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Prodigious submarine landslides during the
inception and early growth of volcanic islands
James E. Hunt1 & Ian Jarvis 2

Volcanic island inception applies large stresses as the ocean crust domes in response to

magma ascension and is loaded by eruption of lavas. There is currently limited information on

when volcanic islands are initiated on the seafloor, and no information regarding the seafloor

instabilities island inception may cause. The deep sea Madeira Abyssal Plain contains a 43

million year history of turbidites among which many originate from mass movements in the

Canary Islands. Here, we investigate the composition and timing of a distinctive group of

turbidites that we suggest represent a new unique record of large-volume submarine land-

slides triggered during the inception, submarine shield growth, and final subaerial emergence

of the Canary Islands. These slides are predominantly multi-stage and yet represent among

the largest mass movements on the Earth’s surface up to three or more-times larger than

subaerial Canary Islands flank collapses. Thus whilst these deposits provide invaluable

information on ocean island geodynamics they also represent a significant, and as yet

unaccounted, marine geohazard.
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Volcanic island landslides have previously been shown to
primarily occur during the mature stages of subaerial
shield-building and edifice growth1,2. During subaerial

growth, the injection of dykes and effusion of both lavas and
pyroclastics rapidly over-steepen, load and ultimately cause flank
instability1,3–5. The resulting flank collapses are often prodigious
in volume, with many past slides in the Hawaiian and Canarian
archipelagos exceeding 100 km3, which far exceed terrestrial
slides by several orders of magnitude2,6–9. In the Canary archi-
pelago, landslides during subaerial island growth are recorded by
large scallop-shaped escarpments, debris avalanche deposits on
the proximal submarine island flanks, and large-volume volca-
niclastic turbidites in adjacent deep-sea depocentres (Fig. 1)2,8–11.
While the volumes of these volcaniclastic turbidites represent
only a proportion of the original slide mass, they still record the
timing of the slide and are indicative of the scale of the failure2,9.
Indeed, the turbidite record of the Madeira Abyssal Plain has
been shown to excellently record the history of subaerial volcanic
island flank collapses, for example all eight of the subaerial flank
collapses in the Western Canary Islands in the last 1.5 Myr are
recorded9. However, there are some notable caveats, such that
slides from Tenerife (Icod, Orotava, Guimar and Roques de
Garcia) and El Hierro (El Hierro, El Julan and Tinor) show
excellent chronological agreement with onshore age estimates,
while the landslide history from these turbidites identifies a La
Palma-sourced landslide dated at 485± 10 ka at least 35 ka
younger than its onshore contemporary8,9,12–14. An extended
17Myr turbidite record from the Madeira Abyssal Plain has also
been shown to accurately record past subaerial collapses further
back in time2. It must be acknowledged that not all slides
necessarily generate turbidity currents. While small-volume fail-
ures may not reach the distal Madeira Abyssal Plain, those fail-
ures of significant large-volume (>10 km3) are shown to regularly
reach the basin, thus representing a potentially unbiased record of
landslide history2,9. The excessive volumes and potentially

catastrophic nature of these volcanic island landslides necessitate
characterising past events in order to better understand present
hazards and levels of risk associated with them15.

Little is known about the early seamount stages of volcanic
island growth during initial inception and later emergence, what
inherent internal stresses may be exerted on growing island flanks
during this stage, and whether prodigious seafloor mass wasting
may result. The early seamount stage of island growth is sug-
gested to involve the development of large tensional stresses
associated with crustal doming and fracturing caused by magma
ascent and rift development1,3–5. Initial emplacement of the
island on the seafloor and its subsequent subaerial emergence
represents the largest relative emplacement of volcanic mass on
the ocean crust during the life cycle of an island. Seamount
growth leading to island inception also involves the emplacement
of surficial, low-porosity, and structurally weak hyaloclastites that
both substantially increase slope angles and introduce inter-
bedded low-permeability materials that facilitate failure16.

Submarine landslides have been identified on the flanks of
submarine seamounts associated with mid-ocean ridges16. Such
seamounts may take 30–60Myr to develop to over 2,000 m sea-
floor elevations by relatively gradual addition of volcanic mate-
rials17. Submarine landslides have also been recognised affecting
volcanic seamounts elsewhere (e.g., Henderson Seamount, off-
shore Baja18, Moua Pihaa, Society19, and MacDonald and Arago
Seamounts, Austral19). Landslides, proximal debris-avalanches
and their often associated turbidites reflecting collapse of
subaerial-to-proximal submarine volcanic island slopes have been
identified around seamounts and emergent volcanic islands (e.g.,
the Canary Islands2,8,9,11,20, Hawaiian Islands6,7,21, Reunion
Island22,23, Pico Island, Azores24, Tristan Da Cunha Island25,
Gough Island26, Guadalupe Island16, and Polynesian Islands19).
These particular landslides often form lobate deposits adjacent to
the islands that comprise volcanoclastic materials sourced from
volcanic edifice. Here, we propose a distinct group of turbidites in
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the Madeira Abyssal Plain over the last 43Myr represent large-
volume failures of seafloor immediately adjacent to volcanic
islands that instead comprise accumulated hemipelagite sedi-
ments and distributed volcaniclastic sediments beyond the vol-
canic island slopes. We propose that these landslides and the
resultant turbidity currents occurred in response to magma
ascension and doming of the seafloor adjacent to the volcanic

island (e.g., source area delineated in Fig. 1) associated with
inception, ascension and emergence during the seamount-phase
of growth and later subaerial-phase of growth. Volcanic islands
above intra-plate plumes grow more rapidly during their
seamount-phase their contemporaries and become subaerial
volcanic edifices in an order of magnitude less time than is taken
to develop mid-ocean ridge seamounts. For example, El Hierro or
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La Palma in the Canary Islands have taken < 1.2 Myr to develop
to major subaerial edifices (Fig. 1)27–29. This rapid growth of
volcanic islands may substantially increase the risk of flank
instabilities. Despite the large emplacement of volcanic mass
upon the oceanic crust, the deposition of surficial materials
potentially prone to failure and the rapidity of growth, there is

currently no record of seafloor instability during the early
seamount-phase of volcanic island growth nor prior to major
periods of island building.

Here, we present the first record of submarine landslides
during the inception and early growth of volcanic islands sourced
from failure of accumulated hemipelagite and volcaniclastic
debris on their submarine slopes and adjacent seafloor (see
Fig. 1). We further show that these landslides are among the
largest mass movements on Earth’s surface. We suggest that this
is because doming of the seafloor occurs in response to magma
ascension, and subsequently also occurs prior to major periods of
subaerial volcanism. We theorise that pale-grey ‘non-volcanic’
turbidites deposited on the Madeira Abyssal Plain, offshore NW
Africa, represent seafloor failures during the inception, seamount
growth, emergence and later subaerial edifice growth of the
adjacent Canary Islands. An unprecedented long turbidite
sequence from ODP Sites on the Madeira Abyssal Plain (Sites
950, 951 and 952) has previously revealed a 17.0 Ma record of
submarine landslides offshore NW Africa, including subaerial
landslides from the Canary Islands and adjacent continental
margin2,30–32. The volumes (>10 km3), runouts (>1,000 km) and
spatial distributions (>150,000 km2) of these sediments indicate a
source from a submarine landslide, and negate possible alter-
native sources from pyroclastic flows, hypopycnal flows or river
delta failures that have much smaller volumes and distribu-
tions2,9. Our study investigates the origin and magnitude of the
pale-grey ‘non-volcanic’ turbidites from this 17.0 Ma record and a
new additional 18.0–43.0 Ma record from ODP Site 950. We also
investigate the prevalence of multi-stage collapse as a failure
mechanism for these slides. The aim is to test whether these
voluminous deposits represent submarine flank collapses that
occur during inception and emergence stages of volcanic island
growth in the Canary Islands, and whether they pose a novel and
significant geohazard.

Results
The Canary Islands and Madeira Abyssal Plain turbidites. The
Canary archipelago represents an east-to-west chain of volcanic
islands extending over ~500 km off the NW African passive
margin (Fig. 1). The origin of this archipelago has been much
debated, and competing theories exist: propagating fracture
model; uplift of tectonic blocks; Canary rift model; classic plume
model; blob model; and upwelling sheet model. However, a cri-
tical review by Carracedo et al.33 concluded that current evidence
best supports growth of the islands on a ‘slow’moving plate above
a mantle plume.

Although a general east-to-west age progression is apparent in
the Canary archipelago (Fig. 1), there is greater divergence along
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this trend when compared to the Hawaiian archipelago1,33. This
is attributed to ‘slow’movement (1.9 cm per year) of oceanic crust
over a mantle plume and possible generation of a dual-line,
compared to the single-line Hawaiian chain operating on ‘fast’
moving (10 cm per year) oceanic crust1,33,34. However, despite
the differences in the geodynamics of the respective tectonic
plates, both the Canary and Hawaiian archipelagos have had
prodigious subaerial and submarine landsliding capable of
generating tsunamis35,36.

Landslides from the Canary Islands, NW African continental
slope, and seamounts adjacent to the mid-ocean ridge disag-
gregate to form dilute turbidity currents whose deposits, known
as turbidites, accumulate on the Madeira Abyssal Plain in water
depths of greater than 5,000 m (Figs. 1 and 2). The stratigraphy
recovered from the Madeira Abyssal Plain at ODP Sites 950, 951
and 952 represents an unequivocal continuous archive of
landslides over the past 17.0 Ma2,31,32, which we extend here to
43.0 Ma using data from Site 950. Previous work has identified
green organic-rich turbidites sourced from the NW African
continental slopes, grey volcaniclastic turbidites sourced from the
subaerial Canary Islands, and white calciclastic turbidites sourced
from local seamounts and ridges (Fig. 2)10,30,31,37. There are also
metre-thick pale-grey ‘non-volcanic’ turbidites in the Madeira
Abyssal Plain stratigraphy at ODP Sites 950, 951 and 952, but
neither have the origin, magnitude nor timing of these beds, until
now, been identified (Fig. 2)2,30. The term ‘non-volcanic’ was
used previously to distinguish these pale-grey beds from the grey
volcaniclastic turbidites that represent subaerial flank failures of
the Canary Islands2,30. We hypothesise that these pale-grey ‘non-
volcanic’ beds represent failure of seafloor and submarine flanks
of the Canary Islands during inception and early island growth.
The larger than 10 km3 volume (commonly> 100 km3) negates
origins from sources other than large submarine landslides2,9.

Provenance of the pale-grey non-volcanic turbidites. The pale-
grey ‘non-volcanic’ turbidites of this study are pale-grey, deci-
metre to metre-thick, laminated silts and muds that represent the
fine-grained Bouma Td and Te divisions of large dilute turbidity
currents sourced from submarine landslides (Fig. 2). The sharp-
bases that are laminated and the fining-upwards grain-size with
weakly bioturbated tops set these deposits distinctively apart from
the heavily bioturbated white to dark brown/red hemipelagites
(background sediment) in which they are encased (Fig. 2). They
are also distinctly different from the grey, coarser-grained vol-
caniclastic turbidites.

Volcaniclastic turbidites in the Madeira Abyssal Plain represent
large-volume failure of the subaerial island edifices in the Canary
Islands2,9,10,30. They are characterised by their diagnostic dark
grey colour, high magnetic susceptibility (>50 SI units) and
relatively high TiO2 CFB (carbonate-free basis) content and high
Fe2O3 CFB content (Figs. 2 and 3). White calciclastic turbidites
have a diagnostic white colour, high CaCO3 (>78 wt%) and Sr
(>1,200 ppm) contents, negligible magnetic susceptibility, and low
MgO CFB, Fe2O3 CFB and Al2O3 CFB compositions (Fig. 3). These
white calciclastic turbidites are thought to represent failure of
carbonate-rich seafloor sediments on seamounts surrounding the
Madeira Abyssal Plain draped in pelagic coccolith-rich oozes37.

Pale-grey ‘non-volcanic’ turbidites have high CaCO3, low
magnetic susceptibility and low Ti/Al, which partially differenti-
ate them from purely volcaniclastic turbidites (Figs. 2 and 3).
However, mudcap geochemistry highlights that the pale-grey
‘non-volcanic’ beds have a stronger affinity to the volcaniclastic
turbidites than the white calciclastic beds. The relatively high
Fe2O3 CFB may also further indicate the presence of volcani-
clastic materials in the flows (Fig. 3).

The origin of the pale-grey ‘non-volcanic’ turbidites is
explicably linked to the Canary Islands. The geochemical
composition of the sediments from these turbidites in the last
17Myr falls within the compositional fields of the more evolved
Western Canary Islands (Fig. 3). The compositions also show that
Madeira or its archipelago cannot be the source (Fig. 3). Previous
studies implicate the calciclastic turbidites, rich in carbonate
detritus, as being likely sourced from seamounts local to the
Madeira Abyssal Plain. Similarities in composition with the
volcaniclastic turbidites but higher carbonate content imply that
the pale-grey ‘non-volcanic’ turbidites represent failures from
purely submarine regions surrounding the Canary Islands where
there are mixtures of both volcaniclastic sediment and calcareous
pelagites. Combined with age estimates, these changes in
composition may provide further information regarding the
provenance of the turbidites and the geodynamics of the islands
from which they are sourced.

Slides during island inception and early growth. The pre-7.0 Ma
record of pale-grey ‘non-volcanic’ turbidites predominantly
consist of thin-bedded (10–50 cm-thick) turbidites comprising
silt bases and decimetre-thick mudcaps, representing the fine-
grained sediment deposited out of the final suspension of tur-
bidity currents. These are only recorded at ODP Site 951 or 950,
whilst the pre-18 Ma record was only recovered at ODP Site 950
(Fig. 4). The uncertainty on the ages of the events in the 43 to
7.0 Ma record average at 5% of the given age (±0.8–2.2 Ma) based
upon last and first-occurrence coccolith biostratigraphic ages38.
In contrast, the pale-grey ‘non-volcanic’ turbidites post-dating
7.0 Ma are widely correlatable between ODP Sites 950, 951 and
952, and have much more robust age models. First, the turbidites
younger than 6.5 Ma have initial age uncertainties of 1–5% of the
age using coccolith biostratigraphy and magnetostratigraphy
(±10–270 ka)38. However, this uncertainty is improved by two
orders of magnitude to conservatively ±10 ka in the sediment
record younger than 5.4 Ma when using the hemipelagite
lithostratigraphy coupled with marine isotope stage boundaries
(Fig. 5). Hemipelagite sediments record the history of sequential
marine isotope stages with sharp boundaries between glacial
lowstands (red-brown clays) and interglacial highstands (white
carbonate oozes) of sea level that have well defined ages (Fig. 5).
Almost 80% of beds younger than 5.4 Ma occur at distinct
boundaries between glacial red clays and interglacial white oozes
and thus can be dated conservatively to ±10 ka, those beds that lie
within hemipelagite between such boundaries (20%) can be dated
by interpolation to boundaries above and below to ±20 ka.

The turbidites in the post-7.0 Ma record represent uniform
ungraded muds that range in thickness from 20 cm to 12 m, but
average 2.2 m in thicknesses (Fig. 2). When these beds are
decompacted they provide average depositional volumes between
100 and 200 km3 (Fig. 6). Turbidite FB, dated at 5.8 Ma
(nomenclature from Hunt et al.2), represents the thickest (12 m
thick) and most volumetric (900 km3 decompacted volume)
turbidite in the Madeira Abyssal Plain. For perspective, the slide
responsible for this particular bed remobilised enough sediment
to cover France or the US state of Alaska in over one metre of clay
and silt, equating to volumes that would take all of the Earth’s
rivers over one hundred years to accumulate.

Age determination and deposit compositions have allowed the
occurrence of the pale-grey ‘non-volcanic’ turbidites to be
separated into specific periods. These periods broadly correlate
to the oldest dates of volcanism on individual Canary Islands
representing inception and later emergence and initiation of
periods of major subaerial volcanic activity (Figs. 4 and 6). A
distinct vertical change in composition is apparent within each
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group of the pale-grey ‘non-volcanic’ turbidites from <0.275 K/Al
to >0.275 K/Al, which is reflected in other CFB element
compositions and ratios (Fig. 6). This change may represent a
transition from inclusion of more basic submarine volcaniclastic
material to inclusion of more K-rich volcaniclastic material, as
volcanism on the respective island matures and the respective
seamount emerges subaerially. Thus, utilising compositional
information of the pale-grey ‘non-volcanic’ beds (specifically
K/Al< 0.275) and the turbidite ages, we can refine the age of
inception of the individual Canary Islands (Fig. 6): 16.0 Ma
inception of La Gomera (estimated 15.5 Ma39,40); 14.2 Ma
inception of Gran Canaria (estimated 13.7–13.5 Ma41,42);
11.7–9.2 Ma inception of Tenerife Roques del Conde massif
(estimated 11.8–9.6 Ma29,43); 7.2 Ma inception of Tenerife Teno
massif (estimated 7.4–6.1 Ma43); 5.8 Ma inception of Tenerife
Anaga massif (estimated at 6.5–5.2 Ma43); 5.2 Ma early inception
of La Palma (previous early estimate at 4.0 Ma27–29); 1.9 Ma
inception of La Palma or La Palma Ridge (estimated 1.7–1.65

Ma27–29); and 1.1 Ma inception of El Hierro (estimated 1.12–0.88
Ma29).

Beds older than 17.0 Ma lack geochemical data to better
constrain provenance. However, a short interval of events at
18.4 Ma may reflect the inception of Lanzarote (Fig. 4), which is
supported by ages of 19.0 Ma obtained from the basal complex on
the island44. The inception of Fuerteventura is more difficult to
unravel. Pale-grey beds dated at 20.5–19.6 Ma coincide with
earliest volcanism in the Southern Volcanic Complex, whilst beds
dated between 23.1 and 21.0 Ma coincide with earliest volcanism
in the Northern and Central Volcanic Complexes (Fig. 4).
However, a series of pale-grey beds are dated between 24.7 and
26.5 Ma that may represent the initial inception of Fuerteventura,
as these dates align with the oldest Oligocene ages from the Basal
Complex of the island (Fig. 4)45. Older dates from the Basal
Complex exist but may be affected by metamorphism29,43,44.

The most voluminous pale-grey ‘non-volcanic’ beds notably
occur in the post-7.0 Ma record and are specifically coincident
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estimates of the Basal Complexes29 are show as red stars, the dates of inception of Fueteventura are compounded by dates from metamorphosed suites
that have exaggerated ages
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with: subaerial emergence of Tenerife following inception of Teno
massif at 7.0–7.3 Ma; inception of Anaga massif and subsequent
subaerial growth of it and the Teno massif on Tenerife at
6.0–5.1 Ma; initiation of Roque Nublo subaerial edifice growth on
Gran Canaria at ~4.3 Ma; inception of La Palma between 4.8 and
4.0 Ma; and inception of the La Palma Ridge and El Hierro island
between 2.0 and 1.2 Ma (Fig. 6). As well as demarking the points
of inception of volcanic islands, the deposition of thinner pale-
grey ‘non-volcanic’ turbidites also occur coincident with periods
of subaerial volcanism, including: subaerial emergence of La
Gomera and/or second eruptive phase of Gran Canaria at
~13–11.5 Ma; subaerial growth on La Gomera associated with the
Upper Old Series basalts and Roques del Conde massif on
Tenerife at ~9.0 Ma; growth of the Cañadas edifice on Tenerife

commencing at ~3.0 Ma; and finally most recent volcanic activity
on La Palma and Tenerife (0.8–0.4 Ma) (Fig. 6).

Preconditioning and triggering of seafloor failures. The average
recurrence of these the pale-grey ‘non-volcanic’ turbidites during
the last 7.0 Ma is 0.22 Myr, which is much lower than 0.59Myr
for the period 17.0 to 7.0 Myr, and 0.52 Myr for the period older
than 17.0 Ma. Probability of exceedance plots of the recurrence
time between the pale-grey ‘non-volcanic’ turbidites show a series
of three linear distributions of recurrences < 0.07Myr, between
0.08 and 0.15Ma and between 0.15 to 0.2 Ma, and a coarse tail of
recurrence values between 0.3 and 1.1 Ma (Fig. 7). Exponential
rather than linear distributions on log–log plots suggest the
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influence of a Poissonian, or otherwise random, control, whereas
linearity indicates events of common recurrence that imply a
non-random control (Fig. 7)32,46. These multiple linear dis-
tributions would imply a number of non-random processes
potentially affecting the recurrence of these slides, rather than
simply one cyclical process such as climate and associated sea-
level change (Fig. 7).

We infer these different non-random distributions to reflect
volcanic processes. Small recurrences of <0.07Myr likely
represent events clustered within a particular phase of volcanic
growth on a particular island. The recurrences of the two
distributions between 0.8 and 1.2 Myr may represent the timing
between different phases of growth on the islands, with these two
distributions reflecting recurrence between phases of submarine
and subaerial growth, respectively. The recurrence values within
the coarse tail are potentially a product of having records from
seven different islands; these larger recurrence values may reflect
the different timings of inception on the different islands.

The slides initiating the pale-grey ‘non-volcanic’ turbidites are
shown to be concurrent with inception, ascension, emergence and
subaerial growth of the Canary Islands (Figs. 4 and 6), thus
volcanism and related seismicity likely ultimately trigger failure of
the seafloor. Indeed, eruptions on Stromboli in 2002 caused
subaerial flank collapse and generation of tsunamigenic land-
slides37, while seismicity linked to eruptions on the scale of
caldera-collapse is suggested to be required for large-volume
volcanic flank failure47. We demonstrate here that large volume
seafloor failures occur during the early stages of island
development and prior to protracted periods of subaerial
volcanism and edifice growth on emergent islands. Landsliding
during these two respective periods implicates the ascent of

magma and igneous intrusion as an overarching process
responsible for destabilising the submarine flanks1,3–5.

The Hurst exponent (K) for the complete record of events to
25Ma is K = 0.52 (N = 67); whereby K = 0.5–0.6 indicates no
significant trend-reinforcement. This implies that these landslides
are likely randomly distributed temporally or non-clustered with
respect to preceding or succeeding events32,46, and thus contra-
dicts the results of the probability of exceedence plots. However,
the Hurst exponent is most effective in datasets with N> 100 and
furthermore cannot differentiate the input from numerous
potentially non-random processes (identified above) from seven
different island sources48; the Hurst exponent is thus considered
unreliable in this situation.

Comparison of individual beds in the last 7.0 Myr to a relative
sea-level curve reveals that 73% of slides (N = 37) occurred during
rising or peak relative sea level, which contradicts the Hurst
exponent further by indicating the influence of a further cyclical
process on landslide recurrence (Fig. 7). This is supported
whereby 80% of beds occur at the transition between dark brown
or dark grey lowstand hemipelagites to light brown or white
highstand hemipelagites, which demark the transition towards
rising sea-level49. Subaerial volcanic island flank collapses have
been implicated with environmental conditions at the transition
from lowstand glacial to highstand interglacial2,9,12,14. Here, we
suggest that while environmental conditions linked to sea level
state, in particular sea-level rise, may precondition failure of these
new submarine failures, ultimate triggering of the slides relies
upon magmatic processes or associated seismicity.

Our study has implications for the geodynamics of ocean
island archipelagos and the geohazards concurrent with their
inception, ascension, emergence and subaerial growth. These
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early periods of island growth during a seamount-phase and then
early subaerial emergence are synonymous with rapid growth and
inflation of the submarine flanks by magma ascent and intrusive
igneous activity1,3–5. Coincidence between subaerial flank col-
lapse and volcanism has been inferred in the Canary Islands and
at other volcanic islands, such as Montserrat or
Stromboli2,9,12–14,47,50–55. However, failures during these early
stages of island development in the Canary Islands, or indeed
other island arc systems, have not been identified before. The
implication is that early growth stages of volcanic islands are
capable of instigating prodigious submarine failures equal or
larger in volume than their subaerial counterparts, and thus pose
significant geohazards. While subaerial flank collapses from active

island edifices are potentially tsunamigenic35,36,55,56, there is also
evidence that large landslides in greater water depths can also be
tsunamigenic (e.g., 1946 Aleutians57, 1992 Central America58,
and 1998 Papua New Guinea59 tsunamis). Therefore, although
the wholly submarine failures in our study have an, as yet, un-
quantified tsunamigenic capability, there are precedents for their
potential to generate catastrophic tsunami; a further impetus for us
to characterise their past occurrence, magnitude and precondition-
ing/trigger factors. An additional hazard posed is these large-volume
slides may impact on volcanism by unloading and depressurising
the magma chamber at depth13,60. Such large volume failures
during the early stages of island development may therefore impact
upon the subsequent volcanism and growth of the island.
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Multi-stage or single block failures. Determining whether these
slides have occurred as single large-volume blocks or whether
they are multi-stage and have occurred as closely spaced
sequential series of failures from the same source location is
important. This is because volume is a major determining factor
in the potential size of a resulting tsunami from landslides61.
Multi-stage failures that release the volume of the slide in a
sequential series of smaller failures have reduced tsunamigenic
potential36,53,62. Turbidite event beds can record whether the
source slide was single or multi-stage by whether the deposit
comprises one or multiple fining-upwards sequences called sub-
units53,62. These distal deposits representing failures of the sub-
marine flanks of the Canary Islands and adjacent seafloor pre-
dominantly comprise two or more silt layers in the basal portion
of the deposits (85% of those beds thicker than 10 cm), which are
separated by centimetres to decimetres of turbidite mud (Fig. 8).
This implies that the slides were predominantly multi-stage, thus
despite their large-volume, their tsunamigenic potential is
reduced.

Discussion
Here, we highlight a novel and potentially dangerous geohazard.
Subaerial landslides, especially those in the Canary Islands, are
easily recognised and mapped and have been well-dated often
using a combination of independent methods resolving the ages
of the onshore scar and the offshore deposits, e.g., Orotava slide
on Tenerife2,8,9,12–14. However, the turbidites of the present study
likely represent the only evidence of these large submarine
landslides they represent, as the failure scars are likely infilled by
thick accumulations of hemipelagites and subsequent proximal
landslide deposits. Our study also highlights the minimum ages of
inception for each of the Canary Islands. Dating of island
inception has previously been completed by K-Ar dating of
intrusion igneous bodies within exposed basement complexes
commonly affected by metamorphism25–29,39–41. Our age esti-
mates are consistent with published results (Figs. 4 and 6; Sup-
plementary Table 1), but potentially offer refined estimates
regarding the ages of island inception unaffected by meta-
morphism. Therefore the ages of inception and subsequent vol-
canic growth determined from mass wasting in our study provide
invaluable insight into the geodynamics of ocean islands. We also
show that although often large in volume, many of the slides that
generated these deposits were multi-stage and likely occurred in a
closely-spaced sequence of failures, rather than single block
failures.

Our identification of potential submarine landslide hazards
during early and continued island growth is critical, considering
there are over 30 intraplate oceanic hotspots globally with islands
and seamounts exhibiting volcanism. Determining the scale of
this mass wasting is essential as submarine landslides on the scale
of hundreds of cubic kilometres may be tsunamigenic, and thus
may pose hazards capable of affecting entire ocean basins.
However, also indicating that these landslides occur pre-
dominantly as multi-stage failures implies that their overall mass
is divided among smaller events and thus may yield reduced
tsunamigenesis.

Methods
Turbidite lithostratigraphy and geochemical compositions. The 17Ma to pre-
sent stratigraphy of the Madeira Abyssal Plain was constructed using ODP Sites
950, 951 and 9522,9,38,63. The stratigraphy from 43.0 to 18.0 Ma was constructed
using only ODP Site 950, as it penetrated deeper into the stratigraphic record
(Fig. 4). The first objective was to differentiate the pale-grey non-volcanic turbidites
within the turbidite records, achieved by identification of their pale-grey colour and
low magnetic susceptibility, which distinguishes them from volcaniclastic turbi-
dites. Previous work has resolved the frequency of turbidites and the compositional
differences between the types of turbidite2,30. Thus far, no studies have dated

individual pale-grey non-volcanic turbidites, nor white calciclastic turbidites, nor
the brown turbidites. The geochemical composition of these beds are derived from
bulk geochemistry from ICP-AES and ICP-MS analyses, and comprises both
published and unpublished major, trace and REE data2,30,63. The compositions of
these beds may also reveal new insights into their provenance. The reliability of
major element oxides > 2 wt% present standard deviations 0.7–1.5% of the value,
while values 1–2 wt% have standard deviations 1.5–10% of the value. With regard
to accuracy of wt% calculations for major element oxides in relation to interna-
tional standard reference materials for accuracies are better than 2% of the value
when> 3 wt%, while within 2–10% of the value when 0.1–2 wt%. Reliability of trace
element data have standard deviations better than 2% with values> 60 ppm, while
accuracy is within 0.7–5.0% of the value with values> 60 ppm.

Landslide age-model. This study aims to accurately date the pale grey ‘non-
volcanic’ turbidites to reconstruct the record of landslides from the seafloor sur-
rounding the Canary Islands. The dated record of slides will provide a means to
evaluate their triggering, by comparing to ages of the seamount phases of the
Canary Islands and ages of volcanism on the islands. In the last 1.2 Ma individual
turbidites can be dated with conservative estimated uncertainties of ±10 ka9,49.
This is based upon the relative coccolith species abundances, combined with
absolute dates of first and last coccolith occurrences, magnetostratigraphic markers,
and lithostratigraphy of the hemipelagites sucession2,9,49. In the record between 1.2
and 5.4 Ma absolute dates of first and last coccolith occurrences and magnetos-
tratigraphic markers provide dating accuracies to within 1–5% of the age, thus
uncertainties initially between 12 and 270 ka38. However, up to 5.4 Ma the cycles of
lowstand and highstand are defined by odd and even-number Marine Isotope
Stages (MIS) that have been robustly determined64. Ages of individual turbidites
are ascertained by interpolation of hempelagite sedimentation rates between datum
horizons. For those beds in the last 5.4 Myr, these ages are examinated against the
turbidite position in the hemipelagites lithostratigraphy and the inferred position
within the marine isotope stage history.

Previous work has identified that the lithostratigraphy of the hemipelagite
succession records periods of sea level change, manifested in the MIS record,
because of the influence on bottom waters in the Madeira Abyssal Plain being
sensitive to sea-level state9,25,46,47,49. Thus at high sea-level there is greater calcium
carbonate preservation forming white calcareous oozes younger than 2.5 Ma, or
pale brown to light grey hemipelagites in the older record. Conversely, dark brown
clays were deposited during lowstands younger than 2.5 Ma and dark grey clays in
the older record. The boundaries between these bipartite hemipelagite units are
sharp and distinct, and mark the boundaries between highstand (odd numbered)
and lowstand (even numbered) MIS periods9,49,64.

All the MIS stages are recorded in the hemipelagite sequences at ODP Sites 950,
951 and 952 up to 5.4 Ma (Fig. 5), apart from between 4.0 and 3.9 Ma and 4.75 and
4.2 Ma where the sea-level perturbations were not sufficient to influence bottoms
waters enough to generate differences in hemipelagite lithology. Otherwise, a
robust lithostratigraphy provides a conservative dating accuracy of± 10 ka from
5.4 Ma until present for those turbidites at MIS boundaries (80%). Those beds
located beyond a specific boundary (20%) are constrained by the dates of the MIS
boundaries above and below and an age is extrapolated from its position relative to
the MIS boundaries above and below that yield a dating accuracy less constrained
at± 20 ka. Older than 5.4 Ma the MIS boundaries are less well constrained. In the
record between 5.4 and 6.5 Ma, coccolith biostratigraphy and magnetostratigraphy
still provide dating accuracies of 1% (54–65 ka), while in the record older than
8.00 Ma this increases to accuracies only to within 5% on average38. This means
that for those turbidites in the record older than 17Ma the dating uncertainties
may be as high as 0.8–2.2 Ma.

Turbidite and landslide volumes. The volume of the deposits, and the slides by
association, were derived using the methodology utilised by Hunt et al.2 First, due
to the depth of burial of the older strata these volumes are decompacted to enable
valid comparison between the strata2. The ODP Cores can be linked to a dense
network of 2D seismic reflection lines via a seismic stratigraphy and a number of
key reflectors (Supplementary Fig. 1)65,66. These seismic packages have been
delineated across the Madeira Abyssal Plain providing volumes in situ31,66. To
provide volumes on deposition the seismic unit volumes are also decompacted
following31,66. To calculate turbidite volumes at the point of deposition, and slide
volumes by proxy, the initial turbidite thickness is calculated by decompacting the
entire stratigraphic sequence incrementally. The ratio of the decompacted thickness
of the single turbidite to the decompacted thickness of its seismic unit is taken and
reported as a function of the total decompacted volume of the seismic unit to give
the decompacted volume of the single turbidite. This is repeated for each bed and
repeated at each ODP Site to better understand the uncertainty in the volumes
calculated, which are between 10 and 30%.

Turbidites deposited during the last 550 ka are correlated consistently across the
Madeira Abyssal Plain9,67. Plots of turbidite bed thickness across the entire
Madeira Abyssal Plain incorporating all available piston cores and ODP data show
that the beds thicken into subtle basin lows and taper towards the basin fringes
(Supplementary Fig. 2). Although there are some variations in how these beds
thicken and thin, these differences contribute only 10–30% uncertainty in volume
estimates across the basin. They generally pond consistently within basin lows and
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taper towards basin edges (Supplementary Fig. 2). Thus the relative thicknesses of
the turbidites are generally consistent across the basin, validating the assumption
that the thickness at the ODP Sites reflect their relative thickness across the basin.
Piston core studies of the Madeira Abyssal Plain show than beds are distributed
across the entire depocentre (Supplementary Fig. 2)67. Volume estimates generated
from previous isopachs of individual beds incorporating variable lateral thickness
from over one hundred piston cores produce results within 20% of the estimated
volume from the ODP Cores taking an average thickness from the Sites 950, 951
and 952 and extrapolating across the basin. Seismic surveys implicate the potential
that from 12Ma onwards the basin was consistently and entirely flooded by
turbidity currents, prior to 12 Ma there is reduced potential coverage of the entire
basin by turbidity currents, which increases the uncertainty in volume estimates in
those older beds19.

Flows are capable of eroding material along their pathway, thus the final volume
of the turbidite may be up to 50% larger by accumulating that sediment68. Specific
evidence of erosion beneath turbidity currents from volcanic island flank collapses
indicates this value is less at 10%53. Thus far evidence investigating these large
turbidity currents has shown that their volumes can be increased greater than this,
thus their initial volumes are still on an order of >10 km3, and thus must remain
sourced from submarine landslides, as pyroclastic flows, hypopycnal flows and
delta front collapses cannot yield flows of these large magnitudes9,32,68–70. We also
note that these volumes, whilst including eroded material, are likely the minimum
volume estimate for the event, as we cannot resolve a total volume inclusive of the
volume deposited as a proximal landslide or debris avalanche deposit2,9,59.

Statistics of landslide recurrence. Statistical analysis of the recurrence of the
pale-grey ‘non-volcanic’ beds followed the methods of Hunt et al.2,49 and Clare
et al.32,46. The recurrence times of the beds were analysed on probability of
exceedance plots. Probability of exceedance plots of the recurrence time between
the pale-grey ‘non-volcanic’ turbidites may provide insights into type of process(s)
controlling recurrence (Fig. 6). Exponential distributions on log–log plots suggest
influence of a Poissonian, or otherwise random, control. Linear distributions of
recurrence may indicate events of common recurrence and imply a non-random
control32,46. The Hurst exponent (K) is used to identify clustering and whether
there is trend-reinforcement. K = 0.5–0.6 indicates no significant trend-reinforce-
ment, which implies a likely randomly or non-clustered distribution with respect to
preceding or succeeding events, and suggests a control on the distribution is
unlikely to be a cyclical or rhythmic process32,46.

Single volcaniclastic turbidite beds deposited in the Agadir Basin and Madeira
Abyssal Plain linked to subaerial Canary Island landslides have been found to
comprise multiple fining-upwards sequences known as sub-units53,62. This facies
has been identified as representing the multi-stage failure mechanism of the source
landslide53,62. Therefore where this facies is seen in the pale-grey ‘non-volcanic’
beds, this is evidence of potential multi-stage collapse. Inclusion criteria are that
first, the beds have to be present in all three ODP Sites so that the continuity of
having two or more sub-units can be assessed, and second, the beds are greater
than 10 cm in thickness, as beds thinner than 10 cm pose difficulties in
distinguishing the presence of single or multiple fine silt layers.

Data availability. Geochemical data is available from Jarvis et al. (1998) (10.2973/
odp.proc.sr.157.129.1998)30. Remaining data from this article is available from the
corresponding author upon request.
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