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Human fall detection methodologies: from machine learning using

acted data to fall modelling using myoskeletal simulation

by GEORGIOS MASTORAKIS

Human Fall Detection is a research area with interest from many disciplines and
aims to perform for many assisted-living monitoring applications to promptly iden-
tify life-threatening situations. A fall occurs when a person is unable to maintain
balance due to a variety of issues; physical; mental or environmental. The accurate
detection of the fall is crucial as a missed detection can be fatal. Variability of hu-
man physiological characteristics is currently unstudied as to the impact on a fall
detector’s performance as young adults and elderly are expected to fall differently.
Another important issue is the scene occlusions. In the use of visual sensors, an
occluded fall is treated as a missed detection as the whereabouts of the person is
unknown when occluded. Finally, current studies are based on acted fall datasets
on which algorithms are trained. These dataset are unrepresentative of real fall

events and illustrate the events without occlusions or other scene influences.

Several fall detection algorithms were developed during the study aiming to achieve
accuracy in detection falls while fall-like actions such as lying down remain un-
detected. Human fall datasets were used for training and testing purposes of A
machine learning algorithm using data from depth cameras which captured the
fall events from different views. A new pathway was introduced tackling the is-
sues of availability issues of data-driven machine learning approaches which was
achieved with the use of simulation data. The use of myoskeletal simulation was
then selected as a closer representation of the human body in terms of structure
and behaviour. With the use of a simulation model, a personalised estimation of

the fall event can be achieved as it is parametrised on a physical characteristic such


g.mastorakis@ieee.org

as the height of the falling person. Alternative technologies such as accelerometers
have been used for fall detection to prove the validity of this approach on other
modalities. A study regarding the impact of occlusions for fall detection which
is one of the issues not properly investigated in current work is proposed and
examined. Synthetic occlusions were added to existing depth data from publicly

available datasets.

The research methodologies were evaluated using the most representative depth
video and accelerometer data from existing datasets, as well as YouTube videos
of real-fall events. The machine learning methodologies achieved good results on
similar body variability datasets. A discussion regarding the proof of concept of the
simulation-based approach for fall modelling is mentioned given the comparative
results against existing methodologies which achieves better than any existing
work evaluated against known datasets. The simulation approach is also evaluated
against occluded fall and non-fall event data, proving the further robustness of
the approach. This platform can be expanded to analyse any type of fall, or body

posture (e.g. elderly), without the use of humans to performs fall events.



Acknowledgements

This work would not have been possible without the support of my supervisors
Prof. D Makris and Prof T Ellis. I am grateful for their patience, advice and
guidance over the last three years. It was definitely not an easy journey but with
their support I remained determined and motivated. The depth of their knowledge,
their approach and expertise added significantly to my own personal development

and the experience has been invaluable.

I wish to express my thanks to the members (past and present) of the Digital
Information Research Centre. I specifically wish to thank Prof. Graeme Jones, Dr
Gordon Hunter, Dr Jean-Christophe Nebel and Dr Francisco Florez Revuelta, for
their useful insight. I would like to extend my thanks to Rosalind Percival. Also,
my interns Xavier Hildenbrand, Kevin Grand, for their helpful collaboration and
colleagues loannis Kazantzidis, Dr Juan Fernandez Montenegro and Matthias Pilz

for their friendship and guidance throughout my PhD.

Last but not least, I owe a huge thanks to a very special person in my life, my
wife, Mina for her continued and unfailing love, unending support and immense
understanding during my pursuit of PhD degree that made our common goal, the

completion of this thesis, possible.

vi



Contents

[Abstract]

[Acknowledgements|

[List of Figures|

[List of Tables|
ABbieviationd

1__Introduction|
(1.1 Challenges| .

(1.2 Aims & Objectives| . . . . . . . .. . ...

(1.3 Contributions and Thesis Overviewl . . . . . . .. ... ... ....

2.3.1 RGBsystems . . ... ... ... ... ... ...

[2.4  Combinatory

oystems|. . ...

[2.5 Algorithms|.

(3.2 Fall Types| .

vil

iii

vi

xiii

xVvii

xix

xx1

10
11
12
13
14
15
15
17
18
19
22



Contents viii

(3.3 Public camera (2D) datasets| . . . . . ... ... o 000 26
[3.3.1 Single camera LE21 dataset| . . . . .. ... ... ...... 26
[3.3.2  Multiple cameras fall dataset| . . . ... ... ... ... . 26

[3.4  Depth Sensor data] . . . . . . ... ... ... ... 28
[3.4.1 Depth sensors, OpenNI and Microsott Kinect SDK| . . . . . 29

3.0 Public RGB-D datasets . . . . .. ... ... ... .. ... ..... 29
(3.0.1  THT Fall Detection v2| . . . .. . ... ... ... ... 29
3.5.2  UR Fall Detectionl . . ... ... ... ... . ........ 30
3.0.3 ¢ alll . .o 31
[3.5.4 University of Texas datasets| . . . . . . . .. ... ... ... 31
3.5.5 ACT42 dataset] . . . . .. ... .. ... ... ... ..... 32
[3.5.6  Daily Living Activity Recognition| . . . . . . . ... ... .. 33
[3.5.7 NTU RGB+D Action Recognition Dataset| . . . . . . . . .. 33
[3.5.8  UWA3D Multiview Activity dataset|. . . . . . . . . ... .. 34

B.6 Accelerometer based dataset] . . . . . ... ... o000 35
3.6.1 Sisfall dataset! . . . . . ... 35

[3.7  GM depth dataset| . . . . ... .. ... ... ... ... ... 35

[3.8  Limitations of existing datasets: A discussion| . . . . . . ... ... 37
[3.8.1 Age of participants| . . . . . . . . ... ... ... ... 38
[3.8.2  Health of participants| . . . . ... ... ... ... ... . 39
[3.8.3 Typesoftallsf . . . .. ... ... ... ... ... ... 39
3.8.4 Size of datasets| . . . . ... ... ... L. 39
[3.8.5  Variability of subjects| . . . . ... .. ... 40
3.8.6  Hesitationl . . . . . .. ... ... 40

[3.9 Sceneset-up|. . . .. ... 40
9.1 Occlusiond . . . . ... .. ... 41
[3.9.2 Sensorlocationl . . . ... .. ... . oL 42
[3.9.3 Data quality and adaptation| . . . . . . . ... ... ... .. 42

[3.10 Comparison of real vs acted fallsf. . . . . . ... ... ... ... .. 43

[3.11 Performance Fvaluation Measuresf . . . . . . . .. ... ... 45

.12 Conclusion|. . . . . . . . . . .. 46

[4 Learning to detect falls| 49

4.1 Introductionl . . . . . . . ... 49
[4.1.1  Review of 3D vision systems| . . . . . . . ... ... ... .. 50
M.1.2 Technical Criticism of 3D methods . . . . .. ... ... .. 50

4.2 Detecting rigid falls| . . . . ... ... .. ... ... 0. 52
421  Overviewl . . . . . . . . . . e e 53
[4.2.2 3D Bounding box data analysis| . . . . . ... ... ... .. 54

[4.2.2.1  Fall initiation by velocity| . . . . . . . .. ... .. 55
[4.2.2.2  Completion state of a fall by mactivity detection| . 57

4.3 Detecting collapsing and rigid falls| . . . . . .. ... ... ... .. 58

431 Overviewl . . . . . . . . . ... 59




Contents X

[4.3.2.1 Theogangle . . .. .. ... ... ... ... ..., 60

[4.3.2.2  Angular velocity] . . . ... ... ... ... ... 62

[4.3.2.3  Fall detection after inactivity] . . . . . . .. .. .. 63

4.4 Experimental Results and Discussion| . . . . . ... ... ... ... 64
[4.4.1 Traming| . . . . ... 64
[4.4.2  Algorithm 1 Results] . . . ... .. ... ... ... ... .. 65
[4.4.3  Algorithm 2 Results| . . .. .. ... ... ... ... .... 68
[4.4.4  Algorithm 1 vs Algorithm 2| . . . . . .. ... ... ... .. 68

4.5 Conclusion|. . . . . . . . . 69
[> Simulation: Modelling Fall| 71
b.1  Introduction| . . . . . . . ... 71
B2 Reviewl . . . . . o v 72
[>.2.1  Physics simulation - Synthetic approaches| . . . . . . . . .. 73

[>.3 Modelling talls{. . . . ... ... ... ... ... ... ... 74
[>.3.1 Falling rod simulations| . . . . . ... ... ... .. ..... 75
[5.3.1.1  Rigid Falling Rod|. . . . . .. ... ... ... ... 75
[Derivation of b.1l. . . . . . . . .. ..o 76

[5.3.2  Myoskeletal human model simulation| . . . . . . .. ... .. 78
H.3.2.1  Fall simulations| . . . . . . . .. ..o o000 79

[Simulated model preparation|. . . . . . ... ... .. 79

Rignd falll . . . . o oo 80

[Collapsing talll . . . . . ... ... ... ... ..... 80
H.3.22 ADL simulationl. . . . .. . ..o 82

[5.3.2.3  Scaling the modell. . . . . .. ... ... ... ... 83

.4 Fvaluation of the fall simulation modelsl . . .. .. ... ... ... 84
b5 Conclusion|. . . . . . . . . 85
6 Fall detection based on myoskeletal simulation| 87
6.1 Introduction|. . . . . . . . . . .. 87
[6.2  Fall detection using a Hybrid approach| . . . . . . .. ... ... .. 89
[6.3 Methodology| . . . .. ... ... 90
[6.3.1 Estimating Body Orientation| . . . . .. ... ... ... .. 90
[6.3.2  Vertical velocity of CoM| . . . . . ... ... ... ... ... 94
[6.3.3 Hybrid Fall Detection Algorithm| . . . . ... ... .. ... 94

[6.4  Experimental Results| . . . . . ... ... ... ... ... ... 97
[6.4.1 Evaluation ot Body Orientation Estimationl. . . . . . . . .. 97

[6.5 Evaluation ot the Hybrid Detection algorithm| . . . . . . . .. . .. 98
6.6 Discussionl . . . . .. ..o 100
(6.7 Fall detection using Myoskeletal ssmulation|. . . . . . . . . ... .. 100
6.7.1 Use of Hausdorff distancel . . . . . . .. ... .. ... ... 101
[6.7.2  Methodology| . . . . . . . ... ... 102
[6.7.2.1  Data pre-processing| . . . . . ... ... ... ... 102

6722 Fall detectionl . . . . . . ... ... ... ... ... 103



Contents X
[6.8  Experimental Results and Discussion| . . . . . ... ... ... ... 106
6.8.1 Validation of Hausdorff Distancel . . . . . .. ... ... .. 106

[6.8.2  Comparison of the fall simulation models| . . . . . . . .. .. 107

[6.8.3  Evaluation of myoskeletal simulation based fall detection| . . 108

[6.8.4  Evaluation of using a customised simulated model| . . . . . . 109

[6.8.5 Use of simulation data in machine learning| . . . . . . . . .. 111

[6.9 Acceleration based fall detection using myoskeletal simulation| . 112
[6.9.1 Methodology| . . . . ... ... ... ... ... ... 112

[6.9.2 Results and discussion| . . . . . ... ... oL 113

6.10 Conclusion|. . . . . . . . . . . . 115
[7__Occlusion robust fall detectionl 117
DI Reviewl . . . . . o vt o e 118
[7.2  Modelling occlusions| . . . . .. ... ... ... ... ... 120
(7.2.1 Simple Occlusion models| . . . . . . ... ... ... ..... 120

[7.2.2  Complex Occlusion models — partial /realistic|. . . . . . . . . 120

[r.2.3  Truncated fall measurementsl. . . . . . . .. ... ... ... 122

7.3 Fall detection under occlusiond. . . . . .. ... .. ... ... ... 122
[7.3.1 Evaluation of algorithm under occlusion| . . . . . ... ... 124

[(4 Conclusion|. . . . . . . . . . . 127

8 _Conclusion| 129
(8.1 Summary| . . . . ... 129
RII FEvaluation of datal . . ... . ... ... ... .. ...... 129

[8.1.2  Learning approaches| . . . . . . . . ... ... ... ..... 130

B.1.3 The use of simulation for fall detectionl . . . . . . ... ... 130

[8.1.3.1  Simulation approaches| . . . . . . . ... ... ... 131

8.1.4 Occlusion robustness . . . . ... ... ... ... .. .... 132

[8.1.4.1  Occlusion evaluation protocol| . . . . . . .. .. .. 132

82 Future Workl. . . . . . . ..o 133
[8.2.1 Other Fall Types and Scene Simulation| . . . . . . . ... .. 133

[8.2.2  Other types of myoskeletal models|. . . . . .. ... ... .. 133

[8.2.3  Further personalisation| . . . . . . .. ... ... ... ... . 133

[8.2.4  Applied to other technologies| . . . . . . ... ... ... .. 134

8.3 Epilogue| . . . ..o 134

(A AppendixA| 157
[A.1 Visual results of Algorithm 1 from Chapter 4. . . . . . .. ... .. 157

(B AppendixB| 163
[B.I Feet resistance rod modell . . . . . .. ... ... 163
[B.2 Two piece rod models|. . . . . . ... ... ... .. 164

[C AppendixC]| 167




Contents

x1







List of Figures

(3.1 Visuals from the LE2i dataset [1]: fall events at top row, ADLs on |
| lower row | . . . . . ... 27
[3.2" Visuals from the Multiple cameras fall dataset [2]: fall events at top |
| row, ADLs on lowerrow| . . . . .. ... ... .. ... ... ... 27
.3 Visuals from the TST Fall Detection v2 dataset 3] . . . . .. ... 30
3.4 Visuals from the UR Fall Detection dataset [4] : a hesitated falll . . 30
[3.5  Visuals from the SDUFall dataset |5] : fall events at top row, ADLs |
| onlower row | . . . . ... 31
.6 Visuals from EDF [6] and OCCU [7] datasets. Top row: falls repe- |
| tition over four angles, lower row: occluded fall behind a bed| . . . . 32
3.7 Visuals from the ACT42 dataset [8]. Events captured from four |
I views in RGB-DI. . .. ... ... oo 33
(3.8  Visuals from the Daily Living Activity Recognition dataset [9]. Sev- |
| eral ADLs and fall samples of RGB-D and skeleton| . . . . . . . .. 34
3.9 Visuals from the NTU RGB+D Action Recognition dataset [10]. |
| Several ADLs and fall samplesin RGB-D|. . . ... ... ... ... 34
£3.10 Visuals from the UWA3D dataset |[11]. Performance of a bending |
| over (top row) and falling (low row)| . . . . . .. ... ... .. ... 35
£3.11 Visuals from the dataset. Row a) a detected fall event, b) walking |
| and picking up an object, ¢) lying down|. . . . . . ... ... ... 36
[3.12 Three view-angle examples of the GM dataset. a) 45 view , b) side |
| view, ¢) front view| . . . ... 36
[3.13 Typical occluded scene. The camera view is partially blocked by |
| the red box. Halt the person is occluded. . . . . . . . .. ... ... 41
[3.14 Velocity profiles of collapsing talls. This Figure shows the veloc-
ity variation between a hesitated fall (GM2, hes.) and how this
compares with an actual fall caused by hyperventilation| . . . . . . 44
[3.15 Plot of a Gaussian pdt fitted to the distribution of Hausdorff dis- |
| tances: red curve denotes the HDs of YouTube to non-hesitant talls,
| while blue curve the HDs between YouTube and hesitant falld 44
[3.16 Hesitation while collapsing. Subject uses an arm to balance, then |
| expands her legs to sit on the floor| . . . . .. ... ... ... ... 45
4.1 Depth map of the scene. User is identified by OpenNI . . . . . . .. 53

xiil



List of Figures Xiv

4.2 2D Bounding box during a fall; the height reduces while the width |

| increases (a) as seen in [12, 13], where the initial and final bounding |
|

|

| box dimensions are required. The proposed approach using a 3D
| bounding box of the height and the composition of width and depth
O 55
4.3  Bounding box dimensions and velocities. a) width, height, depth |
distances and width—depth graph. Vertical lines denote the initia-
tion by velocity step and the fall detection confirmation step. b) L
raw signal in green and filtered using Kalman in red. Similarly in |
(¢) H of raw and filtered signal| . . . . . . ... .. ... ... ... 56
4.4 Side view of a sideways fall. Bounding box already detects the user
(a), fall initiated by calculating velocity (b), inactivity detected (c),
fall detected (d)[ . . . . . . . . . .. 57
1.5 Conservative bounding box (red), ordinary bounding box (blue) p |
| angle of 3D bounding box top corners and CoM, ¢ angle of conser- |

| vative bounding box corners and CoM| . . . . . . . ... ... ... 60
4.6 The angle from the two opposite top corners of the 3D bounding |
I box to the centre of mass . . . . . . . . ... ... L. 60

4.7 Applying standard deviation on subject’s depth pixels to determine |
the depth dimension on the conservative bounding box. Z is the |
depth size of the ordinary 3D bounding box, while the depth of |

|
|

the conservative bounding box equals twice the SD value. Three
examples: a)standing, b)lifting arm and leg, c)extend arms to the
opposite direction. Graph shows the accumulation of depth pixels| . 61

4.8 3D angle during a collapsing fall.| . . . . . ... ... ... ... .. 62
[4.9 3D conservative bounding box angle of a collapsing fall. Notice how |
| the angle increases as the bounding box height reduces| . . . . . . . 62

.10 Collapsing fall detection example using Algorithm 2. (a) detection
of bounding box, (b) person collapses and knees hit the floor, (c)
angular velocity exceeds threshold while person inclines towards the |
floor, (d) fall detected when inactivity and angle size conditions are |
tulfilledl. . . . 0 0 o o 63

[4.11 Circles indicate 100 triplets estimated by random search for training |
the rigid fall algorithm. Their median (¢t,H = 1.18m/s, T, DW =
1.20m/s, N = 8 frames) is marked as a bold circle and is used for

| the experiments| . . . . . . . ... L 66

[>.1 Falling rod, of length L with uniform mass m end-point vertical |
| velocity Vy, CoM vertical velocity Voo, andw | . .. .. 000 75

(5.2 Typical rod model velocities. The final velocity is proportional to |
| the length of the rod. This velocity is measured from the top point |
| until the rod reaches the horizontal position| . . . . . . . .. .. .. 7

[5.3  Sequence of an actual tall event as captured by a depth camera and |
| of a fall simulated by OpenSim| . . . . . ... ... ... ... ... 78




List of Figures XV
[5.4 Images sampled from a YouTube video of a) person acting a rigid fall
| and b) person suffering a collapsing fall following hyperventilation
I which includes a faintl. . . . . . . . ... 79
[5.5  Feet position of simulated model beftore fallf. . . . . . .. ... ... 80
(.6 The Full Body Model given by OpenSim engine. Blue marker de- |
| notes the head location point, while pink markers denote the MoCap |
| relevant markers. . . .. ... oL 81
[5.7 Three types of rigid fall, backward (top), forward (middle) and |
| sideways (bottom) as simulated on OpenSim| . . . . . . . ... ... 81
[>.8  Collapsing fall as simulated by OpenSim| . . . . .. ... ... ... 82
[6.1 Angles of knees and elbows. Green line shows the bisector of the |
| left body side and red of the right | . . . ... ... ... ... ... 91
[6.2  Angle thresholds as defined in Eq. |6.1]] . . . . .. .. .. ... ... 92
[6.3 Falling angle thresholds denoted by colour. Blue: front, green: |
| back, yellow: lett, magenta: right| . . . ... .. ... .. ... ... 93
[6.4  The velocity profiles of vertical CoM ot three types of falls as sim- |
| ulated by OpenSim. A standard model represents a typical male |
| body ot 1.78m height and 78Kg mass was used for all three simula- |
I tIONS 1. . . . . e e 94
[6.5 Polynomial fit of three fall types| . . . . . . .. .. ... ... ... 96
[6.6 "T'hree examples of body orientation as detected by the algorithm. |
| Notice the green and red lines showing the direction of the angle in |
8D o 98
(6.7 Fitting error (¢) of falls and non-falls for GM dataset: Notice how |
| well separated falls and non falls appear| . . . . . .. ... ... .. 99
[6.8 Blue dot indicates location ot the top bounding box point and red |
| dot to indicate the head Iocationl . . . . .. .. .. ... ... ... 103
[6.9 The pipeline of the myoskeletal simulation fall detection system. |
| Red box encloses the data preprocessing, blue box the model simu- |
| lation and the green box the fall detection. ONI: depth data format, |
| C3D: standard mocap data format, TRC: OpenSim motion format|. 104
[6.10 Selection of larger gradient of an ADL (lying down)| . . . . . . . .. 105
[6.11 Selection of the larger gradient of a fall event|. . . . . . . . . .. .. 105
[6.12 Plot of a Gaussian pdf fitted to the distribution of Hausdorft dis- |
| tances: blue, red and green curves denote the pdts of HDs between |
| talls, between non-falls and between falls and non-falls respectively|. 106
[6.13 Simulated ADL velocity profiles of sitting down actions| . . . . . . . 107
[6.14 Velocity profiles of four simulated models of a sideways tall | 108
[6.15 Velocity profiles of four Opensim simulated falls. We can see the |
| visual similarity of the profiles.| . . . . . ... ... ... ... ... 109
[6.16 Two Cg profiles as selected by the Hausdorfl distance. Blue graph: |
| ADL simulated profile (sitting down), red graph: simulated fall | . . 113
(6.17 Typical examples of Cg profiles of falls (top row) and ADLs lower |
C  TOW . o o e e 114



List of Figures xvi

71

Three occlusion modes. The black rectangle in the image is a syn- |

thetic occlusion applied to the depth image. The degree of occlusion

is expressed proportionally to the person’s height: (a) 40%, (b) 50%,

(¢) 70% occlusion measured from the ground| . . . . . . . ... . .. 121

[7.2  Segmented images of furniturel . . . . . . ... ..o 121
(7.3 Complex occlusions from a coftee table a chair and a sotal . . . . . . 122
[7.4  "Truncate Y location of top bounding box point after a cut-off based |

| on 50% occlusion showing extrapolated profile| . . . . . . . . . . .. 123
[7.5 Location profile estimation in an occluded rigid fall event| . . . . . . 124
[7.6 Results across datasets UR and GM using simple occlusions. Red |

| line denotes the sensitivity and green line shows the specificity at |
| various occlusion degrees. Note that both fall and ADL events are |
| detected by the myoskeletal approach [6.7]| when occlusion degree is |
| at least 50% . . . . . .. 125
[7.7  Results from SDU dataset using truncation of head location. Red |

| line denotes the sensitivity and green line shows the specificity at |
| various occlusion degrees| . . . . . . . ... ... 125
[A.1 Fall detected in a front (angled) view| . . . . . . .. ... ... ... 157
[A.2 Lying on thefloor|. . . . . . . ... ... ... .. ... ... 158
[A.3 Sitting vigorously on a chair| . . . . . . . ... 000000 158
[A.4  Picking up an item from the floor in fast motion . . . . . . . . . .. 159
[A.5 Sweeping activity| . . . . . . ... o 159
[A.6 Vigorously sitting onasotal] . . .. . ... . ... ... ... ... 160
[A.7 Sideways fall towards the sensor| . . . . . . .. ... .. .. ... .. 160
[A.8 Picking up and dropping a box| . . . ... ... ... ... ... 161
[A.9 Picking up and dropping a chair{. . . . . .. ... ... ... 161
[B.I_Feet force schematid . . . ... ... ... ... L. 164
[B.2 Two piece rigid fall model| . . . . . .. ... ... ... ... 165




List of Tables

p1

Pros and Cons of current fall detection approaches|. . . . . . . . ..

P2

Fall detection approaches and their performance . . . . . . . . . ..

B

RGB-D Fall datasets. R: RGB data, IR: infrared data, D: depth

data, A: accelerometer data, 5: Kinect skeleton data. The table

shows the difterent fall event datasets of several sensor technologies.

Noticeable is the number of fall events if compared with the ADLs

as well as how small the fall number is in general . . . . .. .. ..

B2

Performance of tall detection and comparison against previous stud-

les across 2 public datasets| . . . . . . ... ...

B3

Type and number of events from each dataset| . . . . . . .. .. ..

i%)

Performance of Algorithm 1. A—B: Training on A, test on B

datasets, N/C: Not Converges, 1 Converges after re-sampling of

traming set| . . . . . . ..

W)

Pertormance of Algorithm 2. A—DB: Training on A, test on B

datasets, T Converges after re-sampling of training set| . . . . . . . .

6.1

Pertormance ot the Hybrid Algorithm| . . . . . . .. ... ... ...

6.2

Mean error (loge) from height customised and Trained based ap-

proaches| . . . . . . ..

6.3

Performance of fall detection algorithms developed in this thesis

and comparison against previous studies across 2 public datasets| . .

6.4

Simulated model height variability over UR, SDU, GM datasets

combined. The table presents results of the algorithm for each

height models applied to the height-labelled acted datasets (UR,

SDU) and the in-house depth dataset (GM) showing the sensitivity

and the specificity for each combination of simulated model height

and approximate human height. If height selectivity is applied then

detection is 100% for both sensitivity and specificity (main diago-

nal). Values in bold denote either missed detections (for sensitivity)

or false positives (for specificity) . . . . . . .. ...

6.5

Pertormance of fall detection and comparison against Siskall dataset|114

71

Performance ot myoskeletal approach [6.7] against in-house and pub-

lic datasetsl . . . . . ..

X Vil






Abbreviations

2D
2.5D
3D
ADL
Accu
C3D
CCTV
CoM
f-o-v
FN

FP
GMM
GPU
HD
HMM
IR
k-NN
KFD
LOWESS
MFCC
ML
MoCap
MRI
NN

2 Dimentions

2.5 Dimensions

3 Dimentions

Activities (of) Daily Life
AAccuracy

Biomechanics motion capture data
Closed-Circuit TeleVision

Centre (of) Mass

ffield of view

False Negatives

False Positives

Gaussian Mixture Model
Graphics Processing Unit
Hausdorff Distance

Hidden Markov Model

Infra Rred

k- Nearest Neighbors

Kernel Fisher Discriminant
LO(cally WEighted Scatterplot Smoothing
Mel-Frequency Cepstral Coefficients
Machine Learning

Motion Capture

Magnetic Resonance Imaging
Nearest Neighbor

XiX



Abbreviations

XX

ONI
PCA
PNG
PIR
Prec
RS
RGB
RGB-D
RF
RMSE
SBC
SD
SDK
Sens
Spec
SVM
TN
TP
TRC
WHO

OPEN NI

Principal Component Analysis
Portable Network Graphics
Passive Infrared Sensor
Precision

Random Search

Red Green Blue

Red Green Blue Depth
Random Forest

Root Mean Square Error
Sparse Based Classifier
Standard Deviation
Software Development Kit
Sensitivity

Specificity

Support Vector Machine
True Negatives

True Positives

Track Row Column

World Health Organisation



Symbols

X\ Y. Z
vH

vz

vD
vWD

a,B,¢,p

m

world coordinates

height velocity of the bounding box
height velocity of the bounding box
height velocity of the bounding box
height velocity of the bounding box
Length

gravitational acceleration

angle

vertical velocity of the head

vertical velocity of the CoM

kinetic energy

potential energy

angular positions

mass

position vector of the centre of the mass
coordinate of the centre of mass
constant of integration, ¢ = 0 in practice
angular frequency

top boudning box vertical location profile
FILTERED top boudning box vertical location profile
simulated fall profile

simulated nonfall profile

xxi






Publications xxiil

Publications

Journals:

m G. Mastorakis and D. Makris. “Fall detection system using Kinect’s in-
frared sensor”. Journal of Real-Time Image Processing, 9(4):635-646, 2014,
DOI: https://doi.org/10.1007 /s11554-012-0246-9

m G. Mastorakis, T. Ellis, D. Makris. “Fall Detection without People: A
Simulation Approach Tackling Video Data Scarcity”. Expert Systems With
Applications, June 2018, DOI: https://doi.org/10.1016/j.eswa.2018.06.019

Conferences:

e G. Mastorakis, X. Hildenbrand, K. Grand, D. Makris. “Customisable Fall
Detection A hybrid approach using physics-based simulation and machine
learning”. ECCV 2016 - 1st Workshop on Action and Anticipation for Visual
Learning Amsterdam, Oct 2016


https://doi.org/10.1007/s11554-012-0246-9
https://doi.org/10.1016/j.eswa.2018.06.019

Technical Presentations xXxXiv

Technical Presentations

m G. Mastorakis “Fall detection system using Kinect sensor”. Microsoft

Faculty Connection, Kinect for Life, Oct 2012

m G. Mastorakis and D. Makris. “Fall detection: types, solutions, weak-
nesses. A review of computer vision-based fall detection systems”. IET

Event, Human Motion Analysis for Healthcare Applications, Savoy Place,

May 2016

m G. Mastorakis and D. Makris. “Studying accidental falls”. DIRC /
CEESR Student Conference, Kingston University, June 2016

m G. Mastorakis, T. Ellis, D. Makris. “Fall detection using myoskeletal
model simulation”. BMVA Symposium, Human Activity Recognition and

Monitoring, Oct 2017

m G. Mastorakis, D. Makris, T. Ellis. “Detecting falls using accelerometer
data based on myoskeletal fall modelling”. BMVA symposium, Computer

Vision for smart environments and assisted living, June 2018



Chapter 1

Introduction

Ever since our humanoid ancestors evolved to bipedal walking, nearly 2 million
years ago, we have been vulnerable to falling over. This brings a significant risk
of injury, according to the severity of the fall and the well-being of the individual.
A fall is an incident which results in a person coming to rest inadvertently on the
ground or floor or other lower level as defined by the World Health Organisation
(WHO) [14]. A fall occurs due to internal or external factors when a person
loses conciousness or accidentally slips or stumbles while walking or standing.
Internal causes include underlying medical conditions, such as neurological, cardiac
or other disabling conditions; side effects of medication, physical inactivity and
loss of balance, particularly among older people; poor mobility, cognition, and
vision, particularly among those living in an institution, such as a nursing home
or chronic care facility. External factors are also responsible for inducing falls such
as overcrowded housing, poorly maintained footpaths, banana skins etc. Other
unsafe environments may particularly affect those with poor balance and limited
vision and also those working at elevated heights or other hazardous working
conditions. More types of falls are observed in the working environment, due to
walking surface condition, low visibility and lack of concentration, tiredness, etc.
There are some clearly identifiable groups of people who are more likely to fall

such as athletes. Some people may also fall after a violent attack.

A person who is young and healthy can experience a fall without it resulting in se-
rious injury and they can heal relatively fast. Those who are more vulnerable, such

as the elderly or disabled and patients in rehabilitation, may be more susceptible
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to serious injuries and take longer to heal. In some cases immediate assistance is

required yet the faller may not have the ability to call for help.

The elderly though are the most vulnerable to fall and due to their living cir-
cumstances of isolation are more prone to have a fatal progression after falling.
Age is a significant factor that is closely linked to severe falls [15]. Several studies
have shown [16] that elderly people experience at least one fall every year. Also,
falls are the main cause of accidental death in adults aged 65 or more, based on a
review of 90 epidemiological studies [I7]. Other resources show the injuries caused

by falls in the general population [18].

Other studies characterise the severity, frequency, risk factors [19] and cost [20]
of fall incidents which are attributed to be the leading cause of fatal [21I] and
non-fatal injuries among adults over the age of 65 [22]. Other studies discuss the
acceptance of applied fall detection systems for the elderly [23]. [24] discuss the
different types of accidental walking falls (slip, trip, and step) and their potential
causes. [25] discuss the various health conditions that may cause falls in relation
to falls in the elderly population. A study discussing the potential of video-based
fall detection is given in [26] where participants with a fall history approve the

life-saving benefits of a monitoring system.

Currently deployed technologies for alerting a fall incident are manual and self-
activated, based on push-button devices which the person wears as a pendant or
bracelet. This device is given to the elderly living alone and also those who are
vulnerable to and have a history of falls. It is required to be worn constantly
during day and night. In the event of a fall, the fallen person has to push the
button to generate a signal that is then transmitted to a crisis telecare centre.
However, this approach relies on the individual being conscious, in full possession
of their mental faculties and cognisant of the required response, otherwise it is

simply an unattractive ornamentation.

Similar modalities exist in assisted living houses, where push-button alarms are
supplied to the occupants. Constant surveillance is available in such places and in
the case of a fall incident, the response time is expected to be less than for those

independently living in their own homes.

Automatic human fall detection systems are required to take over these manual
technologies for monitoring vulnerable people who are prone to falling. A plethora

of new methodologies for fall detection have been developed in the past few years,
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with a strong motivation to enable the elderly and the infirm to live independently
in their own homes, whilst providing an unobstructed and non-invasive means
of monitoring their well-being. A large-scale monitoring strategy is required to
maintain those in need in their homes. Ideally, a home monitoring system would
provide a comprehensive detection capability, whilst preserving the privacy of the

individuals being monitored.

The variety of fall types is ignored by many of these fall detection systems, which
produce a solution without assessing the human individual or the scene charac-
teristics. People fall for a variety of reasons related with their physical or mental
health (e.g. ageing/disability) or due to abnormalities of the walking surface (e.g.
slippery /uneven floor). An effective fall detection system should accurately and
robustly detect a fall when it occurs, without false detections (e.g. lying on the
floor for the purpose of an exercise) for application in the general population. The
investigation in this study will first focus on data-driven trained algorithms and

then proceed to physics-based myoskeletal algorithms performing fall modelling.

Several sensor technologies were used for detecting falls such as cameras, infra-red
sensors, acoustic and pressure sensors accelerometers and others. A further discus-
sion of these is given in Chapter 2. The development of these sensors contributed
to the development of fall detection algorithms, particularly with the falling cost
of cameras and the development of new image acquisition technologies such as the
inexpensive depth cameras (Kinect, Xtion, etc.). Also, the maturity of the com-
puter vision domain has simplified the development and deployment of computer
vision applications. The use of depth data was beneficial for this work since the
level of certainty and accuracy has increased due to the introduction of an extra
dimension (in reality it is 2.5D) and also the high level of data provided by OpenNI
and Kinect SDK which simplifies person segmentation. With the arrival of Kinect
in 2011, new fall detection research utilised the functionalities of depth sensors
such as 3D analysis and privacy protection. As a result, using Kinect (depth)

data provided a more acceptable solution of a fall detection system.

Another major issue of fall detection systems is the use of human fall data for train-
ing which introduces many complications and results in questionable algorithmic
performance. This is due to the difficulty in performing such falls in a realistic
manner which imitates the actual behaviour, particularly for samples of elderly
falling — which is one of the target groups of this study. Current fall data are acted
by young adults, acting pre-defined patterns of how a fall should look, causing the
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minimum risk on impact. Also, the size and variability of these samples is limited

as it is performed by a small group of people for a specific geographical region.

Current fall detection algorithms employ a generic one-size-fits-all solution and
overlook the individual characteristics such as the height, weight or posture. Every
fall event appears to be different according to the height, weight distribution,
centre of mass (CoM) location, the orientation of the person or other parameters.
In this study, the investigation will focus on the fall events (i.e. rigid or collapsing)
which are introduced by internal physical issues caused by lack of consciousness
and the faller does not recover from the fall i.e. remains on the ground. This work
investigates several fall detection algorithms which try to overcome the issues
of accurate and robust detection of falls using depth sensors while the privacy
of the fallers is preserved. It also evaluates alternative approaches to modelling
falls taking into account the human variability of falling people, as well as indoor
scene occlusions. An evaluation of accelerometer-based fall detection is also briefly
studied in order to provide a general applicability of a proposed approach on non-

vision based studies.

New methods are proposed: a) a machine learning approach where the fall decision
is learnt by training on fall and non-fall data, b) a machine learning method where
the decision is learnt by using physics-based myoskeletal data and human non-fall
data, which is customised to the person’s height only for falls and c¢) a myoskeletal
fall modelling approach which relies on a single observation without a learning
procedure that is fully customised on the person’s height. The simulation based
techniques were developed to eliminate the use of unrepresentative human-fall-
data for training purposes. Furthermore, occlusion protocols are also proposed to

evaluate the later approach against simple and complex synthetic occlusions.

1.1 Challenges

The accuracy and robustness of a fall detector is crucial when a human life relies
on it. Several actions, such as lying down may confuse the detection algorithm
and as a result, a non-fall may be detected as a fall and cause an unnecessary alert
to be raised. These are described as activities of daily living (ADL) or non-falls.
Therefore, algorithms should minimise the effect these events have, to increase the

reliability of the system, reducing false positives (FPs). Different types of falls
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exist which depend on the direction the body has when falling and each of them
has different motion. Hence, a detection algorithm is required to detect all types
and minimise missed-detections. Monitoring in general and particularly at home
can be invasive and consideration of the issues of personal privacy may negatively
influence the choice of a vision-based fall detection system. The monitoring system
must have some privacy features such as to hide recognisable characteristics as the

face.

Existing research into fall detection systems usually relies on (or are adjusted/-
trained) using limited quantities of human fall data (that is non-representative
of the real fall events). Capturing real-life fall events is a rigorous process which
involves a costly infrastructure in order to capture the event — whenever it hap-
pens. A few research groups have succeeded in recording falls in hospitals and
care homes, but such data is limited and not publicly available due to privacy
and copyright constraints. The alternative approach uses human-simulated fall
video recordings where participants attempt to act the fall following specific guid-
ance from a researcher. The approach of data collection is quite common in data
science, nevertheless, collecting fall detection videos raises the following issues in

terms of how representative data are:

1. Demographic. Data samples from falls and ADL should include people of
different ages. Similarly, people with different physical characteristics (e.g.
height, weight, posture) should be participating in these datasets. Finally,
further samples should be included of people with behavioural characteristics

such as gait patterns.

2. Sample quality, quantity and availability These recordings should show
real fall events or human-simulated ones which are representative. The size
of these datasets should be enough in permutations, fall types, visual scenes
(e.g. home), etc. Finally, the data (either real fall or human-simulated)

should be publicly available and easily adaptable/readable.

3. Scene conditions. Visual occlusion is another issue to be taken into ac-
count. Coffee tables, chairs, or sofas and other furniture can act as obstruc-

tions in a home scene.

These issues on the quality and quantity of fall data were only recognised later in

the research, and the initial work exploited conventional datasets focusing mainly
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on the accuracy, robustness and privacy of approaches. The more recent work for

this thesis focuses on the use of simulation technologies to address the issues.

1.2 Aims & Objectives

The aim of this project is to investigate robust methods for detecting falls, and
particularly their applicability to support independent living for elderly and infirm

people. Specific technical objectives that will guide the research are the following:

1. Investigate features for fall detection and develop reliable and robust detec-

tion algorithm(s) for rigid and collapsing falls.

2. Investigate the use of fall simulation to obviate the need for acted fall datasets
and the effect of physical body characteristics and fall direction on the fall

behaviour
3. Investigate the impact of occlusion in the detection of fall and ADL events

4. Investigate the use of simulation for other modalities such as accelerometer-

based fall detectors

1.3 Contributions and Thesis Overview

The initial research developed a machine learning approach to detecting rigid fall
events using video depth data [27]. Subsequently other fall types such as collapsing
were investigated as part of a generalised fall detector and as a result alternative
features were examined to deliver a robust multi-fall-type fall detector. Public
datasets have become available and a thorough examination of their videos [2§]
raised several issues in terms of how representative data is. It was also found that
such datasets were relatively small in the number of subjects and fall permutations,
with a minimum variation of falling behaviour and lack of realism. This introduced
the search for other means in order to replace the human factor from the training
of fall detection algorithms. The use of physical models starting with a falling rod
and extending to a full myoskeletal model are introduced and investigated [29].

The use of velocity profiles rather than a single value (e.g. peak velocity) is utilised
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as the simulation modelling can provide a full velocity profile. The detection of a
fall is expressed as a comparison between velocity profiles of simulated falls and
non-falls using the Hausdorff distance. The simulation using a myoskeletal model is
shown to be a closer representation of a human performing falls without worrying
about injuries. Also, it provides continuous data when an event occurs, that
makes the simulation approach occlusion robust. Finally, a validation protocol
against occlusions is proposed in order to assess the performance of simulation

based approach under occlusions [30].

The following list itemises the contributions:

e Data driven Approaches

Two real-time machine learning based fall detection algorithms: 1. A rigid
fall detection algorithm based on the analysis of fall and ADL depth data
from Microsoft Kinect I with the use of X,Y,Z velocities of the 3D bounding
box; 2. A rigid and collapsing fall detection algorithm based on the analysis
of fall and ADL depth data with the use of 3D angular velocity derived from

a modified bounding box.

e A review, critique and evaluation of fall data

A study examining the issues of current human fall datatets with an evalu-
ation of acted data against real falls. This evaluation determined the poor

acting observed within the fall samples, particularly for collapsing falls.

e Simulation based approaches

Demonstrate the capability of a physics-based myoskeletal model to simulate
a fall, and to use this simulation to replace the need for recorded human
fall data to detect falls. Thus, three personalised myoskeletal simulation
based fall detection algorithms: 1. A hybrid fall detection algorithm using
myoskeletal simulation and human ADL data which is customised by the
person’s height and by using the estimated falling direction. This approach is
applied on depth data; 2. An occlusion robust fall detection algorithm based
explicitly on myoskeletal simulation which is only customised by the person’s
height and utilises the comparison of velocity profile using the Hausdorff
distance. The evaluation used depth and YouTube real fall data. 3. An

approach similar to 2, applied on accelerometer data.
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e A framework to evaluate the impact of occlusion

A methodology of evaluating fall detection algorithms under occlusions using
synthetic ones which are inserted on videos of existing fall datasets. Such
synthetic occlusions tested the performance under variable degree (i.e. rigid
shaped) of occlusion as well as the performance when complex occlusions

were used such as chairs, coffee tables etc.

The chapters structure outline of the remainder of this thesis is presented:
Chapter 2 — Literature review

A literature survey of fields related to this research including existing fall detection

systems using a variety of technologies.
Chapter 3 — Datasets

A study examining the issues of current human fall datatets with an evaluation of

acted data against real falls.
Chapter 4 — Learning to detect falls

Methodologies based on machine learning to detect rigid and collapsing falls cap-

tured by a depth camera.
Chapter 5 — Simulation: Modelling falls

Demonstrates the capability of a physics-based myoskeletal model to simulate a

fall.
Chapter 6 — Fall detection using myoskeletal simulation

Considers three personalised myoskeletal simulation based fall detection algo-

rithms.
Chapter 7 — Occlusion robust fall detection

A framework of evaluating fall detection algorithms under occlusions using syn-

thetic ones.
Chapter 8 — Conclusion and future work

A summary of contribution and future work.



Chapter 2

Literature Review

This chapter will serve as a general review of fall detection systems as each follow-
ing chapter includes a chapter specific review of the covered topic. Research into
fall detection systems have studied a wide range of sensor modalities, including
accelerometers, acoustic, ultrasonic, infra-red, radar, RGB cameras, depth sensors
etc. The bulk of the methods rely on those principal approaches; detecting the
velocity of the falling body or the changing shape of a person’s projected silhouette

e.g. from an upright to prone position, on the floor.

The chapter covers several features, hardware technologies and algorithmic tech-
niques reported for fall detection. The discussion of features specifies the most
dominant approaches developed in computer vision. Another discussion specifies
the technologies used and divides systems into two groups, one for wearable solu-
tions and another based on static sensors. Since this work was initially based on
3D vision and then on both 3D vision and then extented to include accelerometer
measurements, this topic is included in the discussion. Since the development of
Kinect in 2011, the topic of fall detection flourished under the use of cheap depth
sensors, mobile phone gyroscopes and accelerometers and also the developed small
accelerometer devices, which were then embedded on a range of wearable devices
for monitoring heart rate, activity etc. Finally, a discussion will focus on the

algorithmic approaches which classify the events as falls or ADLs.
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2.1 Fall detection features

Several features were employed for fall detection and other studies have performed
feature selection in order to select the best ones [31]. Such features include bound-
ing boxes, shape descriptors, velocity, height of the person from the floor, fall angle
and more as discussed in recent review studies [32]. The use of bounding boxes,
either 2D [12] where changes in the motion of the bounding box are analysed and
3D [27], where the velocities of the height, width and depth of a 3D bounding box
are calculated. The aspect ratio is discussed in [33] and [34]). The aspect ratio is
computed as the ratio of the width and height of the bounding box around of the
extracted person. A small aspect ratio implies that person’s posture is upright,

whereas a high aspect ratio means a lying down posture.

Ellipse detection appears in several studies: in [35] the 3D position of the center
of the ellipse was employed as a feature defined as the distance between the center
of the ellipse and the plane floor in 3D space. In [36] an ellipse is fitted over the
person in order to calculate the fall angle which is found between one of the major
axis (e.g. long axis) of the ellipse and the floor. A similar approach using fall
angle is also described in [33] where a small angle is used to decide that a person

has fallen.

The studies in [37-39] use the head location to measure the distance from the
floor, the velocity of the head, the distance to the ground and the 3D velocity.
The velocity of the head is found to exceed certain thresholds for the event to be
classified as a fall. A simplier approach [37] uses the head’s height from the floor

which classifies an event as a fall if the head is located below the threshold.

The shape of a person is analysed in several studies on 2D or 3D data and an
event is assessed using data samples during the event or by using data from the
initial/final state. In [36] the method determines the direction and position of
the individual based on the shape of the human silhouette. The centroid of the
silhouette and the angle between the human body and the floor plane are also
calculated for fall incident detection. In [5] curvature scale space features are
extracted from the depth maps of the human silhouette. The features appear as
approximations of the silhouette edge and are recorded during the event in order
to capture the shape change over time. In [40], the authors use the silhouette to
fit a bounding box, where the aspect ratio is calculated as well as a covariance

matrix, which provide adequate features for fall detection.
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Skeleton data, either derived from 2D or 3D data of conventional cameras or Kinect
sensors was used for this subject. In [41] Kinect data were processed using the
Microsoft Kinect SDK where the skeleton joints are extracted and tracked. The
joint velocities are measured together with the distances of these joints to the floor.
The fall is detected when velocities and distances are below defined thresholds. In
[42] a 2D skeleton is extracted by running the well-known graph traversal Depth-
first search algorithm on the human contour which is partitioned into triangular
meshes. In [43] the 3D skeleton information is also used. The orientation of the
major axis is calculated using the coordinates of the head, shoulder, spine, hip and
knee joints. Then the angle between this line and the horizontal line is calculated

which determines the inclination of the body after the fall.

The bounding box alone does not provide enough information regarding the human
motion and the performance of this technique relies on the camera view angles,
particularly for the 2D methods. The aspect ratio can be inaccurate due to the
position of the person, camera, and occluding objects, if present. The silhouette
based features have the same issues as they can be occluded and rely on the
viewing angles. The head location appears a more stable feature as it is occlusion
robust due to its location and does not rely on the rest of the body to be detected.
But, head detection can be problematic in cases where there is rotation or tilt of
the head or camera viewing angle. Skeleton data derived by Kinect are unstable
especially when the person is falling and it is noted that the skeleton shape does
not recover to its original shape after the fall. In Chapter 4 several features are
discussed and a re-evaluation of a feature-selection study for fall detection analyses

the significance of fall data (i.e. fall types) for selecting and developing a feature.

2.2 Wearable sensors

The most common approach to generating an alert in event of a fall is a push-
alarm such as [44]. Those devices are carried by a person prone to falls and are
activated by pushing the alarm after the fall. This technology can be very weak as
the person may not be carrying the device or may be unable to push the button
if they are unconscious. Nevertheless, this technology is widely used by many

Councils in the UK as they are easily installed, maintained and are cost-effective.
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In general, wearable devices are automatic in terms of data processing. They
capture motion continuously using motion detectors with accelerometers and gy-
roscopes [45], 46]. Such sensors are capable of detecting the rapid motion changes
of the person who wears them. A study in [47] discusses the use of a wearable
sensor to detect unseen falls. In the same context, other studies use a mobile
phone’s [48] accelerometer and magnetic field sensor data, accelerometer and data
from the wearable camera [49], and energy sensor such as a triboelectric generator
[50].

Although this seems promising, it is questionable how effective the wearable ap-
proaches are when it comes to such a life-threatening event, as the person has to
wear the device continuously. If the person who is supposed to use the device
forgets (e.g. elderly due to memory issues) or ignores the importance of wearing
it, a fall is not detected rendering the approach useless. Other issues of portable
device is the requirement to recharge or replace the batteries every now and then
in order to continuously operate or even remove them when in shower due to lack
of waterproof capabilities. Mobile phones already contain the technology to de-
tect the fall (i.e. an accelerometer, gyroscope exists in most of the phones) while
having the capability to call for help whether the user is indoors or outdoors.
Nevertheless, the location of the phone is crucial as the user may hold it on a
jacket’s pocket, a pocket near the waist or inside a purse. Benefits of wearables
are that the sensor is personalised and moves with the person, therefore there is
no need to have a sensor in every room. Also, these devices are entirely private
and not affected by occlusions, as are camera-based ones, but they can be affected

by wireless communications.

2.3 Fixed location sensors

Acoustic and ambient sensors systems use microphones or vibration sensors. Such
systems detect the loudness and height of the sound to recognise a fall [51]. Other
approaches detect the floor vibration [52] or use features extracted from the radar
signal [53]. A microphone array system is presented in [54] where it is found that
the fall signal has highest frequency component around 1000 Hz. Using the height
of the sound source, sound classification techniques such as mel-frequency cepstral
coefficients (MFCCs) and a nearest neighbour (NN) algorithm are used to classify

falls from non-falls. A ceiling of infrared sensors is proposed in [55], where each
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sensor produces a binary response given the existence of a person underneath.
The set of signals produce an 5 by 4 pixel image where an assessment is performed
on how different a stream of pixel values are from the previous frame in order to

determine a fall event.

Smart tiles containing force sensors and 3-axis accelerometers is presented in [56].
The force sensors allow the detection of falls as well as recognition of other hu-
man activities such as walking, standing, sitting, lying down, and the transitions
between them. However, the detection accuracy on human fall data returns false
positives caused by lying postures. This issue is resolved by a fusion between the
force sensor measurements and the accelerometer sensor decisions. Another floor
based sensor is proposed in [57] where pressure-sensitive fibre sensors are embed-
ded underfloor with an application focus on fall detection in the bathroom. The
fibre sensor is low cost, unobtrusive, and waterproof, making it especially useful
in a bathroom. The assumption of the system relies on the fact that when a fall
occurs, the target must be lying on the floor, as people do not normally lay on the

bathroom floor to exercise or sleep.

Static mounted sensors may have the advantage of monitoring without the re-
quirement to wear a device constantly while surveillance can be unobstructed and
continuous without the person’s concern. The assumption for many studies is that
the monitoring area has to be clean from objects and occlusions. Such systems
are limited to indoor use only due to their restrictive application range. Also, the
cost and complications of deployment and maintenance are discouraging factors

for using such approaches.

2.3.1 RGB systems

Some systems use image analysis to detect falls. They require one [58, 59| or
several cameras [2, [60]. They do not require a device attached to the person
as they are able to detect the human motion, using computer vision algorithms.
Thermal cameras are also used to locate and track a thermal target and analyse
its motion in order to detect a fall’s characteristic dynamics and then to monitor a
target’s inactivity [61]. One approach to fall detection is to analyse the velocity of
the falling person as proposed by biomechanics [62]. In [39], head velocity is used
to detect a fall using 3D tracking. Their approach is not robust as they detect only
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two out of three falls but it can differentiate between the actual falls and the fall-
like events i.e. sitting. Other vision approaches focus on posture-based events as
in [63]. In that study the authors focus on three types of falls (forward, backward,
sideways). While their approach is robust as they can differentiate between falling
and lying/sitting, it is limited as the raw data used for their analysis is captured

only from a side-view.

2.4 Combinatory Systems

Some studies suggest a combination of hardware—vision solutions for fall detection.
In [64] Ambient Assisted Living platforms are discussed as wearable, ambient,
vision and multimodal. Also, in [65] several fall detection systems are compared
mainly for wearable sensors. The work in [4] uses data from accelerometer and
depth video from 2 sensors. Acoustic sensors [66] or PIR sensors together with
thermopiles [67] and depth with accelerometer and acoustic sensors [68]. Finally,
in [69] a combination of camera and heart monitor system is proposed. Such
systems provide a more reliable result based on the given experiments but their
complexity is higher and some may still be invasive. One way or another, vision

solutions may still be relevant in the designing of such combinatory solutions.

Thresholding techniques where signals from floor pressure data and infra-red im-
ages are processed and a fall is detected when a set threshold is met [70]; this

approach reports 90% accuracy on a dataset of 120 samples.

Bayesian filtering is used to determine the pose of the person as the probability
of falling or getting up using data from a near-field imaging floor sensor [71]; the
authors propose a floor sensor based on near-field imaging. The shape, size, and
magnitude of the patterns are collected for classification from a set of features
that are computed from the cluster of observations. The postural estimation
is implemented using Bayesian filtering instead of the features being classified
directly. The system has problems with test subjects falling onto their knees as
this produces a pattern very similar to a standing person. 650 events and ten

people yielded a sensitivity and specificity of 91%.

The discussed approaches in the previous two sections , provide fall detec-
tion solutions where authors have used human fall data for tuning their approaches.

In general, the performance of these approaches is linked with the data which were
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used for training, a complication discussed in Chapter 3. Another issue is the com-
plexity of the combinatory systems to analyse signals from different modalities.
The camera systems are mainly monocular and prone to occlusions from furniture
or other objects within the scene. The event of an occluded fall is not used in

these studies and will be further discussed in Chapter 3.

2.5 Algorithms

A number review papers summarise and discuss computer vision based fall detec-
tion systems such as: [0][72][73]. Zhang et al. [6] discuss the recent methodologies
and categorise them in terms of acquisition (single RGB, multi RGB cameras and
depth sensors), where [65], [74] discuss the different accelerometer and other wear-
able approaches. Another distinguishing factor is whether these algorithms are
ad-hoc methods based on empirical observations or pattern recognition methods
that are trained using machine learning (ML). The majority of the algorithms
discussed in the following review are based on ML approaches as researchers use
classification algorithms to justify whether an event is a fall or ADL. In either
case, debating on whether an ad-hoc method is less reliable than a ML is out of
the scope of this study, since the complication as discussed in Chapter 3 is more
related with the quality of fall datasets. Therefore, a critique to discuss the com-
plications of data-driven approaches will occur on Chapter 3, where quality of fall
data is proposed as one of the issues of ML performance. The following provides a

thorough discussion of the use of RGB, depth and accelerometer based detectors.

2.5.1 Use of RGB data

A wide range of techniques for fall detection are found in the literature which use
cameras and other sensors. In [75] a Gaussian Mixture Model method is used to
classify the different activities as a fall or not, based on shape deformation during
the fall followed by a lack of significant movement after the fall. Segmentation is
performed to extract the silhouette and additional edge points inside the silhouette
are extracted using a Canny edge detector for matching two consecutive human
shapes using the shape context. The mean matching cost and Procrustes analysis
are applied for shape analysis. Both of these methods contribute in quantifying the

abnormal shape deformation. A fall is characterised by a peak on the smoothed
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full Procrustes distance curve or mean matching cost curve followed by a lack
of significant movement of the person just after the fall. A Gaussian Mixture
Model (GMM) classifier is implemented to detect falls. Further computation of
the sensitivity, specificity, accuracy and the error rate obtained from the GMM
classifier is performed for the analysis. An ensemble classifier is used to combine
the results of all cameras. The mean matching cost and the Procrustes analysis

reduce the error rate to 4.6% and 3.8%, respectively.

Rule-based techniques determined by a set of features from the subject and its
bounding box such as aspect ratio, horizontal and vertical gradient distribution of
object in XY plane and fall angle are used to assess the fall event [13]. An adap-
tive approach for the detection of moving objects by using background subtraction
as well as bounding boxes is used. The described fall model is based on feature
extraction analysis, detection and classification. Features extracted include hori-
zontal and vertical gradients, aspect ratio and the centroid angle to the horizontal
axis of the bounding box. Falls are confirmed when the angle reaches a value less
than 45 degrees. The algorithm reports 100% accuracy, specificity and sensitivity,

evaluated on their dataset (40 videos).

A multi-frame Gaussian Classifier is used to determine the direction of the body
and the head location over a predefined frame window [76]. The method is aimed
at incidents involving falls in unobserved home situations by presenting the design
and real time implementation of a fall detection system. The design involves
segmentation of foreground objects in the image streams obtained from two fixed,
uncalibrated, perpendicular cameras. The direction of the main axis of the body
and the ratio of the variances in x and y directions are calculated through principal
component analysis (PCA). A head tracking module is used for human detection
as well as increasing the robustness of the system. Head position is estimated as
a blob using the Gaussian skin-colour model and is tracked by searching for skin-
coloured blobs nearby the head position. The classification is performed through
a Gaussian multi-frame classier. The system shows accuracy of 100% on un-
occluded video sequences but the addition of occlusion on 4 video samples reduces

the accuracy to 44%.

A nearest-neighbour rule, where postures using the ratio and difference of human
body silhouette bounding box height and width are used together with the time
difference between events to classify a fall [77]. The authors proposed a fall de-

tection system in which a statistical scheme and vertical projection histograms of
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the silhouette image are used to reduce the effect of upper limb activities of hu-
man body. This approach used k-NN classification to classify the postures using
the difference and height-width ratio of human body silhouettes bounding box.
The k-NN classifier and the critical time difference are used to detect fall incident

events. The study reports an accuracy of 84.44% based on 15 subjects.

Hidden Markov Models where falls can be detected by analysing the person’s pos-
ture and detecting sudden changes in posture (e.g. from standing to lying) are
described in [60]. The authors applied a multi-camera system for image stream pro-
cessing. The processing includes recognition of hazardous events and behaviours,
such as falls, through tracking and detection. The cameras are partially over-
lapped and exchange visual data during the camera handover through a novel
idea of warping people’s silhouettes. The video server (multi-client, multi-threaded
transcoding) transmits sequences for further processing to confirm the validity of
received data. The bandwidth usage is optimised through event-based transcoding

and semantic methods.

Fuzzy Logic is used to determine the state (e.g. upright, lying) of the person
at each frame using voxels derived by silhouettes of people captured by infra-
red cameras [78]. This study also used a multi-camera system where the authors
applied silhouettes to form a 3D model of the human object. The membership
degree of the object is measured using fuzzy logic to a pre-determined number of
states at each image. The fall detection method consists of two levels. The first
level deduces the number of states for the object at each image. The second level
deals with linguistic summaries of the object’s states called Voxel Person. Further
derivations are performed regarding the activity. The study reports a specificity
93.75% and a sensitivity of 100%.

2.5.2 Usage of depth data

Attempts [27] in detecting falls by processing depth data arose from the research

in this thesis.

In [41] the authors use the skeleton tracking capabilities of their own algorithm.
Nevertheless, the skeleton works accurately when the sensor is placed at a specific
range and location. The approach aims to detect falls by extracting skeleton data

from Kinect depth images based on the fast randomized decision forest algorithm.
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This algorithm produces more accurate detection by properly rotating frames to
match human orientation. This approach achieved 100% accuracy on a small

dataset of 20 sample falls.

In more recent studies such as in [79, B0], the authors used Riemannian manifolds
of fall velocity statistics and a combination of RGB and skeleton data respectively.
Both studies have evaluated their approaches based on publicly available datasets
and achieved nearly perfect performance in terms of accuracy and false positive
rate. Nevertheless, the evaluation process in all the above studies does not consider

an individual’s physical characteristics or falls subject to occlusions.

The initial critique of the depth based fall detectors (pre 2011) can be found in

Chapter 4 as the proposed algorithms were compared to these studies.

2.5.3 Use of accelerometer data

In such studies, an accelerometer device is placed on, or near the waist - a location
near the CoM, or in other locations. In [81] Igual et al. discusses different datasets
of accelerometer data recorded via mobile phones which were placed in the pockets
or purses of the participants during fall and ADL scenarios. A review paper [82]
discusses the different approaches used. These can be grouped into threshold based
(in pre-fall, impact, post-fall, velocity, acceleration magnitude and signal change,
angular velocity, critical incline based on pre-fall phase) and machine learning
(One-class SVM, KFD, k-NN). It is noted that the preference is given to threshold

techniques.

A fall occurrence is determined via the k-nearest neighbour algorithm as discussed
in [83]. The authors used a cell phone with a tri-axial accelerometer embedded in
it. Data pre-processing is performed using a 1-class support vector machine (SVM)
and the wireless channel for Internet connection. Classification is achieved through
the k-nearest neighbour (k-NN) algorithm and kernel Fisher discriminant (KFD)
analysis. Their algorithm was tested on a variety of scenarios of ordinary daily
activities, (i.e. walking, walking down the stairs at normal speed) and different fall
types, as well as high-intensity daily activities(i.e. running, jump and gymnastics).

They report a specificity of 97.5 % and a sensitivity of 84.4 %.
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Chien-Cheng et al. [84] proposed a home-based, real-time fall detection system
that not only can distinguish up to 4 different kinds of fall events (forward, back-
ward, rightward and leftward), but is also portable, low-cost and with high accu-
racy rate. The system includes a real-time fall detection band, a home server, and
GSM instant messaging function which can transfer fall alert, send emergency help
messages. Four male subjects performed 120 fall events and the accuracy rate of
the algorithm was 95.83%.

The significance of accelerometer-based fall detectors is still high as recent studies
have evaluated the behaviour of elderly performing ADL events [85]. In this study,
the authors use accelerometer data on a novel non-linear classification feature that
allows one to obtain high accuracy values with a simple threshold. Their work

reports 99.4% accuracy.

2.6 Discussion

A summary of the available approaches using single RGB, multiple RGB cameras,
depth sensors, accelerometers, ambient sensors and the fusion of some of these
sensors is shown in Table itemising their pros and cons. A representative ref-
erence is included for each approach. The Table includes off-the-shelf technologies
such as cameras and infra-red sensors, accelerometers, pressure and sound sensors.

Other researchers have used a combination of technologies to increase performance

I36).

Fall detection approaches as discussed utilise a variety of sensors such as wearables
(accelerometers, gyroscopes), fixed location sensors (i.e. cameras, radars, acoustic,
pressure) to detect or protect (i.e. airbags) the person from the fall impact. Fixed
location sensors as discussed, can miss the detection of a fall due to occlusion,
interference, memory limitations or avoidance of the user to trust the use a mon-
itoring device (e.g. switch the device off). Other reasons include the removal of
such devices before sleep or a shower/bath and as a result, a continuous surveil-
lance of someone can be interrupted, especially on occasions where a fall is more
likely to happen, such as getting up from the bed or coming out from the shower.
As discussed previously, a wearable device has a number of complications, but it

also has benefits. Briefly, the wearable provides a continuous signal if worn, hence,
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TABLE 2.1: Pros and Cons of current fall detection approaches

Approach Pros Cons
Monocular camera Easy to setup Privacy not preserved
7 cheap Occlusion ineffective
Difficult setup, cameras require
Multi-cam Occlusion robust syncing,
2 3D scene analysis privacy not preserved,

3D calibration

Privacy preserved,

Infra-red . Interference,
3D scene analysis, .

[27] ; noisy data
person segmentation ready

Wearable

1 . .

i(;ce erometer Occlusion robust, Intrusive,

sl privacy preserved, must be worn

gyrospope

[46]
Ambient sensors
acoustic Expensive,

Privacy preserved, .
[51] occlusion robust can be applied on small

floor vibration, areas

521

Fusion

3D vision & wearable

;b & heart monitor Higher accuracy and Complex setgp,
performance requires syncing

[69]
acoustic & depth
[66]

is occlusion robust, if compared to a camera sensor. Also, privacy is assured as

recorded /processed signal from such a device is not an image or audio.

Utilising fixed location sensors can invalidate the above issues but introduce further
ones. The use of video cameras introduces privacy issues since cameras are likely
to monitor wet areas and bedrooms. Acoustic sensors are prone to error and
pressure floor sensors are very expensive to cover the entire floor of a house. Depth
cameras from the other hand can provide the related privacy as the depth map
at a given resolution obscures facial characteristics and other body details. Such
depth sensors are now inexpensive to use. Nevertheless, when used in an array of
several sensors projecting on the same area, such sensors are prone to interference.
This has been addressed in [88] where a vibrating device attached to the sensor
disturbs the projection of the laser signal allowing minimal interference with the
laser signal of another sensor placed in the same area. Another benefit of the
depth sensors is the data processing in the 2.5D space which makes the detection
of particular actions possible without calibration as if using an uncalibrated RGB

camera. The use of depth data is selected for this work due to the above reasons.
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TABLE 2.2: Fall detection approaches and their performance
study year sensor features algorithm evaluation performance
39F
[12] 2005 RGB,S 2D bbox HMM 95ADL 100%
. sp 97.5%
[83] 2006 3axial accel accel KFD, k-NN N/A sen 84.4%
. .. 9F
[39] 2006 3D head velocity Decision tree 10ADL 78.9%
3 2007 RGB gradient distribution, 1 14 40 100%
aspect ratio
[51] 2008 PIR Differential voltage HMM 80%
) sp 93.75%
[78] 2009 RGB voxels fuzzy logic N/A se 100%
[77] 2010 RGB body silhouette k-NN N/A 84.44%
Electric electrodes,
[71] 2010 nearfield body dimension size, Markov chain 650 91%
magnitude
user height ..
[34] 2011 depth body velocity decision tree  N/A 98.7%
48F
[27] 2011  depth 3D BBOX RS 136ADL 100%
49F
[43] 2013  depth 3D skeleton threshold 94 ADL 95.8%
curvature 200F
5] 2014 depth scale space ELM S00ADL 86.83%
gy 2016 Omartphone  Gradient patterns o py Lao 0 N/ 93.78%
camera edge orientations
skeleton, rule based, 30F
[80] 2017 depth motion map SVM A0ADL 99.37%

Furthermore, one of the benefits of the accelerometry approaches discussed in
this thesis is the applicability of simulation fall data on accelerometer based fall

detectors as discussed in Section [6.91

A performance evaluation of the systems is given in Table [2.2] where the discussed
systems are listed given their accuracy and the number of events (falls and ADLs)
on which they have been evaluated. Given these results, it is noticeable that most
of the studies use their own data to evaluate and in the majority of them, the
sample is small, while the performance is very high. It will be inconclusive to
This is due to the lack of

such fall data, for reasons discussed in the next chapter. The performance will

decide the robustness based on such small datasets.

be discussed further in the next chapter where public datasets have been used to

evaluate vision-based depth algorithms.
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The use of a the velocity of a particular point or bounding box is more feasible as a
feature due to the fact that a fall is an event where higher velocities are expected.
This is a derivation of most of the threshold based techniques discussed in this
Chapter. Furthermore, the machine learning techniques also define a threshold
for velocity assessment. Also, the velocity is less complex to measure when using
a head detector/bounding box in RGB or depth data and provides -given the
existing studies- a good detection rate. It is also widely used for accelerometry

based algorithms.

This Chapter leaves an open question - answered in the next Chapter - regarding
the suggested robustness of each existing work. Regardless of methodology, a data-
driven approach always relies on how representative data is - the selected feature
or features fit the purpose of this particular set of data. It is then unnecessary
to propose the best algorithms in terms of their performance, knowing that this
performance is mainly achieved based on the training used data. An evaluation of

assessing representative data is produced for Chapter 3.

2.7 Conclusion

A thorough discussion of technologies, approaches and algorithms was presented.
The performance in some of the systems is near 100%, nevertheless, this is ques-
tionable if we consider the size and acting behaviour of the participants in these
data samples. A thorough discussion about these shortcoming will be discussed
in the next Chapter. The use of depth video is selected as the most feasible type
of data for this study as discussed. The use of accelerometer application will also
take place in order to show the applicability of a proposed method . The use
of features (i.e. velocity) will be discussed in each and following chapter as the

detection features vary according to the methodology.

Existing studies are based on the pre-knowledge of how fall events appear on
healthy adults, e.g. acted by a falling person where the body has known starting
and concluding states. However, in reality these states can be different within
people particularly for the target group (i.e. elderly and infirm). However, all
these methods are constrained by the type of available data, which is not repre-
sentative of real fall events of elderly people. Next chapter will investigate the

data availability constraints and propose the possible solutions.
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Datasets

3.1 Introduction

Researchers in computer vision and data sciences in general, require a significant
amount of data to develop and validate their algorithms. Several characteristics
define a good dataset to cover the range of relevant objects, actions or scenarios.
A good dataset has a sufficient number of examples to be representative of the
variability of actions, human subjects, scene and light conditions, environmental
changes and more. It will also provide annotated ground-truth of these objects,
actions etc. An example of how these datasets are acquired is the capture of videos
of real-world scenes by CCTV cameras. The events shown in these datasets are in

most cases accurate and of representative quality of a real-life event.

Similarly, fall detection algorithms require a representative set of recorded exam-
ples of people falling for algorithmic training and testing purposes. Ideally, one
scenario for capturing such fall events would be to use cameras or other sensors
in hospital wards, care homes, assisted living accommodation, in the homes of
elderly, rehabilitation centres, inpatient wards etc. Several of these data recording
centres would be located around the globe in order to detect the human physio-
logical characteristics variated by height, weight etc. Continuous recordings - day
and night - of data over several months or years would have captured a significant
number of falls as well as other activities of daily life (ADLs) with some having a
similar motion pattern to a fall, such as lying down. The recordings would be in a
format that protects personal privacy and allows public access and redistribution

for scientific purposes. Unfortunately, the above scenario is imaginary as such

23
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recordings - even if they exist - are confidential and limited in terms of variability

and ethically unsuitable as discussed later in this Chapter.

To overcome the issue of data availability, researchers have implemented their own
versions of fall events - acted by volunteers. Such datasets are discussed in this
Chapter in an attempt to show the limitations and pitfalls of acquiring and using
them. Recorded fall data acted by people are not as representative in terms of
falling behaviour when compared with datasets of other types of actions. In other
words, an acted walking behaviour is likely to be representative as it involves
usual daily activities while acting a fall is an artificial action subject to inaccurate
behaviours. Given this reason, there is a scarcity of realistic fall samples due to
hesitation [28] and the risk of injury performing a fall event. The use of actors
guided by researchers aims to bridge the gap between real and human-simulated
falls. Also noticeable is the small number of actors participating in these datasets
for the above reason and as a result the human variability is limited. The age
and health of actors also play a significant role as the vulnerable population (e.g.
elderly) is missing from such samples due to ethical complications which prohibit

the data-recording of risky actions performed by an infirm person.

A variety of different sensors such as RGB, RGB-D, accelerometers, gyroscopes
and radars have been used to record fall events and a range of common activities
of daily life (ADLs) as discussed in Chapter 2. This Chapter will focus on visual
datasets and more particularly on the RGB-D datasets captured by depth sensors
since such data provide access to 3D motion processing. One benefit of depth
data is that compared with RGB imagery, facial characteristics are less visible,
providing greater protection of personal privacy. Accelerometer data recorded by
sensors will be also used for evaluation since such data also describe a person’s 3D

motion and provide even greater degree of privacy protection.

Recent developments with the use of deep learning exploit the availability of large
datasets for training but for fall detection as discussed, such data are not represen-
tative and are limited in their number and variability. A deep learning algorithm
will suffer in the same way as existing machine learning algorithms that are data-

driven. Therefore, a new approach is required to a non-data-driven approach.

This Chapter reviews the publicly-accessible datasets that have been created to
support fall detection. The Chapter discusses the early RGB datasets; next is a
discussion about the benefits of depth data over RGB, followed by a section on
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depth sensors and the human segmentation and tracking software that is available.
Two depth datasets (GM, GM2) have been specifically developed for this study in
which different types of fall and non-fall events were captured using depth sensors.
The GM dataset was possibly the first recorded fall event data intended for the
design and evaluation of [27] which is discussed in Chapter 4. Since [27], a number
of publicly available datasets have been created and are discussed in section[3.5] In
[3.6] an accelerometer dataset is discussed as an evaluation against such data will
be presented in Chapter 6. Section provides a discussion on the limitations of
existing fall datasets considering their suitability in real environments, subject to
occlusions and the representative nature of their demographic. Visuals from each
dataset are included in order to provide a recognisable image of the data type. To
highlight some of the issues with existing datasets (particularly for hesitation), a
comparison is presented where acted falls are compared with actual fainting falls,

using videos from YouTube.

3.2 Fall Types

A fall has many variations as initially discussed in the Introduction. Internal
and external factors contribute to a fall, with the internal ones caused by the
physical or mental state of the individual whilst the external are associated with
clothing, footwear [89] and the environment. More specifically the physical factors,
particularly for the elderly [90], are related to blood pressure, brain atrophy [91],
low vision [92], diabetes [93], medication side-effects [94], muscle weakness [95],
vitamin deficiencies [96], injury or the lower limbs, gait irregularities [97] and
balance issues. Mental conditions [98, [99] may particularly affect cognition causing

confusion, lack of attention, reduced sense of risk etc.

Falls have a direction according to the prior body motion or the centre of mass
[TO0]. These falls are directed towards the front, side or the back of the body where
the body stays relatively rigid and falls as a stick, or can have a vertical direction
where the knees fold over and hit the ground first and the rest of the body falls to
the floor afterwards (collapsing fall). After such incidents, the person may remain
unconscious on the ground or crawl to seek help. Trips and slips are considered
as fall events which are caused by external factors such as elevated or slippery
floor surfaces. These incidents may or may not conclude in an unconscious state,

depending on the severity and location of the impact.
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Another group of falls is observed during sports events, where athletes uninten-
tionally or intentionally fall to prevent an incident or create one. A fall may also

be caused by an aggressive attack by another person or an animal.

This study will focus on several fall types that effect the elderly and infirm. It will
particularly consider rigid and collapsing falls which conclude on an unconscious

state of rest on the ground.

3.3 Public camera (2D) datasets

Many early studies utilised RGB 2D cameras to record falls. Such datasets are
discussed in this section which discusses the early challenges of fall detection using

such video data.

3.3.1 Single camera LE2i dataset

The LE2i dataset [1] contains 191 videos, 143 falls and 48 ADL of 9 subjects of
unrecorded age, weight or height. The recordings are made in different types of
room (home, coffee room, office and lecture room) as seen in Fig. and according
to the authors, this is done in order to evaluate the robustness of the method to
different locations. However, they fail to distinguish the actions related to each
room, e.g. there is a mattress in the office setting where subjects lay down to
sleep. Only one type of fall is shown: a rigid fall event with visible hesitation as
actors pull their hands towards the floor to minimise the impact. The capture
uses a single RGB camera and the video sequences contain variable illumination
and typical difficulties like occlusions due to furniture or cluttered and textured
background. Occlusion is found in only 8 videos and it has minimal impact on the

scenario as seen in the first column of images in Fig.

3.3.2 Multiple cameras fall dataset

The Multiple camera fall dataset [2] is one of the early attempts to record video
data for the study of fall detection. One subject (of unknown age or other physical
characteristics info), performed 24 falls and 99 ADLs RGB videos. Such actions
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FIGURE 3.1: Visuals from the LE2i dataset [I]: fall events at top row, ADLs
on lower row

FIGURE 3.2: Visuals from the Multiple cameras fall dataset [2]: fall events at
top row, ADLs on lower row

include walking in different directions, housekeeping and actions with character-
istics similar to falls (sitting down/standing up, crouching down, picking up an
object from the floor). Falls include different types with a direction to the front
or back of the body or when failing to sit down properly, or due to loss of balance.
The data collection used 8 cameras, mounted around a room to record activity.
Although there are objects that will potentially occlude the subject, details of
the size and location are only available from the images and the results assume a
non-occluded view of the fall and non-fall events is available from at least one of
the cameras. Fig. [3.2 shows several frames from this dataset, showing examples
of falls and ADL events.
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3.4 Depth Sensor data

Depth data provide access to an extra dimension, hence, activity is also captured
when the person is moving towards or away from the sensor. The depth sensors are
calibrated and the silhouette of the objects or people is measured in millimetres
without any extra software development as these sensors come with their own

software.

Minimal camera setup is required in terms of calibration and synchronisation to
avoid complications discussed in [2] where several cameras were used. Without a
calibrated camera it can be difficult to measure the physical characteristics of a
person such as their height or the bounding box in 3D space. Also, a monocular
calibrated camera can provide depth estimation when intrinsic camera parameters
are known and tracked objects are of known size. Stereo cameras also provide
a solution to the above issues, such as the ZED [10I]. The main issue using
this particular camera is its cost as well as the required hardware (GPU) to run
it. Furthermore, RGB (2D) video processing is a difficult task when it comes to
track human motion and maintain shape information on a cluttered background.
Data processing of depth videos using software such as OpenNI, Kinect SDK, and
Orbbec Body Tracking SDK provides such measurements of 3D bounding boxes
since the person tracker is taking into account only depth data and not colour

information, regardless of camera location.

Normal light conditions are required to use an RGB camera system, meaning that
lights are required to be continuously on. The effect of this is to have a system
where falls happening at dark areas are missed e.g. a fall occurs at night when the
person avoids to turning the lights on. The Kinect depth camera for example relies
on infra-red illumination and therefore, the signal contains valid information even
in complete darkness. A depth camera can be used continuously indoors without

complications and changes of light conditions.

Depth data hides the person’s facial and other physical characteristics as the for-
mat of the video stream (disparity map) as well as the distance from the sensor

contribute to maintain personal privacy.

Such inexpensive depth sensors developed by PrimeSence and sold Microsoft in
2010 will be briefly discussed. Kinect I, II and Orbbec Astra are some of these
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sensors which researchers used for data collection. The next section discusses the

technical details and deployed software.

3.4.1 Depth sensors, OpenNI and Microsoft Kinect SDK

Several depth sensors have been developed since the arrival of Kinect I released in
2010 by Microsoft. It uses three types of sensors: an RGB camera, an IR-based
depth sensor and an acoustic sensor. The maximum range of Kinect’s IR sensor is
10 metres though the actual effective range depends on the environment. Practi-
cally, depth images are noisy beyond 7 metres and may lead to misinterpretations.
The Kinect has been widely used to develop numerous applications [102] for action

recognition.

OpenNI [103] is an open source tool from PrimeSense [104] which provides access
to the depth information regarding human subject’s detection and tracking and

articulated pose estimation as well as gesture and motion recognition.

3.5 Public RGB-D datasets

More recently RGB-D datasets have become publicly available for evaluating fall

detection algorithms. The following briefly summarises this composition.

3.5.1 TST Fall Detection v2

The TST Fall Detection v2 [3] is an RGB-D dataset recorded using Microsoft
Kinect v2 and two accelerometers placed on the wrist and waist of the subjects.
Each subject performed 4 different ADLs (i.e. sitting down, walking and picking
up an object from the floor, walk back and forth, lie down on the mattress) and
4 fall types (i.e. falling flat to the floor towards the front, side or backwards or
seated on the floor after a backward fall). Nevertheless, the different types of falls
conclude on the floor and actions appear rigid and staged. This particular dataset
is delivered by 11 subjects of unknown age, height or weight although the authors
record some variation in height (1.62-1.97 m). The actions are extracted from a

long sequence, i.e. the fall event is isolated from any other actions such as walking,
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FIGURE 3.4: Visuals from the UR Fall Detection dataset [4] : a hesitated fall

before falling. The format of data makes this dataset difficult to process and as
a result, this dataset is not used for evaluating other algorithms in the literature
(i.e. is the less preferable dataset). Fig. shows visuals from this dataset where

fall or ADL events are happening in front of the sensor.

3.5.2 UR Fall Detection

The UR Fall Detection [4] is another dataset providing acceleration fall data and
video (RGB and depth). It has been collected using a two camera configuration,
one parallel to the floor and the other mounted on the ceiling. Annotations of
other features, e.g. those characterizing the bounding box around the person, are
also provided. The dataset consists of falls belonging to two categories: falls from
standing position and falls from sitting on a chair. This is one of the most popular
datasets that has been used by many other researchers for their evaluation and
comparisons as it is very easy to process as its format is in PNG where pixel
intensity denotes the correct depth (this involves a calculation according to sensor
type). Nevertheless, it is only a small dataset of 5 subjects performing only 15
walking to rigid falls and 15 seated falls. Subjects clearly hesitate when performing
a fall as seen in Fig. [3.4] where falls terminate on the floor without any cushioning
mattress. Notice how the actor tries to reduce the impact by resisting using his

arms.
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FIGURE 3.5: Visuals from the SDUFall dataset [5] : fall events at top row,
ADLSs on lower row

3.5.3 SDUFall

The SDUFall dataset [5] is one of the largest datasets comprising data captured
from 20 people performing different types of falls (backwards, sideways) and 5
different ADLs (bending, squatting, sitting, lying and walking), with each subject
repeating each action 10 times. In each repetition, the actors may or may not carry
large objects, turn a light on or off, or change direction and position relative to the
camera. This is another dataset where although there is a larger set of participants,
the physical characteristics of each is not recorded. Many researchers have used
this dataset as it has 200 fall samples in depth, RGB and skeleton, distributed in
.avi format and text files. Fig. [3.5 shows visuals from this dataset wherein the
top row a fall occurs and in the lower row is picking up an object from the floor

while holding a briefcase.

3.5.4 University of Texas datasets

Three different datasets were collected at the University of Texas:

The Falling Detection dataset [105] has been collected in a laboratory-based
simulated apartment set-up, with two Kinects mounted at opposite upper corners
of the room. Six subjects perform 26 falls and several ADLs such as picking up a
coin from the floor, sitting down on the floor, tying shoelaces, lying down on the
bed, opening the low drawer which is close to the floor, jumping on to the floor,
and lying down on the floor. The recording provides only depth data and there is

no information about the participants or the camera setting.

The EDF dataset [6] extends the previous datasets in terms of data collection.
The setting has remained the same in a simulated apartment where two Kinects

have been installed to capture the events from two different directions, leading
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FIGURE 3.6: Visuals from EDF [6] and OCCU [7] datasets. Top row: falls
repetition over four angles, lower row: occluded fall behind a bed

to a total of 320 sequences. In addition, 100 sequences of 5 different ADLs that
could be associated with falls are recorded such as “pick up an object”, “sit on

the floor”, “lie down on the floor”, “tie shoelaces”, and “do a plank exercise”.

The OCCU dataset [7], as the EDF set, also uses the same setting. The main
feature of this dataset is the presence of occluded falls for which the end of the
action is completely occluded by an object such as a bed. Five subjects simulated
12 falls, 6 for each of the two viewpoints. Similarly to the EDF dataset, 80
sequences of actions that can be confused with falls are also provided. This is the
only dataset where occlusions are introduced. Fig. shows visuals from these
datasets, where on the first row a fall occurs with different direction towards the

sensor, whilst in the lower row an occluded fall occurs.

3.5.5 ACT42 dataset

The ACT42 dataset [§] mainly focuses on facilitating practical applications, such
as smart house or e-healthcare, and contains 14 daily activities such as: Drink,
Make Phone Call, Mop Floor, Pick Up, Put On, Read Book, Sit Down, Sit Up,
Stumble, Take Off, Throw Away, Twist Open and Wipe Clean. Two categories
of falls are considered, namely Collapse (fall due to internal factors i.e. heart
attack, stroke etc.) and Stumble (fall due to external obstacles). The dataset was
captured by 4 Kinect sensors from different heights and view angles. This is one of
the first datasets showing data of collapsing fall event videos. Nevertheless, in the
majority of those videos, it is noticeable how subjects hesitate to fall in a vertical
direction towards the ground. Data regarding participants physical characteristics

is not available and the sensors positions, although different in every capturing
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FIGURE 3.7: Visuals from the ACT42 dataset [8]. Events captured from four
views in RGB-D

scenario, is not recorded (e.g. height of sensor). Visuals from this datasets are

seen in Fig. where every event is captured by four cameras.

3.5.6 Daily Living Activity Recognition

The Daily Living Activity Recognition dataset [9] has data of subjects performing
five activities related to falling event including standing, fall from standing, fall
from sitting, sit on a chair, and sit on the floor, captured using a Kinect sensor.
RGB, depth and skeleton data were provided in this dataset in 150 different data
files, nevertheless, only 50 of those are available for public retrieval. Subjects
perform events in-front of the sensor and without any occluded scenes. Other
data is not recorded from the participants or sensor location. Fig. shows

several events from the dataset.

3.5.7 NTU RGB+D Action Recognition Dataset

This dataset [10] appears to have the most video samples of any set discussed in
this chapter. This is a dataset not particularly prepared for falls as it contains
only 40 fall events captured from different angles. The falls are not as realistic as
we have seen in other studies which focus on the subject. The authors claim that
there is a human variability on subjects such as age, height and weight, but this
information is not made available. There are videos where the fall event does not
conclude to a resting place on the floor, but the subject stops the fall and holds on
with their hands. Falls appear to be conducted with minimum risk and hesitation
is obvious. The fall actions appear without occlusions from objects. Currently, at
the time of writing this work, this dataset has not been used for evaluating any
fall detection algorithm. Fig. shows visuals from the dataset where the first

two images show ADL events and the last image a sideways fall.
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FIGURE 3.8: Visuals from the Daily Living Activity Recognition dataset [9].
Several ADLs and fall samples of RGB-D and skeleton

FIGURE 3.9: Visuals from the NTU RGB+D Action Recognition dataset [10].
Several ADLs and fall samples in RGB-D

3.5.8 UWA3D Multiview Activity dataset

Dataset [11] consists of 30 ADLs and a falling down event performed by 10 subjects
(hand waving, one hand punching, sitting down, standing up, holding chest, hold-
ing head, holding back, walking, turning around, drinking, bending, running, kick-
ing, jumping, moping floor, sneezing, sitting down (chair), squatting, two hands
waving, two hand punching, vibrating, irregular walking, lying down, phone an-
swering, jumping jack, picking up, putting down, dancing, and coughing). To
achieve multi-view, five subjects performed 15 activities from four different side
views. Nevertheless, only the front view is available at the time of this study for
retrieval. Subjects’ physical characteristics data do not appear anywhere in the

information related to participants. Visuals are shown in Fig. [3.10| where on the
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FIGURE 3.10: Visuals from the UWA3D dataset [L1]. Performance of a bending
over (top row) and falling (low row)

first row a person is bending over, while on the lower row the person performs a

collapse with noticeable hesitation.

3.6 Accelerometer based dataset

3.6.1 Sisfall dataset

This dataset [I06] records accelerometer and gyroscope fall data including the sub-
jects’ height, weight and sex alongside falling data provided by 3 different devices
(two accelerometers and one gyroscope) mounted on the waist of the participants.
Unfortunately, only a few videos are provided from this study just for viewing
purposes and to distinguish the different types of falls. This is also a dataset
where elderly subjects perform ADL events. Data from this study has been used

for evaluating several algorithms and assumptions made in Chapter 6.

3.7 GM depth dataset

At the start of this study (2011), no depth-based public datasets were available
for training and validation purposes. Fall events and scenarios were simulated by

humans using falling scenarios seen in real-life as well as fall videos available online
in RGB video.

Hence an in-house dataset was created using Kinect I sensor. The Kinect IR depth
sensor captures videos at 640 x 480 resolution at 30 fps. The fall actions were
recorded from a direct view of the scene making sure that the fall event is fully

captured. For that reason, the Kinect has