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STRUCTURED ABSTRACT  

PURPOSE OF REVIEW: We present a current perspective of epigenetic alterations that can 

lead to cardiovascular disease (CVD) and the potential of dietary factors to counteract their 

actions. In addition, we discuss the challenges and opportunities of dietary treatments as 

epigenetic modifiers for disease prevention and therapy.  

RECENT FINDINGS: Recent epigenome-wide association studies along with candidate gene 

approaches and functional studies in cell culture and animal models have delineated mechanisms 

through which nutrients, food compounds and dietary patterns may affect the epigenome. Several 

risk factors for CVD, including adiposity, inflammation and oxidative stress have been associated 

with changes in histone acetylation, lower global DNA methylation levels and shorter telomere 

length. A surplus of macronutrients such as in a high fat diet or deficiencies of specific nutrients 

such as folate and B-vitamins can affect the activity of DNA methyltransferases and histone 

modifying enzymes, affecting foetal growth, glucose/lipid metabolism, oxidative stress, 

inflammation and atherosclerosis. Bioactive compounds such as polyphenols (resveratrol, 

curcumin) or epigallocatechin may activate deacetylases SIRTs, histone deacetylases or 

acetyltransferases and in turn the response of inflammatory mediators. Adherence to 

cardioprotective dietary patterns, such as the Mediterranean diet (MedDiet), has been associated 

with altered methylation and expression of genes related to inflammation and immuno-

competence. 

SUMMARY: The mechanisms through which nutrients and dietary patterns may alter the 

cardiovascular epigenome remain elusive. The research challenge is to determine which of these 

nutriepigenetic effects are reversible, so that novel findings translate into effective dietary 

interventions to prevent CVD or its progression. 
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COMMON ABBREVIATIONS: AMPK, Adenosine monophosphate-activated protein kinase; 

ATP, Adenosine Triphosphate; CAD, coronary artery disease; CHD, coronary heart disease; 

CpG, Cytosine-phosphate-guanine; CVD, cardiovascular disease; DNMT, DNA 

methyltransferase; EGCG, epigallocatechin-3-gallate; EWAS, epigenome-wide association study; 

GWAS, genome-wide association study; HAT, histone acetyltransferase; HDAC, histone 

deacetylase; HMT, histone methyltransferase; KDM, lysine demethylases; LTL, leukocyte 

telomere length; MedDiet, Mediterranean diet; MI, myocardial infarction; MMP, matrix 

metalloproteinase; mRNA, Messenger ribonucleic acid; miRNA, Micro ribonucleic acid; mTOR, 

mammalian target of rapamycin; NAD, Nicotinamide adenine dinucleotide; NADH, 

Nicotinamide adenine dinucleotide-reduced form; NAM, Nicotinamide; NF-κB, nuclear factor 

κB; nDNA, nuclear DNA; PBMCs, peripheral blood mononuclear cells; PUFA, polyunsaturated 

fatty acid; ROS, reactive oxygen species ; SAH, S-adenosyl homocysteine; SAM, S-

adenosylmethionine; SFA, saturated fatty acid; SIRT, Sirtuin; SNP, single nucleotide 

polymorphisms; TIMP, tissue inhibitor of metalloproteinases; TG, triglycerides; TGFβ, 

transforming growth factor β; TNF-α, tumor necrosis factor alpha; TF, Transcription factor; UTR, 

untranslated region.   
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INTRODUCTION  

Cardiovascular disease (CVD) is a major global cause of morbidity and mortality [1], whose 

prevalence is predicted to further increase in both developing and developed countries [2]. The 

pathophysiology of CVD is characterised by endothelial dysfunction, vascular inflammation, 

atherosclerosis, fibrosis and thrombosis, with multiple pathways simultaneously perturbed [3]. 

The progressive remodelling and loss of flexibility that occurs during ageing of the vasculature 

contributes to the onset of CVD. Telomere attrition, epigenetic alterations and mitochondrial 

dysfunction are, among others, hallmarks of molecular damage that accumulate during ageing [4]. 

Many environmental factors that lead to CVD are mediated by epigenetic changes, which include 

posttranslational modifications to histone tails of nucleosomes (such as methylation, acetylation 

and phosphorylation), DNA methylation and non-coding RNA regulation of chromatin 

remodelling [5]. The role of diet and physical activity on CVD outcomes has been extensively 

studied [6][7], but evidence for the mechanisms by which dietary components might manipulate 

the epigenome of ageing vascular cells reversibly, perhaps, remains poor.  

Mitochondria: a cellular powerhouse of epigenetic modifiers 

Epigenetics describes the reversible and heritable changes in genes, which alter gene functions 

without affecting the DNA sequence [5]. A key component of the effect of the epigenome on 

gene expression is the assembly of DNA and proteins into chromatin. Genomic DNA in 

eukaryotic cells is wrapped around histone proteins to form nucleosomes, which comprise the 

basic building blocks of chromatin [8]. Various post-translational modifications of the histones 

affect its 3D-structure and lead either to exposure of DNA, which makes it accessible to the 

transcriptional machinery, or have the opposite effect, which results in gene silencing. In addition 



 

6 

to their primary role as the cellular ATP producers, mitochondria constitute the platform where 

most of the epigenetic modifiers or other metabolites that affect epigenetic modifications are 

formed [8]. Thus, changes in mitochondrial function are closely associated with availability of 

epigenetic modifiers (Figure 1).  

Histone acetylation – Acetyl-CoA is used as an acetyl group donor by histone acetyltransferases 

(ΗΑΤ), which mediate acetylation of nucleosomal histones, chromatin remodeling and activation 

of gene transcription. Acetyl-CoA is the main donor for acetylation of chromatin and of proteins 

involved in nDNA transcription and replication [8]. It is formed in mitochondria from glycolysis 

(catabolism of pyruvate)  or from β-oxidation of fatty acids. De-acetylation of chromatin by 

histone deacetylases (HDACs) leads to transcriptional repression. Sirtuins (SIRTs) are class III 

HDACs that couple lysine deacetylation to NAD+ hydrolysis and lead to formation of 

nicotinamide, which signals back to SIRTs by inhibiting their activity [5]. Thus, the levels of 

NAD+, NADH or NAM affect SIRT-mediated deacetylation of chromatin. NAD+, which is 

formed in mitochondria, is an obligatory cofactor for the activity of SIRT1, SIRT6 and SIRT7. 

Histone and DNA methylation - S-adenosylmethionine (SAM) is the methyl group donor for 

both histone methyltransferases (HMTs) and DNA methyltransferases (DNMTs) generated by 

methionine and ATP, which is formed in mitochondria. Methylation of lysine, arginine or 

histidine of histones has been associated with both repression and activation of transcription. On 

the other hand, DNA methylation of cytosine residues in CpG dinucleotides (CpG sites) is a 

repressive gene regulation mechanism, regulating chromatin architecture and gene transcription 

[9]. S-adenosyl homocysteine (SAH), which is formed following demethylation of SAM, 

functions as a repressor of both DNMTs and histone lysine demethylases (KDMs).  
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Histone phosphorylation – ATP is critical for phosphorylation of core histones that affects gene 

expression, as well as cell division and DNA damage repair. Phosphorylation of histones 

promotes chromatin condensation, which happens during apoptosis, DNA fragmentation, and cell 

death [10]. 

Other chromatin modifications – Mass spectrometry analyses have identified additional non-

acetyl histone acylations with hydrophobic (propionylation, crotonylation butyrylation), polar (2-

hydroxyisobutyrylation and β-hydroxybutyrylation) or acidic (succinylation, malonylation, 

glutarylation) modifiers [11]. Histone propionylation, crotonylation, butyrylation, 2-

hydroxyisobutyrylation, β-hydroxybutyrylation, and succinylation have been associated with 

increased transcription (Figure 1). On the other hand, the effect of malonylation and glutarylation 

on gene transcription remains elusive. Availability of non-acetyl epigenetic modifiers is regulated 

by synthesis of short chain fatty acids, which is mediated by Acyl-CoA synthetase short-chain 

family member 2 (ACSS2) that are eventually oxidized and provide the acyl modifiers. 

Ketogenesis, a mitochondrial process that occurs in response to low blood glucose and hepatic 

glycogen, accounts for the formation of β-hydroxybutyrate. 

The expression levels of many of the enzymes that are involved in acetylation and methylation 

processes, along with the impact of genetic changes, such as single nucleotide polymorphisms 

(SNPs), represent components of an interactive network that orchestrates changes in chromatin 

structure [8]. In that context, cellular metabolic functions that generate ATP, acetyl-CoA, NADH 

and ROS from carbohydrates and fats drive a range of epigenetic modifications. 

The epigenome and cardiovascular disease 
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The interrelationship between subendothelial accumulation of apo-B containing lipoproteins and 

inflammation is central for the pathogenesis of atherosclerosis [3]. The association of 

inflammatory markers (IL6, IL1β , IL8, high-sensitivity C-reactive protein, vascular cell adhesion 

molecule-1) and dyslipidaemias with DNA methylation in CVD has been recently reviewed [12]. 

Epigenetic changes affect endothelial function, vasomotor tone, cytokine signaling and fibrosis at 

the site of plaque formation [6][13]. Hypomethylation of genomic DNA, which is generally 

associated with increased gene expression, has been observed in several tissues, including 

vascular smooth-muscle cells, atherosclerotic lesions and peripheral blood leukocytes, of patients 

with atherosclerosis [14]. Muka et al. [13] looked at studies that examined DNA methylation of 

CpG sites in or near CVD-related genes. They reported that lower levels of methylation at long-

interspersed nuclear elements (LINE-1), a surrogate for global genomic DNA methylation levels), 

and higher methylation of Alu repeats were inversely associated with CVD risk, independent of 

established cardiovascular risk factors [13]. In addition, altered methylation patterns were found 

in genes involved in foetal growth, glucose/lipid metabolism, oxidative stress, inflammation and 

atherosclerosis in blood cells related with CVD [13].  

A recent epigenome-wide association study (EWAS) in Japanese individuals reported that 10 

CpG sites were hypermethylated and 16 hypomethylated in genomic DNA extracted from the 

aortic intima of atheromatous plaque lesions compared to control plaque-free intima [15]. One of 

the hypermethylated CpG sites was located in the long non-coding HOX transcript antisense 

RNA (HOTAIR) gene, which may be activated by thymic stromal lymphopoietin (TSLP), a 

vascular smooth muscle cell protein with anti-inflammatory and anti-oxidant effects [16]. Some 

of the hypomethylated sites were in genes encoding proteins in the Wnt signaling pathway, which 

is known to be involved in atherosclerosis [17]. Individuals with established CVD have higher 
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promoter methylation levels of various metabolism-related genes including those that encode 

metalloproteinases, gene products involved in homocysteine and one carbon-metabolism and in 

ATP production [13]. In population cohorts from Sweden [18] and Japan [19], EWAS have found 

differential DNA methylation at individual CpG sites (211 sites vs 3 sites respectively) to be 

independently associated with MI risk. However, these studies were carried out using DNA from 

peripheral blood mononuclear cells (PBMCs) due to the practical difficulties in obtaining 

myocardium or blood vessel wall biopsies, so their relevance to cardiac cell function remains to 

be established.  

There are only few studies associating histone modifications with CVD risk or disease 

mechanisms. A review of animal and cell studies concluded that histone acetylation in endothelial 

cells can either prevent (c-jun) or induce (RNAP II) transcription factor binding or specificity 

[20]. Other chromatin-modifying enzymes may affect transcription factor recruitment. A recent in 

vivo study in human hearts reported that during postnatal development there is a fine cooperation 

of active CpG methylation and histone marks in regions enriched for CVD-associated variants to 

shape the cardiomyocyte transcriptome [21]. In contrast, when cardiomyocytes from failing 

hearts were compared to those from non-failing hearts, active histone marks of several 

pathological genes were affected, including connective tissue growth factor (CTGF) and 

natriuretic peptides A and B (NPPA, NPPB), while CpG methylation was stable [21]. 

Telomeres 

Telomeres are nucleoprotein structures that protect the ends of linear chromosomes from DNA 

degradation and fusion. Vertebrate telomeres are composed of multiple copies of the sequence 
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TTAGGG bound to the protein complex shelterin [22]. Highly heterochromatic, heavily 

methylated adjacent regions called subtelomeres also help to preserve telomere integrity [23].  

In most somatic tissues, telomeres become shorter with every cell division; a process accelerated 

by oxidative stress [23]. Chronic inflammation is presumed to shorten telomeres in leukocytes, 

due to increased cell turnover. Thus, in addition to mitochondrial dysfunction, dysregulated 

nutrient sensing and epigenetic alterations, telomere length is a well-established ‘hallmark’ of 

cellular ageing [4]. Mean leukocyte telomere length (LTL) is an independent predictor of several 

age-related conditions, including coronary heart disease and other forms of CVD [24]. 

Furthermore, recent studies suggest that in addition to telomere length, the integrity of telomeres 

decreases with age and with development of hypertension in vascular tissue [25]. 

Diet as an epigenetic intervention point in cardiovascular disease 

Most metabolic pathways affect a range of cellular functions and often act as a network, with a 

single gene product affecting several distant parts of a pathway. Thus, it becomes difficult to 

identify particular targets for epigenetic interventions. Additional challenges are the identification 

of direct epigenetic effects of any single dietary component and the inability of epigenetic 

biomarkers to distinguish between causal, consequential and coincidental relationships. With 

these caveats, dietary components associated with particular exposures and epigenetic changes 

are reviewed below, in an effort to identify potential intervention points. 

One of the important factors to consider is the timing of epigenetic alterations triggered by dietary 

factors which often defines the magnitude of the epigenetic impact, such as in the case of 

nutritional deficiencies being critical during early gestation [26]. An example is folate deficiency, 

which when corrected preconceptually can prevent neural tube defects, but has no effect if given 
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after the first trimester of pregnancy, as the development and closure of the neural tube is 

completed 28 days after conception [27]. The persistence of the epigenetic phenotype for more 

than a few generations was observed early on in malnourished animals [28]. The associations 

between epigenetic perturbations in utero, maternal dietary changes and developmental 

programming of CVD has been previously reviewed [29].   

Human studies of dietary effects on the cardiovascular epigenome come from ‘natural’ 

experiments in populations of mothers and babies conceived or born during famine periods. 

These include investigations carried out in the Dutch Famine birth cohort [30] and studies in the 

Gambia, where pregnant women in rural areas experience seasonal nutritional changes due to 

weather conditions [31]. New data from the Dutch Famine birth cohort reveals that prenatal 

famine exposure during early gestation is associated with higher risk for CAD and hypertension 

in adulthood, and with altered DNA methylation within the INSR and CPT1A loci, which encode 

proteins involved in prenatal growth and fatty acid oxidation, respectively [26].  

Macronutrients - Nutrient excess has been causally linked to the pathogenesis of CVD, 

metabolic syndrome and insulin resistance [7]. Chronic carbohydrate and lipid excess may 

elevate acetyl-CoA, which changes chromatin structure, increases acetylation of DNA-binding 

proteins, suppresses autophagy and accelerates age-associated pathologies [11]. Circulating fatty 

acids such as α-linolenic acid, EPA and DHA affect changes in DNA methylation sites for genes 

such as APOE, IL6 and ABCA1 which are correlated with CVD traits [12]. Two recent human 

studies reported that obese participants had an increased CpG-methylation and reduced 

expression of PLIN1 [32] which facilitates among others lipolysis of triglycerides (TG) and, in a 

genome-wide methylation study, hypermethylation of PPARG, HAND2, HOXC6, SORBS2, 
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CD36, and CLDN1 gene promoters which may be associated with reduced adipogenesis, 

impaired triglyceride uptake and insulin sensitivity [33].  

Obesogenic high-fat diets in experimental animals were also associated with increased DNA 

methylation in the Leptin and PPARG2 gene promoters [34]. In a recent clinical trial, overfeeding 

by high-fat diets independent of the fat composition (saturated or polyunsaturated fat) increased 

DNA methylation in adipose tissue, especially in promoter regions affecting adipocyte 

differentiation, lipid metabolism, and adipose tissue expandability pathways [35]. Interestingly, 

overfeeding with saturated fatty acids changed the mean methylation of a set of proinflammatory 

signals (eg. FTO, IL6, POMC) which were different from the ones triggered by polyunsaturated 

fatty acids (eg. ADIPOQ) [35].  Furthermore, Hussay et al. [36] reviewed the inconclusive 

evidence on the effects of ω-3 fatty acids supplementation on DNA methylation, pointing out that 

males and females not only metabolise and store ω-3 fatty acids in a different way, but they also 

differ in their global DNA methylation patterns.  

In vascular and inflammatory cells, hyperglycaemia leads to chromatin changes, which in turn 

affect gene transcription [37]. In an attempt to integrate genetic (GWAS) and epigenetic (EWAS) 

data, the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study researchers 

challenged study participants with a high-fat meal and compared changes in plasma concentration 

of 35 fatty acids and 11 sterols in the fasting and postprandial state [38]. The authors proposed 

that integration of clinical data with genomic and epigenomic data on sterols and fatty acids may 

lead to identification of novel CVD biomarkers [38]. Postprandial TG responses to a high-fat 

dietary challenge increased methylation at sites of genes such as APOA5, SREBF1 and ABCG1 

that regulate lipogenesis and lipoprotein metabolism, while it lowered methylation of CPT1A [39] 

which promotes hepatic fatty acid β-oxidation. These findings were supported by other cohorts 
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(KORA and InCHIANTI), which reported in two European populations that newly identified loci 

associated with methylation of four CpG sites in CPT1A, APOA5, SREBF1, and ABCG1 might 

regulate disturbed blood lipid levels and thus contribute to the development of complex lipid-

related diseases [40][41].  

Fasting conditions have the opposite effect to overnutrition. In mouse hepatoma cells, depletion 

of glucose and/or amino acids from culture media led to increased DNA methylation and 

chromatin accessibility at the transcription start site of SIRT genes [42]. Similar to starvation and 

fasting, caloric restriction has been linked to a reduced risk of a cardiovascular disease [43], 

possibly due to its effect on weight and adiposity. A recent animal study that attempted to 

investigate the relationship between caloric restriction, lipid metabolism and vascular risk 

reported some transient beneficial effects on total cholesterol, HDL, and TG levels without any 

effect on DNA methylation patterns [44]. 

Folic acid, B-vitamins, other methyl donors - The epigenetic effects of “methyl-donor” nutrients 

on vascular ageing and cardiometabolic risk, are better understood. Dietary intake of methyl-

group donors and co-factors during pregnancy has been reported to affect foetal growth and 

development, thus establishing a major link between early environmental exposure and chronic 

disease development in the offspring later in life [45][46]. Dietary methyl-groups derived from 

methionine, choline/betaine and methyl/folate/vitamin B12 directly influence DNA and histone 

methylases, as they are the precursors leading to the formation of SAM [47]. Pauwels et al. [48] 

reported that maternal dietary and supplemental intake of methyl-group donors, in the 

periconception period only, increased infant buccal DNA methylation in genes related to growth 

(IGF2 DMR), metabolism (RXRA), and appetite control (LEP), all affecting cardiovascular 

health.  
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Dietary intake of carotenoids and B-vitamins has been associated with longer telomeres [49][50], 

which are linked with lower CVD risk [51]. A recent prospective study reported longer LTL and 

reduced LINE-1 methylation accompanied by higher SAM in elderly subjects after one year of 

supplementation with B-vitamins [52]. In contrast, shorter LTL is associated with lower levels of 

folate, both in adults and in newborns [53]. The underlying mechanism is currently unknown, 

although a decrease in DNA methylation of the subtelomeres and subsequent loss of telomere 

integrity is one plausible explanation. The increased incorporation of uracil into the telomeric 

sequence itself may also account for the observed changes, since the conversion of dUMP to 

dTTP requires folate. This could compromise shelterin binding, affect histone methylation, or 

lead to repeated telomere breakages [22].  

Bioactive compounds - Polyphenols including flavonoids, curcuminoids, and stilbenes contained 

in fruits, vegetables, and other dietary components including green tea, red wine, and cocoa 

compose the largest ubiquitous group of bioactive compounds with well-documented anti-

inflammatory and cardioprotective actions [7]. Several studies have confirmed their beneficial 

effects on vascular structure and function, inflammation and multiple cardiovascular risk factors 

[54]. Their effects on the epigenome have been studied extensively in the cancer field, but their 

role in the “cardiovascular epigenome” is still largely unexplored. In a recent in vitro study, cocoa 

polyphenols down-regulated key genes involved in the epigenetic process (DNMTs, MTHFR and 

MTRR) of PBMCs [55]. Studies on resveratrol, a polyphenol found in grapes, berries, peanuts 

and red wine, have shown that it affects chromatin segregation [56] but it also has the capacity to 

activate the deacetylases SIRTs [57]. This affects high-glucose-induced cardiac oxidative stress, 

mitochondrial dysfunction, myocardial fibrosis and vascular ageing. A recent trial on PBMCs of 

type 2 diabetes patients reported that boosting SIRT-1 expression with resveratrol supplements 

lowered H3K56ac levels and alleviated oxidative stress [58].  



 

15 

Cruciferous vegetables are rich in the anti-inflammatory isothiocyanate sulforaphane, which 

suppresses NF-κB signalling, as well as TNF-α-induced monocyte adhesion, circulating adhesion 

molecules and chemokines in C57BL/6 mice [59]. Though cancer studies showed that 

sulforaphane downregulates histone deacetylase activity directly and affects methylation 

indirectly [60], its role on epigenetics of vascular disease has not been explored.  

The epigenetic effects of other bioactive compounds have been explored sparsely in a few recent 

cell culture and animal studies. In spontaneously hypertensive rats, dietary curcumin, the 

principal curcuminoid of turmeric and member of the ginger family, suppressed degradation of 

extracellular matrix following abnormal changes in vasomotor tone [61]. The animals fed 

curcumin also demonstrated decreased expression levels of HDAC1, and of the inflammatory 

markers matrix metalloproteinase-2 (MMP-2) and transforming growth factor β (TGFβ) in their 

coronary arteries, as well as TIMP1 transcription activation by increasing histone H3 acetylation 

at its promoter [61]. Similarly, epigallocatechin-3-gallate (EGCG), found in green tea, has been 

recognised as a histone acetyltransferase inhibitor [55]. In endothelial cells, in vitro EGCG 

induced hypoacetylation of H3 and suppressed HDAC1 expression and blocked the response of 

inflammatory mediators [62]. 

Thus, a wide range of dietary factors may alter epigenetic signatures. However, whether these 

changes play a causative role in CVD or can be used as biomarkers for early prevention and 

interventions remains to be clarified.  

Dietary patterns – In recent years, nutrition epidemiology studies have used dietary patterns 

instead of isolated nutrients as a more accurate tool to study eating habits. Among the dietary 

patterns, dietary patterns rich in fruits and vegetables as well as the Mediterranean diet (MedDiet) 

rich in olive oil, legumes, fruits and vegetables [63], have been associated with longer LTL [64] 
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and with lower risk of CVD incidence and mortality, including CHD and MI [65]. Higher 

adherence to the diet protects from hypertension, inflammation and other complications related to 

excessive adiposity and epigenetic modifications may mediate some of these effects. Adherence 

to MedDiet in a subset of the PREDIMED-Navarra study was associated with methylation and 

thus suppression of the expression of eight genes related to inflammation and 

immunocompetence [66]. However, further longitudinal studies and randomised controlled trials 

are needed before firm conclusions can be drawn regarding the causal direction of the 

relationships between dietary patterns, epigenetic changes, telomere length and disease risk.  

CONCLUSION 

Recent advances in study design combined with novel dietary assessment methods, high 

throughput technologies, and big data analytics are contributing to the development of the field of 

nutritional epidemiology, which will be invaluable in furthering our understanding of the 

relationship between diet and cardiovascular health. Epigenetics and epigenomics research can 

help to identify novel causal biomarkers. Dietary patterns that favour cardiovascular health, such 

as the MedDiet, are based on the combined action of meals high in antioxidant- and anti-

inflammatory- compounds and on olive oil, a rich source of monounsaturated fats. However, the 

MedDiet is more than just a diet. One of its significant components is a lifestyle characterised by 

frequent social interactions and associated positive effects on mood - factors that are well 

recognised to modulate disease outcomes. The extent to which pathological epigenetic changes 

can be prevented or manipulated by dietary factors in order to prevent human cardiovascular 

disease remains to be established. However, the exploration of this novel field represents a rich 

seam of data that can now be mined in order to answer this timely question.    
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KEY POINTS 

• Epigenetic alterations help elucidate the mechanisms by which diet and nutrients may 

affect gene expression and regulation. Dysregulation of the epigenome, including changes 

in DNA methylation and histone acetylation, plays a major role in CVD. 

• A surplus of macronutrients (fatty acids and carbohydrates) or nutrient deficiencies (folate 

and B-vitamins), as well as bioactive compounds such as polyphenols (resveratrol, 

curcumin) or epigallocatechin may affect the expression levels of methylation and 

acetylation enzymes and thus affect the expression of genes that are linked to vascular 

dysfunction.  

• Identification of the causal directions of the relationships between dietary patterns, 

epigenetic changes, telomere length and disease risk will facilitate the development of 

treatment and intervention measures. 
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Figure 1. Sources of epigenetic modifiers: Availability of epigenetic modifiers, which are used 

for modification of histones or DNA, is determined by alterations in synthesis or catabolism of 

metabolites that are derived via glucose and fatty acid oxidation pathways, including the 

Krebs/TCA cycle and oxidative phosphorylation. Ac: Acetyl group, Me: Methyl group, P: 

Phosphoryl group, Su: Succinyl group, β-hb: β-hydroxybutyryl group, Ma: Malonyl group, *: 

Other acyl groups, DNMTs: DNA Methyl-transferases, HMTs: Histone Methyl-transferases, 

DMs: Demethylases, SAM: S-adenosylmethionine. Green color depicts modifications that 

activate transcription and red color indicates inhibitory effects.  
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