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Abstract—The morphometric characteristics of the retinal vascular 

network have been associated with risk markers of many systemic and 
vascular diseases. However, analysis of data from large population based 
studies is needed to help resolve uncertainties in these associations.  
QUARTZ (QUantitative Analysis of Retinal vessel Topology and siZe) is a 
fully automated retinal image analysis system that has been designed to 
process large numbers of retinal images and obtains quantitative 
measures of vessel morphology to be used in epidemiological studies. 
QUARTZ has been used to process retinal images from UK Biobank 
which is a large population-based cohort study. In this paper, we address 
issues of robustness with respect to processing large datasets and validate 
QUARTZ using a subset of 4,692 UK Biobank retinal images. Ground 
truth data produced by human observers for validation have been made 
available online. Following validation, 135,867 retinal images (68,549 
participants) from the UK Biobank study were processed by QUARTZ. 
71.53% of these images were classified as being of adequate quality, 
which equated to 80.90% participants with at least one image of adequate 
quality. The vessel morphometric data are currently being used in 
epidemiological studies. The intention of the UK Biobank Eye and Vision 
Consortium is to include these derived measures in the UK Biobank data 
archive. 

Keywords—Retinal image analysis, UK Biobank, Large retinal 
datasets, Disease biomarkers. 

I. INTRODUCTION 

Cardiovascular disease (CVD) alone accounts for nearly 200,000 
deaths in the UK per year [1]. CVD is also responsible for a 
substantial burden of morbidity and disability, accentuated by an 
ageing population and rising survival rates following myocardial 
infarction [2,3]. Therefore, early detection and prevention of CVD 
outcome is key. Diabetes and lesser degrees of hyperglycaemia are 
important determinants of CVD risk [4]. These precursors, along with 
other patient phenotypes, are used to estimate future risk of 
cardiovascular disease, providing indications for interventions to alter 
disease trajectory [5,6]. In addition to this, recent evidence suggests 
that biomarkers of the presence of CVD may improve risk prediction 
[7]. 

Examination of retinal images offers an opportunity to directly 
and non-invasively observe the blood circulatory system. The 
morphological characteristics of retinal vessels have been 
prospectively associated with cardiovascular and systemic disease [8-
11]. Therefore, the accurate assessment of retinal vessel morphology 
may be an important biomarker of early vascular disease [12], which 
could enhance CVD risk prediction. However, some inconsistencies in 
the presence or absence of these associations remain [13,14]. This is 
perhaps due to uncertainty caused by sample size.  

UK Biobank [15] contains probably the world’s largest retinal 
image repository in a middle-aged population-based cohort study. 
Analysis of data from such a large study will help to resolve 
uncertainties when establishing the presence (or absence) of 
associations between the morphological characteristics of the retinal 
vascular network and future risk of cardiovascular and systemic 
disease. Computer automated measurements of vessels is required 
because images can be rapidly processed to obtain objective measures, 
unlike the manual equivalent which is subjective, open to error, labour 
intensive and therefore time consuming.  

QUARTZ (QUantitative Analysis of Retinal vessel Topology and 
siZe) is a retinal image analysis system developed by our research 
group, which is an automated processing system for large numbers of 
retinal images and obtains quantitative measures of vessel morphology 
to be used in epidemiological studies [16]. Other notable systems 
exist, which include VAMPIRE [17-19], SIRIUS [20], ARIA [21], 
CAIAR [22,23] and SIVA [24]. However, to the best of our 
knowledge these systems have not been applied in a fully automated 
manner to the UK Biobank dataset. QUARTZ is fully automated in all 
aspects and information is extracted from the whole retina (not just 
concentric areas centred on the optic disc). 

The fully automated framework of QUARTZ removes the need for 
manual intervention, which makes it feasible to run on the entire UK 
Biobank dataset. From our experience, most large retinal datasets used 
in epidemiological studies contain large amounts of poor quality 
images caused by a variety of issues.  A particular problem is 
poor/uneven illumination of the retina due to avoiding the use of 
pharmacological mydriasis when capturing the images. Other issues 
including lens artefacts, eye lashes, media opacity, focal plane error 
and head/eye movement. UK Biobank camera operators received basic 
training/instructions and were not expert retinal photographers. Hence 
an automated system needs to be highly robust when processing a 
dataset with images of variable quality. 

Algorithm adaptations to address issues of robustness in respect to 
large datasets are documented in this paper, along with an evaluation 
using a subset of 4,692 UK Biobank retinal images. Following this 
substantial validation, the entire retinal dataset (135,867 retinal 
images) from the UK Biobank study at baseline examination was 
automatically analysed using QUARTZ to produce vessel 
morphometric data. This marks an important milestone in the field of 
retinal image analysis, as to the best of our knowledge, we are the first 
group to achieve this task. The vessel morphometric data derived from 
QUARTZ is currently being used in epidemiological studies [25], 
with further findings to be published soon. 



 
 

The intention of the UK Biobank Eye and Vision Consortium is to 
include these data in the UK Biobank data archive. Therefore, the 
thorough validation of all aspects of QUARTZ on the UK Biobank 
retinal images is crucial in order to support all future studies that use 
these data. 

II. UK BIOBANK 

UK Biobank is a major national health resource with the aim of 
improving the prevention, diagnosis and treatment of a wide range of 
serious and life-threatening illnesses – including cancer, heart 
diseases, stroke, diabetes, arthritis, osteoporosis, eye disorders, 
depression and forms of dementia. UK Biobank recruited more than 
500,000 people aged between 40-69 years in 2006-2010 from across 
the country. Participants underwent a physical examination (including 
retinal photography), provided blood, urine and saliva samples for 
future analysis, provided detailed information about themselves and 
agreed to have their health followed. The UK Biobank study was 
approved by the Northwest Region NHS research ethics committee. 

A subset of 68,549 participants had retinal images captured, 
providing 135,867 macular centred retinal images (captured from both 
eyes for most of the participants). Colour images were captured with a 
non-mydriatic fundus camera (Topcon 3DOCT-1000 Mk 2) with a 45° 
field-of-view and saved in PNG format with a resolution of 2048 x 
1536 pixels.  

III. QUARTZ OVERVIEW 

The QUARTZ software system was developed to provide 
epidemiologists with a fully automated framework for extracting 
quantitative measures of retinal vessel morphology from images 
obtained from large population based studies. Following the 
processing performed by QUARTZ, all measures are exported and 
saved as either CSV (comma separated values) or Excel files. The 
vessel analysis visualization screen of QUARTZ is illustrated in Fig.1. 

The software was developed in Matlab using object oriented 
programming, inspired by [21]. This allows the software to be 
structured into modules which include vessel segmentation, vessel 
analysis, arteriole/venule (a/v) classification, optic disc localization 
and image quality assessment. Brief algorithm details of these 
modules are presented in this section; see [16,26,27] for full details. 
This is accompanied by evaluation of the modules using a subset of 
4,692 retinal images, attained from 2,346 random UK Biobank 
participants. 3,351 images were deemed to be of adequate image 
quality (explained in section E). All aspects of this subset were 
assumed to be representative of the whole of the UK Biobank dataset.   

 
Fig.1. QUARTZ vessel analysis visualization screen. 

A. Vessel segmentation 

Retinal vessel segments can be approximated as being piecewise 
linear. In QUARTZ, we have implemented an unsupervised vessel 
segmentation approach based on a multi-scale line detector [28], 
linearly combining the line responses at varying scales to produce a 
final line strength image. This was followed with the application of a 
hysteresis thresholding based morphological reconstruction to 
produce the segmented vasculature (binary vessel map). Fraz [16] 
provides a more detailed description of this methodology. For 
epidemiological studies, the need to keep the segmentation of non-
vessel objects to a minimum is more important than the segmentation 
of the complete vasculature. Therefore, additional steps to those 
documented in [16], of pre-processing (removal of bright intensities) 
and post-processing (masking out fovea and removal of small 
segmented objects) were performed to reduce false positives in the 
segmentation, documented in [26].  

The automatic segmentations were compared with the manual 
segmentations by two human observers on a set of 20 retinal images. 
These 20 images were randomly selected from the 3,351 images of 
adequate quality. The segmentations of the first human observer were 
taken as the ground truth for the dataset. The comparison of the 
segmentations of the second human observer with the ground truth is 
regarded as the target performance level. The manual segmentations 
by both human observers have been made publicly available online 
(https://blogs.kingston.ac.uk/retinal/uk-biobank).  

The results of the segmentation algorithm are shown in Fig.2 and 
are summarised in Table 1, achieving a similar accuracy to the 96.11% 
achieved by the 2nd human observer. The accuracy of 95.64%, 
sensitivity of 73.66% and specificity 98.14% of the algorithm (without 
pre/post processing) are all comparable with state-of-the-art methods 
[29-31] which were applied on the datasets of DRIVE [32] and 
STARE [33]. This demonstrates the robustness of the algorithm, 
achieving this high level of performance despite the considerable 
variability in image quality of the UK Biobank dataset. The 
introduction of pre/post processing has the desired effect of increasing 
specificity by 0.74% (at the cost of sensitivity). This meets the 
requirements for epidemiological studies, in which it is vital to keep 
the segmentation of non-vessel objects to a minimum. 

 
Fig.2. (a)-(b) Colour retinal images. (c)-(d) Segmentation of (a)-(b).  

© UK Biobank. 



 
 

Table 1. Performance of vessel segmentation (per pixel basis). 

Method Accuracy Sensitivity Specificity 
2nd Human observer 96.11% 67.33% 99.38% 
QUARTZ (without 
pre/post processing) 95.64% 73.66% 98.14% 

QUARTZ (with 
pre/post processing) 95.84% 69.12% 98.88% 

 
B. Vessel analysis 

A morphological thinning operation was applied to the segmented 
vasculature to create centrelines, followed by the removal of spurs, 
bifurcation and crossover points to create vessel segments. The local 
orientation of a vessel was calculated by first fitting a parametric 
spline curve to obtain a smooth centreline. The derivatives of the 
spline curve were evaluated to compute the vessel orientations (local 
angle with respect to x-axis) at centreline coordinates [21].  

The width of a vessel segment is the distance between the locations 
of edge points of the vessel segment orthogonal to the vessel 
centreline orientation, calculated at each centreline coordinate. 
QUARTZ has included two options for determining the edge points: 
(i) using zero-crossings of the second derivative following smoothing 
with an anisotropic Gaussian filter [21], (ii) fitting a 2-D Gaussian 
function to the local section of the vessel segment and using zero-
crossings of the second derivative of the optimized Gaussian curve 
[34]. The former was used in this study. The centrelines, local 
orientations, edge points and vessel widths were all calculated with 
sub-pixel accuracy. Fig.3 illustrates these measures marked onto 
retinal images. 

 
Fig.3. (a)-(b) Zoom-in regions of retinal images. (c)-(d) Vessel 

centreline, edge, and width markings corresponding to (a)-(b). © UK 
Biobank. 

For evaluation, using the 3,351 images of adequate quality, 1992 
vessel profiles from different kinds of vessels were selected to 
compare manual with automated measures. These include: 615 
profiles from normal vessel segments, 383 profiles from vessel 
segments with a central reflex, 344 profiles from vessel segments with 
uneven illumination and 650 profiles from vessels with normal as well 
as central reflex along their length. Table 2 shows the mean (µ) and 
standard deviation (σ) of vessel width measures for the reference 

standard (mean of the two human observers) and the automated 
method. 

Table 2. The mean and standard deviation of vessel width measures 
(in pixels). 

Vessel segment type Reference standard Automated method 
µ σ µ σ 

Normal 10.46 1.26 10.00 1.60 
Central reflex 10.76 1.31 10.06 1.51 
Uneven illumination  11.29 0.85 10.56 1.89 
Normal/central reflex 11.09 0.97 10.18 1.23 
For all vessel 10.87 1.16 10.17 1.54 

 

The overall mean and standard deviation of width measures for all 
the vessel profiles measured by the automated method is 10.17 and 
1.54 pixels respectively, which is similar to that of the reference 
standard of 10.87 and 1.16 pixels respectively. The differences in 
vessel width measures comparing the reference standard with the 
automated method are also important. It should be noted that low 
variance in width differences might be more important than the 
absolute difference in measures of width. Any systematic bias in 
measures of width may be unimportant as long as widths are measured 
consistently. The mean and standard deviation of differences in the 
measures computed by the algorithm compared to the reference 
standard are only 0.70 and 1.13 pixels respectively. These results are 
comparable with semi-automated approaches, e.g. Trucco [19] reports 
a standard deviation of differences between 0.319-1.381 assessed on 
the REVIEW dataset [35].  

The full list of quantitative measures computed at this stage for 
every segment contain: smoothed centreline coordinates of the 
segment, local orientation angle at each centreline coordinate, width 
of vessel segment at each centreline coordinate, mean width of the 
segment, multiple tortuosity measures of the segment and length of the 
segment. The tortuosity measures include arc/chord ratio, curve 
energy [36] and level-wise-mean, which is a subdivided chord length 
method [22]. 

C. Arteriole/venule (a/v) classification  

The vessel segments from the previous section were classified into 
arterioles and venules using a convolutional neural network whose 
architecture contains six learned layers: three convolutional and three 
fully connected [27]. For each centreline pixel in a vessel segment, a 
small square colour image patch centred on the target pixel was 
provided as the input for the convolutional neural network in order to 
assign an arteriole or venule label to the target pixel. The labels for the 
centreline pixels were then used to award the whole vessel segment as 
arteriole or venule using a voting strategy. 

For a/v classification, 100 images were randomly selected from the 
3,351 images of adequate quality. The vessel segments from these 
images were manually labelled as arteriole or venule by two human 
observers. The labelled data by the first observer was used as the 
reference standard. The second observer labelled a random subset of 
five images; and a high agreement of 98.84% was achieved between 
the two observers. All centreline pixels in a segment will take up the 
manual label awarded to the segment. This equated to 835,914 
centreline pixels possessing a manual label. The 100 images were 
randomly divided into three sets: 50 training images, 15 validation 
images and 35 testing images. The classifier was built using the image 
patches derived from the manually labelled centreline pixels of the 
training set (following data augmentation) and validation set, and 



 
 

evaluated using the image patches derived from the manually labelled 
centreline pixels of the testing set. 

The algorithm was evaluated in terms of sensitivity, specificity and 
accuracy on a per centreline pixel and per segment basis and the 
results are presented in Table 3. The performance metrics have been 
stated separately for arterioles and venules. However, this is a single 
classification problem with two classes, hence sensitivity for arterioles 
equals specificity for venules and sensitivity for venules equals 
specificity for arterioles. An accuracy of 86.97% (per pixel basis) 
represents a high level of performance when considering the 
variability in image quality of the dataset. Results are comparable with 
Trucco [19], with a reported accuracy of 85.47-87.19% (dataset used 
not stated). However, their assessment was limited to vessels within a 
concentric area centred on the optic disc as opposed to the vessels 
from the entire retinal image. The classification of vessel segments 
into arterioles and venules is shown in Fig.4, where red colour 
segments represent arterioles and blue colour segments represent 
venules. 

Table 3. Performance of a/v classification. 

Level Measure Arteriole Venule 

Pixel 

Sensitivity 86.07% 87.67% 

Specificity 87.67% 86.07% 

Accuracy 86.97% 86.97% 

Segment 

Sensitivity 85.14% 85.32% 

Specificity 85.32% 85.14% 

Accuracy 85.24% 85.24% 

 

 
Fig. 4. Classification of arterioles and venules. (a) Original retinal 

image. (b) Classification results. © UK Biobank 
D. Optic disc localization 

A simple and robust optic disc localization algorithm was 
implemented into QUARTZ. Shade correction was performed by 
subtracting an image approximating the background (approximated 
using a median filter with a large kernel size). The location of 
maximum intensity was identified and was regarded as a point within 
the optic disc. A condition was set that restricted the search region to 
large circular regions on the left and right side of the image. 

For evaluation, 500 images were randomly selected from the 3,351 
images of adequate quality. 488 out of 500 optic disc locations were 
correctly detected (pixel location within the optic disc boundary 
decided by human observers), equating to a success rate of 97.60%. 
This is an impressive detection rate considering the variability in 
quality of images in the dataset. Fig.5 illustrates examples of 
successful optic disc detection. This result compares favourably with 
literature, with Niemeijer [37] reporting success rates between 93.0% 
and 99.4% for a challenging dataset. 

 
Fig. 5. Optic disc localization from retinal images of variable 

illumination conditions. © UK Biobank. 
E. Image quality assessment 

Large retinal datasets used in epidemiological studies contain 
relatively high proportion of images of poor quality. However, useful 
information can be extracted from well segmented sections of the 
vasculature, even if this only represents a portion of the vascular tree. 
For example, images with uneven illumination are still likely to 
present at least a section of the retina with sufficient illumination to 
allow for accurate segmentation. This approach ensures that there is 
little wastage by making use of many of the poor images, extracting as 
much information as possible from these retinal datasets. 

Manual assessment of the segmentation would see images rejected 
if less than half the vasculature was segmented, if the segmentation 
was considered fragmented/unconnected and if multiple non-vessel 
objects were segmented. An automated image quality assessment 
algorithm [26] was designed to mimic this. Global features of area, 
fragmentation and complexity measured from the segmented vessel 
map and support vector classification were used to label the images as 
inadequate or adequate. 

 
Fig. 6. Images correctly classified as (a)-(b) adequate quality, (c)-

(d) inadequate quality. © UK Biobank. 

For evaluation, 1,000 images were randomly selected from the 
complete subset of 4,692 images. Manual image quality assessment 
was performed on the segmentation of these images, 240 were 
manually labelled as inadequate and 760 were labelled as adequate. 
Two human observers were used for manual labelling. The labelling 
stated above was performed by the first observer and was used as the 
reference standard. The second observer labelled a random subset of 
100 images out of the 1,000. A high agreement of 99% was achieved 



 
 

between the two observers, which aided the validation of the 
reliability of the manual labels. 

The 1,000 manually labelled images were randomly divided into 
two sets, each containing 500 images. The classifier was trained on 
one set and tested on the other set. The performance of the algorithm 
for the detection of images of inadequate quality achieved a sensitivity 
of 95.00% and a specificity of 93.95%. This equates to 72.60% of the 
500 images being labelled as adequate, of which 98.35% were 
correctly identified of adequate quality. When applied to the whole 
subset of 4,692 images, this resulted in 3,351 images (71.42%) being 
labelled as adequate. Fig. 6 shows examples of images successfully 
classified as adequate and inadequate. Fig. 6(c) contains the false 
segmentation of choroidal vessels and Fig. 6(d) has insufficient 
illumination/contrast.  

QUARTZ also exports an image quality score for each image, 
which is a value ranging from 0 to 1 (derived using the distance to the 
decision boundary of the classifier). Note, the performance stated 
above equates to images being labelled as inadequate if the quality 
score <= 0.6033. 

IV. PROCESSING 136,000 IMAGES 

Following the successful validation of the modules of QUARTZ 
using a subset of 4,692 images, the entire retinal dataset (135,867 
retinal images) from the UK Biobank at baseline examination was 
automatically processed. This resulted in 97,188 (71.53%) images 
classified as being of adequate quality, which included 55,457 
(80.90%) participants with at least one image included. A full 
breakdown of participant numbers is provided in Table 4.  

Table 4. Proportions of participants with images classified as adequate 
quality for inclusion in vessel morphometric data suitable for 

epidemiological studies. 

Participants with no images included 13,092/68,549 
(19.10%) 

Participants with one image included 13,726/68,549 
(20.02%) 

Participants with two images included 41,731/68,549 
(60.88%) 

Participants with at least one image included 55,457/68,549 
(80.90%) 

Number of retinal images included 97,188/135,867 
(71.53%) 

 
On a standard machine (i7 processor, 8GB RAM, Nvidia Quadro 

K1100M GPU) one image can be processed in 2 minutes. Therefore, 
this would take 6 months to process the entire dataset on a single 
machine. This can be reduced significantly by the use of a computing 
cluster. 

V. DISCUSSION AND CONCLUSION 

In this paper, we have presented validation of the retinal image 
analysis system, QUARTZ, which is designed for the automated 
processing of large numbers of retinal images and obtains quantitative 
measures of vessel morphology to be used in epidemiological studies. 
The system’s modules have been validated using a subset of 4,692 
images from the UK Biobank retinal image dataset, showing a high 
level of performance. The robustness of the modules and the fully 
automated framework made it practical to run on the entire UK 
Biobank retinal dataset at baseline examination (135,867 retinal 
images). To the best of our knowledge, our research group are the first 
to report on the completion of this task and the first to report on 

processing of retinal images on this scale. Also, the output is 
maximised by extracting information from the entire retinal image and 
not just concentric rings. The UK Biobank presents a considerably 
amount of variability in respect to the quality of images. This was 
tackled with a robust vessel segmentation procedure combined with an 
effective image quality assessment approach (minimise wastage). The 
resultant was a high percentage of images (71.53%) being deemed as 
adequate for use in the creation of vessel morphometric data. 
Approximately 98.35% were correctly identified to be of adequate 
quality. 

Approximately half of the images in the UK Biobank retinal image 
dataset can be considered as high quality. With 28.47% of images 
being automatically rejected, there still remains a high level of 
variability within the accepted images due to efforts to minimize 
wastage by effectively making use of many of the poor images. 
Therefore, it is essential that all of the system’s modules are robust 
and the multiple evaluations presented in this paper successfully 
demonstrate this. QUARTZ achieves a vessel segmentation accuracy 
of 95.84%, an optic disc detection success rate of 97.60%, an a/v 
classification accuracy of 86.97% and a standard deviation of vessel 
width differences of 1.13 pixels. These figures refer to evaluation 
using images within the subset that were automatically deemed to be 
of adequate quality.  

QUARTZ will be used to process retinal images from follow up 
health checks (once made available by UK Biobank); measuring 
changes in vessel morphology may also be an important biomarker. 
Also, participants who did not have retinal images captured at the 
baseline examination may have retinal images captured at the repeat 
examination. Therefore, extending processing to the repeat 
examination dataset has the potential to increase the total sample size.  

In conclusion, 71.53% of the UK Biobank retinal database 
amounts to a large number of retinal images (97,188 images from 
55,457 participants) being suitable for analysis. This equates to 
80.90% of participants with at least one adequate quality image (in the 
assessment of CVD risk, information is only required from one image 
per person). This, along with the fact that the quantitative measures of 
vessel morphology can be reliably provided by QUARTZ and then 
studied in association with a range of medical information obtained 
from multiple health checks of the participants, makes this a valuable 
source of data. The vessel morphometric data obtained from the 
application of QUARTZ on the UK Biobank retinal database are 
currently being used in epidemiological studies, relating vessel 
morphology to disease risk factors and outcomes, with publications to 
follow in the near future. 

The intention of the UK Biobank Eye and Vision Consortium is to 
include this vessel morphometric data in the UK Biobank data 
archive.  
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