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Abstract. A core part of all numerical models used for flexible riser analysis is the structural 
component representing the main body of the riser as a slender beam. Loads acting on this 
structural element are self-weight, buoyant and hydrodynamic forces, internal pressure and 
others. A structural finite element for an inextensible riser with a point-wise enforcement of the 
inextensibility constrain is presented. In particular, the inextensibility constraint is applied only 
at the nodes of the meshed arc length parameter. Among the virtues of the proposed approach 
is the flexibility in the application of boundary conditions and the easy incorporation of 
dissipative forces. Several attributes of the proposed finite element scheme are analysed and 
computation times for the solution of some simplified examples are discussed. Future 
developments aim at the appropriate implementation of material and geometric parameters for 
the beam model, i.e. flexural and torsional rigidity.  

1.  Introduction and literature review 
As oil exploration and production progresses into deeper waters the demand for efficient simulation 
and design of flexible riser systems, functioning in harsh subsea environments and operating at high 
internal and external pressures, increases. Numerical models used for analysis of flexible riser heavily 
rely on the structural component representing the main body of the riser as a slender beam [1]. This 
structural component is subjected to several characteristic loading conditions including self-weight, 
buoyant and hydrodynamic forces, and internal pressure [2]. The complexity of the geometry, 
deformations, material behaviour and loads acting on the riser leads to computationally intensive 
modelling problems. An appropriate selection of the riser structural model can significantly facilitate 
the analysis. 

Several researchers have proposed models for flexible riser simulation and analysis. The basic 
component of the proposed models is a slender beam-type structural element representing the riser 
body. In the late 70s, Kirk et al. [3] presented a frequency domain normal mode solution for an 
unbuoyed riser under periodic excitation. The excitation originated formed a surface vessel motion in 
the direction of wave propagation. Their structural analysis was based on a normal mode solution (free 
vibration modes and rigid body motions) of a variable tension, beam-column equation. The model 
utilised Morison’s formula for drag forces and included the effects of a linearly varying current as 
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well. Subsequently, Kirk [4] employed a modal/Galerkin solution for the linearised single wave and 
linearised spectral frequency analysis of tension-leg-platform risers. 

The importance of nonlinearities in the riser response was subsequently pointed out by several 
authors. Bernitsas et al. [5] presented a static, 3D, small strain-large deformation analysis of deep 
water risers, based on an incremental finite element predictor-corrector procedure. These authors 
considered both extensible and inextensible risers. Coupling of torsion and bending, as well as 
deformation dependent boundary conditions and external loads were included in the model. In a 
following study, Bernitsas and Kokarakis [6] demonstrated that differences as high as 28% in the riser 
maximum displacement may appear in the presence of nonlinearities. At the same time, differences of 
31% in the lower ball joint angle and 40% in the maximum equivalent stress were reported by the 
same authors. Three dimensional nonlinear dynamic analysis has been extended to more involved 
configurations and applied to riser bundles by Vlahopoulos and Bernitsas [7]  

A different modelling approach, based on the lumped mass discretisation method was presented by 
Ghadimi [8]. A time domain solution using tangent stiffness increments and Wilson-theta numerical 
integration was utilised by this author. The proposed analysis featured also a simple seabed contact 
model for catenary risers. The simulation strategy was reported to produce results in good agreement 
with experiments. Trim [9] retained the small displacement structural model using finite elements and 
the modal form but supplemented it with nonlinearities originating from the fluid forcing and 
stochastic attributes of some parameters. 

Regarding analytical or semi-analytical techniques, Cheng et al. [10] analysed linear vibrations of 
marine risers using perturbation techniques to derive asymptotic expansions based on the dynamic 
stiffness methods. In their analysis they employed and extended previous results reported by Kim and 
Triantafyllou [11]. A very simple model, admitting analytic solution, for the axial dynamic response of 
marine risers in installation was proposed by Wang et al. [12]. The same authors used also the finite 
difference method to analyse statically the combined effect of axial and lateral forces of marine risers 
[13]. 

More recent advances in the analysis and simulation of flexible risers include several studies 
focusing on complex dynamic analysis or the analysis of structural behaviour. Rahmati, Norouzi et al. 
[14] experimentally and numerically analysed the behaviour of flexible risers under bending, taking 
into account the internal structure of the component. Klaycham et al. [15] employed the finite element 
method to analyse the nonlinear vibrations of marine risers accounting for large displacements and 
taking into account the strain energy associated with the rotational restraint at the bottom end of the 
riser. Zhu et al. [16] studied that possibility of energy harvesting using a flexible riser and attached 
free-to rotate impellers. Finally, Cuamatzi-Melendez et al. [17] discussed the bisymmetric collapses in 
flexible risers in high external pressure environments. 

The above literature review is not exhaustive, but rather indicative of the developments in the 
analysis and simulation of flexible risers within the last decades. Of major importance is the 
observation that the structural component representing the flexible riser is typically considered to have 
nonlinear response and very complex dynamics, while at the same time simplicity in the formulation 
of the governing equations and efficiency in the solution are desired. 

In this study, a structural finite element for an inextensible riser, based on the approach developed 
in [1] regarding the application of the inextensibility constraint, is presented. In particular, the 
inextensibility constraint is applied only at the nodes of the meshed arc length parameter. Among the 
virtues of the proposed approach is the flexibility in the application of boundary conditions and the 
easy incorporation of dissipative forces. Several attributes of the proposed finite element scheme are 
analysed and CPU times for the solution of many simplified examples are computed. Future 
developments aim at the appropriate implementation of material and geometric parameters for the 
inextensible beam model, i.e. flexural and torsional rigidity. These data will be generated by the multi-
scale model for flexible riser systems developed in [2].             
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2.  Organisation of paper 
The paper is organised as follows: in Section 3 the governing equations for an inextensible beam 
featuring a nonlinear bending moment-curvature relation are derived from the variation of the energy 
functional. Based on the variational form of the problem a finite element procedure, similarly to the 
one proposed in [1] is presented in Section 4. The main result, i.e. the formulation of a numerical 
scheme that features a linearization of the nonlinear flexural modulus and preserves the convergence 
rate characterising the method of Bartels [1] is contained in this section. Finally, Section 5 is devoted 
to the presentation of relevant numerical results. The study ends with a concluding paragraph 
summarising the current findings and mentioning future developments. In particular, the proposed 
scheme refers to the flexural response of the beam and does not include the effects of torsion. This 
addition, is very important and is targeted as a near future step towards the development of an 
integrated methodology for the efficient and robust simulation of flexible risers. 

3.  Governing equations 
In this section, the equation governing the large deflection of inextensible beams will be introduced 
and briefly analysed. Subsequently, the finite element procedure introduced by Bartels [1] is adopted 
for the simulation of elements representing flexible riser components. The analysis presented here is 
focused on the riser body itself and does not incorporate fluid-structure interaction phenomena. The 
aim is to first obtain an efficient model, and an associated robust solution methodology for the 
inextensible structural member undergoing large deformations and featuring some degree of 
nonlinearity in the moment-curvature constitutive relation. 

Let L and T be positive constants representing the length of inextensible beam and the total time 
that the phenomenon under consideration lasts, respectively. The beam domain is [0, ]I L= . For any 
s I∈ , the vector valued function 

[ ]( ) ( ) ( ) ( ) Tu s x s y s z s= ,                                                               (1) 

defines the location in the Euclidian space of each point along the length of the inextensible beam. The 
curvature at each point s  representing the arc-length parameter is ( ) sss uκ = , where a subscript denotes 
differentiation with respect to the respective variable. 

The kinetic energy of a flexible riser with variable properties is 
21( )

2t tI
K u m u ds∂ = ∂∫ ,                                                                  (2) 

where m  is the mass distribution along the riser body and tu∂  denotes the measure of the velocity 
vector. In the following analysis, the strain energy functional is assumed to have the form 

2 41 1( )
2 4ss ssI I

U u EI u ds b u ds= +∫ ∫ ,                                                      (3) 

where ( )EI EI s=  represents the flexural rigidity of the riser and ( )b b s=  is a parameter introducing 
nonlinear elastic behaviour in the response. This expression of the strain energy is aimed to simulate 
phenomena related to relatively small values of the curvature, by introducing a small degree of 
nonlinearity to the moment-curvature relation. 

Assuming now an energy functional of the form 

( )2( , , ) ( ) ( ) 1
2t t sI

J u u K u U u u dsλλ∂ = ∂ + + −∫ ,                                             (4) 

in order to incorporate the inextensibility constraint through a Lagrange multiplier λ  representing the 
action that enforces the inextensibility and setting the first variation, using the Gâteaux derivative, to 
be zero, it is 

0
( , , ) ( , , )

lim 0t t tJ u u J u u
ε

ε χ εχ λ εµ λ
ε→

∂ + ∂ + + − ∂
= = .                                          (5) 



4

1234567890

First Conference of Computational Methods in Offshore Technology (COTech2017) IOP Publishing

IOP Conf. Series: Materials Science and Engineering 276 (2017) 012023 doi:10.1088/1757-899X/276/1/012023

Equation (5) implies the variational form:       
 

( )2 0tt ss ss ss s sI I I
m u ds EI b u u ds u dsχ χ λ χ∂ ⋅ + + ⋅ + ⋅ =∫ ∫ ∫ ,                               (6)  

and 
2 1 0su − =  in I ,                                                             (7) 

almost everywhere in (0, )T  for all admissible functions χ . 
Introducing now the nondimensional quantities /s s L= , /u u L=  and 2 /t tL EI m−= , the 

variational form becomes (after dropping tildes) 
 

( )21tt ss ss ss s sI I I I
u ds B u u ds u ds Q dsχ χ χ χ∂ ⋅ + + ⋅ + Λ ⋅ = ⋅∫ ∫ ∫ ∫ ,                                   (8) 

where 2 /B bL EI−= , 3 /L EIλΛ =  and 3 /Q qL EI=  and [0,1]I = . 
In the nondimensional form, the strain energy density as a function of the curvature ssuκ =  reads 
 

    2 41 1( )
2 4

V bκ κ κ= + .                                                             (9) 

A plot of the V  as a function of κ , for different values of the nonlinearity parameter b  is depicted 
in Figure 1. The bending moment for the above model, defined as the energy conjugate quantity of the 
curvature is 

( )2M( ) 1 Bκ κ κ= + .                                                           (10) 

A plot of the bending moment as a function of the curvature is depicted in Figure 2 for different 
values of the nonlinearity parameter B . Finally, a plot of the bending modulus, denoted here as 
dM/dκ  is shown in Figure 3. The feasible domains for the above mentioned quantities are highlighted 
in green color. For 0B =  the linear bending moment-curvature model is retrieved. Positive values of 
B  correspond to a type of elastic hardening in the behaviour of the beam, while negative values 
produce a reduction in the flexural rigidity, with increasing curvature. 

This particular model can be employed up to values of curvature that retain the positive 
definiteness of the strain energy in order to simulate the small curvature region of the more involved 
behaviour that has been proposed in [2]. 

 
Figure 1. Strain energy density for different values 

of the nonlinearity parameter B. 

  

Figure 2. Bending moment for different values 
of the nonlinearity parameter B. 
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Figure 3. Flexural rigidity for different values of the nonlinearity parameter B. 

4.  The proposed finite element scheme 
For the efficient solution of the inextensible beam model equations presented in the previous section, 
the numerical procedure proposed by Bartels [1] for the vibration of inextensible curves of constant 
flexural rigidity is utilised. The efficient method proposed by Bartels, based on the satisfaction of the 
inextensibility constraint only on the nodes of the finite element mesh, is extended here to the case of 
an inextensible beam that has a curvature dependent flexural modulus and in particular a bending 
moment-curvature relation as defined in Equation (10). It should be noted that the scheme proposed 
here includes only the flexural response of the riser and for realistic applications it should be coupled 
with axial and torsional effects as well. In the following, basic steps for the derivation of an integrated 
methodology for the efficient and robust simulation of flexible risers are described. Initially, following 
Bartels [1], for the time discretisation of the system the backward difference quotient D− is introduced 
in Equation (11) 

1
1

n n
n v vD v

τ

+
− + −

= ,                                                          (11) 

In the above expression nv  denotes the velocity of the system tu∂  at time instant nt  and 1n nt tτ += −  
is the time step (assumed constant in this study but in general variable). Furthermore, the update (12) 
of the deflection is introduced: 

1 1n n nu u vτ+ += + ,                                                          (12) 

The scheme involving spatial discretisation using standard Hermite interpolation for each finite 
element and expressions Equation (11) and Equation (12) for discretisation with respect to time is: 

Given 2 3, ( ;R )j ju v H I∈ , 0,1,2,...,j n=  and 0τ > , find 1 2 3( ;R )kv H I+ ∈  such that 

( )21 1 11 0n n n n n
ss ss ss ss ssI I

D v ds B u v u v dsχ τ τ χ− + + + ⋅ + + + + ⋅ = ∫ ∫ ,                          (13) 

and 1 0n n
s sv u+ ⋅ =  in I , for all 2 3( ;R )H Iχ ∈ , with 0n

s suχ ⋅ =  in I . Update the deflection through 
1 1n n nu u vτ+ += + , where 2 3( ;R )H I  denotes the space of functions with square-integrable second 

derivatives defined in I , with values in the Euclidian space 3R . The value 0j =  corresponds to the 
definition of appropriate initial conditions for the deflection and velocity of the inextensible beam.    

For the approximate solution of the above problem, using the definition of 1nD v− + , multiplying the 
discrete variational form by τ  and expanding the terms in the second integral we obtain 
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( ) ( )
( ) ( )
( ) ( )
( )

21

22 1 2 1

23 1 3 1 1

24 1 1

, 1 ,

1 1 , 2 ,

, 2 ,

, 0

n n n n
ss ss ss

n n n n n
ss ss ss ss ss ss ss

n n n n n
ss ss ss ss ss ss ss

n n
ss ss ss

v v B u u

B u v B u v u

B v u B u v v

B v v

χ τ χ

τ χ τ χ

τ χ τ χ

τ χ

+

+ +

+ + +

+ +

 − + +  

   + + + ⋅   

 + + ⋅ 

+ =

 ,                                           (14) 

where ( , )  denotes the 2 ( )L I  inner product defined by the integrals in the definition of the discrete 
problem. Using now the identity 

 
( ) ( )1 1n n n n n n

ss ss ss ss ss ssu v u u u v+ +⋅ = ⊗ ,                                                (15) 

the following result is easily derived from Equation (14). 
PROPOSITION   Let 3I  denote the 3 3×  identity matrix. Then it is 
 

( ) ( )( )
( ) ( )

21 2 1
3 3

2 3

, 2 ,

                               , 1 , ( )

n n n n n
ss ss ss ss ss

n n n
ss ss ss

v B u B u u v

v B u u O

χ τ χ

χ τ χ τ

+ + + + + ⊗ =  

 − + +  

I I
 ,                                            (16) 

The above proposition suggests that the simper form Equation (16) can be used instead of Equation 
(14), while the remainder is of the order 3( )O τ . This is a higher order term compared to the order of 
approximation in the finite element procedure employed by Bartels [1] and thus the use of Equation 
(16) instead of Equation (14) does not affect the rate of convergence. 

The linearized updated procedure defined by Equation (16) has certain similarities with the secant 
modulus method (method of Kačanov), however it is not identical with the secant modulus method 
obtained by linearizing the problem and then introducing the backward difference quotient for the time 
derivative approximation. For the approximation of the displacement field either 2- node Hermite 
elements or 3-node Hermite elements [18] can be used.                  

5.  Numerical results and discussion 
In this section, the efficiency of the proposed model and the numerical solution strategy is 
investigated. The possible use of the proposed finite element for applications involving the large 
deflection of flexible marine risers (Figure 4), featuring large displacements in the 3D space, various 
types of boundary conditions and possible large masses with degrees of freedom attached at one end 
(representing possibly a vessel motion due to surface gravity wave fields) is discussed. 

Regarding the effectiveness of the proposed methodology and the effect of the nonlinearity in the 
moment-curvature relation, one of the examples studied in [1] will be analysed for different values of 
the nonlinearity parameter B. In particular, the case of an unwinding helix is selected. Following 
Bartels [1], we select [0, 2 ]I π= , 30T =  and 

 
( ,0) sin( 0.99 ) cos( 0.99 ) 0.01u s s s s =   , [ ]( ,0) 0 0 0v s = , 

while at 0s =  it is 
[ ](0, ) 0 1 0u t = , (0, ) 0.99 0 0.01su t  =   , 

representing clamped boundary conditions. 
Figures 5 and 6 present snapshots of the unwinding helix evolution for the linear bending moment-

curvature model (blue line) and the nonlinear case (red line).  
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In Figure 5, the case B = -0.025 is examined, corresponding to a ‘softening’ flexural modulus with 
increasing curvature, while in Figure 6, it is 0.1B =  (red line), corresponding to a flexural modulus 
that increases with increasing values of the curvature measure. The results for 0B =  are also included. 
This case is presented for two reasons. First, it provides a means of validation since it has already been 
analysed in [1]. The results obtained in this study for 0B =  are identical to those obtained by Bartels 
[1]. The second reason is to demonstrate the effect that the nonlinearity in the bending behaviour of 
the beam has on the deflections. To that end, the linear case is retained as a reference. 

The violation of the inextensibility constraint (that is the total increase in the length of the beam) in 
the examples presented in Figures 5 and 6 is at the most 0.05 in a total (nondimensional) length of 
6.28. As reported also in [1], if the time increment is appropriately selected for a given spatial mesh 
size, the present numerical scheme should approximate the inextensibility feature very effectively. The 
time needed for the solution of the above presented examples is only a few minutes. The number of 2-
node elements used is 30 and the time steps less than 2000. 

As a second example, a helix with two concentrated masses attached at its ends is studied. The mass 
at the lower end is assigned a very large value, leading to virtually zero motion of the lower end. This 
case would approximately correspond to a fixed end. Such an edge condition would be appropriate for 
the simulation of the riser connection to the seabed. The mass attached at the upper end is significantly 
lower and thus the upper end undergoes significant displacements. This type of edge condition might be 
relevant to the attachment of a flexible riser onto a vessel or a floating platform. In the nondimensional 
setting, the mass attached to the lower end is 106, while the one at the upper end is 100. The remaining 
parameters are [0, 4 ]I π= , 30T =  and 

( ,0) sin( 0.25 ) cos( 0.25 ) 0.75u s s s s =   , [ ]( ,0) 0 0 0v s = , 

while at 0s =  it is 
                           [ ](0, ) 0 1 0u t = , (0, ) 0.27 0 0.75su t  =   . 

 

Figure 4. Schematic representation of a flexible marine riser. 
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Figure 5. Evolution of the unwinding helix for B = 0 and B = -0.025.  

 

 
Figure 6. Evolution of the unwinding helix for B = 0 and B = 0.1. 
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Again the violation in the inextensibility constraint leads to an insignificant variation in the total 
length of the beam, even in cases where very few elements and time steps are used. In all the examined 
cases, the total time needed for the evaluation of the evolution was only a few minutes. This suggests 
that the efficient solution methodology proposed in [1], and applied to the case of riser like structures 
in the present work, might be of significant interest when multiple simulations for the purpose of 
parametric studies are needed. Snapshots of the evolution in the beam deflection are depicted in Figure 
7. The velocity along the length of the beam is also depicted in the form of arrows. It should be noted 
that the selected example corresponds to the case 0B = . 

  

  

  Figure 7. Snapshots of the evolution (example 2) for 0B = . 

6.  Conclusions 
In this study, a structural finite element for an inextensible riser, based on a point-wise application of 
the inextensibility constraint is presented. In particular, the inextensibility constraint is applied only at 
the nodes of the meshed arc length parameter. The method is extended to include some degree of 
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nonlinearity in the curvature-bending moment relation. The specific form adopted corresponds to the 
small curvature regime of more sophisticated riser mechanical behaviour models proposed in the 
literature. Future research focuses on the incorporation of the torsion effects while retaining the 
robustness of the numerical solution technique developed. Among the virtues of the proposed 
approach is the flexibility in the application of boundary conditions and the easy incorporation of 
dissipative forces. 
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