
Accepted Manuscript

An infrared scattering by evaporating droplets at the initial stage of a pool fire
suppression by water sprays

Leonid A. Dombrovsky, Siaka Dembele, Jennifer X. Wen

PII: S1350-4495(18)30060-4
DOI: https://doi.org/10.1016/j.infrared.2018.03.027
Reference: INFPHY 2530

To appear in: Infrared Physics & Technology

Received Date: 30 January 2018
Revised Date: 28 March 2018
Accepted Date: 29 March 2018

Please cite this article as: L.A. Dombrovsky, S. Dembele, J.X. Wen, An infrared scattering by evaporating droplets
at the initial stage of a pool fire suppression by water sprays, Infrared Physics & Technology (2018), doi: https://
doi.org/10.1016/j.infrared.2018.03.027

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.infrared.2018.03.027
https://doi.org/10.1016/j.infrared.2018.03.027
https://doi.org/10.1016/j.infrared.2018.03.027


  

 

 

An infrared scattering by evaporating droplets 

at the initial stage of a pool fire suppression by water sprays 
 

Leonid A. Dombrovsky
 a, b

, Siaka Dembele
 a
, and Jennifer X. Wen

 c
 

a 
Depart. of Mechanical & Automotive Engineering, Kingston University, London, SW15 3DW, UK 

b 
Tyumen State University, 6 Volodarsky St., Tyumen, 625003, Russia 

c 
School of Engineering, University of Warwick, Coventry CV4 7AL, UK 

 

 

Abstract 

The computational analysis of downward motion and evaporation of water droplets used to 

suppress a typical transient pool fire shows local regions of a high volume fraction of 

relatively small droplets. These droplets are comparable in size with the infrared wavelength 

in the range of intense flame radiation. The estimated scattering of the radiation by these 

droplets is considerable throughout the entire spectrum except for a narrow region in the 

vicinity of the main absorption peak of water where the anomalous refraction takes place. 

The calculations of infrared radiation field in the model pool fire indicate the strong effect of 

scattering which can be observed experimentally to validate the fire computational model. 

Keywords: Suppression of pool fires; Evaporating water droplets; Thermal radiation, Strong 

infrared scattering. 

 

Nomenclature 

a radius of droplet 
c specific heat capacity 

D radiation diffusion coefficient 

CD drag coefficient 
fv volume fraction of droplets 

E normalized coefficient  

G spectral irradiation 
g acceleration of gravity 

I radiation intensity 

K coefficient introduced by Eq. (6b) 
k thermal conductivity 

L latent heat of evaporation 

m complex index of refraction 

n index of refraction 
Q efficiency factor 

r radial coordinate 

S source function 
u velocity 

W generated radiation power 

w normalized radiation power 
x diffraction (size) parameter 

z axial coordinate 

Greek symbols 

α, β absorption and extinction coefficients 

γ coefficient introduced by Eq. (6b) 

ε emissivity 
η dynamic viscosity 

κ index of absorption 

λ wavelength 

ξ coefficient in Eq. (11) 
ρ density 

σ scattering coefficient 

ψ coefficient introduced by Eq. (6b) 
χ eigenvalue introduced by Eq. (9b) 




 unit vector of direction 

Subscripts 
0 initial value 

a absorption 

b blackbody 

d droplet 
g gas 

max maximum 

r radiative 
ref referred 

s scattering 

sat saturation 

t total 
tr transport 

w water, wall 

 



  

 

 

 

1.  Introduction 

The complex behaviour of water sprays used in suppression of pool fires is an important 

engineering problem [1–5]. Strictly speaking, one should take into account the effect of water 

sprays on flow field parameters. It is really important in the regular regime of fire 

suppression. Following [6], a preliminary probe stage of the fire suppression with a very 

small flow rate of water is considered. Obviously, the effect of a low flow rate water spray on 

the fire parameters at the probe stage is negligible. It means that one can consider the motion, 

heating, and evaporation of single water droplets in the flame without taking into account any 

feedback effects. It is also assumed that a relatively thin water spray moves down parallel to 

the flame axis. This approach is convenient to focus on the most important special features of 

the droplet behaviour at the probe stage. Of course, a simplified model for droplet motion and 

evaporation is insufficient to obtain accurate results for the interaction of a fast developing 

turbulent fire and water droplets. The latter is especially important when the characteristic 

times of the flow field changes and displacement of the droplets are comparable with each 

other. 

In the limit of a relatively slow variation of the flow field, the evaporation of droplets 

accompanied by a decrease in their velocity may lead to a significant volume fraction of 

small droplets at several specific local areas. In the reality, both the position and parameters 

of these local areas in the developing flame are changed rather rapidly. 

It is known that small water droplets are characterized by a strong scattering of light at the 

wavelength comparable with the droplet size [7]. This optical effect, which is commonly 

observed in the visible for the natural mists, has been recently considered as a promising way 

to improve shielding of fire radiation by multi-layered water sprays [8, 9]. It is important that 

the gaseous combustion products in the fire do not scatter the radiation. The radiation 

scattering by soot aggregates in the infrared range is also negligible (a considerable scattering 

by soot aggregates can be observed in the visible range only) [10–13]. As a result, one can 

observe local regions of small water droplets near the flame axis because of their infrared 

scattering. This may be a scattering of the flame self-emission, but one can also use an 

external irradiation. 

The objective of this paper is two-fold: (1) to study the behaviour of moving water 

droplets which can be collected in some local areas of the flame before their total evaporation 

and (2) to estimate the effect of scattering of the flame infrared radiation by these small 

droplets on the radiation source function, which is responsible for the observed flame 

emission. 



  

 

 

It seems natural to consider first the typical trajectories and evaporation dynamics of water 

droplets to find the local regions where the volume fraction of highly scattering small 

droplets is expected to be significant. 

 

2.  Motion and evaporation of water droplets 

The interaction of water sprays with fires has been modelled computationally in many 

papers especially during the last two decades [14–18]. However, there is no need to discuss 

here the state-of-the-art in this field because the present paper is focused on another particular 

problem. At the probe stage of the fire suppression, one can supply only the droplets falling 

down not far from the flame axis. For simplicity, the spherical water droplets are assumed to 

have the same radius at the initial cross section of the spray. It is sufficient to consider a few 

selected trajectories of droplets falling initially along the flame axis without any interactions 

between the droplets. According to [16, 19], the following sets of equations are derived for 

the droplet motion: 

 
d
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where the subscripts “g”, “d” and “w” refer to the gaseous medium, droplet and water, u  is 

the velocity, a  is the droplet radius, DC  is the drag coefficient, Re  is the Reynolds number. 

It is assumed that water droplets are first heated up to the saturation temperature without 

evaporation (at sat0 tt  ): 
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( Nu  and Pr  are the Nusselt and Prandtl numbers) and then evaporated according to the 

following simple equation (at sattt  ): 
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where wL  is the latent heat of evaporation of water. A similar model has been recently used 

in analysis of water mist curtains [8, 9]. This simplified evaporation model is also sufficient 



  

 

 

for qualitative estimates of the present paper because of very fast heating of moving droplets 

and large molar fraction of water vapour in the flame. It is not necessary at the moment to 

consider sophisticated evaporation models like that developed in paper [20]. A transfer from 

the droplet heating to its evaporation is given by equation: 

   sat w,satd TtT   (4) 

In contrast to recent papers [3, 4, 21], the effects of thermal radiation are neglected in the 

above model as compared with convective heat transfer from ambient hot gases. This 

assumption can be revised on the basis of the radiation field calculations. Obviously, the local 

relative volume fraction of water droplets can be calculated as follows: 

   30d0d0vvv aauufff   (5) 

Equation (5) indicates that the volume fraction of water droplets decreases with their 

evaporation, but a strong increase in the volume fraction can be observed in the regions of 

slowly moving droplets. 

 

3.  Application Case Study 

A pool fire is defined as a turbulent diffusion flame burning above a horizontal pool of 

vaporising fuel (e.g. liquid) where the fuel has zero or low initial momentum. Such fires are 

dominated by buoyancy since the velocity and momentum of the fuel vapour leaving the pool 

surface are negligible. In order to reproduce pool fires in laboratory conditions, most fire 

researchers used gas burners constructed of porous refractory material, where the gas fuel is 

supplied at very low velocity under controlled burning. Controlling the mass burning rate is a 

way to quantify with certainty the heat release rate which is an important quantity in pool fire 

studies. Moreover, bearing in mind that flaming combustion only occurs in the gas phase, this 

case also mimics the realistic scenario of a pool of liquid fuel with a low momentum vapour 

fuel initially formed at the surface of the pool before combusting with oxygen. In the present 

study, a methane gas burner is employed to replicate typical experimental condition of a 

burning liquid pool fire. This is common practice in CFD simulation of pool fires. 

The flame is burning in the open quiescent environment with a heat release rate of 53 kW. 

The numerical results of a CFD simulation from paper [6] for the transient flame at time 

moment 1t s are considered as the case problem. The calculated transient flame is three-

dimensional, but deviations of the main parameters from the axisymmetric case are not 

significant. Following [6], the axisymmetric model flame used in calculations was obtained 

by angular averaging of all parameters. The data for gas temperature and axial component of 

gas velocity in the flame are presented in Fig. 1. The temperature field appears to be strongly 

non-uniform and contains a very hot circular region in a vicinity of a ring with radius about 8 

cm in the forward part of the flame, at 4.0z m. This hot region moves upward with a 

relatively high speed of about 4 m/s (Fig. 1b). On the contrary, there is a cold and slowly 



  

 

 

moving region of a gas at the axis of the flame at 3.0z m. Moreover, a downward motion 

of a gas is observed in this central region. The above described specific structure of the flame 

was a motivation of subsequent attention to both the cold central region and the circular hot 

and high-velocity region of the flame. 

We have considered the developing flame at several time moments, but the selected flame 

appeared to be the most interesting because of two sub-regions with quite different local 

temperatures and axial velocities shown in Fig. 1. This specific flame is convenient to 

analyze the behavior of water droplets at very different conditions. 

The temperature 3000 T K was taken for water droplets at the initial cross section 

5.00 z m of the water spray. As to the droplet size and initial velocity, a set of various 

realistic values of these quantities was considered. Some computational results including 

those obtained in [6] are presented in Fig. 2. The behaviour of water droplets moving along 

two parallel lines appeared to be quite different. However, the trajectories of evaporating 

droplets of different initial size are focused in small local areas. In the case of droplets 

moving along the axis, their initial velocity makes no difference because of a relatively small 

relaxation time (Fig. 2a). The evaporation of these droplets will be completed due to 

absorption of thermal radiation from a surrounding flame. On the contrary, the large droplets 

supplied at 1.00 r m with relatively high initial velocity can penetrate to the hot region and 

totally evaporate during their backward motion (Fig. 2b). 

According to Figs. 2a and 2b, all the trajectories of droplets can be subdivided into three 

parts: (1) the straightforward falling down without any considerable changes in the droplet 

size, (2) the considerable evaporation accompanied by a decrease of the droplet velocity up to 

zero value, and (3) the return motion of the continuously evaporating droplet up to the 

relatively stable position in a cold and slowly moving gas when both the evaporation rate and 

the droplet velocity are close to zero. It is interesting that the area of the final focusing of 

small and almost immovable droplets appeared to be the same for droplets of quite different 

initial radius. The volume fraction of small evaporating droplets may be very high in the local 

areas of their collection and almost total evaporation. Of course, the assumption of 

independently moving droplets is incorrect in the vicinity of these areas. It is a serious 

problem which does not have a simple solution at the moment [19]. This is one of the 

important reasons of a qualitative character of physical estimates of the present paper. 

However, there is no doubt in the main physical result of this section: the small partially 

evaporated water droplets are focused in several local areas at the front surface of the 

developing pool fire. 



  

 

 

One should recall that the above result was obtained by ignoring the effects of turbulence 

and also time variation of the Reynolds-averaged flow field of developing flames. Obviously, 

the turbulence cannot affect the motion of inertial particles at high values of the Stokes 

number, which is proportional to the square of the droplet radius [19]. It is also interesting 

that turbulence can not only mitigate the particle collection. On the contrary, the transient 

effect of the so-called “preferential concentration” of particles with Stokes number about 

unity may be significant even in the homogeneous and isotropic turbulence [22–24]. 

The effect of a fast time variation of the developing flame parameters is expected to be 

much stronger than the effect of turbulence. Additional CFD calculations have shown that a 

characteristic time of considerable variations of the flow field shown in Fig. 1 is about 0.1–

0.2 s. It means that the shape of the local areas with high volume fraction of small water 

droplets may be deformed and shifted at the probe suppression stage. More definite 

conclusion about the behavior of these local areas depends on the increase of water flow rate 

while transfer to the regular fire suppression. 

In all cases, the moving local areas containing small evaporating droplets will lead to the 

infrared scattering by these small water droplets. 

 

4.  Infrared properties of water droplets 

The spectral optical constants, n  and  , of pure water are well known from early papers 

[25, 26]. For convenience of subsequent analysis, spectral dependences of these quantities in 

the most important part of the infrared range are presented in Fig. 3. The spectral 

characteristics of absorption and scattering of spherical water droplets can be calculated using 

the Mie theory [27–29]. Two dimensionless far-field characteristics which can be obtained 

from the analytical Mie solution are used in the calculations of the present paper: the 

efficiency factor of absorption, aQ , and the transport efficiency factor of scattering, tr

sQ . 

According to the Mie theory, the values of aQ  and tr

sQ  depend on both the complex index of 

refraction i nm  and the diffraction (size) parameter ax 2 , where a  is the droplet 

radius. The exact Mie calculations are time-consuming, especially for large droplets with 

1x . Therefore, as it was done in recent studies [8, 9], we use the following analytical 

approximation suggested in [30] for semi-transparent particles: 
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A comparison of approximation (6 a, b) with Mie theory calculations for water droplets at 

two typical infrared wavelengths can be found in paper [8]. As one can expect, the 

approximate relations are sufficiently accurate for both aQ  and tr

sQ  in the spectral range of a 

weak absorption. As to water absorption band at wavelength of 3 µm, only the 

approximation for the absorption efficiency factor is important because a

tr

s QQ  . The latter 

is typical of the narrow region of anomalous refraction [31, 32]. 

The so-called monodisperse approximation, when all the droplets are assumed to have the 

same radius in the initial cross section of the spray, is used. The spectral values of absorption 

coefficient,  , and transport scattering coefficient, tr , in a small volume containing 

monodisperse droplets are related with the efficiency factors as follows (the subscript λ is 

hereafter omitted for brevity) [7]: 

 aQf av75.0            aQf tr

svtr 75.0  (7) 

where vf  is the local volume fraction of droplets. It is convenient also to introduce the 

corresponding normalized coefficients vfE a  and vfE tr

tr

s  . 

It was shown in [7] that monodisperse approximation may lead to considerable errors in 

the case when particles of different size have different velocities and/or temperatures. Strictly 

speaking, more detailed calculations should be made to estimate these errors in the problem 

under consideration. It should be recalled that monodisperse approximation is inapplicable 

for thermal radiation calculations in the case of a strong difference in behaviour of particles 

of different size. The known examples are: the thermal radiation of particles in plasma 

spraying [33–36], the radiation from two-phase combustion products in exhaust plumes of 

aluminized-propellant rocket engines [37, 38], and the radiative cooling of core melt droplets 

in nuclear fuel-coolant interaction [39, 40]. Fortunately, the subsequent calculations showed 

that it is not the case for the problem under consideration and the monodisperse 

approximation is really applicable. 

The calculated values of aE  and tr

sE  in the most important range of the problem 

parameters are presented in Fig. 4. It is clear that the radiation absorption by water droplets is 

significant in the absorption band of water. This absorption contributes to water evaporation 

and flame suppression. On the contrary, the scattering of the flame radiation by water 

droplets is more important outside the absorption band, where this effect is expected to be 

observed. It is interesting that spectral behaviour of both the absorption and transport 

scattering coefficients of droplets is similar for droplets of different sizes, but the scattering is 

much greater for relatively small droplets. 



  

 

 

The present paper is focused on the radiation scattering by small water droplets. Therefore, 

the wavelength about 4 µm is the most interesting: the strong scattering of radiation by water 

droplets and relatively small absorption are typical for this spectral range (compare Figs. 4a 

and 4b). 

The hypothesis of independent scattering does not work in the above obtained local areas 

of strong evaporation where the distance between the neighbouring droplets may be small as 

compared with both the droplet size and the radiation wavelength. According to [41–45], the 

dependent scattering may lead to significant changes in absorption and scattering 

characteristics of the turbulent gas flow with suspended clusters of closely spaced particles or 

droplets. One should recall papers [46–48], where this effect was observed and analysed as 

applied to cumulus clouds in the atmosphere. Of course, a study of this effect is a separate 

complex problem of both the physical optics and the turbulence of gas flows with suspended 

inertial particles and it is beyond the scope of the present paper. The ordinary relations for 

independent single droplets are used in subsequent estimates. 

 

5.  Approximate method for radiative transfer calculations 

We use the known P1 approximation of the spherical harmonics method [8, 49, 50] to 

estimate the effect of radiation scattering by water droplets on thermal radiation field in the 

flame. In our case, this approach leads to the following boundary-value problem for the 

modified Helmholtz equation: 

    gbg4 TIGGD         tr31 D      dg    (8a) 
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where 
 
 

4

d 


IG  is the irradiation function, D  is the so-called radiation diffusion 

coefficient, tr

str    is the transport extinction coefficient, g  and d  are the absorption 

coefficients of a gas medium and suspended water droplets, n


 is the external normal to the 

boundary of the computational region. Of course, the spectral irradiation G , the gas 

temperature gT , and all physical coefficients in Eq. (8a) are the functions of spatial 

coordinates. The Marshak boundary condition (8b) contains the temperature, wT , and 

hemispherical emissivity, w , on boundary surfaces. Obviously, one should formally put 

1w   and 0w T  at the open surface of the flame. It means that there is no any external 



  

 

 

radiation at these boundaries. After obtaining the P1 solution, the spectral component of the 

radiation power generated in the flame is expressed as follows: 

   GTIW   gbg4  (9) 

The P1 approximation is simple and very convenient for radiative transfer calculations 

especially in combined heat transfer problems. Moreover, this approach appears to be 

sufficiently accurate in the case when one needs only the divergence of radiative flux, 

 dt WW , which is an important term in the energy equation [51–54]. At the same time, the 

radiative flux calculations at the boundaries of the computational region using the P1 may 

lead to significant errors. A physical analysis of these errors has been made in early paper 

[55] and can be found also in monograph [7]. This drawback of P1 can be compensated with 

the use of the combined two-step method and transport approximation for the scattering 

phase function, when the P1 is employed in CFD calculations only, whereas a ray-tracing 

procedure is used to solve the spectral radiative transfer equation at the second step of the 

complete solution [7, 56–59]: 

 SII  tr


            gbg

tr

s

4
TIGS 




  (10) 

where S  is the so-called source function. However, the ray-tracing calculations are not 

necessary in the present paper because we are just going to compare several variants to 

estimate an effect of infrared scattering on the radiation field in the flame. According to [7, 

58, 59], the finite-element method [60] with the simplest linear presentation of function G  in 

triangular finite elements is used to solve a variational formulation of the P1 boundary-value 

problem. 

 

6.  Effect of infrared scattering by evaporating water droplets 

There is no need for complete calculations over the spectrum to estimate qualitatively the 

effect of infrared scattering by evaporating water droplets in the above described example 

pool fire. It is sufficient to consider spectral results at the representative wavelength of 

2.4 µm, near the peak of the CO2 absorption band. The radiation absorption by droplets is 

relatively small in this range but 300tr
s E cm

-1
 at 10a µm and 1000 cm

-1
 at 5a µm (see 

Fig. 4b). In the computational estimates, the following conventional circular regions 

containing small water droplets are considered: 

5r cm, 5030  z cm – for droplets with 10a µm   (11a) 

155  r cm, 5045  z cm – for droplets with 5a µm  (11b) 



  

 

 

It is assumed that the monodisperse small droplets are uniformly distributed in these sub-

regions. Of course, equations (11a) and (11b) should be considered as a crude preliminary 

estimate only because the real size and spatial distributions of evaporating small droplets are 

smooth. The estimate of the infrared scattering effect can be obtained by comparison of two 

variants of volume fraction of droplets: 0v f  (no droplets) and 4
v 105 f . One can 

consider the numerical data for the fields of normalized dimensionless irradiation as it was 

done in paper [6]: 

 
 refb TI

G
G


  (12) 

The irradiation value is really important to estimate an additional evaporation of water 

droplets due to absorption of thermal radiation. However, it is more interesting to analyse the 

normalized source functions, S , because this function is used in the subsequent ray-tracing 

calculations of the spectral radiative flux observed at arbitrary point outside the flame [7]: 
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The values of 1000ref T K and the emissivity of the liquid fuel surface 6.0w   [61] were 

used in the calculations. The latter does not mean that thermal radiation of relatively cold 

liquid fuel is important. However, we take into account a partial reflection of the flame 

radiation from the surface of liquid fuel. 

Note that the value of S  is measured in m
-1

. The following analytical relation was used 

for the profile of side boundary of the computational region: 

  21max zzrr        35.0max r m     25.01 z m     2.3 m
-1

 (14) 

The non-uniform triangulation of the computational region with 1600 elements is shown in 

Fig. 5. The smaller areas of finite elements were made in the region of more optically dense 

medium. As usually, the radial coordinates of all the nodes were increased by the first radial 

interval of the mesh to avoid the formal difficulties in numerical calculations near the axis 

[7]. The calculated fields of function S  in the most interesting part of the fire cross section 

are presented in Fig. 6. The circular regions (11) containing fast evaporating and almost 

immovable water droplets can be simply identified near the right-hand boundary and at the 

lower panel of Fig. 6b because of a considerable contribution of scattering to the radiative source 

function. Of course, there are no sharp edges of these areas in reality. One should use more 

accurate data for evaporating droplets to obtain smooth boundaries of the scattering region in the 



  

 

 

radiation calculations. However, the latter is not necessary for the qualitative estimates of the 

present paper. It is important that strong infrared scattering in local areas of small evaporating 

water droplets is physically sound and it is confirmed by direct calculations. To the best of our 

knowledge, this effect is computationally obtained for the first time. 

 

7.  Conclusion 

The scattering of infrared radiation of a developing pool fire by evaporating water droplets 

in fire suppression by water sprays was predicted on the basis of theoretical and 

computational estimates. It was shown for the first time that small evaporating droplets with 

different initial size can be focused in local areas of the flame before their total evaporation. 

The calculations for real developing flame showed that the effect of infrared radiation 

scattering by almost immovable and fast evaporating water droplets on the radiation field in 

the flame and also on the source function responsible for the infrared radiation from the flame 

is considerable. The latter can be observed at the initial stage of fire suppression using the 

probe water sprays supplied from above. This new finding should be taken into account in 

further studies of suppression of open flames by water sprays. It is important that positions of 

the local highly-scattering regions and the expected motions of these regions are very 

sensitive to flame parameters. This can be used in probe experiments for partial validation of 

transient CFD simulations. 
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Figure captions 

Figure 1. Parameters of the transient model flame [1]: (a) – the gas temperature field; (b), (c) 

– the profiles of axial component of gas velocity and gas temperature. 

Figure 2. Variation of droplet radius along the focusing trajectories at two initial positions of 

water droplets: (a) 00 r  ( 52d0 u m/s) and (b) 1.00 r  m ( 10d0 u m/s). 

Figure 3. Spectral indices of refraction (a) and absorption (b) of pure water. 

Figure 4. Normalized (a) absorption and (b) transport scattering coefficients of water 

droplets. 

Figure 5. Finite-element triangulation of the flame computational region, which includes the 

main part of the temperature field shown in Fig. 1. The left boundary of the region is the 

surface of a liquid fuel. 

Figure 6. Normalized spectral source function at the wavelength of 2.4 µm: a – without 

water droplets, b – with water droplets. 
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 An initial stage of a pool fire suppression is considered. 

 The motion, heating, and evaporation of water droplets are calculated. 

 Focusing of evaporating water droplets in local regions is obtained. 

 A strong infrared scattering by small water droplets is analyzed. 

 The spectral region of a significant infrared scattering is determined. 

 The use of the infrared scattering in flame observations is discussed. 


