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Abstract
Wepresent the results of an investigation of the speed of a radially infalling test particle
crossing the event horizon of a black hole within a Schwarzschild spacetime. One finds
that the speed as measured by a special class of observers, at rest outside the horizon
and static inside the horizon, increases when the test particle approaches the horizon
but decreases inside the horizon. The corresponding situation regarding black holes
possessing both outer and inner horizons is also briefly discussed.

Keywords Schwarzschild spacetime · Black hole · Velocity · Speed · Signal
exchange · Event horizon · General relativity

1 Introduction

It is well-known that the speed of a test particle, freely falling towards the event
horizon of a black hole in Schwarzschild spacetime tends to the value of the speed
of light in a vacuum, c, when measured by observers positioned outside the horizon.
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Poland

4 Faculty of Fundamental Problems of Technology, Department of Optics,
Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław,
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This result is independent of the initial conditions (see e.g Landau and Lifshitz [1]).
An appealing feature of this result is that it may be interpreted as a manifestation
of energy conservation (see also Sect. 2 below). A special case of this is free fall
from infinity—then one finds coincidence with the classical approximation, i.e. the
Newtonian escape velocity, from a spherical object of mass M , is v = √

2M/r (see
e.g. [2]). The Schwarzschild spacetime geometry is described by the metric

dτ 2 = gttdt
2 − g−1

tt dr2 − r2dθ2 − r2 sin2 θdφ2 (1)

where gtt = 1 − rS
r , rS = 2M , M denotes the mass of the source of the gravitational

field and we have used normalized units where c = G = 1. This metric reveals a
(geometric) singularity, an event horizon at rS . This can be avoided by the use of
other coordinate systems. One of these is the Gulstrand–Painleve approach, where the
coordinate time t is substituted by the proper time of the observer radially infalling
from infinity, tin f . The resulting metric is singularity free,

dτ 2 = gttdtin f
2 − 2

√
2M

r
dtin f dr − dr2 − r2 dθ2 − r2 sin2 θ dφ2 (2)

Generalization of this approach has led to an interesting perspective that has inspired
laboratory analogues of black holes [3–5]. It has been claimed that a black hole space-
time resembles a river flowing toward a waterfall: the closer to the waterfall the faster
it flows. At some point, the point of no return, it exceeds a critical value of the speed,
such that nothing can propagate upstream. As shown by Hamilton and Lisle [2] an
interpretation of a space radiallyflowing inward at theNewtonian escapevelocity could
be applied to the case of a Schwarzschild black hole. The point of no return represents
the horizon of the black hole: the value of the escape velocity reaches, and inside
the horizon, exceeds c. In pioneering work, Unruh [6] suggested a condensed matter
realization of such a strong gravitational field: in fluids there might exist acoustic
horizons separating sub- and supersonic flows. Such a horizon would play the role
of the event horizon of black holes. Recently, experimental creation of horizons were
reported in a variety of systems: microcavity polaritons [3], water channels [7], atomic
Bose–Einstein condensates [8,9], and others [4,5]. Outside the horizon, all of the “fish”
(an analogy for both massive and massless objects), can make their way against the
flow but inside the horizon everything is carried toward the ultimate fate, i.e. the central
singularity [2]. In this context one can ask how does the speed of the radially infalling
test particle change inside the horizon? One might reasonably expect that it would
further increase inside the horizon as it fell through. However the critical question
of how speed is measured in such circumstances arises. But, as explained elsewhere
in extended discussions [10–15], the speed of the test particle crossing the horizon
and measured within a moving frame of reference, which also simultaneously crosses
the horizon, remains smaller than c. Although some aspects of the problem of the
interpretation of the value of the speed of a freely falling test particle outside, [1,15]
and on the horizon have been discussed and presented in a series of papers [11–14]
it appears that the particular context of this phenomenon remains worthy of greater
clarification. It should be noted that the problem of the speeds inside the horizon
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presented by Hamilton [10] dealt with a somewhat different perspective from that
considered here and test bodies crossing the horizon were not considered.

The aim of this paper is to discuss speeds of radially infalling test particles as
measured inside (but also on and outside) the horizon in a consistent manner. We
propose to consider two distinct classes of observerswhomay carry out ameasurement
on the speed of an infalling test particle, linking the outcomes of measurements inside
the black hole to observations outside the horizon. One of these observers, located
within an infalling system, would measure, by recording incoming signals from a
static source located outside the horizon, the rate of change of their redshift, and relate
this rate to a notional speed; the other is an observer residing “at rest” inside the
horizon: the counterpart of the static observer outside the horizon. It is interesting
to note that even though the results of these two observers seem to be contradictory,
nonetheless the final conclusion turns out to be self-consistent, albeit unexpected. We
shall consider a spherically symmetric, static spacetime (Eq. 1) but in a later section
other kinds of black holes, where two types of horizons exist, will be discussed. The
paper is organized as follows. In the following section some basic principles and results
regarding free fall in Schwarzschild spacetime are recapitulated and the frequency
ratio-speed correlation outside the horizon is derived. In Sect. 3 the frequency ratio
inside the horizon is determined by means of Kruskal–Szekeres coordinates and the
speed as measured by a so-called T-observer is found leading to the frequency ratio-
speed (anti)correlation inside the horizon. The discussion is generalized in Sect. 4: the
speed of the test particle in other kinds of black holes where outer and inner horizons
are present is briefly analyzed. In the final section, a discussion and concluding remarks
are presented.

2 Outside the horizon: frequency ratio-speed correlation

In radial free fall (RF) of a test particle, its velocity vector has two non-vanishing
components

uRF = ut∂t + ur∂r (3)

that are found from the normalization condition

u2 = uαuα ≡ gαβu
αuβ = 1 (4)

and energy conservation

ut = gttu
t = ε (5a)

ur = −
√

ε2 − gtt (5b)

where ε denotes energy per unit mass; ε = √
gtt(r0) for the test particle starting at r0.

A static observer, located at r , whose four-velocity vector has only a non-vanishing
t-component (t-observer, t-o),
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ut-o = ut∂t = g−1/2
tt ∂t ,

measures the speed V of the test object RF through [13,15],

uα
t-ouRF,α = gαβu

α
t−ou

β
RF = 1√

1 − V 2
(6)

and finds

V 2 = ε2 − gtt(r)

ε2
. (7)

In the case of free fall from infinity ε = 1 and V 2 = 2M
r is the Newtonian escape

velocity. In the general case, the speed (7) steadily increases and its value approaches
the value of the speed of light in a vacuum

gtt(r) → 0 ⇒ V 2 → 1

as the test particle approaches the horizon, r → rS .
One can imagine that an observer located in RF’s frame of reference exchanges

electromagnetic signalswith an observer arranged at a starting point r0, hereafter called
the Mother Station (MS). These signals follow radial null geodesics, characterized by
a tangential four vector k = kα∂α , kα = dxα

dσ
, forming by definition a null vector

gαβk
αkβ = 0 (8)

where σ is an auxiliary parameter of such a light-like (photon) world-line. The com-
ponents of k are given as:

kt = ω∞
gtt

, kr = ∓ω∞ (9)

with the∓ sign corresponding to incoming and outgoing rays. The frequencymeasured
by observer O characterized by velocity vector uO is:

ωO = gαβu
α
Ok

β. (10)

Applying (10) one finds that RF (r -receiver), records MS’s (s-sender) signals as red-
shifted according to (see Fig. 1)

ωr
RF

ωs
MS

= 1

1 +
√

ε2−gtt(r)
ε2

≡ 1

1 + V
. (11)

MS records RF’s signals as critically redshifted

ωr
MS

ωs
RF

= 1 − V . (12)
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Fig. 1 Monotonic and continuous change of the frequency ratio
ωr
RF

ωs
MS

outside and inside the horizon for

ε = 1, fall from infinity. The vertical line represents the horizon located at rS = 2 (distance expressed in
M)

The results (11) and (12) manifest a combination of distinct effects: gravitational
contributions and kinematic effects related to the motion of RF [16]. Their charac-
teristic features are: the form and the limiting value of the frequency ratio - speed
correlation. When the falling system approaches the black hole horizon,

• the frequency redshift recorded by RF tends to 1/2,
• the frequency redshift recorded at the MS tends to zero.

What would the frequency shift be inside horizon? This question, irrelevant from
the point of view ofMS, is relevant fromRF’s perspective, whowill continue to receive
signals from MS even after crossing the horizon.

To consider this one can use a coordinate system that is non-singular at the horizon
(unlike Schwarzschild coordinates), namely Kruskal–Szekeres coordinates.

3 Inside the horizon: frequency ratio-speed (anti)correlation

In order to carry out a frequencymeasurement inside the horizon one transforms radial
incoming geodesics, time-like, (5) and light-like (9), from Schwarzschild coordinates
into the Kruskal–Szekeres coordinate system (see “Appendix”). Using Eq. (A.6) one
obtains the following expressions for RF’s velocity components:

uv = 4M

K (u2 − v2)

⎛
⎝uε − v

√
ε2 − K (u2 − v2)

16M2

⎞
⎠ , (13a)

uu = 4M

K (u2 − v2)

⎛
⎝vε − u

√
ε2 − K (u2 − v2)

16M2

⎞
⎠ , (13b)
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[c.f. Eq. (5)], and expressions for the wave vector components [cf. Eq. (9)]

kv = 4Mω∞
K (u + v)

= −ku . (14)

It should be emphasized that the wave vector components, (14) and the velocity
vector components, Eq. (13) behave smoothly in the horizon’s vicinity, u = v (see
“Appendix”). Hence the frequency ratio of signals emitted by the MS and recorded by
RF is given as follows

ωr
RF

ωs
MS

= 1

1 +
√
1 − K (u2−v2)

16M2ε2

. (15)

This result turns out to be a well-defined function both outside, r > rS (u > v) and
inside, r < rS (u < v) the horizon.

Outside the horizon formula (15) reproduces the result obtained within the
Schwarzschild coordinates, Eq. (11): the frequency redshift of the incoming light from
the Mother Station tends, from above, to 1/2 as the speed of the infalling observer, RF
tends to the speed of light. Then it takes the value 1/2 on the horizon and decreases
further to zero inside the horizon. Hence, an outside-horizon property of the frequency
shift, namely a monotonic decrease, is preserved also inside the horizon.

What about the other side of this relation, the linearity of the inverse frequency shift
and the speed of RF, inside the horizon? It seems to be amatter of speculation requiring
verification. On the contrary, anybody who would measure the speed of a test particle,
by definition, has to find a value smaller than 1. One can ask: what is the speed of
RF as measured by observers residing inside the horizon? There is a special class of
such observers who play a role similar to the static observers outside the horizon, t-o.
Those observers inside the horizon, labeled here as T-o are characterized by a velocity
vector whose non-vanishing components are [17,18]

uv = v√
K (v2 − u2)

,

uu = u√
K (v2 − u2)

.
(16)

As underlined elsewhere various observations made by T-o, inside the horizon, may
resemble those made by t-o, outside the horizon. Nevertheless, t-o and T-o differ in a
fundamental manner: while the former ones must be supported in position since they
are static observers, the latter must follow a geodesic trajectory.

The perception by T-o of the speed Ṽ of a test particle coming through the horizon
and passing by follows from [c.f. Eq. (6)]

uα
T -ouRF,α = 1√

1 − Ṽ 2
=

√√√√ε2 + K (v2−u2)
16M2

K (v2−u2)
16M2

. (17)
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Fig. 2 Values of squared speeds V 2 measured by t-o (outside the horizon) and Ṽ 2 measured by T-o (inside
the horizon) for different test particles in a Schwarzschild metric. The red curve corresponds to ε = 1
(Ṽ 2 = r/rS ), the green curve to ε = 0.5 and the blue one to ε = 0.2. The vertical line represents the
horizon located at rS = 2 (distance expressed in M)

Hence, the speed of the test particle as measured by the T-observer inside the horizon
is expressed as:

Ṽ 2 = ε2

ε2 + K (v2−u2)
16M2

(18)

i.e. it takes an inverse form to the one measured by a t-observer located outside the
horizon [c.f. Eq. (7)]. Themeaning of result (18) is the following: from the point of view
of a T-observer, the speed of a radially infalling test particle that crosses the horizon
u = v and heads towards the ultimate singularity, decreases from the value of the

speed of light to zero, as K
r→0−−→ ∞. The speed of the test particle radially infalling

as measured by t-observers outside the horizon and by T-observers is illustrated in
Fig. 2.

4 Speed between the outer and inner horizons

The three other kinds of black holes, charged (Reissner–Nordstrom, R-N), rotating
(Kerr), and both charged and rotating (Kerr–Newman, K-N), apart from the event
(outer) horizon, possess an inner horizon too. In such a case one can ask both for the
status of observers at rest between the horizons and their measurements of the speeds
of a test particle. In order to accomplish this task, one can make the following remark.

The considerations above concerning the interior of the Schwarzschild black hole
were carried out employing singularity-free Kruskal–Szekeres coordinates. But the
outcomes of these analyses can be reproduced when Schwarzschild coordinates are
applied inside the horizon. However, one must remember then that for r < rS, gtt =(
1 − rS

r

)
< 0: a time-like Killing vector is converted into a space-like one. Then t-

and r - coordinates interchange their roles: r plays the role of the temporal coordinate
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and t plays the role of a spatial coordinate. One can apply this in a discussion of the
speeds between the horizons.

The R-N metric of the isotropic, static, charged black hole is

dτ 2 = gttdt
2 − g−1

tt dr2 − r2dθ2 − r2 sin2 θdφ2, (19)

where

gtt = 1 − rS
r

+ Q2

r2
. (20)

There exist outer “+” and inner “−” horizons that are determined as zeros of gtt

r RN± = 1

2

(
rS ±

√
r2S − 4Q2

)
, (21)

Q denotes the charge (Q < M). Time-independence of the metric tensor results in
energy conservation for r > r+ and in consequence the velocity vector of the radially
infalling test particle takes the form (3), (5) also in this case:

uRF = ε

gtt
∂t −

√
ε2 − gtt∂r . (22)

A representative t-o of a class of observers at rest above the horizon r1 > r+

Ut-o = 1√
gtt(r1)

∂t , (23)

measures the speed of the test particle RF and finds the same result as in the case of
Schwarzschild space-time: its value

V 2(r1) = ε2 − gtt(r1)

ε2
(24)

tends to the value of the speed of light in a vacuum, as r1 → r+. The counterpart of this
class of observers, arranged between the horizons, r− < r < r+ includes T-observers,

UT -o = −√−gtt(r)∂r . (25)

Measuring the speed Ṽ of the test particle (22) between the two horizons, T-o finds

Ṽ 2(r) = ε2

ε2 − gtt(r)
. (26)

This speed, whose value tends to 1 at the outer horizon, decreases to a minimal
value (a non-universal feature, depending on the initial conditions, i.e. on ε) that is
reached at
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Fig. 3 Values of squared speeds V 2 measured by t-o (above the outer horizon) and Ṽ 2 measured by T-o
(between the horizons) for different test particles in the R-N metric for parameter Q2 = 0.8M . The red
curve corresponds to ε = 1, the green to ε = 0.5 and the blue to ε = 0.2 . Vertical lines represent horizons
located at r = 2

5 , 1 35 (distance expressed in M) and the dashed line represents the point r RNm = 0.64 of the

minimal value of the squared speed Ṽ 2 [see Eq. (27)]

r RNm = 2Q2

rS
<

1

2
rS (27)

and then starts to increase towards the value 1 at the inner horizon.
Plots of the velocity of different test particles in the R-N metric measured outside

the outer horizon by t-o and between the horizons by T-o are presented in Fig. 3.
In the case of rotating black holes, uncharged and charged, represented by Kerr and

Kerr–Newman space-times respectively, the situation above the horizon is specific due
to the presence of the ergosphere: there are no observers at rest inside the ergosphere.
One can consider then a special case of a test particle falling along an axis of symmetry.
In such a case the line element and the metric are represented as follows:

dτ 2 = gttdt
2 − (gtt)

−1 dr2, (28)

gtt = �

ρ2 , (29)

where ρ2 = r2+α2,� = r2−rrS+α2+Q2,α is proportional to angular momentum,
and Q = 0 represents Kerr spacetime. The outer and inner horizons are defined as

r K N± = 1

2

(
rS ±

√
r2S − 4

(
α2 + Q2

))
. (30)

In this case the results are the same as those derived for the R-N metric Eqs. (22–
27), with gtt substituted by (29). The speed of the test particle (24) increases as it falls
in towards the outer horizon (30): its value tends to 1 with respect to resting observers
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outside the horizon, t-o (23). Between horizons its speed with respect T-o (24) first
decreases to a minimal value, reached at

r K N
m =

⎛
⎝Q2

rS
+

√(
Q2

rS

)2

+ α2

⎞
⎠ <

1

2
rS . (31)

and then increases to 1 when approaching the inner horizon.
One can conclude then that the speed of the radially infalling test particle crossing

the region between the outer and inner horizons of the black hole reveals a universal
behavior: its value decreases to a minimal value reached at some specific instant Eqs.
(27), (31) and then increases to 1 when approaching the inner horizon.

5 Discussion

Signals coming from the Mother Station, recorded in a radially falling frame in
Schwarzschild spacetime reveal a simple form of frequency redshift,

(
ωr
RF

ωs
MS

)−1

= 1 + V , (32)

This implies that when an RF frame approaches the horizon the frequency ratio
ωr
MS

ωs
RF

decreases to the characteristic limiting value 1/2. It might be used then as a tool for
marking the horizon: the RF observer crosses the horizonwhen the frequency ratio hits
the value 1/2. Inside the horizon the frequency ratio continues to decrease towards zero
at the ultimate singularity. It might appear as if the speed of the test particle reaches
the value of the speed of light at the instant of crossing the horizon and continues
to increase further indefinitely as r → 0. This seems to comply with a river model
interpretation [2–5].

However, measurement of the speed Ṽ of the test particle performed inside the
horizon by the T-observer, the counterpart of the t-observer above the horizon, provides
a different outcome. Namely, the T-observers whose specific property in common is
that they reside inside (or between) the horizon(s) and their geodesics

UT -o = A

gtt
∂t −

√
A2 − gtt∂r

∣∣∣
A=0

= −√−gtt∂r (33)

are of conserved (zero) momentum, A = 0 determine the speed of RF inside horizon
Ṽ as monotonically decreasing from a limiting value of 1 (at the horizon) towards the
opposite limit 0 at the ultimate singularity. Then an inverse frequency ratio-inverse
speed correlation

(
ωRF

ωMS

)−1

= 1 + Ṽ−1 (34)

is found inside the horizon.
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There are two specific aspects of this result. The first is that speeds outside the

horizon, V =
√

ε2−gtt
ε2

and inside the horizon, Ṽ =
√

ε2

ε2−gtt
are determined inversely.

This is a common property for a both black hole with a single horizon (Schwarzschild
spacetime) and for black holes with two horizons, an outer and inner one. The expla-
nation of this, in a sense, universal relation is as follows. The Killing vector, which is
time-like outside the horizon becomes space-like inside the horizon. In Schwarzschild
spacetime this is manifested by the interchange of the roles of the coordinates t and
r . Indeed, as indicated by Doran et al. [18] a line element inside the horizon of the
(empty) Schwarzschild spacetime is

dτ 2 =
(rS
T

− 1
)−1

dT 2 −
(rS
T

− 1
)
dR2 − T 2

(
dθ2 + r2 sin2 θdφ2

)
. (35)

That is r → T and t → R. The speed of the radially infalling test particle, regarded
as the ratio “distance”/“time”, is therefore inversely related in the exterior and interior
of the horizon. This is also the case for other kinds of spherically symmetric and static
black holes and the case of axial motion for rotating black holes.

The other specific feature of these considerations is the diverse behavior of the
speed inside the horizon. It is found to monotonically decrease from its (asymptotic)
value 1 at the horizon to zero at the ultimate singularity in the case of Schwarzschild
spacetime. In other cases, non-monotonic behavior is found: it tends to the value 1
at both outer and inner horizons and takes its minimal value at the instant rm corre-
sponding to the maximal value of |gtt(r)|. This property seems to be worthy of more
extended discussion. We will start from the case of a Schwarzschild black hole finding
it illuminating in other cases as well. The space inside the horizon [see Eq. (35)], is a
dynamically changing [19], cylindrical-like (see e.g. [20]) analogue of a cosmological
situation [18]. It is homogeneous along its (cylindrical) axis - that is, the t-coordinate.
It was argued by Doran et al. [18] that there is an expansion in such a cosmology
along this direction; one also can find a contraction taking place perpendicularly to
this direction [21]. Hence, one would expect, and actually one does find, such an
anisotropic cosmology to be accompanied by an appropriate Doppler-like frequency
shifts: a redshift for an expansion along the t-direction and a blue shift for the con-
traction occurring perpendicularly to this axis. Thus the observed monotonic decrease
of the speed of a test particle inside the horizon reflects the (monotonic) expansion of
the interior of the Schwarzschild black hole along the t-direction.

In the case of anR-Nblack hole, the spacetime between the outer and inner horizons,
initially rm < r < r RN+ expands, then the expansion stops, r = rm and contraction
follows, r RN− < r < rm . This might be illustrated with an appropriate Doppler-like
frequency shift [21]. And this is mimicked by the behaviour of the speed of a test
particle: initially it decreases, reaching a minimal value at r = rm and then increases
(asymptotically) to 1 as r tends to the inner horizon, r RN− . The same phenomenon take
place in the case of axial motion of a test particle between the horizons of rotating
black holes.

Let us underline the main outcome of these considerations. In the radial infall of
a test particle in Schwarzschild spacetime, its speed as measured by static observers
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outside the horizon, t-observers and resting inside the horizon, T-observers is given
by inverse expressions for t- and T- due to the interchange of the roles of radial and
temporal coordinates. The decreasing value of the speed inside the horizon is a result
of expansion of the horizon’s interior (the region within the black hole) along the
direction of homogeneity, the t-direction. This claim is confirmed when observing
radial fall within Reissner–Nordstrom spacetime or a fall along the symmetry axis
for Kerr and Kerr–Newman spacetimes. In those cases, where an internal horizon has
been developed, the dynamics of the interior (along the t-direction) is such that final
contraction follows an initial expansion and the speed reveals the same behaviour: a
final increase follows its initial decrease.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Appendix

Coordinates in the Kruskal–Szekeres (K-S) coordinate frame (e.g. [19]) are usually
denoted by v, u, θ, φ [c.f. (1)] and the transformation (t, r) → (v, u) is given by:

v =
∣∣∣ r

2M
− 1

∣∣∣1/2 er/4M
{
sinh

( t
4M

)
r > rS,

cosh
( t
4M

)
r < rS .

u =
∣∣∣ r

2M
− 1

∣∣∣1/2 er/4M
{
cosh

( t
4M

)
r > rS,

sinh
( t
4M

)
r < rS .

(A.1)

The last two coordinates (θ, φ) remain those of Schwarzschild angular coordinates.
The transformation (A.1), above the event horizon r > rS , is describedby the following
matrix,

∂(v, u)

∂(t, r)
=

[ 1
4M u 1

4Mgtt
v

1
4M v 1

4Mgtt
u

]
. (A.2)

Inverting this matrix gives

∂(t, r)

∂(u, v)
= D−1

[
1

4Mgtt
u − 1

4Mgtt
v

− 1
4M v 1

4M u

]
, (A.3)

where,

D = det

∣∣∣∣∂(v, u)

∂(t, r)

∣∣∣∣ = r

32M3 e
r
2M .
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Fig. 4 Kruskal coordinates
v − u and radial geodesics. The
submanifold v + u > 0, covers
the black hole exterior (I) and
interior (II). Hyperbolae with
asymptotes u = ±v represent
“surfaces” of constant radius r ;
straight lines, passing through
the origin, represent
“surfaces”of constant time t .
Ingoing and outgoing radial null
geodesics are ∓45◦ straight
lines. A time-like geodesic for a
test particle is sketched
schematically

By performing transformation (A.3) one finds the corresponding metric tensor in K-S
coordinates

Kγ δ = gαβ

∂xα

∂ yγ

∂xβ

∂ yδ
, (A.4)

which is regular i.e. it is free of coordinate singularities. In fact the line element,
expressed in K-S coordinates, is

dτ 2 = K (dv2 − du2) − r2dθ2 − r2 sin2 θdφ2 (A.5)

where K = D−1 (Fig. 4).
Using Eq. (A.4) one obtains the expressions for the velocity components (5) as

follows:

uv = 1

4Mgtt

(
uε − v

√
ε2 − gtt

)
, (A.6a)

uu = 1

4Mgtt

(
vε − u

√
ε2 − gtt

)
, (A.6b)

and expressions for the wave vector

kv = ω∞(u − v)

4Mgtt
= −ku . (A.7)
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One can check that these velocity components are smooth functions when crossing
the horizon. Indeed, performing the transformation of the rhs of Eq. (A.6)

uv = 1

4Mgtt

[
(u − v)ε + v

(
ε −

√
ε2 − gtt

)]
, (A.8a)

uu = 1

4Mgtt

[
−(u − v)ε + u

(
ε −

√
ε2 − gtt

)]
, (A.8b)

and using the relation

u2 − v2 = (4M)2K−1gtt (A.9)

one finds that the components of the velocity vector

uv = 4M

K

ε

u + v
+ 1

4M

v

ε +
√

ε2 − K
16M2 (u2 − v2)

, (A.10a)

uu = −4M

K

ε

u + v
+ 1

4M

u

ε +
√

ε2 − K
16M2 (u2 − v2)

, (A.10b)

are smooth functions above and inside the horizon u = v.
Also the wave vector components, (A.7) behave properly [see Eq. (23)] in the

neighborhood of the horizon:

kv = 4M

K

ω∞
u + v

= −ku . (A.11)
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