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Abstract. Most molecular processes in living organisms rely on protein–protein 

interactions, many of which are mediated by β-sheet interfaces; this study 

investigates the formation of β-sheet interfaces through the conversion of coils 

into β-strands. Following an exhaustive search in the Protein Data Bank, the 

corresponding structural dimorphic fragments were extracted, characterised and 

analysed. Their short strand lengths and specific amino acid profiles indicate that 

dimorphic β-strand interfaces are likely to be less stable than standard ones and 

could even convert to coil interfaces if their environment changes. Moreover, the 

construction of a simple classifier able to discriminate between the sequences of 

dimorphic and standard β-strand interfaces suggests that the nature of those 

dimorphic sequences could be predicted, providing a novel means of identifying 

proteins capable of forming dimers.  

1 Introduction 

Since most molecular processes rely on protein–protein interactions, knowledge of those 

interactions is extremely valuable for biomedical research and drug design. Despite the 

availability of high-throughput proteomics approaches1, protein interactomes are still largely 

incomplete. Consequently, the development of bioinformatics methods allowing the 

prediction of such interactions is a very active field of investigation as reported in a recent 



4 
 

review2. Protein–protein interactions through β-sheet interfaces have been of particular 

interest3,4, predominantly resulting from their potential to cause aggregation5. In addition, a 

variety of features have been identified that discriminate between “central strands, bordered 

on both sides by other β-strands, and edge strands, bordered on only one side by another β-

strand”5–7. It has also been reported that dimerisation of members of the met-repressor-like 

family - which share a similar ribbon-helix-helix structure - can bind DNA following their 

homo-dimerisation process where the coil becomes a β-strand to form a β-sheet interface8 

(Figure 1). Although such types of conformational changes have often been associated with 

pathologies9, this case suggests they may also lead to formation of functional dimers. Since 

no study has thus far performed a systematic analysis of those strands that exist only as result 

of dimerisation (i.e. β-sheet interfaces formed of only two intermolecular-β-strands), this 

work investigates secondary structure alteration resulting from dimerisation. More 

specifically, this work focuses on coil sequences forming intermolecular β-strand interfaces. 

Following an exhaustive search in the Protein Data Bank10, the structures and corresponding 

sequences of dimorphic fragments were extracted, characterised and investigated.  

2 Materials and methods 

2.1 Dataset generation 

Since very few proteins displaying such a ‘dimorphic’ property have been reported in the 

literature, with the notable exception of the met-repressor-like family, an exhaustive search 

was conducted for all dimer structures available in the Protein Data Bank (PDB)10. 

Representatives at 30% sequence identity of all dimers annotated as biological assemblies 

were retrieved from the PDB (as of January 13, 2016). This identity constraint was selected 

to prevent biased results due to the presence of homologous proteins. A filter was then 

designed to identify those dimers that interact through a β-strand-β-strand interface. In line 
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with the definition used at the CAPRI community-wide experiment (Critical Assessment of 

Prediction of Interactions)11, interface residues were defined as amino acids containing heavy 

atoms located within 5Å from their counterparts on residues in another chain. Through 

analysis of the ‘SHEET’ records located within PDB structure files, the β-sheets containing 

those interface residues were identified and are referred to as β-sheet interfaces. Further 

analysis of the ‘SHEET’ records also allowed establishment of the number of strands per 

chain comprising the β-sheet interfaces and their general topologies. Four types of β-sheet 

interfaces were defined: a) dimorphic: those composed of only two β-strands – one from each 

chain, b) standard: those composed of two existing β-sheets - at least two strands from each 

chain, c) hybrid: those composed of one β-strand from one chain and one β-sheet from the 

other, and d) ambiguous: those not fitting into categories a, b, or c. Manual curation was then 

applied to identify and amend any interface β-strands whose automated classification was 

either incorrect or ambiguous. Eventually, four non-homologous sets of β-strand-β-strand 

interfaces were generated: a) 146 dimorphic, b) 205 standard, c) 218 hybrid, and d) 286 

ambiguous (Figure 2). Interestingly, none of the dimorphic interfaces belong to a membrane 

protein. This dataset is available in ‘Supplementary Material’. 

2.2 Interface properties 

A range of properties was extracted from the β-strand interfaces. After categorising them 

according to the nature of the dimer (i.e. homodimer or heterodimer), and their configuration 

(i.e. parallel or antiparallel), homodimer interfaces were computationally classified according 

to the sequences of their interacting β-strands to detect the presence of symmetry. First, 

interfaces composed of two identical sequences were annotated as presenting a one-site 

symmetry. Second, dimers displaying two separate β-strand interfaces, where each interface 

utilises the same pair of distinct sequences, were annotated as depicting a two-site symmetry. 
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Third, the remaining interfaces were annotated as asymmetrical. Figure 3 illustrates the types 

of interface symmetries that were encountered in the selected homodimer sets. Finally, after 

collecting those qualitative properties, the amino acid compositions and the β-strand lengths 

was calculated for each dimer in the datasets.  

2.3 Dimorphic β-strand interface stability 

To further study the stability of dimorphic β-strand interfaces, the PDB was queried to extract 

homologous dimers (i.e. sequence identity ≥ 30% and E-value < 1.10-6) which do not display 

the dimorphic β-strand interfaces (i.e. where the interface sequences remain in their original 

coil conformations). To highlight structural differences between the interfaces that are present 

in both coil and β-strand structural conformations, the homologous PDB structures were 

aligned using Pymol12. In addition, Pymol has also been used to produce the figures 

displaying protein structures within this article. 

Among those homologous dimer structures where the interface was found present in both coil 

and β-strand conformations, structures determined using NMR spectroscopy were of 

particular interest, since their multiple model records allows for quantitative analysis to be 

performed on the mobility of their residues. In this study, the analysis of residue mobility was 

performed utilising the MOBI webserver, which identifies “regions with different 

conformations among all the models in a NMR solved PDB structure ensemble” and 

calculates the average RMSD for each residue within that PDB file13. 

2.4 Property discriminative power 

To evaluate quantitatively whether the observed property differences between dimorphic and 

standard β-strand interfaces allows discrimination between those two types of interfaces, a 
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supervised machine learning model was employed, i.e. Support Vector Machine (SVM), to 

create a binary classifier. 

2.4.1 Features and encoding 

Each dimorphic and standard β-strand interface sequence in the dataset was encoded as a 

feature vector of 20 numeric values which are associated to the presence of each amino acid 

type in the interface sequence. This 20 feature set is known as the OAAC (overall amino acid 

composition) which represents the occurrence frequency of each amino acid type within a 

sequence divided by the sequence length. Additionally, the OAAC values were square rooted 

since it has been shown to improve predictive performance14. Although additional sequence 

features, such as physicochemical properties15,16  and evolutionary information17,18,  could 

have be exploited this was out of the scope of this particular investigation which was only 

aimed at demonstrating that dimorphic and standard β-strand interfaces fit within two distinct 

classes. 

2.4.2 Nested cross-validation 

The popular open source SVM library, LIBSVM (version 3.22) was selected to build the 

binary classifier19. In particular, it supports the Radial Basis Function (RBF), its default 

kernel, which is known to perform well on a variety of classification tasks19. Nested cross-

validation was used prevent overfitting, class bias, or performance bias; n-fold inner-cross-

validation was used for model selection, while k-fold outer-cross-validation was used to 

estimate the generalised classifier performance. 

2.4.2.1 Inner-cross-validation 

The RBF kernel relies on only two training parameters: c (cost), which sets a compromise 

between misclassification and model simplicity (i.e. its generalisation capability), and γ 
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(gamma), which limits the influence of each individual training sample. The optimal values 

for these kernel parameters are initially unknown until they are found through utilisation of a 

cross-validation model selection function, whereby multiple potential classification models 

are prospectively created with the same training data, each however with differing parameter 

values for c and γ. Thereafter, the top performing model in terms of n-fold cross-validation 

accuracy is selected as the best model, which is then used to predict the unseen independent 

data in an outer-cross-validation procedure. 

In the case of this classifier, the n-fold inner-cross-validation model selection on the training 

dataset was performed utilising LIBSVM’s implementation of the efficient and effective grid 

search function20. However, since in the default implementation of LIBSVM, cross-validation 

performance is measured using the accuracy metric, which for imbalanced datasets can be 

misleading as it is not a class specific measure, the training dataset classes were balanced 

through down-sampling the majority class to avoid any potential class bias. 

2.4.2.2 Outer-cross-validation 

For the k-fold outer-cross-validation procedure, the inner-cross-validation model selection 

procedure is repeated k times. For each k, the whole dataset is shuffled randomly before 

partitioning, using the same partitioning percentage ratios each time, into the training and 

testing datasets. This procedure results in k training datasets, k independent testing datasets, k 

selected models, and lastly, k sets of independent testing performance results, which are then 

used to estimate generalised performance. 

2.4.3 Evaluation of performance  

From the nested cross-validation procedure described above, generalised performance is 

estimated according to the arithmetic mean and standard deviation for each performance 
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metric over the k independent testing dataset prediction results. The classifier’s performance 

is evaluated, first, by providing the confusion matrix (i.e. the table visualising the total 

number of instances that have had their class correctly and incorrectly predicted), accuracy, 

the harmonic mean average of precision and recall (F1 score), and the Matthews correlation 

coefficient (MCC) which offers a balanced measure of the quality of binary classification 

even if the classes are of different sizes21. Note that with MCC the coefficient varies between 

-1 and +1, where -1, 0, and +1, indicate, respectively, total disagreement with observation, 

random, and perfect predictions. Additionally specified is the non-interpolated Average 

Precision, calculated using all thresholds, synonymous with Area Under the Precision-Recall 

Curve (AUC PR), which is particularly relevant when dealing with imbalanced data22. 

3 Results and discussion 

3.1 Experimental results 

Classification of the dimer interfaces according to their dimeric nature reveals that, across the 

PDB, β-strand-β-strand interfaces generally tend to be formed as part of homodimers (88%), 

as seen in Table 1. Moreover, in line with previous work4, data shows that those interfaces are 

more likely to adopt an antiparallel configuration (80%). Indeed, Watkins and Arora suggested 

that, in protein complex interactions where binding energy is critical, such orientation is 

favoured since it offers better hydrogen bonding geometry and improved energetics4. Since a 

meaningful analysis can only be produced if the data is relatively homogenous, ambiguous 

interfaces are not considered any further in this study.  

Among the homodimers, over 97% of the β-strand interfaces display some symmetry, see 

Table 2. On one hand, while antiparallel dimorphic and standard interfaces tend to exhibit 

one-site symmetry (over 73%), parallel interfaces show two-site symmetry (over 80%). 
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Conversely, hybrid interfaces, which cannot form interfaces with a one-site symmetry, 

display two-site symmetry in around 96% of cases regardless of their parallelism.  

As Table 3 reveals, there are important dissimilarities in terms of amino acid composition 

(Figure 4) and β-strand length (Figure 5) between dimorphic and standard β-strand interfaces. 

First, aromatic amino acids show a clear preference for a type of interface; the basic histidine 

favours standard β-strand interfaces, whereas tryptophan, tyrosine and, even, phenylalanine, 

prefer dimorphic interfaces. Furthermore, among other charged amino acids, glutamic acid is 

more common in standard β-strand interfaces, whilst arginine and lysine are more often 

found in dimorphic interfaces. In addition to showing differently charged amino acid profiles, 

dimorphic interfaces display a much more important imbalance towards positively charged 

residues. Regarding small amino acids, the three smallest, glycine, alanine and serine, are 

more frequent in standard interfaces, while proline is overrepresented in dimorphic interfaces. 

Finally, dimorphic interfaces are much shorter than standard interfaces, containing on 

average, three fewer amino acids. 

To further investigate differences between dimorphic and standard β-strand interfaces, 

CATH34 annotations (where available) were associated with each interface, allowing for the 

creation of topological profiles for each of these classes. As Figure 6 shows, not only do 

dimorphic and standard β-strand interface profiles differ significantly from the profile of all 

CATH domains, but they also display quite different class preferences. While standard β-

strand interfaces are essentially associated to alpha-beta domains (78%), with a sizeable 

group of mainly beta domains (21%), no single CATH class hosts the majority of dimorphic 

β-strand interfaces (i.e. 45% associated to mainly alpha domains, 20% to mainly beta 

domains and 34% to alpha-beta domains). Interestingly, around 25% of both dimorphic and 

standard β-strand interfaces display a 3-layer (aba) sandwich architecture. 
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3.2 Qualitative analysis 

A study of salt bridge compositions within β-sheets revealed that arginine and histidine have 

much higher propensities than lysine23. More specifically, glutamic acid-histidine interactions 

have the highest propensity followed by the glutamic acid-arginine interactions. Since 

standard β-strand interfaces are particularly rich in histidine and glutamic acid, in comparison 

with dimorphic interfaces, whilst displaying a better charge balance and a standard arginine 

frequency, those interfaces offer an environment that is particularly favourable for the 

formation of salt bridges, which can further stabilise their β-strand interactions (Figure 7A). 

Conversely, due to the charge imbalance, the dimorphic interface leaves many charges 

available. Such a consequence is consistent with observations by Richardson and 

Richardson24 who studied mechanisms used to protect edge β-strands from further β-sheet 

interactions that might lead to aggregation. Note that dimorphic interfaces, unlike standard β-

strand interfaces, are formed only from edge β-strands. Among the most common strategies, 

they reported the presence on edge β-strands of not only inward-pointing charged residues 

(Figure 7B.a), but also of proline residues (Figure 7B.b), which are also overrepresented on 

dimorphic interfaces (Figure 4). 

Although the contribution of aromatic-aromatic interactions to the formation of secondary 

structures has been a topic of investigation for many years25, it is difficult to explain the 

higher frequency of tryptophan, tyrosine and phenylalanine in dimorphic interfaces. Since it 

was proposed that such interactions could play a role of β-sheet stabilisation in absence of 

inter-strand hydrogen bonding26, relationship between β-strand length and presence of 

aromatic residues was investigated. It was observed that strands with the highest frequency of 

aromatic residues tend to be short, which is consistent with the idea that the presence of the 

aromatic residues provides short β-sheets additional stability by creating aromatic-aromatic 
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interactions (Figure 8). Although that high frequency appeared to be a feature of dimorphic 

interfaces, as seen in Table 3, this may be a consequence of the fact that dimorphic interfaces 

are, on average, much shorter than standard β-strand interfaces. Indeed, many short standard 

β-strand interfaces also display a high frequency of tryptophan, tyrosine, and phenylalanine.  

An experiment conducted on peptides composed of antiparallel β-sheets shows that strands of 

length 7 are more stable than those of length 5 or 927. Moreover, it has been reported that a 

strand length of 7 allows a peptide to display optimal antimicrobial activity28. Computer 

simulation analysing interactions of over 50,000 β-strand interfaces concur with these 

findings4: the average strand length of strong interfaces is 5.9, whereas it is 4.4 for weak 

ones. In this study, whilst standard β-strands have an average strand length of 7.1, dimorphic 

strands are found to be much shorter, with an average length of only 4.1. This suggests a 

lower stability of dimorphic antiparallel β-sheets. This hypothesis is further supported by 

experiments comparing the stability of β-sheets when increasing the number of β-strands 

from 2 to 3 which demonstrated that a higher number of strands lead to higher stability29. As 

a consequence, dimorphic interfaces are expected to be less stable than standard interfaces.  

3.3 Dimorphic β-strand interface stability 

Analysis of stability of dimorphic β-strand interfaces was conducted by comparing the 

dimorphic interfaces of three distinct proteins (histone, transcription factor and Tip-alpha) 

with the corresponding interfaces of their homologous dimers that do not display those β-

strands.  

The PDB contains 3 homologous dimeric entries (with sequence similarity over 85%) of 

histones from the archaea species Methanothermus fervidus. Although all three share 

identical interaction sequences, the histone HMfA, 1B67, and the recently published structure 
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of histone-based chromatin30, 5T5K, display two β-strand dimorphic interfaces exhibiting a 

two-site symmetry, whereas the histone B, 1BFM, shows one dimorphic β-strand and one 

coil-based interfaces (Figure 9). Analysis on the hydrogen bonding of the amino acids 

involved in those interfaces showed that interaction with a third molecule creates an 

additional ‘indirect’ hydrogen bond via that molecule between the two monomers supporting 

the formation of the β-sheet: while one of 1B67’s dimorphic interfaces interacts with SO4
2- 

and both of 5T5K’s dimorphic interfaces interact with DNA, 1BFM’s do not bind to any 

ligand.  

Since 1BFM was resolved using NMR (33 individual models are available), the mobility of 

its residues was measured using the MOBI web server13. Figure 10 reveals that, in addition to 

the terminal regions that, as expected, are highly mobile, the two regions comprising the 

residues involved in the dimorphic β-strand interface also display high mobility. 

Structure of the N-terminal domain of AbrB-like Transcription Factors is known in its 

unbound form, 1YSF, and bound to DNA, 2K1N. While 1YSF displays a β-strand dimorphic 

interface exhibiting a one-site symmetry, 2K1N has a coiled based interface instead (Figure 

11). 

Taking advantage that both 1YSF and 2K1N were produced by NMR (with 22 and 10 models 

respectively), mobility was investigated using MOBI13. As Figure 12 shows, the chains 

within 2K1N are much more mobile than those of 1YSF. Previous study of the mobility of 

AbrB identified the need of conformational change and concerted motions to enable its 

interaction with a DNA target31. As a consequence, this suggests that, although the dimorphic 

β-strand interface stabilises the protein structure, the interface is able to adopt a coil 

conformation and gain in flexibility when AbrB is involved in the DNA binding process. The 

importance of that dimorphic segment, Arg-Val, was further highlighted by mutagenic 
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analysis of AbrB that identified the arginine which is present in that interface as critical to 

DNA binding32.  

Structures of the dimeric fragments (34-192) of the tumor necrosis factor alpha inducing 

protein Tip-alpha (2WCQ & 2WCR) were resolved in very different environments of pH 

values 4 and 8.5, respectively. As Figure 13 shows, they display distinctive configurations 

where 2WCR relies on the presence of a dimorphic interface. 

3.4 Property discriminative power 

Since comparison of the amino acid compositions between dimorphic and standard β-strand 

interfaces revealed different amino acid profiles, a binary SVM classifier was built based on 

the overall amino acid composition (OAAC) of their interface sequences. 

Inner-cross-validation was performed utilising the LIBSVM grid search function with its 

default parameters, which performs model selection on training data using 5-fold inner-cross-

validation. This cross-validation was chosen as it segments the training set into 4/5 parts (i.e. 

80%) for training and 1/5 parts (i.e. 20%) for a validation testing, which is repeated 5 times to 

cover the whole training dataset, which ensures that each instance (i.e. interface sequence) is 

predicted for validation once only. 

Outer-cross-validation was performed on all selected models to prevent any bias that could 

have been caused by specific partitioning of the dataset into training and testing. 1000-fold 

outer-cross-validation was selected to measure the generalised performance metrics. This 

showed that, for all calculated performance metrics, average performance was stable within 

2% when k≥36 folds, within 1% when k≥134 folds, and in within 0.1% (in 92% of cases) 

when k≥750 folds, compared with the final average performance at k=1000. 
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The 146 dimorphic and 205 standard β-strand interfaces are composed, respectively, of 165 

and 224 unique interface amino acid sequences. Due to the relatively small size of the β-

strand interface datasets, a large proportion needed to be allocated to the training set. For 

each outer-cross-validation iteration, both classes were randomly shuffled, and then, as 

commonly chosen, partitioned into a training dataset made of 80% of the sequences, and a 

test dataset with the remaining 20%. In addition, since it has been shown that class size 

imbalance in the training dataset can negatively affect a classifier’s performance33, class 

imbalance was addressed by down-sampling the majority class to the size of the minority 

class33: the standard β-strand sequences class was down-sampled to match the size of the 

dimorphic β-strand sequences class. Moreover, LIBSVM’s grid search function is more 

reliable with a balanced training set due to using the accuracy metric for model selection (i.e. 

correct prediction of the majority class alone could result in misleadingly high accuracy).  

The training dataset is therefore comprised of 132 dimorphic β-strand sequences and 132 

standard β-strand sequences. Meanwhile, the class ratios within independent testing sets are 

not altered, thus keeping their original imbalance of 33 dimorphic and 45 standard β-strand 

sequences, which should represent what is seen in nature, or at least in the PDB depiction of 

it.  

The confusion matrix shown in Table 4 provides the average performance of the classifier: 

out of the 33 dimorphic sequences, 23.39 are classified correctly, whereas out of the 45 

standard β-strand sequences correct classification occurs for 32.46 sequences. As Table S1 

reports, the SVM classifier shows good accuracy of 0.72 (𝜎𝜎 = 0.05), and F1 score of 0.68 

(𝜎𝜎 = 0.05) for the dimorphic β-strand class, and 0.74 (𝜎𝜎 = 0.05) for the standard β-strand 

class. In addition, the associated MCC (Matthews correlation coefficient) is 0.43 (𝜎𝜎 = 0.10), 

which is usually interpreted as indicating the classifier is a moderate to strong predictor. 

Finally, Average Precision is 0.77 (𝜎𝜎 = 0.05) for the dimorphic β-strand class and 0.82 (𝜎𝜎 =
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0.05) for the standard β-strand class. Consequently, this quantitative analysis has confirmed 

that dimorphic and standard β-strand interfaces display distinct amino acid profiles. Note 

that, for both dimorphic and standard β-strand interfaces, the type of CATH class to which an 

interface sequence is associated does not appear to affect the quality of its classification 

(study not shown). 

4 Conclusion 

This investigation has revealed that many dimers rely on dimorphic β-strand interfaces, 

listing a non-redundant set of 146 examples. Whereas their nature and parallelism do not 

differ from standard β-strand interfaces’, their average β-strand length and their amino acid 

profile are quite distinct. Not only does analysis of those features indicate that dimorphic β-

strand interfaces are likely to be less stable than standard β-strand interfaces, but they also 

tend to take advantage of strategies preventing further β-sheet interactions that would 

increase interface stability. The study of these interfaces that are found in both dimorphic and 

coil forms shows that the presence of a binding molecule, or a change of environment pH, 

can affect the structural conformation of such interfaces. Whereas a dimorphic β-strand 

interface adds some stability to the structure of a protein, its intrinsic flexibility allows it to 

return to the coil configuration required for that protein to perform other aspects of its 

function.  

The construction of a classifier based only on amino acid profiles has shown that sequences 

involved in either dimorphic or standard β-strand interfaces are sufficiently different to allow 

for some automatic discrimination between them using machine learning methods. This 

suggests that, with the usage of additional features, including structural ones, a robust 

classifier could be designed to predict whether a monomer has the potential to form a dimer 

through the conversion of one of its coils into a β-strand. Such a tool would provide a high-



17 
 

throughput means to enrich knowledge of protein interactomes and would also support the 

analysis of individual proteins within a given environment. 

5 Supplementary Material 

The supplement contains the following information: 
 
 

1. List of all β-strand interfaces in the dataset (as shown in Table 1 and Table 2). 

2. Table S1 which presents additional performance results from the SVM classifier 

experiment. 
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Figure legends 

Figure 1: Representative of the met-repressor-like family (1MNT). The dimer is formed by 
joining a ribbon-helix-helix pattern (RHH) from each chain. In the process, RHH converts 
into a β-strand-helix-helix pattern. 

Figure 2: Examples of each β-strand interface type: a) dimorphic 2BA3), b) standard (2P24), 
c) hybrid (3GLA) and d1) & d2) ambiguous (2GE7 & 2O38). Note: PDB chains A and B are 
coloured in green and blue respectively. 

Figure 3: Symmetries encountered in the dimorphic, standard and hybrid homodimer β-
strand interfaces. Note: Blue and yellow arrows denote interface strands with distinct 
sequences. 

Figure 4: Percentage variations of amino acid frequency between dimorphic and standard β-
strand interfaces. Positive and negative values show preference for, respectively, standard and 
dimorphic β-strand interfaces. 

Figure 5: Distribution of β-strand lengths forming dimorphic and standard β-strand 
interfaces. 

Figure 6: Comparison of topological profiles of dimorphic β-strand interfaces, standard β-
strand interfaces and domains in CATH (based on PDB release: July 01, 2017). In addition to 
the percentage of sequences belonging to the four CATH classes, the five main CATH 
architectures (identified by their CATH codes) are highlighted. 

Figure 7: A. Standard β-strand interface including a salt bridge between E226-A and H232-B 
(4YWJ) B. Dimorphic interfaces displaying common strategies to prevent further β-sheet 
interactions: presence of a) inward-pointing charged (K35, R36 & D42 in 1P94) or b) proline 
residues (P34 in 1HUL). 

Figure 8: Stabilisation of a short (5 amino acid long) dimorphic interface by aromatic-
aromatic interactions (W228, Y229, W230 & F231 on both chains of 1H8G). 

Figure 9: Structural alignment of 1BFM (chain A in green and chain B in blue) and 1B67 (in 
red) highlighting 1BFM’s loss of a dimorphic interface and the interaction of 1B67’s 
dimorphic interface with SO4

2- creating an ‘indirect’ hydrogen bond (yellow lines). 

Figure 10: Residue mobility in terms of average RMSD of 1BFM model. Solid and dashed 
rectangles highlight residues involved in, respectively, the dimorphic β-strand interfaces and 
the surrounding coils. 

Figure 11: Structural alignment of 2K1N (chain A in green and chain B in blue) and 1YSF 
(in red) highlighting 2K1N’s loss of a dimorphic interface. 

Figure 12: Residue mobility in terms of average RMSD of 1YSF and 2KIN models. Solid 
and dashed rectangles highlight residues involved in, respectively, the dimorphic β-strand 
interface (Arg-Val) and the surrounding coil. Note that 2KIN’s sequence is used as reference 
for residue numbering. 
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Figure 13: Structural alignment of 2WCQ (chain A in green and chain B in blue) and 1WCR 
(chain A in dark red and chain B in red) highlighting dimers’ different configurations and the 
absence of a dimorphic interface in 2WCQ. 



25 
 

Tables 
Table 1: β-strand interface classification according to their nature, i.e. homo- or hetero-, and 
parallelism. 
Dimer nature & parallelism  Dimorphic Standard Hybrid Ambiguous All 

Homodimers 

 

Antiparallel 111 153 123 229 616 

Parallel 19 35 73 13 140 

All 130 188 196 242 756 

Heterodimers 

 

Antiparallel 11 8 18 34 71 

Parallel 5 9 4 10 28 

All 16 17 22 44 99 

Total 

 

Antiparallel 122 161 141 263 687 

Parallel 24 44 77 23 168 

All 146 205 218 286 855 

 
Table 2: Symmetry in homodimer β-strand interfaces.  
 Dimorphic Standard Hybrid 

Symmetry type One-site Two-site None One-site Two-site None One-site Two-site None 

Antiparallel 82 26 3 121 32 0 0 116 7 

Parallel 3 16 0 5 28 2 0 73 0 

All 85 42 3 126 60 2 0 189 7 

Table 3: Strand length, charged residue frequency, and residues showing large frequency 
differences between dimorphic and standard β-strand interfaces. 
 Dimorphic interfaces Standard β-strand interfaces 

Average strand length (standard deviation)  4.1 (2.0) 7.1 (2.9) 

Percentage of charged amino acids: 

Positively charged, including histidine 

Negatively charged 

 

Arg: 8.1, Lys: 6.2, His: 0.9  

Glu: 3.1, Asp: 2.5  

 

Arg: 5.1, Lys: 4.8, His: 2.6 

Glu: 5.2, Asp: 2.1  

Amino acids displaying at least a 25% increase of 
frequency between dimorphic and standard β-strand 
interfaces 

Pro, Trp, Arg, Lys, Tyr His, Ala, Glu, Gly 
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Table 4: Confusion matrix reporting the classifier’s performance in discriminating between 
dimorphic and standard β-strand interface sequences, with dimorphic β-strand interfaces 
specified as the positive class. 

 
Predicted class 

Dimorphic Standard 

Actual class 
Dimorphic TP: 23.39 (𝜎𝜎 = 2.59) FN: 9.61 (𝜎𝜎 = 2.59) 

Standard FP: 12.54 (𝜎𝜎 = 3.09) TN: 32.46 (𝜎𝜎 = 3.09) 
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Table S1: Classifier generalised performance estimate metrics showing the arithmetic mean 
and standard deviation from the outer-cross-validation procedure. Note: (a) ACC, MCC, and 
AUC-ROC are classifier performance measures.  (b) TPR, TNR, PPV, F1, and AUC-PR are 
class performance measures. 

Metric Formula 
Positive class: 

Dimorphic β-strands 

Negative class: 

Standard β-strands 

Recall (TPR) 
𝑇𝑇𝑇𝑇
𝑃𝑃

 0.71 (σ =  0.08) 0.72 (σ =  0.07) 

Specificity (TNR) 
𝑇𝑇𝑇𝑇
𝑁𝑁

 0.72 (σ =  0.07) 0.71 (σ =  0.08) 

Precision (PPV) 
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 0.65 (σ =  0.06) 0.77 (σ =  0.05) 

F1 2 ×
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 0.68 (σ =  0.05) 0.74 (σ =  0.05) 

AUC PR (AP) �𝑝𝑝(𝑘𝑘)∆𝑟𝑟(𝑘𝑘)
𝑛𝑛

𝑘𝑘=1

 0.77 (σ =  0.05) 0.82 (σ =  0.05) 

Accuracy (ACC) 
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇
𝑃𝑃 + 𝑁𝑁

 0.72 (σ =  0.05) 

MCC 
(𝑇𝑇𝑇𝑇 ×  𝑇𝑇𝑇𝑇) − (𝐹𝐹𝐹𝐹 ×  𝐹𝐹𝐹𝐹)

�(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) × (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) × (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) × (𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 0.43 (σ =  0.10) 

AUC ROC 
1

𝑃𝑃 × 𝑁𝑁
� � 𝑁𝑁(𝑘𝑘) > 𝑁𝑁(𝑖𝑖)

𝑁𝑁

𝑘𝑘=𝑖𝑖+1

 
𝑃𝑃

𝑖𝑖=0

 0.79 (σ =  0.05) 
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