dynamics and then to monitor a

target’s inactivity [61]. One approach to fall detection is to analyse the velocity of

the falling person as proposed by biomechanics [62]. In [39], head velocity is used

to detect a fall using 3D tracking. Their approach is not robust as they detect only
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two out of three falls but it can differentiate between the actual falls and the fall-

like events i.e. sitting. Other vision approaches focus on posture-based events as

in [63]. In that study the authors focus on three types of falls (forward, backward,

sideways). While their approach is robust as they can differentiate between falling

and lying/sitting, it is limited as the raw data used for their analysis is captured

only from a side-view.

2.4 Combinatory Systems

Some studies suggest a combination of hardware–vision solutions for fall detection.

In [64] Ambient Assisted Living platforms are discussed as wearable, ambient,

vision and multimodal. Also, in [65] several fall detection systems are compared

mainly for wearable sensors. The work in [4] uses data from accelerometer and

depth video from 2 sensors. Acoustic sensors [66] or PIR sensors together with

thermopiles [67] and depth with accelerometer and acoustic sensors [68]. Finally,

in [69] a combination of camera and heart monitor system is proposed. Such

systems provide a more reliable result based on the given experiments but their

complexity is higher and some may still be invasive. One way or another, vision

solutions may still be relevant in the designing of such combinatory solutions.

Thresholding techniques where signals from floor pressure data and infra-red im-

ages are processed and a fall is detected when a set threshold is met [70]; this

approach reports 90% accuracy on a dataset of 120 samples.

Bayesian filtering is used to determine the pose of the person as the probability

of falling or getting up using data from a near-field imaging floor sensor [71]; the

authors propose a floor sensor based on near-field imaging. The shape, size, and

magnitude of the patterns are collected for classification from a set of features

that are computed from the cluster of observations. The postural estimation

is implemented using Bayesian filtering instead of the features being classified

directly. The system has problems with test subjects falling onto their knees as

this produces a pattern very similar to a standing person. 650 events and ten

people yielded a sensitivity and specificity of 91%.

The discussed approaches in the previous two sections (2.3, 2.3) provide fall detec-

tion solutions where authors have used human fall data for tuning their approaches.

In general, the performance of these approaches is linked with the data which were
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used for training, a complication discussed in Chapter 3. Another issue is the com-

plexity of the combinatory systems to analyse signals from different modalities.

The camera systems are mainly monocular and prone to occlusions from furniture

or other objects within the scene. The event of an occluded fall is not used in

these studies and will be further discussed in Chapter 3.

2.5 Algorithms

A number review papers summarise and discuss computer vision based fall detec-

tion systems such as: [6][72][73]. Zhang et al. [6] discuss the recent methodologies

and categorise them in terms of acquisition (single RGB, multi RGB cameras and

depth sensors), where [65, 74] discuss the different accelerometer and other wear-

able approaches. Another distinguishing factor is whether these algorithms are

ad-hoc methods based on empirical observations or pattern recognition methods

that are trained using machine learning (ML). The majority of the algorithms

discussed in the following review are based on ML approaches as researchers use

classification algorithms to justify whether an event is a fall or ADL. In either

case, debating on whether an ad-hoc method is less reliable than a ML is out of

the scope of this study, since the complication as discussed in Chapter 3 is more

related with the quality of fall datasets. Therefore, a critique to discuss the com-

plications of data-driven approaches will occur on Chapter 3, where quality of fall

data is proposed as one of the issues of ML performance. The following provides a

thorough discussion of the use of RGB, depth and accelerometer based detectors.

2.5.1 Use of RGB data

A wide range of techniques for fall detection are found in the literature which use

cameras and other sensors. In [75] a Gaussian Mixture Model method is used to

classify the different activities as a fall or not, based on shape deformation during

the fall followed by a lack of significant movement after the fall. Segmentation is

performed to extract the silhouette and additional edge points inside the silhouette

are extracted using a Canny edge detector for matching two consecutive human

shapes using the shape context. The mean matching cost and Procrustes analysis

are applied for shape analysis. Both of these methods contribute in quantifying the

abnormal shape deformation. A fall is characterised by a peak on the smoothed
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full Procrustes distance curve or mean matching cost curve followed by a lack

of significant movement of the person just after the fall. A Gaussian Mixture

Model (GMM) classifier is implemented to detect falls. Further computation of

the sensitivity, specificity, accuracy and the error rate obtained from the GMM

classifier is performed for the analysis. An ensemble classifier is used to combine

the results of all cameras. The mean matching cost and the Procrustes analysis

reduce the error rate to 4.6% and 3.8%, respectively.

Rule-based techniques determined by a set of features from the subject and its

bounding box such as aspect ratio, horizontal and vertical gradient distribution of

object in XY plane and fall angle are used to assess the fall event [13]. An adap-

tive approach for the detection of moving objects by using background subtraction

as well as bounding boxes is used. The described fall model is based on feature

extraction analysis, detection and classification. Features extracted include hori-

zontal and vertical gradients, aspect ratio and the centroid angle to the horizontal

axis of the bounding box. Falls are confirmed when the angle reaches a value less

than 45 degrees. The algorithm reports 100% accuracy, specificity and sensitivity,

evaluated on their dataset (40 videos).

A multi-frame Gaussian Classifier is used to determine the direction of the body

and the head location over a predefined frame window [76]. The method is aimed

at incidents involving falls in unobserved home situations by presenting the design

and real time implementation of a fall detection system. The design involves

segmentation of foreground objects in the image streams obtained from two fixed,

uncalibrated, perpendicular cameras. The direction of the main axis of the body

and the ratio of the variances in x and y directions are calculated through principal

component analysis (PCA). A head tracking module is used for human detection

as well as increasing the robustness of the system. Head position is estimated as

a blob using the Gaussian skin-colour model and is tracked by searching for skin-

coloured blobs nearby the head position. The classification is performed through

a Gaussian multi-frame classier. The system shows accuracy of 100% on un-

occluded video sequences but the addition of occlusion on 4 video samples reduces

the accuracy to 44%.

A nearest-neighbour rule, where postures using the ratio and difference of human

body silhouette bounding box height and width are used together with the time

difference between events to classify a fall [77]. The authors proposed a fall de-

tection system in which a statistical scheme and vertical projection histograms of
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the silhouette image are used to reduce the effect of upper limb activities of hu-

man body. This approach used k-NN classification to classify the postures using

the difference and height-width ratio of human body silhouettes bounding box.

The k-NN classifier and the critical time difference are used to detect fall incident

events. The study reports an accuracy of 84.44% based on 15 subjects.

Hidden Markov Models where falls can be detected by analysing the person’s pos-

ture and detecting sudden changes in posture (e.g. from standing to lying) are

described in [60]. The authors applied a multi-camera system for image stream pro-

cessing. The processing includes recognition of hazardous events and behaviours,

such as falls, through tracking and detection. The cameras are partially over-

lapped and exchange visual data during the camera handover through a novel

idea of warping people’s silhouettes. The video server (multi-client, multi-threaded

transcoding) transmits sequences for further processing to confirm the validity of

received data. The bandwidth usage is optimised through event-based transcoding

and semantic methods.

Fuzzy Logic is used to determine the state (e.g. upright, lying) of the person

at each frame using voxels derived by silhouettes of people captured by infra-

red cameras [78]. This study also used a multi-camera system where the authors

applied silhouettes to form a 3D model of the human object. The membership

degree of the object is measured using fuzzy logic to a pre-determined number of

states at each image. The fall detection method consists of two levels. The first

level deduces the number of states for the object at each image. The second level

deals with linguistic summaries of the object’s states called Voxel Person. Further

derivations are performed regarding the activity. The study reports a specificity

93.75% and a sensitivity of 100%.

2.5.2 Usage of depth data

Attempts [27] in detecting falls by processing depth data arose from the research

in this thesis.

In [41] the authors use the skeleton tracking capabilities of their own algorithm.

Nevertheless, the skeleton works accurately when the sensor is placed at a specific

range and location. The approach aims to detect falls by extracting skeleton data

from Kinect depth images based on the fast randomized decision forest algorithm.
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This algorithm produces more accurate detection by properly rotating frames to

match human orientation. This approach achieved 100% accuracy on a small

dataset of 20 sample falls.

In more recent studies such as in [79, 80], the authors used Riemannian manifolds

of fall velocity statistics and a combination of RGB and skeleton data respectively.

Both studies have evaluated their approaches based on publicly available datasets

and achieved nearly perfect performance in terms of accuracy and false positive

rate. Nevertheless, the evaluation process in all the above studies does not consider

an individual’s physical characteristics or falls subject to occlusions.

The initial critique of the depth based fall detectors (pre 2011) can be found in

Chapter 4 as the proposed algorithms were compared to these studies.

2.5.3 Use of accelerometer data

In such studies, an accelerometer device is placed on, or near the waist - a location

near the CoM, or in other locations. In [81] Igual et al. discusses different datasets

of accelerometer data recorded via mobile phones which were placed in the pockets

or purses of the participants during fall and ADL scenarios. A review paper [82]

discusses the different approaches used. These can be grouped into threshold based

(in pre-fall, impact, post-fall, velocity, acceleration magnitude and signal change,

angular velocity, critical incline based on pre-fall phase) and machine learning

(One-class SVM, KFD, k-NN). It is noted that the preference is given to threshold

techniques.

A fall occurrence is determined via the k-nearest neighbour algorithm as discussed

in [83]. The authors used a cell phone with a tri-axial accelerometer embedded in

it. Data pre-processing is performed using a 1-class support vector machine (SVM)

and the wireless channel for Internet connection. Classification is achieved through

the k-nearest neighbour (k-NN) algorithm and kernel Fisher discriminant (KFD)

analysis. Their algorithm was tested on a variety of scenarios of ordinary daily

activities, (i.e. walking, walking down the stairs at normal speed) and different fall

types, as well as high-intensity daily activities(i.e. running, jump and gymnastics).

They report a specificity of 97.5 % and a sensitivity of 84.4 %.
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Chien-Cheng et al. [84] proposed a home-based, real-time fall detection system

that not only can distinguish up to 4 different kinds of fall events (forward, back-

ward, rightward and leftward), but is also portable, low-cost and with high accu-

racy rate. The system includes a real-time fall detection band, a home server, and

GSM instant messaging function which can transfer fall alert, send emergency help

messages. Four male subjects performed 120 fall events and the accuracy rate of

the algorithm was 95.83%.

The significance of accelerometer-based fall detectors is still high as recent studies

have evaluated the behaviour of elderly performing ADL events [85]. In this study,

the authors use accelerometer data on a novel non-linear classification feature that

allows one to obtain high accuracy values with a simple threshold. Their work

reports 99.4% accuracy.

2.6 Discussion

A summary of the available approaches using single RGB, multiple RGB cameras,

depth sensors, accelerometers, ambient sensors and the fusion of some of these

sensors is shown in Table 2.1 itemising their pros and cons. A representative ref-

erence is included for each approach. The Table includes off-the-shelf technologies

such as cameras and infra-red sensors, accelerometers, pressure and sound sensors.

Other researchers have used a combination of technologies to increase performance

[86].

Fall detection approaches as discussed utilise a variety of sensors such as wearables

(accelerometers, gyroscopes), fixed location sensors (i.e. cameras, radars, acoustic,

pressure) to detect or protect (i.e. airbags) the person from the fall impact. Fixed

location sensors as discussed, can miss the detection of a fall due to occlusion,

interference, memory limitations or avoidance of the user to trust the use a mon-

itoring device (e.g. switch the device off). Other reasons include the removal of

such devices before sleep or a shower/bath and as a result, a continuous surveil-

lance of someone can be interrupted, especially on occasions where a fall is more

likely to happen, such as getting up from the bed or coming out from the shower.

As discussed previously, a wearable device has a number of complications, but it

also has benefits. Briefly, the wearable provides a continuous signal if worn, hence,
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Table 2.1: Pros and Cons of current fall detection approaches

Approach Pros Cons
Monocular camera
[87]

Easy to setup
cheap

Privacy not preserved
Occlusion ineffective

Multi-cam
[2]

Occlusion robust
3D scene analysis

Difficult setup, cameras require
syncing,
privacy not preserved,
3D calibration

Infra-red
[27]

Privacy preserved,
3D scene analysis,
person segmentation ready

Interference,
noisy data

Wearable
accelerometer
[45]

gyrospope
[46]

Occlusion robust,
privacy preserved,

Intrusive,
must be worn

Ambient sensors
acoustic
[51]

floor vibration,
[52]

Privacy preserved,
occlusion robust

Expensive,
can be applied on small
areas

Fusion
3D vision & wearable
[4]

2D & heart monitor
[69]

acoustic & depth
[66]

Higher accuracy and
performance

Complex setup,
requires syncing

is occlusion robust, if compared to a camera sensor. Also, privacy is assured as

recorded/processed signal from such a device is not an image or audio.

Utilising fixed location sensors can invalidate the above issues but introduce further

ones. The use of video cameras introduces privacy issues since cameras are likely

to monitor wet areas and bedrooms. Acoustic sensors are prone to error and

pressure floor sensors are very expensive to cover the entire floor of a house. Depth

cameras from the other hand can provide the related privacy as the depth map

at a given resolution obscures facial characteristics and other body details. Such

depth sensors are now inexpensive to use. Nevertheless, when used in an array of

several sensors projecting on the same area, such sensors are prone to interference.

This has been addressed in [88] where a vibrating device attached to the sensor

disturbs the projection of the laser signal allowing minimal interference with the

laser signal of another sensor placed in the same area. Another benefit of the

depth sensors is the data processing in the 2.5D space which makes the detection

of particular actions possible without calibration as if using an uncalibrated RGB

camera. The use of depth data is selected for this work due to the above reasons.
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Table 2.2: Fall detection approaches and their performance

study year sensor features algorithm evaluation performance

[12] 2005 RGB,S 2D bbox HMM
39F
25ADL

100%

[83] 2006 3axial accel accel KFD, k-NN N/A
sp 97.5%
sen 84.4%

[39] 2006 3D head velocity Decision tree
9F
10ADL

78.9%

[13] 2007 RGB
gradient distribution,
aspect ratio

threshold 40 100%

[51] 2008 PIR Differential voltage HMM 80%

[78] 2009 RGB voxels fuzzy logic N/A
sp 93.75%
se 100%

[77] 2010 RGB body silhouette k-NN N/A 84.44%

[71] 2010
Electric
near-field

electrodes,
body dimension size,
magnitude

Markov chain 650 91%

[34] 2011 depth
user height
body velocity

decision tree N/A 98.7%

[27] 2011 depth 3D BBOX RS
48F
136ADL

100%

[43] 2013 depth 3D skeleton threshold
49F
24ADL

95.8%

[5] 2014 depth
curvature
scale space

ELM
200F
800ADL

86.83%

[49] 2016
Smartphone
camera

Gradient patterns
edge orientations

Decision tree N/A 93.78%

[80] 2017 depth
skeleton,
motion map

rule based,
SVM

30F
40ADL

99.37%

Furthermore, one of the benefits of the accelerometry approaches discussed in

this thesis is the applicability of simulation fall data on accelerometer based fall

detectors as discussed in Section 6.9.

A performance evaluation of the systems is given in Table 2.2, where the discussed

systems are listed given their accuracy and the number of events (falls and ADLs)

on which they have been evaluated. Given these results, it is noticeable that most

of the studies use their own data to evaluate and in the majority of them, the

sample is small, while the performance is very high. It will be inconclusive to

decide the robustness based on such small datasets. This is due to the lack of

such fall data, for reasons discussed in the next chapter. The performance will

be discussed further in the next chapter where public datasets have been used to

evaluate vision-based depth algorithms.
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The use of a the velocity of a particular point or bounding box is more feasible as a

feature due to the fact that a fall is an event where higher velocities are expected.

This is a derivation of most of the threshold based techniques discussed in this

Chapter. Furthermore, the machine learning techniques also define a threshold

for velocity assessment. Also, the velocity is less complex to measure when using

a head detector/bounding box in RGB or depth data and provides -given the

existing studies- a good detection rate. It is also widely used for accelerometry

based algorithms.

This Chapter leaves an open question - answered in the next Chapter - regarding

the suggested robustness of each existing work. Regardless of methodology, a data-

driven approach always relies on how representative data is - the selected feature

or features fit the purpose of this particular set of data. It is then unnecessary

to propose the best algorithms in terms of their performance, knowing that this

performance is mainly achieved based on the training used data. An evaluation of

assessing representative data is produced for Chapter 3.

2.7 Conclusion

A thorough discussion of technologies, approaches and algorithms was presented.

The performance in some of the systems is near 100%, nevertheless, this is ques-

tionable if we consider the size and acting behaviour of the participants in these

data samples. A thorough discussion about these shortcoming will be discussed

in the next Chapter. The use of depth video is selected as the most feasible type

of data for this study as discussed. The use of accelerometer application will also

take place in order to show the applicability of a proposed method (6.9). The use

of features (i.e. velocity) will be discussed in each and following chapter as the

detection features vary according to the methodology.

Existing studies are based on the pre-knowledge of how fall events appear on

healthy adults, e.g. acted by a falling person where the body has known starting

and concluding states. However, in reality these states can be different within

people particularly for the target group (i.e. elderly and infirm). However, all

these methods are constrained by the type of available data, which is not repre-

sentative of real fall events of elderly people. Next chapter will investigate the

data availability constraints and propose the possible solutions.



Chapter 3

Datasets

3.1 Introduction

Researchers in computer vision and data sciences in general, require a significant

amount of data to develop and validate their algorithms. Several characteristics

define a good dataset to cover the range of relevant objects, actions or scenarios.

A good dataset has a sufficient number of examples to be representative of the

variability of actions, human subjects, scene and light conditions, environmental

changes and more. It will also provide annotated ground-truth of these objects,

actions etc. An example of how these datasets are acquired is the capture of videos

of real-world scenes by CCTV cameras. The events shown in these datasets are in

most cases accurate and of representative quality of a real-life event.

Similarly, fall detection algorithms require a representative set of recorded exam-

ples of people falling for algorithmic training and testing purposes. Ideally, one

scenario for capturing such fall events would be to use cameras or other sensors

in hospital wards, care homes, assisted living accommodation, in the homes of

elderly, rehabilitation centres, inpatient wards etc. Several of these data recording

centres would be located around the globe in order to detect the human physio-

logical characteristics variated by height, weight etc. Continuous recordings - day

and night - of data over several months or years would have captured a significant

number of falls as well as other activities of daily life (ADLs) with some having a

similar motion pattern to a fall, such as lying down. The recordings would be in a

format that protects personal privacy and allows public access and redistribution

for scientific purposes. Unfortunately, the above scenario is imaginary as such

23
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recordings - even if they exist - are confidential and limited in terms of variability

and ethically unsuitable as discussed later in this Chapter.

To overcome the issue of data availability, researchers have implemented their own

versions of fall events - acted by volunteers. Such datasets are discussed in this

Chapter in an attempt to show the limitations and pitfalls of acquiring and using

them. Recorded fall data acted by people are not as representative in terms of

falling behaviour when compared with datasets of other types of actions. In other

words, an acted walking behaviour is likely to be representative as it involves

usual daily activities while acting a fall is an artificial action subject to inaccurate

behaviours. Given this reason, there is a scarcity of realistic fall samples due to

hesitation [28] and the risk of injury performing a fall event. The use of actors

guided by researchers aims to bridge the gap between real and human-simulated

falls. Also noticeable is the small number of actors participating in these datasets

for the above reason and as a result the human variability is limited. The age

and health of actors also play a significant role as the vulnerable population (e.g.

elderly) is missing from such samples due to ethical complications which prohibit

the data-recording of risky actions performed by an infirm person.

A variety of different sensors such as RGB, RGB-D, accelerometers, gyroscopes

and radars have been used to record fall events and a range of common activities

of daily life (ADLs) as discussed in Chapter 2. This Chapter will focus on visual

datasets and more particularly on the RGB-D datasets captured by depth sensors

since such data provide access to 3D motion processing. One benefit of depth

data is that compared with RGB imagery, facial characteristics are less visible,

providing greater protection of personal privacy. Accelerometer data recorded by

sensors will be also used for evaluation since such data also describe a person’s 3D

motion and provide even greater degree of privacy protection.

Recent developments with the use of deep learning exploit the availability of large

datasets for training but for fall detection as discussed, such data are not represen-

tative and are limited in their number and variability. A deep learning algorithm

will suffer in the same way as existing machine learning algorithms that are data-

driven. Therefore, a new approach is required to a non-data-driven approach.

This Chapter reviews the publicly-accessible datasets that have been created to

support fall detection. The Chapter discusses the early RGB datasets; next is a

discussion about the benefits of depth data over RGB, followed by a section on
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depth sensors and the human segmentation and tracking software that is available.

Two depth datasets (GM, GM2) have been specifically developed for this study in

which different types of fall and non-fall events were captured using depth sensors.

The GM dataset was possibly the first recorded fall event data intended for the

design and evaluation of [27] which is discussed in Chapter 4. Since [27], a number

of publicly available datasets have been created and are discussed in section 3.5. In

3.6, an accelerometer dataset is discussed as an evaluation against such data will

be presented in Chapter 6. Section 3.8 provides a discussion on the limitations of

existing fall datasets considering their suitability in real environments, subject to

occlusions and the representative nature of their demographic. Visuals from each

dataset are included in order to provide a recognisable image of the data type. To

highlight some of the issues with existing datasets (particularly for hesitation), a

comparison is presented where acted falls are compared with actual fainting falls,

using videos from YouTube.

3.2 Fall Types

A fall has many variations as initially discussed in the Introduction. Internal

and external factors contribute to a fall, with the internal ones caused by the

physical or mental state of the individual whilst the external are associated with

clothing, footwear [89] and the environment. More specifically the physical factors,

particularly for the elderly [90], are related to blood pressure, brain atrophy [91],

low vision [92], diabetes [93], medication side-effects [94], muscle weakness [95],

vitamin deficiencies [96], injury or the lower limbs, gait irregularities [97] and

balance issues. Mental conditions [98, 99] may particularly affect cognition causing

confusion, lack of attention, reduced sense of risk etc.

Falls have a direction according to the prior body motion or the centre of mass

[100]. These falls are directed towards the front, side or the back of the body where

the body stays relatively rigid and falls as a stick, or can have a vertical direction

where the knees fold over and hit the ground first and the rest of the body falls to

the floor afterwards (collapsing fall). After such incidents, the person may remain

unconscious on the ground or crawl to seek help. Trips and slips are considered

as fall events which are caused by external factors such as elevated or slippery

floor surfaces. These incidents may or may not conclude in an unconscious state,

depending on the severity and location of the impact.
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Another group of falls is observed during sports events, where athletes uninten-

tionally or intentionally fall to prevent an incident or create one. A fall may also

be caused by an aggressive attack by another person or an animal.

This study will focus on several fall types that effect the elderly and infirm. It will

particularly consider rigid and collapsing falls which conclude on an unconscious

state of rest on the ground.

3.3 Public camera (2D) datasets

Many early studies utilised RGB 2D cameras to record falls. Such datasets are

discussed in this section which discusses the early challenges of fall detection using

such video data.

3.3.1 Single camera LE2i dataset

The LE2i dataset [1] contains 191 videos, 143 falls and 48 ADL of 9 subjects of

unrecorded age, weight or height. The recordings are made in different types of

room (home, coffee room, office and lecture room) as seen in Fig. 3.1 and according

to the authors, this is done in order to evaluate the robustness of the method to

different locations. However, they fail to distinguish the actions related to each

room, e.g. there is a mattress in the office setting where subjects lay down to

sleep. Only one type of fall is shown: a rigid fall event with visible hesitation as

actors pull their hands towards the floor to minimise the impact. The capture

uses a single RGB camera and the video sequences contain variable illumination

and typical difficulties like occlusions due to furniture or cluttered and textured

background. Occlusion is found in only 8 videos and it has minimal impact on the

scenario as seen in the first column of images in Fig. 3.1.

3.3.2 Multiple cameras fall dataset

The Multiple camera fall dataset [2] is one of the early attempts to record video

data for the study of fall detection. One subject (of unknown age or other physical

characteristics info), performed 24 falls and 99 ADLs RGB videos. Such actions
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Figure 3.1: Visuals from the LE2i dataset [1]: fall events at top row, ADLs
on lower row

Figure 3.2: Visuals from the Multiple cameras fall dataset [2]: fall events at
top row, ADLs on lower row

include walking in different directions, housekeeping and actions with character-

istics similar to falls (sitting down/standing up, crouching down, picking up an

object from the floor). Falls include different types with a direction to the front

or back of the body or when failing to sit down properly, or due to loss of balance.

The data collection used 8 cameras, mounted around a room to record activity.

Although there are objects that will potentially occlude the subject, details of

the size and location are only available from the images and the results assume a

non-occluded view of the fall and non-fall events is available from at least one of

the cameras. Fig. 3.2 shows several frames from this dataset, showing examples

of falls and ADL events.
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3.4 Depth Sensor data

Depth data provide access to an extra dimension, hence, activity is also captured

when the person is moving towards or away from the sensor. The depth sensors are

calibrated and the silhouette of the objects or people is measured in millimetres

without any extra software development as these sensors come with their own

software.

Minimal camera setup is required in terms of calibration and synchronisation to

avoid complications discussed in [2] where several cameras were used. Without a

calibrated camera it can be difficult to measure the physical characteristics of a

person such as their height or the bounding box in 3D space. Also, a monocular

calibrated camera can provide depth estimation when intrinsic camera parameters

are known and tracked objects are of known size. Stereo cameras also provide

a solution to the above issues, such as the ZED [101]. The main issue using

this particular camera is its cost as well as the required hardware (GPU) to run

it. Furthermore, RGB (2D) video processing is a difficult task when it comes to

track human motion and maintain shape information on a cluttered background.

Data processing of depth videos using software such as OpenNI, Kinect SDK, and

Orbbec Body Tracking SDK provides such measurements of 3D bounding boxes

since the person tracker is taking into account only depth data and not colour

information, regardless of camera location.

Normal light conditions are required to use an RGB camera system, meaning that

lights are required to be continuously on. The effect of this is to have a system

where falls happening at dark areas are missed e.g. a fall occurs at night when the

person avoids to turning the lights on. The Kinect depth camera for example relies

on infra-red illumination and therefore, the signal contains valid information even

in complete darkness. A depth camera can be used continuously indoors without

complications and changes of light conditions.

Depth data hides the person’s facial and other physical characteristics as the for-

mat of the video stream (disparity map) as well as the distance from the sensor

contribute to maintain personal privacy.

Such inexpensive depth sensors developed by PrimeSence and sold Microsoft in

2010 will be briefly discussed. Kinect I, II and Orbbec Astra are some of these
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sensors which researchers used for data collection. The next section discusses the

technical details and deployed software.

3.4.1 Depth sensors, OpenNI and Microsoft Kinect SDK

Several depth sensors have been developed since the arrival of Kinect I released in

2010 by Microsoft. It uses three types of sensors: an RGB camera, an IR-based

depth sensor and an acoustic sensor. The maximum range of Kinect’s IR sensor is

10 metres though the actual effective range depends on the environment. Practi-

cally, depth images are noisy beyond 7 metres and may lead to misinterpretations.

The Kinect has been widely used to develop numerous applications [102] for action

recognition.

OpenNI [103] is an open source tool from PrimeSense [104] which provides access

to the depth information regarding human subject’s detection and tracking and

articulated pose estimation as well as gesture and motion recognition.

3.5 Public RGB-D datasets

More recently RGB-D datasets have become publicly available for evaluating fall

detection algorithms. The following briefly summarises this composition.

3.5.1 TST Fall Detection v2

The TST Fall Detection v2 [3] is an RGB-D dataset recorded using Microsoft

Kinect v2 and two accelerometers placed on the wrist and waist of the subjects.

Each subject performed 4 different ADLs (i.e. sitting down, walking and picking

up an object from the floor, walk back and forth, lie down on the mattress) and

4 fall types (i.e. falling flat to the floor towards the front, side or backwards or

seated on the floor after a backward fall). Nevertheless, the different types of falls

conclude on the floor and actions appear rigid and staged. This particular dataset

is delivered by 11 subjects of unknown age, height or weight although the authors

record some variation in height (1.62-1.97 m). The actions are extracted from a

long sequence, i.e. the fall event is isolated from any other actions such as walking,
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Figure 3.3: Visuals from the TST Fall Detection v2 dataset [3]

Figure 3.4: Visuals from the UR Fall Detection dataset [4] : a hesitated fall

before falling. The format of data makes this dataset difficult to process and as

a result, this dataset is not used for evaluating other algorithms in the literature

(i.e. is the less preferable dataset). Fig. 3.3 shows visuals from this dataset where

fall or ADL events are happening in front of the sensor.

3.5.2 UR Fall Detection

The UR Fall Detection [4] is another dataset providing acceleration fall data and

video (RGB and depth). It has been collected using a two camera configuration,

one parallel to the floor and the other mounted on the ceiling. Annotations of

other features, e.g. those characterizing the bounding box around the person, are

also provided. The dataset consists of falls belonging to two categories: falls from

standing position and falls from sitting on a chair. This is one of the most popular

datasets that has been used by many other researchers for their evaluation and

comparisons as it is very easy to process as its format is in PNG where pixel

intensity denotes the correct depth (this involves a calculation according to sensor

type). Nevertheless, it is only a small dataset of 5 subjects performing only 15

walking to rigid falls and 15 seated falls. Subjects clearly hesitate when performing

a fall as seen in Fig. 3.4 where falls terminate on the floor without any cushioning

mattress. Notice how the actor tries to reduce the impact by resisting using his

arms.
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Figure 3.5: Visuals from the SDUFall dataset [5] : fall events at top row,
ADLs on lower row

3.5.3 SDUFall

The SDUFall dataset [5] is one of the largest datasets comprising data captured

from 20 people performing different types of falls (backwards, sideways) and 5

different ADLs (bending, squatting, sitting, lying and walking), with each subject

repeating each action 10 times. In each repetition, the actors may or may not carry

large objects, turn a light on or off, or change direction and position relative to the

camera. This is another dataset where although there is a larger set of participants,

the physical characteristics of each is not recorded. Many researchers have used

this dataset as it has 200 fall samples in depth, RGB and skeleton, distributed in

.avi format and text files. Fig. 3.5 shows visuals from this dataset wherein the

top row a fall occurs and in the lower row is picking up an object from the floor

while holding a briefcase.

3.5.4 University of Texas datasets

Three different datasets were collected at the University of Texas:

The Falling Detection dataset [105] has been collected in a laboratory-based

simulated apartment set-up, with two Kinects mounted at opposite upper corners

of the room. Six subjects perform 26 falls and several ADLs such as picking up a

coin from the floor, sitting down on the floor, tying shoelaces, lying down on the

bed, opening the low drawer which is close to the floor, jumping on to the floor,

and lying down on the floor. The recording provides only depth data and there is

no information about the participants or the camera setting.

The EDF dataset [6] extends the previous datasets in terms of data collection.

The setting has remained the same in a simulated apartment where two Kinects

have been installed to capture the events from two different directions, leading
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Figure 3.6: Visuals from EDF [6] and OCCU [7] datasets. Top row: falls
repetition over four angles, lower row: occluded fall behind a bed

to a total of 320 sequences. In addition, 100 sequences of 5 different ADLs that

could be associated with falls are recorded such as “pick up an object”, “sit on

the floor”, “lie down on the floor”, “tie shoelaces”, and “do a plank exercise”.

The OCCU dataset [7], as the EDF set, also uses the same setting. The main

feature of this dataset is the presence of occluded falls for which the end of the

action is completely occluded by an object such as a bed. Five subjects simulated

12 falls, 6 for each of the two viewpoints. Similarly to the EDF dataset, 80

sequences of actions that can be confused with falls are also provided. This is the

only dataset where occlusions are introduced. Fig. 3.6 shows visuals from these

datasets, where on the first row a fall occurs with different direction towards the

sensor, whilst in the lower row an occluded fall occurs.

3.5.5 ACT42 dataset

The ACT42 dataset [8] mainly focuses on facilitating practical applications, such

as smart house or e-healthcare, and contains 14 daily activities such as: Drink,

Make Phone Call, Mop Floor, Pick Up, Put On, Read Book, Sit Down, Sit Up,

Stumble, Take Off, Throw Away, Twist Open and Wipe Clean. Two categories

of falls are considered, namely Collapse (fall due to internal factors i.e. heart

attack, stroke etc.) and Stumble (fall due to external obstacles). The dataset was

captured by 4 Kinect sensors from different heights and view angles. This is one of

the first datasets showing data of collapsing fall event videos. Nevertheless, in the

majority of those videos, it is noticeable how subjects hesitate to fall in a vertical

direction towards the ground. Data regarding participants physical characteristics

is not available and the sensors positions, although different in every capturing
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Figure 3.7: Visuals from the ACT42 dataset [8]. Events captured from four
views in RGB-D

scenario, is not recorded (e.g. height of sensor). Visuals from this datasets are

seen in Fig. 3.7 where every event is captured by four cameras.

3.5.6 Daily Living Activity Recognition

The Daily Living Activity Recognition dataset [9] has data of subjects performing

five activities related to falling event including standing, fall from standing, fall

from sitting, sit on a chair, and sit on the floor, captured using a Kinect sensor.

RGB, depth and skeleton data were provided in this dataset in 150 different data

files, nevertheless, only 50 of those are available for public retrieval. Subjects

perform events in-front of the sensor and without any occluded scenes. Other

data is not recorded from the participants or sensor location. Fig. 3.8 shows

several events from the dataset.

3.5.7 NTU RGB+D Action Recognition Dataset

This dataset [10] appears to have the most video samples of any set discussed in

this chapter. This is a dataset not particularly prepared for falls as it contains

only 40 fall events captured from different angles. The falls are not as realistic as

we have seen in other studies which focus on the subject. The authors claim that

there is a human variability on subjects such as age, height and weight, but this

information is not made available. There are videos where the fall event does not

conclude to a resting place on the floor, but the subject stops the fall and holds on

with their hands. Falls appear to be conducted with minimum risk and hesitation

is obvious. The fall actions appear without occlusions from objects. Currently, at

the time of writing this work, this dataset has not been used for evaluating any

fall detection algorithm. Fig. 3.9 shows visuals from the dataset where the first

two images show ADL events and the last image a sideways fall.



Chapter 3. Datasets 34

Figure 3.8: Visuals from the Daily Living Activity Recognition dataset [9].
Several ADLs and fall samples of RGB-D and skeleton

Figure 3.9: Visuals from the NTU RGB+D Action Recognition dataset [10].
Several ADLs and fall samples in RGB-D

3.5.8 UWA3D Multiview Activity dataset

Dataset [11] consists of 30 ADLs and a falling down event performed by 10 subjects

(hand waving, one hand punching, sitting down, standing up, holding chest, hold-

ing head, holding back, walking, turning around, drinking, bending, running, kick-

ing, jumping, moping floor, sneezing, sitting down (chair), squatting, two hands

waving, two hand punching, vibrating, irregular walking, lying down, phone an-

swering, jumping jack, picking up, putting down, dancing, and coughing). To

achieve multi-view, five subjects performed 15 activities from four different side

views. Nevertheless, only the front view is available at the time of this study for

retrieval. Subjects’ physical characteristics data do not appear anywhere in the

information related to participants. Visuals are shown in Fig. 3.10 where on the
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Figure 3.10: Visuals from the UWA3D dataset [11]. Performance of a bending
over (top row) and falling (low row)

first row a person is bending over, while on the lower row the person performs a

collapse with noticeable hesitation.

3.6 Accelerometer based dataset

3.6.1 Sisfall dataset

This dataset [106] records accelerometer and gyroscope fall data including the sub-

jects’ height, weight and sex alongside falling data provided by 3 different devices

(two accelerometers and one gyroscope) mounted on the waist of the participants.

Unfortunately, only a few videos are provided from this study just for viewing

purposes and to distinguish the different types of falls. This is also a dataset

where elderly subjects perform ADL events. Data from this study has been used

for evaluating several algorithms and assumptions made in Chapter 6.

3.7 GM depth dataset

At the start of this study (2011), no depth-based public datasets were available

for training and validation purposes. Fall events and scenarios were simulated by

humans using falling scenarios seen in real-life as well as fall videos available online

in RGB video.

Hence an in-house dataset was created using Kinect I sensor. The Kinect IR depth

sensor captures videos at 640 × 480 resolution at 30 fps. The fall actions were

recorded from a direct view of the scene making sure that the fall event is fully

captured. For that reason, the Kinect has been attached to a tripod at the height
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Figure 3.11: Visuals from the dataset. Row a) a detected fall event, b) walking
and picking up an object, c) lying down

a b c

Figure 3.12: Three view-angle examples of the GM dataset. a) 45 view , b)
side view, c) front view

of 204 cm and inclined to the floor plane. The Kinect monitored an area within 7

metres of the acted events which is within the range of the IR sensor.

The dataset is comprised of 184 video sequences, of actions that include: 48 falls

(backward, forward, sideways), 32 seating actions, 48 lying down actions on the

floor (backward, forward, sideways) and 32 “picking up an item from the floor”

actions, performed by 8 different subjects (6 male, 2 female). Visuals of the

dataset are shown in Fig. 3.11. 24 other activities that change the size of the 3D

bounding box were also performed (e.g. sweeping with a broom, dusting with a

duster, picking up a char or a box and placing it back). Table 3.1 lists the number

of different types of actions included in this dataset.

Those videos were captured from three different view-angles (captured separately)

in order to provide several different views of an activity in a real environment,

as seen in 3.12. That is, for each trial, the person was changing their direction

towards the sensor. Subjects performed the fall actions on a 30 cm thick mat in

order to prevent injury and to capture more realistic falls.

Further investigations required the addition of videos of collapsing falls, due to the

fact that limited number of examples of such fall type were included on the public

available datasets. The GM2A dataset has 40 collapsing fall samples from 3 sub-

jects. After the comparison discussed in 3.10, the selected samples from the GM2A

dataset will be merged with the existing GM data to form the GM2 dataset. For
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Table 3.1: RGB-D Fall datasets. R: RGB data, IR: infrared data, D: depth
data, A: accelerometer data, S: Kinect skeleton data. The table shows the
different fall event datasets of several sensor technologies. Noticeable is the
number of fall events if compared with the ADLs as well as how small the fall

number is in general

Dataset Subjects Actions
Fall

Samples
ADL

Samples
Data
Type

Multiple cameras [2] 2010 1 9 24 99 R
LE2i [1] 2013 9 7 143 48 R

TST v2 [3] 2016 11 5 D, S, A
UR [4] 2014 5 6 30 40 R, D, A

SDUFall [5] 2014 20 6 200 1000 R, D, S
Fall Detection [105] 2012 6 8 26 61 D

EDF [6] 2015 10 6 160 50 D
OCCU [7] 2014 5 5 30 80 D
ACT42 [8] 2012 24 14 48 672 D, R

Daily Living [9] 2012 5 5 10 40 D, R, S
NTU RGB+D [10] 2016 40 60 80 4720 R, D, S, IR

UWA3D [11] 2014 10 30 10 290 R, D

GM2A dataset, events were captured using a Kinect I and an Astra Orbbec sen-

sor. To avoid interference a shake ’n sense [88] approach was adopted where one

or both sensors use a vibrating means to disturb the laser signal interference.

3.8 Limitations of existing datasets: A discus-

sion

In general, as discussed, computer vision algorithms require a significant amount of

data for training which in this particular field is sparse and of questionable quality

in terms of how realistic the fall event is. Table 3.1 summarises the samples found

in public datasets, which specifies the number of subjects and samples of each

dataset. In the above-discussed datasets for action recognition, falls are a very

small class of experiments as it is easier and less risky to perform common actions,

such as walking, sitting, greeting etc.

Genuine fall data is not readily available, particularly for vulnerable people as there

are complications in collecting and distributing it. There are ethical reasons which

prohibit elderly and infirm from participating in data collections that involve falls

due to the fragility of the body. The few genuine data recorded from actual scenes

recorded from hospitals or assisted living homes, is not available, mainly, due to
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reasons of privacy and ethical approval. As a result, researchers have implemented

human-simulated falls in order to develop fall detection algorithms and fill the data

availability gap. Acting participants are asked to perform an event which in reality

is performed without our consciousness (e.g. is a non-conscious action when we

fall due to dizziness or when we stumble on something). Such implication makes

the data collection a difficult task as the actors find it unpleasant to perform.

A fall is not an event that occurs often within the day and a result we are not

prepared or willing to perform such an action for the sake of data recording.

Even when we decide to perform such staged falls, we may be reluctant to fall

realistically, due to the risk of injury and it was never a case to hire professional

actors (stunt men) who are trained to simulate realistic falls.

The following sections discuss in detail the issues with existing datasets and record-

ing practices and provide the reader with an insight into their limitations.

3.8.1 Age of participants

All the datasets consulted (excluding the SisFall) provide limited data regarding

the age of participants. In general, the elderly are not represented in any of

the datasets - even if those actions are not fall related. The available fall event

data recordings are performed by young people, mainly students and researchers

from an academic institution under instruction from the researcher to collapse

“normally”. In such circumstances, self-preservation takes over and the fall event

will be unrepresentative of genuine falls, particularly if the aim is to acquire data

representative of the vulnerable population (i.e. elderly people).

Particular emphasis is to be given to the elderly as the target group where this

study can potentially find an application. As discussed in Chapter 1, the elderly

are more prone to fainting due to a number of causes. Loss of balance can be due to

muscle weakness or other medical conditions such as reduced brain functionality,

blood pressure issues, visual impermanent, confusion and disorientation due to

mental issues. Nevertheless, current datasets are intended to apply to algorithms

which aim to detect elderly falls.
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3.8.2 Health of participants

To participate in these datasets and perform a fall, actors are asked about their

physical condition or even mental state. If issues exist which conceal a risk, such

participants will be excluded due to restrictions set by ethics committees when

human subjects are asked to perform tasks for data recording. Therefore, only the

healthy participate in these datasets and vulnerable population are excluded from

the study. Most of the existing work in fall detection discusses the applicability of

their approach without investigation of such populations. In reality though, falls

can cause death mainly from an ill-health or old-age person.

3.8.3 Types of falls

The discussed datasets have samples from mainly one type of fall (i.e. rigid).

The collapsing fall type is collected in a few datasets, but the falling behaviour

is unrepresentative of a real collapsing event. One possible reason for avoiding

the performance of such fall is the risk of injury, particularly for the knees [107].

Section 3.10 tries to justify and assess the hesitation in some of the collapsing falls.

3.8.4 Size of datasets

The small number of human actors performing fall events may not be sufficient

to represent the entire population. For example, one of the largest datasets [10]

for fall detection consists of only 40 fit, young and healthy male and female sub-

jects performing falls and other ADLs. Whilst, the number of participants may

be sufficient, they are not sufficiently varied. However, even compared with the

number of recorded falls every year in a given country such as the US or the UK,

it can be considered as small. The small number of samples may play a significant

role in the accuracy of a fall detection algorithm when applied to a real scenario,

as the algorithm will have been trained on a small amount of data, limiting its

robustness.
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3.8.5 Variability of subjects

Variability in human body morphology assotiated with as the height, weight, age,

or gender are factors which are generally ignored. An elder has different posture

from a young person and a pregnant woman may walk differently from someone

with a broken leg. The answer is not to ask any of these groups to perform falls, but

to give an appreciation of how the existing datasets lack in variability. Therefore,

algorithms based on these limited datasets may have questionable performance

when applied to a broader demographic. For example it is noted in [108] that men

and women have a different centre of mass. This is subjected to height, weight

and anteroposterior depths of a person.

3.8.6 Hesitation

Human subjects performing staged falls may have difficulty in acting realistically

due to hesitation associated with the concern of having an injury. A hesitated

fall is defined for this study as a fall event where the person undergoes the fall

but extends arms to minimise the impact against the head or turns on the side to

avoid knee impact.

The risk of injury is an important factor when permission is sought to conduct

fall experiments, hence, the type of falls may be organised to follow a restricted

protocol specified by regulations of health and safety or ethical considerations.

Researchers then have no option but to warn the participants of any complication

in the case of injury and may request disclaimers, particularly if they were deployed

in a real environment. As a result, data from such non-realistic recordings may

have a negative impact on an algorithm’s performance.

3.9 Scene set-up

Some of the discussed datasets including the RGB ones provide example events

from actual home scenes. Although such scenes appear realistic, it is far from a

usual home scene as rooms are sparsely furnished and unrealistically configured,

where few occlusions are visible since most of the furniture is located near the

walls.
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Figure 3.13: Typical occluded scene. The camera view is partially blocked by
the red box. Half the person is occluded.

3.9.1 Occlusions

As noted from the analysis of the datasets in Sections 3.3 3.5, fall events appear

fully visible in the video scenes without any scene occlusions. Datasets generally

include fall event videos without other objects appearing nearby unless this object

is used, (such as a chair, stool, or a bed) and as a consequence, occlusion sce-

narios are rarely represented. The lack of occlusions in most existing datasets is

unrealistic for virtually all indoor (home) environments. Therefore, in the event

of an occluded fall, current algorithms are generally untested for such scenarios.

In a home scene we may get non-occluded views, but as people move around a

cluttered environment there may be frequent occasions during which they are part-

occluded, to various degrees. Fig 3.13 illustrates an occlusion obstructing the view

of a person.

Although many studies discuss the application of fall detection for the elderly,

at home or in hospital, occlusion is rarely mentioned, hence, methods are not

evaluated to provide occlusion-robust solutions.

In an occluded home scene, a fall detector should rely on features that are visible

and stable. The issue is that many fall detection algorithms may use one or more

features that are more adversely affected by an occlusion on the ground plane (e.g.

CoM); the head location would seem to be the single feature least susceptible to

occlusion. An approach to dealing with occlusions is to use several cameras as seen

in several datasets in order to maintain a continuous view of the scene, though

this is still not guaranteed to eliminate the possibility of occlusion.
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An attempt to evaluate current algorithms under occlusions is discussed in [7]

where authors have developed an occluded dataset and evaluated several state-

of-the-art algorithms. Five subjects perform fall events which conclude with the

fallen person completely occluded behind a bed. Yet, the level of occlusion that

is normally caused by a bed is fairly small (approximately 30%) and even this

dataset fails to provide a proper evaluation of partially occluded events.

3.9.2 Sensor location

Only a few studies/datasets make note of the sensor location. The position of

the sensor plays a significant role as to where the best field of view is achieved

in order to maintain a clear view of the home scene. This is unrelated to the

minimisation of occlusions as even if the sensor is located higher, occlusions may

still occur. The sensor location in some cases plays a significant role in how the

person appears, hence, an algorithm is designed in order to detect a fall using that

particular data. See the example in [4] where the depth sensor is located on the

ceiling, pointing downwards. In other cases the sensor is placed on a table, which

seems unrealistic for a home scene. Obviously, the location, in this case, aims to

detect the height variation of the falling person, rather than how depth/length of

human body changes during a fall. Also, by placing the sensor at a low height,

the view is more prone to self-occlusions. In this scenario, a fall may start near

the sensor and conclude on the floor in front of the sensor and possibly under the

f-o-v of the sensor - implying that the fall is outside the viewing window.

3.9.3 Data quality and adaptation

One of the issues in using public datasets is the recording format and how other

researchers can use the data. In a few cases, depth data were compressed result-

ing in poor depth information, or in other cases, the depth information was less

reliable and as a result, further time was required to address such issues. Different

depth sensors or OpenNI/Microsoft Kinect SDK versions were delivering different

video/image formats which were time-consuming to use or convert.
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3.10 Comparison of real vs acted falls

This section discusses the level of realism in terms of how actors behave during a

fall. A comparison of real falls and staged ones is necessary to show how different

real falls are. To investigate this, falls were taken from public video channels, such

as YouTube. In recent years YouTube has become an increasingly useful source

of video data. Searching for appropriate falls is still a challenge as some of the

fall videos are not of the right quality for processing. Such videos do not require

ethical consideration and can be used as is. For this study hyperventilation videos

were used, where young people hyperventilate themselves until they faint. Some

of these videos show the realism and how violent a fall can be.

Using a camera calibration feature tracking software, YouTube hyperventilation

videos were processed in order to measure the person’s head vertical velocity Vy.

Velocity is selected as a comparative feature as actors who hesitate try to slow

down the fall by applying force to their knees or extend their hands to the ground

in order to minimise the impact. This behaviour will cut-off the action and the

velocity of the head will be different from the real fall event.

Noticeable hesitation is observed on collapsing fall videos found in ACT42 [8]

(48 samples) and GM2A (40 samples) datasets. The head’s vertical velocity is

measured from videos from these two datasets. To measure the similarity between

the velocity profiles of the real and acted falls, the Hausdorff distance (HD) is

calculated (validation of HD is discussed in section 6.8.1).

Fig. 3.14 shows the velocity profiles of three different falls; from the GM2A dataset

(blue and green graph) and a real YouTube fall event (red graph). The Hausdorff

distance between the YouTube and GM2A hesitated profiles was 2.87 m/sec, while

the HD of YouTube and GM2 was 0.673. To show the difference between the

realistic and hesitated falls, a pdf is plotted as seen in Fig. 3.15. Two classes are

visible, one with 16 examples of realistic fall events when compared with YouTube

ones and 24 samples which when compared with YouTube videos are classified as

a similar to a non-fall event (see Fig. 6.12).

These results are selected in order to show a valid collapsing fall according to this

evaluation and a hesitated/unrealistic one from the GM2A dataset. Samples with

a small HD distance in velocity, when compared with a fall velocity profile, denote
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Figure 3.14: Velocity profiles of collapsing falls. This Figure shows the velocity
variation between a hesitated fall (GM2A hes.) and how this compares with an

actual fall caused by hyperventilation

0 0.5 1 1.5 2 2.5 3

Hausdorff distance in m/sec

0

2

4

6

8

D
e
n
s
it
y

HD non-hesitant

HD hesitant
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distances: red curve denotes the HDs of YouTube to non-hesitant falls, while

blue curve the HDs between YouTube and hesitant falls
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Figure 3.16: Hesitation while collapsing. Subject uses an arm to balance,
then expands her legs to sit on the floor

that their falling behaviour is more similar to a realistic fall as evaluated in Section

6.8.1.

Visuals in Fig. 3.16 show hesitation due to self-preservation, resulting in an un-

realistic fall example as the actor uses an arm to balance, then extends her legs

to sit on the floor. Only 7 examples from ACT42 and 16 examples from GM2A

were classified as realistic collapsing fall samples. This result indicates how actors

hesitate in performing a fall in a realistic manner and hence, only a small sample

of 16 examples from the GM2A dataset is usable for evaluation purposes. These 16

videos will be used as an addition to the GM dataset in order to provide samples

of collapsing falls to form the GM2 dataset.

3.11 Performance Evaluation Measures

Results are presented using the following performance measures: the number of

correctly detected falls (TP), missed fall detections (FP), ADLs detected as falls

(FN) and ADLs that are not detected as falls (TN). Accuracy (Eq. 3.1 ) gives

the proportion of true events that were correctly classified across all measure-

ments. Precision (Eq. 3.2) is the proportion of positive results that were correctly

classified. Sensitivity (Eq. 3.3) is the proportion of actual positive event results

correctly classified and specificity (Eq. 3.4) is the proportion of negative results

correctly classified.

Accu =
TP + TN

TP + FP + FN + TN
(3.1)

Prec =
TP

TP + FP
(3.2)
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Table 3.2: Performance of fall detection and comparison against previous
studies across 2 public datasets

Method Accu (%) Prec (%) Sens (%) Spec (%)
(a) Dataset UR (15 fall, 40 ADLs)

[45] 95.00 90.91 100.0 90.00
[4] 98.33 96.77 100.0 96.67
[79] - - 100.0 97.25
[80] 99.37 96.77 100.0 99.23

(b) Dataset SDU (200 fall, 800 ALDs)
[5] 86.83 - 91.15 77.14
[109] 91.89 - - -
[110] 92.98 - 93.52 90.76

Sens =
TP

TP + FN
(3.3)

Spec =
TN

TN + FP
(3.4)

Two public datasets UR [4], SDUFall [5] and the GM and GM2 of people per-

forming fall events and ADLs are used to evaluate the algorithms developed in

this thesis. These public datasets were selected as they are frequently used by

other researchers and hence a comparison measure is available for other fall de-

tection methods. Table 3.2 compares the performance of other researches using

these public datasets. For brevity, these datasets are labelled as UR, SDU, GM,

GM2 respectively. These datasets contain a variety of fall events and non-fall

actions, such as picking up objects, lying down or other actions that can trigger a

false positive decision. Also, the sensor mounting position for these datasets was

at varied heights and falls were occurring at varied locations in the scene. Table

3.3 summarises the number and type of actions in these datasets. Note that GM2

dataset is merged with GM whenever an evaluation is required, therefore, GM2

has 64 fall events, 32 sitting events etc.

3.12 Conclusion

As discussed, the public datasets provide insufficient information regarding the

actors’ physical characteristics such as age, height, weight etc. in order to assess
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Table 3.3: Type and number of events from each dataset

Datasets
Actions UR SDU GM GM2 Total

Fall 15 200 48 16 + (48) 279
Sitting 9 200 32 (32) 241

Picking up - - 32 (32) 32
Squatting 8 200 - - 208

Lying 16 200 48 (48) 264
Bending 7 200 - - 207
Other - - 24 (24) 24

the impact of these characteristics on fall detection algorithms. Sometimes, they

mention that their datasets contain males and females without specifying further

information. Furthermore, the number of fall events or the participating actors is

limited when compared to other action recognition datasets. These public datasets

do not include data of the specific group for which they are intended, such as the

elderly and infirm. Hesitation is described as one of the issues associated with

unrealistic fall behaviour. This is observed mostly on all types of falls but it is more

severe in collapsing events. Therefore, an evaluation of these collapsing videos was

undertaken in order to filter out the hesitated fall events using comparative induced

falls via hyperventilation from YouTube.

Also, these datasets lack visual occlusions hence available algorithms are not in-

tended to be occlusion robust. A change in furniture may require sensor relocation

to overcome a new scene occlusion and a change of habits may require signal repli-

cation of the wearable receiver. Somehow, methodologies are required to bridge

the gap between these inconsistencies and improve performance without human

intervention. Such approaches will be discussed mainly in Chapters 5, 6 where the

falling behaviour is not trained by a data-driven approach.

RGB data provides detailed views of faces (as seen in 3.1), hence to preserve

privacy, such technology is inappropriate. The use of a depth camera resolves this

issue since disparity images are of such resolution that identifiable characteristics

such as the face are obscured.

Two datasets have been selected [4, 5] for evaluation as they are widely used for

evaluation in other studies. These datasets consist of falls by actors performing

several types of falls (backwards, forwards etc.) as well as ADLs.





Chapter 4

Learning to detect falls

4.1 Introduction

This Chapter describes an initial investigation of fall detection using depth data for

training and testing a Random Search [111] machine learning algorithm. Two real-

time algorithms were developed that utilise a 3D bounding box to parameterise

a body shape, expressed in world coordinates: the first method is described in

Section 4.2 and published in [27] and the second detailed in Section 4.3. The first

study focuses on a rigid fall whilst the later considers rigid and collapsing falls.

Discussion about fall types is given in Section 3.2.

From the 3D bounding box, the first algorithm calculates the first derivative (ve-

locity) of width, height and depth in order to determine whether a particular

activity is a fall or not. The algorithm does not require pre-knowledge of the floor

plane coordinates or the detection and tracking of any particular body part, as

used by some other systems [112–114]. Several studies discuss the fact that dur-

ing the fall, the width of the 2D bounding box is expanding, while the height is

contracting [12, 13]. Those studies require the initial and final aspect ratio of the

2D bounding box to confirm a fall, while the proposed approach does not measure

the initial/final bounding box dimensions.

The second algorithm utilises a conservative 3D bounding box which filters out

the motion of the arms and legs. Instead of length, width and height, this method

uses an angle. The angular velocity and inactivity, as well as the size of the angle

at the end of every event, are used to distinguish a fall from a non-fall.

49
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These algorithms were tested to detect a range of falls (backward, forward, side-

ways), while setting the sensor to different orientations, providing different views of

the human body (side view, frontal view, back view) and different type of actions

performed at different speeds. These non-fall activities are challenging because

they could lead to false positive (FP) detections especially when a person is ly-

ing down, crouching down, picking up an item from the floor, etc. This is due

to the similarity these actions have to the fall according to the velocity profiles.

The main algorithm is designed as a two-step Boolean decision tree where several

output variables are checked sequentially. The parameters of the decision tree

are estimated by Random Search optimisation [111]. Furthermore, the usage of

OpenNI [103] significantly helps the pre-processing of the depth data in terms of

background subtraction and user identification.

The Chapter is organised as follows: a review section of the 3D vision systems,

followed by sections describing the two algorithms. Experimental Results and

Discussion section explains how datasets were used to evaluate the algorithms via

different protocols.

4.1.1 Review of 3D vision systems

Vision depth image systems use 3D cameras or depth sensors to track and anal-

yse human motion. This review section focuses on fall detection algorithms using

depth data developed prior to publication of this work [27] and is more sensibly dis-

cussed here rather than in Chapter 2 where a generic review of algorithms is given.

At the time of this work, only a few studies ([34, 112, 113]) using depth/infrared

data for fall detection existed and a criticism of those was required to pinpoint

their complications and possible performance issues.

4.1.2 Technical Criticism of 3D methods

Since this system analyses depth information using Kinect’s IR sensor a more

detailed analysis will be given in order to emphasise the benefits and weaknesses

of the existing approaches. In [113] the authors use a 3D camera to develop

a monitoring system for elderly people, which is also capable of detecting falls.

Their approach involves fitting an ellipse around the subject after a series of pre-

processing steps (image thresholding, smoothing, eroding and dilating) in order to
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have images resulting with fewer blobs (assuming that the biggest blob defines the

human silhouette). Next, their algorithm maps the centre of the blob into world

coordinates by a linear calibration method. For distinguishing activity patterns of

fall-like actions the authors use an online learning method described in [115].

However, their methodology requires considerably more processing time due to the

online learning process; it requires pre-knowledge of the scene (world coordinates),

which depends on the visibility of the floor (occlusions, objects laid). Also, the

description of falls or other activities is not defined in their work i.e. one can

vigorously sit on a sofa; the viewing position may be different; the “lying sequence”

are comprised of several different postures not clearly defined. Finally, there is no

proper evaluation of their algorithm, as it is tested only on one subject, without

consideration of FPs or missed detections.

Diraco et. al. [112] describe an approach based on the distance of a falling per-

son from the floor, inactivity and pose estimation. The floor is detected using

RANSAC [116] which fits a plane to a 3D point cloud that covers the largest area.

This off-line process requires extra time to perform and is required whenever the

camera is installed. It is a complex process that requires the detected planes and

the external calibration parameters and is performed in two steps: firstly detect-

ing large enough planes and secondly filtering those planes. Next, their method

calculates the 3D centroid of a person and measures its distance from the floor.

If this distance is below a certain threshold the algorithm checks whether there is

any further motion/activity. A fall is detected by combining the distance of the

body’s centre of mass from the floor, the inactivity of the fallen person and the ori-

entation of the body spine as derived by a 3D pose estimation (Reeb Graph [117]).

However, the latter is computationally expensive.

Rougier et. al. [34] propose a Kinect based system to detect falls. Their system

firstly uses the subject’s centroid to measure the distance from the floor. Then,

they use the centre of mass to calculate the velocity. A fall is detected when

velocity is above a certain threshold while the distance of the centre of mass to

the floor is below another certain threshold. The floor is detected by a histogram

analysis of a V-disparity image [118]. The authors claim that their algorithm is able

to identify a fallen person while occluded, based on the velocity detection, although

this is stated without justification or evaluation against some video samples. Their

evaluation is limited to a small number of samples with no information about the

number of subjects performing the falls. In addition, there is no clear description
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of the type of falls performed and their experiments do not include fall-like activity

patterns i.e. when someone is picking up something quickly from the floor, lying

down quickly on the floor or vigorously sitting on a sofa as seen on examples from

GM dataset. Therefore, there is no evidence that an FP is avoided when a person

performs a fall-like activity.

As an overall criticism, one can say that all these systems require floor coordinates

to operate. Furthermore, they do not provide any specific information regarding

tracking the subject or any further information regarding how the activity patterns

have been defined such as the CoM velocity. Also, another important point is

the rather limited number of experiments (raw dataset) used for evaluating those

methods (except [112]).

4.2 Detecting rigid falls

This section describes the techniques for fall detection. The proposed algorithm

analyses the depth information of the subject (3D bounding box). OpenNI pro-

vides a method (UserGenerator) to analyse the depth information of the scene.

UserGenerator performs background subtraction and motion tracking. For this

analysis only three parameters were used as estimated by OpenNI, that is the

width, height and depth of the human posture, which defines a 3D bounding box.

This simplified set of parameters delivers a more reliable result than articulated

pose estimation. From the early experiments, it is found that pose estimation

may fail during a fall and is not possible to recover a fallen posture at its final

state. Also, further analysis of the 3D articulated model requires significantly

more computational power than the 3D bounding box analysis. The next subsec-

tion discusses in more detail the 3D bounding box extraction, while the following

subsections describe how the 3D bounding box’s parameters are used to detect a

fall.

It is not a requirement for the proposed algorithm to calculate and use the floor

coordinates as previous approaches do (see Section 4.1.2). Further to that, it is

noted that a fall is a fast action and a high frame rate in real-time systems is

advisable to avoid missed detections. The development of a real-time algorithm is

required to capture these rapid changes over short time.
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Figure 4.1: Depth map of the scene. User is identified by OpenNI

4.2.1 Overview

Pose estimation for segmenting the person is performed by the algorithm described

in [119], where randomized decision forests are trained on randomly synthesized

depth images containing annotated body parts of each person. The 3D bounding

box is created using OpenNI’s DepthMetaData process to contain the depth map

of the user with world coordinates Xmax, Ymax, Zmax, and Xmin, Ymin, Zmin. The

width, height and depth of the 3D bounding box are estimated as the differences

between the maximum and minimum points along the X, Y and Z dimensions

respectively. Hence, width W = |Xmin − Xmax|, height H = |Ymin − Ymax| and

depth D = |Zmin−Zmax|. The initial subject’s detection and tracking are operated

by a standard OpenNI function as seen in Figure 4.1. Traditionally, the position of

the 3D bounding box is tracked to estimate the motion of humans or other objects.

In the proposed approach, a fall is detected by analysing the 3D bounding box’s

width, height and depth and ignoring the global motion of 3D bounding box.

The depth of the bounding box is denoted as the difference of the closest to the

farthest point of the person segmentation point cloud. Hence, the person’s depth

is an approximation based on the visible-to-the-sensor side of the body.
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4.2.2 3D Bounding box data analysis

As described in the previous Section, each user is wrapped into a 3D bounding

box and the dimensions of the 3D bounding box are the only input the algorithm

requires to operate with. OpenNI fits a new 3D bounding on each frame, extracting

a new set of width, height and depth values. The algorithm analyses those values,

and their first derivatives (e.g. Ḣ) to detect a fall.

The diagram in Figure 4.2 (a) shows a 2D bounding box of a falling person when

the sensor is recording the scene from a side view. In this method, a 3D bounding

box (Figure 4.2 b) is used which behaves similarly but uses three dimensions

instead of two. The height of the 3D bounding box will contract during the fall

and the width and/or the depth will expand. A combination of the two expanding

dimensions of the 3D bounding box W and D is calculated to define the motion

of the person in the horizontal plane. The composition of depth–width is given

L =
√
D2 +W 2. This combination eliminates the use of three different thresholds

for height, width and depth into two (i.e. H and L) hence, will optimise the training

procedure. Also, the combination of depth and width normalises the noisy depth

signal and provides a smoother signal for further processing.

Figure 4.3 shows the change of width, depth, height and width–depth composition

of the bounding box as well the first derivatives of the height and the composition

of width–depth during a fall. Notice how the height (pink line) drops while the

width (green line) expands during the fall and the velocity increase as the person

is falling. The composition of depth and width has similar values to the width as

depth remains relatively unchanged during this type of fall. It is also observed that

the signal delivered by OpenNI is quite noisy, especially in regards to Z dimension,

therefore, a discrete Kalman filter [121] is applied in order to smooth the velocities

as seen in Figure 4.3. The filter is defined by the following estimations:

prior

X̂
−
k = AX̂k−1 +B

Pk = APk−1A
T +Q

(4.1)

where X̂−k is the state prediction, A is the state transition, B is the control signal,

Pk the error covariance prediction, Q process noise covariance
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Figure 4.2: 2D Bounding box during a fall; the height reduces while the
width increases (a) as seen in [12, 13], where the initial and final bounding box
dimensions are required. The proposed approach using a 3D bounding box of

the height and the composition of width and depth (b)

posterior

X̂k = X̂−k +K(z −HX̂−k )

Pk = (1− X̂kH)P
(4.2)

where, X̂k is the state correction, X̂−k is the state prediction, K is the Kalman

gain, z the actual measurement

4.2.2.1 Fall initiation by velocity

Humans are articulated objects and hence their motions can be complex. However,

it has been seen that a falling activity can be differentiated from other activities

such as sitting, bending or lying mainly by the velocity of the centre of mass [62].

However, estimating the true centre of mass may be complex. Instead, the algo-

rithm measures the velocities from the changes in H and L. The resulting L̇ and the

Ḣ are checked during N sequential frames. The velocity thresholds for the height

TḢ and the width–depth composite vector TL̇ of the bounding box, as well the

duration of the fall (N frames) are estimated by performing Random Search [111]

that optimises the classification score in a training dataset. The training procedure

is described in 4.4.1.

When both velocities (L̇, Ḣ) exceed particular thresholds (TḢ and TL̇) (e.g. 3D

bounding box’s height velocity, etc), a fall initiation is detected. Alternatively,
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Figure 4.3: Bounding box dimensions and velocities. a) width, height, depth
distances and width–depth graph. Vertical lines denote the initiation by velocity
step and the fall detection confirmation step. b) L̇ raw signal in green and

filtered using Kalman in red. Similarly in (c) Ḣ of raw and filtered signal.
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Figure 4.4: Side view of a sideways fall. Bounding box already detects the
user (a), fall initiated by calculating velocity (b), inactivity detected (c), fall

detected (d)

as the two velocities are correlated, it would be possible to train a 2D linear

discriminator [120] to learn the critical threshold for detecting falls. The next

paragraph discusses the final step. Figure 4.4 (b) shows the visual result of

velocity detection for a side fall, captured from a side-on view.

4.2.2.2 Completion state of a fall by inactivity detection

A fall is expected to end in an inactivity state where no motion is detected as

the person falls unconscious (i.e resting place). Therefore, the fall completion is

detected by checking the appropriate velocity condition. Specifically, the method

involves monitoring the subject for some time (e.g. two seconds) to detect any

motion (Figure 4.4(c)). If no motion is detected then the algorithm is flagged as

“Fall Detected” (Figure 4.4(d)). It is only required for the height velocity (Ḣ) to

be less than a certain threshold TiḢ to declare the state as inactive.

The operation of the proposed algorithm runs inside OpenNI’s main loop of the

depth map process and runs in real-time with computational time of 0.3-0.4 msec

per frame. Algorithm 1 describes the operation of the method.
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Algorithm 1 Pseudocode of fall detection algorithm

SET threshold TḢ , TL̇
SET threshold TiḢ
SET counter a, b = 0
SET threshold Nframes
SET threshold Mframes
SET boolean activityDetection = false
SET boolean inactivityDetection = false
while run do

if (Ḣ > TḢ) and (L̇ > TL̇) then
if a = N then
SET activityDetection = true

end if
SET a+ +

end if
if activityDetection = true and |Ḣ| < TiḢ then

if b = M then
SET inactivityDetection = true
SET Fall detected

end if
SET b+ +

end if
end while

4.3 Detecting collapsing and rigid falls

A fall as an event may have different attributes according to the person’s position

or pre-fall motion pattern. As discussed in Chapter 3, data availability may be a

limiting factor in developing fall detection algorithms. Hence, the fall detection

algorithms can only detect the fall types available in these datasets. The issue

arises when fall types existing in these datasets are of mainly one type, such as

the rigid fall. A collapse is a fall event different from those appearing in virtually

all publicly available datasets. The following Sections will look closely at this fall

type and investigate a new algorithm capable of detecting both rigid and collapsing

falls. A fall of this type occurs when a person collapses without any pre-existing

velocity due to a prior activity i.e. walking. The person is falling vertically - at

first - and then on the side before coming to rest on the ground.

Furthermore, the algorithm will be evaluated to other everyday tasks such as lying

on the floor or sitting down in order to measure the robustness of the approach.

The evaluation of the algorithm will use data from the GM, GM2 and public

datasets.
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4.3.1 Overview

The combined algorithm is designed to detect both fall types and minimise FPs

when a fall-like event occurs. Authors in [31] perform a feature selection procedure

to obtain the best feature for fall detection using depth data. Nevertheless, the

selected feature vector, fails to detect a collapsing fall when tested against GM2

dataset (e.g. Sensitivity = 0). On the re-implementation of these features for this

study, it was observed that fall events are missed by several cases. Therefore, a

new feature is required to capture the behaviour of this type of fall and maintain

a good detection rate for the rigid type. Before discussing the feature, the issues

of bounding box analysis are discussed (something missed by many studies).

4.3.2 Conservative Bounding box analysis

One novelty of this work is the conservative 3D bounding box. Generally, the

3D bounding box is calculated based on the position of the body, as well as,

the position of the hands and legs as in Figure 4.5. When the subject moves their

hands/legs, the bounding box can change dramatically, although the torso remains

almost motionless. Measures which comply with the bounding box will become

problematic if, for example, a person moves their hands rapidly. In order to filter

out the motion of arms and legs, a new conservative bounding box is developed

which contains the torso area, which is generally rigid.

The points of the conservative bounding box are calculated as follows: By knowing

the subject’s centre of mass (CoM) in 2D space (OpenNI provides 2D and 3D

bounding boxes) the method runs a horizontal cut (left and right). The cut points

(see 4.7 pink dots near left/right of CoM) are the horizontal boundaries of the

conservative 3D bounding box in X coordinates. For the Y coordinate, the same

points as for an ordinary 3D bounding box are used - derived from OpenNI.

For Z (depth coordinate) a standard deviation (SD) of the full body depth pixels

is used. This is to contain the extrema of arms and legs while they move towards

the sensor. Figure 4.7 shows three examples of the SD for a standing person, when

lifting an arm and a leg or extending their arms in opposite directions. Notice how

values of SD for sub-figures (b), (c) remain near the values of SD for (a). Also,

there are cases as in (a) where gaps are observed in the graph meaning that these

depth pixels are not as many as the others. It is observed that SD on the depth
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Figure 4.5: Conservative bound-
ing box (red), ordinary bounding
box (blue) ρ angle of 3D bounding
box top corners and CoM, φ angle
of conservative bounding box cor-

ners and CoM

B
C

Figure 4.6: The angle from the
two opposite top corners of the 3D
bounding box to the centre of mass

pixels remains low when compared with the actual values of Z. Hence, when the

person performs actions such the ones in these figures, the bounding box filters

out these values and takes into account the SD values which reflect the similarity

concentration of depth pixels of the human subject.

4.3.2.1 The φ angle

As already discussed regarding [31], a new robust feature is required to detect the

collapsing fall type as well as the rigid one. It is observed that during a collapsing

fall, the falling body has a vertical direction until the knees reach the ground and

then the body inclines and reaches the ground. The use of Ḣ could be used alone

for the detection of a fall, but this is insufficient as discussed in Section 4.2 and

also in [31]. In order to capture the expansion of the 3D bounding box when the

body inclines to the ground but also capture the change in height, a new feature is

designed to capture both behaviours. An angle is selected drawn from the centre

of mass to the two opposite corners of the conservative bounding box. When the

person falls until reaching the floor with their knees, the CoM shifts upwards as

the bounding box becomes smaller, making the angle larger as seen in Figure 4.9.

This captures the change in height. While the person inclines, further expansion

of the bounding box is observed, hence, the angle increases until the person is

completely fallen. Fig 4.8 shows the angle’s change as the person falls.
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Figure 4.7: Applying standard deviation on subject’s depth pixels to deter-
mine the depth dimension on the conservative bounding box. Z is the depth size
of the ordinary 3D bounding box, while the depth of the conservative bounding
box equals twice the SD value. Three examples: a)standing, b)lifting arm and
leg, c)extend arms to the opposite direction. Graph shows the accumulation of

depth pixels

This algorithm relies only on the values of an angle (φ) as seen in Fig. 4.5. The

3D representation of the angle in the bounding box is visualised in Fig. 4.6

As discussed, this bounding box relates only to the torso and leg motion and any

movement of arms is filtered out. Using this approach, the angle based on the

conservative bounding box is a reliable measure of change when a person moves.

This is due to the fact that rapid arms motion can alter the bounding box while

walking or doing an exercise. Alternatively, if ρ (from Fig. 4.5) was the measuring

feature of this approach, false detections, as well as missed detections of fall events,

would be expected.
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Figure 4.9: 3D conservative bounding box angle of a collapsing fall. Notice
how the angle increases as the bounding box height reduces

4.3.2.2 Angular velocity

During a fall, the angle φ changes its value from acute to obtuse. Nevertheless,

this pattern is not enough to determine a fall, since other actions (e.g. lying

down) may have the same result. One solution is to measure the angular velocity

of φ to determine whether the person is falling or not. When this velocity is

above a certain threshold during N sequential frames then the fall is initiated.

The duration (i.e. number of frames) on which the angular velocity is above the

threshold, as well as the angular velocity threshold, are determined by a machine

learning algorithm that uses Random Search (see 4.4.1).
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a b

c d

Figure 4.10: Collapsing fall detection example using Algorithm 2. (a) detec-
tion of bounding box, (b) person collapses and knees hit the floor, (c) angular
velocity exceeds threshold while person inclines towards the floor, (d) fall de-

tected when inactivity and angle size conditions are fulfilled

4.3.2.3 Fall detection after inactivity

When the falling person finally reaches the floor, the angular velocity suddenly

drops to near zero. The last part of the algorithm will detect the pattern of

velocity inactivity. Additionally, the algorithm detects if the angle exceeds 120o

(determined by the maximum value the angle has when ADLs of the training set

were measured) and flags the detection of fall after a period of time (i.e. 2 sec).

Figure 4.10 shows the result of fall detection using the angular velocity.

Algorithm 2 uses OpenCV and OpenNI libraries. Training the algorithm and

determination of thresholds follow the same procedure as in Section 4.2 using a

Random Search but now using two thresholds TiΦ̇ for setting the angular velocity

and the threshold N denoting the number of frames for which this velocity must

be maintained in order to decide a fall.
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Algorithm 2 Pseudocode of fall detection algorithm using angular velocity

SET threshold TΦ̇
SET threshold TiΦ̇
SET counter a, b = 0
SET threshold = Nframes
SET threshold Mframes
SET boolean activityDetection = false
SET boolean inactivityDetection = false
while run do

if (Φ̇ > TΦ̇) then
if a = N then
SET activityDetection = true

end if
SET a+ +

end if
if activityDetection = true and |Φ̇| < TiΦ̇ and φ > 120◦ then

if b = M then
SET inactivityDetection = true
SET Fall detected

end if
SET b+ +

end if
end while

4.4 Experimental Results and Discussion

4.4.1 Training

Datasets (UR, SDU, GM, GM2) were used for training and test purposes. Three

experimental protocols are suggested according to the selection of training and

testing sets: i) each dataset is split with a fifth of the samples for training and the

rest for testing following a Monte Carlo cross-validation [122] sampled 20 times;

ii) train using all samples from one dataset, then test on a different set (this is

abbreviated as a → between the two datasets); iii) all the datasets are combined

and then split as in (i). In some cases (mainly for (ii) and (iii) protocols), large

datasets such as SDU or the combined set did not converge during the training

procedure. This was resolved using a smaller proportion for training on an sub-

sample from the SDU when using protocol ii or use another random training sample

(i.e. 20% of the combined set) from the combined set when using protocol (iii).

These adjustments are further discussed in Sections 4.4.2, 4.4.3.
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For example, the GM dataset was split into a training (12 falls and 22 non-falls)

and the testing set consisted of the remaining samples. Collapsing fall videos from

the GM2 dataset were used in order to identify the limitations of the rigid fall

detection 1 algorithm which was designed for detecting rigid falls as discussed.

The remaining datasets UR, SDU were used in the same manner.

The threshold values for velocity TḢ , TL̇, TΦ̇ as well as the duration N of the fall

in frames were estimated by performing Random Search on the training dataset

multiple (100) times. Separable result values for the thresholds were produced

since the fall and non-fall sequences of the training dataset have different velocity

and duration values. For example, the values determined after training on the GM

dataset using protocol (i) are tvH = 1.18m/s, TvDW = 1.20m/s,N = 8frames.

The testing set was analysed using the median values of those triplets for Algorithm

1 (TḢ , TL̇, N). Figure 4.11 shows the median of the triplets when GM dataset

is used in training Algorithm 1. Each triplet is derived by comparing all triplets

during the random search optimisation and selecting the one which maximises the

accuracy of detection in the training dataset and returns the best match values of

velocities and durarion. The velocities derived from the training confirm the values

obtained from [62] where fall-related velocities are above 1 m/s. For Algorithm 2,

the same search algorithm was used and doublets were found (TΦ̇, N) as reliable

estimates of the method parameters.

4.4.2 Algorithm 1 Results

Numerical results are shown in Table 4.1 where accuracy, precision, sensitivity

and specificity were calculated. The first four rows of the table shows results

from protocol (i). The next six rows show results of the protocol (ii) and the last

row from (iii). The algorithm performs better when the test set is a subset of a

single dataset as in evaluation scenario (i) when compared with the results of the

other protocols, due to the fact that actions of the same subject are included in

both training and testing sets. The protocols (ii, iii) when tested do not provide

the same results, as the falling and ADL activities are different since they are

performed by different people, e.g. picking up an object or sitting down in GM

and SDU datasets appears in several cases to be done quite fast, while the UR

dataset has several hesitated falls.
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Figure 4.11: Circles indicate 100 triplets estimated by random search for
training the rigid fall algorithm. Their median (tvH = 1.18m/s, TvDW =
1.20m/s,N = 8frames) is marked as a bold circle and is used for the experi-

ments

The SDU dataset is quite large and in some of the examples subjects are marching

i.e. walking with abrupt arm movements, which the algorithm cannot filter out

using the Kalman filter. This is the main reason for the solution not converging

as noted in the Table even though this particular set was randomly selected by

80% of its original size (i.e. SDU→UR, SDU→GM).

The same issue was observed when training on the combined set, where the 20%

of the sample was randomly selected over 20 times, where convergence succeeded

in only 6 of these trials. This particular experiment shows the complication of

using a parameter set for the assessment of a large dataset where human subjects

have different physical characteristics and behaviour patterns. A solution to this

issue is discussed in the following two Chapters where a personalised approach is

proposed.

Another noticeable result is when a small dataset (UR) is used to train the al-

gorithm while testing occurs on a large dataset (SDU) where samples have dif-

ferent variability in their physical appearance, shows a drop in performance (e.g.

GM→SDU, UR→SDU). The impact of human variability is discussed further in

Chapter 5 and 6.

A set of visualisations are shown in Appendix A to demonstrate the variety of

several experiments: Forward fall – 45 view (Figure A.1), sideways fall – front
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Table 4.1: Performance of Algorithm 1. A→B: Training on A, test on B
datasets, N/C: Not Converges, † Converges after re-sampling of training set

Dataset Accu (%) Prec (%) Sens (%) Spec (%)
GM 100.00 100.00 100.00 100.00
GM2 92.50 81.25 94.54 91.72
UR 94.54 80.00 100.00 93.03
SDU 74.40 66.50 41.30 90.11
GM → UR 92.72 73.33 100.00 90.90
GM → SDU 57.00 37.00 19.57 79.74
UR → GM 81.52 87.50 60.00 94.73
UR → SDU 78.80 56.50 47.47 88.58
SDU → GM N/C N/C N/C N/C
SDU → UR N/C N/C N/C N/C
Combined † 78.80 59.49 52.03 87.92

view, Figure A.7) lying on the floor – front view (Figure A.2), sitting on a sofa

– side view (Figure A.3), picking up an item from the floor – side view (Figure

A.4). Another set of experiments includes more specific actions, such as sweeping

(Figure A.5) and vigorously sitting (Figure A.6). Sweeping changes the 3D

bounding box mostly in Z and X although the velocity fails to reach any of the

thresholds (TḢ , TL̇). Sitting vigorously is a case where the motion is not long

enough in time to be detected as a fall, as the subject’s motion is halted when

sitting on the sofa. Therefore, no fall is detected in either actions.

Finally, the algorithm was tested against additional non-fall scenarios to see how

it behaves when the subject is lifting an object and then placing it back on the

floor or on a table. For those experiments, 24 additional videos were captured

from three subjects in actions such as lifting a chair and placing it back, lifting

and rotating a chair and similarly placing it back, lifting a box and either placing

it on the floor or on a table and then moving away. During these experiments,

although the bounding box may increase or decrease in width and/or depth, no

significant change in the height dimension is observed. Therefore, although the L̇

velocity may be increased the Ḣ remains at normal levels, hence, no fall detection

is initiated. A large box is used in order to investigate how the method performs

in those scenarios since the box would dramatically change the size of the 3D

bounding box when lifted and carried. Figures A.8, A.9 show two of the set of

images from this experiment.

The algorithm was proved stable, even when half of the subject’s body was oc-

cluded by the box. This is because the L̇ remains at normal levels (i.e. well
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below the TL̇) while the Ḣ exceeds the TḢ . Therefore, a fall detection will not be

initiated since both L̇, Ḣ must be above their thresholds.

The bounding box as seen in Figures A.8, A.9 will split into two different bounding

boxes (one for the subject and one for the object) when the user places the object

on the floor/table. This is caused by the fact that the current OpenNI version

initialises separate bounding boxes using a motion detector. The system is still

able to track the subject and if a fall occurs, it will raise an alarm. However, if for

any reason the object (i.e. box) drops, this may also be detected as a fall.

4.4.3 Algorithm 2 Results

The same evaluation scenarios were used to test Algorithm 2 and the results follow

those of Algorithm 1 as seen in Table 4.2. As seen from the Table, the algorithm

is capable of operating (i.e. the training algorithm converges) in all scenarios

meaning that the angular velocity feature derived from the conservative bounding

box performs better than the 3D bounding box velocities. Notice how small sized

datasets perform better. SDU dataset when used for training only performs and

converges due to use of the conservative bounding box. Also, the combined set

failed to converge without split into a smaller set (i.e. 80% of the dataset). Further

results are better justified and compared them with Algorithm 1, in the next

subsection.

4.4.4 Algorithm 1 vs Algorithm 2

The main difference is the robustness of this algorithm on the GM2 dataset where

collapsing events were tested, as well as when tested against the SDU dataset. This

dataset is a challenging one, as the subjects enter the scene marching; the arms

motion is captured by the ordinary bounding box of Algorithm 1, but is filtered out

by the conservative bounding box of Algorithm 2. Comparison against the GM2

dataset is improved against Algorithm 1 due to the use of the new algorithm which

captures the vertical motion of the bounding box as the person drops. The other

noticeable benefit of Algorithm 2 is that training converges on SDU dataset when

80% of the sample is used. This was achieved 60% of the time (i.e. converges 12

times out of 20 for a randomly selected sample). The same percentage is observed

when all datasets are combined, showing again the issues of having one threshold
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Table 4.2: Performance of Algorithm 2. A→B: Training on A, test on B
datasets, † Converges after re-sampling of training set

Dataset Accu (%) Prec (%) Sens (%) Spec (%)
GM 97.82 97.91 94.00 99.25
GM2 97.00 95.31 95.31 97.79
UR 96.36 86.66 100.00 95.23
SDU 89.50 82.38 71.48 95.18
GM → UR 96.36 86.66 100.00 95.23
GM → SDU 73.80 63.50 40.18 89.32
UR → GM 87.50 93.75 69.23 97.47
UR → SDU 88.30 84.50 66.27 95.83
SDU → GM 80.43 81.25 59.09 92.37
SDU → UR 89.09 73.33 84.61 90.47
Combined † 87.41 81.36 68.16 94.36

(i.e. one-fits-all solution) for every person’s activities as discussed on the results

of Algorithm 1.

4.5 Conclusion

Two fall detection systems were developed that require no pre-knowledge of the

scene. The first focused on the rigid (forward, backward and sideways) and the

second on the collapsing fall type. The fall event is analysed in isolation as an

independent activity without specifying or detecting any external parameter set

such as the floor plane coordinates. These simple and lightweight algorithms run

in real-time with negligible computational time (0.3–0.4msec) with the Kinect’s

GPU doing most of the heavy computation and are capable of detecting falls with a

variety of accuracy according to each evaluation scenario. It is proven to be robust

on cases such as sitting vigorously on a chair, lying on the floor or crouching down

(i.e. fast action).

This Chapter proposed two machine learning approaches, one based on the analysis

of the 3D bounding box’s velocities, while the other is based on an angle from

the CoM to the two upper corners of the 3D bounding box. These algorithms

perform in real-time as they were developed within the OpenNI architecture. It

is shown from the results in Tables 4.1 4.2, that Algorithm 2 performs better in

overall comparison against Algorithm 1 which is expected as the first algorithm
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was developed without talking into account the collapsing falls, or filter out a rapid

arms motion (e.g. marching).

Taking the above into account, the algorithms can be characterised as reduced

complexity that requires three or two parameters to operate; the width, height

and depth or the 3D bounding box angle of the subject. Nevertheless, although

results are promising, they are not sufficiently robust when applied to all of the

fall datasets. These algorithms were tuned by human fall data i.e. they are data-

driven, which as discussed in Chapter 3 are non-representative. Also, difficulty in

convergence was found when training on a dataset where the samples have different

physical characteristics and moving behaviour from the testing one. Also, the same

issue was encountered when using a combined set of all data, where training did not

always converge. This is due to the fact that algorithms using a set of parameters

for all data (i.e. of people with different physical characteristics) cannot address

the variability within the sample and personalise the detection algorithm. The

next chapter will try to resolve the issue of using human fall data with the use

of physics-based myoskeletal simulations where algorithms will either train on

such simulation data or use the simulation to model falls. These new approaches

discussed in Chapters 5 and 6 aim to deliver a customisable/personalised fall

detector.



Chapter 5

Simulation: Modelling Fall

5.1 Introduction

Existing computer vision fall detection systems are either ad-hoc or learning based

and tend to ignore the physical characteristics that contribute to falls. In either

case, the algorithms are dataset-driven and detect the fall events which are con-

tained in the fall event datasets. Several important issues were discussed in Chap-

ter 3 regarding these datasets. The realism is a major issue as acted falls are

performed by young and healthy people, from a narrow demographic population.

Acted falls are limited in number and type due to risks of injury, while hesitation

is another factor which contributes to unrealistic falling behaviour.

In addition, such data will be unrepresentative of a vulnerable population of those

with health-related issues such as the elderly and the infirm. The physical char-

acteristics of elders, associated with posture, gait, height and weight are different

from the samples in the current public fall datasets. Actors from these groups are

not part of any dataset for fall detection since there are ethical issues in performing

such risky experiments. One can say that data from human-simulated acts like

these will never happen and only long-term recordings from hospitals and care

homes would fill the gap of data collection. In contrast, young actors are typically

used to simulated the fall events.

This is mainly discussed in this Chapter where alternative means are investigated

in order to model fall events without the participation of human subjects. The

use of simple and complex physics-based approaches will be discussed where the

71
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fall event is modelled using falling rods and myoskeletal simulations. The latter

approach can customise its model to fit the person’s physical characteristics such

as the height. Using models, no human intervention is required, hence, no risks or

hesitation in performing, while the models can imitate a close similarity of charac-

teristics with an elder, such as an arched back posture. Therefore, this framework

will provide realistic and customisable fall events that match the individual’s build.

A fall may be associated with a wide variety of physiological conditions such as

low blood pressure, brain ageing [25] and brain atrophy [91] or the consequence of

a walking accident such as tripping, slipping or stumbling [24]. In [123] authors

discuss the severity of injury where 4.9% of the falls concluded without any se-

rious injury, but 19.9% with serious ones. Somehow, data which are associated

with virtually any of these problems do not exist since their collection is extremely

difficult. Asking actors to slip or trip would require a scenario of asking partici-

pants to walk blindfolded or in a dark room in order to properly imitate the real

behaviour. But how risky or even inappropriate this seems. Nevertheless, fainting

is one of the few cases where real data can be found via YouTube as have discussed

in Chapter 3 where hyperventilation caused fainting on purpose.

Other influences could change the direction or type of a fall which may depend on

the walking direction and/or the incline of the person’s centre of mass (CoM). In

some cases, persons may fall rigidly, whilst in others they collapse vertically. The

age of the faller is also a factor which contributes to the kinematics of the fall. The

gender could also be a factor since males have a higher CoM than females [124].

The health of the person may impact the falling event such as a broken arm or a

leg which temporarily unbalances the natural human movement, or if the person

is carrying an object. The above characteristics can be implemented as simulation

parameters for producing fall events.

5.2 Review

Only a few studies discuss the use of a physics-based simulation to track human

motion. This is due to the fact that current research is based mainly on actual

human data (i.e. data driven) and to model a human action mathematically can

be trivial especially when such actions are derived from the articulated body.



Chapter 5. Simulation: Modelling Fall 73

5.2.1 Physics simulation - Synthetic approaches

With the rise of machine learning, the requirement of sufficiently large and variable

datasets has become an issue, as such datasets may be laborious and expensive to

acquire and label. One of the issues in fall detection datasets is that we cannot

acquire such data from real events or that such data are not released due to privacy

protection. One approach to deal with this problem is to generate synthetic data

based on a combination of actual observations and physical models. Whilst such

simulation has been used by other researchers, the work reported in this thesis is

the first to apply it to fall detection.

A number of studies employing computer vision and physics-based modelling ex-

ist in the literature. The most relevant studies [125, 126] discuss how tracking a

walking person can be achieved with the use of a bipedal model based on physics

simulation. Brubaker [126] discuss the use of a simple model for predicting the

walking behaviour of a person. The authors evaluate their approach for varied

walking speed and with occlusion, but also discuss the limitations of this approach

and how a more complex model incorporating myoskeletal capabilities would pro-

vide a more accurate representation of human motion. Other studies describe

and propose physics-based frameworks for tracking articulated objects. In [127]

Lagrange equations of motion are used for models which can synthesise physically

correct behaviours in response to applied forces and imposed constraints. Based

on a previous study, the work in [128] presents a mathematical formulation and

implementation of a system capable of accurate general human motion modelling.

The work in [129] uses an off-the-shelf physics simulator to track the behaviour

of a rigid object. Another framework is presented in [130], where a method es-

timates human motion from monocular video. This is done by reconstructing

three-dimensional controllers (models) from the video which are capable of implic-

itly simulating the observed human behaviour. This behaviour is then replayed

in other environments and under physical perturbations. Synthetic human data

for activity monitoring are presented in [131]. A dataset incorporating rigid poses

is produced and used for the purpose of human behaviour recognition as well as

scene understanding. Out of context of computer vision related studies, the work

in [132] discusses the use of a physics-based simulation engine capable of detecting

the stability and falling likelihood of a rigid object.
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Recent developments in deep learning [133] have increased the need for larger

datasets. An example of synthetic data for action recognition can be found in

the SOURREAL dataset presented in [134], consisting of 6 million image frames

together with ground truth pose, depth maps, and segmentation masks. The

amount of data is achieved by adding people images of variable size as a foreground

over a variety of background images. Other examples include synthetic datasets for

pedestrian detection [135] and synthetic urban scenes from the SYNTHIA dataset

[136].

Previous attempts using simulation/synthetic data show an active pathway in

terms of creating data where real data is not available. The synthetic approaches

require less time in preparation as they do not incur human interaction in terms

of performing actions or scenarios. In terms of fall detection, a simulation-based

approach would resolve the data availability problem in terms of fall realism and

human risks. That is not only filling the gap of lack of such fall data but also

simulate the fall with a model which is personalised using an individual’s charac-

teristics, such as their height. The main difference with this study is in terms of

how synthetic data on one fall model are used, rather than the many examples of

acted falls needed for training purposes.

5.3 Modelling falls

This section explores different types of models and modelling approaches from

mechanics to biomechanics simulation for the simulation of fall events. Initially,

the fall is modelled with a rigid rod which is a simplified model that may be

appropriate for rigid falls. The reasoning of using a simulation to model a fall

as discussed in earlier is the fact that current studies use human subjects acting

fall events which suggest an improbable falling behaviour due to risk factors and

hesitation of performing such acts. The question then is whether we can use

simulations to model fall events and avoid the use of human fall data.

This section presents two classes of simulation-based approaches that imitate a

falling person, one inspired by mechanics, based on a falling rod and one inspired by

biomechanics, based on myoskeletal modelling. An evaluation of those simulation

examples is discussed in Section 5.4.
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Figure 5.1: Falling rod, of length L with uniform mass m end-point vertical

velocity Vy, CoM vertical velocity VCoMy and ω

5.3.1 Falling rod simulations

This section investigates the use of a simple rigid falling rod to simulate the mo-

tion of the person experiencing a rigid fall. Several rod simulation types will be

discussed: a rigid rod falling at an angle without any resistance (5.3.1.1); a similar

rod with applied resistance imitating the feet balancing force (B.1); a two piece

rod, imitating the upper and lower body (B.2). These rod models were developed

in order to achieve an approximation of falling velocity which is further discussed

in Section 5.4. Nevertheless, only the rigid rod simulation is further discussed and

the other two methods are presented without further evaluation as their applica-

tion required further and complex justification.

5.3.1.1 Rigid Falling Rod

A rough approximation of the motion of a person falling with a rigid motion is

given by modelling a rod of length L with uniform mass distribution falling from

a vertical position, as seen in Fig. 5.1. The following formulas show the angular

velocity as recursively defined by ω in Eq. 5.1, the velocity of the centre of mass

V comy in Eq. 5.2 and the end-point Vy in Eq. 5.3 of the rod.

ωn+1 =

√
ω2
n +

3g(sin(θn)− sin(θn+1))

L
(5.1)
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Vy = Lω cos(θ) (5.2)

V comy =
L

2
ω cos(θ) (5.3)

where, θ is the orientation of the rod, n is the number of steps and g the gravi-

tational acceleration (9.81m/sec2). Equation 5.1 is derived by solving the Kinetic

and Potential energy formulas under the assumption of energy conservation.

Derivation of 5.1 To begin with, we are going to establish the equation of

the falling rod. We suppose that the rod is an isolated system, so we can use

the principle of energy conservation. The rod is subjected to the weight ~P and a

support reaction ~R. The following parameters characterise the model:

Ek is the kinetic energy

Ep is the potential energy

α is the angular position

m is the mass of the rod

g is the gravitational acceleration

ω is the angular velocity

~OG is the position vector of the centre of the mass

yG is the coordinate of the centre of mass

c is a constant of integration, (c = 0 in practice).

We have:

{
dEp = −~Pd ~OG

Ek = 1
6
mL2ω2

(5.4)

{
Ep = mgyG + c = mgL

2
sin(α) + c

Ek = 1
6
mL2ω2

(5.5)

We have conservation of mechanical energy (Em), therefore:
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Figure 5.2: Typical rod model velocities. The final velocity is proportional to
the length of the rod. This velocity is measured from the top point until the

rod reaches the horizontal position

Em(n+1) = Emn

Ek(n+1) + Ep(n+1) = Ekn + Epn
1
6
mL2(ω2

(n+1) − ω2
n) = mgL

2
(sin(αn)− sin(α(n+1)))

ωn+1 =

√
ω2
n +

3g(sin(θn)− sin(θn+1))

L

(5.6)

The topmost end of the falling rod represents the location of the head while the

middle-point is the centre of mass (CoM). Fig. 5.2 shows velocity profiles for

rods of 4 different lengths corresponding to a variety of height ranges of an adult

(1.3-1.9m), indicating that the velocity profile is increased proportionally to the

length of the rod. That is the taller the person the higher the final velocity and

the longer time to fall. The same obviously happens for both CoM and the free

end of the rod.
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Figure 5.3: Sequence of an actual fall event as captured by a depth camera
and of a fall simulated by OpenSim

5.3.2 Myoskeletal human model simulation

A more sophisticated model of the human body for the purpose of fall modelling

is derived by OpenSim [137], an open-source simulation myoskeletal software ini-

tiated by Stanford University. Note that OpenSim is not a simulation software for

falls only, but for experimenting with various motion patterns with a use of differ-

ent myskeletal models. A number of different pre-defined myoskeletal models are

available for OpenSim. Figure 5.3 shows the simulated model to be comparable

to the falling behaviour of a person.

Biomechanical studies have developed several applications to simulate the human

motion during activities such as walking, sitting, jumping etc, in an attempt to

understand further the capabilities and limitations of the human body. Their aim

is to study human motion and how this can be reproduced as a simulation in order

to perform measurements of how different body parts behave during an action.

OpenSim provides a detailed myoskeletal simulation model of the dynamics of the

human body. It is based on the samples of 21 cadaver and 24 young subject’s MRI

samples for their musculotendon parameter derivation. The differences between

those muscle-generated and inverse dynamics joint moments of the derived models

were shown to be within 3% (RMSE) of the peak inverse dynamics joint moments

in both walking and running [138], therefore the model is considered suitable for

generating muscle-driven simulations of healthy gait. Later, in Section 5.4, several

experiments are conducted to validate our assumption that a real fall event has
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(a)

(b)

Figure 5.4: Images sampled from a YouTube video of a) person acting a rigid
fall and b) person suffering a collapsing fall following hyperventilation which

includes a faint

similar velocity patterns (e.g. head vertical velocity) with a fall simulated by a

myoskeletal model.

5.3.2.1 Fall simulations

The motion of the body varies when the person is falling. Two types of falls are

observed in real-life which start from a standing position: rigid and collapsing falls

depicted in Fig. 5.4. Using myoskeletal simulation, it was possible to simulate

these falling behaviours with accuracy. Each fall type is different and can be

parametrised by adjusting parameters such as the model’s body inclination or the

location of the centre of mass.

Simulated model preparation In order to prepare the model simulation for

fall events, the myoskeletal model, as well as the contact area in OpenSim, are

constrained by the following conditions:

• The subject/person should be in a static and standing (not walking, not

seated etc.) position when the fall occurs

• Objects on the floor, uneven/slippery floor will not cause the person to fall,

i.e. slipping, tripping, stumbling are not part of this particular part of the

study.

• Simulated model falls only due to gravity - there are not any external dy-

namic forces.

• Model inclination is responsible for the side of fall in rigid fall types
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Figure 5.5: Feet position of simulated model before fall

• The torso’s centre of mass is the parameter to cause collapsing falls

• The feet (see Fig. 5.5) of the simulated model should be parallel as in (a).

Using examples as in (b) may change the falling direction of the model during

the simulation. Nevertheless, this does not have any complication towards

the validity of the approach as discussed in Section 6.8.2 where the direction

(i.e. different fall types) of the fall is validated.

Rigid fall

To perform a fall, the model stands stationary on a platform that has a small

inclination towards either the front, back or side. This inclination will trigger

the fall event as no other parameter has changed on the model, such as muscle

tension or the centre of the torso’s mass. The gravitational force will pull the

model towards the ground, as the only applied force on the myoskeletal model.

The behaviour of the model is represented as a rigid fall as seen from the examples

in Fig. 5.7.

As we will discuss later in Chapter 6, section 6.7.2.1, the top bounding box point

will be used as a feature for the proposed fall detection method. Here, the simula-

tion model and engine are capable of introducing a number of markers from where

measurements can be taken such as distances from the ground platform, velocity

and acceleration. A marker on the top of the head will be used for this purpose

(blue sphere) as seen in Fig. 5.6.

Collapsing fall This type of fall is subjected to the person falling vertically

towards the ground while their knees at first then the torso bends. Via simulations,

it is found that altering the placement of the centre of mass of the torso plays a

significant role in this falling behaviour. Figure 5.8 shows the impact that mass

distribution has on how the body falls. The parameter for initiating the fall is the
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Figure 5.6: The Full Body Model given by OpenSim engine. Blue marker
denotes the head location point, while pink markers denote the MoCap relevant

markers

Figure 5.7: Three types of rigid fall, backward (top), forward (middle) and
sideways (bottom) as simulated on OpenSim
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Figure 5.8: Collapsing fall as simulated by OpenSim

weight distribution of the torso’s CoM which is altered towards the front of the

body to initiate the fall. This example in the Figure shows how the model behaves

when this parameter is adjusted. Other parameters such as muscle tension were

left intact to their original states as defined by the Full Body Model and processed

by forward dynamics routine of OpenSim. The posture of the model as seen

from the previous Figure shows how torso’s CoM contributes to incline the body

towards the front, producing a collapsing fall. One type of collapsing fall (e.g.

lean forward) is observed in the sparse data selected for the evaluation (i.e. GM2

dataset) of this type of fall, and as a result only this type was modelled by the

simulation.

5.3.2.2 ADL simulation

Apart from creating fall events for modelling, other events are required in order

to distinguish the two classes. The focus is particularly given to the events which

have a similar motion to the fall such as lying down. The discussion about the

validity of ADLs was presented in Chapter 3 (3.11).

A number of activities of daily life (ADLs) such as sitting down, lying down,

picking up an object, walking quickly, turning around quickly and raising hands are

generated using motion capture (MoCap) data from a Motion Capture Database

[139]. Such data is processed as seen in [140] in order to model the dynamics of

the body e.g. how particular body parts move when a person sits. Non-fall data

are required in order to capture the class of actions which have different motion.

More interestingly are the fall-like actions such as lying down, aggressively sitting

on a sofa, picking up an object. We would expect fall detection algorithms to

confuse these events as falls resulting in false positives i.e. non-fall actions which

are classified as falls. Also, collecting data of ADL events is much easier and
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realistic as there is no hesitation or risk in performing them. Simulated ADLs

will provide a negative class of samples of human motion which is required for the

algorithm to differentiate from the fall events. It is much easier to use MoCap

data in order to translate the motion into a myoskeletal model, than justify the

model itself to do so. This is required by our method in order to collect the Vy

profiles of such non-fall events. The captured biomechanical data is converted

into OpenSim [141], to align MoCap with model markers and allow transfer of the

articulate motion from the actors who performed MoCap to any human subject

that can be parameterised within the OpenSim model [142]. The benefit of this

conversion is to derive simulated models that have the motion of ADL activities

while allowing the physical characteristics such as the height of the model to be

adjusted separately.

5.3.2.3 Scaling the model

The human body variation discussed previously plays a significant factor in the

falling behaviour. Body physical characteristics such as the weight, height, posture

alters the CoM of the body. Elders may have an arched back, or be overweight

due to the lack of movement. Other variations include different CoM location

for men, women, especially during pregnancy, or due to disabilities related to the

lower limbs etc. These parameters can be taken from the actual subjects and

implemented as parameters for the myoskeletal model. To prove the concept of

this approach, the height is selected (as already seen with the falling rod) to act

as the customisable parameter.

As seen on the simple rod model, the final fall velocity depends on the height and

similarly, the same parameter is responsible for the velocity of the myoskeletal

model. The myoskeletal model will be scaled to represent human height variabil-

ity. This is selected in order to investigate the impact on fall modelling and also is

a feature which is easily measured from depth data. Scaling is performed propor-

tionally to all body parts to maintain their ratios to height. A set of such models

will be created to perform the fall and non-fall simulations discussed previously.

Each scaled model will approximate the height of an actual person.

Studies suggest [143, 144] that body height declines with increasing age hence

elders are expected to have a shorter height than the average suggested by [145]

given a standard deviation of approximately 7cm in both females and males [146].
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The range of height model variations is chosen to provide variation (i.e. 130 –

190cm), given the minimum and maximum average heights found in the [145].

Furthermore, the model sampling (i.e. four models 130, 150, 170, 190cm) was

selected as no further improvement in robustness was observed in considering fine

gradations of the height model. A single simulated model provides the necessary

data for the algorithm described in the next Chapter. It is not required to simulate

different models as proposed in the next section.

5.4 Evaluation of the fall simulation models

The fall velocity profiles derived by physics-based simulation are compared with

genuine profiles. Specifically, 20 different fall events from YouTube videos are se-

lected where actors faint after hyperventilation [147] as seen in Chapter 3. Those

videos are the closest representations of fainting where actors fall rigidly uncon-

scious to the ground and are a genuine source of falls. The videos were processed

using [148] for calibration and vertical velocity (Vy) measurement. The process of

calibration fits a mesh to the ground plane and the user selects landmarks (i.e.

ball, brick, fence, lamp post etc.) near the ground on at least three remote points

on the image. A KLtracker is used to track the head and with the use of tracking

points, the algorithm calculates its velocity.

An evaluation is conducted to measure the similarity of profiles of both the Open-

Sim model and falling rod, where, Hausdorff distances are measured against Vy of

actual Youtube fall events. The usage and evaluation of the Hausdorff distance is

discussed in 6.7.1 and 6.8.1. The average HD of the actual falls, when compared

with an OpenSim model performing a forward fall, were 0.365m/s and 1.944m/s

when compared with the falling rod. The reason why a forward fall was selected

is discussed in 6.8.2. Also, the standard deviation was 0.078m/s when compared

with the OpenSim model and 0.782m/s when compared with the rod model. These

measurements show that a complex myoskeletal mode (OpenSim) provides more

realistic simulated rigid falls more than the rod.
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5.5 Conclusion

This Chapter has discussed a new methodology of using myoskeletal simulation

for modelling falls and ADLs for the purpose of fall detection.

Different simulation models were evaluated, from a falling rod to a myoskeletal

complex model. The human body is significantly different from the simple falling

rod model, due to its articulation and muscular reflexes, whilst the rod model

is a completely rigid object. A more complex model such as one derived by a

myoskeletal simulator provides a more accurate representation of the human body.

Both rod and myoskeletal fall models were evaluated against genuine fall data

from YouTube to prove their validity. Given these experiments, myoskeletal model

simulation is feasible for the use of fall detection discussed in the next Chapter.





Chapter 6

Fall detection based on

myoskeletal simulation

6.1 Introduction

This Chapter discusses the use of myoskeletal simulation as described in Chapter 5,

applied for fall detection. With the use of simulation, the new algorithms described

here try to overcome the issues of data scarcity of human fall data. The machine

learning approaches used in Chapter 4 require a significant amount of data for

training. The simulation tries to overcome the issue of data-driven approaches by

modelling the fall events which are then used by a detection algorithm. Another

issue of current algorithms is the lack of personalisation, that is, a classifier able

to deal with different people falling irrespective of their physical characteristics or

the type of fall.

Many studies on fall detection have been published in recent years, driven by the

need for monitoring vulnerable independent livers and detecting accidents. Fur-

ther impetus comes from the availability of cheap and easy-to-use depth cameras

and other mobile sensors. Two broadly accepted approaches for detecting falls

are summarised in recent review studies [72, 149]: i) ad-hoc methods based on

empirical observations and ii) pattern recognition methods that are trained us-

ing machine learning (ML). Both approaches require pre-recorded training data

of falls that are normally staged and performed by volunteers or actors to tune

their performances for fall detection. Nevertheless, human subjects may hesitate

87
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to perform a fall and also the acting of a fall might be directed in such a way

that is not realistic, or similar to an actual fall event, e.g. fainting [28]. However,

the quantity and availability of fall event data is low compared to other tasks of

action/event recognition.

A common approach to detect fall events is usually performed by a single model

which ignores physical body characteristics (such as a person’s height) and as a

result the dynamics of the fall may differ accordingly. Existing fall datasets (as

discussed in Chapter 3) are based on a small number of human subjects with lim-

ited body variability in sex, age, height and weight distribution. In a trainable

algorithm, the requirement is to have a dataset that is large enough to capture

natural variations of individual characteristics, not only to cover the data require-

ments of the machine learning algorithm but also to properly cover a range of

people’s physical characteristics and fall types. All data samples of fall and ADL

events are tested via the same procedure that has been trained using a small set

of data from human subjects of limited body variability (e.g. height). Hence, al-

gorithms trained on limited datasets have questionable performance when applied

to the wider population. A physics-based myoskeletal simulation (as discussed

in Chapter 5) provides the opportunity for customising the activity based on the

body characteristics and the environment in which the fall occurs.

One solution to address the lack of data is to use an approach that is customised to

a person’s physical characteristics. [150] use accelerometers to make a personalised

fall detector recording the acceleration patterns of ADLs during a calibration. An

anomaly detection algorithm is then used to identify falls. However, this approach

determines its detection decisions based on human subjects with small differences

in their physical characteristics (e.g. an 8cm height variation) raising doubts about

performance if the differences were larger.

Three novel approaches are discussed in this Chapter which promote the use of

simulation to address the issue of the scarcity and quality of training data to im-

prove fall detection algorithms by customising fall events using myoskeletal simu-

lations and for the purpose of personalisation. One of the proposed methodologies

extracts a person’s height and pre-fall body orientation from depth cameras to

simulate customisable falls (with height and orientation as parameters). The de-

rived data from the simulations are then used as training examples or models of

falling behaviour. The second approach is capable of using data from simulating
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falls and ADLs customised by the model’s height and performs the detection pro-

cedure without a machine learning technique. The evaluation will use depth and

YouTube data. A third approach uses a different feature to apply the myoskeletal

simulation fall detection approach on accelerometer data from a wearable device.

Since the only source of video recordings of falls are based on acted falls, this

data are used to evaluate the performance of the detector based on simulation.

Experiments are presented based on three methodologies: (i) a hybrid approach,

which describes a simple methodology using simulation data and acted data (ii) a

fully simulation-based on velocity measurements method and (iii) an impact based

fall detection using myoskeletal simulation.

6.2 Fall detection using a Hybrid approach

The hybrid approach utilises the height and the pre-fall orientation of a human

body derived by a depth camera. The height is measured from the 3D bounding

box and the orientation is estimated using a procedure based on data from skeleton

estimation by OpenNI. These two parameters are used to simulate three fall events

(i.e. forward, backward, sideways) using OpenSim. The measurements from the

falling models are taken from the CoM, where velocity profiles are calculated and

then processed by a polynomial regression algorithm. To train the algorithm,

acted-falls and ADLs from existing datasets are fitted against the curve produced

by the regression algorithm. The fitting error of acted-falls and ADLs shows a

small, but significant separation denoting that falls and non-falls are separable

(see Fig. 6.7).

Several existing studies have shown how researchers distinguish a fall according to

the direction[73]. This fall characteristic is discussed to show that an algorithm

is robust to detect these types of falls. Nevertheless, the orientation of a falling

body is not embedded in a fall detection algorithm. Here, the approach includes

the orientation information in order to examine any beneficial impact on the fall

detection.

Existing work has investigated this aspect of human body orientation. In [151] au-

thors use RGB-D data to assess the orientation of a person. This work uses colour

and depth for superpixel calculation of each human subject. The results from

the temporal and spatial analysis (feature extraction) of those superpixels is then
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fused into a dynamic Bayesian network for the final orientation assessment. The

implementation of this method is complex and slow for a real-time process which

is using orientation as a sub-routine. In [152] authors investigate the head and

upper body orientation classification (discrete classes) based on RGB and depth

image features, and linear and nonlinear classifiers. Their work relies on RGB and

depth features such as a histogram of oriented gradients, depth local binary pat-

terns, and a histogram of depth difference. Also, for the classification task, three

different multiclass classifiers are considered: Random forest (RF), linear support

vector machine (SVM), and sparse based classifier (SBC). A Convolutional Neural

Network approach is presented in [153]. The authors use the colour image data

from existing datasets for training purposes but their own data for evaluation.

They claim 94% accuracy on their in-house test set validation.

Body orientation is a useful objective of this study since the falling direction can

be simulated using OpenSim. As this study uses depth data, there are difficulties

in estimating the orientation of the body particularly when the person is facing

away from or towards the sensor. In those cases, it is hard for an algorithm or a

human to distinguish the two poses without other cues as previous studies require

the RGB/colour signals to detect the face. By estimating the body orientation

towards the sensor and the falling direction w.r.t. the orientation, the algorithm

estimates the type of fall (i.e. forward, backward, sideways).

6.3 Methodology

The fall models are set according to Chapter’s 5 myoskeletal simulation preparation

for rigid falls as these were investigated for the hybrid approach. Therefore, three

fall models are used to process a polynomial regression method. The height of the

person is measured directly from the bounding box and the orientation from the

skeleton estimation – mechanisms derived by OpenNI.

6.3.1 Estimating Body Orientation

An important part of this algorithm is the necessity of the algorithm to detect the

orientation at which the person is falling. The falling direction, when detected, will
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be passed as a parameter to the OpenSim simulation engine in order to simulate

the same type of fall.

Depth data are processed using OpenNI 2, which has automatic skeleton tracking

capabilities. The skeleton mechanism is capable of tracking legs, arms and torso’s

motion, as soon as the person appears in the scene. The issue previously discussed

with skeleton data is the lack of accurate estimation when the person is towards or

away from the sensor. Each skeleton segment is connected with a joint, therefore

an angle can be measured in the 3D space for each joint. The orientation towards

the sensor can be inferred from joint angles extracted from skeleton tracking. An

evaluation of the Kinect’s skeleton capabilities is discussed in[154] where authors

primarily use the Kinect SDK for their experiments. Apparently, an OpenNI

evaluation is not available as a publication but is discussed in several websites,

which compare the accuracy of the sensor and the software capabilities. However,

an evaluation of Kinect’s software falls outside the purpose of this study.

Figure 6.1: Angles of knees and elbows. Green line shows the bisector of the
left body side and red of the right

The method works on the assumption that when a person is walking or standing,

the elbow angles (between forearm and upper arm) and the knee angles (between

femur and crus) have a minimum of 0 and maximum of 180 degrees (see Fig. 6.1
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(a)). The direction of the bisector of these angles is towards the front for elbow

angles, and towards the back for knee angles (see Fig. 6.1 (b)). Notice, that

direction of the angle is measured from the horizontal plane. Figure 6.2 shows the

thresholds used to classify whether the person is facing the sensor, facing away,

or side-on. If two of these four angles have the same direction, then the body

orientation towards the sensor is defined. Hence, the algorithm estimates whether

the subject is facing forwards, backwards or sideways based on the direction of

the bisectors of two of these angles. The following arguments regarding body

orientation are true according to the angle α of each bisector assuming that−180 ≤
α ≤ 180 in formula 6.1

|α| ≤ 45◦ → front

45◦ < |α| < 135◦ → side

135◦ ≤ |α| → back

(6.1)
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Figure 6.2: Angle thresholds as defined in Eq. 6.1

Having the orientation toward the sensor is the first step in estimating the falling

direction. The direction of the fall is estimated by measuring the direction of

motion of the CoM on the horizontal plane. This is calculated using the arc

tangent of two points atan2(z, x) taking these point samples after the initiation
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of a fall. This is triggered by a significant change in the vertical velocity of the

CoM V yCoM > 1m/sec, defined in this case empirically, with the assumption that

this velocity does not exceed the mean velocity of sitting down ADL events. This

measure is selected as sitting down (not aggressively) is one of the actions where

the velocity profile has the lowest values.

The angle (β) is defined by the first point A as seen in Figure 6.3 assigned in the

centre of the circle, while the second point assigns the direction (i.e. B : event

towards the left, C: towards the back, D: towards the front).

A

B

C

D

Figure 6.3: Falling angle thresholds denoted by colour. Blue: front, green:
back, yellow: left, magenta: right

The method takes into account the pre-fall and the falling direction towards the

sensors to assess the actual direction given the following rules where α is the body

orientation with respect to the sensor and β the falling direction with respect to

the sensor. Then, the fall direction FD is given by Eq. 6.2

FD =


forward fall if direction α same β

backward fall if direction α opposite β

sideways fall otherwise

(6.2)

As an example: if the person’s orientation is estimated as front and the direction

of the fall is the same using the same thresholds as in Fig. 6.2, then the fall is

in the forward direction. If the falling is in the opposite direction to the body

orientation then it is a backward fall, otherwise it a sideways direction fall.
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Figure 6.4: The velocity profiles of vertical CoM of three types of falls as
simulated by OpenSim. A standard model represents a typical male body of

1.78m height and 78Kg mass was used for all three simulations

6.3.2 Vertical velocity of CoM

The dynamics of the fall are quantified by the vertical velocity of the centre of

mass V yCoM . A number of simulations assuming different model heights are shown

in Fig. 6.14. Both Eq. 5.3 and these results agree that the taller the body, the

higher the maximum of the vertical fall velocity.

Figure 6.4 demonstrates the dynamics of different falls, based on the body/myoskele-

tal model orientation of the fall (forward, backward, sideways), as derived by

OpenSim. These dynamics are related to the balancing forces, affected mainly

by the support of the feet which differs depending on the fall orientation, e.g.

maximal feet support in forward falls and minimal in backward falls. Another

observation is that the backward and sideways falls have a steady velocity profile,

while in the forward fall the velocity increases halfway in time between zero and

the maximum velocity.

6.3.3 Hybrid Fall Detection Algorithm

The proposed detection algorithm considers the height of the person as estimated

by the calibrated depth camera and the orientation of the person before the fall. An
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OpenSim simulation is generated for each of the three directions of fall and for four

specific model heights (as discussed in Chapter 5) though the models have different

min and max as well as sampling (1.2 - 2.1 m with 0.3m sampling). An OpenSim

simulation is generated for each of the fall directions and four model heights using

the standard (default) myoskeletal model which is simplified by excluding the arms.

The upper weight of the body (i.e. torso) was adjusted in order to compensate

for the missing weight of the arms. The vertical velocity V yCoM(t) of the CoM is

measured from these simulations to create the velocity profiles. These profiles are

processed using a polynomial regression algorithm (Eq. 6.3) where t is the feature,

a are weights assigned to a particular feature and i (i = 0 . . . N) the degree of the

polynomial.

V yCoM(t)(pol) =
∑
i

ait
i (6.3)

The result of the process returns a fitted curve which approximates the velocity

profile of each fall type from the simulation as seen in Fig. 6.5. Using actual

fall and ADL examples, the algorithm measures the vertical velocity profile of the

CoM. Each profile is fitted with the derived curve of the polynomial regression of

a model with known height. The fitting error between the polynomial curve and

actual examples ε is calculated by (Eq. 6.4) where the log of polynomial fitting

error is produced in order to fit results into scale for viewing purposes.

With the use of regression, the algorithm processes a form of a velocity profile

to a mathematical formulation of this profile which is then easier to be compared

with other profiles. The degree of polynomial was adjusted manually in order

to fit the best possible curve of the velocity profile. Furthermore, other fitting

methodologies could be used here in order to fit a Gaussian or GMM to the

velocity profiles. Nevertheless, such fitting methods were not tested at this stage

of the study and an off-the-shelve regression algorithm was preferable for this

hybrid approach. Each regression curve is fitted on velocity profiles of a model

with a known height, therefore, the regression curve is parametrised by height.

Also, the falling orientation can be expressed as an angle as its initially measured

parameters (in degrees) of the body orientation towards the sensor and falling

direction.
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Figure 6.5: Polynomial fit of three fall types
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ε = log[
∑
t

(V yCoM(t)(pol) − V yCoM(t)(meas))
2] (6.4)

When actual events are evaluated, each derived error is shown in Fig. 6.7, where

non-falls and falls (i.e. front, side and back) are accumulated. These error values

are processed using a linear SVM which specifies a decision boundary between the

two classes of falls and non-falls. The detection of falls is therefore determined by

the separation of the two classes.

6.4 Experimental Results

6.4.1 Evaluation of Body Orientation Estimation

A simple procedure for testing this approach is conducted by recording and analysing

depth sequences of human subjects performing turn and stop actions. Every sub-

ject had to start the action by facing the sensor, then turn approximately 90

degrees and stop (this is where the sample is taken), then perform again until is

back on facing the sensor (providing 5 samples). 7 subjects (5 male, 2 female)

performed 3 trial videos at different locations within the scene. In each trial, they

had to perform 3 rotations (315 samples). The accuracy is calculated as the ratio

of the number of orientation types correctly classified (Ncor = 292), divided by the

total number of samples (Ntot = 315) as in Eq 6.5.

accuracy =
Ncor

Ntot

(6.5)

Here, the approach delivers 92.7% accuracy. As seen in Figure 6.6 the algorithm

can distinguish between the side, front, back human orientation towards the sensor.

To evaluate the falling direction, the algorithm used data from datasets UR, GM

to estimate the orientation. One of the complications using these datasets is that

the skeleton detection operated by OpenNI does not initialise on time to perform

the pre-fall estimation. Therefore, due to this reason, only 61.39% were accurately

detected showing the limitations of the approach on short videos, where only the

fall event is included in the sample.
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Figure 6.6: Three examples of body orientation as detected by the algorithm.
Notice the green and red lines showing the direction of the angle in 3D.

Table 6.1: Performance of the Hybrid Algorithm

Method Accu (%) Prec (%) Sens (%) Spec (%)
GM 100.00 100.00 100.00 100.00
GM2 98.50 95.31 100.00 97.84
UR 94.54 80.00 100.00 93.02
SDU 92.00 84.50 77.52 96.03

6.5 Evaluation of the Hybrid Detection algorithm

The datasets GM GM2 UR and SDU are used to evaluate the detection perfor-

mance. The protocol requires all samples to be compared with the regression

curve of the specific simulation according to height. This implies that each sam-

ple from these datasets is used for testing as training is using only data from the

simulation of falls. For each sample from the dataset, the height of the person is

measured from the 3D bounding box and the body orientation is estimated using

the method described in 6.3.1, to select the closest simulation model and properly

fit a 12-degree polynomial. Table 6.1 summarises the results.

The algorithm has 100% classification accuracy on the GM dataset and the mea-

sured error (ε) can be seen in Table 6.1 and in Fig. 6.7, where falls and non-falls are

linearly separable for this dataset. The red line represents the decision boundary,

as specified by a linear SVM. As seen from the Table 6.1, the algorithm improves

the performance reported in Chapter 4 (Table 4.1), showing the benefit of using

this algorithm. This is especially noticeable in SDU dataset for Specificity (95.18)

and how non-falls are not incorrectly detected as falls when the myoskeletal model

is selected properly to have an approximate height to the actual observation from

the datasets. This point will be further justified in Section 6.8.4.
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Figure 6.7: Fitting error (ε) of falls and non-falls for GM dataset: Notice how
well separated falls and non falls appear

``````````````̀Fall type
Approach

Customised Trained based

Back 4.93 5.08
Front 4.82 5.12
Side 4.84 4.98

Table 6.2: Mean error (log ε) from height customised and Trained based ap-
proaches

The approach is compared against a similar baseline method where the polynomial

regression is applied on three acted falls of the same person and then evaluated

on the remaining samples of the GM dataset. This is referred as the Trained

based approach (See results in Table 6.2). That is from the 48 fall examples,

three examples are taken from the same person acting three different falls and the

velocity profiles are processed by the regression algorithm. The evaluation also uses

SVM applied to the error values derived from Eq. 5.4, but lacks the customisation

in height, provided by the simulation. Specifically, for the baseline approach,

V yCoM(t)(pol) is estimated by a polynomial (12th degree) regression using three

fall examples from the dataset. The mean error for the proposed customised

approach is lower for all different types of falls as seen in Table 6.2. Meaning that

the error from using actual data is not as low as when using simulated data for

training.
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6.6 Discussion

This approach presented a method for customising the expected human body falls,

using their height and fall direction, based on physics-based simulations, derived

by the OpenSim software. Customised simulation provides a lower error when

used to train the algorithm compared with a similar approach where polynomial

regression is applied to human recorded fall events. The simulated model and its

synergy with existing machine learning algorithms could be further investigated,

with the aim to further customise and therefore optimise fall detection algorithms,

but also to address the issue of the scarcity of realistic fall recordings.

The physics-based approach presented here provides valuable outcomes regarding

the use of simulated data applied on fall detection. It shows that a fall detection

algorithm is feasible using a customisable simulation of a person’s height. This

approach also utilises the type of fall (forward, backward, sideways) to fit the data

with better results than the trainable machine learning approaches discussed in

Chapter 4.

6.7 Fall detection using Myoskeletal simulation

Having discussed the hybrid approach we can still observe a trainable methodology

of a single velocity profile using a regression algorithm. Here, a new algorithm

compares the velocity of single fall and non-fall simulated profiles. A different

observation point is selected in order to have an occlusion robust feature such as

the head’s vertical velocity. Features discussed in Chapter 4 which are relying

on the bounding box, particularly the composite of width and depth (L) would

perform poorly in the event of occlusions covering a large area of the scene.

A new metric in comparing the velocity profiles was investigated which takes

into account the entire velocity profile without using a fitting (i.e. regression)

method as previously in the hybrid approach. The Hausdorff Distance (HD) will

be discussed for its use and will be evaluated for its feasibility to distinguish falls

from ADL.

The differences of this approach from the hybrid is the use of a myoskeletal sim-

ulation to model falls and ADLs hence no recorded human fall data is required
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to develop height customisable myoskeletal models for the ADLs in order to have

both negative and positive classes. Also, no need for a machine learning technique

is required. The use of fall direction is not used given an evaluation of the fall

events described in Section 6.8.2, demonstrating that the HD metric for the three

directions indicates a narrow variation.

6.7.1 Use of Hausdorff distance

Most of the existing research in fall detection uses features related with the per-

son’s silhouette, posture, body part, pre-post body location/orientation, velocity

etc. measured or detected instantaneously or over a fixed time window. OpenSim

provides simulation results of location, velocity and acceleration profiles. A veloc-

ity profile for fall and ADL events provides an entire sequence of samples from the

beginning to the end of the event. Such full profiles can be beneficial for the clas-

sification of an event when compared with, at their full length. A novel approach

is introduced here which takes into account the full velocity profile instead of the

features noted in Chapter 2.

The observed velocity profile will be measured for similarity against simulated

selected profiles (i.e. from a fall and an ADL). In Chapter 4, the use of velocity

during a specific frame was used instead of the complete velocity profile as in this

algorithm. The use of HD similarity was used in Chapter 3 to assess the hesitation

of a fall, and in Chapter 5 to assess the quality of simulation. It is also used for

measuring the similarity between simulated events models as well as in for the use

of fall detection. The Hausdorff distance (HD), is defined as the distance between

two profiles A, B,

HD(A,B) = max{max
a∈A

min
b∈B

dist(b, a),max
b∈B

min
a∈A

dist(a, b)} (6.6)

Several distance measures exist for this application, such as the Euclidean, Frechet

and Hausdorff. The Hausdorff distance is used in [155] where authors employ it to

determine the similarity of trajectories. A useful property of the Hausdorff distance

is that it does not require for the profiles to have the same length which is not the

case for the Euclidean distance measure, which uses a point-for-point pairing of

the trajectory coordinates, as seen in [156]. The distance measure used by Frechet

[157] relies on the segment measurements which produce a longer distance than the
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Hausdorff and is calculated as the minimum of maximum distances between two

curves - effectively is the opposite to the Hausdorff distance. More importantly,

the use of the HD to compare velocity profiles (see Section 6.7.2.2) overcomes the

need of a threshold.

6.7.2 Methodology

This implementation is based on processing depth data, hence, falls can be rep-

resented by a single profile, although the proposed methodology can be adapted

for RGB modality, if the scene is calibrated, or even for non-visual modalities, e.g.

accelerometer data, because velocity profiles can be similarly generated. Subsec-

tion 6.7.2.1 focuses on the use of depth data and particularly on the feature used

for this approach.

6.7.2.1 Data pre-processing

The choice of feature for fall detection is important, especially when occlusions are

expected, as the visibility of relevant points should be maintained for as long as

possible during the fall. Existing studies [37, 38] detect and track the head centroid

as they consider it as the most suitable landmark point for this purpose, as this is

the highest and most visible point on the body. Nevertheless, these head detectors

are not rotation or scale robust and therefore, the top of the head location will be

considered, approximated by the top bounding box coordinate [31]. For this work,

depth data recorded by a Kinect I sensor and depth data analysis was implemented

on the OpenNI platform [103]. The bounding box is estimated from the 3D point

cloud of the segmented human tracker in OpenNI. The top point is found at the

location where the bounding box touches the head of the person as shown in Figure

6.8 where the point is observed during the fall. Notice how closely estimated this

position is with the head location. The depth data, which is generated from an

infra-red sensor, can be noisy due to the interaction with hair, where the infra-

red signals are absorbed rather than reflected. Therefore, the vertical location is

filtered using LOWESS (Locally Weighted Scatterplot Smoothing) [158]), which

suppresses the noise whilst maintaining the shape of the vertical location profile.

The estimated person’s height is used as an input parameter for the simulation

(Section 6.7.2.2) and measured from the bounding box (in metres). The height is



Chapter 6. Fall detection based on myoskeletal simulation 103

Figure 6.8: Blue dot indicates location of the top bounding box point and red
dot to indicate the head location

estimated from the depth data because public datasets do not provide such data.

Alternatively, height may be determined as a pre-set parameter in many situations

(e.g. at home), for independent livers.

6.7.2.2 Fall detection

The proposed fall detection algorithm is summarised by the flow diagram shown

in Fig. 6.9 and described in detail in this section. Fall detection is performed by

comparing the velocity profiles between observed events and simulated activities

of fall or ADL events. The red box contains the pre-processing steps discussed in

6.7.2.1 where depth video samples are processed to derive the top bounding box

coordinate and person’s height. The elements contained in the blue box compute

the simulation of falls and ADLs, as discussed in section 5.3.2.1. A rectification

step is required before processing the simulation and actual signals (shown as a

black box) in order for the simulation and actual data samples to have the same

bit rate.

The green box encloses the fall detection algorithm. Inputs of the algorithm are

the V +(t) and
{
V −i (t)

}
which represent the velocity profiles of the simulated fall

and non-fall events respectively and Y (t) is the top bounding box location and

the person’s height. There are N simulated ADLs (
{
V −i (t)

}
, i = 1 . . . N) such as

sitting down, lying down, etc., which are processed in order to contain the active

part of the motion (i.e. keep only the velocity profile where there is activity). A

non-fall velocity profile V −(t) which is compared to the remaining ADL velocity

profiles, is selected by minimising the Hausdorff distance against the profile of the

simulated fall V +(t):
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V

Ym(t)

Figure 6.9: The pipeline of the myoskeletal simulation fall detection system.
Red box encloses the data preprocessing, blue box the model simulation and the
green box the fall detection. ONI: depth data format, C3D: standard mocap

data format, TRC: OpenSim motion format
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Figure 6.10: Selection of larger gradi-
ent of an ADL (lying down)
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Figure 6.11: Selection of the
larger gradient of a fall event

s = argmin
(i=1...N)

(HD(V −i (t), V +(t))) (6.7)

The fall profile V +(t) will also serve as a comparison measure in the next stage

when actual human events will be tested. Evaluation of the Hausdorff distance

can be found in Section 6.8.1.

The signal containing the bounding box top Y (t) sequence of the detected person

is processed in a similar way to identify potential fall segments. A single Ym(t)

location profile containing the event (either a fall or non-fall) is selected by ex-

tracting the fragment that encloses the longest and steepest negative gradient. To

perform the gradient analysis the algorithm detects a change of height by compar-

ing the current and previous y location. Two further checks are required to select

the profile segment. First, the algorithm measures the duration of each negative

gradient (if there is more than one) and selects the longest one. Second, it mea-

sures the start and end y coordinates of the location and selects the tallest one.

The process is illustrated in Fig. 6.10 for the selection of the largest gradient of

an ADL and in Fig. 6.11 for the largest gradient of a fall event.

The event’s velocity profile (Vm(t)) will then be estimated based on this segment.

In the last process of the pipeline, Vm(t) is compared against the non-fall and fall

simulated profiles (V −s (t), V +(t)). These simulated profiles are pre-generated as



Chapter 6. Fall detection based on myoskeletal simulation 106

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

Hausdorff distance in m/sec

0

2

4

6

8

D
e
n
s
it
y

HD fall - non-fall

HD non-fall - non-fall

HD fall - fall directions

Figure 6.12: Plot of a Gaussian pdf fitted to the distribution of Hausdorff
distances: blue, red and green curves denote the pdfs of HDs between falls,

between non-falls and between falls and non-falls respectively

discussed previously in Section 5.3.2.3 at a discrete set of heights from simulated

models with the height approximately equal to the subject’s height. The minimum

distance from this comparison will determine whether the actual event E is a fall

or a non-fall and is given by Equation 6.8:

E =

fall if (H(V +(t), Vm(t)) 6 H(V −s (t), Vm(t))),

non− fall if (H(V +(t), Vm(t)) > H(V −s (t), Vm(t)).
(6.8)

6.8 Experimental Results and Discussion

6.8.1 Validation of Hausdorff Distance

A benefit of using the Hausdorff distance is the capability to compare two profiles

of different sample lengths. The capability of HD to differentiate between fall

and non-fall profiles (Fig. 6.13) is validated by intra-class (fall vs fall, non-fall

vs non-fall) and inter-class (fall vs non-fall) comparisons. The velocity profiles of

eight different ADL events and four different falls (forward, backward, sideways,

collapsing) are considered and Figure 6.12 shows the probability density functions

(pdf) of the above HDs. For intra-class comparisons, the values of HDs are in the

range 0-0.5 m/sec, while for inter-class comparisons they cluster around 3.5 m/sec.

Therefore the intra-class HDs are small compared to the HDs between a fall and

non-fall events, which is nearly an order of magnitude larger. This justifies the
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Figure 6.13: Simulated ADL velocity profiles of sitting down actions

choice of HD as a distance metric to discriminate between the velocity profiles of

events.

6.8.2 Comparison of the fall simulation models

This section evaluates the similarity between simulated models within falls of rigid

and collapsing types. The evaluation concludes with using a single type of fall (i.e.

forward fall simulation).

The base for our experiments is the Full Body Model [159] in OpenSim with the

properties of an average male with a height of 1.78m and weight of 78kg. This

model is then scaled (as described in 5.3.2.3) to cover the range of people’s heights

between 130-190cm in 20cm steps. Fig. 6.14 shows the four velocity profiles

simulated by these four models with heights 130, 150, 170 and 190 cm (V +(t))

executing a sideways fall. Notice the difference in peak velocity that varies from

5-6.5 m/sec according to the model’s height. The customisable model will use this

principle to simulate falls according to the person’s height.

Previous studies discuss different types of falls as defined by the falling direction,

such as forward, backward and sideways fall [73]. Collapsing falls are also discussed

in Chapter 3, where the person falls vertically then leans forward towards the

ground. Fig. 6.15 shows the simulations of these types and show the variation in

Vy. Some noise is observed due to elasticity of the Contact Geometry (OpenSim

parameter) of the model, before the initiation of the fall as the model touches the

platform and before it comes to rest. To compare these velocity profiles the HD

is used. The HD between a forward and a backward fall is 0.215 m/sec, between



Chapter 6. Fall detection based on myoskeletal simulation 108

0 10 20 30 40 50 60 70
−1

0

1

2

3

4

5

6

7

Frames

V
y 

in
 m

/s
ec

 

 
1.3m
1.5m
1.7m
1.9m

Figure 6.14: Velocity profiles of four simulated models of a sideways fall

forward and sideways 0.216 m/sec, and between sideways and backwards 0.154

m/sec. Also, the HD between the collapsing fall and backward is 0.27 m/sec,

forward 0.303 m/sec and sideways 0.323 m/sec. To show how small the HD is,

a pdf is plotted for this comparison in Fig. 6.12 denoted with the blue curve.

Effectively, there is a little benefit in simulating different types of falls as the HD

is small, hence, there is similarity of the Vy across the four types of falls. For that

reason, only the forward fall simulation produced by the OpenSim engine is used.

6.8.3 Evaluation of myoskeletal simulation based fall de-

tection

Since our methodology does not require samples for training, the evaluation re-

sults are reported for the full datasets where other studies use a sample of about

70-80% of the dataset. Table 6.3 summarises the results of the proposed method

when tested against two public datasets alongside the performance of other meth-

ods tested on the same datasets. The proposed methodology outperforms previous

works on both datasets in terms of accuracy, precision and specificity and its sen-

sitivity is similar to all but [110] where more falls are detected, but more ADLs are

also detected as falls (FPs). These results show that the simulated approach has

almost equal or better performance when tested against these public datasets. In

conclusion, the simulated model is shown to provide a more accurate representa-

tion of a falling body than actors can simulate, while the whole velocity profile of



Chapter 6. Fall detection based on myoskeletal simulation 109

0 5 10 15 20 25 30 35 40 45 50

Frames

-1

0

1

2

3

4

5

6

V
y 

in
 m

/s
ec

Backward
Forward
Sideway
Collapse

Figure 6.15: Velocity profiles of four Opensim simulated falls. We can see the
visual similarity of the profiles.

the simulation is taken into account. Hence our method shows that it is possible to

perform robust fall detection using only simulated data for fall modelling without

the need for human fall data to train the detector.

6.8.4 Evaluation of using a customised simulated model

In order to evaluate the benefits of height customisation, datasets UR, SDU,

GM are merged into a single dataset with a total of 263 fall and 1212 non-fall

events. The algorithm is then tested against this set four times, each time with

a different simulated model (130, 150, 170, 190cm tall) to assess each model’s

capability to detect falls and filter out non-fall events. Table 6.4 shows the results

of using fall/non-fall data from across all three datasets UR, SDU and GM.

These events are categorised according to a subject’s height, resulting in 10 sam-

ples in the range (120-139) cm, 110 samples (140-159 cm) etc. The results show

that detection fails when 130cm tall subjects are tested using the 170 and 190cm

simulation models, and also when the 150cm subjects are tested against the 190cm

model. One can conclude that the 130 or 150cm models can be used to detect all

fall events, but this will lead to detecting more non-fall events as falls (FNs) since

the velocity profile is lower in comparison with the 170 and 190cm models. This
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Table 6.3: Performance of fall detection algorithms developed in this thesis
and comparison against previous studies across 2 public datasets

Method Accu (%) Prec (%) Sens (%) Spec (%)
(a) Dataset UR (15 fall, 40 ADLs)

Bourke et al. 95.00 90.91 100.0 90.00
[4] 98.33 96.77 100.0 96.67
[79] - - 100.0 97.25
[80] 99.37 96.77 100.0 99.23
Algorithm 1 94.54 80.00 100.00 93.03
Algorithm 2 96.36 86.66 100.00 95.23
Hybrid 94.54 80.00 100.00 93.02
Myoskeletal 100.0 100.0 100.0 100.0

(b) Dataset SDU (200 fall, 800 ALDs)
[5] 86.83 - 91.15 77.14
[109] 91.89 - - -
[110] 92.98 - 93.52 90.76
Algorithm 1 74.40 66.50 41.30 90.11
Algorithm 2 89.50 82.38 71.48 95.18
Hybrid 92.00 84.50 77.52 96.03
Myoskeletal 96.90 94.00 90.88 98.48

is reflected in Table 6.4 where several events are detected as falls because those

events have velocity profiles similar to fall events of the 130 or 150cm models. For

example, the bottom-left value of 0.20 denotes that only 2 fall examples were cor-

rectly detected, and 8 were missed. Specificity % (values after the dash) denote the

TPs correctly detected as non-falls. The values in the top-right corner of the table

(0.66) denotes that only 8 out of 12 examples are detected as non-falls, meaning

that 4 ADLs are classified as falls. In other words, a tall person abruptly sitting or

lying down has similar a velocity profile as for a short person falling; this problem

is addressed by our approach which is height sensitive and, hence, the algorithm

selects the appropriate myoskeletal model. The comparison of the velocity profile

of a human event, either a fall or ADL, is against two velocity profiles derived

from the simulated model (e.g. the vertical velocity profiles of an ADL and a fall).

These simulated profiles are derived from models which approximate the height

of the person. The proposed approach does not permit cases where a tall person

sits down abruptly and their velocity profile is compared with simulated profiles of

a short person unless the height is incorrectly estimated (in many circumstances,

the height may be preassigned or would not rely on instantaneous measurements).

Hence, the improvement of the detection rates against TNs (Specificity) in Table

6.4.
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Table 6.4: Simulated model height variability over UR, SDU, GM datasets
combined. The table presents results of the algorithm for each height mod-
els applied to the height-labelled acted datasets (UR, SDU) and the in-house
depth dataset (GM) showing the sensitivity and the specificity for each com-
bination of simulated model height and approximate human height. If height
selectivity is applied then detection is 100% for both sensitivity and specificity
(main diagonal). Values in bold denote either missed detections (for sensitivity)

or false positives (for specificity)

Approximate human height
number of samples (falls, non-falls)

Sim model
height

130
(10, 40)

150
(110, 440)

170
(108, 441)

190
(8, 12)

130 1.00 — 1.00 1.00 — 1.00 1.00 — 0.88 1.00 — 0.66
150 1.00 — 1.00 1.00 — 1.00 1.00 — 1.00 1.00 — 0.91
170 0.80 — 1.00 1.00 — 1.00 1.00 — 1.00 1.00 — 1.00
190 0.20 — 1.00 0.88 — 1.00 1.00 — 1.00 1.00 — 1.00

This experiment tests each myoskeletal model against all the data (regardless

of person’s height) and observes its performance. The main diagonal of the table

corresponds to results where the appropriate height model is used for the detection

and operates without error (i.e. 100% Sens, Spec). As can be seen, the detection

produces FPs and FNs if the incorrect height model is selected (results in bold).

Note that these datasets have a limited number of fall data, and the results would

be expected to degrade if more data from low height people were included. Also,

the experimental data used for this experiment is derived from the correctly classi-

fied samples when customisation is enabled. This experiment confirms that model

variability is important.

6.8.5 Use of simulation data in machine learning

The use of myoskeletal simulation velocities can be used to train a machine learning

algorithm such as the ones in Chapter 4 or a nearest neighbour algorithm. Such

an approach should take into account the height of the person as it relates to the

same issues discussed in the previous Section (6.8.4) where the sitting down action

of a tall person can be confused with a short person falling. Therefore, in the use

of machine learning personalisation should be taken into account to avoid such

issues.
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6.9 Acceleration based fall detection using myoskele-

tal simulation

To evaluate the approach of fall modelling using simulation, experiments were

conducted using acceleration based data of falls and ADLs. With the use of

a myoskeletal model, we can measure the acceleration of a falling person and

compare it with the acceleration produced from a falling model. To perform this,

the algorithm requires the acceleration of a particular point such as the CoM

or the head location of the person in order to take such measurements from the

simulation. The evaluation of this approach uses data from accelerometer based

fall datasets, such as the SisFall [106] which provides a variability in physiological

characteristics. The acceleration from this dataset is measured from the CoM

using an accelerometer fixed on the waist.

There are pros and cons in using a wearable accelerometer as discussed in Chapter

2. Briefly, the use of wearables is invasive and the user must wear it continuously

to avoid a missed-detection of a fall. The benefits are that only a single sensor is

needed (per person) as opposed to the solution of an in-house network of cameras

or sensors, hence is cost-effective and less complex to setup and maintain. Also,

this approach is occlusion robust as the user is not expected to be in the f-o-v

of a sensor to be detected. It is generally observed [45], that accelerometers are

fixed on the waist rather than other places on the body in order to become less

invasive. This is one of the reasons why accelerometers are not fixed on the head

though this would give a better detection of a fall event. Another reason is that

accelerometers are quite sensitive and the head motion is expected to have more

rapid movement than the waist under normal motions.

6.9.1 Methodology

A modification of the previous fall detection algorithm is used. Instead of the

vertical velocity of the head/top bounding box point, the algorithm uses the feature

described in [106] where the standard deviation on the horizontal plane (C8) is

calculated from accelerometer data. The formula for this feature is given by

C8[k] =
√
σ2
x[k] + σ2

z [k] (6.9)



Chapter 6. Fall detection based on myoskeletal simulation 113

0 500 1000 1500 2000 2500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

C8

Observations

Figure 6.16: Two C8 profiles as selected by the Hausdorff distance. Blue
graph: ADL simulated profile (sitting down), red graph: simulated fall

where σi = std(ai[k]), k is the sample window of 100 observations

Using the same simulations from OpenSim of falls and ADLs, the algorithm cal-

culates this feature and performs a similar evaluation to select the two profiles as

described in Section 6.8.1 where the fall event and the nearest in HD ADL event

are selected. Fig. 6.16 shows a simulated fall profile and the closer simulated

ADL to it via comparison using the Hausdorff distance. These two profiles are the

measurement against an actual event from the Sisfall dataset [106]. The height is

assigned to the algorithm as this information is supplied with the dataset but note

that there is not any means of measuring the height from accelerometer data.

6.9.2 Results and discussion

To evaluate the validity of acceleration based fall detection data from [106] were

used. This dataset covers a range of human variabilities such as heights, weights,

age and sexes. Therefore, this dataset provides the necessary data for evaluation.
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Figure 6.17: Typical examples of C8 profiles of falls (top row) and ADLs lower
row

Table 6.5: Performance of fall detection and comparison against SisFall
dataset

Method Accu (%) Prec (%) Sens (%) Spec (%)
Mezghani [160] 96.60 - 99.60 94.44
Abdelhedi [161] 70.87 - 54.14 82.85
Nguyen [162] 98.55 - 97.70 99.73
Proposed 99.40 100.00 96.91 100.00

The dataset has several fall types such as collapsing and rigid falls, but also seated

falls which have occurred when a person falls while seated. Since simulations of

the seated-fall type are not performed by the proposed approach, such fall types

will not be used for the evaluation. As a result, six fall types will be used as

for evaluation (F01 – F06 from the Sisfall dataset). The fall trials are performed

by 23 young adults, of these 6 types, trialled 5 times (690 fall samples). Also,

all 3002 ADLs were used from this dataset performed by 38 subjects. Fig. 6.17

shows examples from subject SA21 performing falls and ADLs. The difference is

noticeable as the falls have about twice the height of ADLs in the C8 profiles.

Table 6.5 reports recent algorithms tested on the SisFall dataset. From these

results, it is noticeable the benefit of the proposed approach on the Specificity

as all falls are detected when the C8 feature is used. Issues occur when ADLs

include events walking upstairs and downstairs quickly and quickly sitting onto

a low height chair which causes the Sensitivity to drop as the profiles are much

more similar to the fall profile. Also, Mezghani et al. [160] study performs better

in detecting falls due to a different feature used for their study.
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6.10 Conclusion

This Chapter has reported an investigation of simulation methodologies to validate

the development of robust algorithms for detecting people falling over or collapsing.

It provides a proof-of-concept for the use of a myoskeletal simulation model as a

replacement for real data in the improvement of detector performance.

The fall models were evaluated using real fall data from Youtube, showing the

realism of fall modelling. The fall detection system is evaluated on depth and

accelerometer datasets. In addition, a new approach to creating fall events based

on simulation by a myoskeletal model has been successfully demonstrated, negating

the need for real or acted fall-training-data.

Fall velocity profiles differ significantly when compared with ADL velocities which

shows a separation between the two classes. Different fall types were also compared

(front, back, side and collapsing) and were shown to have similar profiles in the

same way that ADL profiles when compared with each other returned small values

of the Hausdorff distance.

This approach is innovative in utilising the person’s height as a parameter to

simulated myoskeletal fall models. The use of simulated data enables data to be

acquired easily, negating the need to use actors attempting realistic falls and risking

injuries. It provides a tool that is capable of significant flexibility, potentially

enabling a wide range of a variation in the physical characteristics and the type

of falls that can be simulated. The existing system only covers the customisation

of models in terms of height in order to show the capabilities of the simulation-

based approach. By using a customisable model based on the height of the falling

person, better sensitivity and specificity are achieved. The evaluation against

public datasets comprising more than 1000 sample videos clearly demonstrates

its robustness and improved performance compared to those achieved by other

researchers.





Chapter 7

Occlusion robust fall detection

Computer vision systems are dataset-driven and tend to ignore the scene attributes

that contribute to effective fall detection. As discussed in Chapter 3, only one

study [7] focuses on the how occlusion affects the detection of falls, while another

study tries to overcome the effect of occlusions by monitoring the scene using

multiple cameras [2] whilst the rest of the public datasets contain fall incidents

without including any environmental elements (i.e. furniture). Every home scene

has numerous objects which could cause partial or full occlusions as the person

moves around, including furniture such as beds, sofas and chairs which could

obscure a fall event.

Current studies use a variety of features (as discussed in Chapter 2) such as the

bounding boxes, silhouettes, shapes, skeleton tracking (offered by Kinect plat-

forms), head velocity etc. Many of these would fail to detect a fall under occlu-

sion, particularly if the degree of occlusion covers a large proportion of the body.

This is because the observation time of these features is limited, as the event is

interrupted due to the occlusion and the algorithm is not capable of recovering the

missing motion of the event. Methods requiring the visual location of the body

after the fall would also fail to detect the fall (as well as the faller), as the resting

location of the faller is occluded. Algorithms which use the head position would

have better chances due to the greater visibility of this feature, as discussed in

Chapters 5 and 6.

Current datasets do not contain representative occlusion data for a quantitative

and qualitative evaluation of fall detection algorithms, therefore, new videos are
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required of occluded scenes of falls and non-falls. Nevertheless, to avoid the com-

plications of acquiring a new dataset, existing video data from public datasets

can be used. One method was the introduction of synthetic occlusions by mask-

ing areas of the image. Two types of these synthetic occlusions were introduced;

rectangular block areas and images of real furniture. Real furniture have different

sizes and most of them will provide partial occlusions such as sofas, chairs and

coffee tables. Another approach was simply to define vertical cut-offs denoting the

vertical degree of occlusion. This is an efficient and effective means to implement

a full occlusion of the person and avoid the need of requiring actors to simulate

falls multiple times, behind various occluding pieces of furniture. The degree of

occlusion can be quantified, as a ratio of the person’s height, allowing a clear and

quantitative assessment of when the fall detection fails.

Simulated falls provide continuous data for the duration of each fall event. The

vertical location of the top bounding box point is recorded throughout, from the

beginning of the fall until the myoskeletal model reaches the ground. In the event

of occlusion, the location profile stops at the last measurement before the occlusion.

A truncation process (linear extrapolation) predicts the remaining points toward

the floor.

The use of simple and complex synthetic occlusions in depth data and the eval-

uation of fall detection algorithms against the synthetic occluded data is a novel

contribution developed in this thesis. This Chapter investigates different types

of occlusion and how to simulate them in a real-life scenario. The fall detection

algorithm (6.7) described in the previous chapter will be tested against the new

data.

7.1 Review

Synthetic occlusions were used in other studies for several purposes with possi-

bly the earliest discussed in [163] for a medical imaging application. Their study

discusses the use of occlusion by reducing the pixel intensity on various regions

within Magnetic Resonance Imaging (MRI) images etc. In [164], authors propose

an occlusion robust face recognition algorithm. Their evaluation uses synthetic

occlusions based on a scarf image overlay applied to a public dataset. Recogni-

tion rate succeeds for up to 70% occlusion. A more complex synthetic occlusion
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modelling is discussed in [165], where a large number of synthetic occlusion con-

figurations was generated for car detection and address the issues of car-to-car

occlusions and car self-occlusions. Car type, orientation, relative position and

camera view are some of the parameters for the occlusion models. A dataset

comprising of images of occluded vehicles is presented in [166]. This dataset was

developed to address the detection of semantic parts on partially occluded vehi-

cles. Synthetic occlusions were also modelled for people as in [167] where a large

collection of synthetic occlusion data was developed by compositing segmented

objects over a base training data set that has been annotated with part locations

and figure-ground masks in order for the occlusion to be applied on the correct

position. This was approach was applied on a public dataset. Occlusions applied

for people were also implemented in [168] where human figures were imported on

existing video of public datasets. The derived data can be used for objective eval-

uation of human tracking algorithms in the presence of occlusion. In [169], authors

implement a simple rectangular occlusion over the image to assess the robustness

of an ear detection algorithm, for the purpose of biometric analysis. The occlusion

degree variated from 0 to 50%. A similar use of synthetic occlusion is found in

[170] where authors use a rectangular occlusion which varies in size and location

within the image. Their algorithm tests an occlusion-robust face recognition algo-

rithm. Another face recognition study [171] uses synthetic occlusions with various

boundaries and various occlusion levels (0 - 90%) over existing public datasets.

A 3D head tracking algorithm was evaluated under a sphere shaped occlusion in

[172]. Their evaluation videos contain videos of a moving head while the occlusion

also changes its position.

The use of synthetic occlusion has key benefits when compared with videos where

occlusions already exist. Synthetic occlusions can be used on existing datasets and

be applied on variable areas and sizes. Occlusion sizes are much more manageable

when the degree of partial occlusion is required for the performance of a detec-

tion/tracking algorithm. They can have different shapes, such as vehicles, trees,

people etc. The implementation is much faster than recording videos of variable

occlusion types.
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7.2 Modelling occlusions

Occlusion is one of the issues discussed in Chapter 3 that current datasets fail to

address. In a typical home scene, furniture may obscure a camera’s visibility and

give limited views of people moving around. An occluded fall may be missed if the

algorithm is not capable of detecting the event from a partial view of the person.

Simple and complex models of occlusion were inserted in video data of existing

datasets or applied directly to truncate the head’s location data.

7.2.1 Simple Occlusion models

To evaluate fall detections under various occlusion scenarios, the current datasets

are augmented by adding synthetic occlusions to the depth videos. The impact

of occlusions is limited to only two studies [2, 7] where multiple cameras are

used to provide full coverage of a room and cope with occlusions by selecting an

occlusion-free viewpoint. In the second referenced work, authors use a bed as a real

occlusion which is limited in terms of providing an evaluation measure for assessing

the impact of occlusion on fall detection. Their study, evaluates current (of the

time of their publication) algorithms under occlusions using 30 occluded falls and

80 occluded ADLs. Their evaluation is poorly presented (e.g. it is quoted that

“false positives are more than missed detections”) without much of constructive

discussion regarding the reason’s of the performance of the discussed algorithms.

In detail, occlusions were inserted as rectangular areas and frame-by-frame ob-

scuring the original depth data in the lower portion of the image. Those frames

are then reconstructed as a depth video and the full video analysis is applied to

the fall detection. Fig. 7.1 shows the types of occlusion applied for the evaluation

of fall detection, where the occluded areas are created by masking out the lower

portion of the image.

7.2.2 Complex Occlusion models – partial/realistic

Occlusions in a home environment or general in real-life scenes are more complex

than the rectangular boxes applied in the previous section. Here we will implement

a realistic/complex set of occlusions by using real images of objects found in a home
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a b c

Figure 7.1: Three occlusion modes. The black rectangle in the image is a
synthetic occlusion applied to the depth image. The degree of occlusion is
expressed proportionally to the person’s height: (a) 40%, (b) 50%, (c) 70%

occlusion measured from the ground

Figure 7.2: Segmented images of furniture

such as a chair, sofa and coffee table. Those objects will be scaled and embedded

in the depth video in the same manner as the rectangular synthetic occlusions

7.2.1. Every image is segmented in order to contain only the object while the rest

of the image is transparent as seen in Fig. 7.2.

The scaling of each object is adjusted according to the person’s height in order for

the objects to appear as realistic as possible within the scene. The result otherwise

would be super-sized or under-sized objects in an unrealistic home scene. For the

experiment, the object is placed in the centre of the scene as the fall event is also

centred in the view as shown in Fig. 7.3. However the placements of the furniture

can be tailored according to any actual room layout. As discussed, these furniture

images are placed manually as foreground objects to obscure the fall.
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Figure 7.3: Complex occlusions from a coffee table a chair and a sofa

7.2.3 Truncated fall measurements

A different approach to create occlusion disturbances on existing video is the in-

terruption of observations (e.g. top bounding box point) at a certain height. The

location profile as seen in Fig 7.4, is interrupted at relevant heights to imitate oc-

clusions according to the person’s height. In this particular example, the person’s

height is 1.6 m and the cutoff point for a 50% occlusion is at 0.8m. The degree

of occlusion follows the same protocol used in Section 7.2.1 in terms of size (i.e.

40%, 50%, 70%).

7.3 Fall detection under occlusions

When processing human data, the vertical location profile Y (t) of a fall is expected

to conclude near the ground, if the whole event is visible. In the event of occlusion,

the Y (t) profile will be truncated at the occlusion boundary. Since the Y (t)

profile is interrupted due to an occlusion the remaining location profile can be

extrapolated to the ground to allow fall detection under occlusion.

Simulation of a fall provides a continuous observation of the fall event from the

start to the concluding position of the myskeletal model on the ground. The
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Figure 7.4: Truncate Y location of top bounding box point after a cut-off
based on 50% occlusion showing extrapolated profile

head location is observed and measured throughout the process. When a fall

occurs under occlusion in a real video, the top bounding box location is visible

up to certain height. A segment of the visible trajectory ending at the occlusion

boundary is identified, containing as many sample points as possible that satisfy a

strict linearity condition. The segment is linearly extrapolated towards the ground

(Ym = 0) as seen in Fig. 7.5. The new location profile will include those calculated

points in order to provide the algorithm with a continuous location profile. In

order to assess the robustness of detecting falls under occlusions, a protocol was

developed which evaluates the impact of various levels of occlusion, discussed in

the next subsection.
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Figure 7.5: Location profile estimation in an occluded rigid fall event

7.3.1 Evaluation of algorithm under occlusion

The evaluation protocol using simple synthetic occlusions was applied to UR and

GM datasets consisting of 63 fall and 154 ADL events. Results are summarised in

Fig. 7.6 where sensitivity (red line) and specificity are shown to achieve 100% for

occlusions up to 50%. Sensitivity drops significantly to 76.5% at 60 % occlusion,

with only (30.1%) of the sample detected at 70% occlusion. Specificity drops

significantly than faster with falls and is only 43.2 % at 60 % occlusion.

The SDU dataset was used for the truncated protocol as it was difficult to split

and merge the videos of this dataset. The occlusion results as seen in Fig 7.7 using

truncation on the SDU dataset conclude a similar pattern in terms of Sensitivity.

Specificity though, remains at 100% on 60% occlusion and holds at 11 % when

70% occlusion degree due to the fact that actions were performed higher (i.e. the

camera was located lower than on other datasets at approximately 1.1 m height)

from the ground. Also most lying down actions observe participants to first sit

on the mattress and then lay down, hence, the person’s motion is interrupted.

The per dataset Sensitivity and Specificity across GM, UR and SDU datasets is

shown in Table 7.1.
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Figure 7.6: Results across datasets UR and GM using simple occlusions.
Red line denotes the sensitivity and green line shows the specificity at various
occlusion degrees. Note that both fall and ADL events are detected by the

myoskeletal approach 6.7 when occlusion degree is at least 50%
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Figure 7.7: Results from SDU dataset using truncation of head location.
Red line denotes the sensitivity and green line shows the specificity at various

occlusion degrees



Chapter 7. Occlusion robust fall detection 126

Table 7.1: Performance of myoskeletal approach 6.7 against in-house and
public datasets

GM UR SDU
Occlusion

degree
%

Sens Spec Sens Spec Sens Spec

50 100 100 100 100 100 100
60 83.4 42.7 69.5 43.7 81.5 100
70 28.6 0 31.6 0 11 53.5
80 0 0 0 0 0 0 0

Data from UR and GM evaluate complex occlusions, where an object from the

list is inserted into each video. Therefore, 63 fall videos have produced 63 cases of

occlusions (e.g. 21 examples each of which applied with occlusion from a chair, a

sofa and a coffee table) tested against the algorithm. ADL videos were also tested

and complex occlusions were inserted. From these complex occlusions, the chair

appears to be the tallest object and is expected to cause issues to the algorithm.

Nevertheless, the overall size of the chair does not obscure the top bounding box

point and using the given examples from these datasets, the falls are detected

accurately. In the case of a sofa, the scenario is similar to the simple synthetic

occlusions, where the body is occluded by 50% pre-fall and fully post-fall therefore

occlusions of these types do not cause missed detections.

It is important to note that in a real home environment, the degree of occlusion

associated with furniture depends on the height of the camera, as well as the ra-

tios of distances of the person and the occlusion from the camera. To relate the

occlusion degrees to actual objects, one can postulate that 30-40% occlusion is the

height of a coffee table, 40-50% a sofa or armchair, a stool, a bed, 50-60% a dining

table always depending on the person’s height. Having this visual approximation

we can say that given this set of examples, the 6.7 algorithm is capable of detecting

occluded falls in a typical home scene containing furniture such as coffee tables,

desks, setters/sofas, beds etc.
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7.4 Conclusion

This chapter introduced the use of synthetic occlusions of rectangular shapes and

furniture images to try to reuse existing data in an attempt to assess the robustness

of algorithms against occluded scenes.

Synthetic occlusions bridge the gap between the actual home environments and

lab scenes where datasets were captured. Several protocols were developed in

order to show how the occlusion impacts the detection of a fall according to the

size of the body that is occluded. Another protocol uses furniture images such as

chairs, tables and sofas to show the impact of occlusion by realistic objects such

as furniture.

Last but not least it is demonstrated that the method presented in Section 6.7 is

capable of detecting visually occluded falls. A novel evaluation framework based

on synthetic occlusions have been proposed in order to establish an understanding

of how occlusions impact the detection algorithm. Our method robustly detects

falls when body occlusion is up to 50% (measured at a standing position).





Chapter 8

Conclusion

This Chapter summarises the contributions of this thesis, reflecting on the research

hypotheses outlined in Chapter 1. Directions for future work are briefly outlined.

8.1 Summary

This thesis explored fall detection methodologies using machine learning and

myoskeletal simulation approaches. It has outlined the issues of data availability

in data-driven algorithms and the alternative directions. The study also developed

a framework in which occlusions can be evaluated. Also, the myoskeletal approach

was applied on accelerometer data in order to prove the general use of this method.

The following sections specify further these contributions.

8.1.1 Evaluation of data

Chapter 3 discussed several problems with current fall datasets that are not ad-

dressed by previous studies in fall detection: limited demographic, small human

physical characteristic variation, young age of participants, hesitation, selective

fall behaviour.

Nevertheless, a further assessment was required to assess hesitation during falling,

particularly for the collapsing falls. The novelty here is the development of an

evaluation tool for assessing this hesitation of falls using YouTube fall data. This
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is proves how acted falls are unrepresentative of real fall events due to the risk

of performing them. The evaluation concluded that the majority of collapsing

fall events were poorly performed when compared with YouTube real fall events

caused by hyperventilation. The sample of the non-hesitant falls formed the GM2

dataset.

8.1.2 Learning approaches

Two machine learning techniques were developed using depth data. The first

approach utilises a 3D bounding box where velocities of expansion and contraction

during actions are used to assess a fall. A composition of depth and width velocities

was used in order to calculate the horizontal plane velocity. The height velocity

together with the composition were measured in real-time during the events and

a fall was classified when these velocities exceed thresholds and an afterwards

inactivity. A random search algorithm used to learn the thresholds and duration

of when these velocities are met. This approach was novel (at the time) and

evaluated on a comprehensive depth data dataset which utilised several fall-like

ADLs to confuse the classification.

The second learning approach uses a novel feature capable of detecting rigid and

collapsing falls. A new bounding box (i.e. the conservative bounding box) was

developed which filters out the motion of the arms. This minimises the change

of the bounding box when the person moves their arms such as raising arms or

extreme walking (e.g. marching), hence is more susceptive to the torso’s motion.

A new feature based on the bounding box was developed which uses the angle

of the two opposite diagonal top edge points of the conservative bounding box

and the centre of mass point. The angular velocity is measured that captures the

person’s motion. A fall is detected if the velocity exceeds a threshold for a number

of consecutive frames. Similarly, the angular velocity and frame number values

are determined by a random search algorithm.

8.1.3 The use of simulation for fall detection

Several simulation approaches were investigated and developed. Simple fall models

such as falling rods were developed in order to imitate a human fall. Parameters

such as feet resistance or a two piece rod model where investigated in the fall
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modelling. A myoskeletal model was investigated, capable of performing several

rigid and collapsing fall types. An evaluation of the different fall types showed that

the velocity profile is similar when backward, forward, sideways and collapsing falls

are occurring, hence there is no need to represent separately these different fall

types.

The rod model did not perform with the same velocity as the myoskeletal when

compared with actual YouTube hyperventilation fall events. Also, the rigidity of

the rod model would be difficult to adapt to other fall types. The myoskeletal

model was evaluated against real-fall data from hyperventilation videos to prove

its validity. The use of these videos was novel for the evaluation of fall similarity

and fall detection evaluation.

8.1.3.1 Simulation approaches

Two myoskeletal simulation approaches were developed. The first used an ap-

proach where falls utilise myoskletal simulation, while for ADLs, human data was

used. The hybrid approach uses the standard myoskeletal model to perform three

customisable fall types (i.e. forward, backward, sideways). A polynomial regres-

sion algorithm is fitted to the vertical velocity profile of the centre of mass. Human

fall data was used to test the approach where the CoM is processed for vertical

velocity which was fitted with the polynomial derived in the previous step. The

fitting error was measured for both fall and ADLs. It is found that there was a

linear separation using an SVM between the error values of the falls and ADLs

which unambiguously identifies two classes.

The second method utilised only myoskeletal simulation for falls and ADLs, where

models in both classes were personalised by the person’s height. For the decision

of fall or non-fall, a novel method using the Hausdorff distance was used. In this

method, the simulated falls and ADLs were compared in order to select the velocity

profile which is most similar to the fall. The fall and the most similar (to fall) ADL

velocity profile are then compared with every sample from the evaluation datasets

to classify falls and ADLs. The personalised fall detector is capable of detecting

falls of people with different heights more accurately than existing methods.

An evaluation of different fall types took place in order to show that forward,

backward, sideways and collapsing falls have the same vertical velocity profile.
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Therefore, the requirement of having different types of simulation falls is dimin-

ished. Also, this shows that the data recordings of different types of falls are

somehow unnecessary as the falling velocities are very similar, hence one possi-

ble type of fall is also enough to evaluate the approach from real data (such as

YouTube).

The use of fall modelling requires one myoskeletal simulation to take place for a

particular person, without using any learning procedure on human or simulated

data. Hence, the algorithm works independently of existing data and allows the

modelling of other types of falls which are not available in the current datasets.

8.1.4 Occlusion robustness

The use of simulation for an occlusion robust approach was proposed for the first

time in this study. An occlusion robust feature was used, such as the head point,

estimated by the top bounding box location, in order to avoid head miss-detections.

Similarly, the observation from the myoskeletal model was taken from a marker

on the head. The simulation provides the recovered signal which is then compared

with the actual human velocity profile.

Linearly interpolating the missing signal in order to complete the falling trajec-

tory of the person is a novelty of the algorithm, resulted in improved performance

for occlusions above 50%, when evaluating simple occlusions. The complex (fur-

niture) occlusions were similarly tested using the myoskeletal simulation. These

occlusions, although they do not always cover the same area as the simple ones,

they simulate a more realistic scenario of occlusion.

8.1.4.1 Occlusion evaluation protocol

An evaluation protocol for occlusions was first used in this study for fall detection.

This is also the first time depth data are processed with occlusions. Complex

objects were also examined as synthetic occlusions for the first time. By blending

square blocks or furniture shaped overlays (e.g. chair, sofa, coffee table, table,

couch) on the depth data, the process reuses existing data from depth datasets

to create an occluded scene. The size of these occlusions was assigned according

to the person’s height, in order to measure the degree of occlusion on which the

algorithm can detect a fall or an ADL.
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8.2 Future Work

8.2.1 Other Fall Types and Scene Simulation

This study outlined the use of myoskeletal simulation models for fall detection and

addressed some of the fall types where it can be utilised. As a future direction, the

fall modelling would extend to other fall types such as slip, slide, stumble. Falls

more common amongst elders or people with mobility issues could be realistically

simulated.

More complex scenes can be simulated using OpenSim, with more furniture types

or other objects such as floor ornaments, steps or stairs (to climb), slippery surfaces

etc. More realistic occlusions (e.g. hospital beds) to investigate the impact of par-

tial occlusion and to evaluate the detector performance on real fall data recorded

from hospitals and independent livers, when such data may become available.

8.2.2 Other types of myoskeletal models

This study used the standard (for the hybrid method) and Full Body myoskeletal

models. These models are based on the average (perfect) myoskeletal representa-

tion. OpenSim has the capabilities to develop other types of body postures, such

as the arched back posture of an elder. This will require an elaborative study

similar to the one on which the existing models were based.

Alterations on the existing models can imitate the posture of a disabled person

where one limb is shorter than the other. Also, the use of prosthetics in the model

is possible showing how a person with mobility issues will behave during a fall.

8.2.3 Further personalisation

Alternative body morphologies and other physical characteristics of the faller may

be assessed through the modelling. The height of the person was used as a cus-

tomisable parameter for the simulations in this study. Other physical characteris-

tics could be used, such as weight or posture. As discussed, elders have different

physical characteristics such as an arched back which could be modelled. The

pre-fall gait is a factor in assessing fragility. Walking speed is a factor which may
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increase the fall impact. The footwear type can also be parametrised as is one of

the fall factors reported in the literature [89].

8.2.4 Applied to other technologies

Whilst the modelling methods used in this thesis have been applied to depth

and accelerometer data, they could also be adapted to other sensor technologies.

Calibrated RGB cameras can provide velocity profiles when the head is detected

using face recognition or similarly, to use the top bounding box. Sound sensors

could correlate the noise of a fall. A Hausdorff comparison of the two spikes from

the sound signal and acceleration produced by OpenSim would possibly determine

a fall event. Sensors from a mobile phone such as gyroscopes an accelerometers

can be used. A proposed algorithm will detect the location of the phone near

the body and run a simulation. The recording data from the model will have the

samples taken from a point which matches the phone location.

8.3 Epilogue

A reliable and robust fall detector is an important tool in helping to support

and maintain the independence of the elderly and the infirm. The goal of this

thesis was to make advancements in the field of fall detection. Several data-driven

algorithms based on depth data were developed. These algorithms were evaluated

against the combined house and public datasets which revealed the need for a

personalised approach. Hesitation, lack of fall data (particularly of elderly) and

unrepresentative demographic were some of the issues of data-driven approaches

(in general). The simulation approach using myoskeletal models overcomes the

previous issues data-driven algorithms have and performs better in the occluded

scene and on different fall types. It requires the height of the person as the only

parameter for personalisation which is the key to outperform existing work.

Such approach can provide support to the vulnerable people at home and promote

independent living. The personalisation offered by the simulation approach can

be tailored to the individual such as an elder with given physical characteristics.

This would increase the performance of the algorithm against this particular user.
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Furthermore, the simulation framework can handle the challenges posed by a real

home environment (cluttered home).

This thesis has investigated a number of approaches to detecting people falling

over, and in particular, distinguish them from actions that may falsely trigger a

fall detection (i.e. lying down). It has highlighted the problems of assessing fall

detectors using data that is unrepresentative of real events, and proposed the use

of simulation to fill the gaps. Fall detectors will be embedded in smart-house

technologies which is a growing industry and will become an integral part of life

in the near future. These concepts will be required in the emulation of further

complex myoskeletal models and will produce an initial step in the development

of systems that can make a real difference in supporting vulnerable independent

livers.
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Real-life/real-time elderly fall detection with a triaxial accelerometer. Sen-

sors, 18(4):1101, 2018.

[86] Gregory Koshmak, Amy Loutfi, and Maria Linden. Challenges and issues

in multisensor fusion approach for fall detection. Journal of Sensors, 2016,

2016.

[87] Hammadi Nait-Charif and Stephen J McKenna. Activity summarisation

and fall detection in a supportive home environment. In Pattern Recogni-

tion, 2004. ICPR 2004. Proceedings of the 17th International Conference on,

volume 4, pages 323–326. IEEE, 2004.

[88] D Alex Butler, Shahram Izadi, Otmar Hilliges, David Molyneaux, Steve

Hodges, and David Kim. Shake’n’sense: reducing interference for overlap-

ping structured light depth cameras. In Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems, pages 1933–1936. ACM,

2012.

[89] Jennifer L Kelsey, Elizabeth Procter-Gray, Uyen-Sa DT Nguyen, Wenjun

Li, Douglas P Kiel, and Marian T Hannan. Footwear and falls in the home

among older individuals in the mobilize boston study. Footwear science, 2

(3):123–129, 2010.



Bibliography 147

[90] Mary E Tinetti, T Franklin Williams, and Raymond Mayewski. Fall risk

index for elderly patients based on number of chronic disabilities. The Amer-

ican journal of medicine, 80(3):429–434, 1986.

[91] Minoru Yamada, Hajime Takechi, Shuhei Mori, Tomoki Aoyama, and Hi-

denori Arai. Global brain atrophy is associated with physical performance

and the risk of falls in older adults with cognitive impairment. Geriatrics &

gerontology international, 13(2):437–442, 2013.

[92] Stephen R Lord and Julia Dayhew. Visual risk factors for falls in older

people. Journal of the American Geriatrics Society, 49(5):508–515, 2001.

[93] Carolyn Wallace, Gayle E Reiber, Joseph LeMaster, Douglas G Smith, Kat-

rina Sullivan, Shane Hayes, and Christy Vath. Incidence of falls, risk factors

for falls, and fall-related fractures in individuals with diabetes and a prior

foot ulcer. Diabetes care, 25(11):1983–1986, 2002.
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A.1 Visual results of Algorithm 1 from Chapter

4

a b

dc

Figure A.1: Fall detected in a front (angled) view
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a b

dc

Figure A.2: Lying on the floor

a b

dc

Figure A.3: Sitting vigorously on a chair
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a b

dc

Figure A.4: Picking up an item from the floor in fast motion

a b

dc

Figure A.5: Sweeping activity



AppendixA 160

a b

dc

Figure A.6: Vigorously sitting on a sofa

a b

dc

Figure A.7: Sideways fall towards the sensor
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a b

dc

Figure A.8: Picking up and dropping a box

a b

dc

Figure A.9: Picking up and dropping a chair
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AppendixB

B.1 Feet resistance rod model

As the previous model produces velocities which do not apply to real-data (see

Section 5.4), additional parameters are introduced. A “feet” force is introduced in

the rod model with the aim of delaying the onset of a fall. It is possible to estimate

this force using position and force data, together with some moment calculations.

Fig. B.1 (a) shows a free body diagram of the foot of a person balancing on one

leg. We use this assumption since our rod model has one contact point with the

ground. The forces acting on the foot and their locations relative to the ankle

joint are illustrated. Force ~R is the reaction force of the ground in response to the

weight of the person. Force mg is the weight of the foot, where m is the mass of the

foot and g is the acceleration due to gravity. These data can be used to estimate

the muscle moment that must be produced by the calf muscles for equilibrium to

be maintained [108] (i.e. for a person to stay balanced).

If the distance from the ankle joint centre to the foot centre of gravity is measured

as 0.05 m and the distance from the ankle joint centre to the reaction force ~R is

0.20 m, then it is possible to calculate the moment about the ankle joint centre.

Taking moments about the ankle joint centre:

Ma = (0.20 x ~R) (0.05 x mg)

The force ~R is the weight of the subject. If the mass of the person is 78 kg and

the mass of the foot is 1.5% of the full body mass according to [108] - that is 1.17
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a b

Figure B.1: Feet force schematic

kg, the muscle moment about the ankle joint that is required for equilibrium to

be maintained can be calculated by:

Ma = - (0.20 x 780) + (0.05 x 11.7) = 156 + 0.585 = 156.585 N.m

This ankle joint moment is generated by the force of the calf muscles, shown as

F in Fig. B.1 (b). If the distance from the ankle joint centre to the force ~F is

measured, then ~F can be calculated:

Ma = 156.585 = d1F

If d1 = 0.04 m, then ~F = 156.585 / 0.04 = 3914.6 N

This force can also be calculated as multiples of bodyweight: 3914.6/780 ≈ 5.0

times bodyweight.

Thus Eq. 5.1 becomes:

ωn+1 =

√
ω2
n +

3g(sin(θn)(−Ffeet)− sin(θn+1))

L
(B.1)

where Ffeet is the feet force applied to the rod model for time t and then Ffeet

equals 0 for the duration of the fall.

A complication with applying this model is the duration which this force has

to be applied and also, whether this force reduces over time as the rod is falling.

Another complication the rate this force reduces linearly, or non-linearly. All these

complications made this model difficult to use as these parameters are unknown

from the human body perspective.

B.2 Two piece rod models

We can imagine that a human is falling forwards. The human body may have an

inclination of the upper body towards the floor. Using a two-piece rod model that
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Figure B.2: Two piece rigid fall model

is straight at the start of the fall and bends during the fall at a certain angle of 30

degrees. The CoM is located outside this model, hence, there is a different falling

velocity. The calculation of ω remains the same using Eq. 5.1, but the CoM point

is outside the rod as seen in Fig. B.2.

Similarly as to the previous model, it is difficult to determine the parameters of

the model. The bend angle, and when is enabled/disabled or what is its value

requires proper justification. Therefore, this models was not evaluated further.
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C.1 Published Work
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