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Abstract

This paper investigates the eccentric low-velocity impact of Fiber metal laminates (FMLs) 

subjected to spherical projectile using a unified Zig-Zag plate theory. The presented zig-zag plate 

theory enforces transverse shear stress continuity through the thickness and can be reduced to 

conventional plate theories using appropriate shape function. The governing equations and suitable 

boundary conditions are obtained using the principle of minimum total potenital energy. Runge-

Kutta method is employed to solve initial value problem resulted by the method of Ritz. The 

present model is validated by comparison and good agreement between its results and those of 

reports in open literature. Influence of various specifications of impact phenomenon such as 

laminate thickness, projectile radius, projectile velocity, in-plane load and eccentricity parameter 

is examined on deflection and contact force time history. The obtained results indicate that 

continuity of transverse shear stress is required to achieve accurate contact force even for 

moderately thin FMLs. 
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1. Introduction

With a growing demand for lightweight structures in aerospace industry, an enormous amount of 

current researches targeted in development of new composite structures.  The recent works focused 

on Fiber metal laminates (FMLs) which are built up of thin metallic sheets and fiber reinforced 

composites (Fig. 1) [1,2]. FMLs combine impact resistance and easy repair of metals and superior 

strength of stiffness of composites [3,4].

Fokker Aerostructure of Netherlands discovered that bonded laminates prevent the rapid crack 

growth compared to the monolithic materials in 1950 [5]. However, after the second worldwide 

war, the first mechanical test was performed around 1970. The first optimized FML called ARALL 

(Aramid Reinforced ALuminium Laminate) manufactured by Delft University in 1982 [6]. 

ARALL was employed in C17 cargo doors. GLARE (GLAss REinforced aluminum laminate) was 

developed in 1987 because ARALLs suffers from inadequate compression properties. Utilizing 

GLARE in upper fuselage structure of Airbus A380 caused saving nearly 794 kg gross weight [5]. 

Primary structure requires an accurate prediction of stress field which can be achieved by 

considering the non-classical effects such as transverse shear and normal deflection [7]. Equivalent 

Single Layers (ESL) theories such as First-order Shear Deformation Theory (FSDT), High-order 

Shear Deformation Theory (HSDT) and Advanced High Order Theories offer a simple solution to 

thin and moderately thick laminates[8]. However, these theories suffer from some drawbacks in 

modeling high transverse anisotropic laminate. On the other hand, Layer-Wise theory (LWT) 

provides high accurate predictions, whereas it becomes computationally expensive in case of 

laminates with a large number of layers [9].

Zig-Zag Theories (ZZT) offer a simple way to consider shear deformation in the framework of 

ESL theories. Due to capture transverse anisotropy, slope of in-plane displacement through the 

thickness varies as shown in Fig. 2 which is called Zig-Zag phenomenon [10]. Carrera developed 

a unified theory including ESL, LW and ZZ effects as a special case. The finite element matrices 

derived in a unified manner and vast numerical examples have been given [11,12]. Brischetto et al 

employed Murakami’s ZZ function (MZZF) to analysis sandwich panels [13]. Gherlone et al [10] 

examined the mixed formulation of MZZF in comparison with displacement-based MZZF, RZT 

and Timoshenko beam. They showed RZT is more accurate for arbitrary lay-ups by considering 

the ZZ effects. Groh and Weaver [7] presented displacement-based and mixed formulation based 



on Reddy shape- function and MZZF. Also, they developed a unified general theory through 

Hellinger–Reissner mixed formulation to consider non-classical effect in analysis of highly 

heterogeneous multilayers [14,15].

Aerospace structures may encounter low-velocity impact caused by sources such as tool drop, 

runway stones, etc. According to the literature, the analytical modeling procedure of impact can 

be classified into three types [16]: spring-mass models [17,18], energy balance models [19,20], 

structural models based on plate theories(including 1-tem Ritz method [21] and N-term Ritz 

method [22]).

To the best of our knowledge, most researchers investigated FMLs numerically or experimentally. 

A few research works focused on analytical models to predict impact response of FMLs. Vlot 

indicated that the impact model required depends on the impact regime [23]. Tsamasphyros and 

Bikakis studied the low-velocity response circular GLARE FML using 1-term Ritz method. They 

predicted the first failure(fiber fracture) for studied circular plates [24]. Bikakis investigated the 

low-velocity impact of circular GLARE FMLs using linearized spring-mass model. He presented 

an analytical expression to predict the impact load, position and velocity time history and 

compared the predicted results with those of experiments [25]. Morinière et al developed a 

progressive quasi-static model to predict dynamic response of GLARE subjected to low-velocity 

impact. They indicated aluminum layers absorbed 90%  of the total energy absorbed by the FMLs 

during impact [26]. Zarei et al investigated dynamic response of FMLs subjected to low-velocity 

impact based on HSDT. The effect of projectile velocity, projectile radius and thermal environment 

was studied in detail [27]. 

In the present work, the eccentric low-velocity impact of FMLs subject to spherical projectile is 

investigated. Hertz law of contact is employed to consider the nonlinear phenomena of contact. A 

ZZ plate theory is presented based on Groh and Weaver’s [7] theory for the beam structure. 

Governing equations and suitable boundary conditions are obtained using the principle of minim 

total energy. Runge-Kutta method is employed to solve initial value problem resulted by the 

method of Ritz. Influence of various specifications of impact phenomenon is examined on 

deflection and contact force time history. 



 2. Governing equations 

In the present study, a rectangular FML plate is formulated within the framework of Zig-Zag theory 

(ZZT) as shown in Fig. 3. According to ZZT, transverse shear stresses of kth layer at any point 

(x,y,z) for a symmetric laminate can be expressed as based on [7]

𝜏(𝑘)
𝑥𝑧 (𝑥,𝑦,𝑧) = [𝐺𝑥{𝐴(𝑘)

𝑥 + 𝑚(𝑘)
𝑥 (

𝑑∅(𝑧)
𝑑𝑧 ‒ 1))}]𝛾𝑥𝑧(𝑥,𝑦)

(1)

and

𝜏(𝑘)
𝑦𝑧 (𝑥,𝑦,𝑧) = [𝐺𝑦{𝐴(𝑘)

𝑦 + 𝑚(𝑘)
𝑦 (

𝑑∅(𝑧)
𝑑𝑧 ‒ 1))}𝛾𝑦𝑧](𝑥,𝑦)

(2)

where   and  are transverse shear stress in xz-plane and  transverse shear stress in 𝛾𝑥𝑧(𝑥,𝑦) 𝛾𝑦𝑧(𝑥,𝑦)

yz-plane , respectively. A posteriori shape function  is considered to include shear stress ∅(𝑧)

variation through the thickness within framework of the various plate deformation theories (See 

Table 1).

 In Eq. 1, the modification factors,  and can be expressed as𝑚(𝑘)
𝑥 𝑚(𝑘)

𝑦

𝑚(𝑘)
𝑥 = 𝑒(𝑘)

𝑥 (𝑔(𝑘)
𝑥 +

1

𝑔(𝑘)
𝑥

‒ 1) (3)

𝑚(𝑘)
𝑦 = 𝑒(𝑘)

𝑦 (𝑔(𝑘)
𝑦 +

1

𝑔(𝑘)
𝑦

‒ 1) (4)

where and  are defined as𝑒(𝑘)
𝑥 𝑒(𝑘)

𝑥

𝑒(𝑘)
𝑥 =

𝑄𝑥𝑥
(𝑘)

𝐸𝑥
  , 𝑒(𝑘)

𝑦 =
𝑄𝑦𝑦

(𝑘) 
𝐸𝑦

(5)

𝐸𝑥 = 1/ℎ
𝑁

∑
𝑘 = 1

𝑡(𝑘)𝑄𝑥𝑥
(𝑘)    ,𝐸𝑦 = 1/ℎ  

𝑁

∑
𝑘 = 1

𝑡(𝑘)𝑄𝑦𝑦
(𝑘) 

(6)

and and  are defined as𝑔(𝑘)
𝑥 𝑔(𝑘)

𝑦

𝑔(𝑘)
𝑥 = 𝐺𝑥/𝐺(𝑘)

𝑥𝑧     (7)



𝐺𝑥 = [1
ℎ

𝑁

∑
𝑘 = 1

𝑡(𝑘) 

𝐺(𝑘)
𝑥 ]

‒ 1

     

(8)

and

𝑔(𝑘)
𝑦 = 𝐺𝑦/𝐺(𝑘)

𝑥𝑧  (9)

𝐺𝑦 = [1
ℎ

𝑁

∑
𝑘 = 1

𝑡(𝑘) 

𝐺(𝑘)
𝑥 ]

‒ 1

     

(10)

The present ZZT utilized a piece-wise continues stress field offers capability to enforce 

Interlaminar continuity(IC) for transverse stresses through the thickness. In Eq 1, shear stress 

layer-wise constants in xz- plane, , are determined  as 𝐴(𝑘)
𝑥

𝜏(1)
𝑥𝑧 (𝑧0) = 0           (11)

𝐴(1)
𝑥 = ‒ 𝑚(1)

𝑥 (
𝑑∅
𝑑𝑧 ‒ 1)  

(12)

and

𝜏(𝑘)
𝑥𝑧 = 𝜏(𝑘 + 1)

𝑥𝑧          (13)

  𝐴𝑥
(𝑘 + 1) = 𝐴(𝑘)

𝑥 +  (𝑚(𝑘)
𝑥 ‒ 𝑚(𝑘 + 1)

𝑥 )(
𝑑∅
𝑑𝑧 ‒ 1)  

(14)

and shear stress layer-wise constants in yz- plane, 𝐴(𝑘)
𝑦

𝜏(1)
𝑦𝑧 (𝑧0) = 0           (15)

𝐴(1)
𝑦 = ‒ 𝑚(1)

𝑦 (
𝑑∅
𝑑𝑧 ‒ 1)  

(16)

and

𝜏(𝑘)
𝑦𝑧 = 𝜏(𝑘 + 1)

𝑦𝑧 (17)

  𝐴𝑦
(𝑘 + 1) = 𝐴(𝑘)

𝑦 +  (𝑚(𝑘)
𝑦 ‒ 𝑚(𝑘 + 1)

𝑦 )(
𝑑∅
𝑑𝑧 ‒ 1) 

(18)

Using von Karman assumptions, Eqs. (19) to (24) can be written for strain components on a generic 

point of plate:



𝜀𝑥 =
∂𝑢
∂𝑥 +

1
2(∂𝑤

∂𝑥)
2 (19)

𝜀𝑦 =
∂𝑣
∂𝑦 +

1
2(∂𝑤

∂𝑦)
2 (20)

𝜀𝑥𝑦 =
1
2(∂𝑣

∂𝑥 +
∂𝑢
∂𝑦 ) (21)

𝜀𝑥𝑦 =
1
2(∂𝑣

∂𝑥 +
∂𝑢
∂𝑦 ) (22)

𝜀𝑥𝑧 =
1
2(∂𝑤

∂𝑥 +
∂𝑢
∂𝑧 ) (23)

𝜀𝑦𝑧 =
1
2(∂𝑤

∂𝑦 +
∂𝑣
∂𝑧 ) (24)

The generalized Hook law for linear elastic behavior of composite laminate can be expressed as

{
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧} = [

𝑄11 𝑄12
𝑄21 𝑄22

𝑄66 𝑄55
𝑄44]{

𝜀𝑥𝑥
𝜀𝑦𝑦
𝜀𝑥𝑦
𝜀𝑥𝑧
𝜀𝑦𝑧}          

(25)

where  and  are stress and strain components in the coordinate system of Fig.2, respectively. {𝜎} {𝜀}
Also,  presents the transformed reduced material stiffness coefficients. The 𝑄ij(𝑖,𝑗 = 1,2,4,5,6)

reduced material stiffness coefficients are given as

𝑄11 =
𝐸11

1 ‒ 𝜐21𝜐12
, 𝑄22 =

𝐸22

1 ‒ 𝜐21𝜐12
,𝑄12 =

𝜐21𝐸11

1 ‒ 𝜐21𝜐12
,

𝑄44 = 𝐺23,𝑄55 = 𝐺13,𝑄66 = 𝐺12

(26)

Using Hook law and shear stain formulas, the displacement field for the present ZZT can be 

expressed as  

𝑢(𝑘)(x,y,z) = 𝑧𝜙𝑥(𝑥,𝑦) + 𝑓(𝑘)
𝑥 (𝑧) (𝜙𝑥(𝑥,𝑦) + 𝑤,𝑥(𝑥,𝑦)) (27)

𝑣(𝑘)(x,y,z) = 𝑧𝜙𝑦(𝑥,𝑦) + 𝑓(𝑘)
𝑦 (𝑧) (𝜙𝑦(𝑥,𝑦) + 𝑤,𝑦(𝑥,𝑦))    (28)

𝑤(x,y,z) = 𝑤(𝑥,𝑦) (29)



where  , ,  are axial displacement of mid-plane in x-direction, axial displacement of 𝑢, 𝑣, 𝑤 𝜙𝑥 𝜙𝑦

mid-plane in y-direction, transverse displacement of mid-plane, rotation of cross section about x-

axis and rotation of cross section about y-axis, respectively. The functions ,  are 𝑓(𝑘)
𝑥 (𝑧) 𝑓(𝑘)

𝑦 (𝑧)

piece-wise continuous function to consider the variation of transverse stresses through the 

thickness can be expressed as

𝑓(𝑘)
𝑥 (𝑧) =‒ 𝑧 + 𝑔(𝑘)

𝑥 (𝑧𝐴(𝑘)
𝑥 + 𝑚(𝑘)

𝑥 (∅ ‒ z)) + 𝑐(𝑘)
𝑥  (30)

and

𝑓(𝑘)
𝑦 (𝑧) =‒ z + 𝑔(𝑘)

𝑦 (𝑧𝐴(𝑘)
𝑦 + 𝑚(𝑘)

𝑦 (∅ ‒ z)) + 𝑐(𝑘)
𝑦  (31)

In Eq. (30), displacement layer-wise constants in xz-plane, , are obtained by enforcing IC for 𝑐(𝑘)
𝑥

displacement field. The neutral axis location and IC condition for displacement are given by 

𝑢(𝑘0)
𝑥 = 0 (32)

𝑐(𝑘0)
𝑥 = 0 (33)

and

𝑢(𝑘)
𝑥 = 𝑢(𝑘 + 1)

𝑥 (34)

𝑐(𝑘)
𝑥 =

𝑘

∑
𝑖 = 𝑘0 + 1

[(𝑔(𝑖 ‒ 1)
𝑥 𝐴(𝑖 ‒ 1)

𝑥 ‒ 𝑔(𝑖)
𝑥 𝐴(𝑖)

𝑥 )𝑧𝑖 ‒ 1 ‒ (𝑔(𝑖 ‒ 1)
𝑥 𝑚(𝑖 ‒ 1)

𝑥 ‒ 𝑔(𝑖)
𝑥 𝑚(𝑖)

𝑥 )(∅ ‒ 𝑧)]
(35)

𝑐(𝑘)
𝑥 =

𝑘0 ‒ 1

∑
𝑖 = 𝑘

[(𝑔(𝑖 + 1)
𝑥 𝐴(𝑖 + 1)

𝑥 ‒ 𝑔(𝑖)
𝑥 𝐴(𝑖)

𝑥 )𝑧𝑖 ‒ 1 ‒ (𝑔(𝑖 + 1)
𝑥 𝑚(𝑖 + 1)

𝑥 ‒ 𝑔(𝑖)
𝑥 𝑚(𝑖)

𝑥 )(∅ ‒ 𝑧)]
(36)

In Eq. (31), displacement layer-wise constants in yz-plane, , are determined as 𝑐(𝑘)
𝑦

𝑢(𝑘0)
𝑦 = 0 (37)

𝑐(𝑘0)
𝑦 = 0 (38)

and

𝑢(𝑘)
𝑦 = 𝑢(𝑘 + 1)

𝑦  (39)

𝑐(𝑘)
𝑦 =

𝑘

∑
𝑖 = 𝑘0 + 1

[(𝑔(𝑖 ‒ 1)
𝑦 𝐴(𝑖 ‒ 1)

𝑦 ‒ 𝑔(𝑖)
𝑦 𝐴(𝑖)

𝑦 )𝑧𝑖 ‒ 1 ‒ (𝑔(𝑖 ‒ 1)
𝑦 𝑚(𝑖 ‒ 1)

𝑦 ‒ 𝑔(𝑖)
𝑦 𝑚(𝑖)

𝑦 )(∅ ‒ 𝑧)]
(40)



𝑐(𝑘)
𝑦 =

𝑘0 ‒ 1

∑
𝑖 = 𝑘

[(𝑔(𝑖 + 1)𝐴(𝑖 + 1)
𝑦 ‒ 𝑔(𝑖)

𝑦 𝐴(𝑖)
𝑦 )𝑧𝑖 ‒ 1 ‒ (𝑔(𝑖 + 1)

𝑦 𝑚(𝑖 + 1)
𝑦 ‒ 𝑔(𝑖)

𝑦 𝑚(𝑖)
𝑦 )(∅ ‒ 𝑧)]

(41)

where neutral axis is located within layer  .𝑘0

According to Eqs. (19) to (24), the strains can be expressed as 

{
𝜀𝑥
𝜀𝑦
𝜀𝑥𝑦} = {

𝜀(0)
𝑥𝑥 + 𝑧𝜀(1)

𝑥𝑥 + (𝑓(𝑘)
𝑥 )𝜀(𝑓)

𝑥𝑥

𝜀(0)
𝑥𝑥 + 𝑧𝜀(1)

𝑦𝑦 + (𝑓(𝑘)
𝑦 )𝜀(𝑓)

𝑦𝑦

𝑧𝜀(1)
𝑥𝑦 + (𝑓(𝑘)

𝑥 )𝜀(𝑓 ‒ 𝑥)
𝑥𝑦 + (𝑓(𝑘)

𝑦 )𝜀(𝑓 ‒ 𝑦)
𝑥𝑦 }

(42)

{𝜀𝑥𝑧
𝜀𝑦𝑧} = {𝜀(0)

𝑥𝑧
𝜀(0)

𝑦𝑧 } + {(
𝑑𝑓(𝑘)

𝑥

𝑑𝑧 )𝜀(𝑓)
𝑥𝑧

(
𝑑𝑓(𝑘)

𝑦

𝑑𝑧 )𝜀(𝑓)
𝑦𝑧 }

where

, , {𝜀(0)
𝑥𝑥

𝜀(0)
𝑦𝑦 } = {

1
2(∂𝑤

∂𝑥)
2

1
2(∂𝑤

∂𝑦)
2} {𝜀(1)

𝑥𝑥
𝜀(1)

𝑦𝑦
𝜀(1)

𝑥𝑦 } = {
𝜙𝑥,𝑥
𝜙𝑦,𝑦

𝜙𝑥,𝑦 + 𝜙𝑦,𝑥}
(43)

, , {
𝜀(𝑓)

𝑥𝑥
𝜀(𝑓)

𝑦𝑦
𝜀(𝑓 ‒ 𝑥)

𝑥𝑦
𝜀(𝑓 ‒ 𝑦)

𝑥𝑦 } = {
𝜙𝑥,𝑥 + 𝑤,𝑥𝑥
𝜙𝑦,𝑦 + 𝑤,𝑦𝑦
𝜙𝑥,𝑦 + 𝑤,𝑥𝑦
𝜙𝑦,𝑥 + 𝑤,𝑥𝑦}  {𝜀(0)

𝑥𝑧
𝜀(0)

𝑦𝑦 } = {𝜙𝑥 +
∂𝑤
∂𝑥

𝜙𝑦 +
∂𝑤
∂𝑦} {𝜀(𝑓)

𝑥𝑧
𝜀(𝑓)

𝑦𝑦 } = {𝜙𝑥 +
∂𝑤
∂𝑥

𝜙𝑦 +
∂𝑤
∂𝑦}

3. Equation of motions

The partial differential equation of motion may be derived using the principle of minimum total 

potential energy:

𝛿Π = 𝛿𝑈 ‒ 𝛿𝑊 (44)

Variation of strain energy and external work caused by virtual displacement can be expressed as

𝛿𝑈 = ∬
𝐴
∫

ℎ/2

‒ ℎ/2
𝛿𝜀𝑇𝜎𝑑𝑧𝑑𝐴

(45

)



𝛿𝑊 = ∬
𝐴

(𝑞 ‒ 𝑘𝑤)𝑑𝐴 + ∫
ℎ/2

‒ ℎ/2
𝜎𝑛𝛿𝑢𝑛 + 𝜎𝑛𝑠𝛿𝑢𝑠 + 𝜎𝑛𝑧𝛿𝑤 ‒ ∬

𝐴

ℎ/2

∫
ℎ/2

(𝑢𝛿𝑢 + 𝑣𝛿𝑣 + 𝑤𝛿𝑤)𝑑𝑧
(46

)

In Eq. (46), A, Γ and k are reference plane area, plate boundary geometry and Winkler foundation 

parameter. The subscripts n and s represent directions normal and tangent to the boundary, 

respectively.  Substituting Eqs. (45) and (46) into Eq. (44), assuming following definitions for 

force resultants and moment resultants :(𝑁𝑥𝑥,𝑁𝑦𝑦,𝑁𝑥𝑦) (𝑀𝑥𝑥,𝑀𝑦𝑦,𝑀𝑥𝑦)

, {
𝑁𝑥𝑥
𝑁𝑦𝑦
𝑁𝑥𝑦} = ∫ℎ/2

‒ ℎ/2{
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦}𝑑𝑧 {

𝑀𝑥𝑥
𝑀𝑦𝑦
𝑀𝑥𝑦} = ∫ℎ/2

‒ ℎ/2{
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦}𝑧𝑑𝑧

(47)

and defining high-order stress resultants  , ,  and   as(𝑃𝑥𝑥,𝑃𝑦𝑦,𝑃𝑥𝑦) (𝑅𝑥,𝑅𝑦) (𝑆𝑥,𝑆𝑦) (𝑇𝑥,𝑇𝑦)

, {
𝑃𝑥𝑥
𝑃𝑦𝑦
𝑃𝑥𝑦} = ∫

ℎ
2

‒
ℎ
2{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦}(f(k)

x (𝑧))𝑑𝑧 {𝑅𝑥
𝑅𝑦} = ∫

ℎ
2

‒
ℎ
2
{𝜎𝑥𝑧
𝜎𝑦𝑧}𝑑𝑧

(48)

and

, , {
𝑄𝑥𝑥
𝑄𝑦𝑦
𝑄𝑥𝑦} = ∫

ℎ
2

‒
ℎ
2{

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦}(f(k)

y (𝑧))𝑑𝑧 {𝑆𝑥
𝑆𝑦} = ∫

ℎ
2

‒
ℎ
2
{𝜎𝑥𝑧
𝜎𝑦𝑧}(df(k)

x (𝑧)
𝑑𝑧 )𝑑𝑧  {𝑇𝑥

𝑇𝑦} = ∫
ℎ
2

‒
ℎ
2
{𝜎𝑥𝑧
𝜎𝑦𝑧}(df(k)

y (𝑧)
𝑑𝑧 )𝑑𝑧

(49)

and utilizing green theorem

∫
𝐴

𝑓,𝑖𝑑𝐴 = ∫
Γ
𝑓𝑛𝑖𝑑𝐴 (50)

The governing equations of motions of the plate can be expressed as

𝑃𝑥𝑥,𝑥𝑥 + 𝑄𝑦𝑦,𝑦𝑦 + 𝑄𝑥𝑦,𝑦𝑥 + 𝑃𝑥𝑦,𝑦𝑥 ‒ (𝑅𝑥 + 𝑆𝑥),𝑥 ‒ (𝑅𝑦 + 𝑇𝑦),𝑦 + 𝑁(𝑤) ‒ 𝑘𝑤 + 𝑞 = 𝐼0𝑤 (51)

‒ 𝑀𝑥𝑥,𝑥 ‒ 𝑃𝑥𝑥,𝑥 ‒ 𝑀𝑥𝑦,𝑦 ‒ 𝑃𝑥𝑦,𝑦 + 𝑅𝑥 + 𝑆𝑥 = 𝐼2𝜙𝑥

‒ 𝑀𝑦𝑦,𝑦 ‒ 𝑄𝑦𝑦,𝑦 ‒ 𝑀𝑥𝑦,𝑥 ‒ 𝑄𝑥𝑦,𝑥 + 𝑅𝑦 + 𝑇𝑦 = 𝐼2𝜙𝑦

where
𝑁(𝑤) = (𝑁𝑥𝑥𝑤,𝑥 + 𝑁𝑥𝑦𝑤,𝑦),𝑥 + (𝑁𝑥𝑦𝑤,𝑥 + 𝑁𝑦𝑦𝑤,𝑦),𝑦 (52)

In this study, it is assumed 
𝑁𝑥𝑦 = 0, 𝑁𝑥𝑥 = 𝑁𝑥𝑥,𝑁𝑦𝑦 = 𝑁𝑦𝑦 (53)

The stress resultants can be related to displacement field by the relations



𝑀𝑥𝑥 = 𝐷11𝜀(1)
𝑥𝑥 + 𝐹 1

11𝜀(𝑓)
𝑥𝑥 + 𝐷12𝜀(1)

𝑦𝑦 + 𝐹 1
12𝜀(𝑓)

𝑦𝑦 (54)

𝑀𝑦𝑦 = 𝐷22𝜀(1)
𝑦𝑦 + 𝐹 2

22𝜀(𝑓)
𝑦𝑦 + 𝐷12𝜀(1)

𝑥𝑥 + 𝐹 1
12𝜀(𝑓)

𝑥𝑥

𝑀𝑥𝑦 = 𝐷66𝜀(1)
𝑥𝑦 + 𝐹 1

66𝜀(𝑓 ‒ 𝑥)
𝑥𝑦 + 𝐹 2

66𝜀(𝑓 ‒ 𝑦)
𝑥𝑦

and

𝑃𝑥𝑥 = 𝐹 1
11𝜀(1)

𝑥𝑥 + 𝐻 1
11𝜀(𝑓)

𝑥𝑥 + 𝐹 1
12𝜀(1)

𝑦𝑦 + 𝐻12
12𝜀(𝑓)

𝑦𝑦 (55)

𝑃𝑦𝑦 = 𝐹 1
12𝜀(1)

𝑥𝑥 + 𝐻 1
12𝜀(𝑓)

𝑥𝑥 + 𝐹 1
22𝜀(1)

𝑦𝑦 + 𝐻12
22𝜀(𝑓)

𝑦𝑦

𝑃𝑥𝑦 = 𝐹 1
66𝜀(1)

𝑥𝑦 + 𝐻11
66𝜀(𝑓 ‒ 𝑥)

𝑥𝑦 + 𝐻12
66𝜀(𝑓 ‒ 𝑦)

𝑥𝑦

and

𝑄𝑥𝑥 = 𝐹 2
11𝜀(1)

𝑥𝑥 + 𝐻12
11𝜀(𝑓)

𝑥𝑥 + 𝐹 2
12𝜀(1)

𝑦𝑦 + 𝐻 2
12𝜀(𝑓)

𝑦𝑦 (56)

𝑄𝑦𝑦 = 𝐹 2
12𝜀(1)

𝑥𝑥 + 𝐻12
12𝜀(𝑓)

𝑥𝑥 + 𝐹 2
22𝜀(1)

𝑦𝑦 + 𝐻 2
22𝜀(𝑓)

𝑦𝑦

𝑄𝑥𝑦 = 𝐹 2
66𝜀(1)

𝑥𝑦 + 𝐻12
66𝜀(𝑓 ‒ 𝑥)

𝑥𝑦 + 𝐻 2
66𝜀(𝑓 ‒ 𝑦)

𝑥𝑦

and

𝑆𝑥 = (𝐴 𝑓
55 + 𝐹11

55)𝜀𝑥𝑧
(57)

𝑇𝑦 = (𝐴 𝑓
44 + 𝐹22

44)𝜀𝑦𝑧

and

𝑅𝑥 = (𝐴 𝑓
55 + 𝐴55)𝜀𝑥𝑧 (58)

𝑅𝑦 = (𝐴 𝑓
44 + 𝐴44)𝜀𝑦𝑧

The governing equation of the projectile is given as 

𝐹𝑐 =‒ 𝑚𝜉 = 𝐾𝑒𝑓𝑓𝛼
3
2

(59)

where ζ, α, m and Keff represents displacement of the projectile, indentation of projectile, projectile 

mass and contact stiffness, respectively. The contact stiffness Keff is determined according to 

geometry and mechanical properties of the projectile and top layer of the plate.

𝐾𝑒𝑓𝑓 =
4
3𝐸 𝑅

(60)

1
𝐸 =

1
𝐸𝑡𝑎𝑟𝑔𝑒𝑡

+
1

𝐸𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑙𝑒
  

(61)



1
𝑅 =

1
𝑅𝑡𝑎𝑟𝑔𝑒𝑡

+
1

𝑅𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑙𝑒

(62)

The indentation of projectile can be expressed as 

𝛼 = 𝜁 ‒ 𝑤(𝜉,𝜂) (63)

Eq. (59) can be rewritten as

𝑤 = ( ‒ 𝐾𝑒𝑓𝑓

𝑚 )𝛼
3
2 ‒ 𝛼

(64)

4. Solution methodology

 Due to non-linear nature of impact events, there is no analytical solution. Therefore, Ritz method 

is employed to discretize the governing equations. The independent variables are expressed as 

series of spatial and temporal functions. For simply supported plate, the series are given as

𝑤(𝑥,𝑦,𝑡) = ∑
𝑚 = 1

∑
𝑛 = 1

𝑊𝑚𝑛(𝑡)sin (
𝑚𝜋𝑥

𝑎 )sin (
𝑚𝜋𝑦

𝑏 )
(65)

𝜙𝑥(𝑥,𝑦,𝑡) = ∑
𝑚 = 1

∑
𝑛 = 1

𝑋𝑚𝑛(𝑡)cos (
𝑚𝜋𝑥

𝑎 )sin (
𝑚𝜋𝑦

𝑏 )
(66)

𝜙𝑦(𝑥,𝑦,𝑡) = ∑
𝑚 = 1

∑
𝑛 = 1

𝑌𝑚𝑛(𝑡)sin (
𝑚𝜋𝑥

𝑎 )cos (
𝑚𝜋𝑦

𝑏 )
(67)

where m and n are the numbers of terms in x and y directions in truncated series. 

Furthermore, the impact load can be written as follows:

𝑞(𝑥,𝑦) = 𝐾𝑒𝑓𝑓𝛼
3
2𝛿(𝑥 ‒ 𝑥0)𝛿(𝑦 ‒ 𝑦0)

(68)

𝑞(𝑥,𝑦,𝑡) = ∑
𝑚 = 1

∑
𝑛 = 1

𝑞𝑚𝑛(𝑡)sin (
𝑚𝜋𝑥

𝑎 )sin (
𝑚𝜋𝑦

𝑏 )

where

𝑞𝑚𝑛(𝑡) =
4𝐾𝑒𝑓𝑓𝛼

3
2

𝑎𝑏 sin (
𝑚𝜋𝑥0

𝑎 )sin (
𝑚𝜋𝑦0 

𝑏 )

(69)

Substituting Eq. (65) into (64) give us the nonlinear governing equation of impact event:



∑
𝑚 = 1

∑
𝑛 = 1

𝑊𝑚𝑛(𝑡)sin (
𝑚𝜋𝑥0

𝑎 )sin (𝑚𝜋𝑦0

𝑏 ) = ( ‒ 𝐾𝑒𝑓𝑓

𝑚 )𝛼
3
2 ‒ 𝛼

(70)

Substituting Eqs. (65) to (68) into Eqs. (51) to (58) obtains a 3×3 system of ordinary differential 

equations for the multilayer plate

[
𝑠11 𝑠12 𝑠13
𝑠12 𝑠22 𝑠23
𝑠13 𝑠23 𝑠33]{

𝑊𝑚𝑛
𝑋𝑚𝑛
𝑌𝑚𝑛 } + [

𝑚11
𝑚22

𝑚33]{
𝑊𝑚𝑛
𝑋𝑚𝑛
𝑌𝑚𝑛 } = {𝑓𝑚𝑛

0
0 }

(71)

where  and  are given by𝑠𝑖𝑗 𝑚𝑖𝑗

𝑠11 = (𝐴55 + 2𝐴𝑓𝑥
55 + 𝐹11

55)𝛼2 + (𝐴44 + 2𝐴 𝑓
44 + 𝐹22

44)𝛽2 + 𝐻 1
11𝛼4

+ (𝐻11
66 + 2𝐻12

12 + 2𝐻12
66 + 𝐻 2

66)𝛼2𝛽2 + 𝐻 2
22𝛽4 ‒ 𝑘

(72

)

𝑠12 = (𝐴55 + 2𝐴𝑓𝑥
55 + 𝐹11

55)𝛼 + (𝐹 1
11 + 𝐻 1

11)𝛼3 + (𝐹 2
12 + 𝐻12

12 + 𝐹 2
66 + 𝐻11

66 + 𝐹 1
66 + 𝐻12

66)𝛼𝛽2

𝑠13 = (𝐴44 + 2𝐴𝑓𝑦
44 + 𝐹22

44)𝛽 + (𝐹 2
22 + 𝐻 2

22)𝛽3 + (𝐹 1
12 + 𝐻12

12 + 𝐹 1
66 + 𝐻12

66 + 𝐹 2
66 + 𝐻 2

66)𝛼2𝛽

𝑠22 = (𝐴55 + 2𝐴 𝑓
55 + 𝐹11

55) + (𝐻 1
11 + 2𝐹 1

11 + 𝐷11)𝛼2 + (𝐻11
66 + 2𝐹 1

66 + 𝐷66)𝛽2

𝑠23 = (𝐷66 + 𝐻12
66 + 𝐹 2

66 + 𝐹 1
66 + 𝐷12 + 2𝐹 1

12 + 𝐻12
12)𝛼𝛽

𝑠33 = (𝐴44 + 2𝐴𝑓𝑦
44 + 𝐹 2

44) + (𝐻12
22 + 𝐹 2

22 + 𝐹 1
22 + 𝐷22)𝛽2 + (𝐻22

66 + 2𝐹 2
66 + 𝐷66)𝛼2

and
 𝑚11 = 𝐼0, 𝑚22 = 𝐼2,𝑚33 = 𝐼22 (73)

and

𝑓𝑚𝑛 =
4𝐾𝑒𝑓𝑓

𝑎𝑏 𝛼
3
2sin (𝑚𝜋𝑥0

2𝑎 )sin (𝑚𝜋𝑦0

2𝑏 ) + 𝑁𝑥𝑥𝛼2 + 𝑁𝑦𝑦𝛽2
(74)

If Nm and Nn terms are chosen in x and y-direction, Nm×Nn+1 equations describe the dynamic 

response of plate which must be solved simultaneously. This initial value problem of Eqs. (70) and 

(71) are solved using Runge-Kutta method implemented in Maple programming software. Fig. 4 

illustrates the numerical procedure employed for the solution.  

The governing equations reduce to those of FSDT [28] for , A(k)=C(k)=0, m(k)=g(k)=1 𝑓(𝑘)
𝑦 = 𝑓(𝑘)

𝑥 = 0

as follows:

𝑠11 = (𝐴55)𝛼2 + (𝐴44)𝛽2 (75)



𝑠12 = (𝐴55)𝛼

𝑠13 = (𝐴44)𝛽

𝑠22 = (𝐴55) + (𝐷11)𝛼2 + (𝐷66)𝛽2

𝑠23 = (𝐷66 + 𝐷12)𝛼𝛽

𝑠33 = (𝐴44) + (𝐷22)𝛽2 + (𝐷66)𝛼2

Furthermore, the governing equations are reduced to those of HSDT [29] for , ∅ = 𝑧(1 ‒
4

3ℎ2𝑧2)

A(k)=C(k)=0, m(k)=g(k)=1 (i.e.: ).𝑓(𝑘)
𝑦 = 𝑓(𝑘)

𝑥 =‒
4

3ℎ2𝑧3 =‒ 𝑐1𝑧3

𝑠11
= (𝐴55 ‒ 6𝑐1𝐷55 + 9𝑐2

1𝐹55)𝛼2 + (𝐴44 + ‒ 6𝑐1𝐷44 + 9𝑐2
1𝐹44)𝛽2 + 𝑐2

1

(𝐻11𝛼4 + (4𝐻66 + 2𝐻12 + )𝛼2𝛽2 + 𝐻22𝛽4)

(76

)

𝑠12 = (𝐴55 ‒ 6𝑐1𝐷55 + 9𝑐2
1𝐹55)𝛼 + 𝑐1( ‒ 𝐹11 + 𝑐2

1𝐻11)𝛼3 + 𝑐1( ‒ 𝐹12 + 𝑐1𝐻12 ‒ 2𝐹66
+ 2𝑐1𝐻66)𝛼𝛽2

𝑠13
= (𝐴44 ‒ 6𝑐1𝐷44 + 9𝑐2

1𝐹44)𝛽 + 𝑐1( ‒ 𝐹22 + 𝑐1𝐻22)𝛽3 + 𝑐1(𝐹12 + 𝑐1𝐻12 ‒ 2𝐹66 + 2𝑐1𝐻66)
𝛼2𝛽

𝑠22 = (𝐴55 ‒ 6𝐶1𝐷55 + 9𝑐2
1𝐹55) + (𝑐2

1𝐻11 ‒ 2𝑐1𝐹11 + 𝐷11)𝛼2 + (𝑐2
1𝐻66 ‒ 2𝑐1𝐹66 + 𝐷66)𝛽2

𝑠23 = (𝐷66 ‒ 2𝑐1𝐹66 + 𝑐2
1𝐻66 + 𝐷12 ‒ 2𝑐1𝐹12 + 𝑐2

1𝐻12)𝛼𝛽

𝑠33 = (𝐴44 ‒ 6𝑐1𝐷44 + 9𝑐2
1𝐹44) + (𝑐2

1𝐻 1
22 ‒ 2𝑐1𝐹22 + 𝐷22)𝛽

2
+ (𝑐2

1𝐻66 ‒ 2𝑐1𝐹66 + 𝐷66)𝛼
2

The components of stiffness and mass matrices are given in Appendix A.

5. Results and discussions

5.1 Comparison studies 

In this section, two comparison studies are carried out with results of Khalili et al [30] and Pierson 

and vaziri [31]. Firstly, a simply supported plate with 200 mm × 200 mm made of graphit/epoxy 

with layer arrangement [0/90/0/90/0]s and following material properties [30] 

𝐸11 = 141.2 𝐺𝑃𝑎, 𝐸22 = 9.72 𝐺𝑃𝑎,  𝜈12 = 0.3, 𝜌 = 1536
𝑘𝑔

𝑚3

𝐺12 = 5.53 𝐺𝑃𝑎, 𝐺13 = 5.53 𝐺𝑃𝑎, 𝐺23 = 3.74𝐺𝑃𝑎

(77)



with a rigid projectile with 12.7 mm diameter and 3 m/s initial velocity is considered. Fig. 5 a) 

illustrates the time history of projectile contact force. 

Secondly, a slightly different impact problem is considered from [31] (See Table 2 for 

specifications of plate and projectile). Fig. 5 b) compares the time history of middle deflection of 

plate with that of [31]. The results are in good agreement with those of literature [30,31] and minor 

differences may be related to the different employed theories. Finally, in order to determine the 

sufficient terms for series approximation in Ritz solution, a sensitivity analysis is carried out (Fig. 

6 a)). Furthermore, the variation of maximum contact force versus the number of terms is shown 

in Fig. 6 b). It is clear that 15 terms are sufficient to reach reasonable accuracy. 

5.2 Parametric studies 

In this part, in order to investigate the effect of various parameters such as plate thickness, 

projectile velocity, projectile radius, in-plane load and impact location, some numerical examples 

were given. The rectangular Fiber Metal Laminate plate [Al/0/90/90/0/Al/0/90/90/0/Al] was 

considered which impacted by the previous spherical projectile (See Table 2 for mechanical 

properties of composite layers and Table 3 for other specifications). 

5.2.1 Effect of laminate thickness

Fig. 7 indicates comparison of time history of contact forces obtained using Present ZZT, HSDT 

and FSDT for simply supported FML having total thickness h and h/2, respectively (See Table 3). 

The major difference between results obtained using various theories shows that considering shear 

deformation and IC plays an important role in reaching accurate time duration and maximum 

contact force. In fact, omitting IC condition causes overestimating of time duration and maximum 

contact force.

5.2.2 Effect of projectile velocity

In order to study influence of projectile velocity, the FML plate was impacted with three initial 

velocity 1, 2, 4 m/s as shown in Fig. 8. The projectile mass was chosen as M=32.7, 8.2, 2 g to 



achieve fixed kinetic energy. The results demonstrate that the increase of initial velocity causes 

permanently increase of  maximum of contact force (MCF) and maximum deflection of middle of 

target (MDMT); however; contact time (CT) decrease. As a result, the MCF and MDMT are 

proportional to projectile velocity and projectile mass. The obtained results are compatible with 

those of [32]. 

5.2.3 Projectile radius 

The effect of projectile radius is study herein and the results are depicted in Fig. 9.  Three radii 

R=10, 20, 30 mm and projectile mass M=32.7 g were considered. Since the projectile mass is only 

variable, its effects on impact behavior can be observed in Fig.9. The results indicate that increase 

of projectile radius causes increase of MDMT and MCF and decrease of MCF. Because contact 

stiffness increases when projectile radius increase regarding Eq. (60). These obtained results are 

in good agreement with those of [27].

5.2.4 Effect of the In-plane load

To investigate the influence of the in-plane load on indentation, CF, MDMT, three in-plane bi-

axial loading cases are chosen: 

Case 1:N=+0.04 N/mm, Case 2:N=0, Case3: N=-0.04 N/mm  

The obtained results are demonstrated in Fig. 10. Because of varying only on parameter, it can be 

used to predict dynamic response of FML plate for various in-plane load. As shown in the figure, 

compressive in-plane load causes decrease of MCF and CT in contrast to tensile in-plane load. 

Furturemore, compressive in-plane load increases MDMT. Because the effective flexural rigidity 

of plate decreases when compressive load applied.  These results are compatible with reported one 

in [33].

5.2.5 Eccentric impact 

To assess effect of an eccentric impact on the FMLs, it is assumed that projectile collides with the 

plate at below points:



x0/a,y0/b={(1/4,1/4), (1/3,1/3),(2/5,2/5),(1/2,1/2)}

Fig. 11 depicts contact force history and middle deflection of plate for four cases of projectile 

position. As can be seen in Fig. 11, MCF increases when impact point approaches the edge of the 

plate due to higher flexural stiffness in neighborhoods of edges of the plate. Accordingly, when 

impact point approaches the edges of plate, the value of MDMT decreases. This matches the one 

reported in [28].

6. Conclusions

In this paper, the eccentric low-velocity impact of FMLs subject to spherical projectile using a unified Zig-

Zag plate theory was investigated. The presented zig-zag plate theory enforces shear stress continuity 

through the thickness via piece-wise continues stress field. The model was validated by comparison and 

good agreement between its results and those of reports in open literature. Influence of various 

specifications of impact phenomenon such as laminate thickness, projectile radius, projectile velocity, in-

plane load and eccentricity parameter was examined on deflection and contact force time history. The 

following conclusions can be drawn from this study:

 The results indicate that continuity of transverse shear stress is required to achieve 

accurate stress distribution through the thickness even for moderately FML.

 MCF and MDMT are proportional to projectile velocity and projectile mass.

 Increase of projectile radius causes increase of MDMT and MCF and decrease of MCF

 Compressive in-plane load causes decrease of MCF and CT in contrast to tensile in-plane 

load.

 MCF increases when impact point approaches the edge of plate due to higher flexural 

stiffness neighborhoods of edges of plate, however, MDMT decreases.
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Appendix A
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where NL represents the number of FML layers. 
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Figure captions

Fig. 1 Arrangement of GALRE laminate a) GALRE 5-2/1 b) GLARE 4-3/2 [2]

Fig. 2 The piece-wise continuous displacement field and change of slope through the thickness 

(ZZ phenomenon) due to transverse shear stress continuity

Fig. 3 A rectangular FML plate subjected to transverse impact and its geometry

Fig.4 Flowchart of numerical procedure

Fig. 5 Comparison of time history of contact force (a) and middle deflection (b) of the composite 

laminated plate subjected to central impact by spherical projectile with those of [30] and [31], 

respectively. 

Fig. 6 Convergence study of a) time history of contact force b) peak contact force on number of 

terms in series  

Fig. 7 Comparison of time history of contact force obtained via present Unified ZZT and other 

theories for FML plate subjected to central impact for thickness t (a) and t/2 (b)

Fig. 8 Influence of projectile velocity on impact response of FML plate.

Fig. 9 Influence of projectile radius on impact response of FML plate.

Fig. 10 Influence of in-plane load on impact response of FML plate.

Fig. 11 Influence of impact location on impact response of FML plate.



Tables

Table 1: Some shape functions utilized to achieve various plate theories via present Unified ZZT

Shape function name   z

EBDT 0

FSDT z

Reddy’s HSDT
241

3
zz

 
 

 

Touratier’s HSDT sin( )h z
h




Karama’s HSDT
2

2 z
hze

   
 



Table 2: Geometrical and mechanical specification of the impact problem from [31]

Geometrical Properties Mechanical properties

Projectile Initial velocity=3m/s

Radius= 12.7 mm, 𝑀 = 8.5 𝑔

𝐸11 = 210 𝐺𝑃𝑎

𝜐 = 0.3

Plate 200 × 200 × 2.69 mm

[0/90/0/90/0]s

𝐸11 = 141.2 𝐺𝑃𝑎

𝐸22 = 9.72 𝐺𝑃𝑎

𝜈12 = 0.3

𝜌 = 1536
𝑘𝑔

𝑚3

𝐺12 = 5.53 𝐺𝑃𝑎

𝐺13 = 5.53 𝐺𝑃𝑎

𝐺23 = 3.74𝐺𝑃𝑎

Table 3: Geometrical and mechanical specification of FML plate

𝐸 = 70 𝐺𝑃𝑎,𝜐 = 0.3

a=200 mm, b= 200 mm

Aluminum thickness hal=0.5 mm 

Total thickness h=4.3 mm
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