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On Stability of Stiffened Cylindrical Shells with
Varying Material Properties
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Abstract—The static stability analysis of stiffened functionally
graded cylindrical shells by isotropic rings and stringers subjected to
axial compression is presented in this paper. The Young's modulus of
the shell is taken to be function of the thickness coordinate. The
fundamental relations, the equilibrium and stability equations are
derived using the Sander's assumption. Resulting equations are
employed to obtain the closed-form solution for the critical axial
loads. The effects of material properties, geometric size and different
material coefficient on the critical axial loads are examined. The
analytical results are compared and validated using the finite element
model.
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I. INTRODUCTION

TIFFENED cylindrical shells have found widespread use

in modern engineering, especially in aircraft and
spacecraft industry. There have been many studies on the
stability of cylindrical shells but closed-form solutions are
possible only for the case which all edges are simply
supported. Due to the increasing demands of high structural
performance requirements, the study of functionally graded
materials in structures has received considerable attention in
recent years.

The buckling and postbuckling of cylindrical shells under
combined loading of external pressure and axial compression
are demonstrated by Shen and Chen [1]. The instability
analysis of stiffened cylindrical shells under hydrostatic
pressure is given by Barush and Singer [2]. The postbuckling
of stiffened cylindrical shells under combined external
pressure and axial compression is investigated by Shen et al.
[3]. Using a novel finite elements model, Sridharan and
Zeggane [4] studied the interaction of local and overall
buckling in stiffened plates and cylindrical shells. Numerical
examples of plate and shell structures are presented to throw
light on these aspects of the methodology as well as to
demonstrate the accuracy and efficiency of the model. Zeng
and Wu [5] reported the postbuckling analysis of stiffened
braided thin shells subjected to combined loading of external
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pressure and axial compression. Yaffe and Abramovich [6]
have analyzed numerically and experimentally the dynamic
buckling of cylindrical stringer-stiffened shells. Spagnoli [7]
studied the different modes of instability in stiffened conical
shells under axial compression through a linear eigenvalue
finite element analysis. Kidane et al. [8] derived the buckling
loads of a generally cross and horizontal grid stiffened
composite cylinder by developing an analytical model for
determination of the equivalent stiffness parameters of a grid
stiffened composite cylindrical shell. Rikards et al. [9]
employed a triangular finite element model to study the
buckling and vibration of laminated composite stiffened shells
and plates based on the first order shear deformation theory.
The stabilization of a functionally graded (FG) cylindrical
shell under axial harmonic loading is investigated by Ng et al.
[10]. Narimani et al. [11] was developed a closed-form
solution based on the first order shear deformation theory to
study the buckling loads of FG cylindrical shells under three
types of mechanical loadings.

The main purpose of the present paper is to investigate the
buckling behavior of FG stiffened cylindrical shells by
isotropic rings and stringers under axial compression. The
Donnell nonlinear strain-displacement relations are employed
to derive the equilibrium and stability equations. The closed-
form solution is used to obtain the critical axial loads. The
numerical results of the critical loads are presented for
variation of the material properties and geometric size of the
shell. To validate the analytical solution, a finite element
analysis is employed.

Il. THEORETICAL DEVELOPMENT
Fig. 1 illustrates the geometry and configuration of a
cylindrical shell of mean radius a, thickness h, and length L
with the cylindrical coordinates (x, &, z) made of functionally
graded materials. A power law distribution is chosen to

describe the variation of the Young's modulus in the thickness
direction as [11]

k
2z+h
E(z)=E, +Eg, (Tj )
Ecm = Ec - Em
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Fig.1 Geometry of FG circular cylindrical shell.

where k is the material coefficient and subscripts m and ¢
refer to the metal and ceramic constituents, respectively. The
Donnell form of the kinematic relations for cylindrical shells
is as follows [12]

1,
é‘x u‘X+EWyX’
+ 2
VW oWy
Eg = Ty
a 2a (2)
U, W, W,
Vxo =| —— TV A
a a
w w
k, =-w k, = -——2 Ky = —22
XX 0 ' 4
X XX az X a

where u,v and w are the axial, circumferential, and lateral
displacements of shell, respectively, &,,¢&, and y,, are the
normal and shear strains, respectively and k,,k, and k,, are

the curvatures. Also, the indices x and & refer to the axial
and circumferential directions, respectively. A thin-walled FG
cylindrical shell, stiffened by closely spaced circular rings
attached to the inside of the shell skin and with longitudinal
stringers attached to the outside is considered (see Fig. 2). For
a shell-wall construction that is not symmetrical relative to the
shell middle surface, there is a coupling between extensional
forces and curvature change and between bending moments
and extensional strains. To account for this coupling effect the
constitutive equations are expressed as [12]

N, =Cp &, +Cirey +Ciuk, +Cisky

N, =Cpre, +Cyhey +Cyuky +Cpsky

Nyo = Css7xo + CasKyo

My =Cryéx +Cpug +Cuyky +Cysky )
M, =Cise, +Cyrey + Cyuk, +Cosky
Mo =Ca67xo + CesKyo

where the stiffness parameters Cij are given by
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Fig. 2 Schematic view of shell-wall construction for FG stiffened
cylindrical shell.
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where subscripts s and r refer to the stringers and rings,
respectively. Note that, the thickness and width for stringers
are respectively denoted by h,and b, and for rings are h,and

b,. Also, d and d, are the distances between two stringers

and rings, respectively and the eccentricities e, and e,
represent the distance from the shell middle surface to the
centroid of the stiffener cross section (Fig. 2). In Eq. (3), the
stress resultants N, and M; are expressed as

h
(Ni,Mi):ﬁai(l,z)dz i=x 6,x0 (6)
2

Using the minimum potential energy criterion [12], the
equilibrium equations of stiffened cylindrical shells are
established as follow

aN, , + Ny, =0
aNygx +Nyy =0

1
aM, . +2M 5 + 2 Mo — Ny @)

1
+aN,w,, +2N,,w,, +—N,w, =—Pa
. . a ,

The stability equations of cylindrical shell may be derived
by the variational approach. If V is the total potential energy
of the shell, the first variation 6V is associated with the state
of equilibrium. The stability of the original configuration of
the shell in the neighborhood of the equilibrium state can be

determined by the sign of second variation 53 . However,

the condition of 52V =0 is used to derive the stability
equations of many practical problems on the buckling of
shells [12]. Thus, the stability equations are represented by the
Euler equations for the integrand in the second variation
expression

aNy; « + Nypp =0

aNyg1x + Ny =0

1
aMm +2M 91 50 +E Mo —Nag 8)

X1, XX

1
+aN oWy + 2N oWy 4 +g N oW g9 =0

The terms with the subscript O are related to the state of
equilibrium and terms with the subscript 1 are those
characterizing the state of stability. By substituting Eq. (3)
into (8), the stability equations can be derived in terms of
displacement components.
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I1l. BUCKLING ANALYSIS

To determine the critical axial loads, the prebuckling
mechanical forces should be found from the equilibrium
equations and then substituted into the stability equations for
the buckling analysis. Under a uniformly distributed axial
compressive load P,the cylinder shortens, except at the ends,
and increases in diameter. The initial deformation is
axisymmetric and the prebuckling mechanical forces are given
by [12]

P
Ny =-—— 9
X7 om ©

Ngo = Nygo =0,

Upon substituting the prebuckling forces into the stability
equations (8) in terms of displacement components, a set of
three differential equations is obtained. To solve this set of
equations, the following approximate solutions, which satisfy
the resulting equations and the simply supported boundary
conditions are assumed

w0

u, =ZZUmn cosmx sinné

m=1 n=1

o0 00

Vi =D ) Vy, sinmx cosnd

m=1 n=1

(10)

w; = >3 W, sinmx sinng

m=1 n=1

where M =msx/L. Substituting relations (10) into the
stability equations in terms of displacement components gives

ajA+a;,B+a;;C=0

apA+a,B+a,C=0 (11)
a;3A+ay,B+(a, —P)C=0
where
all = Cllmz + C33n2 I alZ = (C].Z + C33 )mn
_ Cy_3 1 —
a3 =—(C12m +%m3 +E(C15 +C36)mn2j
8z =CyM’ +Cpn?, P=Pm?/2m
3
n° 1 - 12
83 = ~CoN = Cp5 — == (Cy5 + Co4 JM*n (2
a a
—4 4
m 2 — n
g3 =Cyy —2+—2(C45 +C66)m2n2 +_2C55
a a a

2n? 2_
+C,y +——Cps + —M2Cy,
a a

which [a] is a symmetric matrix. By setting | a;; =0 to obtain
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the nonzero solution, the value of P is found

ey
Bz

Fig. 3 FEM model for FG stiffened cylindrical shell with isotropic rings and stringers.

2 2
P _as + 28,8383 — 8pp8j3 — 838 (13)
2m m’ (182, —a,)M’

The critical axial load can be obtained by minimizing P
with respect to m and n, the number of longitudinal and

circumferential buckling waves. By setting the material
coefficient to zero (k =0) and minimizing with respectto m

and n, Eqg. (13) is reduced to the critical axial load of
unstiffened homogeneous cylindrical shell

2 2
P _as + 2815853813 — 8853 — 813853
2ma W (a8, —ap)m?

(14)

The above equation has been reported by Brush and
Almorth [12].

The present analytical solution needs to be verified with
some other mathematical computational model such as the
FEM. For verification, we have used a finite element program
code. The FEM analysis was done on a FG unstiffened and
stiffened cylindrical shell using a 2-D FEM model (Fig. 3).

IV. NUMERICAL RESULTS

This paper presents the mechanical buckling analysis of
functionally graded stiffened cylindrical shells by isotropic
rings and stringers under axial compression load. A ceramic-
metal FG cylindrical shell is considered. The FG cylindrical
shell constituents are zirconia and aluminum. The inner
surface of the FG cylindrical shell is composed of zirconia and
the outer surface is composed of aluminum. The rings and
stringers are isotropic and are made of aluminum. The
Young's modulus for zirconia and aluminum are 151 GPa and
70 GPa, respectively. The Poisson's ratio is assumed to be
constant and equal to 0.3. As a numerical example, we
consider a FG stiffened cylindrical shell with 15 rings and
stringers illustrated in Fig. 3. The following stiffened shell
dimensions have been used:
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a=0.24m
| =8.58m
h=7.19x10"*m

hy =h, =7.62x107°m
b, =b, =2.46x107°m
d, =d, =2.54x107?m

For the given values of the material coefficient k and
thickness of shell, the values of m and n may be chosen by
trial to give the smallest value of buckling load P. These
values can be obtain by a suitable software or optimization
program.

Comparisons of the critical axial loads for isotropic
stiffened cylindrical shell are presented in Table 1. In this
table for the case of isotropic cylindrical shell, it is assumed
that k = 0.Table 1 shows that the buckling pressure increases
by the increasing of the various R/L ratios. Comparisons of
the critical axial loads for the functionally graded stiffened
cylindrical shell with isotropic rings and stringers are
presented in Tables 2. Table 2 shows that the buckling
pressure by the increasing of the various h/L ratios. Also
FEM results of the critical axial loads for FG stiffened
cylindrical shell are shown in Fig. 4.

TABLE |
COMPARING THE CRITICAL AXIAL LOADS (MPA) OF SIMPLY SUPPORTED
HOMOGENEOUS CYLINDRICAL SHELLS (K=0).

R/L Analytical FEM
0.1 28.36 28.84
0.125 53.90 57.03
0.15 81.07 84.26
0.175 97.90 99.04
0.2 117.2 119.87
0.225 137.8 138.99
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F1G. 4 FEM RESULTS FOR FG STIFFENED CYLINDRICAL SHELL WITH ISOTROPIC RINGS AND STRINGERS.

TABLEII
COMPARING THE CRITICAL AXIAL LOADS (MPA) OF SIMPLY SUPPORTED
FG CYLINDRICAL SHELL.

h/L Analytical FEM
0.0014 28.05 28.43
0.0016 36.78 38.87
0.0018 44.69 47.21
0.0020 51.47 54.36
0.0024 56.70 59.53
0.0026 60.00 63.18

V. CONCLUSION
In the present paper, equilibrium and stability equations of

simply supported functionally graded stiffened cylindrical
shells are obtained. Then, the buckling analysis of functionally
graded stiffened cylindrical shells under uniformly axial
compression load is investigated. It is conclude that:

1.The critical axial loads for homogeneous stiffened
cylindrical shells are generally upper than the
corresponding values for the homogeneous unstiffened
cylindrical shells.

2.The critical axial loads for FG stiffened cylindrical
shells are generally lower than the corresponding value
for the homogeneous stiffened cylindrical shells.

3.The critical axial loads for FG stiffened cylindrical
shells are generally upper than the corresponding value
for the FG unstiffened cylindrical shells.
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4.The critical axial loads are increased by increasing the
shell thickness and decreasing the material coefficient.
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