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Abstract 

Neisseria meningitidis, is a Gram-negative diplococcus responsible for meningitis 

and septicaemia in adults and children. Serogroup B (MenB) strains account for 

most cases of invasive meningococcal disease (IMD) in Europe. According to the 

Meningitis Research Foundation (MRF), in the UK each year, approximately 1,800 

MenB cases occur, of which about 10% lead to death. Following great challenges 

to develop an effective vaccine against MenB strains, two vaccines; Bexsero and 

Trumenba have been developed. These two vaccines vary in composition 

however, share a common component, factor H binding protein (fHbp), a well-

studied lipoprotein that binds human factor H (hFH). Despite encouraging results, 

some concerns remain regarding their efficacy to target diverse strains. 

The meningococcus expresses a number of virulence factors such as capsule, pili, 

lipooligosacharides (LOS), and lipoproteins. Bacterial lipoproteins play key roles in 

maintaining cell wall integrity, promoting adhesion, signal transduction and 

facilitating nutrient uptake. Importantly lipoproteins provoke host immune 

responses by the interaction of their lipids with Toll-like receptor 2 and many elicit 

potent antibody responses. Unsurprisingly, lipoproteins are emerging as promising 

vaccines. Bacterial lipoproteins are anchored to the inner or outer membrane and 

are characterised by an N-terminal signal peptide comprising 3 domains ending in 

a lipobox. The signal peptide signals for transportation from the cytoplasm across 

the inner membrane to the periplasm where the protein is lipidated and the signal 

peptide is cleaved. The protein is further acylated before being sorted to the outer 

membrane. 

Based on the physical features of a signal peptide, a predictive algorithm 

developed was incorporated in the website DOLOP to analyse protein sequences 

and 69 probable lipoproteins were identified in meningococcal strain, MC58. 

Based on the knowledge that the well characterised meningococcal lipoprotein, 

fHbp was not recognised as a lipoprotein by this tool due to the signal peptide not 

being located at the N-terminus and rather 40 amino acids downstream of the 

annotated translation start residue, we hypothesised that other lipoproteins were 

being missed by annotation of the incorrect start codon. Systematic analysis of 

each protein sequence from strain MC58 revealed 10 proteins with the signal 

peptide at the N-terminus. A further 13 putative lipoproteins were found with the 

signal peptide located up to 30% downstream of the annotated start codon. 
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Intriguingly, 3 more protein sequences contained the signal peptide in the middle 

and 15 harboured the signal peptide towards the C-terminus.  

In this study, we tested whether the signal peptide could be recognised by the cell 

if, like fHbp, it is located downstream of the N-terminus and if it is translocated 

and processed as a lipoprotein, or whether signal peptides must be located at the 

N-terminus to function. 
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1. Introduction 

1.1. The meningococcus 

N. meningitidis is a Gram-negative diplococcus and is the leading cause of 

bacterial meningitis and septicaemia (Brehony et al., 2016). Despite improved 

prophylactics and therapeutics, meningococcal disease remains a public health 

threat. Endemics are caused worldwide whereby young children and adolescents 

are predominately at risk of contracting invasive meningococcal disease (IMD) 

(Pace and Pollard, 2012).  Approximately, 10-30% of the population can become 

infected, in which the mortality rate can range from 10-15% in developed 

countries, to more than 20% in developing countries (Stephens and Apicella, 

2015). The highest meningococcal cases are seen in the ‘African meningitis belt’ 

with incidence of 1,000 cases per 100,000 population during major epidemics 

(CDC, 2016; Crum-Cianflone and Sullivan, 2016).  

The bacterium is human-specific and is carried in the nasopharynx of about 10% 

of healthy individuals (Public Health England, 2017; Yazdankhah and Caugant, 

2004). Bacteria can be transmitted from person to person by droplet infection. 

Occasionally the bacteria over-power the body immune defences by invading the 

mucosal epithelium and entering the blood stream, leading to septicaemia. 

Subsequently, the bacterium may travel to the blood-brain barrier and infect the 

meninges (Davide et al., 2012). Typical symptoms include rash, stiff neck, severe 

headache and vomiting. As a result of the infection, long-term defects can arise 

such as neurological disabilities, cognitive impairment and loss of vision or hearing 

(Pace and Pollard, 2011). 

There are 13 serogroups, classified according to their distinct capsular 

polysaccharide structures (Roupheal and Stephens, 2015; Davide et al., 2012). 

Six serogroups; A, B, C, W-135, X and Y account for most cases of invasive 

meningococcal disease (Roupheal and Stephens, 2015). Conjugated 

polysaccharide vaccines have been used to protect against strains of serogroups 

A, C, Y and W-135, in the form of monovalent (MenA and MenC) and quadrivalent 

(MenACWY) vaccines (Crum-Cianflone and Sullivan, 2016). However, producing a 

vaccine against serogroup B has been extremely challenging. According to the 

European Centre for Disease Prevention and Control, in 2012, serogroup B was 

responsible for 68% of 3,463 confirmed cases in Europe. A study carried out in 
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England and Wales from 2011 to 2013 revealed that 78.4% of 2,547 confirmed 

cases were accounted for by group B strains (Clark et al., 2016). Each year 

approximately 1,800 of MenB cases occur in the UK of which about 10% result in 

death (MRF, 2017). The presence of polysialic acid found within the serogroup B 

capsule is highly similar to structures found on neural cells, resulting in this 

vaccine candidate being poorly immunogenic. Other factors which have hindered 

the production of a vaccine have been the antigenic variability of serogroup B 

antigens (Davide et al., 2012; Gandhi et al., 2016). However, surface exposed 

lipoprotein, factor H binding protein (fHbp), expressed by strains of all serogroups 

has emerged as a promising vaccine antigen that can protect from serogroup B 

disease. FHbp, binds to human factor H (hFH), interfering with the alternative 

complement pathway activation and therefore, preventing complement-mediated 

killing. Importantly, fHbp elicits a protective antibody response, as shown by serum 

bactericidal antibody (SBA) assays (the correlate for protection) (Holst et al., 

2003). Koeberling et al. (2011) showed that a critical level of expression of fHbp 

was required to elicit a protective SBA response. Given that fHbp is expressed in 

more than 97% of serogroup B strains (Gandhi et al., 2016), this led to the 

development of two fHbp based vaccines; MenB-fHbp (Trumenba) and 4CMenB 

(Bexsero). Bexsero was licenced in Europe in 2013 (European Medicine Agency, 

2015) and Trumenba was licensed in the US in 2014 for ages 10-25 (Pfizer, 2014). 

The two vaccines vary in composition. Trumenba is comprised of two fHbp 

variants, one from subfamily A and another from subfamily B, whereas Bexsero is 

composed of four antigens; GNA2091 fused to subfamily B fHbp, Neisserial 

heparin-binding antigen (NHBA) fused to GNA1030, N. meningitidis adhesion A 

(NadA) and outer membrane vesicles (OMV) predominantly containing PorA 

(major porin) (Gandhi et al., 2016). Despite encouraging results, some concerns 

remain regarding their safety and their ability to target diverse strains. For 

Tumenba in particular, this limitation can be explained by the fact that not all 

strains synthesise or export fHbp (McNeil et al., 2013). Moreover, the level of 

expression of fHbp varies between strains (Biagini et al., 2016) and within strains 

due to regulation of its expression by external factors including oxygen, iron 

availability and temperature (Oriente et al., 2010; Sanders et al., 2012; Loh et al., 

2016).  
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1.2. Virulence factors 

There are many factors which contribute to the virulence of N. meningitidis. The 

polysaccharide capsule, outer membrane proteins (OMP) including pili, adhesion 

molecules (Opa and Opc) and porins (PorA and PorB), lipooligosaccharides (LOS) 

and lipoproteins (Nakayama et al., 2012; Rouphael and Stephens, 2015). 

1.2.1. Capsule 

The major virulence factor in N. meningitidis is the polysaccharide capsule (Davide 

et al., 2012). In all meningococcal serogroups, the capsule plays a crucial role in 

the survival of the bacterium within the blood, by providing protection against host 

defence mechanisms. The capsule is abundant in sialic acid, a monosaccharide 

composed of α-2, 8-linked N-acetylneuramic acid (NeuNAc) which interferes with 

the alternative pathway activation. As a result, antibody-mediated killing and 

phagocytosis is inhibited (Jarvis and Vedos, 1986; Frosch et al., 1988). One other 

way in which the pathogen avoids detection by the immune system is by capsule 

switching. This occurs as a result of genetic exchange of genes involved in the 

biosynthesis of the capsule by transformation and allelic exchange (Swartley et al., 

1997; Rouphael and Stephens, 2015). 

1.2.2. OMP (pili, adhesion molecules, porins)  

Initial attachment of the bacterium to the host is vital in colonisation of mucosal 

membranes of the nasopharynx and is achieved mainly by, Type IV pili (Stephens 

and McGee, 1981). These flexible filaments project from the outer membrane and 

aid in invasion by adhering to epithelial cells. By generating a twitching motion, 

they allow the bacterium to move across epithelial surfaces (Carbonelle et al., 

2009; Rouphael and Stephens, 2015). Once colonised, adhesins such as the 

opacity proteins, Opa and Opc, found on the meningococcal cell surface interact 

with CD66/CEACAM receptors on the host cell, initiating intimate binding (Virji et 

al., 1993). Colonisation is also facilitated by the minor adhesins; NadA, Neisseria 

hia homologue A (NhhA), adhesion penetration protein (App) and meningococcal 

serine protease A (MspA). NadA is more abundant in virulent strains than carrier 

isolates and are hence likely associated with virulence (Capacchi et al., 2005). 

This is also seen with NhhA and App, however, they are less effective at binding to 

epithelial cells compared to other minor adhesins (Hill et al., 2010). Furthermore, 
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molecules such as iron-binding proteins; transferrins and lactoferrins play an 

important role in iron sequestration. Iron is an essential component required for the 

growth of the bacterium. In addition, porins, PorA and PorB, which allow the 

diffusion of nutrients into the bacterial cell are involved in host cell interactions and 

generate potent antibody responses (Rouphael and Stephens, 2015).  

1.2.3. Lipooligosaccharide (LOS) 

Lipooligosaccharide (LOS), also referred to as endotoxin, is a key virulence 

determinant and provokes an innate immune response. LOS detaches from the 

bacterial cell wall, circulates within the host blood stream and binds to Toll-like 

receptors (TLR) found on immune cells such as dendritic cells, macrophages and 

mast cells. LOS specifically binds TLR4 which leads to cytokine release and can 

culminate in septic shock (Hou et al., 2008; Tang et al., 2015).  

1.2.4. Lipoproteins 

More and more research is highlighting the importance of lipoproteins in IMD. In 

Gram-negative bacteria, lipoproteins play a major role, not only in virulence such 

as adhesion, colonisation and activation of the immune system, but in cell wall 

integrity, cell division, nutrient uptake, signal transduction and antibiotic resistance 

(Nakayama et al., 2012; Zϋckert, 2014; Chahales and Thanassi, 2015). TLR2 on 

the surface of monocytes, macrophages, dendritic cells, mast cells and B cells 

recognise lipoproteins (Kang et al., 2009) and activates a cascade of inflammatory 

cytokines which help to eliminate the pathogen by promoting phagocytosis (Hou et 

al., 2008) 
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Bacterial lipoproteins are lipidated at their N-terminus and anchor to the outer 

membrane by their fatty acid moieties (Babu et al., 2006). All lipoproteins are 

synthesized in the cytoplasm (Figure 1.2) as a preprolipoprotein precursor 

containing a signal peptide at the N-terminus, approximately 20-40 amino acids in 

length. The signal peptide has three distinct regions (Figure 1.1), consisting of a 

positively charged n-region, a hydrophobic h-region and a c-region (Heijne, 1989; 

Babu et al., 2006). The amino acid residues in the n-region range from five to 

seven and contain no less than two positively charged amino acids. The centre h-

region, contains between 7 to 22 amino acids, which are mainly hydrophobic 

(Babu et al., 2006). At the C-terminus (c-region), is a characteristic, 4 amino acid 

motif called the lipobox with a consensus sequence (LVI)(ASTVI)(GAS)C ending in 

a conserved cysteine (Heijne, 1989; Zϋckert, 2014). The preprolipoprotein is 

translocated across the cytoplasmic or inner membrane and into the periplasm by 

the Sec or Tat pathway (Figure 1.2). A three step, enzymatic process follows for 

post-translational modification of the preprolipoprotein (Zϋckert, 2014). The initial 

step involves the addition of diacylglycerol to the conserved cysteine residue of the 

lipobox, catalysed by the enzyme preprolipoprotein diacylglyceryl transferase (Lgt) 

(Sankaran and Wu, 1994). Following this, the signal peptide is cleaved at the 

amino acid residue immediately upstream of the cysteine residue by prolipoprotein 

signal peptidase (Lsp or signal peptidase II) generating a diacylated apolipoprotein 

(Tokunaga et al., 1982; Inouye et al., 1983). These fatty acids allow the 

apolipoprotein to remain attached to the inner membrane after signal peptide 

cleavage (Chahales and Thanassi, 2015). Finally, a third fatty acid is added to the 

amide group of the cysteine by apolipoprotein N-acyltransferase, Lnt. The 

resultant mature lipoprotein is then ready to be sorted to the outer membrane. 
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Once triacylated, the mature lipoprotein is usually sorted to the outer membrane 

by the localisation of lipoproteins (Lol) apparatus (Hooda et al., 2016). In 

Escherichia coli (E.coli), the +2 rule states that the presence of an Aspartate (D) 

residue at position +2, after the conserved cysteine causes lipoprotein retention 

within the inner membrane (Yamaguchi et al., 1988). Hence, any other amino acid 

residue at the +2 position signals for the export of the lipoprotein to the outer 

membrane. This rule may apply to N. meningitidis. In Pseudomonas aeruginosa, 

specific residues present at position +3 and +4 have been shown to signal for 

outer membrane export (Narita and Tokuda, 2006). The Lol system operates using 

a LolCDE protein complex, an ABC (ATP-binding cassette) transporter, which 

releases lipoproteins from the inner membrane to the periplasmic chaperone LolA 

(Matsuyama et al., 1995). This action is fuelled by ATP hydrolysis catalysed by 

ATPase LolD, in which LolA carries the lipoprotein substrate from LolCDE 

complex, delivering it to the outer membrane receptor LolB-also an outer 

membrane lipoprotein (Matsuyama et al., 1995; Tanaka et al., 2001). Until 

recently, the final step involved in the export of lipoproteins to the cell surface was 

unknown. In a study conducted by Hooda et al. (2016), it was revealed that N. 

meningitidis utilises a surface lipoprotein assembly modulator (Slam) which flips 

OMP’s such as fHbp to the cell surface.   

Signal peptide 
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Figure 1.2 Lipoprotein sorting pathway. The above figure demonstrates lipid 

modification of lipoproteins exported from the cytoplasm to the outer membrane.  
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Many lipoproteins expressed at the bacterial cell surface have been shown to elicit 

potent and protective antibody responses. It is therefore not surprising that 

lipoproteins are emerging as promising vaccines. To this end the lipoproteome of 

N. meningitidis was investigated.  

 

Using the lipoprotein prediction tool in the website DOLOP (http://www.mrc-

lmb.cam.ac.uk/genomes/dolop/), it was previously reported by Babu et al. (2006), 

that there are 69 lipoproteins in N. meningitidis strain MC58. Given the stringency 

of this feature, this is a conservative estimate. Recently, da Silva et al. (2016) 

showed that the signal peptide of fHbp was 26 amino acids long and positioned 40 

amino acids downstream of the methionine that is annotated as the translation 

start residue (NCBI). Due to the signal peptide not positioned at the N-terminus, 

fHbp has missed being annotated as a lipoprotein. This led us to suspect that 

there are other lipoproteins in the genome, annotated with the wrong methionine 

as the translation start residue that have failed to be recognised as lipoproteins. 

 

In this study, a systematic analysis of each of the 2,119 protein sequences of N. 

meningitidis MC58 in NCBI (https://www.ncbi.nlm.nih.gov/) by the above predictive 

algorithm led to the identification of 10 more putative lipoproteins containing an N-

terminal signal peptide (Table 3.1). A second group of 13 proteins were identified 

with a signal peptide within the first 30% of the protein sequence (Table 3.2), a 

third group of 3 proteins contained a signal peptide in the middle of the gene 

(Table 3.3) and a fourth group of 15 proteins revealed a signal peptide positioned 

towards the C-terminus (Table 3.4). We questioned whether signal peptides can 

be recognised if not positioned at the N-terminus. Five of these putative 

lipoproteins were selected for investigation in this study along with fHbp and 

NMB1468 as positive controls. The latter was previously experimentally verified as 

a lipoprotein by Hsu et al. (2008). 

 

Using the approach taken by da Silva et al. (2016), truncated versions of these 

lipoproteins were cloned into the Neisseria complementation vector and used to 

transform strains MC58 and MC58Lnt. MC58Lnt contains a transposon in the lnt 

gene and is therefore incapable of triacylating lipoproteins. Resolving these 

truncated, c-Myc tagged lipoproteins by SDS-PAGE, enables differentiation of the 

https://www.ncbi.nlm.nih.gov/
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lost single fatty acid in MC58Lnt and this size difference can be detected by 

Western blotting with an anti-c-Myc antibody. Therefore, the protein in question is 

inferred to be a lipoprotein if the migration differs in MC58Lnt compared to MC58. 
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2. Methods 

2.1. Bioinformatics 

2.1.1. Identifying putative meningococcal lipoproteins 

Using the NCBI database (https://www.ncbi.nlm.nih.gov/), each of the 2,119 

protein sequences of N. meningitidis MC58 were analysed by the lipoprotein 

predictive algorithm tool in the DOLOP website (http://www.mrc-

lmb.cam.ac.uk/genomes/dolop/) for the presence of a signal peptide.  

2.1.2. Exploring hidden putative meningococcal lipoproteins 

In order to identify putative lipoproteins with an internal signal peptide all 

combinations of the lipobox consensus (LVI)(ASTVI)(GAS)C (Table 2.1) were 

used as the query sequence in a BLASTp (https://blast.ncbi.nlm.nih.gov/Blast.cgi) 

analysis. The full protein sequence was investigated for the presence of the signal 

peptide adjacent to and upstream of the lipobox. This was then verified by the 

lipoprotein predictive algorithm function in the DOLOP website (http://www.mrc-

lmb.cam.ac.uk/genomes/dolop/). An example is shown for protein NMB0727 

(Figure 2.2). 
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Lipobox query sequence 

L V I 

LAAC VAAC IAAC 

LAGC VAGC IAGC 

LASC VASC IASC 

LSAC VSAC ISAC 

LSGC VSGC ISGC 

LSSC VSSC ISSC 

LTAC VTAC ITAC 

LTGC VTGC ITGC 

LTSC VTSC ITSC 

LVAC VVAC IVAC 

LVGC VVGC IVGC 

LVSC VVSC IVSC 

LIAC VIAC IIAC 

LIGC VIGC IIGC 

LISC VISC IISC 

Table 2.1 All possible combinations of the lipobox against the protein 

sequence of MC58 used as query in a sequence BLASTp analysis. 
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2.2. Bacterial strains and growth conditions 

N. meningitidis MC58, strain serogroup B: 15:P1.7, 16, ST-74; ET-5, was obtained 

from LGC Standards and MC58Lnt was kindly provided by Dr Ruth Griffin and 

Ronni da Silva. All meningococcal strains were grown overnight at 37°C in 5% 

CO2 on GC agar plates containing Kellogg’s supplements I and II (Kellogg et al., 

1963). Piliated MC58 and MC58Lnt cells were cultured for transformation by 

overnight growth at 30°C in 5% CO2.Transformants were selected on GC agar 

containing 0.3 µg/ml of erythromycin. 

Subcloning Efficiency™ DH5α™ Competent cells (InvitrogenTM) were used for 

cloning and grown at 37°C on Luria-Bertani (LB) agar or in LB broth with shaking 

at 200 rpm and with 30 µg/ml of kanamycin and 100 µg/ml of ampicillin where 

appropriate. 

(d) 
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protein NMB0727 

Manual search for 

the first 

methionine located 

up to 40 acids 

upstream of the 

lipobox  

Entire sequence 

pasted into the 

algorithm in 

DOLOP for 

lipoprotein 

prediction 

(a) 

(b) 

(c) 

MYAKQGD K ILDTHLGSGTLAIACCIAQFD LTAC 

Figure 2.2 Identification of a signal peptide in NMB0727. 
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Meningococcal cells used for whole cell (WC) lysate preparations were grown 

overnight on GC agar plates containing 0.5 mM Isopropyl β-1- 

thiogalactopyranoside (IPTG) at 37°C in 5 % CO2. The component IPTG is used to 

enhance the expression of recombinant protein by stimulating transcription of the 

lac operon (Biologicscrop, 2016). 

GC broth cultures were obtained by harvesting bacterial cells from overnight 

grown GC agar plates containing 0.5 mM IPTG and re-suspended in Kellogg's I 

and II supplemented GC broth. 1 ml of bacterial suspension at optical density (OD) 

A6001.0 was used to inoculate 20 ml supplemented GC broth in a 250 ml sterilised 

conical flask. Cells were grown until A600 0.1 was reached at 84 rpm shaking at 

37°C in 5 % CO2. 

2.2.1. Glycerol stock of bacterial strains 

Bacterial samples were frozen at – 80°C by mixing 500 µl of bacterial broth culture 

or bacterial suspension in Kellogg’s I and II supplemented GC broth with 500 µl 

30% (v/v) sterile glycerol.  

2.3. Molecular methods for DNA manipulations 

2.3.1. Genomic DNA extraction  

DNA extraction of meningococcal strains was carried out from a fresh overnight 

grown plate using the Gentra Puregene Yeast/ Bact. Kit (Qiagen) according to the 

manufacturer’s protocol. Concentration and purity was measured using the 

NanoVue ™ Plus Spectrophotometer (GE Healthcare Lifesciences).  

2.3.2. Plasmid extraction 

Plasmid DNA extraction was performed using QIAprep Spin Miniprep Kit (Qiagen) 

according to manufacturer’s instructions followed by concentration and purity 

measurements using NanoVue™ Plus Spectrophotometer. Plasmid DNA was 

stored at -20 ºC. 
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2.3.3. Gene clean 

Gene clean was performed using PCR Mini elute kit (Qiagen) according to the 

manufacturer’s instructions. All PCR products and restriction digests were purified 

by gene clean.  

2.3.4. PCR reactions and primers 

PCR reactions were performed using Taq DNA polymerase (Qiagen). The 

components and reaction conditions listed in Table 2.3 and 2.4 were performed 

according to manufacturer’s protocol. All primers were purchased from Sigma 

aldrich and are listed in Table 2.6. Annealing positions of each primer are shown in 

Table 2.5.  

 

 

 

 

 

 

 

 

 

 

 

 

  

ReagenReagents 

Volume (µl) 

DNA 
No DNA 
control 

Taq DNA polymerase 0.5 0.5 

QIAGEN® PCR Buffer 10x 10 10 

dNTP Mix, 10 mM 2 2 

Forward primer 10 µM 5 5 

Reverse primer 10 µM 5 5 

RNase free water 76.5 77.5 

Template DNA 1.5 - 

Total Volume 100 100 

Step Temperature 
(°C) 

Time (mins) No. of Cycles 

Initial Denaturation 94 3 1 

Denaturing 94 0.5 

35 Annealing - 0.5 

Extension 72 1 

Final Extension 72 10 1 

Table 2.4 The typical conditions used for PCR. 

 

Table 2.3 Components of PCR reaction using Taq DNA polymerase.  
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Gene Primer design using genomic sequence 

fHbp 

 
TTAATTAAATGCCGTCTGAACCGCCGTTCGGACGACATTTGATTTTTGCTTCTTTGACCTGCCTCAT
TGATGCGGTATGCAAAAAAAGATACCATAACCAAAATGTTTATATATTATCTATTCTGCGTATGACTA
GGAGTAAACCTGTGAATCGAACTGCCTTCTGCTGCCTTTCTCTGACCACTGCCCTGATTCTGACCG
CCTGCAGCAGCGGAGGGGGTGGTGTCGCCGCCGACATCGGTGCGGGGCTTGCCGATGCACTAA
CCGCACCGCTCGACCATAAAGACAAAGGTTTGCAGTCTTTGACGCTGGATCAGTCCGTCAGGAAA
AACGAGAAACTGAAGCTGGCGGCACAAGGTGCGGAAAAAACTTATGGAAACGGTGACAGCCTCAA
TACGGGCAAATTGAAGAACGACAAGGTCAGCCGTTTCGACTTTATCCGCCAAATCGAAGTGGACG
GGCAGCTCATTACCTTGGAGAGTGGAGAGTTCCAAGTATACAAACGAACAGAAACTGATTAGCGAA
GAAGACCTGTAGGTTTAAAC 
 

NMB1468 

 
TTAATTAAATGAAAAAATTATTGATTGCCGCAATGATGGCGGCTGCCTTGGCAGCTTGTTCGCAAGA
AGCCAAACAGGAGGTTAAGGAAGCGGTTCAAGCCGTTGAGTCCGATGTTAAAGACACTGCGGCTT
CTGCCGCCGAGTCTGCCGCTTCTGCCGTCGAAGAAGCGAAAGACCAAGTCAAAGATGCTGCGGCT
GATGCAAAGGCAAGTGCCGAGGAAGCTGTAACTGAAGCCAAAGAAGCTGTAACTGAAGCAGCTAA
AGATACTTTGAACAAAGCTGCCGACGCGACTCAGGAAGCGGCAGACAAAATGAAAGATGCCGCCA
AAGAACAGAAACTGATTAGCGAAGAAGACCTGTAGGTTTAAAC 
 

NMB0727 

 
TTAATTAAATGATAACTATTTCAAATGAAGATAACATGATCTTAATGTCTCGGTATCCTGACAAGTAT
TTTGATTTGGCAATTGTAGATCCTCCTTATGGGATTTTGAATAAAACTAAACGTGGTGGTGATTATAA
ATTCAATATGAATGAATACTCACAATGGGATATTAAGCCAGACCAAACTTACTTTAATGAATTATTTC
GCGTGTCAAAAAATCAAATTATTTGGGGTGGGAATTATTTTGGCGAGTTATGGTTGAGAAGTGAATA
TAATAAAGGATTTATTATTTGGGATAAGAATCAACCAGAGACATTAAATAATTTTTCTATGGCGGAAA
TGGCTTGGTCGTCATTCGATAGGCCATCTAAAATTTTCCGGTTTAGTGTGCGGAAAAATCGTAATAA
AACTCACCCAACACAAAAACCAGTCGAATTATATCAGTGGTTGTTAAAAATGTATGCAAAGCAGGGT
GATAAGATTTTAGATACACATTTAGGAAGTGGAACTCTTGCTATTGCATGCTGCATTGCACAGTTTG
ATTTGACAGCTTGTGAAATCAATTCCGATTATTACCAACAATCGATTGAGAAAATAAAAAATAATTTA
CCTGAAGCTAGAATCAGTTTTGGGCATCCAGGTTATTGTATTATTGAAGAACAGAAACTGATTAGCG
AAGAAGACCTGTAGGTTTAAAC 
 

NMB0949 

 
TTAATTAAATGGTAGAACGTAAATTGACCGGTGCCCATTACGGTTTGCGCGATTGGGTGATGCAAC
GTGCGACTGCGGTTATTATGTTGATTTATACCGTTGCACTTTTAGTGGTTCTATTTTCCCTGCCTAA
AGAATATTCGGCATGGCAGGCATTTTTTAGTCAAACTTGGGTAAAAGTATTTACCCAAGTGAGCTTC
ATCGCCGTATTCTTGCACGCTTGGGTGGGTATCCGCGATTTGTGGATGGACTATATCAAACCCTTC
GGCGTGCGTTTGTTTTTGCAGGTTGCCACCATCGTTTGGCTGGTCGGCTGTCTCGTGTATTCAGTT
AAAGTGATTTGGGGGGAACAGAAACTGATTAGCGAAGAAGACCTGTAGGTTTAAAC 
 

NMB1447 

 
TTAATTAAATGATGAAACTCAATCCCCAACAGCTCGAAGCCGTCCGCTACCTCGGCGGCCCACTGC
TCGTCCTTGCCGGTGCAGGCAGCGGCAAAACCGGCGTGATTACTCAAAAAATTAAGCATTTGATTG
TCAATGTCGGCTACCTGCCGCATACCGTTGCCGCAATTACCTTTACCAACAAAGCCGCTGCGGAAA
TGCAGGAGCGCGTTGCCAAAATGCTGCCCAAACCGCAAACGCGCGGGCTGACGATTTGCACGTTC
CACTCTTTGGGCATGAAGATTCTGCGCGAAGAGGCGAACCATATTGGTTACAAAAAAAACTTCTCC
ATTCTCGATTCTACCGACAGCGCGAAAATCATCGGCGAACTCTTAGGCGGTACGGGCAAAGAAGC
CGTATTCAAGGCGCAGCACCAGATTTCCTTGTGGAAAAACGATTTAAAAACGCCTGAAGATGTCGT
TCAGACGGCATCGAACATTTGGGAACAACAAACCGCACGCGTGTATGCGAGCTATCAGGAAACCT
TACAAAGCTATCAGGCAGTGGACTTCGACGACTTAATCCGCCTGCCTGCCGTGCTGTTGCAGCAA
AACAGCGAAGTGCGCAACAAATGGCAGCGGCGGCTGCGTTATCTGTTGGTTGACGAATGCCAAGA
TACGAATACCTGCCAATTTACGTTGATGAAGCTGCTGACCGGCGCGGAAGGTATGTTTACCGCCGT
CGGCGACGACGACCAGTCCATCTACGCATGGCGCGGTGCGAACATGGAAAACCTGCGTAAAATG
CAGGAAAACTATCCGCAGATGAAGGTCATCAAACTGGAGCAAAACTACCGCTCCACCGCGCGGAT
TCTCAAAATCGCCAACAAAGTCATCGAAAACAACCCCAAGCTGTTTACCAAAAAACTTTGGTCGCAA
TTGGGCGAAGGCGAGCCGGTCAAAGTCGTTGCCTGCCAAAACGAGCAACACGAAGCCGACTGGG
TCGTCAGCCAAATCGTCAAACAAAAACTCATCGGCGGCGACAAAACCCAATATGCCGATTTCGCCG
TGTTATACCGGGGAAAGCATCAGGCGAGGATTTTCGAGGAAGCATTGCGCGGCGCGCGCATCCC
CTACCAGCTCTCCGGCGGACAAAGCTTTTTCGACAAAGCCGAAATCAAAGACGTGTTGTCTTATGT
GCGGCTGCTTGCCAACCCCAACGACGATCCCGCCTTTCTGCGTGCCGTTACCACGCCCAAACGCG
GCATCGGCGATGTCACGCTGGGCAAGCTCAACACTTACGCGCACGAACACGAATGCAGCCTGTAT
GAAGCCGCGCAAAACGAAGAAGCCCTTGCCACGCTGAACAATACCAACCGCCAACACCTGCAAAC
CTTTATGGATATGTTCGTCAGCTACCTCGCCAAAGCCGAAACCAGCGAAGCGGGCGAGTTCATCA
ACAGCCTGCTCGAAGAAATCGACTATGAAAACCATTTGATGCAAAACGAAGAAGGCAAAGCCGGC
GAAATCAAATGGCGCAACGTCGGCGATTTGGTATCATGGTTTGCGCGAAAAGGCGGGGAAGACGG
CAAAAACATCATCGAACTCGCCCAAACCGTCGCCTTGATGACGCTTTTGGAAGGAAAAGACGAAGA
AGAAACCGATGCCGTCTCGCTATCCACGCTACACGCCGCCAAAGGTTTGGAGTATCCGTATGTTTT
CCTTGTCGGTTGCGAAGAAGGCGTTTTGCCGCACAACGACAGTATCGAAGAGGGCAACGTCGAAG

Table 2.5 Annealing position of the forward and reverse primers used to 

generate tagged proteins. The signal peptide is highlighted in redfor each 

gene.  
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AAGAACGCCGCCTGATGTACGTCGGCATCACCCGCGCCAAACGCCAACTCACACTGACCCACTGC
GTCAAACGCAAAAAACAAGGCACATGGCAGTTCCCCGAACCCAGCCGATTCATAGACGAAATGCC
GCAGGAAGATTTGAAAATCCTGGGGCGCAAAGGCGGCGAACCGATTGTCAGCAAAGAAGAAGGC
AGACGCAACCTTGCCGATATAATCGGAAGGCTCGACAACCTAAAAAAAAGCGGCGCGGCGGATGA
ACAGAAACTGATTAGCGAAGAAGACCTGTAGGTTTAAAC 
 

NMB1564 

 
TTAATTAAATGCAGGTTACATCAAAATGGATAGACGGGATGTGTTTTGTCGGCACGACGGAAGGCG
GGCACAGCGTCGTTATGGAGGGGTCGGCGGCAGAAGGTAAGGCTAAGCGCGGGCCCAGCCCTTT
GGAAATGCTGCTGTTGGGCGTGGCGGGCTGTTCGAGCATCGATGTGGTGATGATTGCCGAAAAAC
AGCGTCAGAAAGTGACTGACTGCCGTGCGACGGTTACGGCGAAACGGGCGGACGATGCGCCGCG
CGTGTTTACCGAAATCCACATCCATTTCAAAGTATTCGGGCATGATTTGAAAGAATCGGCCATTGAG
CGCGCCGTTCAGATGTCTGCCGAAAAATACTGTTCGGCTTCGATTATGTTGGGCAAAGCGGCAAA
GATTACCCACAGTTTTGAAATTGCCGGGGCAGATAAAGAACAGAAACTGATTAGCGAAGAAGACCT
GTAGGTTTAAAC 
 

NMB1566 

 
TTAATTAAATGAAAAACATCGTCATCCTGATTTCTGGACGCGGCAGCAATATGCAGGCAATCGTCAA
TGCCGCCATTCACAACGTCCGCATTGCCGCCGTGTTGAGCAACAGCGAAACGGCTGCCGGTTTGC
AATGGGCGGCCGAACGCGGCATCCCGACCGATAGCCTGAATCATAAAAACTTTACATCCCGGCTT
GCCTTCGATACCGCCATGATGGAGAAAATCGACGCATATCAACCCGACTTGGTGGTTTTGGCAGG
TTTTATGCGGATTCTGACCCCCGAGTTTTGCGCCCGTTACGAAGGCAGGCTGATGAACATTCACCC
GTCCATCCTTCCCTCGTTTACCGGACTTCATACGCACGAACGCGCTTTGGAGGCGGGCTGCCGCG
TTGCCGGCTGCACCATCCATTTCGTTACTGCCGAACTGGATTGCGGCCCGATTGTATCGCAAGGG
GTTGTGCCGATACTCGACGGCGATACGGCAGACGATATTGCCGCACGGGTTTTGGCTGTCGAGCA
TAAACTTTATCCGAAAGCCGTTGCCGATTTTGCCGCCGGCCGCCTGATTATTGAGGGAAACCGCGT
CAGAAATTCGGAAAACGCCGATGCCGCCCGTTTTCTGACGGCGGAACAGAAACTGATTAGCGAAG
AAGACCTGTAGGTTTAAAC 
 

His-

NMB0949 

 
AACAGGATCCATGCACCACCACCACCACCACGTAGAACGTAAATTGACCGGTGCCCATTACGGTTT
GCGCGATTGGGTGATGCAACGTGCGACTGCGGTTATTATGTTGATTTATACCGTTGCACTTTTAGT
GGTTCTATTTTCCCTGCCTAAAGAATATTCGGCATGGCAGGCATTTTTTAGTCAAACTTGGGTAAAA
GTATTTACCCAAGTGAGCTTCATCGCCGTATTCTTGCACGCTTGGGTGGGTATCCGCGATTTGTGG
ATGGACTATATCAAACCCTTCGGCGTGCGTTTGTTTTTGCAGGTTGCCACCATCGTTTGGCTGGTC
GGCTGTCTCGTGTATTCAGTTAAAGTGATTTGGGGGGAATTC 

His-

NMB0949

-GFP 

 
TTAATTAAATGCACCACCACCACCACCACGTAGAACGTAAATTGACCGGTGCCCATTACGGTTTGC
GCGATTGGGTGATGCAACGTGCGACTGCGGTTATTATGTTGATTTATACCGTTGCACTTTTAGTGG
TTCTATTTTCCCTGCCTAAAGAATATTCGGCATGGCAGGCATTTTTTAGTCAAACTTGGGTAAAAGT
ATTTACCCAAGTGAGCTTCATCGCCGTATTCTTGCACGCTTGGGTGGGTATCCGCGATTTGTGGAT
GGACTATATCAAACCCTTCGGCGTGCGTTTGTTTTTGCAGGTTGCCACCATCGTTTGGCTGGTCGG
CTGTCTCGTGTATTCAGTTAAAGTGATTTGGGGGGATGGTGAGCAAGGGCGAGGAGCTGTTCACC
GGGGTGGTGCCCATCCTGGTCGAGCTGGACGGCGACGTAAACGGCCACAAGTTCAGCGTGTCCG
GCGAGGGCGAGGGCGATGCCACCTACGGCAAGCTGACCCTGAAGTTCATCTGCACCACCGGCAA
GCTGCCCGTGCCCTGGCCCACCCTCGTGACCACCTTGACCTACGGCGTGCAGTGCTTCGCCCGC
TACCCCGACCACATGAAGCAGCACGACTTCTTCAAGTCCGCCATGCCCGAAGGCTACGTCCAGGA
GCGCACCATCTTCTTCAAGGACGACGGCAACTACAAGACCCGCGCCGAGGTGAAGTTCGAGGGC
GACACCCTGGTGAACCGCATCGAGCTGAAGGGCATCGACTTCAAGGAGGACGGCAACATCCTGG
GGCACAAGCTGGAGTACAACTACAACAGCCACAAGGTCTATATCACCGCCGACAAGCAGAAGAAC
GGCATCAAGGTGAACTTCAAGACCCGCCACAACATCGAGGACGGCAGCGTGCAGCTCGCCGACC
ACTACCAGCAGAACACCCCCATCGGCGACGGCCCCGTGCTGCTGCCCGACAACCACTACCTGAG
CACCCAGTCCGCCCTGAGCAAAGACCCCAACGAGAAGCGCGATCACATGGTCCTGCTGGAGTTC
GTGACCGCCGCCGGGATCACTCTCGGCATGGACGAGCTGTACAAGTAACTCGAGAAGCTTGATCC
GGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCAT
AACCCCTTGGGGCCTCTAAACGGGTCTTGAGGGGTTTTTTGCTGAAAGGAGGAACTATATCCGGA
GTTTAAAC 
 

 

 

 

 

 

  

=

= 

Direction of Forward primer 

Direction of Reverse primer 

c-Myc tag 

Restriction sites 

Annealing region of primers 

= 

= 

= 

Key 

His tag = 

= Start codon 

= Signal peptide 

= GFP 
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Gene Primer name Sequence (5’-3’) 
Annealing 
temp. (°C) 

fHbp 

PacfHbpFor gaccTTAATTAAATGCCGTCTGAACCGCCGTTCGGA 

49.9 

PmefHbpMycRev 
acgtGTTTAAACCTACAGGTCTTCTTCGCTAATCAGTTTC
TGTTCGTTTGTATACTTGGAACTC 

NMB1468 

PacNMB1468For gaccTTAATTAAATGAAAAAATTATTGATTGCCGCAA 

51.8 
PmeNMB1468Myc
Rev 
 

acgtGTTTAAACCTACAGGTCTTCTTCGCTAATCAGTTTC
TGTTCTTTGGCGGCATCTTTCAT 

NMB0727 

PacNMB0727For gaccTTAATTAAATGATAACTATTTCAAATGA 

40.0 

PmeNMB0727Myc
Rev 

acgtGTTTAAACCTACAGGTCTTCTTCGCTAATCAGTTTC
TGTTCTTCAATAATACAATAACCT 

NMB0949 

PacNMB0949For gaccTTAATTAAATGGTAGAACGTAAATTGACCGGT 

50.0 

PmeNMB0949Myc
Rev 

acgtGTTTAAACCTACAGGTCTTCTTCGCTAATCAGTTTC
TGTTCCCCCCAAATCACTTTAACT 

NMB1447 

PacNMB1447For gaccTTAATTAAATGATGAAACTCAATCCCCAACAG 

54.9 

PmeNMB1447Myc
Rev 

acgtGTTTAAACCTACAGGTCTTCTTCGCTAATCAGTTTC
TGTTCATCCGCCGCGCCGCTTTTT 

NMB1564
  

PacNMB1564For gaccTTAATTAAATGCAGGTTACATCAAAATG  

42.0 
PmeNMB1564Myc

Rev 
acgtGTTTAAACCTACAGGTCTTCTTCGCTAATCAGTTTC
TGTTCTTTATCTGCCCCGGCAATT 

NMB1566 

PacNMB1566For gaccTTAATTAAATGAAAAACATCGTCATCCTGA 

51.7 

PmeNMB1566Myc
Rev 

acgtGTTTAAACCTACAGGTCTTCTTCGCTAATCAGTTTC
TGTTCCGCCGTCAGAAAACGGGCG 

Primers used for His-NMB0949-GFP amplification 

NMB0949 

BamHIS0949For 
aacaGGATCCATGCACCACCACCACCACCACGTAGAAC
GTAAATTGACCGGT 
 

50 

EcoRI0946Rev 
agctGAATTCCCCCCAAATCACTTTAACTG 
 

His-
NMB0949-
GFP 

PacHis0949 For 
agctTTAATTAAATGCACCACCACCACCACCACGTAGAAC
GTA 

40-45 

Table 2.6 Full-length primer sequences used for PCR amplifications. Restriction 

sites are underlined. c-Myc and His tags and GFP reporter are in bold. 

Annealing temperatures are also indicated. 
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2.3.5. Agarose gel electrophoresis 

PCR products were visualised using 1% (w/v) agarose gel stained with 1% (v/v) 

SYBR Safe (InvitrogenTM) in 1X TBE diluted from 10X TBE (800 ml H2O, 106 g 

Tris base, 55 g Boric acid, 7.5 g EDTA disodium salt at pH 8). 1kb Plus DNA 

ladder (InvitrogenTM) was used to verify band sizes according to base pairs (bp). 

Briefly, 1 µl 1kb Plus DNA ladder was mixed with 1 µl 5X GelPilot DNA loading dye 

(Qiagen) and 3 µl RNase free water and annotated as L in all agarose gel 

electrophoresis figures. Mini-sub Cell GT cell (Bio-RAD) electrophoresis chamber 

was used to run agarose gels at 70 volts for 40 minutes. Each well was loaded 

with 5 µl of sample which included 4 µl PCR product and 1 µl 5X loading dye.  

2.3.6. Restriction digest 

Restriction digests were performed using enzymes purchased from New England 

Biolabs using the components listed in Table 2.7 and 2.8 at 37°C with 1 hour 

incubation for each digest. 

 

 

 

 

 

2.3.7. Dephosphorylation of plasmid vector  

Following restriction digest, the plasmid vector was dephosphorylated using Alkaline 

Phosphatase, Calf Intestinal (CIP) enzyme (InvitrogenTM). The enzyme catalyses 

the removal of 5' phosphate in order to prevent self-ligation of the vector. The 

reaction was performed using 50 µl purified vector, 10 µl 10X CutSmart buffer (New 

England Biolabs), 38 µl H2O and 2 µl CIP, incubated at 37ºC for 30 minutes. A 

further 2 µl of CIP was added and further incubated at 37 ºC for another 30 minutes. 

PmelGFP 

Rev 

agctGTTTAAACTCCGGATATAGTTCCTCCTTTCAG 
 

Components Volume (µl) 

Plasmid DNA  25 

Restriction enzyme 5 

CutSmart buffer (10 X) 10 

RNase free water 60 

Components Volume (µl) 

PCR product 50 

Restriction enzyme 5 

CutSmart buffer (10 X) 10 

RNase free water 35 

Table 2.8 Components of a typical 

restriction digest of PCR product. 

Table 2.7 Components of a typical 

restriction digest of plasmid DNA. 
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The dephosphorylated vector was purified (section 2.3.3) and eluted in 12 µl elution 

buffer.  

2.3.8. Ligation reaction  

The following formula was used to determine the amount of insert DNA and 

plasmid vector DNA required for each ligation reaction: 

 

𝑛𝑔 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 =  
𝑛𝑔 𝑜𝑓𝑣 𝑒𝑐𝑡𝑜𝑟 𝑥 𝑘𝑏 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑖𝑛𝑠𝑒𝑟𝑡

𝑘𝑏 𝑠𝑖𝑧𝑒 𝑜𝑓 𝑣𝑒𝑐𝑡𝑜𝑟
𝑥 𝑚𝑜𝑙𝑎𝑟 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓

𝑖𝑛𝑠𝑒𝑟𝑡

𝑣𝑒𝑐𝑡𝑜𝑟
 

 
 

A 1:6 vector to insert molar ratio was used for all ligation reactions. A plasmid 

concentration of 50 ng was used in a total volume of 10 µl, containing; 1 µl T4 

DNA ligase (Promega), 1 µl 10X T4 ligase buffer (Promega), and RNase free 

water. Each reaction included a negative control of vector-only and no insert DNA, 

in order to verify any self-ligation. The reaction was incubated overnight at 4°C. 

2.4. Transforming E.coli 

2.4.1. Transforming Subcloning EfficiencyTM DH5αTM Competent cells  

Each ligation reaction was used to transform subcloning EfficiencyTM DH5αTM 

Competent cells (InvitrogenTM) using the heat shock method. A total of 2 µl of each 

ligation reaction, alongside the vector-only negative control was added to 50 µl 

competent cells. Cells were gently mixed then incubated on ice for 30 minutes. 

Heat shock was applied by incubating at 42ºC for 30 seconds and immediately 

transferring onto ice. All contents were then transferred into a 10 ml falcon tube 

containing 950 µl LB broth. Cells were left to shake at 225 rpm for 1 hour at 37ºC.  

Following incubation, 100 µl of this “dilute” cell culture was plated onto pre-warmed 

LB plates containing 30 µg/ml kanamycin when pGCC4 (Addgene) plasmid was 

used and 100 µg/ml ampicillin when pRSET-EmGFP (InvitrogenTM) plasmid was 

used. The remaining contents were spun down for 1 minute at 6000 g and with the 

removal of most of the supernatant, the pellet was re-suspended in the remaining 

100 µl. This “neat” suspension was plated onto antibiotic plates and incubated 

overnight at 37°C.  
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2.4.2. Screening of transformed cells 

Transformants were selected from either dilute or neat positive control plates 

following verification of no growth on negative control plates. The number of 

colonies varied from each transformation. In each case, several colonies were 

isolated and used to inoculate LB broth (section 2.2) ready for plasmid DNA 

extraction (section 2.3.2). 

2.4.3. Verifying E. coli transformants by PCR and DNA sequencing 

Transformants were verified by PCR using primers specific for the pGCC4 vector 

(Table 2.9). Transformants were verified according to the size of PCR product. 

The pGCC4 vector backbone was used as a positive control and no DNA as a 

negative control for the PCR. The forward pGCC4 primer anneals up to 116 bp 

upstream of the PacI restriction site and the reverse primer anneals up to 91 bp 

downstream of the PmeI restriction site. Agarose gel electrophoresis was used to 

visualise PCR products as described in section 2.3.5. Once the correct band size 

was confirmed, plasmid DNA extractions were prepared and sent off for 

sequencing to Eurofins Genomics or Genewiz in the volumes and concentrations 

shown in Table 2.9. The pGCC4 primers used for PCR were also used for DNA 

sequencing (Table 2.9). 

 

Table 2.9 Primers used for PCR and DNA sequencing to verify transformants. The 

concentrations and volumes required for sequencing by Eurofins Genomics or 

Genewiz are shown. 

 Eurofins Genomics Genewiz 

Sample Concentration 
Sample 

volume (µl) 
Concentration 

Sample 

volume (µl) 

Plasmid DNA 50-100 ng/µl 15 100 ng/µl 20 

Forward primer 10 µM 30 5 µM 10 

Reverse primer 10 µM 30 5 µM 10 

pGCC4 primers Sequence (5’-3’) 
Annealing 

temp. (°C)  

Forward pGCC4 primer AGACATCCACCAAACCATCC 
50 

Reverse pGCC4 primers TGCTTCCGGGTGTTGTGTGG 
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2.5. Transforming N. meningitidis  

2.5.1. Transforming MC58 and MC58Lnt 

Following plasmid extraction, all plasmid constructs (pGCC4-fHbp, pGCC4-

NMB1468, pGCC4-NMB0727, pGCC4-NMB0949, pGCC4-NMB1477, pGCC4-NMB1564, 

pGCC4-NMB1566 and pGCC4-His-NMB0949-GFP) were individually transformed into 

both MC58 and MC58Lnt in order to express the tagged putative lipoproteins. 

Piliated cells from each strain were streaked onto pre-warmed GC plates lacking 

antibiotic with two circles of 1 cm diameter marked under the plate; one for DNA 

and one for the no DNA negative control. Transformation media was prepared by 

mixing 10 ml GC broth, 100 µl Kellogg’s I, 10 µl Kellogg’s II and 100 µl 1M MgSO4 

which was then filter sterilised. 10 µl plasmid DNA was mixed with 10 µl 

transformation media and 15 µl of this mixture was used to spot onto the streaked 

agar within the circle labelled DNA. Likewise, 15 µl of transformation media alone 

was spotted onto the circle labelled no-DNA. Each plate was left facing up until all 

media was adsorbed. Plates were inverted and incubated overnight at 37°C in 5% 

CO2. 1 ml of filter sterilised supplemented GC broth was placed into 2 sterile 1.5 

ml eppendorfs, one labelled DNA and one no DNA. A 10 µl sterile loop was used 

to gently scope bacterial cells from the circle containing DNA which was re-

suspended in the eppendorf labelled DNA and likewise for no DNA. 100 µl were 

plated onto 10 pre-warmed GC plates containing 0.3 µg/ml erythromycin. 100 µl 

no DNA were also plated onto an erythromycin plate and incubated at 37°C in 5% 

CO2. Plates were screened the next day for colonies on the DNA plates and the 

‘no DNA’ plates were checked for no growth. Individual colonies were then picked 

and re-streaked onto erythromycin containing plates.  

2.5.2. Verification of meningococcal transformants 

PCR was used to verify MC58 and MC58Lnt strains transformed with each 

construct using the pGCC4 primers shown in Table 2.9 and reagents and 

conditions stated in Table 2.3 and 2.4. For each construct, one or two transformant 

colonies from each strain of MC58 and MC58Lnt were selected and genomic DNA 

was extracted (section 2.3.1), followed by PCR amplification (section 2.3.4) and 

agarose gel electrophoresis (section 2.3.5). 
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2.6. Detection of tagged proteins by Sodium Dodecyl Sulphate-

Polyacrylamide Gel electrophoresis (SDS-PAGE) and Western blotting 

2.6.1. SDS-PAGE 

It was shown previously in MC58Lnt that the failure to triacylate lipoproteins 

resulted in the accumulation of diacylated lipoprotein which are subsequently 

down regulated or proteolysed (da Silva et al., 2016). This occurs progressively 

during bacterial growth such that at A600 1.0 all the diacylated lipoprotein 

disappears (unpublished). Therefore, all c-Myc tagged transformants as well as 

negative controls were harvested at A600 0.1 using broth cultures (section 2.2) 

unless where stated. Cells were harvested at A600 0.1, 600 µl of bacterial 

suspension were transferred to a sterile 1.5 ml eppendorf and centrifuged at 

14500 g for 10 minutes. The supernatant was removed by pouring and pipetting. 

The pellet formed was re-suspended in 300 µl of 1X Laemmli sample buffer (2- 

mercaptoethanol, bromophenol blue, glycerol, SDS, Tris-HCl) by pipetting and 

heated to 95ºC for 5 minute. For MC58 and MC58Lnt His-NMB0949-GFP 

transformants bacterial cells were grown on GC plates (section 2.2) instead of GC 

broth and bacterial cells were re-suspended in phosphate buffered saline (PBS) to 

an OD of A600 1.0. 600 µl of this cell suspension was centrifuged at 1400 g for 10 

minutes and the pellet formed was re-suspended in 300 µl of 1X Laemmli sample 

buffer by pipetting and heated to 95 ºC for 5 minutes. 

Cell lysates were fractionated by 16% (w/v) SDS-PAGE (National Diagnostics). 25 

µl of each cell lysate, including positive and negative controls were loaded 

alongside 7.5 µl of SeeBlue2® Pre-stained protein standard (InvitrogenTM). Gels 

were run using 1X Tris-Glycine-SDS PAGE running buffer containing 0.025 M Tris 

Base, 0.192 M Glycine and 0.1 % (w/v) SDS (National Diagnostics) in the Mini-

PROTEAN® Tetra Cell Systems (BIO-RAD) tank, at 150 volts for 1 hour and 30 

minutes. Ice packs were placed around the tank to avoid overheating and 

distortion of bands. 

2.6.2. Western blotting 

The gels were transferred to a 0.22 µM PVDF membrane (GE Healthcare Life 

Sciences) using the TE 7 7 PWR Hoefer transblotter and a semi-dry approach. 

Each gel was run for 2 hours and 20 minutes at 42 mA. The PVDF membrane was 

briefly placed in methanol for activation and then soaked in transfer buffer 
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containing 48 M Tris base and 39 M Glycine at pH 8.3 with 70 % methanol. Six 

pieces of Whatmann paper (GE Healthcare Life Sciences) were soaked in the 

transfer buffer and 3 of these were stacked, then placed on the transblotter, 

followed by the PVDF membrane with the gel aligned above. The other 3 

Whatmann papers were placed above this. Once transferred, the membranes 

were blocked for 2 hours on a shaking platform at room temperature. Blocking 

solutions were made in Tris-buffered saline (TBS) containing 0.1% (v/v) Tween-20 

(TBST) using either bovine albumin serum (BSA) or dry milk (Table 2.10). The 

membranes were then incubated overnight at 4°C with the appropriate antibodies 

diluted in TBST using either BSA or dry milk, as shown in Table 2.10 for each 

transformant. The membranes were then washed for 2 hours in TBST by changing 

the solution every 20 minutes. Following this, the membranes were incubated at 

room temperature for 1 hour with the appropriate antibody diluted in TBST 

containing either BSA or dry milk. The membranes were then washed in TBST for 

1 hour with 15 minute intervals of changing solution. The protein bands were 

detected using Amersham ECL start Western Blotting Detection Reagent (GE 

Healthcare Life Sciences). The expected molecular weights were calculated using 

Expasy Compute pI/Mw (http://web.expasy.org/compute_pi/).  

 

Table 2.10 Western blot conditions for detection of recombinant MC58 and 

MC58Lnt proteins. 

 Antibodies and dilutions used for tagged transformants 

Incubation Step c-Myc His GFP 

Blocking 5% Milk 3% BSA 3% BSA 

Primary antibody 
anti-c-Myc (Abcam) 
diluted  1:2000 in 

1%  milk 

anti-His (Cell 
signalling Technology) 
diluted 1:1000 in 1% 

BSA 

anti-GFP 
(eBiosciencesTM) 

diluted 1:1000 in 1% BSA 

Secondary antibody 

anti-mouse HPR-
conjugated 

secondary (New 
England Biolabs) 

diluted 1:1000 in 1% 
milk 

anti-rabbit IgG, HRP-
linked secondary 

antibody (Cell 
Signalling Technology) 
diluted 1:1000 in 1% 

BSA 

anti-mouse HPR-
conjugated secondary 
(New England Biolabs)  

diluted 1:1000 in 1% BSA 
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2.7. Immunofluorescence microscopy 

NMB1468 c-Myc recombinant strains of MC58 and MC58Lnt were harvested at 

A600 0.1 from broth culture (section 2.2). 50 µl of bacterial culture were spotted 

onto circular glass cover-slips of 13 mm diameter and left to dry. The coverslips 

were placed in 24 well plates and fixed with 300 µl PBS containing 4% (v/v) 

paraformaldehyde for 20 minutes. The coverslips were then washed with 1 ml PBS 

and then blocked for 30 minutes with 500 µl PBS containing 1% (w/v) BSA. 

Blocking reagent was removed by washing with 1 ml PBS followed by overnight 

incubation at 4ºC with 500 µl PBS containing 1% (w/v) BSA and 5 µg/ml anti-c-

Myc antibody (Abcam). The primary antibody was removed and the coverslips 

were washed 3 times using 1 ml PBS, followed by 1 hour incubation with 200 µl 

PBS containing 1% (w/v) BSA with Alexa Fluor 555 labelled donkey anti-mouse 

IgG (Abcam) secondary antibody (1:500) and then FITC-labelled rabbit polyclonal 

IgG (1:500) (Abcam) raised against whole cell N. meningitidis, with 1 ml washes in 

between each antibody. The coverslips were washed 3 times, dipped in ionised 

water and mounted onto a glass slide (cells facing down) by adding a drop of 

fluoroshield mounting medium containing DAPI (Abcam). The slides were left to 

dry and the coverslips were sealed gently using clear nail polish. 
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3. Results 

3.1. Bioinformatics 

3.1.1. Lipoproteins predicted by an algorithm tool in DOLOP 

Babu et al. (2006) previously reported that 69 out of 2079 protein sequences in N. 

meningitidis MC58, i.e. 3.3 % of its genome contained a signal peptide at the N-

terminus. In this study, systematic analysis of each protein sequence (2119) of 

MC58 revealed a further 10 proteins with a signal peptide at the N-terminus 

(highlighted in blue in Table 3.1) i.e. 3.7% of the genome.  

 

Table 3.1 Protein sequences of N. meningitidis MC58 predicted as lipoproteins by 

the algorithm in the DOLOP website (http://www.mrc-

lmb.cam.ac.uk/genomes/dolop/). 

NMB no. Function predicted in NCBI Size of 
protein 
(no. of 
amino 
acids) 

Sequence of the signal peptide Amino acid at 
+2 

NMB0032 
 

Hypothetical protein 175 MEM K QMLLAVGVVAV LAGC G 

NMB0033 Putative membrane-bound 
lytic mureintransglycosylase 
A 

441 MKKYLF R AALYGIAAAI LAAC Q 

NMB0035 Hypothetical protein 388 MR K FNLTALSVMLALG LTAC Q 

NMB0039 Hypothetical protein 90 MR K TFLFLTAAAAL LSGC A 

NMB0054 Hypothetical protein 135 MEIRAI K YTAMAALLAFTVAGC R 

NMB0071 ctrA-Capsule polysaccharide 
export outer membrane 
protein 

391 MFKVKFYI R HAVLLLCGSL IVGC 
 

S 

NMB0086 Hypothetical protein 338 MYR K LIALPFALL LAAC G 

NMB0092 Hypothetical protein 75 MV R FFVLSFLTLINLCS LSAC N 

NMB0204 Lipoprotein 125 MN K TLILALSALLG LAAC S 

NMB0278 dsbA-1-Thiol:disulfide 
interchange protein DsbA 

232 MKS R HLALGVAALFA LAAC 

 

D 

NMB0294 dsbA-2-Thio:disulphide 
interchange protein DsbA 

231 MKL K TLALTSLTLLA LAAC S 

NMB0374 MafB-like protein 467 M K PLRRLTNL LAAC A 

NMB0375 mafA-1-adhesinMafA 313 M K TLLLLIPLV LTAC 

 

G 

NMB0430 prpB 2-methylisocitrate lyase 292 MMSQHSAGARFRQAV K ESNPLA V
AGC 

V 

NMB0532 htrA-protease Do 499 MFK K YQYLALAALCAAS LAGC D 

NMB0580 Protein disulfide isomerase 
NosL 

164 MK K TLLAIVAVSA LSAC R 

NMB0623 potD-2 spermidine/putrescine 
ABC transporter substrate-
binding protein 

379 MK K TLVAAAILSLA LTAC G 

NMB0652 mafA-2 adhesinMafA 313 MK TLLLLIPLV LTAC G 

NMB0653 MafB-like protein 422 M K PLRRLTNL LAAC A 

NMB0703 comL-Competence 
lipoprotein 

267 MK K ILLTVSLGLA LSAC A 

NMB0752 bacterioferritin-associated 
ferredoxin 

66 MFVCICNAVTDHQI K 

ETIAAGATTMGDLQSQLG VASC 

C 
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NMB0787 amino acid ABC transporter 
substrate-binding protein 

275 MMLK K FVLGGIAALV LAAC G 

NMB0844 Hypothetical protein 107 M KKCILGI LTAC A 

NMB0873 outer membrane lipoprotein 
LolB 

193 M K HTVSASVILL LTAC A 

NMB0923 cytochrome c 152 M K TQISLAAAAITLL LSAC G 

NMB0938 Hypothetical protein 278 MKN K TSSLLLWLTAIM LTAC S 

NMB1010 Hypothetical protein 187 M K ILALLIAATCA LSAC G 

NMB1017 sbp sulfate ABC transporter 
substrate-binding protein 

351 M K TYAPALYTAAL LTAC S 

NMB1035 Hypothetical protein 84 MN K LFITALSALA LSAC A 

NMB1057 ggt gamma-
glutamyltranspeptidase 

606 MPCMNHQSNSGEGVLVA K 
TYLLTALIMSMT ISGC 

Q 

NMB1060 fbp fructose-1,6-
bisphosphatase 

324 MDTLT R 
FLPEHLQQNQLPEALGGVLLSV 
VSAC 

T 

NMB1084 Hypothetical protein 173 MECHADVWHFILEKNMK K 
FYFVLLALG LAAC 

G 

NMB1087 Hypothetical protein 101 MSLLKTV K MQAAVALTALALTAC S 

NMB1107 Hypothetical protein 200 MNMK K LISAICVSIV LSAC N 

NMB1124 Hypothetical protein 215 M K PLILGLAAVLA LSAC Q 

NMB1125 Hypothetical protein 123 MMNPKTLS R LSLCAAVLA LTAC G 

NMB1126 Hypothetical protein 223 M K TVSTAVVLAAAAVS LTGC A 

NMB1162 Hypothetical protein 215 M K PLILGLAAVLA LSAC Q 

NMB1163 Hypothetical protein 123 MMNPKTLS R LSLCAAVLA LTAC G 

NMB1164 Hypothetical protein 223 M K TVSTAVVLAAAAVS LTGC A 

NMB1211 Hypothetical protein 80 M K YIVSISLAMG LAAC S 

NMB1212 Hypothetical protein 112 M K YIVSISLAMG LAAC S 

NMB1213 Lipoprotein 120 M K YIVSISLAMG LAAC S 

NMB1279 Membrane-bound lytic 
mureintransglycosylase B 

369 MKKR K ILPLAICLAA LSAC T 

NMB1335 Hypothetical protein 186 MN R LLLLSAAVL LTAC G 

NMB1369 Hypothetical protein 184 MK K IIASALIATFA LAAC Q 

NMB1410 Hypothetical protein 179 MDFLEIFIMSAFR K ILLIISCLL IASC L 

NMB1433 Hypothetical protein 177 MFPPD K TLFLCLSALL LASC G 

NMB1468 Hypothetical protein 107 MK K LLIAAMMAAA LAAC S 

NMB1470 Hypothetical protein 181 ML K TSFAVLGGCLL LAAC G 

NMB1523 Hypothetical protein 98 MK K SLFAAALLSLV LAAC G 

NMB1533 Outer membrane protein 183 M K AYLALISAAVIG LAAC S 

NMB1541 Lactoferrin-binding protein 737 MC K PNYGGIVLLPLL LASC I 

NMB1567 Macrophage infectivity 
potentiator 

272 MNTIF K ISALTLSAALA LSAC G 

NMB1578 Hypothetical protein 217 MFSVP R SFLPGVFVLAA LAAC K 

NMB1592 Lipoprotein 162 MK K YLIPLSIAAV LSGC Q 

NMB1594 Spermidine/putrescine ABC 
transporter substrate-binding 
protein 

376 
 

MT K HLPLAVLTALL LAAC G 

NMB1612 Amino acid ABC transporter 
substrate-binding protein 

268 MNMK K WIAAALACSALA LSAC G 

NMB1623 Pan1 major anaerobically 
induced outer membrane 
protein 

390 MK R QALAAMIASLFA LAAC G 

NMB1672 Hypothetical protein 172 M R LFPIAAALS LAAC G 

NMB1674 GDSL lipase 213 MPSEKPMNR R TFLLGAGALLLTAC G 

NMB1714 mtrE-Multidrup efflux pump 
channel protein 

467 MDTTL K TTLTSVAAAFA LSAC T 

NMB1716 mtrC-Membrane fusion 
protein 

412 MAFYAFKAM R AAALAAAVALV LS
SC 

G 

NMB1764 Hypothetical protein 104 MK K TLSNLVLISFCSTM LTAC P 

NMB1765 Hypothetical protein 99 MKKKLS K YSLFLSSVFC LTAC A 

NMB1785 Hypothetical protein 79 MRDSMKNW K QFTFFVIL VIAC Y 

NMB1811 pilP Tfp pilus assembly 
protein PilP 

181 M K HYALLISFLA LSAC S 

NMB1880 Hypothetical protein 321 MKP R FYWAACAVL LTAC S 

NMB898 Lipoprotein 171 MKIKQIV K PGLAVLAAGV LSAC A 

NMB1946 Outer membrane protein 287 MKTFF K TLSAAALALI LAAC G 

NMB1949 soluble lytic 
mureintransglycosylase 

616 MYLPSM K HSLPLLAALV LAAC S 

NMB1969 Serotype-1-specific antigen 1082 MRTTPTFPTKTF K PTAMALAVATT 
LSAC 

L 

NMB1977 Hypothetical protein 56 M K YGVFFAAATALL LSAC G 

NMB1991 Iron (III) ABC transporter 
permease 

324 MPSEKNIGFMAGSS R PLWVAFALL 
LVSC 

V 
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NMB2002 Hypothetical protein 72 MSMPEMP K WYDDDGQ IVSC T 

NMB2091 Hemolysin 202 MKPKPHTV R TLIAAIFSLA LSGC V 

NMB2132 Transferrin-binding protein-
like protein 

488 MFK R SVIAMACIFA LSAC G 

NMB2139 Hypothetical protein 297 MVTFSKI R PLLAIAAAAL LAAC G 

NMB2147 Hypothetical protein 140 
M R PIFLSFVLFPIL ITAC 

S 

 

In this table and in the subsequent tables (Table 3.2, 3.3 and 3.4) the assigned 

function and length of each putative lipoprotein is shown. The sequence of the 

signal peptides with the tripartite components are colour coded, with the n-region 

in brown, the h-region in green and the c-region (lipobox) in red. The residue at the 

+2 position is also shown.   

Of the 10 novel probable lipoproteins identified, 3 have been annotated as 

hypothetical proteins (NMB1084, NMB1410, NMB1523), 3 as metabolic enzymes 

(NMB0430, NMB1057, NMB1060), 2 as proteins associated with iron transport 

and storage, 1 as an antigen and 1 as a lipoprotein. This is typical of the functional 

diversity represented by the remaining 69 probable lipoprotein reported by Babu et 

al. (2006). Other than NMB1592 annotated as a lipoprotein, the remaining 9 have 

not been previously reported to be lipoproteins in the literature and this knowledge 

sheds new light on their function.  

According to the +2 rule, only two proteins, NMB0278 which encodes for DsbA 

and NMB0532 which encodes for HtrA are predicted as inner-membrane proteins 

due to the aspartate residue (D) present after the conserved cysteine. If this rule 

applies to N. meningitidis, this would indicate that all the other predicted proteins 

are outer membrane proteins.  

As seen in the above table, of the 79 putative lipoproteins, 37 have been 

previously annotated as hypothetical proteins and therefore have no assigned 

function. This includes NMB1468, which was previously experimentally confirmed 

as a lipoprotein (Hou et al., 2008).  

3.1.2. Investigating hidden lipoproteins 

3.1.2.1. Lipoproteins like fHbp with the signal peptide located within the first 

30% of amino acids from the start residue 

Since it was previously shown in MC58 that NMB1870 encoding fHbp, the very 

well characterised lipoprotein contains its signal peptide 40 amino acids 
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downstream of the predicted translation start residue (da Silva et al., 2016), we 

speculated there may be more lipoproteins present in the genome that have been 

assigned the wrong start codon and have therefore been missed as putative 

lipoproteins. 

Systematic analysis of each protein sequence of MC58 revealed a further 13 

proteins with a signal peptide located within the first 30% of the predicted 

translation start codon (Table 3.2). NMB0798 and NMB2064 contained a signal 

peptide of 2 possible lengths and NMB1538 contained a signal peptide of 3 

possible lengths.   

NMB no. Function 
predicted in 

NCBI 

Size of 
protein
(no. of 
amino 
acids) 

Protein sequence 
 

Amino acid 
at +2 

NMB1870 fHbp 
Annotated  
As  
Hypothetial 
protein 

320 MPSEPPFGRHLIFASLTCLIDAVCKKRYHNQNVYILSILRM
TRSKPVN R TAFCCLSLTTALI LTACCSSGGGGVAADIGA
GLADALTAPLDHKDKGLQSLTLDQSVRKNEKLKLAAQGAE
KTYGNGDSLNTGKLKNDKVSRFDFIRQIEVDGQLITLESGE
FQVYKQSHSALTAFQTEQIQDSEHSGKMVAKRQFRIGDIA
GEHTSFDKLPEGGRATYRGTAFGSDDAGGKLTYTIDFAA
KQGNGKIEHLKSPELNVDLAAADIKPDGKRHAVISGSVLY
NQAEKGSYSLGIFGGKAQEVAGSAEVKTVNGIRHIGLAAK
Q 

S 

NMB0462  
 

potD-1 
spermidine/p
utrescine 
ABC 
transporter 
substrate-
binding 
protein 

459 MQAFSLYPPVGHPDSAKKRQNRADVFLPFWKQDNFLGK
SVQYRFEFAQIYFTMPKPCAGVTMGRGDFFFSNLFHQES
ARMK K SVLAVLAALS LAACGGSEKNAVQPQADAASAA
NAEAAATDTLNIYNWSNYVDESTVEDFKKANNLKLTYDLY
ENNETLEAKMLTGKSGYDLVVPGIAFLPRQIEAGAYQKVN
KDLIPNYKNIDPELLKMLETADPGNQYAVPYFSGVNTIAITA
KGKELLGGKLPENGWDLLFKPEYTHKLKSCGIALWDTPSE
MFPILLNYLGKDPKGSNPEDLKAAAEVLKSIRPDVKRFSPS
IIDELARGDICLAAGNGGDLNLAKARSEEVKNNVGIEVLTP
KGMGFWIESWLIPADAKNVANAHKYINYTLDPEIAAKNGIA
VTFAPASKPAREKMPAELVNTRSIFPNEQDMKDGFVMPQ
MSTDAKKLSVSLWQKIKVGTN 

G 

 
 

NMB0530 beta-
hexosaminid
asev 

361 MTVPHIPRGPVMADIAAFRLTEEEKQRLLDPAVGGIILFRR
NFQNIEQLKTLTAEIKALRTPELIIAVDHEGGRVQRFIEGFT
RLPAMSTLGEIWD K DGASAAETAAGQVGRVLATE LSA
CGIDLSFTPVLDLDWGNCPVIGNRSFHRNPEAVARLALAL
QKGLTKGGMKSCGKHFPGHGFVEGDSHLVLPEDWRSLS
ELETADLAPFRIMSREGMAAVMPAHVVYPQVDTKPAGFS
EIWLKQILRRDIGFKGVIFSDDLTMEGACGAGGIKERARIS
FEAGCDIVLVCNRPDLVDELREDFRIPDNPTLAQRWQYM
ANTLGSAAAQAVMQTADFQAAQAFVAGLASPQDTAGGV
KVGEAF 
 

G 

NMB0751 XerD 
Tyrosine 
recombinase 

291 MEEGLIDRLLETLWLDRRLSQNTLNGYRRDLEKIARRLSQ
SGRMLKDADEADLAAAVYVDGEQ R SSQARA LSACKR
LYIWMEREGIRTDNPTRLLKPPKIDKNIPTLITEQQISRLLAA
PDTDTPHGLRDKALLELMYATGLRVSEAVGLNFGNVDLD
RGCITALGKGDKQRMVPMGQESAYWVERYYTEARPLLLK
GRNCDALFVSQKKTGISRQLAWMIVKEYASQAGIGHISPH
SLRHAFATHLVRHGLDLRVVQDMLGHADLNTTQIYTHVAN
VWLQGVVKEHHSRN 
 

K 

NMB0798  
 

FtsH, cell 
division 
protein 

655 MGNTFKSILVWVALGIGLMAAFNALDGKKEDNGQIEYSQF
IQQVNNGEVSGVNIEGSVVSGYLIKGERTDKSTFFTNAPL
DDNLIKTLLDKNVRVKVTPEEKPSALAALFYSLLPVLLLIGA
WFYFMRMQTGGGGKGGAFSFGKSRARLLD K DANKVT

D 

Table 3.2 Protein sequences of MC58 with the signal peptide located up to 30% 

from the predicted start residue. 
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FAD VAGCDEAKEEVQEIVDYLKAPNRYQSLGGRVPRGIL
LAGSPGTGKTLLAKAIAGEAGVPFFSISGSDFVEMFVGVG
ASRVRDMFEQAKKNAPCIIFIDEIDAVGRQRGAGLGGGND
EREQTLNQLLVEMDGFESNQTVIVIAATNRPDVLDPALQR
PGRFDRQVVVPLPDIRGREQILNVHSKKVPLDESVDLLSL
ARGTPGFSGADLANLVNEAALFAGRRNKVKVDQSDFEDA
KDKIYMGPERRSMVMHEDEKRATAYHESGHAIVAESLPF
TDPVHKVTIMPRGRALGLTWQLPERDRISMYKDQMLSQL
SILFGGRIAEDIFVGRISTGASNDFERATQMAREMVTRYG
MSDKMGVMVYAENEGEVFLGRSVTRSQNISEKTQQDIDA
EIRRILDEQYQVAYKILDENRDKMETMCKALMEWETIDRD
QVLEIMAGKQPSPPKDYSHNLRENADAAEDNAPHAPTRE
ETEAPAPADTASTESEQQPENKA 
 

NMB0928 Hypothetical 
protein  
 

398 MPSEPFGRHNATNTLISITQDDTMTHI K PVIAALALIG LA
ACSGSKTEQPKLDYQSRSHRLIKLEVPPDLNNPDQGNLY
RLPAGSGAVRASDLEKRRTPAVQQPADAEVLKSVKGVRL
ERDGSQRWLVVDGKSPAEIWPLLKAFWQENGFDIKSEEP
AIGQMETEWAENRAKIPQDSLRRLFDKVGLGGIYSTGERD
KFIVRIEQGKNGVSDIFFAHKAMKEVYGGKDKDTTVWQPS
PSDPNLEAAFLTRFMQYLGVDGQQAENASAKKPTLPAAN
EMARIEGKSLIVFGDYGRNWRRTVLALDRIGLTVVGQNTE
RHAFLVQKAPNESNAVTEQKPGLFKRLLGKGKAEKPAEQ
PELIVYAEPVANGSRIVLLNKDGSAYAGKDASALLGKLHSE
LR 

S 

NMB0982  
 

Chloride 
channel 
protein 
 

380 MHFIQHTAYGYGADGVYTSFREGVAQASGMRRVAVLTLC
GAVAGSGWWLLKRFGKPQIEIKAALKQPLQGLPFLTTVFH
VLLQIITVGLGSPLGREVAPREMTAAFAFAGGK R LGLDE
GEMRL LIACASGAGLAAVYNVPLASTLFILEAMLGVWTQ
QAVAAALLTSVIATAVARIGLGDVQQYHPANLTVNTSLLWF
SAVIGPILGVAAVFFQRTAQKFPFIKRDNIKIIPLAVCMFALI
GVISVWFPEILGNGKAGNQLTFGGLTDWQHSLGLTAVKW
LVVLMALAVGAYGGLITPSMMLGSTIAFAAATAWNSVFPE
MSSESAAIVGAAVFLGVSLKMPLTAIAFILELTYAPVALLMP
LCTGMAGAVWVAKKMGFK 

A 

NMB1206 bfrB 
Multispecies: 
bacterioferriti
n 

157 MKGDRLVIRELNKNLGLLLVTINQYFLHARILKNWGFEELG
EHFFKQSIVEMKAADDLIERILFLEGLPNLQELG K LLIGE
STEE IIACDLTKEQEKHEALLAAIATAEAQQDYVSRDLLEK
QKDTNEEHIDWLETQQELIGKIGLPNYLQTAAQED 

G 

NMB1269 
 

Hypothetical 
protein 

365 MNQTFTLPDTRPYPQNPIKNHLLLNAYQLAHNSSQASRKL
SSGQLQTEIRGMLEQNHYINLSLALTMSPDAGTYAALLSS
VNAVLDCE K EGEVQWFALPVVL VSGCKKERAIEMKLPT
EALFACLQNYPHLRALTQETQWLPYLVHSSDLSAVAPDE
WWRAKQNTEAAAQHLRRFAPRPLLLPEGQSVHVVYALG
FGSGKVQTALGQNLLQAGLPLMQVWQENLASEGVTLFAN
PLSPDSPVRALSDGSHTRQRMAMDVFAANAIRAVRMQSP
RVGVVAAAKAGGQILFGFNATDGAFEVVPQVFSWQLSFT
DNIAVIQQNFLDLMAECRVEHVYLLHNPLSAGEQESIPSYA
EALKREGHNPFF 

K 

NMB1324 
 

trxB 

Thioredoxin 

reductase 

218 MSQHRKLIILGSGPAGYTAAVYAARANLNPVIITGIAQGGQ
LMTTTEVDNWPADADGVQGPELMARFLAHAERFGTEIIFD
QINAVDLQKRPFTLKGDMGEYTCDALIVATGASA K YLGL
PSEEAFAGKG VSACATCDGFFYKNQDVAVVGGGNTAVE
EALYLANIAKTVTLIHRRSEFRAEKIMIDKLMKRVEEGKIILK
LESNLQEVLGDDRGVNGALLKNNDGSEQQIAVSGIFIAIGH
KPNTDIFKGQLEMDEAGYLKTKGGTADNVGATNIEGVWA
AGDVKDHTYRQAITSAASGCQAALDAERWLGSQNI 

A 

NMB1538  
 

RpoD RNA 
polymerase 
sigma factor 
RpoD 

642 MSRNQNHEEYQDDTRPLSIEEQRARLRQLIIMGKERGYIT
YSEINDALPDDMSDADQIDNIVSMISGLGIQVTEHAPDAED
ILLSDNAAVTDDDAVEEAEAALSSADSEFGRTTDPVRMYM
REMGQVDLLTREDEIIIAK K IENALKNMVQA ISACPGSIA
EILELIEKIRKDEIRVDEVVEAIIDPNEVLLNELGLGHLETTA
PEKPSNDNSDENEDDEESEEDADEISAANLAELKQKVIGH
FAQIEKDYKKMIGRLEKHHSRHKDYLAYRDAIANKLLEVRF
ATRQIDSLSSSLRGKVENIRKLEREIRDICLDRVHMERDYFI
QNFLPEITNLEWIEEEIAKGRVWSDALDRFRHAILEKQTEL
ADMEKETRISIEELKEINKNMVSSEKETAAAKQEMIQANLR
LVISIAKKYTNRGLQFLDLIQEGNIGLMKAVDKFEYRRGYK
FSTYATWWIRQAITRSIADQARTIRIPVHMIETINKMNRISR
QHLQETGEEPDSAKLAELMQMPEDKIRKIMKIAKEPISMET
PIGDDDDSHLGDFIEDANNVAPADAAMYTSLHEVTKEILES
LTPREAKVLRMRFGIDMNTDHTLEEVGRQFDVTRERIRQI
EAKALRKLRHPTRSDRLRSFLDSEDSKL 

P 

NMB1564 Hypothetical 
protein 

140 MQVTSKWIDGMCFVGTTEGGHSVV MEGSAAEGKAK R 
GPSPLEMLLLG VAGCSSIDVVMIAEKQRQKVTDCRATVT
AKRADDAPRVFTEIHIHFKVFGHDLKESAIERAVQMSAEKY
CSASIMLGKAAKITHSFEIAGADK 

T 
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NMB2029  
 

thrB 
Homoserine 
kinase  
 

305 MSVYTSVSDDEMRGFLSGYDLGEFVSLQGIAQGITNSNYF
LTTTSGRYVLTVFEVLKQEELPFFLELNRHLSMKGVAVAA
PVARKDG R LDSVLAGKPAC LVACLKGSDTALPTAEQC
FHTGAMLAKMHLAAADFPLEMENPRYNAWWTEACARLL
PVLSQDDAALLCSEIDALKDNLGNHLPSGIIHADLFKDNVL
LDGGQVSGFIDFYYACRGNFMYDLAIAVNDWARTADNKL
DEALKKAFIGGYEGVRPLSAEEKAYFPTAQRAGCIRFWVS
RLLDFHFPQAGEMTFIKDPNAFRNLLLSLG 

I 

NMB2064  
 

Hypothetical 
protein 

462 MNAVVVAVIVMLVLSLSRVHVVLSLTVGAFVGGAVAGMPL
QNIADAAGQVSQAGIIPVFNKGLEGGAKIALSYAMLGAFA
MAITHSGLPQQLAGAVVRKLNRGGMPDSVRSGEGAVKW
LLLSIILVMGMMSQNIIPIHIAFIPMIVPPLLLVFN R LKIDRR 
LIACVITFGLVTTYMFLPYGFGAIFLNEILLGNIHSAAPQLDV
KNINVMAAMAIPALGMLAGLLLAFVHYRKPRLYQSNNADT
AGNADAANRPQPSAYRSLAAAVAIAVCFAIQLMYEDSLVL
GAMLGFAVFMMLGVINRDKANDVFGEGIKMMAMVGFIMI
AAQGFAAVMNATGHIQPLVESSMAIFGNSKGMAALAMLV
VGLLVTMGIGSSFSTLPIIAAIYVPLCVGLGFSPLATVAIVGT
AGALGDAGSPASDSTLGPTMGLNADGQHDHIRDSVIPTFI
HYNIPLLIAGWIAAMVL 

V 

 

The protein sequence immediately downstream of the signal peptide is 

highlighted. Signal peptides with different lengths are underlined and shown in 

italics. Proteins selected for study are highlighted in yellow. 

Within this group of predicted protein sequences, 4 have been previously 

annotated as hypothetical proteins with no assigned function. According to the 

above data only 1 protein, NMB0798 which encodes for FtsH contains a D residue 

at position +2. 

3.1.2.2. Lipoproteins with signal peptide located in the middle of the protein 

We furthered searched for additional signal peptides located near the middle of the 

protein. 
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Table 3.3 Protein sequences of MC58 with signal peptide located near the middle 

of the protein. 

NMB no. Function 
predicted 
in NCBI 

Size of 
protein 
(no. of 
amino 
acids) 

Protein sequence 
 

Amino acid 
at +2 

NMB0618 ppsA 
phosphoen
olpyruvate 
synthase 

794 MADNYVIWFENLRMTDVERVGGKNASLGEMISQLTE
KGVRVPGGFATTAEAYRAFLAHNGLSERISAALAKLD
VEDVAELARVGKEIRQWILDTPFPEQLDAEIEAAWNK
MVADAGGADISVAVRSSATAEDLPDASFAGQQETFLN
INGLDNVKEAMHHVFASLYNDRAISYRVHKGFEHDIVA
LSAGVQRMVRSDSGASGVMFTLDTESGYDQVVFVTS
SYGLGENVVQGAVNPDEFYVFKPTLKAGKPAILRKTM
GSKHIKMIFTDKAEAGKSVTNVDVPEEDRNRFSITDEE
ITELAHYALTIEKHYGRPMDIEWGRDGLDGKLYILQAR
PETVKSQEEGNRNLRRFAINGDKTVLCEGRAIGQKVG
QGKVRLIKDASEMDSVEAGDVLVTDMTDPDWEPVMK
RASAIVTNRGGRTCHAAIIA R ELGIPA VVGCGNATE
LLKNGQEVTVSCAEGDTGFIYAGLLDVQITDVALDNM
PKAPVKVMMNVGNPELAFSFANLPSEGIGLARMEFIIN
RQIGIHPKALLEFDKQDDELKAEITRRIAGYASPVDFYV
DKIAEGVATLAASVYPRKTIVRMSDFKSNEYANLVGG
NVYEPHEENPMLGFRGAARYVADNFKDCFALECKAL
KRVRDEMGLTNVEIMIPFVRTLGEAEAVVKALKENGLE
RGKNGLRLIMMCELPSNAVLAEQFLQYFDGFSIGSND
MTQLTLGLDRDSGLVSESFDERNPAVKVMLHLAISAC
RKQNKYVGICGQGPSDHPDFAKWLVEEGIESVSLNP
DTVIETWLYLANELNK 

G 

NMB1130 Squalence 
synthase 
HpnD 

290 MKGLDYCRQKAEESRSSFLSGFRFLTQEKRDAVTVLY
AFCRELDDVVDECSNPDVAQATLNWWRGDLDKVFG
GAMPEHPVNQALRQVKETFKLPKYELEALIDGMQMD
LVQARYGSFEEL K LYCHRVAG VVGCLIARILGFSDD
QTLEYADKMGLALQLTNIIRDVGEDARRGRIYLPMEE
MRRFDVPASVILQCSPTGNFAELMAFQIKRARETYRE
AVSLLPDADKKAQKVGLVMAAVYYELLNEIDRDGAQN
VLKYKIALPSPRKKRIALKTWLFGFKPRPGTPERA 

L 

NMB1566 purN 
phosphorib
osylglycina
midetransf
ormylase 

208 MKNIVILISGRGSNMQAIVNAAIHNVRIAAVLSNSETAA
GLQWAAERGIPTDSLNHKNFTSRLAFDTAMM 
EKIDAYQPDLVVLAGFMRILTPEFCARYEGRLMNIHPSI
LPSFTGLHTHE R ALEAGCR VAGCTIHFVTAELDCGP
IVSQGVVPILDGDTADDIAARVLAVEHKLYPKAVADFA
AGRLIIEGNRVRNSENADAARFLTA 

T 

 

The protein sequence immediately downstream of the signal peptide is 

highlighted. Proteins selected for study are highlighted in yellow. 

3.1.2.3. Lipoproteins with signal peptide located towards the C-terminus of 

the protein 

15 protein sequences of MC58 with the signal peptide located towards the c-

terminus were identified. NMB1151 contained a signal peptide of 2 possible 

lengths and NMB1996 contained a signal peptide of 3 possible different lengths. 
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Table 3.4 Protein sequences of MC58 with signal peptide located towards the c-

terminus. 

NMB no. Function 
predicted in 

NCBI 

Size of 
protein 
(no. of 
amino 
acids) 

Protein sequence 
 

Amino acid 
at +2 

NMB0111 
 

fmt methionyl-
tRNAformyltra
nsferase 

308 MKVIFAGTPDFAAAALRAVAAAGFEIPLVLTQPDRPK
GRGMQLTAPPVKQAALELGLRVEQPEKLRNNAEALQ
MLKEVEADVMVVAAYGLILPQEVLDTPKHGCLNIHAS
LLPRWRGAAPIQRAIEAGDAETGVCIMQMDIGLDTGD
VVSEHRYAIQPTDTANEVHDALMEIGAAAVVADLQQL
QSKGRLNAVKQPEEGVTYAQKLSKEEARIDWSKSAA
VIERKIRAFNPVPAAWVEYQGKPMKIR R AEVVAQQ
GAAGEVLSCSADGL VVACGENALKITELQPAGGRR
MNIAAFAAGRHIEAGAKL 

G 

NMB0382 
 

rmpM-Outer 
membrane 
protein 
 

242 MTKQLKLSALFVALLASGTAVAGEASVQGYTV 
GQSNEIVRNNYGECWKNAYFDKASQGRVECGDAVA
APEPEPEPEPAPAPVVVVEQAPQYVDETISLSAKTLF
GFDKDSLRAEAQDNLKVLAQRLSRTNVQSVRVEGHT
DFMGSDKYNQALSERRAYVVANNLVSNGVPVSRISA
VGLGESQAQMTQVCEAEVAKLGAKVS K AKKREA 
LIACIEPDRRVDVKIRSIVTRQVVPAHNHHQH 

I 

 
NMB0400 
 

Transposase, 
truncated 

190 MPYYLYCLRLRRLVLIFVNPLYLHQFHETQVGSVKQLI
AHFDRLIDELDKQIDDHTHTHFDGKAQVAEQI 
KGIGSITTATLMAMLPELRRLSHKRIAGLAGIAPHPRE
SGETKFKSRCFGGRSAVRKALYMATVAATRFEPLIR
DFHQ R PLSEGKPYKVA VTACMRKLLTISNARMRD
YFAENDTAENGI 

M 

NMB0727 DNA 
modification 
methylase 

216 MITISNEDNMILMSRYPDKYFDLAIVDPPYGILNKTKR
GGDYKFNMNEYSQWDIKPDQTYFNELFRVSKN 
QIIWGGNYFGELWLRSEYNKGFIIWDKNQPETLNNFS
MAEMAWSSFDRPSKIFRFSVRKNRNKTHPTQKP 
VELYQWLLKMYAKQGD K ILDTHLGSGTLAIACCIAQ
FD LTACEINSDYYQQSIEKIKNNLPEARISFGHP 
GYCIIE 

E 

NMB0949 
 

sdhD 
Succinate 
dehydrogenas
e, 
hydrophobic 
membrane 
anchor protein 

113 MVERKLTGAHYGLRDWVMQRATAVIMLIYTVALLVVL
FSLPKEYSAWQAFFSQTWVKVFTQVSFIAVFLHAWV
GIRDLWMDYIKPFGV R LFLQVATIVW LVGCLVYSV
KVIWG 
 

L 

NMB0998 Oxidoreductas
e 

1277 MTTTTAPQRIREIPYNYTSYTDREIVIRLLGDEAWQIL
QDLRGQRKTGRSARMLFEVLGDIWVVVRNPYLVDDL
LEHPKRRAALVREMRHRLNEIRKRRDDNRQVDVLVA
AAEKAVERFDSSFDETSQKRRQILERLSKITKPHNIMF
DGLARVTHVTDATDWRVEYPFVVVNPDTEAEIAPLV
RALIELDLVIIPRGGGTGYTGGAIPLDANSAVINTEKLD
KHRGVEYVELAGLDGKHPIIRCGAGVVTRRVEETAH
QAGLVFAVDPTSADASCVGGNVAMNAGGKKAVLWG
TALDNLAYWNMVNPQGEWLRIERVRHNFGKIHDEET
AVFDVHTLDSDGINIVKTERLEIPGHKFRKVGLGKDVT
DKFLSGLPGVQKEGTDGIITSVAFVLHKMPKYTRTVC
MEFFGTVATATPSIVEIRDFLLAHESVRLAGLEHLDW
RYVRAVGYATKAAGKGRPKMVLLADVVSDDEAAVE
AAAEHICELARARDGEGFIAVSPEARKTFWLDRSRTA
AIAKHTNAFKINEDVVIPLERLGEYSDGIERINIELSIQN
KLKLCAALEQYLSGKLPIDKMGTDLPTAELLGERGKH
ALAHVSAVKTRWEWLLANLDTPLADYKARYGAAVHA
APEAKNNESCFIAFRDFRLRVSVKADVMKPLSEIFSG
KTDTKIIQGLGKIHAKTVRSRVFVALHMHAGDGNVHT
NIPVNSDDAEMLQTAYRSVERIMKIARSLNGVISGEH
GIGITKLEFLSDEEMQPFWDYKNQVDPKHTFNRHKL
MKGSDLRNAYTPSFELLGAESLIMEKSNLGTIADSVK
DCLRCGKCKPVCSTHVPRANLLYSPRNKILGVGLLIE
AFLYEEQTRRGVSIKHFEELMDIGDHCTVCHRCVKP
CPVNIDFGDVTVAVRNYLADSGHKRFAPAAAMGMAF
LNATGPKTIKALRAAMIQIGFPAQNFAYKIGKLLPIGTK
KQKAEPKATVGKAPIKEQVIHFINRPLPKNVPAKTPRS
LLGIEDGKSIPIIRNPAAPEDAEAVFYFPGCGSERLFS
QIGLAVQAMLWHVGVQTVLPPGYMCCGYPQDAGG
NKAKAEEMSTNNRVAFHRMANTLNYLDIKTVVVSCG
TCYDQLEKYRFEEIFPGCRIIDIHEYLLEKGVKLDGVK
GQQYLYHDPCHTPIKTMNATQMASSLMGQKVVLSD

P 
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RCCGESGMFAVKRPDIATQVKFRKQEEIEKNL K EL
PQGEPVKM LTSCPACLQGLSRYADDNNMPADYIVIE
MAKYILGENWLDEFVKKANNGGVEKVLL 
 

NMB1047 
  

Hypothetical 
protein 

28 MNKTLSILPVAILLGGCAAGGGNTFGSLDGGTGMGG
SIVKMAVGSQCRAELDKRSEWRLTALAMSAEKQAE
WENKICACVAQEAPERMLAPST R NQALAALTAKT 
VSACFKHLYR 
 

F 

NMB1151 cysI-1 Sulfate 
reductase 
subunit beta 

589 
 

MTVQTKTKGLAWQEKPLSDNERLKTESNFLRGTILD
DLKDPLTGGFKGDNFQLIRFHGMYEQDDRDIRAERA
EAKLEPLKFMLLRCRLPGGIIKPSQWIELDKFARENS
HYRSIRLTNRQTFQFHGVPKAKLQTMHRLLHKLGLD
SIATAADMNRNVLCTSNPIESELHRQAYEYAKKISEHL
LPRTRGYLDVWVDGKKVQSSDDFLQEDEPILGKTYL
PRKFKTAVVIPPLNDVDCYGNDLDFVAVSDGNGQLA
GFNVLAGGGLSMEHGNTKTYPNISLELGFVPPEHAL
KAAEAVVTTQRDFGNRSDRKNARTRYTIQNMGLDNF
RAEVERRMGMPFEPVRPFKFTGRGDRIGWVKGIDG
NWHLTLFIESGRLVDEGGKQLLTGVLEIAKIHKGDFRI
TANQNLIVANVAEADKAKIEEFARTYGLIRNDVSKLRE
NAMSCVSFPTCPLAMAEAERVLPDFIGELDKIMA K 
HGTSDDYIVTR ITGCPNGCGRAMLAEIGLVGKAVGR
YNLHIGGDREGVRIPRLYKENITLPEILAELDDLIGKW
AAERNIGEGFGDFAIRTGIVKPVLNAPVDFWDASKAV
AIARA 
 

P 

NMB1362 Excinuclease 
ABC subunit 
C 

617 MNKETRFPEHFDIPLFLKNLPNLPGVYRFFNESGNVL
YVGKAVNLKRRVSGYFQKNDHSPRIALMVKQVHHIE
TTITRSESEALILENNFIKALSPKYNILFRDDKSYPYLM
LSGHQYPQMAYYRGTLKKPNQYFGPYPNSNAVRDSI
QVLQKVFMLRTCEDSVFEHRDRPCLLYQIKRCTAPC
VGHISEEDYRDSVREAATFLNGKTDELTRTLQHKMQ
TAAANLQFEEAARYRDQIQALGIMQSNQFIDSKNPNN
PNDIDLLALAVSDGLVCVHWVSIRGGRHVGDKSFFP
DTKNDPEPNGQDYAEAFVAQHYLGKSKPDIIISNFPV
PDALKEALEGEHGKQMQFVTKTIGERKVRLKMAEQN
AQMAIAQRRLQQSSQQHRIDELAKILGMDSDGLN R 
LECFDISHTQGEAT IASCVVYDEQNIQPSQYRRYNIT
TAKPGDDYAAMREVLTRRYGKMQEAEANGETVKWP
DAVLIDGGKGQIGVAVSVWEELGLHIPLVGIAKGPER
KAGMEELILPFTGEVFRLPPNSPALHLLQTVRDESHR
FAITGHRKKRDKARVTSSLSDIPGVGSKRRQALLTRF
GGLRGVIAASREDLEKVEGISKALAETIYNHLH 
 

V 

NMB1447 Rep ATP-
dependent 
DNA helicase 

671 MMKLNPQQLEAVRYLGGPLLVLAGAGSGKTGVITQK
IKHLIVNVGYLPHTVAAITFTNKAAAEMQERVAKMLPK
PQTRGLTICTFHSLGMKILREEANHIGYKKNFSILDST
DSAKIIGELLGGTGKEAVFKAQHQISLWKNDLKTPED
VVQTASNIWEQQTARVYASYQETLQSYQAVDFDDLI
RLPAVLLQQNSEVRNKWQRRLRYLLVDECQDTNTC
QFTLMKLLTGAEGMFTAVGDDDQSIYAWRGANMEN
LRKMQENYPQMKVIKLEQNYRSTARILKIANKVIENNP
KLFTKKLWSQLGEGEPVKVVACQNEQHEADWVVSQ
IVKQKLIGGDKTQYADFAVLYRGKHQARIFEEALRGA
RIPYQLSGGQSFFDKAEIKDVLSYVRLLANPNDDPAF
LRAVTTPKRGIGDVTLGKLNTYAHEHECSLYEAAQNE
EALATLNNTNRQHLQTFMDMFVSYLAKAETSEAGEFI
NSLLEEIDYENHLMQNEEGKAGEIKWRNVGDLVSWF
ARKGGEDGKNIIELAQTVALMTLLEGKDEEETDAVSL
STLHAA K GLEYPYVF LVGCEEGVLPHNDSIEEGNV
EEERRLMYVGITRAKRQLTLTHCVKRKKQGTWQFPE
PSRFIDEMPQEDLKILGRKGGEPIVSKEEGRRNLADII
GRLDNLKKSGAAD 
 

E 

NMB1572 acnB 
Aconitate 
hydratase B 

861 MLEAYRKAAAERAALGIPALPLNAQQTADLVELLKSP
PAGEGEFLVELLAHRVPPGVDDAAKVKASFLAAVAE
GSASSPLISPEYATELLGTMLGGYNIHALIELLDDDKL
ASIAAKGLKHTLLMFDSFHDVQEKAEKGNKYAQEVL
QSWADAEWFASRAKVPEKITVTVFKVDGETNTDDLS
PAPDAWSRPDIPLHALAMLKNPRDGITPDKPGEVGPI
KLLEELKAKGHPVAYVGDVVGTGSSRKSATNSVIWH
TGEDIPFVPNKRFGGVCLGGKIAPIFFNTQEDSGALPI
EVDVSALKMGDVVDILPYEGKIVKNGETVAEFELKSQ
VLLDEVQAGGRINLIIGRGLTAKAREALKLPASTAFRL
PQAPAESKAGFTLAQKMVGRACGLPEGQGVRPGTY
CEPRMTTVGSQDTTGPMTRDELKDLACLGFSADMV
MQSFCHTAAYPKPVDVKTHKELPAFISTRGGVSLRP
GDGVIHSWLNRLLLPDTVGTGGDSHTRFPIGISFPAG

P 
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SGLVAFAAATGVMPLDMPESVLVRFSGKLQPGVTLR
DLVNAIPLYAIKQGLLTVAKAGKKNIFSGRILEIEGLPD
LKVEQAFELTDASAERSAAGCTVKLNKEPIIEYMKSN
VVLMKNMIANGYQDPRTLERRIKAMEKWLANPELLE
AD K DAEYAAVIEINMDDIKEP IIACPNDPDDVCFMS
ERSGTKIDEVFIGSCMTNIGHFRAASKLLEGKADTPV
RLWIAPPTKMDAKQLSDEGHYGVLGRAGARMEMPG
CSLCMGNQAQVREGATVMSTSTRNFPNRLGKNTFV
YLGSAELAAICSKLGKIPTVEEYQANIGIINEQGDKIYR
YMNFNEIDSYNEVAETVNV 
 

NMB1602 
 

Transposae 372 MLIHYIDIAKRNFVIAVSSLSKTKTETNNPKGIAHTIEYL
KKHKVALVVTESTGGLEIPAAKAIHRAGIA 
VIIANPRQTHQFAQSQSLTKTDAKDAKMPAFFAQMK
AQKEDWQTMPYHPPTEAEEVLEALVNRRNQSADMR
TAEKNRLHQVHETQVGSVKQLIAHFDRLIDESDKQID
DHTHTHFDGKAQVAEQIKGIGSITTATLMAMLPELGR
LSHKRIASLVGIAPHPRKSGEAKFKSRCFGGRSAVLK
ALYMATVAATRFEPLIRDFHQ R PLSEGKPYKVA VT
ACMRKLLETFAKFLSLTTTEIPTQVFGCFRPKYRLILP
KHPLNPPRTPDNQASGLPFRRQRAHLACWRLSTGS
NTSPSDGFAHSL 
 

M 

NMB1643 InfB 
Translation 
initiation factor 
IF-2 

962 
 

MSNTTVEQFAAELKRPVEDLLKQLKEAGVSKNSGSD
SLTLDDKQLLNAYLTKKNGSNSSTISIRRTKTEVSTVD
GVKVETRKRGRTVKIPSAEELAAQVKAAQTQAAPVR
PEQTAEDAAKARAEAAARAEARAKAEAEAAKLKAAK
AGNKAKPAAQKPTEAKAETAPVAAETKPAEESKAEK
AQADKMPSEKPAEPKEKAAKPKHERNGKGKDAKKP
AKPAAPAVPQPVVSAEEQAQRDEEARRAAALRAHQ
EALLKEKQERQARREAMKQQAEQQAKAAQEAKTGR
QRPAKPAEKPQAAAPAVENKPVNPAKAKKEDRRNR
DDEGQGRNAKGKGGKGGRDRNNARNGDDERVRG
GKKGKKLKLEPNQHAFQAPTEPVVHEVLVPETITVAD
LAHKMAVKGVEVVKALMKMGMMVTINQSIDQDTALI
VVEELGHIGKPAAADDPEAFLDEGAEAVEAEALPRPP
VVTVMGHVDHGKTSLLDYIRRTKVVQGEAGGITQHIG
AYHVETPRGVITFLDTPGHEAFTAMRARGAKATDIVIL
VVAADDGVMPQTIEAIAHAKAAGVPMVVAVNKIDKEA
ANPERIRQELTAHEVVPDEWGGDVQFIDVSAKKGLNI
DALLEAVLLEAEVLEL 
TAPVDAPAKGIIVEARLDKGRGAVATLLVQSGTLKKG
DMLLAGTAFGKIRAMVDENGKSITEAGPSIPVEILGLS
DVPNAGEDAMVLADEKKAREIALFRQGKYRDVRLAK
QQAAKLENMFNNMGETQAQSLSVIIKADVQGSYEAL
AGSLKKLSTDEVKVNVLHSGVGGITESDVNLAIASGA
FIIGFNVRADASSRKLAENENVEIRYYNIIYDAINDVKA
AMSGMLSPEEKEQVTGTVEI R QVISVSKVGN IAGC
MVTDGVVKRDSHVRLIRNNVVIHTGELASLKRYKDDV
KEVRMGFECGLMLKGYNEIMEGDQLECFDIVEVARS
L 
 

M 

NMB1684 serS serine—
tRNA ligase 

431 MLDIQLLRSNTAAVAERLARRGYDFDTARFDTLEERR
KSVQVKTEELQASRNSISKQIGALKGQGKHEEAQAA
MNQVAQIKTDLEQAAADLDAVQKELDAWLLSIPNLPH
ESVPAGKDETENVEVRKVGTPREFDFEIKDHVDLGE
PLGLDFEGGAKLSGARFTVMRGQIARLHRALAQFML
DTHTLQHGYTEHYTPYIVDDTTLQGTGQLPKFAEDLF
HVTRGGDETKTTQYLIPTAEVTLTNTVADSIIPSEQLP
LKLTAHSPCFRSEAGSYGKDTRGLIRQHQFDKVEMV
QIVHPEKSYETLEEMVGHAENILKALELPYRVITLCTG
DMGFGAA K TYDLEVWVPAQNTYRE ISSCSNCEDF
QARRLKARFKDENGKNRLVHTLNGSGLAVGRTLVAV
LENHQNADGSINIPAALQPYMGGVAKLEVK 
 

S 

NMB1996 purl 
phosphoribosy
lformylglyvina
midine 
synthase 

1320 MSVVLPLRGVTALSDFRVEKLLQKAAALGLPEVKLSS
EFWYFVGSEKALDAATVEKLQALLAAQSVEQTP 
KAREGLHLFLVTPRLGTISPWASKATNIAENCGLAGIE
RIERGMAVWLEGRLNDEQKQQWAALLHDRMTE 
SVLPDFQTASKLFHHLESETFSGVDVLGGGKEALVK
ANTEMGLALSADEIDYLVENYQALQRNPSDVELM 
MFAQANSEHCRHKIFNADFILNGEKQPKSLFGMIRDT
HNAHPEGTVVAYKDNSSVIEGAKIERFYPNAAE 
NQGYRFHEEDTHIIMKVETHNHPTAIAPFAGAATGAG
GEIRDEGATGKGSRPKAGLTGFTVSNLNIPDLK 
QPWEQDYGKPEHISSPLDIMIEGPIGGAAFNNEFGRP
NLLGYFRTFEEKFDGQVRGYHKPIMIAGGLGSI 
QAQQTHKDEIPEGALLIQLGGPGMLIGLGGGAASSM
DTGTNDASLDFNSVQRGNPEIERRAQEVIDRCWQ 

G 
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LGGKNPIISIHDVGAGGLSNAFPELVNDARRGAVFKL
REVPLEEHGLNPLQIWCNESQERYVLSILEKDL 
DAFRAICERERCPFAVVGTATDDGHLKVRDDLFANN
PVDLPLNVLLGKLPKTTRTDKTVAPSKKPFHAGD 
IDITEAAYRVLRLPAVAAKNFLITIGDRSVGGLTHRDQ
MVGKYQTPVADCAVTMMGFNTYRGEAMSMGEK 
PTVALFDAPASGRMCVGEAITNIAAVNIGDIGNIKLSA
NWMAACGNEGEDEKLYRTVEAVSKACQALDLS 
IPVGKDSLSMKTVWQDGEEKKSVVSPLSLIISAFAPV
KDVRKTVTPELKNVEDSVLLFVDLGFGKARMGG 
SAFGQVYNNMSGDAPDLDDTGRLKAFYSVIQQLVAE
NKLLAYHDRSDGGLFAVLVEMAFAGRCGLDIDLN 
LLLAQTFITNHTALSQSLRTEEVKALAEWQETIARTLF
NEELGAVIQVRKQDVADIINLFYQQQLHHNVF 
EIGTLTDENTLIIRDGQTHLISDNLIKLQQTWQETSHQI
QRLRDNPACADSEFALIGDNERSALFADVKFDVNEDI
AAPFINSGAKPKIAILREQGVNGQIEMAAAFTRAGFD
AYDVHMSDLMAG R IHLADFKM LAACGGFSYGDVL
GAGEGWAKSILFHPALRDQFAAFFADPDTLTLGVCN
GCQMVSNLAEIIPGTAGWPKFKRNLSE 
QFEARLSMVHVPKSASLILNEMQGSSLPVVVSHGEG
RADFALHGGNISADLGIALQYIDGQNQVTQTYPL 
NPNGSPQGIAGVTNADGRITIMMPHPERVYRAAQMS
WKPEGWTELSGWYRLFAGARKALG 
 

 

The protein sequence immediately downstream of the signal peptide is 

highlighted. Proteins selected for study are highlighted in yellow. 

In the above table, one protein has been previously annotated as a hypothetical 

protein and therefore have no assigned function.  

3.2. Testing if signal peptides located internally in the protein are recognised 

for translocation, lipid modification and cleavage. 

Since preprolipoproteins are translocated by the Sec translocon as linear proteins 

to which SecA or SecB proteins bind (Auclair et al., 2012), in theory it should be 

possible for preprolipoproteins with signal peptides located at any region of the 

protein to be bound by these proteins for transport across the inner membrane for 

subsequent lipid modification and cleavage of the signal peptide. By simply 

tagging a c-Myc epitope to the C-terminus of the protein, and expressing this in 

MC58, the size of the tagged protein can be determined by Western blotting with 

an anti-c-Myc antibody. If cleavage of the signal peptide occurs, this will be 

reflected by the reduced size of the tagged protein. In addition, upon expressing 

the tagged protein in MC58Lnt, the subtle mobility difference due to loss of the 

third fatty acid can be visualised. 

Five proteins were chosen for this study; one with the signal peptide located within 

the first 30% of the protein from the predicted start residue (NMB1564) (Table 3.2), 

one with the signal peptide located in the middle of the protein (NMB1566) (Table 

3.3) and three with the signal peptide located towards the C-terminus of the 



42 
 

protein (NMB0727, NMB0949 and NMB1447) (Table 3.4). The previously 

characterised lipoprotein, NMB1468 (Table 3.1) (Hsu et al., 2008) and fHbp (Table 

3.2) were chosen as positive controls.  

3.2.1. Cloning c-Myc tagged gene encoding putative lipoproteins in pGCC4 

3.2.1.1. Preparation of insert DNA 

Genomic DNA from N. meningitidis MC58 was used as template to PCR amplify 

the 7 selected genes using the primers listed in Table 2.6. A PacI (TTAATTAA) 

restriction site was included in the forward primer and a PmeI (GTTTAAAC) 

restriction site was incorporated in the reverse primer downstream of a c-Myc 

epitope (CTACAGGTCTTCTTCGCTAATCAGTTTCTGTTC) (Figure 3.5). The 

correct sized band was verified by PCR and agarose gel electrophoresis (section 

2.3.4 and 2.3.5) and gene clean was performed (section 2.3.3). A double digest 

using the enzymes PacI and PmeI was performed on all PCR products as 

described in section 2.3.6 followed by gene clean (section 2.3.3) 

 

 

 

 

 

 

 

3.2.1.2. Preparation of vector DNA 

The pGCC4 vector (Figure 3.6) was digested with PacI and PmeI (section 2.3.6) 

and then dephosphorylated (section 2.3.7). Ligations of PCR products to pGCC4 

were performed, as described in section 2.3.8. The ligation reactions were used to 

transform DH5αTM cells using the heat shock method outlined in section 2.4.1 and 

colonies were verified by PCR as stated in section 2.4.3. Each plasmid clone was 

further verified by sequencing as outlined in section 2.4.3. The sequencing data 

ATG 

Reverse primer 

Forward primer 

Gene
5’  3’ 

Figure 3.5 Gene encoding putative lipoprotein amplified using forward and 

reverse primers with the restriction sites PacI and PmeI and a c-Myc encoding 

epitope at 3’ end of the gene. 
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confirmed the correct sequence for each clone (Appendix 2). Once colonies with 

correct band size were verified, each plasmid construct (Figure 3.7) was 

transformed into strains MC58 and MC58Lnt as described in section 2.5.1.  

 

 

 

Figure 3.6 Map of Neisseria complementing vector, pGCC4 

(https://www.addgene.org/37058/). The above map shows the aspC and lctP 

genes which flank the antibiotic resistance marker and multiple cloning site (MCS). 

The gene of interest is cloned into the MCS downstream of the IPTG- inducible 

lacZ promotor. Following transformation into N. meningitidis, homologous 

recombination occurs between the aspC and lctP genes permitting integration of 

the cloned gene in the intergenic sequence between these 2 genes without 

causing polar effects (Mehr and Seifert, 1998).  
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Figure 3.7 Map of recombinant plasmid construct (not drawn to scale). The 

diagram above shows the gene encoding for putative lipoprotein fused with a c-

Myc tag at the 3’ end cloned into restrictions site PacI and PmeI of pGCC4 

plasmid vector. 

3.2.1.3. Verification of cloned c-Myc tagged proteins 

Each plasmid construct was verified by PCR using pGCC4 primers (Table 2.9). 

The PCR products were visualised by agarose gel electrophoresis (section 2.3.5). 

The expected band size was observed for each PCR product (Figure 3.8) and the 

sequence was confirmed by DNA sequencing, in both directions using the pGCC4 

primers (section 2.4.3) (Appendix 2). 

pGCC4 vector 

c-Myc tag 

Gene  

PmeI PacI 
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3.2.1.4. Verification of c-Myc tagged recombinant strains of MC58 and 

MC58Lnt 

For each recombinant meningococcal strain generated by transformation with 

pGCC4 containing c-Myc tagged fHbp, NMB1468, NMB0727, NMB0949, 

NMB1447, NMB1564, NMB1566, 1 colony was selected. Following genomic 

extraction, PCR was conducted using the pGCC4 primers (Table 2.9) and the 

PCR product was visualised using agarose gel electrophoresis (section 2.3.5). The 

expected band size for each recombinant clone of strain MC58 (Figure 3.9a) and 

MC58Lnt (Figure3.9b) was observed. 

 

 

 

 

 

 

 

 

 

Figure 3.8 PCR products of recombinant plasmids. 
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DNA sequencing with pGCC4 forward and reverse primers confirmed the 

expected DNA sequence (Appendix 2). 

3.2.2. Investigation of expression c-Myc tagged NMB1468 in MC58 and 

MC58Lnt 

Whole cell lysates of broth cultures A600 0.1 of recombinant strains of MC58 and 

MC58Lnt were fractionated by 16% (w/v) SDS-PAGE, transferred to a PVDF 

membrane and probed with an anti-c-Myc antibody. Non-transformed strains, 

MC58 and MC58Lnt were used as negative controls for all Western blots.   

Figure 3.9 Agarose gel electrophoresis of PCR products of recombinant 

strains of MC58 (a) and MC58Lnt (b). 
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The c-Myc tagged protein, NMB1468 (positive control) has a molecular weight of 

12.9 kDa and once cleaved, 10.3 kDa. A band of approximately 10 kDa was 

observed for both recombinant strains and recombinant MC58Lnt showed a band 

with reduced intensity (Figure 3.10). c-Myc tagged NMB1468 of MC58Lnt migrated 

slightly further in comparison to MC58 as shown in Figure 3.10. These results 

support previous observations for His tagged fHbp recombinant strains of MC58 

and MC58Lnt from which acylation by Lnt is inferred (da Silva et al., 2016). 

 

 

 

 

 

 

 

Figure 3.10 Western blot of whole cell lysates of c-Myc tagged NMB1468 

recombinant strains of MC58 and MC58Lnt and non-transformed negative controls 

with anti-c-Myc antibody.  
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3.2.3. Immunofluorescence microscopy of c-Myc tagged NMB1468 in MC58 

and MC58Lnt 

In order to verify cell surface expression of c-Myc tagged NMB1468 in MC58 and 

MC58Lnt, immunofluorescent microscopy of whole cells was performed. Images 

were captured with the Nikon ECLIPSE 80i Microscope using the appropriate filter 

with 20X magnification (Figure 3.11).  

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Immunofluorescence microscopy of whole cells of strain MC58 and 

MC58Lnt expressing c-Myc tagged NMB1468. 

 

To confirm the presence of meningococcal cells, cells of both MC58 and MC58Lnt 

were incubated with FITC-labelled rabbit polyclonal IgG raised against WC N. 

meningitidis as shown in Figure 3.11 (Left and right panel). The cell surface 

expression of c-Myc tagged recombinant NMB1468 in both strains was compared 

by also using anti-c-Myc antibody (right panel). MC58Lnt cells showed reduced 

level of expression of c-Myc tagged NMB1468 compared to cells of strain MC58. 

Anti-WC N. meningitidis Pab- 

FITC 
c-Myc Mab-Alexa Fluor 555 

MC58Lnt 

MC58 
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This provides evidence that the disruption in the lnt gene results in reduced 

exportation of diacylated NMB1468 to the cell surface as previously demonstrated 

for His-tagged fHbp (da Silva et al., 2016). 

3.2.4. Investigation of expression of the other c-Myc tagged putative 

lipoproteins in MC58 and MC58Lnt 

Whole cell lysates of recombinant strains of MC58 and MC58Lnt were fractionated 

by 16% (w/v) SDS-PAGE, transferred to a PVDF membrane and probed with anti-

c-Myc antibody. Non-transformed strains, MC58 and MC58Lnt were used as 

negative controls for all Western blots.   

The predicted molecular weight (Mw) of both the full length c-Myc tagged proteins 

and of the cleaved portion (from the cysteine at the lipobox, to the end of the c-

Myc epitope) are shown in Table 3.12.  

 

Table 3.12 Expected molecular weight of c-Myc tagged proteins in the absence 

and presence of cleavage of the signal peptide, as predicted by ExPASy Compute 

pi/Mw (section 2.6.2). 

NMB no. Expected 
Mw of full 
protein 
sequence 
(Da) 

kDa Expected 
Mw if 
cleaved (Da) 

kDa 

fHbp 35471.15 35.5 28149.38 28.0 

NMB0949 14334.10 14.3 2451.86 2.4 

NMB0727 26583.23 26.6 5258.86 5.4 

NMB1564 17839.24 17.8 11123.77 11.1 

NMB1477 76801.51 76.8 13042.78 13.0 

NMB1566 23636.10 23.6 9348.57 9.3 

 

MC58 and MC58Lnt expressing c-Myc tagged fHbp were used as a second 

positive control, but expression of recombinant fHbp was not detected by Western 

blotting with anti-c-Myc antibody. Western blots for both MC58 and MC58Lnt 

strains expressing c-Myc tagged recombinant, NMB0727, NMB1447, NMB1564 

and NMB1566 showed bands corresponding in size to that expected for full-length 

proteins (Figure 3.13a). This suggests that signal peptide cleavage has not 

occurred. 
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The expression of c-Myc tagged NMB0949 was not observed in the Western blot 

(Figure 3.13b). For this recombinant protein, once the signal peptide is cleaved, 

the resulting protein would give a molecular weight of 2.4 kDa which would be too 

small for detection by Western blotting. As this recombinant protein was not 

detected, we predicted that either this is protein was not being expressed or that 

the signal peptide was being cleaved at the C-terminus.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13 Western blot of whole cell lysates of recombinant MC58 and MC58Lnt 

proteins (a) NMB0727, NMB1447, NMB1564 and NMB1566 with anti-c-Myc 

antibody. The blot includes non-transformed negative controls and recombinant 

protein NMB1468. Figure (b) Western blot of recombinant proteins NMB0727 and 

NMB0949. 
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3.3. Further investigation of expression and processing of c-Myc NMB0949 

in MC58 and MC58Lnt 

In order to increase the size of the potentially cleaved C-terminal domain of 

NMB0949 to allow its detection by Western blot, a larger tag was fused to the end 

of this gene and that is the GFP reporter gene. In addition, an N-terminal tag was 

incorporated to allow detection of both portions of the protein. Specifically, a hexa-

histidine (His) tag was incorporated at to the 5’ end of NMB0949 gene and the 

GFP encoding gene was fused to the 3’ end of the gene by cloning NMB0949 into 

plasmid pRSET-EmGFP. If processed and cleavage occurred at the lipobox of the 

signal peptide, this would generate 2 products: the N-terminal portion being 107 

amino acids in length (with expected molecular weight of 12.7 kDa as predicted by 

ExPASy) and the C-terminal portion being 250 amino acids long (with expected 

molecular weight of 29.0 kDa as predicted by ExPASy). These would be detected 

by anti-His and anti-GFP antibodies respectively (Figure 3.14). 

 

 

 

 

 

 

3.3.1. Cloning of N-terminal His tagged, C-terminal GFP tagged NMB0949 

into pGCC4 (pGCC4-His-NMB0949-GFP) 

3.3.1.1. First step cloning of N-terminal His tagged NMB0949 into pRSET-

EmGFP vector 

3.3.1.1.1. Preparation of insert DNA 

The His-NMB0949 region was PCR amplified using genomic DNA of strain MC58 

(section 2.3.4) and using the primers listed in Table 2.6. Primers were designed by 

incorporating a BamHI restriction site (GGATCC) in the forward primer followed by 

Signal 

peptide 

41.7 kDa 

His   NMB0949 GFP 

12.7 kDa 29.0 kDa 

Figure 3.14 Systematic diagram of His-NMB0949-GFP protein (not drawn to 

scale). Diagram shows the molecular weight of the fusion protein and the 

molecular weight of the two products generated if the signal peptide is 

cleaved.  
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the initiation codon and the His epitope (CACCACCACCACCACCAC). The 

reverse primer was designed with the restriction site EcoRI (GAATTC) 

immediately downstream of the gene of interest and in place of the stop codon of 

NMB0949 (Figure 3.15). PCR products were visualised by agarose gel 

electrophoresis (section 2.3.5) (Figure 3.18). The expected band size of 1,100 bp 

was observed and the PCR product was gene cleaned (section 2.3.3). Restriction 

digest using the enzymes BamHI and EcoRI was performed on the PCR product 

as outlined in section 2.3.6, followed by gene clean (section 2.3.3). 

 

 

 

 

 

Figure 3.15 The NMB0949 gene amplified using forward and reverse primers with 

the restriction sites BamHI and EcoRI respectively and a His encoding epitope at 

the 5’ end of the gene. 

3.3.1.1.2. Preparation of vector DNA 

The pRSET-EmGFP plasmid (Figure 3.16) was digested using the enzymes 

BamHI and EcoRI and dephosphorylated (section 2.3.6 and 2.3.7). The digested 

PCR products and plasmid vector were ligated (section 2.3.8) and the resulting 

ligation reaction was used to transform into DH5αTM cells (section 2.4.1) (Figure 

3.17). Transformants were isolated following selection on ampicillin containing 

plates (section 2.4.2) and plasmid DNA was extracted as described in section 

2.3.2.  

 

Forward primer 

Reverse primer 

5’ 3’ Gene



53 
 

 

 

 

 

 

                               

 

          

 

 

 

Figure 3.17 Map of recombinant plasmid construct (not drawn to scale). The 

diagram above shows the gene encoding NMB0949 fused with a His epitope at 

the 5’ end, cloned into restrictions site BamHI and EcoRI of pRSET-EmGFP 

plasmid vector. 

 

 

 

GFP 

 

Figure 3.16 Map of pRSET-EmGFP plasmid vector (InvitrogenTM). DNA 

fragments were cloned into BamHI and EcoRI sites 

(https://tools.thermofisher.com/content/sfs/vectors/prsetfp_map.pdf). 
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3.3.1.1.3. Verification of pRSET-EmGFP vector His-NMB0949 clones 

To confirm the presence of the cloned insert in pRSET-EmGFP, 2 transformant 

colonies were isolated. Following plasmid DNA extraction (section 2.3.2) PCR was 

performed with primers that anneal at the 5’ and 3’ end of the His-NMB0949-GFP 

(Table 2.6). The correct sized band of 1,100 bp was generated from each 

transformant (Figure 3.18). 

 

 

 

 

 

 

 

 

Figure 3.18 Verification of pRSET-EmGFP-His-NMB0949 clones by PCR 

amplification. Lanes 1 and 2, clone 1 and 2 respectively, with PCR annealing 

temperature of 40°C, lane 3 and 4, clone 1 and 2 respectively with PCR annealing 

temperature of 45°C. Lane 5, no DNA control PCR.  

3.3.1.2. Second step cloning of N-terminal His tagged, C-terminal GFP 

tagged NMB0949 into pGCC4 vector 

 

The His-NMB0949-GFP fragment was cloned into the PacI-PmeI sites of pGCC4. 

Briefly, plasmid DNA of pRSET-EmGFP-His-NMB0949 was used as template in 

PCR with forward primer, incorporating a PacI site, that annealed to the 5’ end of 

the His-NMB0949-GFP fragment and with reverse primer incorporating a PmeI site 

that anneals to the 3’ end of the His-NMB0949-GFP fragment. The PCR product 
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generated was digested with PacI and PmeI then cloned into the PacI, PmeI cut 

pGCC4 (section 2.3) (Figure 3.19). 

 

 

 

 

 

 

 

 

 

 

 

                       

 

 

 

 

 

 

 

 

 

 

Following transformation of DH5αTM cells, transformants were selected by growth 

on erythromycin plates. 

3.3.1.2.1. Verification of pGCC4-His-NMB0949-GFP clones 

Nine transformant colonies were isolated and plasmid DNA extracted (section 

2.3.2) and used as a template for PCR amplification with pGCC4 specific primers 

(Table 2.9). The expected band size for 4 of these clones was observed by gel 

GFP  

His tag  

(a) PacI PmeI 

pRSET-EmGFP 

vector 

EcoRI BamHI 

NMB0949 

His tag  (b) 

pGCC4 vector 

PmeI PacI 

NMB0949 

Figure 3.19 Map of recombinant plasmid constructs. The diagram above (a) 

shows the pRSET-EmGFP-His-NMB0949 plasmid DNA used as template to 

amplify the His-NMB0949-GFP fragment with primers incorporating with PacI 

and PmeI restriction sites and (b) recombinant plasmid pGCC4 with the insert 

His-NMB0949-GFP cloned into the PacI and PmeI restriction sites. 
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electrophoresis (section 2.3.5) as shown in Figure 3.20. Plasmid 1 was sequenced 

using pGCC4 primers (Table 2.9) as previously described in section 2.4.3. 

 

 

 

 

 

 

 

 

 

 

 

Following verification by DNA sequencing (Appendix 2), plasmid DNA of clone 1 of  

pGCC4-His-NMB0949-GFP was used to transform meningococcal strains MC58 

and Mc58Lnt and 2 transformants from each strain were selected following growth 

on erythromycin plates. 

3.3.1.3. Verification of MC58 and MC58Lnt transformed with pGCC4-His-

NMB0949-GFP 

Genomic DNA of these transformants was verified by PCR (section 2.3.4 ) using  

pGCC4 primers (Table 2.9).The expected band size of 1,327 bp was observed 

following agarose gel electrophoresis (section 2.3.5) (Figure 3.21).DNA 

sequencing with pGCC4 forward and reverse primers confirmed the expected 

sequence (Appendix 2). 
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Figure 3.20 PCR products from 9 pGCC4-His-NMB0949-GFP clones using 

pGCC4 specific primers (lane 1-9). Lane 10 and 11, pGCC4 empty vector and 

no DNA negative controls respectively. 
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Figure 3.21 PCR products of recombinant clones of MC58 (a) and 

MC58Lnt (b). 
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3.3.1.4. Immunofluorescence microscopy of pGCC4-His-NMB0949-GFP in 

MC58 and MC58Lnt 

In order to verify if GFP is expressed in the transformant strains, cells were 

streaked onto a glass slide and viewed under the Nikon ECLIPSE 80i Microscope 

using the appropriate filter with 10X magnification, for green fluorescence (Figure 

3.22).  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.22 Fluorescence of GFP tagged recombinant meningococcal 

cells. 
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Green fluorescence was detected in both transformant strains of MC58 and 

MC58Lnt strains. This indicates that GFP was successfully expressed by these 

strains. No expression was observed in either of the non-transformed negative 

controls. 

 

3.3.2. Investigation of expression of His-NMB0949-GFP in MC58 and 

MC58Lnt 

Whole cell lysates of recombinant strains of MC58 and MC58Lnt were fractionated 

by 16% (w/v) SDS-PAGE as previously described in section 2.6.1 and transferred 

to two separate PVDF membranes, one probed with anti-His antibody and the 

other with anti-GFP antibody (section 2.6.2). Non-transformed strains, MC58 and 

MC58Lnt were used as negative controls for all Western blots.  

Both Western blots displayed numerous non-specific bands. The expected 

molecular weight of the non-cleaved fusion protein of 41.7 kDa was not observed 

in either blot. However, the expected molecular weight of the 2 products (Figure 

3.14 ) generated following cleavage: i.e. 12.7 kDa His fragment and 29.0 kDa GFP 

fragment were faintly detected as indicated by the arrows in Figure 3.23 (a) and 

(b) respectively. These bands were absent in the non-transformed negative control 

strains. Overall, the western blot results are inconclusive and require further 

investigation. 
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Figure 3.23 Western blot of whole cell lysates of recombinant strains of 

MC58 and MC58Lnt probed with anti-His (a) and anti-GFP (b) antibodies. 
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4. Discussion 

The last 4 years have seen a breakthrough in prophylactics for meningococcal 

serogroup B disease with the availability of both Bexsero and Trumenba (CDC, 

2016). However, for both vaccines the need remains to increase the breadth of 

strains these vaccines can target (Lucidarme et al., 2011; McNeil et al., 2013; 

Biagini et al., 2016). Lipoproteins are emerging as promising vaccines against 

bacterial diseases (Barnett et al., 2009) and more and more lipoproteins are being 

identified such that the lipoproteome of bacteria is larger than originally estimated 

from genome annotations. Identifying surface exposed lipoproteins that elicit 

potent protective antibodies could be key in developing novel or improved 

vaccines. To this end the lipoproteome of N. meningitidis was investigated. 

The vaccine antigen fHbp is a lipoprotein expressed by most meningococcal 

strains and binds hFH, which allows the bacterium to evade the host immune 

system due to the down regulation of the alternative complement pathway (Murthy 

et al., 2009).  FHbp of MC58 (NMB1870) is annotated in NCBI as a hypothetical 

protein 320 amino acids long. Using the predictive algorithm tool in the DOLOP 

website, the fHbp signal peptide is 26 amino acids long 

(MTRSKPVN R TAFCCLSLTTALI LTAC) and is positioned 40 amino acids 

downstream of the annotated translation start residue (Table 3.2) (generating a 

protein of 255 amino acids following cleavage of this signal peptide (da Silva et al., 

2016). This observation, led us to speculate that there may be other lipoproteins 

that have been missed in MC58 due to the incorrectly annotated start residue.  

In this study, we have used the predictive algorithm tool in the DOLOP website to 

further investigate the number of lipoproteins predicted in the MC58 genome. The 

first set of lipoproteins identified (Table 3.1) was obtained by screening all 2,119 

protein sequences of MC58, in the NCBI database. Previously, Babu et al. (2006) 

identified 69 lipoproteins out of the 2,079 proteins that they analysed within MC58. 

In this study, 79 lipoproteins were found. This represents approximately 3.7% of 

the MC58 proteome. The 10 additional probable lipoproteins identified range in 

their functionality as annotated in the NCBI database with just one of these, 

NMB1592, annotated as a lipoprotein. Babu et al. (2002) have previously recorded 

different classifications of lipoproteins. As seen with this study, some of these 

classifications include enzymes, antigens, structural proteins and hypothetical 

proteins. The current literature reveals that these lipoproteins have not been 
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characterised or recognised as lipoproteins before. Three of these probable 

lipoproteins NMB0430, NMB1057, NMB1060 have been assigned functions in 

different metabolic pathways and encode for the enzymes 2-methylisocitrate lyase 

(prpB), gamma-glutamyltranspeptidase (ggt) and fructose -1, 6-bisphosphatase 

(fbp) respectively. The lipoprotein potential of these 3 annotated proteins may 

contribute to membrane anchorage either on the cytoplasmic membrane or the 

outer  membrane and therefore aids their function. NMB1057 (ggt) has been 

previously suggested as a surface exposed antigen, however this also requires 

further investigation (Christodoulides, 2014).  The 3 probable hypothetical proteins 

NMB1084, NMB1410, NMB1523 are of great interest as these proteins remain a 

mystery with no assigned function. According to the +2 rule, these probable 

hypothetical proteins are associated with the outer membrane. Moreover, 2 of the 

probable lipoproteins NMB0725 and NMB1991 are annotated as iron associated 

proteins. NMB0725 is a bacterioferritin-associated ferrodoxin which is thought to 

be involved in iron storage and NMB1991, also a membrane enzyme, is a 

transporter of iron (Garmory et al., 2004; Tordello et al., 2012). Finally, NMB1969 

encodes for serotype-1-specific antigen which is an OMP and NMB1594 which is 

annotated as a lipoprotein which requires further experimental verification. 

Of the 79 probably lipoproteins now identified, as many as 37 are annotated as 

hypothetical proteins in NCBI including the characterised lipoprotein, NMB1468 

and fHbp (NMB1870) (Ferrari et al., 2006; Hsu et al., 2008). The need remains to 

experimentally confirm that these hypothetical proteins are lipoproteins and to test 

the significance of their lipid moieties in their functional or structural roles. 

 In order to identify any putative lipoproteins, like that of fHbp with the signal 

peptide located downstream of the predicted start residue, all possible 

combinations of the lipobox were used as query sequence in a BLASTp analysis 

and signal peptides were then manually searched for. Thirty-one additional 

putative lipoproteins were identified containing signal peptides and these were 

grouped according to their position. The first group of 13 proteins contained signal 

peptides within the first 30% of the protein sequence from the annotated start 

residue (Table 3.2). Two of these proteins, NMB0798 and NMB2064, contained a 

signal peptide of 2 possible different lengths and NMB1538, contained a signal 

peptide of 3 possible different lengths (Table 3.2). The second group of 3 proteins, 

contained signal peptides in the middle of the protein sequence (Table 3.3). 
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Finally, the last group of 15 proteins revealed signal peptides towards the C-

terminus of the protein. Amongst these, NMB1151 contained a signal peptide of 2 

possible different lengths and NMB1996 carried a signal peptide of 3 possible 

different lengths (Table 3.4).  

To test if these internally positioned signal peptides are functional, five proteins; 

NMB0727, NMB0949, NMB1447, NMB1564, NMB1566 were chosen for this study 

as well as fHbp and NMB1468 lipoproteins as positive controls. Selections were 

made based on the position of the signal peptide. NMB1564 like fHbp has a signal 

peptide located within the first 30% of the protein sequence, specifically 24 amino 

acids downstream of the predicted translation start residue and is annotated as a 

hypothetical protein. NMB1566 contains a signal peptide in the middle of the 

protein sequence and NMB0727, NMB0949 and NMB1447 have signal peptides 

located towards the C-terminus. Up until now, signal peptides have only been 

found at the N-terminus of proteins and studies experimentally testing the function 

of signal peptides have focused solely on these lipoproteins with the signal peptide 

conventionally positioned at the N-terminus (Perlman and Halvorson, 1983; 

Hayashi and Wu, 1990). The presence of internal signal peptides raises two 

questions. Firstly, have these proteins been annotated with the wrong methionine 

as the translation start residue, as with fHbp? This in particular may apply to those 

proteins with signal peptides located within the first 30% of the protein from the 

annotated start codon. Secondly, can signal peptides be recognised and cleaved if 

not located at the N-terminus of the protein? In addition, we investigated whether 

these proteins are lipidated by the enzyme Lnt.  

It has been shown that the lnt gene is responsible for the addition of a third fatty 

acid to fHbp (da Silva et al., 2016). A mutation in the lnt gene is not lethal in N. 

meningitidis (da Silva et al., 2016) or in certain other bacteria including Francisella 

novicida, Francisella tularensis and Neisseria gonorrhoea (LoVullo et al., 2015) 

unlike in E. coli (Chahales and Thanassi, 2015). MC58 with a mutated lnt gene 

can sort diacylated fHbp to the outer membrane for export to the cell surface, 

albeit inefficiently. Unexpectedly the level of fHbp expression in MC58Lnt strains 

was decreased by 10-fold likely due to proteolysis of the diacylated lipoproteins 

that do not get sorted to the outer membrane (da Silva et al., 2016).  

All proteins selected for this study were tagged at the C-terminus with a c-Myc 

epitope and transformed into strains MC58 and MC58Lnt. If the signal peptide is 
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cleaved, this will be reflected by the change in its molecular weight. There will also 

be a mobility difference in the recombinant protein expressed in MC58 and 

MC58Lnt due to their tri- and di-acylated forms respectively. In addition, the 

diacylated lipoprotein in strain MC58Lnt should show reduced band intensity in 

comparison to MC58. 

In this study, we showed firstly for the positive control c-Myc tagged protein 

NMB1468, a mobility difference in strain MC58Lnt and a dramatic reduction in 

quantity of protein (Figure 3.10) as observed for recombinant fHbp in MC58Lnt (da 

Silva et al., 2016). From this we can infer that NMB1468 is triacylated in MC58 by 

Lnt and is diacylated in MC58Lnt. da Silva et al. (2016) speculated that proteolysis 

is occurring due to the build-up of diacylated lipoproteins that are not sorted to the 

outer membrane hence causing envelope stress. In response to over-expressed or 

misfolded proteins in the periplasm which causes envelope stress, two pathways 

are employed by E. coli, σE and Cpx pathways (McBroom and Kuehn, 2007). We 

predict that one or more of these pathways is employed by N. meninigitidis. 

Generally, σE is activated in response to misfolded proteins during OMP 

biogenesis and the Cpx, a two component pathway, is activated by over-

expressed proteins accumulating in the cell envelope (Ravio et al., 2013). Both 

pathways result in expression of proteases which then degrade the 

misfolded/accumulated proteins in the periplasm. 

Cell surface expression of the c-Myc tagged lipoprotein NMB1468, was observed 

in MC58 by immunofluorescence microscopy (Figure 3.11) and this was 

dramatically reduced in MC58Lnt. This supports previous immunofluorescence 

microscopy observations for recombinant fHbp expressed in MC58Lnt which 

inefficiently exports diacylated fHbp to the cell surface (da Silva et al., 2016).  

As with NMB1468, the c-Myc epitope was tagged to each of the 5 proteins 

selected for this study. The predicted change in molecular weight of each protein if 

the signal peptide is cleaved was determined by ExPASy 

(http://web.expasy.org/compute_pi/). Following Western blotting with anti-c-Myc 

antibody, it was found that four of these proteins, NMB0727, NMB1447, NMB1564 

and NMB1566 were not cleaved and rather expressed the full size protein. 

Bacterial lipoproteins are transported in a linear form across the cytoplasmic 

membrane by the Sec pathway (Auclair et al., 2012). In Gram-negative bacteria, 
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the preprolipoprotein synthesized in the cytoplasm is generally recognised by 

SecB (chaperone) which prevents folding and delivers the preprolipoprotein to 

SecA which provides the energy for the protein to be transported across the 

cytoplasmic membrane (du Plessis et al., 2011). Once transferred across the 

membrane, the conserved cysteine is acylated by the enzyme Lgt which enables 

protein anchorage to the membrane and then the signal peptide is cleaved by the 

enzyme Lsp. With no signal peptide cleavage occurring in these 4 proteins, either 

SecB does not recognise the signal peptide in the cytoplasm, as it is not 

positioned at the N-terminus or once the preprolipoprotein is translocated and 

folding begins in the cytoplasmic membrane, the signal peptide is no longer 

accessible to Lsp, preventing cleavage. However, if the signal peptide is not 

accessible to Lsp, this would result in the build-up of proteins in the periplasm and 

we would expect this to result in periplasmic proteolysis and dramatic reduction in 

the level of protein detected. Given that we observed strong protein expression 

from our Western blot analysis, we favour the first hypothesis that SecB is not 

recognising the signal peptide and that the proteins remain in the cytoplasm. 

Lipoproteins studied to date contain a signal peptide at the N-terminus and most 

studies have focused on determining which amino acids in the signal peptide are 

key in cleavage. A signal peptide with a hydrophobic region abundant in alanine 

residue has been associated with efficient cleavage (de Souza et al., 2011). 

Interestingly, the expression of NMB0949 in MC58 and MC58Lnt, was not 

detected by Western blotting when probed with anti-c-Myc antibody (Figure 3.13b). 

The full protein sequence of NMB0949 in the NCBI database gives a protein of 

expected molecular weight of 14.3 kDa including the c-Myc tag. If the signal 

peptide located towards the C-terminus is cleaved, the predicted molecular weight 

of the cleaved protein is 2.4 kDa. This would be too small to be detected by 

Western blotting. This led us to speculate that the signal peptide is being cleaved 

in NMB0949. In order to investigate this further the C-terminus was fused with 

GFP which is approximately 27.0 kDa. The cleaved lipoprotein fused to GFP 

would generate a product of about 29.0 kDa which could be detectable by Western 

blotting. In addition, to detect expression of the N-terminal region, we fused the 

start of the protein with a His tag which would generate a peptide of almost 13.0 

kDa if cleavage occurs. For the non-cleaved form, when probed with anti-His or 

anti-GFP antibody, the expected molecular weight is about 42.0 kDa. 

Unfortunately, for both membranes, there was a high degree of non-specific 
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binding making it difficult to interpret the data clearly. For the membrane probed 

with the anti-His antibody, diffuse bands around the expected size for the cleaved 

protein were observed for the recombinant strains (Figure 3.23a). Likewise, for the 

membrane probed with anti-GFP antibody, faint bands were observed of the size 

expected following successful cleavage of the signal peptide (Figure 3.23b). It was 

confirmed by immunofluorescence microscopy of whole cells of both recombinant 

strains that GFP was indeed expressed by these strains (Figure 3.22). Overall, 

despite there being some indication that the signal peptide is cleaved, our results 

are inconclusive. Due to restricted time, further optimisation was not possible.  

The predictive algorithm tool used in this study successfully enabled the 

identification of 10 more probable lipoproteins in MC58 with the signal peptide with 

conventional localisation of the signal peptide at the N-terminus. These are not 

known in the literature to be lipoproteins (except for NMB1594 that was annotated 

as a lipoprotein) and shed important light on these proteins. Thirteen proteins were 

identified with the signal peptide located downstream of the predicted translation 

start residue according to the annotated genome. Whilst one of these proteins that 

was investigated experimentally in this study demonstrated no cleavage of the 

signal peptide, given that a precedent has been set by fHbp for successful 

recognition of its downstream, somewhat “internal” signal peptide, the remaining 

12 proteins need to be individually tested.  

There are a number of limitations with programs that annotate bacterial genomes, 

in particular in identifying the correct start codon (Goal et al., 2013). Genome 

annotation programs, in addition to searching for homologous sequences, rely on 

signal sensors to identify functional sites including promoters, ribosomal binding 

site, start and stop codons and transcription terminators (Mathé et al., 2002; Rust 

et al., 2002). However, bacterial genes are often organised in operons on the 

chromosome and these clusters of genes are transcribed by a single promotor 

positioned at around -10 base pairs upstream of the start codon of the first gene 

(Trun and Trempy, 2009). Without promoter cues for the downstream genes in the 

operon, it is difficult to predict which methionine or valine is employed as the 

translation start residue. For this reason, in the case of fHbp and likely many other 

proteins, the incorrect amino acid has been predicted to be the translation start 

residue. This study highlights the importance of experimentally testing each 
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putative lipoprotein with downstream signal peptide (as opposed to N-terminal 

signal peptide).  

From our pilot study, we could confirm the importance of the signal peptide being 

positioned at the N-terminus to function successfully that is to be recognised by 

the Sec apparatus and permit translocation to the periplasm for lipidation and 

cleavage prior to export to the cell surface in the case of most lipoproteins. If the 

+2 rule of E. coli applies to the meningococcus, from our study, all putative 

lipoproteins other than HtrA (NMB0532) and DsbA (NMB0278) which have an 

aspartate residue at this position, get sorted to the outer membrane. Further 

validation of this rule is required for N. meningitidis as it has recently been 

suggested by Hooda et al. (2017) that N. meninigitidis strains do not follow the +2 

rule as based on previous data they predict HtrA cannot be the only lipoprotein not 

exported to the cell surface.  Furthermore, as shown by Hooda et al. (2016), it is 

likely that many of these probable lipoproteins are flipped by Slam to be exposed 

at the cell surface like fHbp, LbpB and TbpB, and this can be readily tested by 

immunofluorescence microscopy as shown in our study for the lipoprotein 

NMB1468.  

Importantly investigating the ability of these previously unknown lipoproteins to 

engage the immune system and generate a potent and protective antibody 

response could provide new leads for an improved meningococcal serogroup B 

vaccine.   
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6. Appendix 

6.1. Appendix 1 

6.1.1. Abbreviations 

Apolipoprotein N-acyltransferase (Lnt) 

Factor H binding protein (fHbp) 

Human factor H (hFH) 

Invasive meningococcal disease (IMD) 

Isopropyl β-1- thiogalactopyranoside (IPTG) 

Lipooligosacharrides (LOS) 

Localisation of lipoproteins (Lol) 

Luria-Bertani (LB) 

Optical density (OD) 

Outer membrane proteins (OMP) 

Preprolipoprotein diacylglyceryl transferase (Lgt) 

Preprolipoprotein diacylglyceryl transferase (Lgt) 

Serogroup B (MenB) 

Serum bactericidal antibody (SBA) 

Surface lipoprotein assembly modulator (Slam) 

Toll-like receptors (TLR) 

Whole cell (WC) 
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6.2. Appendix 2  

6.2.1. Sequencing alignment using the tool BioEdit 

For each recombinant plasmid DNA sequence, the forward and reverse 

sequencing with pGCC4 primers (Eurofins Genomics and Genewiz) were aligned 

using the tool BioEdit (Figure 6.1- 6.8). 
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Figure 6.1 Alignment of the DNA sequence of c-Myc tagged fHbp 

obtained from forward (reverse complement) and reverse sequencing 

with pGCC4 primers. Restriction sites are highlighted in yellow boxes. 
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Figure 6.2 Alignment of the DNA sequence of c-Myc tagged NMB1468 

obtained from forward (reverse complement) and reverse sequencing 

with pGCC4 primers. Restriction sites are highlighted in yellow boxes. 
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Figure 6.3 Alignment of the DNA sequence of c-Myc tagged NMB0727 

obtained from forward (reverse complement) and reverse sequencing 

with pGCC4 primers. Restriction sites are highlighted in yellow boxes. 
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Figure 6.4 Alignment of the DNA sequence of c-Myc tagged NMB0949 

obtained from forward (reverse complement) and reverse sequencing 

with pGCC4 primers. Restriction sites are highlighted in yellow boxes. 
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Figure 6.5 Alignment of the DNA sequence of c-Myc tagged NMB1447 

obtained from forward (reverse complement) and reverse sequencing 

with pGCC4 primers. Restriction sites are highlighted in yellow boxes. 
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Figure 6.6 Alignment of the DNA sequence of c-Myc tagged NMB1564 

obtained from forward (reverse complement) and reverse sequencing 

with pGCC4 primers. Restriction sites are highlighted in yellow boxes. 
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Figure 6.7 Alignment of the DNA sequence of c-Myc tagged NMB1566 

obtained from forward (reverse complement) and reverse sequencing 

with pGCC4 primers. Restriction sites are highlighted in yellow boxes. 
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Figure 6.8 Alignment of the DNA sequence of His tagged, GFP 

reporter containing His-NMB0949-GFP obtained from forward (reverse 

complement) and reverse sequencing with pGCC4 primers. Restriction 

sites are highlighted in yellow boxes. 


