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Highlights

• An overview of exploitation of bioinformatics approaches in computer vi-

sion

• A novel video analysis paradigm, vide-omics, inspired by genomics princi-

ples

• A vide-omics-based pipeline for foreground extraction from freely moving

cameras

• Robust performance largely independent from camera motion and scene

• State-of-the-art results in presence of varied and complex camera motions
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Abstract

With the development of applications associated to ego-vision systems, smart-

phones, and autonomous cars, automated analysis of videos generated by freely

moving cameras has become a major challenge for the computer vision commu-

nity. Current techniques are still not suitable to deal with real-life situations due

to, in particular, wide scene variability and the large range of camera motions.

Whereas most approaches attempt to control those parameters, this paper intro-

duces a novel video analysis paradigm, ‘vide-omics’, inspired by the principles of

genomics where variability is the expected norm. Validation of this new concept

is performed by designing an implementation addressing foreground extraction

from videos captured by freely moving cameras. Evaluation on a set of standard

videos demonstrates both robust performance that is largely independent from

camera motion and scene, and state-of-the-art results in the most challenging

video. Those experiments underline not only the validity of the ‘vide-omics’

paradigm, but also its potential.
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1. Introduction

Introduction of cameras in public places has been associated with the promise

that they would contribute to a safer and more secure society. However, the

amount of generated video is such that that pledge can only be delivered if

CCTV operators are supported by video analysis tools which could identify,

detect or, at least, suggest objects or actions of interest. Although state-of-

the-art video processing algorithms have been the product of extensive work for

decades, current approaches are still not sufficient to deal with the very wide

range of data exhibited by CCTV imagery in real-life situations. Whereas most

methods attempt to control the huge number of parameters affecting a scene, an

alternative strategy would be to design methodologies addressing variability at

their core. This motivates the proposal of a novel video analysis paradigm, ‘vide-

omics’, founded on the principles of genomics where variability is the expected

norm rather than an inconvenience to control.

Analogies can be drawn between genomics data and images in terms of

structure and evolution. Similarly to an image which can be encoded as a

set of pixel strings, genetic material has essentially a linear digital structure

which is represented by strings of millions of characters, called sequences. Those

sequences evolve over time through mutations of single and group of characters.

Likewise, a continuous video can be interpreted as the capture of a single image

evolving through time. Thus, video analysis could be addressed by detecting

and quantifying image mutations over time. A benefit of the proposed paradigm

is that it does not impose any constraint on the way videos are captured. As

a consequence, it should be able to handle videos recorded by freely moving

cameras. The ‘vide-omics’ paradigm aims at not only providing a novel way

of describing video data where variability is the norm, but also to harvest the

mature methodologies used for genomics analysis in order to apply them to

video processing.

The objectives of this paper are, first, to introduce the video analysis paradigm,
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‘vide-omics’, and, second, to provide a proof of concept by applying it to fore-

ground extraction from videos captured by freely moving cameras. After intro-

ducing relevant genomics concepts and exploring their previous exploitation in

computer vision, a review of the state of the art for foreground segmentation

in the context of freely moving cameras is provided. Then, the ‘vide-omics’

paradigm is presented and its application to foreground extraction is described.

Finally, it is evaluated on a set of standard videos recorded by freely moving

cameras and performance is discussed.

2. Related Work

2.1. Relevant Genomics Concepts

Genomics is the field of genetics which combines experimental techniques

and computational approaches called bioinformatics, to sequence, assemble and

analyse the genetic material of organisms, i.e. their genome. In the living

cell, the genome is stored in long double chains of deoxyribonucleic acid (DNA)

which are packed in individual chromosomes, see Figure 1a. Those chains total

from 0.1M in some bacteria to Gigas of building blocks nucleotide pairs -

in high-order organisms. DNA is made of four types of nucleotides: adenine

(A), cytosine (C), guanine (G), and thymine (T). During the process of cell

duplication, two identical copies of DNA are produced. Although that process

is highly accurate, mistakes still occur with an error rate of the order of 10−9

[1]; they are the basis for organism evolution and genetic disorders. Types of

replication errors are varied and include: insertions, substitutions, deletions,

duplications and transpositions, where individual or groups of nucleotides are

respectively added, replaced, deleted, duplicated and moved within or between

DNA chains.

With international efforts such as the Human Genome Project [2], which se-

quenced the 3 billion DNA characters of the human genome, thousands of com-

plete genomes are now available and this number is increasing at an exponential

pace. Their analysis has required not only the applications of conventional data
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a) b)

Figure 1: Analogy between a) cell duplication and b) video capture by a surveillance system.

mining and pattern recognition approaches, but also the development of com-

pletely novel techniques to handle the specificity and sheer size of genomics

data [3, 4]. With the expectation that deciphering the human genome will

result in dramatic improvement of health, the international community has re-

quired from bioinformatics to produce fast, efficient and robust computational

techniques tailored to genome analysis [5, 6]. As a consequence, nowadays bioin-

formatics organisations, such as the European Bioinformatics Institute, deliver

mature and powerful tools which serve millions of scientists [7].

Since genomics relies on DNA sequence comparisons to infer evolutionary

relationship, predict the sequence of a common ancestor and provide function

annotations, numerous bioinformatics tools have been developed to find optimal

character correspondences or alignment - between a set of sequences (multiple

sequence alignment). Most of them, including the currently most popular ones

[8, 9, 10, 11], rely on some derivation of the Needleman-Wunsch algorithm [12],

which was the first effective and automatic method to produce an exact solution

to the global alignment of two sequences.
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2.2. Exploitation of Bioinformatics in Computer Vision

In the last few years, a few research groups have had a common objective:

the exploitation of bioinformatics ideas and approaches for pattern recognition

problems in computer vision. Initially, analogy between DNA sequences and

image sequences was explored to take advantage of DNA sequence comparison

approaches to compare videos. Riedel and al. [13] adapted the Smith-Waterman

local alignment approach from bioinformatics [14] to measure video similarities

for activity recognition. The Video Genome Project at Technion went further

in their analogy by proposing to treat the task of identifying and synchronising

different versions of a video as the alignment of two mutated sequences sharing a

common ancestor. Their approach relies on local alignments of video sequences,

where each frame is represented by a histogram of quantized salient point de-

scriptors. Despite encouraging performance [15], there is no evidence that fur-

ther work was carried on based on that concept. Bicego et al. [16, 17, 18, 19]

from the University of Verona have proposed encoding 2D and then 3D shapes

as a biological sequence so that actual bioinformatics comparison tools could

be used for shape recognition and classification. Their very competitive results

have validated their approach. Finally, Nebel et al. have made a sustained effort

in addressing various tasks of stereo matching as sequence alignment problems:

finding correspondences between scanlines [20], a scanline and a curve in an

unrectified and distorted image [21, 22] and eventually implementations on var-

ious low-cost and low-complexity embedded devices [23]. All those applications

support the idea that bioinformatics research has a lot to offer to the pattern

recognition communities and to computer vision in particular. Here it is pro-

posed to go beyond opportunistic exploitation by offering a new paradigm for

video processing: ‘vide-omics’. In such a framework, a video is seen as the

record of a scene evolving through time so that its analysis can be performed

by detecting and quantifying scene mutations over time.
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2.3. Background/Foreground Segmentation for Freely Moving Cameras

In computer vision, background/foreground (B/F) segmentation refers to

the process of discriminating between moving or foreground objects and static

objects within a video. Common challenges include noisy images, camera jitter,

illumination changes, shadows, physical motion in background, e.g. moving tree

leaves, and zooming [24]. Since further complexity is added when the camera

is not fixed, the computer vision community has focused mainly on stationary

camera set ups for which more than 300 methods have been proposed [25]. Ad-

dressing that segmentation task for freely moving cameras has become more and

more important with the development of applications associated to ego-vision

systems, smart-phones, and autonomous cars. Currently, methodologies are

divided into two main categories: camera-based models that attempt to com-

pensate for camera's motion and approaches that analyse pixel motions. While

camera-based models relies on homography, epipolar geometry or a combination

of both, pixel motion analysis either consider long-term trajectories or per frame

dense pixel motion. When camera motions are limited to pan, tilt and zoom

(PTZ), the standard approach is to create an image mosaic [26, 27]. First, im-

age registration is performed by finding corresponding features using a tracker,

such as KLT [28]. Second, a mosaic is created using projective transformations.

Finally, a Gaussian Mixture Model (GMM) [29] calculates the value of each

pixel of the background panorama. The main limitation is that, when the cam-

era is translated, the one-to-one mapping between a background model and an

incoming frame cannot be computed due to parallax induced by the movement

of the camera's centre. To overcome this, [30] proposed a multi-layer panorama

approach where each layer corresponds to a homography induced by a different

plane. To discover those planes, homographies are iteratively estimated using

RANSAC [31]. As a result, pixels from an incoming frame are rectified on the

panorama based on the homography induced by the plane they lie on. Though

that method can deal with depth variation and parallax, it still suffers from

errors accumulating during panorama construction.

Approaches based on epipolar geometry address more general motions, in-
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cluding camera translations. Initial motion segmentation is conducted using the

fundamental matrix (FM) and the epipolar constraint and, then, it is refined

taking advantage of block based appearance models [32]. A significant con-

straint is dependency on accurate initialisation of the appearance model for the

first frame. Instead of calculating a per frame FM, [33] employed the Temporal

FM [34], where a series of FMs models the epipolar geometry across multiple

frames. They are calculated iteratively to identify short-term trajectories or

tracklets that maximise the number of inlier tracklets. Thus, tracklets whose

points do not lie on the corresponding epipolar lines are associated to fore-

ground. Since all those methods are prone to FM calculation degeneracies [35],

a model selection criterion between homography and FM was proposed to deal

with variety of camera motions and scene geometries [36]. The main drawback

of such approach is that foreground pixels the motion of which appears similar

to the camera's may be assigned to background planes.

An alternative to camera-based models has been to rely on analysis of pixel

motions. Study of long-term trajectories allows estimating a background trajec-

tory subspace where foreground trajectories are considered outliers. [37] calcu-

late iteratively the background trajectory subspace using RANSAC and produce

an initial sparse B/F labelling. It is refined based on colour and location cues

using Markov Random Fields. Although those methods do not assume any

specific camera motion, they still show some limitations. First, they rely upon

complete trajectories calculated over a frame window. Second, they fail when

orthographic projection is not satisfied. Third, they assume background trajec-

tories occupy the majority of the scene. To overcome them, it has been proposed

to group long-term trajectories, even incomplete, based on their affinities using

spectral clustering [38]. Since that leads to sparse labelling, that approach was

extended to create dense regions by propagating spatially and intra-level the

trajectory labels [39]. However, due to their computational cost, those methods

are not suitable for real time applications. To address this, [40] modelled spa-

tial and motion trajectory affinities using a low-dimensional manifold which is

updated online. However, since trajectory-based techniques suffer from the fact
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that long-term trajectories are not always available for all points, it was pro-

posed analysing region trajectories, where motion and area statistics obtained

from region trajectories are used as features for learning pedestrian motion [41].

However, since that procedure relies on a learning phase, its usage is restricted

to detecting moving objects which are present in the training dataset.

As an alternative way for dense pixel analysis, some recent methods rely

on optical flow. [42] used quantised orientations of flow vectors as depth in-

variant motion cues. As a consequence, objects with motions different from

the predefined translational model are considered moving objects. Then, the

number of independently moving objects is estimated automatically using non-

parametric clustering. The main drawback is that, since it accounts only for

camera translation, it cannot deal with camera rotations. Moreover, it cannot

detect moving objects whose flow orientation is similar to the camera's one.

Following the same paradigm, [43] used a combination of optical flow angles

and magnitudes to describe motion directions for every pixel. By estimating

the global background motion direction, B/F likelihood can be calculated for

each moving object. Since results are susceptible to optical flow errors as well

as dynamic background (waving trees, waves etc.), [44] designed a deep learning

framework based on optical flow vectors including an object classifier and con-

ditional random fields. Despite those efforts, all these methods still suffer from

large depth variability and since they focus on short term motion analysis, parts

of a moving object which are initially static in a sequence may not be identified

as foreground if they start moving later.

B/F segmentation for freely moving cameras is still a challenging task due

in particular to scene variability and the range of possible camera motions often

preventing usage of any pre-set camera model or trajectory constraints. As

a consequence, a model-free approach only based on evolution may have the

potential to handle better segmentation of videos captured by freely moving

cameras.
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3. Vide-omics Paradigm

The proposed genomics-inspired paradigm relies on a one-to-one mapping

between nucleotide and pixel values. Thus, a DNA sequence corresponds to an

image scanline, both sharing a digital and linear nature. Note that although

the 2D structure of images is not exploited by the paradigm, it can be taken

advantage of in a post-processing stage. Based on the proposed mapping, a

strong analogy can be drawn between aspects of the living cell and a visual

surveillance system, as illustrated in Figure 1. First, they display similar inter-

nal organisation: the core data of the cell, its genome, is distributed across a

set of chromosomes, whereas images produced by a surveillance system are cap-

tured by a set of cameras. Note that genes belonging to the same chromosome

are more likely to be inherited together. Second, both types of data evolve with

time in a quite gradual manner. Although cell duplication involves a process

attempting to make faithful copies of DNA chains, mutations occur, introducing

many differences between the original and the new sequences. Likewise, succes-

sive images generated by a given camera are usually highly similar despite scene

variation, sensor noise and changes in camera intrinsic, i.e. focal lens and gain,

and extrinsic parameters, i.e. location and rotation. Third, gene duplication is

an important genetic process which is believed to play a major role in evolution

since the absence of genetic pressure on the copies gives them the opportunity

to evolve a novel and/or different function [45] - analysis of the human genome

has revealed that up to 5% is the results of both intra- and inter-chromosomal

recent duplications [46]. In a video surveillance context, corresponding scanlines

captured by cameras with overlapping views can be equated as the sequences of

a gene and its duplicates. Table 1 illustrates how mutations that are common in

genetics can be equated to the main processes generating variations in a video.

The ‘vide-omics’ paradigm aims at exploiting those analogies: by adapting

the now mature approaches which have been developed to analyse genetics data,

videos captured by a surveillance system can be processed in a framework where

variability is the expected norm. Benefits of the proposed paradigm are that
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Table 1: Cell mutation types and possible sources producing equivalent image variations in

visual surveillance.

Cell mutation type Possible sources producing equivalent image variations

substitution
sensor noise, change in camera gain, change in scene

illumination

insertion

change in camera angle and/or position revealing previously

occluded data, more details in common field of view (zoom in),

apparition of a new object in a camera's field of view after motion or zoom out

deletion

change in camera angle and/or position introducing new

occlusions, less detail in common field of view (zoom out),

disappearance of an object from a camera's field of view after motion or zoom in

duplication scene area seen by overlapping cameras

transposition motion of foreground object

it does not impose any constraint on the way videos are captured and it does

not rely on any motion model. Although ‘vide-omics’ would allow processing

videos produced by a whole visual surveillance system where all cameras are

connected through a network of pairwise overlapping fields of view, it is relevant

to many single camera scenarios: Table 2 lists analogies between computer vision

and bioinformatics tasks, and describes the main components of the associated

bioinformatics pipelines.

Note that although exploitation of genomics-based solutions for video anal-

ysis is not novel, as section 2.2 shows, it is the first time that a video processing

paradigm has been proposed based on those ideas. For example, although the

Video Genome Project offers an elegant genomics-based approach for video com-

parison [15], it is dedicated to that application and could not be extended to

other related tasks such as single video analysis.

In preliminary work, the relevance of this new paradigm was explored in

the relatively simple and constrained application of dense pixel matching [20,

21]. Although promising results were produced, those studies also revealed

that the most efficient approaches take advantage of scenario constraints. As a

consequence, to highlight the value of the proposed general paradigm, a quite

challenging task has been selected: foreground extraction from data captured
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Table 2: Analogies between computer vision and bioinformatics tasks. For all of them, the

main associated bioinformatics tools and techniques are listed.

Computer vision tasks Analogous bioinformatics tasks Associated bioinformatics pipelines

Dense pixel matching

Identify one-to-one correspondences

between sequences to assess if they are

evolutionarily related

- global sequence alignment

- evaluation of alignment significance

Content-based

image retrieval

Identification of common functional or

structural features between

evolutionarily unrelated sequences

- local sequence alignment

- evaluation of alignment significance

Foreground

extraction

Explore genetic differences between

two genomes to identify organism-specific

genes and rearrangements

- global sequence alignment

- identification of insertions and deletions (indels)

- indel classification as either rearrangement

or organism specific

Background reconstruction Infer most recent common ancestor of a family

- sequence multiple alignment

- creation of a phylogenetic tree

- common ancestor reconstruction

Object

recognition

Identify biologically meaningful patterns

(motifs) to predict a gene/proteins function

- multiple alignment of motif instances

- creation of motif descriptor

- sequence scanning

- evaluation of hits significance

by a freely moving camera.

4. Application to Background/Foreground Segmentation for Freely

Moving Cameras

4.1. Vide-omics based Segmentation Pipeline

The proposed pipeline for background/foreground extraction from videos

captured by freely moving cameras (Figure 2) is based on the vide-omics paradigm:

a continuous image sequence can be interpreted as the capture of a single image

evolving through time through mutations revealing ‘a scene’. Although many

of the mutations do not affect the nature of the scene - or background -, e.g.

sensor noise, change in camera gain, scene illumination and field of view, others

reveal the presence of transient objects - or foreground. Thus, effective detec-

tion and analysis of those mutations should allow discriminating between the

scene's background and foreground objects.

Since, in bioinformatics, mutation detection and analysis relies on the align-

ment of genetic sequences using techniques such as the Needleman-Wunsch al-
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of each

frame

For each

frame

Figure 2: Description of segmentation pipeline.

gorithm (NW) [12], it is proposed to treat a video, as a set of evolving scanlines

here the 2-dimensional nature of images is not exploited. As a consequence, the

first step of the pipeline is to establish correspondences between the scanlines

of each pair of frames. This step is performed by finding the transformation

necessary to align two frames as estimated by the positions of matching salient

points. In addition to establishing scanline correspondences in the scene, this

procedure allows estimating the amount of overlap between scanline pairs.

Then, the vide-omics module processes each scanline independently to iden-

tify pixels associated to transient objects. By concatenating those outputs,

foreground is produced for each frame. Finally, since this vide-omics based ap-

proach does not take advantage of vertical consistency within a frame, this is

addressed during the post-processing stage.

4.2. Proposed Methodology

Once scanline correspondence has been established for every frame pair, each

scanline of each frame is processed independently to find pixel correspondences

among overlapping scanlines and detect outliers which could reveal the presence

of foreground objects. First, each scanline is pairwise aligned against each of its

corresponding scanlines in all the other frames, see Section 5.2.1. Those pairwise

alignments identify areas where pixels cannot find a match without altering the

pixel sequence order. Second, those areas are labelled as either foreground

objects or occluded areas by analysing their behaviour across all other scanline

alignments. Third, vertical consistency between successive scanlines is exploited

by a post-processing step connecting and merging consistent foreground patches.

Next, the methodology is explained in detail.
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4.2.1. Pairwise line alignment

In order to find optimal pixel correspondences between pairs of scanlines, it is

proposed to use an adaptation of the Needleman-Wunsch algorithm where scan-

line variations are treated as standard genetic mutations, i.e. pixel insertions,

substitutions and deletions. An implementation has already been introduced to

address stereo matching between two rectified images [20]. It follows closely the

NW algorithm which relies on a dynamic programming approach and a scoring

function penalising possible mutations. The optimal global alignment of two

scanlines is generated in two stages. First, optimal alignments of subsequences

starting from the beginnings of the scanlines are calculated and recorded in a

table, where each cell contains both the highest score which can be reached by

extending a previous partial alignment by one pixel and a link to that previous

alignment. The scoring function evaluates if the optimal new alignment should

be created by either aligning the next pixel of the first scanline with the next

pixel of the second scanline (‘match’), or by shifting the unaligned pixels of one

of the scanlines by one pixel to model either a pixel insertion or deletion (‘gap’).

The scoring function penalises poor quality pixel ‘matches’ with a score based

on pixel value difference, whereas the introduction of a ‘gap’ leads to a fixed

penalty. Second, a ‘backtracking’ phase takes place: the optimal global align-

ment between the two scanlines is extracted from the table using the optimal

alignments of subsequences it has recorded. The NW algorithm is frequently

refined by integrating the concept of extended gap (or ‘egap’) in order to take

into account that, in genetics, insertion or deletion of a sequence of n nucleotides

is much more frequent that n insertions or deletions of a single nucleotide. As

a consequence, adding a ‘gap’ after an existing ‘gap’ is less penalised, which en-

courages ‘gaps’ to cluster. Since in computer vision, absence of correspondences

between pixels captured from overlapping areas usually comes from appearance,

disappearance or motion of pixel regions associated to specific objects, the ex-

tended gap refinement is also implemented in the scanline alignment algorithm.

Further details about this scanline alignment algorithm can be found in [20].

14



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

4.2.2. Foreground identification and extraction

Pairwise alignments of corresponding scanlines, as shown in Figure 3 a),

highlight pixel regions that cannot be matched in the other scanline. Those re-

gions correspond to moving objects, occluded and/or non-overlapping areas.

Foreground identification requires discriminating between these possibilities.

The NW algorithm only accounts for three types of mutations, i.e. insertions,

substitutions and deletions. Although it is appropriate to represent occluded

and non-overlapping areas, which fits well the genetic concept of ‘deletion’, it

has difficulties dealing with the motion of a set of pixels or foreground object

between scanlines. As a consequence, it can only represent such pixel motion as

both a deletion from one line and an insertion in the other line without recording

that the deleted and inserted set of pixels would match each other. Actually,

such type of mutation corresponds in genetics to a transposition or a ‘jumping

gene’ discovery by Barbara McClintock [47] which led to her award of a Nobel

Prize in 1983. Since the NW algorithm cannot recognise transpositions, the

produced alignments are frequently post-processed to identify ‘jumping genes’

[48]. Following a similar approach, jumping pixel regions in one scanline are

identified by searching for matching regions in the other scanline.

The global alignment performed by the NW algorithm highlights regions of

a scanline, shown in brown in Figure 3, which cannot be matched with a region

of the other scanline without altering the pixel sequence. As a consequence,

those unmatched regions lead to the creation of corresponding gap regions.

Those unmatched regions can be classified into 3 distinct categories: i) occluded

and non-overlapping background areas, ii) foreground objects visible in both

scanlines - object motion has some horizontal component1 and the object is

visible in the field of view of the other frame - and iii) foreground objects visible

in only one of the scanlines. On one hand, regions of category ii) can easily

1Although one cannot assume that foreground objects move horizontally, one can expect

that, since objects have usually some vertical homogeneity, matching line fragments can be

found between corresponding scanlines for a few frames.
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Scanline s

Scanline i

Scanline j

Pairwise_align (s, i)
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Fa
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Fa Foreground region

Unlabelled region, X

Best_match (X, j) & (XX, j)

Extended unlabelled region, XX

Case 1

a) Outcome of a)

Background region

b)

Unlabelled region

Outcome of b)

Scanline s

Scanline i

Scanline j

Pairwise_align (s, i)
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Fb

Fb
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Best_match (X, i)

Unlabelled region, X Fb

Best_match (X, j) & (XX, j)

FbExtended unlabelled region, XX

Fb

Case 2

a)

Legend Gaps

Best region match

Foreground region

Outcome of a)

Unlabelled region

Outcome of b)

Fb

b)

Best extended region match

Figure 3: Illustration of the foreground identification process which relies on a two-stage

algorithm: Case 1 depicts a scenario where a foreground object, Fa, is visible in all scanlines

which are analysed, occluding various background regions; Case 2 shows a situation where a

foreground object, Fb, is only visible in one scanline.

be identified since they have matching regions on both scanlines where both

regions are associated to gap regions in the other scanline, e.g. Fa in Figure 3,

Case 1 a). Therefore, the matching of an unmatched region of a given scanline

with an unmatched region of another scanline suggests that both regions belong

to the same moving object. On the other hand, regions of categories i) and

iii) share similar properties: they are only visible in one of the two scanlines.

As a consequence, such region may not find any good match in the other line,

shown in red in Figure 3, Case 1 a) and Case 2 a), and its best match is unlikely

to correspond to an unmatched region. Therefore, additional information, i.e.

other corresponding scanlines, is required to discriminate between those two

categories. On one hand, since occluded and non-overlapping areas belong to
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the background, their surrounding pixels are consistent across frames. On the

other hand, a moving object’s neighbourhood tends to vary. It is proposed

to exploit that observation in the second part of the foreground identification

algorithm. This is performed by comparing the location of the best match of

unlabelled regions on other scanlines with the location of the best match of the

same unlabelled regions which have been extended to neighbouring pixels. If

both locations correspond, one concludes the unlabelled regions belong to the

background, see Figure 3, Case 1 b). If they do not, the unlabelled regions are

considered to be foreground regions, see Figure 3, Case 2 b).

Since pixel region matching is a noisy process and the absence of a region in

a scanline leads to an arbitrary best match, decision regarding the belonging of

a region to a foreground object cannot be made from a single comparison. As a

consequence, each unmatched region is associated to a likelihood of belonging

to the foreground. That likelihood is calculated as the number of times the

comparison of a scanline of interest to each of its corresponding scanlines led to

that region to be labelled as foreground divided by the number of comparisons.

The whole algorithm for identifying foreground regions from a given scanline

is described by the pseudocode in Algorithm 1. Best matching regions are

identified using a sliding window, where, the best match is defined as the pixel

block with the lowest sum of square pixel differences (Best match function).

The extension of an unmatched region of size l is performed by concatenation

of its preceding l/2 and following l/2 pixels from the scanline it belongs to.
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Algorithm 1: Foreground likelihood quantification for pixels of a given

scanline
Data: frame sequence

Result: foreground likelihood for pixels of a given scanline

s: scanline of interest in the frame of index f;

i, j: scanlines;

N: number of frames;

c, t, d: comparison counters initialised to 0;

L(x): foreground likelihood of a pixel region x;

q, r: frame indices, q 6= f and (r 6= f & r 6= q) ;

for q = 1 to N do

i = Corresponding scanline(s, q); //scanline corresponding to s in

frame q, if null go to q+1

c = c+ 1;

p = Pairwise align(s,i); //pairwise alignment between scanlines s and

i

X = Unmatched regions(s,p); //regions of s corresponding to gaps

according to alignment p

for all x ∈ X do

y = Best match(x, i);

if y ∈ Unmatched regions(s, p) then

L(x) = L(x) + 1;

else

xx = extended(x); //region x is extended to the left and the

right by neighbouring pixels

t, d = 0;

for r = 1 to N do

d = d+ 1;

j = Corresponding scanline(s, r); //scanline

corresponding to s in frame r, if null go to r+1

z = Best match(x, j);

zz = Best match(xx, j);

if z is not a subset of zz then

t = t+ 1;

end

end

if d 6= 0 then

L(x) = t/d;

end

end

end

for all x regions do

L(x) = L(x)/c;

end

end
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4.2.3. Post-processing

Following the processing of all the scanlines of a given frame, a foreground

likelihood map is generated. After scaling, it is represented as a greyscale image

on which mathematical morphology erosion of size 1 followed by dilation of

size 1 - is applied to reduce both background noise and pixels introduced by

the algorithm resolution, i.e. 1 pixel resolution. Next, initial foreground seg-

mentation is obtained by, first, extracting all pixels with foreground likelihood

above 50% and, then, removing remaining small regions. Finally, in order to

take advantage of consistency between adjacent scanlines and connect individ-

ual foreground components, it is proposed to use existing foreground patches

as seeds to grow consistent foreground regions. The GrowCut algorithm was

selected because of its capability to grow regions using sparse foreground and

background labelling [49]. Since the proposed method is able to provide highly

confident foreground and background regions, GrowCut was employed for fur-

ther segmentation refinement where regions of initially low confidence can be

recovered thank to their high confident surroundings.

5. Experimental results

In this section, experiments are conducted to illustrate the strengths of the

vide-omics paradigm. First, the data sets and evaluation framework used to

analyse the performance of the proposed algorithm are described. Second, its

implementation is detailed. Third, results are presented and discussed.

5.1. Data sets and evaluation framework

Whereas there is a plethora of benchmark datasets from static cameras, there

are very few from moving cameras. Moreover, they are usually limited to the

rotation motions performed by PTZ cameras. Berkeley Motion Segmentation

Dataset (BMS-26) offers a set of 26 videos exhibiting a variety of camera motions

and scene geometry complexities which has been widely used for evaluating

foreground extraction algorithms [38]. Among them, thirteen representative
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videos were selected for validation and comparative analysis of the proposed

vide-omics approach: people1-2, cars1-10 and marple10. The description of the

selected videos can be found in Table 3. On one hand, people1-2 and cars1-

10 videos are typical of the output produced by standard PTZ cameras: it

involves a small number of objects performing continuous motions in a single

scene of low complexity the background of which is unveiled in its entirety. The

camera motion consists mainly of rotations with small translations which do not

lead to any parallax effect. On the other hand, the marple10 video is a much

more challenging video due to additional camera's translation, inducing a large

parallax effect, and the complex geometry of the scenes. As a consequence, it

has proved particularly challenging for algorithms relying on particular camera

and/or scene models and should allow highlighting the value of the model-free

vide-omics pipeline. The marple10 video includes three moving and interactive

objects, i.e. ‘Miss Marple’, a man and a cart, where ‘Miss Marple’ and the man

display continuous motions.

Those videos are provided with ground-truth frames with segmented fore-

ground as indicated in Table 3. The ground truth segmentations provided with

Marple10 was originally designed for a segmentation task involving a wall and

the three moving objects. As a consequence, they are suitable for motion seg-

mentation if the wall is removed from the relevant ground-truth frames, i.e. 1,

10, 20, 30, 40, 50, 100, 150, 200, 250 and 300. Unfortunately, many authors did

not perform that adjustment, which makes performance comparison with their

approaches difficult.

Performance of the proposed vide-omics pipeline is evaluated against state-

of-the art moving object detection methods representing both camera-based

models and approaches relying on pixel motion analysis. Specifically, the pro-

posed method is compared with Probabilistic Causal Model (PCM) [43], a deep

learning based framework learning motion patterns (MP-Net + Objectness +

CRF using LDOF, referred as MP-Net+ in this paper) [44], Point Trajectories

to Regions (PTR) [39], Fields of Oriented Flow (FOF) [42] and an implemen-

tation of a homography-based method (HMF). HMF creates a panorama of the
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Table 3: Description of the selected videos.

Video N. of frames Frame size Ground-truth frames

cars1 19 480x640 1, 10, 19

cars2 30 480x640 1, 10, 20, 30

cars3 19 480x640 1, 10, 19

cars4 54 480x640 1, 10, 20, 30, 40, 54

cars5 36 480x640 1, 10, 20, 36

cars6 30 480x640 1, 10, 20, 30

cars7 24 480x640 1, 10, 24

cars8 24 480x640 1, 10, 24

cars9 60 480x640 1, 10, 20, 30, 40, 50, 60

cars10 30 480x640 1, 10, 20, 30

people1 40 480x640 1, 10, 20, 30, 40

people2 30 480x640 1, 10, 20, 30

marple10 460 350x450
1, 10, 20, 30, 40, 50, 100, 150,

200, 250, 300, 350, 400, 450, 460

scene using key frames [50]: since, every pixel in the panorama is modelled

with a median absolute deviation, moving object detection can be achieved by,

first, registering a frame of interest to the panorama and then applying back-

ground subtraction. Table 4 summarises assumptions and limitations associated

to those methods.

Since executables are available for HMF, MP-Net+, PTR and PCM, detailed

comparisons could be performed with the proposed method. On the other hand,

comparisons with performance of FOF have to rely on published results and,

as a consequence, could not be obtained for moving object extraction from the

marple10 sequence.

Background/foreground segmentation methods are evaluated according to

their ability to distinguish if a pixel belongs to foreground or background class,

which is equivalent to a binary classification task. This is achieved through
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Table 4: Summary of assumptions and limitations of the proposed method and its competitors.

Method Assumptions/Limitations

Proposed Scanline-based

HMF Cannot handle camera translation

PTR -

FOF Cannot handle camera rotation

PCM -

MP-Net+ Rely on a pre-trained object classifier

comparison with the ground truth segmentation maps which are associated to

the videos of interest. In the context of foreground extraction, true positives

(TP) correspond to the number of foreground pixels that are correctly classified

as foreground. False positives (FP) are the number of foreground pixels that

are classified as background. Conversely, false negatives (FN) are the number

of background pixel classified as foreground, whereas true negatives (TN) are

the number of background pixels that are classified as background.

Common metrics that are employed for evaluating performance of foreground

extraction system are average precision, average recall and the average F1 score.

Recall measures the ability of a system to classify correctly foreground pixels

penalising the score if background pixels are misclassified as foreground.

Recall =
TP

TP + FN

Precision measures the ability of a system to classify correctly foreground pixels

penalising the score if foreground pixels misclassified as background pixels.

Precision =
TP

TP + FP

F1 score combines in a single measure performance in terms of precision and

recall. It is often used for comparing overall performance of systems.

F1 =
2TP

2TP + FP + FN
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5.2. Implementation details

5.2.1. Frame alignment

Correspondences between the scanlines of two frames are established by,

first, matching the salient points identified by KAZE features [51]. That feature

detector was selected because it outperforms standard methods such as SIFT

[52] and SURF [53] producing more inliers and a smaller percentage of outliers.

This procedure is further refined using Lowe's ratio test with a ratio of 0.7 to

only retrieve a set of good quality matches [54]. Second, those matches allow

computing a projective transformation between the two frames using RANSAC.

Since the proposed algorithm is line based, a line correspondence shift of more

than 1 pixel could be critical. As a consequence, the re-projection process

is performed iteratively until the maximum number of inliers achieving a re-

projection error lower than 1.414, i.e. a maximum error of 1 pixel in both the x

and y directions, is identified. Finally, as results produced by the NW algorithm

are less noisy when sequences broadly overlap, matching scanlines are further

processed so that only overlapping segments remain, see Figure 4. Here, the

overlapping region between two images is defined by the area covered by the

matching salient points. Moreover, since alignment significance is affected by

sequence size, only scanline pairs the length of which is above 50% of their

original size will be pairwise aligned.

Figure 4: An example of frame alignment and non-overlapping area exclusion. Matching

keypoints from frames (a) and (b) define the overlapping segments (c) and (d).
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5.2.2. Pairwise line alignment

To retrieve pixel correspondences between two scanlines an adaptation of

NW algorithm is employed [20], where the distance between two pixels d(i,j)

- is expressed by the Euclidean distance between their RGB values. That al-

gorithm requires three parameters: gap, egap and match. While the gap and

match parameters control the balance between introducing a gap and accept-

ing a mismatch, the egap parameter promotes the clustering of gaps. While

in bioinformatics the selection of those parameters and determination of the

optimal substitution matrix have been an active area of research [55, 56], here

the parameter values have been selected experimentally and set to gap = 30,

egap = 5 and match = 18 − d(i, j). The selected parameter configuration en-

sures that gap introduction is only activated when there is substantial mismatch

between two pixel values. In practice, a gap is introduced into the alignment

when the distance between two pixels is greater than 48. As a consequence, if

the distance between two pixels is greater than 23, an additional gap is inserted.
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Figure 5: Exhaustive performance evaluation conducted on the parameter space (match x gap

x egap). Colours show F1 scores: dark blue shades show low to average scores, whereas light

blue to brown shades show high scores, i.e. > 0.85. Performance of the selected parameters

is indicated by the black arrow.

To show that performance is relatively consistent across a wide range of

parameter values, exhaustive evaluation was conducted on the parameter space:
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F1 scores were calculated for the people1 video by processing a single line across

the video (scanline 240 on the first frame). Focusing on high F1 scores, i.e.

above 0.85 which are represented by light blue to brown colours, Figure 5 reveals

that they are produced by quite a large volume of the parameter space. As a

consequence, parameter setting should aim at belonging to that subspace where

performance varies quite smoothly. Further analysis also indicates that the egap

parameter has stronger impact on the results than the gap parameter since it

has to be selected from a narrower range. This suggests that alignments mainly

rely on consecutive gaps the score of which are calculated by gap+(n−1)∗egap,
where n is the number of consecutive gaps. Moreover, the figure shows that, in

the high F1 score region, higher match leads to lower egap: the acceptance of a

broader range of mismatches must be compensated by easier creation of gaps.

Figure 6: Illustration of the definition of the three pixels sets used by the GrowCut algorithm.

The first column displays the initial foreground set (f), the second and third column show

the masks m1 and m2, respectively. The forth column presents the three associated sets:

foreground set (f), unlabelled set (u) and background set (b) are coloured in blue, in green

and yellow, respectively. The last column shows the final foreground after growth.

5.2.3. Foreground identification

Since noisy alignments may lead to generation of a large number of un-

matched regions, only continuous unmatched regions of a minimum size are

considered as candidates for foreground estimation. Here, a length correspond-

ing to 1% of the width of video frames is chosen. As a consequence, foreground

objects of a smaller width can only be recovered during the post-processing step

of this methodology. Note that during the foreground estimation process, two

regions are established as overlapping if at least 75% of their pixels overlap.
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5.2.4. Post-processing

Following the extraction of pixels the foreground likelihood of which is above

50%, unlikely small foreground regions are removed. First, since inaccurate

scanline correspondence may lead to isolated foreground lines, those are elimi-

nated if they are only 1-pixel thick. Second, small regions the area of which is

lower than the square of 1% of the width of the video frames are also removed.

Finally, the resulting foreground objects, f , are used as seeds by the GrowCut

algorithm so that the final foreground consists of only a few non-connected fore-

ground components [49]. That approach requires defining three sets containing

either background (b), foreground (f) or unlabelled (u) pixels, see Figure 6.

To define the b and u sets, two masks, m1 and m2, are created by a dilation

of the initial foreground by 1% and 2% respectively of the width of the video

frames using a disk-shaped structuring element. Whereas the background set

is characterised by the pixels which are the farthest away from f in its local

neighbourhood, i.e. b = m2 − m1, the unlabelled set is defined by the pixels

which belong to its most local neighbourhood m1 while not to being part of f ,

i.e. u = m1 − f . Since usage of the GrowCut algorithm as a post-processing

step is not standard, performance of the proposed pipeline is provided with and

without GrowCut post-processing, i.e. ’Proposed w/o GC’.

5.3. Performance evaluation results

Quantitative performance is provided in Table 5 to evaluate the proposed

vide-omics pipeline against other state-of-the-art methods which have previ-

ously used the people1-2, cars1-10 and marple10 videos. Sequences have been

divided in two groups a) sequences with limited camera motion (people1-2,

cars1-10) and b) a sequence with complex camera motion (marple10). Regard-

2Wall in Marple10 is counted as a foreground object.
3This method was evaluated without the last ground truth frame in every sequence since

the method cannot process the last frame of a video.

26



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 5: Weighted average of F1 scores calculated for each method and group.

Sequences with limited

camera motion

(396 frames in total)

Sequence with complex

camera motion

(460 frames)

Weighted

Mean

Inter-sequence

Std.
Mean Mean2

Intra-frame

Std.

Proposed 0.567 0.132 0.576 - 0.155

Proposed w/o GC 0.505 0.164 0.467 - 0.153

HMF 0.430 0.171 0.303 - 0.196

PTR 0.788 0.167 0.264 - 0.261

PCM3 0.776 0.155 0.327 - 0.170

MP-Net+3 0.671 0.233 0.404 - 0.296

FOF 0.651 0.144 - 0.580 -

ing foreground extraction from sequences with limited camera motion, results4

obtained by the proposed method prove to be promising (µProp. = 0.567) and

outperform HMF (µHMF = 0.430). Though PTR, PCM and MP-Net+ dis-

play better performance on those sequences (µPTR = 0.788, µPCM = 0.776,

µMP−Net+ = 0.671), when dealing with the marple10 video they perform quite

poorly (µPTR = 0.264, µPCM = 0.327, µMP−Net+ = 0.404). This is largely

explained by the depth variation present in the scene: the closeness of the wall

to the camera generates a strong parallax when the camera translates, resulting

into optical flow vectors and long-term trajectories which are very different from

those belonging to other background objects. While HMF achieves reasonable

results on the first set of sequences, it also performs poorly on the marple10

video (µHMF = 0.303). This reflects a main limitation of homography which

cannot hold when camera translates. Particularly, since the wall occludes an-

4The weighted mean and standard deviation of each group are calculated according to the

number of frames in each sequence.
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other scene which unveils as the camera translates, usage of a single global

transformation, i.e. homography, does not allow stitching together frames from

different scenes although they share a common plane.
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Figure 7: Foreground extraction evaluation for each frame of the Marple10 video. Note that

the type of camera motion is specified for each frame.

Processing of the more challenging video, i.e. marple10, demonstrates the

value of the vide-omics pipeline which shows state-of-the-art performance. Fig-

ure 7, where F1 score is provided for each ground truth frame and camera's

motions are annotated, highlights the strength of the new pipeline. Indeed, per-

formance is largely independent from camera motions. On the other hand, in

the case of the homographic model-based methodology, HMF, trajectory-based

PTR and, to a lesser extent, the optical flow based methods PCM and MP-Net+,

there is some correlation between the type of camera motion and performance:

while those approaches perform well when the camera rotates or is static, they

fail to extract adequate foreground when there is camera translation.

Robustness of the proposed method is evaluated, firstly, for each group in-

dependently and, secondly, for the two groups combined. For the first group

of sequences, the proposed method is the most consistent as shown by a low
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inter-sequence F1 standard deviation (σProp. = 0.132) compared to (σFOF =

0.144), (σPCM = 0.155), (σPTR = 0.167), (σHMF = 0.171) and (σMP−Net+ =

0.233). For the more complex sequence, the intra-frame standard deviation

was calculated to quantify the internal variation of F1 scores. The proposed

method (σProp. = 0.155) is also more consistent than any other, i.e. PCM

(σPCM = 0.170), HMF (σHMF = 0.196), PTR (σPTR = 0.261) and MP-Net+

(σMP−Net+ = 0.296). These results reflect the trend of each approach as il-

lustrated in Figure 7. The proposed method shows a more stable behaviour

than other approaches allowing it to deal satisfactorily with a variety of camera

motions and scenes. This observation is further supported in the last graph

of Figure 8, where the weighted mean and standard deviation among all se-

quences are reported. Overall, the proposed method proves to be more con-

sistent across all sequences as demonstrated by inter-sequence standard devi-

ations: (σProp. = 0.142), (σPCM = 0.165), (σHMF = 0.181), (σPTR = 0.210)

and (σMP−Net+ = 0.296). Although the inclusion of GrowCut post-processing

significantly impacts F1 performance (up to +23%), it does not affect the main

conclusions: the vide-omics pipeline outperforms other approaches in terms of

both F1 score and consistency when processing the more complex sequence.

Examples of segmentation results using the vide-omics pipeline are presented

in Figure 9 where extracted foregrounds are compared to initial frames, ground

truths and the foreground heat maps generated before post-processing. In those

heat maps, foreground likelihood is illustrated using the jet colormap where

every pixel value is mapped to a colour using a gradient going from blue (0), to

cyan, yellow and red (1).

As expected, this set of experiments has shown that, in constrained scenar-

ios where camera motion is limited, usage of the proposed general paradigm is

outperformed by state-of-the-art methods which take advantage of those con-

straints. However, in the more complex scenario represented by the Marple10

sequence, those methods perform quite poorly, whereas the vide-omics approach

achieves significantly better results. Performance in this specific context and the

fact that results seem to be much less video-dependent than the other methods
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Figure 8: F1 scores calculated for all sequences and methods.

provide some evidence of the potential of the vide-omics paradigm.

5.4. Computational complexity

The complexity of the implemented pipeline is dominated by pairwise se-

quence alignments. This process is performed by an adaptation of the Needleman-

Wunsch algorithm whose complexity is O(nm) in both time and memory, where

n and m are the lengths of the two sequences. Since the extraction of the fore-

ground associated to a given frame requires the alignment of each scanline of

that frame with the corresponding scanlines of a set of k neighbouring frames of

identical size (h∗w), the time complexity is O(k.hw2), i.e. O(hw2), whereas the

space complexity is O(w2) since each scanline is processed independently. As

a consequence, the current implementation of the pipeline requires a process-

ing time per frame which is far from being real-time, typically a few minutes

using a standard PC with an 8-core processor. Fortunately, the exponential

growth of genomics data has conducted the bioinformatics community to design
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Figure 9: Examples of foreground extraction using the proposed method for the video

Marple10. Frames 50, 300, 400 and 460 are shown in the first column, whereas their associated

foreground (ground truth) is presented in the second column. Columns 3 and 4 exhibit the

foreground heat map generated after foreground extraction and the detected foreground after

post-processing.

pairwise sequence alignment techniques with lower computational complexity.

First, a modification of the NW algorithm was offered so that optimal align-

ment could be produced in linear space, while time complexity stayed quadratic

[57]. Addressing computational time, a branch and bound approach has been

proposed so that optimal alignment could be produced with a time complexity

varying between O(n+m) and O(nm) depending on the similarity between the

two sequences, achieving a time gain of 70%-90% for high similarity sequences

(>80%) [58]. Such implementation would be particularly suitable for the pro-

posed pipeline since neighbouring frames are highly similar in a continuous

video. Alternatively, many methods based on heuristics have been suggested to
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produce alignments in linear time and space, allowing, more than a decade ago,

the multiple alignment of 12 entire genomes (including human) in 75 minutes

on a PC [59]. Finally, it has been shown that the NW algorithm is particularly

suitable for implementation on hardware platforms (including low cost) [23]. As

a consequence, the vide-omics pipeline that relies on scanline alignment could

be made real-time by using appropriate optimisations, parallel and/or hardware

architectures.

6. Conclusion

Based on the principles of genomics, a novel video analysis paradigm, ‘vide-

omics’, has been proposed. Evaluation of its first implementation has provided

some evidence of not only its validity, but also its potential. Indeed, using

genomics analogies, a background/foreground segmentation pipeline for freely

moving cameras has been designed with variability at their core so that per-

formance is constrained by neither camera motions, specific foreground object

behaviours nor scene structures. Experimental results showed state-of-the-art

performance and robustness when dealing with a challenging video including

a variety of camera motions and scene, while remaining competitive in scenes

which can be modelled by a specific camera motion model.

One should recognise that initial implementation has limitations which should

be overcome to build a system suitable for most real-world applications. First,

since scanlines are processed independently from their neighbours, current seg-

mentation does not benefit from vertical spatial coherence. This could be ad-

dressed through either an additional post-processing stage which would ensure

vertical spatial coherence, combining scanline alignments with ‘scancolumn’

alignments or a 2D version of the Needleman-Wunsch algorithm which would

take into account a pixel's vertical neighbourhood during optimisation of scan-

line alignment. Second, as discussed, current implementation requires process-

ing times which are far from being real-time. Since usage of heurestics-based

alignments has proved particularly efficient in optimising genomics algorithms
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without altering significantly performance, there is every confidence that such

approach would address the high computational complexity of the proposed

pipeline.
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