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Highlights 

 Accurate prediction of stress filed plays an important role in highly anisotropic 

laminates. 

 An Unified Zig-Zag Theory is developed with two primary variable under thermal 

environment.   

 Comparison of the model predictions and that of literature indicates good agreement. 

 The results show the interlaminar continuity(IC) causes more accurate stress in thin 

laminates 
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Abstract: In the present study, static behavior of short hybrid laminate beams was investigated using a unified 

zig-zag theory (ZZT) containing various beam theories as special cases. This theory satisfies transverse shear 

stresses continuity in the interface of layers via piece-wise continuous arbitrary shape functions. The principle of 

virtual work was employed to derive unified equilibrium equations and suitable boundary conditions. The 

present theory obviates the need for stress recovery for continuous transverse stresses. A general solution was 

presented to analyse high transversely anisotropic laminates under several kinds of transverse loads (general 

lateral, sinusoidal and point load) and non-linear thermal loads. The validity of this model is demonstrated by 

comparison of its predictions and good agreement with published results in literature. Numerical examples were 

given to investigate the impact of the transverse anisotropy on displacement, strain and stress fields through the 

thickness. The results show that the piece-wise continuous exponential and sinusoidal shape functions provide 

more accurate transverse stress distribution in comparison with other shape functions. In addition, the results 

show that the continuity of transverse shear stress through the thickness plays an important role in analysing 

transversely anisotropic laminated beams. A comparison of present ZZT and existing exact elasticity solutions 

shows that the current theory is simple and efficient.  

Keywords: Zig-Zag theories; Hybrid laminate; interlaminar shear stress continuity, Equivalent Single Layer; 

Closed-form solution 
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1. Introduction 

In recent decades, the application of hybrid composite laminates and sandwich structures has found popularity 

in aerospace and automobile industries [1–3]due to their superior mechanical properties such as specific 

stiffness, strength and fatigue characteristics compared to the traditional structures[4,5]. As a result, the 

utilization of  hybrid and Carbon reinforced composites is expected to increase in the coming years [6]. 

Accurate prediction of stress distribution through the body plays an important role in primary structure 

design[7]. Furthermore, thickening the multilayer composite to prevent damage in critical points exacerbates 

non-classical effects such as transverse shear and normal deformation [6]. For instance, Euler-Bernoulli 

Deformation Theory (EBDT) and Kirchhoff-Love plate/shell theory provide an inaccurate prediction of global 

deflection and local effects [8]. Although other Equivalent Single Layers (ESL) theories such as First-order 

Shear Deformation Theory(FSDT), High-order Shear Deformation Theory(HSDT) and Advanced High Order 

Theories [9,10] offer some improvements, they suffer from drawbacks of inaccurate prediction in some high 

transversely anisotropic laminates.  On the other hand, in case of laminates having large numbers of layers, 

Layer-Wise (LW) models are computationally very expensive in spite of providing highly accurate results [11]. 

Therefore, developing novel theoretical models to capture non-classical effects is vital to produce the reliable 

design. 

Zig-Zag theories (ZZT) combine the low computational cost of ESL theories and the ability of LW theories to 

model laminates having layers with completely different material properties [9]. This theory incorporates piece-

wise continuous displacement field shown in multilayer composites. The variation of slope through thickness 

due to transverse anisotropy is known as Zig-Zag (ZZ) effect (Fig. 1). Interlaminar continuity(IC)[12] for 

transverse stresses causes rapid changes in the slope of in-plane displacement field. ZZT includes three different 

and independent contributions: Lekhnitskii Multilayered Theory (LMT), Ambartsumian Multilayered Theory 

(AMT) and Reissner Multilayered Theory (RMT) [6,13]. Lekhnitskii apparently proposed a ZZT for the first 

time [13].  Ambartsumian developed a ZZT assuming a parabolic distribution for transverse shear stress [14]. 

Later on, Di Sciuva presented a displacement theory to enhance first-order shear deformation theory to take into 

account ZZ effects [15].   Tessler et al developed a refined zigzag theory RZT to overcome shortcomings of Di 

Sciuva formulation [16]. Similarly, Murakami presented an alternative method to improve FSDT by including a 

geometric zigzag function which is known as Murakami’s ZZ function (MZZF)[13,17]. Carrera presented a 

unified description of several theories including ESL, LW and ZZ effects. The finite element matrices derived in 
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a unified manner and vast numerical examples have been given [18,19]. MZZF employs an independent 

parabolic function for displacement and shear stress distribution via a mixed variational calculus method. 

Brischetto et al applied MZZF to sandwich panels[20]. Gherlone et al [1] studied the mixed formulation of 

MZZF in comparison with displacement-based MZZF, RZT and Timoshenko beam. They showed RZT is more 

accurate for arbitrary lay-ups by considering the ZZ effects. Groh and Weaver [6] investigated displacement-

based and mixed formulation with Reddy shape function and MZZF. Furthermore, they proposed a unified 

general theory based on Hellinger–Reissner mixed formulation to capture non-classical effect due to highly 

heterogeneous multilayers[21,22].   

Rodrigues et al. investigated bending, free vibration and buckling of laminated plates using MZZF in using local 

collocation method based on radial basis functions[23]. Kulkarni and Kapuria developed a quadrilateral element 

for static and free vibration analysis of composite and sandwich plats. They validated the finite formulation by 

comparing with the analytical Navier solution for simply supported plates[24,25]. Neves et al. employed 

Carrera’s Unified Formulation (CUM) to study thin and thick functionally graded sandwich plates. Also, they 

considered thickness stretching effect in the model[26]. Sahoo and Singh presented an efficient element based 

on a new trigonometric ZZT for free vibration and buckling of laminated and sandwich plates[27]. Pandit et al 

proposed an improved high order zig-zag theory for static analysis of laminated sandwich plate with 

compressible soft core[28].  

In addition to mentioned works in the linear elastic domain, a few attempts have employed ZZ to model 

delamination damage in multilayer composites[29]. Groh et al used the cohesive zone approach to predict the 

initiation and propagation of delamination in cross-ply composite beams and compare the predictions with those 

of experimental test[30]. Eijo et al. developed beam and plate/shell element to model delamination (mode II and 

III) in laminated composites using an isotropic damage model[31,32].  

In this paper, a general solution of unified ZZT for arbitrary shape function is presented, where a piece-wise 

continuous arbitrary function is assumed as distribution of transverse shear stresses through the thickness. 

Interlaminar continuity of transverse stress and displacement can be applied via the assumed distribution. The 

unified governing equations and boundary conditions are derived using the principle of the virtual work, and the 

Navier-type and closed-form solutions are given for the proposed beam theory subjected to mechanical and 

thermal loads. By comparing present model results with those reported in literature, the validity of solutions is 
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confirmed. Furthurmore, other numerical results from this work are given to investigate the impact of the 

transverse anisotropy on displacement and stress fields along the beam length and through the thickness. 

 

2. Theoretical formulations 

2.1 Transverse shear stress and displacement field 

In the present study, a composite laminate is considered which is illustrated in Fig. 2. The x- and y-axes are 

assumed along the length (L) and the thickness (h), respectively.  The unified transverse shear stress field of kth 

layer at any point (x, z) for present ZZT theory is given by 

       1 )
k k k

xz xz

d
G A m x

dz
 

  
    

  
 

)1( 

where G, A
(k)

, m
(k)

  and xz
are effective shear modulus, shear stress layer-wise constant, modification factor of 

layer k and transverse shear strain, respectively. A posteriori function  z  incorporates the through the 

thickness distribution of transverse shear stress. The effective shear modulus and modification factor can be 

defined as 

     
 

1
1

k k k

k
m e g

g

 
   
 
 

 
)2( 

where e
(k)

 can be expressed by 

 
 k

k Q
e

E
 

)3( 
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and g
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is given by 

 
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where 
 k

Q , Gxz
(k)

  and 
 k

t are reduced stiffness, transverse shear modulus, and thickness of  kth layer. It 

should be noted that Eq. (1) is the unified form of recent formula proposed by literature [6]. Groh and Weaver's 

formula is a piece-wise continues parabola distribution based on Reddy High order shear theory.  

   
   2

2

4 1
1

k k
xz k xzk

k

G A e g z x
gt

 
   

     
   

 
)7( 

It should be noted that transverse shear strain, xz , is measured on the mean-line of the beam.  

,xw        xz   )8( 
where w  and   are transverse displacement and section rotation on the mean-line of the beam. In both Eqs. (1) 

and (7), shear stress layer-wise constants,
 

 
k

A , are determined by satisfying transverse stress continuity. The 

free surface and stress continuity conditions are given by 

 

   1
0 0   xz z  )9( 

   1 1
1

d
A m

dz

 
   

 
 

)10( 

 

And 

   1
    

k k
xz xz 


 )11( 

        1 1
     1

k k k k d
A A m m

dz

   
    

 
 

)12( 

 

Assuming linear strain-displacement relationship, unified displacement field  ,k
xu x z  for present ZZT may be 

written as follows: 

                
,, )

k k k k k
x x xz xzu x z zw x g zA m z c       )13( 

   ,zu x z w x )14( 
The function ( )z  represents shape functions defining the distribution of displacement and stress function 

through the thickness. It should be noted that the present ZZT is developed based on Reddy’s high order theory 

which suffers from inconsistency in modeling clamped edges[33]. In this high order theories, enforcing , 0xw 

at edges causes 0xz  , which does not match the 3D elasticity solution. The displacement field of various 

ZZTs may be obtained using shape functions given in Table 1. It can be noted the displacement field of HSDT is 

obtained by setting: 

       
0,     1

k k k k
A c g m    )15( 

In Eq. (13), displacement layer-wise constants 
 k

c  are determined by enforcing displacement continuity. The 

neutral axis location and continuity condition are given by: 

 0 0
k

xu  )16( 
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 0 0
k

c  )17( 
And 

   1k k
x xu u


 )18( 
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 
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   

)19( 

                    
0 1

1 1 1 1
k

k i i i i i i i i
i i

i k

c g A g A z g m g m z


   


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   

)20( 

 

where the neutral axis is located within layer 0k .  

 

2.2 Deriving equilibrium equations  

 

The principle of virtual work is employed to derive governing equation, 

       

 

1

1

0 0

, , ,

0 0

ˆ  ˆ

ˆ ˆ ˆ

L L

H k G k G kH
PVD x x xz xz x x xz

SS

L L

x xx x xz x x xz x x x xz x

dSdx q wdx u w dS

M w L Q dx qd Lx w M w V w

         

      

      
 

    

  

 

∬
 

)21( 

 

where ˆx  and x̂z  are stress tractions applied to the boundaries. The superscripts G and H indicate the stress or 

strains which are calculated using geometric relationship and Hook law, respectively. Bending moments and 

shear forces are defined in Eqs. (22) to (25) below: 

 
/2

H

/2

t
k

x x

t

M z dz



  
)22( 

   
/2

H

/2

 

t

k k
x x

t

L f dz



  
)23( 

       
/2

H

/2

t
k k k

x xz

t

Q g s z dz



  
)24( 

/2

xz

/2

τ̂  ˆ
t

x

t

V dz



  
)25( 

The normal strain 
 G k

x and transverse shear strain 
 G k

xz  are determined as follows 

           G
, , x,   Δ

k k
x xx xz x xx z zw x f z x T      )26( 

           G
,

k k k
xz xzx z g s z x  )27( 

where x  x is the coefficient of linear thermal expansion in the x-direction.  The shear function 
   k

s z  is given 

by: 

         , 1
k k k

zs z A m    )28( 

and displacement function  kf z  is given by: 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

8 
 

            k k k kkf z g zA m z c    )29( 

The nonlinear thermal load  ΔT  subjected to the beam is assumed to be [34]: 

   
 

 1 2 3

z
Δ T x    T x

h h

z
T T x


   

)30( 

Minimizing energy functional PVDδΠ  using variational calculus gives the governing equations as: 

, 0x xxM q  )31( 

, 0x x xL Q  )32( 
and boundary conditions as: 

,0 or   ˆ  0   x x xw M V    )33( 

, 0 or  0               ˆ  x x xw M M    )34( 

0 or  ˆ 0xz x xL L    )35( 
The relationship between stress resultant forces and strains are expressed then as: 

,

,

0

0

0 0   0

T
xx xx
T

x xz x x

x xz

D D MM w

L D D L

Q J



  



      
     

       
              

 

)36( 

where components of stiffnesses of the beam can be written by: 

 

 

   

 1

2

k

1 2

D

Q  

k

k

zN
k

k kz

z

D zf dz

D f



 

  
  
  
  
    

  

)37( 

      
( )

( 1)

2

1

k

k

zN
k k

k z

J Gg s z dz


  
)38( 

and 
T
xM is thermal resultant force: 

       
1

k
x 1 2 3

1

Q Δ

k

k

zN
T
x x

k z

M Tzdz FT x HT x KT x


     
)39( 

         
1

k
x 1 2 3

1

Q Δ

k

k

zN
kT f f f

x x

k z

L Tf dz F T x H T x K T x


     
)40( 

where 

 

 

 

 1

k 2

1

F

 Q /  

/

k

k

zN

x

k kz

z

H z h dz

K zf h




  
  

   
       

  

)41( 

 

 

 

 

 

 
21

k

1

F

 Q /  

/

k

k

kf

zN
kf

x

kf kz

f

H zf h dz

K f h




  
  
  
  

   
   

  

)42( 

Substituting the stress resultant of Eq. (36) into Eqs. (31) and (32) yields the explicit form of governing 

equations: 
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, , , 0T
xxxx zx xxx x xxDw D M q     )43( 

, , , 0T
xxx zx xx x x zxD w D L J     )44( 

 

2.3 Series solution 

 

An analytical solution is obtained for a simply supported beam subjected to general load q in thermal 

environment satisfying the following boundary conditions: 

0 , 0, 0  at   0,        x xw M L x L    )45( 
The solution is assumed as 

1

n

n

n x
w W sin

L






 
  

 
 

)46( 

1

xz n

n

n x
cos

L








 
   

 
 

)47( 

and the general lateral, q, is expressed as 

1

n

n

n x
q q sin

L






 
  

 
 

)48( 

where 
nq , Fourier series coefficients, are given by [35] 

0

2
dx

L

n

n x
q qsin

L L

 
  

 
 

)49( 

for uniform load 0q q  

04
        , 1,3,5,...n

q
q n

n
  

)50( 

and sinusoidal load 0

n x
q q sin

L

 
  

 
 

1 21,  0nq q   )51( 

and point load  0 / 2q q x L   

02
    sin

2
n

q n
q

L

 
  

 
 

)52( 

Substituting Eqs. (44) & (45) & (46) into Eqs. (41) & (42) yields following expression:    

 

    

 

2
2 2

1 2 3

2
6 2 3

2 1

3

2 3

π  

π
( π)

n n n n

n

f f f
n n n

n
L D n JL q FT HT KT

LL
w

L nn D DD DJ D F T H T K T
n L



  






   
            

             
    

 

)53( 

The coefficients  1 2 3, ,n n nT T T  are defined using Fourier sin series of thermal loads 

1 1

1

n

n

n x
T T sin

L






 
  

 
 

)54( 

2 2

1

  n

n

n x
T T sin

L






 
  

 
 

)55( 

3 3

1

n

n

n x
T T sin

L






 
  

 
 

)56( 

Where 
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 1 1

0

2
T dx

L

n

n x
T x sin

L L

 
  

 
 

)57( 

 2 2

0

2
T dx

L

n

n x
T x sin

L L

 
  

 
 

)58( 

 3 3

0

2
T dx

L

n

n x
T x sin

L L

 
  

 
 

)59( 

In case of sinusoidal temperature field, coefficients 1nT , 2 3, n nT T  are given by: 

 1 2 3,  ,  1 1n n nT T T for n  )60( 
To study the performance of the present ZZT, transverse displacement W, Eq. (51) for Δ 0T  , is divided by 

that of the classical beam theory 
4

4π

n
nc

L q
w

D
 . The non-dimensional deflection ratio, n

nc

w

w
, may be expressed 

as: 

 

   

2

2

2
2 2

2 2

π
1

1 π π

n

nc

D n

JLw

w D D
n n

DJL JL



 

 
 
 
 


 
   

 

 

)61( 

Eq. (59) shows that factors of 
 

22

1 2

πD n
V

DJL



  and 
 

2

2 2

πD n
V

JL



  play an important role in static response of 

a multilayer composite. Furthermore, the equation indicates that the effects of ZZ phenomenon are greater for 

higher modes (n>1). When  
2

2
1

D

DJL



 and 
2

1
D

JL



 the transverse shear strain effects are negligible and 

EBDT is satisfactory.  

 

2.4 Exact solution 

 

Integrating the first equation of governing equations (Eqs. (41) & (42) for point load and nonlinear thermal load) 

yields following:  

 , , 3 0xxx zx xx

L x
DW D C F H K cos

L

 




 
       

 
 

)62( 

 , , 0f f f
xxx zx xx zx

x
D W D F H K cos J

L L

   
 

 
      

 
 

)63( 

where C3 is integral constant. Through a simple combination of Eq. (60) & (61), the following differential 

equation for  xzγ x  is obtained 

            
, 3  0f f f

zx xx zx

L x
D D D D JD D C F H K F H K cos

L L

     
 



    
             

    
 

)64( 

The solution of Eq. (61) can be written as follows:  
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   
 

3
1 2sinh cosh th

zx

D C x
C x C x C cos

DJ L

 
  

 
     

 
 

)65( 

where  

     

DJ

D D D D  
 


 

)66( 

   

 

 

2
     

/

 

f f f

th
F H K L F H K

LC D

D D D D JD
L



  






    


  
       

 

)67( 

and C1, C2, C3 will be determined by applying boundary conditions. Substituting Eq. (62) into Eq. (60) and 

integrating, the transverse deflection W can be obtained as: 

    

 

3 2 
1 2 3 4

4

5 6

sinh cosh

6 2

  th

C x C x C x C xD
W

D

F H KL L x
C x C C sin

D L

  





 

 
 

      
            

 

)68( 

Where constants      are determined boundary conditions. Due to the symmetry of model, one half of the beam 

is considered to obtain a solution associated with three point bending regarding corresponding boundary 

conditions (Fig. 3). Therefore, appropriate boundary condition is given as follows 

     , ,0 0 , 0, 0,  0 0 , 0 0,
2 2 2 2

x x x x x

L L L q
W W M L M

     
          

     
 

)69( 

After some algebraic manipulation, the following equation is obtained for the beam subjected to point load q: 

 
 

33   2   2

3 2

75 1
sinh

90 162 cos / 2 2

qL D x D x
W x

D L LL DJ L L DJ

 


 

   
             

 
)70( 

For clamped geometry, the boundary conditions are: 

     , , ,0 0 , 0, 0,  0 0 , 0 0,
2 2 2 2

x x x x

L L L q
W W W M 

     
          

     
 

)71( 

Therefore the following equation is obtained: 

   

  2
3  2

3
3

3

  2
2   2

2
3

(cosh 1)
12

cosh sinh
92

2 sinh
2

(cosh 1)
1 2

12 2
2 sinh

2

L
D

D x
x x

L LL DJ
L DJ

qL
W

D L
D

x D x

LL LL DJ
L DJ









 
 








  
  

      
    

  
 

 
  

  
       

   
  
  

 

)72( 

For the sake of simplicity, constants 1 6C   for the beam in thermal environment ( Δ 0T  ) are not given here.  

3. Numerical results and discussions 
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The unified zigzag theory having different shape functions (See Table 1) derived in the previous section is used 

to investigate the static behavior of transversely anisotropic beams. A comparison study is carried out to show 

accuracy of formulation and its solutions. In this section, some examples are given to study transverse 

anisotropy and zig-zag phenomenon. The non-dimensional quantities are defined as: 

,  
z x

z x
h L

  )73( 

 
20

2
2

,xu x z
U

q h
T L

E






 
)74( 

4 2
0 2

3
2

    or  

10

w w
W W

hq L T L

hE h


 



 )75( 

 

2
20

2 22

   

H k
x

q L
E T L

h










 
)76( 

 

0

H k
xz

q


  

)77( 

For validation purposes, results from present theory for  =Parabolic shape function is compared with those 

reported by Groh and Weaver [6].  A beam with lay-up 0/90/0/90/0, length 8 in and thickness 1 in subjected to a 

sinusoidal load is considered (Laminate A). Table 2 shows the material properties of lamina used in Laminate A. 

Fig. 4 illustrates non-dimensional transverse shear stress through the thickness of the multilayer.  The results of 

the present theory with  =Parabolic shape function match with those of reference [6] showing the accuracy of 

presented formulations and solutions.  

Another comparison analysis also is carried out with Abaqus Finite analysis (FEA) package [36] for laminate B 

(See Table 3). A thick beam with lay-up 90/0/0/90, length 6.35 m and thickness 2.79 m subjected to a sinusoidal 

load (q=1e3 N/m) is considered. A shell-type element was employed via Abaqus\Standard. Mesh convergence 

studies were carried out to achieve accurate results.  Fig. 5 compares non-dimensional transverse shear stress 

distribution along the beam length predicted by the present theory for  =exponential with that of FEA 

software. A good agreement can be observed in the figure between the present theory prediction and result of 

FEA software. It should be noted the present theory has the added advantages of being simpler and faster to 

obtain an accurate result due to have closed-form solution. 

Table 4 compares non-dimensional displacements and stresses for three and five layers symmetric cross-ply 

laminated beams for aspect ratio 8. The results show the sufficient accuracy of the present ZZT including the all 
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shape functions  z  (Table 1) for non-dimensional displacement. However, all ZZTs including Parabolic, 

Sinusoidal, and Exponential shape functions overestimate normal and shear stresses. The results indicate that the 

sinusoidal and parabolic shape functions provide more accurate results for shear stress of three layers and five 

layers laminates, respectively.  

In another comparison, a simply supported laminated beam (0/90/0) is studied by varying the aspect ratio from 

10 to 100. Table 5 compares the non-dimensional displacements and stresses with those of some different shear 

deformation theories as specified in the table. The results show the accuracy of the present Unified ZZT results 

in comparison with those theories including more degrees of freedom. 

Fig. 6 depicts variation of transverse shear stress field through the thickness the thickness in comparison with 

those of Chakrabarti et al [38] and Pagano (3D Elasticity) [39].  This 2 degrees of freedom (DOFs) ZZT predicts 

the shape of the transverse shear stress simply, however, reference [38] involving 9 DOFs provides only slightly 

more precise results.    

Table 6 and 7 compare displacements and stresses for isotopic, unidirectional and symmetric cross-ply laminate 

for aspect ratio 10 and 4, respectively. The results obtained by the present theory for an isotropic composite 

laminate beam are in good agreement with HSDT, FSDT, and EBDT for aspect ratio 10. In-plane displacements 

obtained by ZZT for isotropic and unidirectional laminated beam are comparable with that of HSDT for aspect 

ratio 10. Transverse displacements obtained by HSDT and FSDT are nearly identical for aspect ratio 10 and 4. 

HSDT and FSDT underpredict the in-plane normal stresses for unidirectional and symmetric cross-ply 

laminated beams. Table 6 and 7 confirm that the higher non-dimensional parameters  1V  and 2V  cause more 

differences between ZZT and other theories.  

Fig. 7 shows the distribution of transverse shear stress through the thickness obtained using the present ZZT 

with different shape functions (See Table 1) for laminate A subjected to sinusoidal load [6]. It can be observed 

that the sinusoidal function provides more accurate prediction in comparison with parabolic and exponential 

shape functions. Furthermore, the shape function introduced by Reddy [37] and Ambartsumian[14] result in 

nearly the same stress distribution.  

Fig. 8 compares the distribution of the non-dimensional transverse shear stress through the thickness obtained 

using ZZT, HSDT, and EBDT for laminate A. The stress field distribution obtained using HSDT changes 

suddenly at interfaces in contrast with present ZZT. Furthermore, EBDT predicts no shear stress and it needs 
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recovery using elasticity governing equations. Fig. 8 compares normal stress distribution through thickness 

calculated using ZZT, HSDT, and EBDT. For top and bottom faces of the beam, the relative difference of 

EBDT and HSDT predictions compared to that of ZZT are 3.1 % and 12.9 %, respectively. It can be concluded 

that the HSDT predicts accurately the normal stress distribution in spite of poor prediction accuracy of 

transverse shear stress. 

Fig. 10 demonstrates the distribution of non-dimensional transverse deflection for laminate A subjected to 

sinusoidal load with simply supported boundary condition along the beam length. Only one half of the beam is 

considered x=0 to L/2 due to the beam symmetry. The distribution in Fig. 10 shows the difference of the 

deflection obtained using ZZT, HSDT, and EBDT for the studied beam. This indicates that  using ZZT results in 

achieving more accuracy in deflection calculation. 

Fig. 11 (a), (b) depict the distribution of the in-plane displacement field through the thickness of simply 

supported thick beam (Laminate A) at x=0 subjected to uniform and point loadings, respectively. The results 

obtained by HSDT and present ZZT are in close agreement with each other whereas FSDT and EBDT predict 

the displacements incorrectly for impulse load. Also, Fig 10 (c), (d) illustrate the variation of transverse shear 

stress through the thickness. The difference between results obtained by various theories indicates the great 

significance of shear effects for impulse load.  Fig. 12 (a), (b) indicate the variation of in-plane displacement 

field across the thickness for the thick beam(Laminate A) at x=L/4 subjected to point loading for simply 

supported and clamped boundary conditions. The results obtained by HSDT are much higher than those of 

FSDT and present ZZT. Figure 11 (c), (d) show distribution of transverse shear stresses through the thickness 

for thick beam (Laminate A) at x=L/4 subjected to point loading for simply supported and clamped boundary 

conditions. One can see that distribution of transverse shear stresses are similar at x=L/4 because of the equal 

shear force of at x=L/4 far from boundary edges. 

Fig. 13 denotes the distribution of the punch force, F, against midpoint deflection of the beam calculated using 

ZZT, HSDT, and EBDT. The figure shows that EBDT overestimates the punch force compared to HSDT and 

ZZT. The present ZZT offers more accurate value of the punch force because of enforcing IC condition and 

similarity to 3D Elasticity solutions.  

 

4. Conclusion 
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In the present study, static analysis of transversely anisotropic thick beams was investigated using a Unified 

ZZT subjected to mechanical and thermal loadings. The present unified zig-zag theory contains various beam 

theories via general shape function.  The proper governing equations and boundary conditions were obtained 

using virtual work principle. The present Unified ZZT provides accurate transverse shear stress using 

constitutive equations and obviates the stress recovery process via 3D Elasticity equations.  The results for 

=Parabolic function were obtained as a special case and compared to those of the available literature. Another 

comparison was carried out with ABAQUS finite element analysis package. The normal stress and transverse 

shear stresses were compared with that of HSDT and EBDT for the sinusoidal load. Another study was 

performed on beam subjected to point load.  Comparison of obtained results for beam under point load indicates 

major difference between transverse deflections obtained using ZZT, HSDT, and EBDT. It was observed that 

enforcing IC condition has a profound effect on the accurate prediction of those distributions for cross-ply 

laminates.  The results show the present theories have the advantages of being simpler compared to 3D 

Elasticity solution in order to obtain accurate results. 
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Figure Captions 

Fig. 1 Slope change of piece-wise continuous displacement (ZZ phenomenon) and distribution of stress fields 

through the thickness  

 Fig. 2 A multilayer composite subjected to general load and its geometry 

Fig. 3 A half beam to model three points bending due to symmetry 

Fig. 4 Comparison of shear stress transverse obtained using present theory for ∅=parabolic and that of [6] 

Fig. 5 Comparison transverse shear stress along axis x for Laminate B obtained using present theory for 

∅=exponential and that of FEM solution 

Fig 6 Comparison of transverse shear stress field through the thickness with that of Another high order 

ZZT(Chakerberati et al) and 3D elasticity(Pagano) 

Fig. 7 Variation of shear stress calculated using present ZZT with various shape functions (See Table 1)   

Fig. 8 Variation of transverse shear stress τ calculated using present ZZT and HSDT and EBDT 

Fig. 9 Variation of normal stress σ calculated using present ZZT and HSDT and EBDT 

Fig. 10 Variation of non-dimensional transverse deflection of Laminate A subjected to sinusoidal load 

calculated using present ZZT, HSDT, and EBDT 

Fig. 11 Comparison of non-dimensional transverse stresses and in-plane displacements of Laminate A at x=0 

subjected to various loadings calculated using present ZZT, HSDT, FSDT and EBDT with simply supported 

boundary condition; in-plane displacements –uniform loading (a) in-plane displacements –impulse loading (b) 

transverse shear stresses –uniform loading (c) transverse shear stresses –uniform loading(d) 

Fig. 12 Comparison of non-dimensional transverse stresses and in-plane displacements of Laminate A at x=L/4 

subjected to impulse loading calculated using present ZZT, HSDT, FSDT and EBDT with various boundary 
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condition; in-plane displacements –simply supported (a) in-plane displacements –clamped (b) transverse shear 

stresses – simply supported (c) transverse shear stresses –clamped(d) 

Fig. 13 Variation of punch force vs midpoint deflection of the beam using present ZZT, HSDT, and EBDT 

 

Figures 

 

Fig. 1 

 

 

 

 

Fig. 2 

 

 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20 
 

 

Fig. 3 

 

 

Fig. 4 
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Fig. 5 

 

 

Fig. 6 
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Fig. 7  

 

 

Fig. 8  
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Fig. 9  

 

Fig. 10  
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a) b) 

  

c) d) 

Fig. 11 
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a) b) 

  

c) d) 

Fig. 12  
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Fig. 13  
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Tables  

Table 1 Some shape functions introduced in literature and used in comparison example. 

Table 2 Mechanical properties of utilized composite A [6] 

Table 3 Mechanical properties of utilized composite B  

Table 4 Non-dimensional displacements and stresses for three and five layers symmetric cross-ply laminated 

beam for aspect ratio 8  

Table 5 comparison of non-dimensional stresses and displacements of laminated composite beam for various aspect 

ratio (l/h) given in Chakrabarti et al [38] with present study  

Table 6  Non-dimensional displacements and stresses for isotropic, orthotropic and symmetric cross-ply 

laminated beam for aspect ratio 10 

Table 7  Non-dimensional displacements and stresses for isotropic, orthotropic and symmetric cross-ply 

laminated beam for aspect ratio 4  
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Table 1 

 z  Shape function name 

0 EBDT 

z FSDT  

2 2

2 4 3

z h z 
 

 
 Ambartsumyan[6, 11] 

24
1

3

z
z
 
 

 
 Reddy[17] 

sin( )
h z

h




 Touratier[18, 19] 

2

2
z

hze

 
  
  

Karama[20] 

 

Table 2  

Mechanical 

properties 

Value 

×10
6
 psi 

Mechanical 

properties 

Value 

×10
6
 psi 

Mechanical 

properties 

Value 

 
1E  25  

12G  5 12  0.25 

 
2E  1 13G  5  

23  0.25 

 
3E  1  

23G  2  
13  0.25 

 

 

Table 3  

Mechanical 

properties 

Value 

(GPa) 

Mechanical 

properties 

Value 

(GPa) 

Mechanical 

properties 

Value 

 

 
1E  241.5  

12G  5.18  
12  0.24 

 
2E  18.89  13G  5.18  

23  0.25 

 
3E  18.89  

23G  3.45  
13  0.24 
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Table 4  

Beam Theory   / 2, / 2W L h   / 2, / 2x L h   / 2,0xz L 

[0/90/0] Exact[6] 0.0116 0.7913 3.3176 

 Parabolic[6] 0.0116 0.7997 3.3926 

 Present-Sinusoidal 0.0116 0.8036 3.4187 

 Present-Exponential 0.0116 0.8071 3.4410 

     

[0/90 Exact[6] 0.0124 0.8672 3.3228 

/0/90/0] Parabolic[6] 0.0124 0.8703 3.2688 

 Present-Sinusoidal 0.0124 0.8725 3.3403 

 Present-Exponential  0.0124 0.8747 3.4279 

 

 

 

 

Table 5  

l/h Reference  / 2, / 2W L h   / 2, / 2U L h   / 2,0xz L   / 2, / 2x L h  

100 

Present Unified ZZT 

Chakrabarti et al [38] 

Pagano[39] 

0.5155 8020 45.10 6315.00 

0.5140 8020 45.23 6315.00 
0.5153 8040 44.15 6315.00 

      

50 

Present Unified ZZT 

Chakrabarti et al [38] 

Liou and sun[40] 

Pagano[39] 

0.5335 1009 22.52 1587.90 

0.5270 1008 22.46 1587.07 

0.5270 - - - 

0.5283 1010 22.05 1587.00 

      

20 

Present Unified ZZT 

Chakrabarti et al [38] 

Lee and Liu[40] 

Matsunaga[41] 

Pagano[39] 

0.6587 67.10 8.98 264.22 

0.6176 66.86 8.90 263.19 

0.6173 - 8.74 - 

0.6150 - 8.75 - 

0.6186 66.95 8.74 263.20 

      

10 

Present Unified ZZT 

Chakrabarti et al [38] 

Bambole and desai[42] 

Liou and sun[40] 

Pagano[39] 

1.0050 9.5240 4.44 74.99 

0.9329 9.3480 4.32 73.61 

0.9321 - 4.25 73.81 

0.9315 - - - 

0.9357 9.3470 4.23 73.66 
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Table 6 

Beam 

Theory  
2 2

2

D

DJL

 

 

 
2

2

D

JL



 

  / 2, / 2U L h   / 2, / 2W L h  / 2, / 2x L h . 

 

  / 2,0xz L 

 

Isotropic 

1  E E

12  

Present 0.0210 0.0213 1.8151 11.8632 0.3071 0.0436 

HSDT   1.8024 11.7805 0.3050 0.0433 

FSDT   1.7961 11.7806 0.3039 0.0347 

EBDT   1.7961 11.5376 0.3039 0 

        

[0]5 Present 0.4947 0.5006 0.0963 0.8533 38311 0.0502 

 HSDT   0.0827 0.7325 0.3288 0.0431 

 FSDT   0.0764 0.7339 0.3039 0.0347 

 EBDT   0.0764 0.4910 0.3039 - 

        

[0/90 Present 0.6645 0.6718 0.1177 1.1474 0.4680 0.0420 

/0/90/0] HSDT   0.1022 0.9379 0.4064 0.0603 

 FSDT   0.0955 0.9332 0.3798 0.0456 

 EBDT   0.0955 0.6135 0.3798 - 

 

 

 

Table 7 

Beam 

Theory 

 
2 2

2

D

DJL

 
 

 

2

2

D

JL



 

  / 2, / 2U L h   / 2, / 2W L h   / 2, / 2x L h 

 

  / 2,0xz L 

Isotropic Present 0.1315 0.1331 0.7285 13.5551 0.3242 0.0995 

 HSDT   0.6979 12.9854 0.3106 0.0953 

 FSDT   0.6829 12.9878 0.3039 0.0763 

 EBDT   0.6829 11.4774 0.3039 - 

        

[0]5 Present 3.0919 3.1287 0.0883 3.9501 0.9240 0.1870 

 HSDT   0.0435 1.9452 0.4550 0.0921 

 FSDT   0.0290 1.9988 0.3039 0.0763 

 EBDT   0.0290 0.4884 0.3039 - 

        

[0/90 Present 4.1534 4.1991 0.1018 5.4400 1.0648 0.1416 

/0/90/0] HSDT   0.0519 2.5867 0.5430 0.1300 

 FSDT   0.0363 2.5976 0.3798 0.1005 

 EBDT   0.0363 0.6103 0.3798 - 
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Zig-Zag phenomenon in transversely anisotropic laminate Boundary condition of the studied beam in thermal environment  

Transverse shear stress and normal stress for different theories (Present, HSDT, FSDT, EBDT)  


