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 The presence of microaneurysms(MAs) in retinal images is a pathognomonic sign of 

Diabetic Retinopathy (DR). This is one of the leading causes of blindness in the working 

population worldwide. This paper introduces a novel algorithm that combines 

information from spatial views of the retina for the purpose of MA detection. Most 

published research in the literature has addressed the problem of detecting MAs from 

single retinal images. This work proposes the incorporation of information from two 

spatial views during the detection process. The algorithm is evaluated using 160 images 

from 40 patients seen as part of a UK diabetic eye screening programme which contained 

207 MAs. An improvement in performance compared to detection from an algorithm that 

relies on a single image is shown as an increase of 2% ROC score, hence demonstrating 

the potential of this method.  
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1. Introduction 

This paper is an extension of the algorithm originally 

presented in the International Conference on Signal Processing 

Theory and Applications (IPTA 2016) [1]. This work adds a 

combination of spatial information from two retinal images for 

microaneurysm (MA) detection. Diabetic Retinopathy (DR) is 

one of the most common causes of blindness among working-age 

adults [2]. Signs of DR can be detected from images of the retina 

which are captured using a fundus camera. Microaneurysms 

(MAs) are one of the early signs of DR. Several algorithms for 

automated MA detection from single 45 degree fundus images 

have been proposed in the literature. However, in many Diabetic 

Eye Screening Programmes, including the UK National Health 

Service Diabetic Eye Screening Programme (NHS DESP) [3], at 

least 2 views of the retina are captured including both optic disc 

centered view and the fovea centered images (Figure 1). These 

images overlap together and thus have common MAs that appear 

in both views (with variability in contrast). Despite the 

availability of both views, the algorithms that have been proposed 

have only taken into account the information contained in a 

single image. In this paper an increase in detection accuracy is 

achieved by fusing the information from two views of the retina. 

Algorithms reported in the literature lie broadly in two 

categories: supervised and unsupervised techniques. Supervised 

techniques make use of a classifier to reduce the number of false 

detections. This classifier requires training on an additional 

training set in order to generate a classification model. 

Unsupervised methods do not require a classifier and hence no 

training step is needed.  

 

Figure 1. a) A conceptual diagram of the 2 spatial views of the retina (optic 

disc and fovea centered). The patches in b) and c) demonstrate how the 

same microaneurysm in different views of the retina can have a varying 

level of contrast.   

The majority of the proposed methods in the literature fall 

under the supervised category. Most of the algorithms consist of 
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three main stages: 1) Preprocessing 2) MA Candidate Detection 

and 3) Classification. The preprocessing phase corrects the image 

with respect to non-uniform illumination and enhances MA 

contrast. MA Candidate Detection detects an initial set of 

candidates that are suspected to be MAs. While it is possible to 

stop here and report the detected results, a third phase is usually 

included in the algorithm to reduce the amount of false positives. 

This is the candidate classification phase and it classifies the 

detected candidates from phase 2 as either true or spurious.  

A variety of classification techniques have been reported in 

the literature such as Linear Discriminant Analysis (LDA) [4] K-

Nearest Neighbours (KNN) [5]–[8], Artificial Neural Networks 

[9], [10], Naive Bayes [11] and Logistic Regression [12]. There 

are a number of unsupervised methods that do not rely on a 

classifier include [13]–[16]. The obvious advantage of an 

unsupervised method is that they do not require a training phase. 

Some initial candidate detection methods that have been 

proposed are Gaussian filters [4]–[6] or their variants [8], [17], 

[18], simple thresholding  [15], [16], [19], Moat operator [20], 

double ring filter [9], mixture model-based clustering [21] 1D 

scan lines [13], [14], extended minima transform [11], [22], 

Hessian matrix Eigenvalues [7], [23], Frangi-based filters [24] 

and hit-or-miss transform [10].  

All the aforementioned methods were based on detection 

from a single colour image. Even though extra information may 

be available from another view of the retina, these algorithms are 

not designed to incorporate this extra information. A few 

methods have addressed the problem of detecting or measuring 

change from multiple images for the purpose of disease 

identification. Conor [25] performed vessel segmentation on a 

series of fundus images and measured both vessel tortuosity and 

width in these images. This was done in order to find a 

correlation between these measures and some signs including 

Diabetic Retinopathy. Arpenik [26] used fractal analysis to 

distinguish between normal and  abnormal vascular structures in 

a human retina. Patterson [27] developed a statistical approach 

for quantifying change in the optic nerve head topography using a 

Heidelberg Retinal Tomograph (HRT). This was done for 

measuring disease progression in glaucoma patients. Artes [28] 

reported on the temporal relationship between visual field and 

optic disc changes in glaucoma patients. Bursell [29] investigated 

the difference in blood flow changes between insulin-dependent 

diabetes mellitus (IDDM) patients compared to healthy patients 

in video fluorescein angiography. Narasimha [30] used 

longitudinal change analysis to detect non-vascular anomalies 

such as exudates and microaneurysms. A Bayesian classifier is 

used to detect changes in image colour. A “redness” increase 

indicates the appearance of microaneurysms. Similarly, an 

increase in white or yellow indicates the appearance of exudates. 

While the problem of analysing “change” and “progression” of 

disease has been studied in the literature, to the best of our 

knowledge, the combination of a spatial pair of retinal images for 

the improvement of detection of MAs has not yet been explored. 

The objectives of the present work are: 1) To present a novel 

method for combining information from two views of the retina 

(optic disc centered and fovea centered) and 2) Evaluate this 

method using a dataset of spatial image pairs. Following this 

introductory section, the methodology of the proposed method 

will be explained. Section 3 will discuss the details of the dataset 

and the methods employed for evaluating the proposed method. 

Results will be presented and discussed in Section 4. Final 

remarks and conclusions will be presented in Section 5. 

2. Methodology 

2.1. Method Overview 

Figure 2 illustrates the overview of the proposed method. A 

way to compare MA candidate detection using the combined 

image versus the 2 singular images from the same patient was 

needed. A previous method [1] was used for the detection of 

candidates and measuring the probability of each candidate being 

true or spurious. The method was explained in detail in [1] and 

will be summarised in the following paragraph. 

The previous method worked on the detection of 

microaneurysms from a single colour fundus image. The method 

was based on 3 stages: Preprocessing, MA candidate detection 

and classification. In the preprocessing phases, noise removal 

was performed and the image was corrected for non-uniform 

illumination by subtracting it from an estimate of the background. 

Salt and pepper noise was also removed during this stage. The 

vessel structure was removed from the image since vessel cross 

sections usually cause many false positive candidate detections. 

In the MA candidate detection phase a Gaussian filter response 

was thresholded in order to receive a set of potential candidates. 

Each candidate was region grown in order to enhance the shape 

of the candidates (to match the original shape in the image). 

Finally, during the classification stage, each region grown 

candidate was assigned a probability 𝑝  between 0 and 1 

representing the classifier’s confidence in it being a true 

candidate or not. Each probability 𝑝  can be thresholded at an 

operating point 𝛼 to produce  𝑡 such that: 

𝑡 = {
1 if 𝑝 > 𝛼

      0 otherwise 
 

Where t = 1 means that the corresponding candidate will be 

classified as true and t = 0 means it will be classified as spurious 

and removed from the candidates set. 

The previous method has been adapted to work on 2 images 

of different spatial views. As shown in Figure 2, the 2 images are 

run through the algorithm as normal. This produces a set of 2 

scores (scores(1) and scores(2)). The intention is to combine these 2 

scores together. However, before fusing the scores a way to find 

correspondences between candidates is needed. Therefore the 

images need to be aligned first (Image Registration) and then 

finding a match between corresponding candidates is needed 

(Candidates Matching). Each of the matched candidate’s scores 

can then be combined to produce a single set of scores for both 

images. This combination should increase the confidence in some 

true MA candidates, and will hence improve the final algorithm 

after the final scores are thresholded with an operating point 𝛼. 

In the following sections the Image Registration, Candidates, 

Matching and Fusion of Scores stages are described in greater 

detail.  
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2.2. Image Registration 

Image registration is the process of aligning two images so 

that their corresponding pixels lie in the same space. One image 

is considered to be the reference image and the other image 

(known as the moving image) is transformed to be aligned to the 

reference image. A global transformation model was used which 

means that a single transformation was applied across the entire 

moving image. This has the advantage of simplicity and 

efficiency, but may not be as accurate as localised registration 

techniques. Since the goal of this paper was to introduce a proof 

of concept with regards to combining spatial information during 

microaneurysm detection, the accuracy achieved was sufficient 

for this purpose. More accurate registration techniques will be 

investigated in future work. 

 

Figure 2. An overview of the proposed methodology. 

A manual registration technique was employed where 

corresponding ‘control points’ were selected from each image. 

These control points were used to solve the global transformation 

model equations and find the transformation parameters (Figure 

3). Corresponding points were annotated in each pair of images 

(as specified by Table 1). 

 

Figure 3. The manual control point selection process for the image 

registration phase. 

Based on the literature, four transformation models were 

evaluated: These include Similarity [31], Affine [32], [33], 

Polynomial [34], [35] and RADIC [36], [37].  

The transformation model parameters were estimated using 

the six control points that were manually selected on each pair of 

images. These control points were picked on each image’s vessel 

cross sections since it was easiest to identify corresponding points 

at these areas. Figure 4 shows samples of checkerboard patches 

selected at random from the registered image pairs. In general it 

was difficult to identify the most accurately registered model by 

visual observation of the patches alone since there was an 

observed discrepancy in performance across rows.  

In other words, none of the transformation models perfectly 

aligns the vessels in all four patches. Hence, a more objective 

method for selecting the model was needed. This will be 

discussed in Section 3.2.1. 

Affine Polynomial RADIC Similarity 

    

    

    

    
Figure 4. Sample checkerboard patches showing registration of multiple 

transformation models. 

Table 1 The number of control points needed for each transformation model 

Transformation model No. of control points needed 

Similarity 2 

Affine 3 

Polynomial 6 

RADIC 3 

 

2.3. Candidates Matching 

Once both images were aligned the candidates detected from 

both images lie in the same coordinate space and hence can be 

matched by their location. In order to account for some 

inaccuracies in the registration, we used the following method to 

find matches between 2 candidates: 

Given two aligned images I1  and I2 , each candidate 𝑅 

detected in 𝐼1  needs to be matched to one of the candidates 

detected in 𝐼2. We start by finding the centre of candidate R and 

define a circular search region with radius r around R. A match is 

made with the candidate in I2 whose center lies closest to R. If no 

candidate in I2 is found in this region, no match will be made. 

This procedure is repeated for all candidates in I1. In our case we 
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defined r to be 15 pixels which is twice the size of an average 

candidate in our dataset (Figure 5). This offers more tolerance to 

account for potential inaccuracies in the image registration. 

More formally, let P ∈ {p1, p2, … pn} be the set of candidates 

detected from the image I1 and Q ∈ {q1, q2, … qm} be the set of 

candidates detected from image I2. Our goal is to find a set of 

correspondences C = {{pr1
, qs1

}, {pr2
, qs2

}, … {prl
, qsl

}}  (where 

ri ∈ [1. . n]  and si ∈ [1. . m] ) which represent the 

correspondences between these candidates. Note that some 

candidates would not have any correspondences and in this case 

they would not be a member of any set pair in C. In practice 

either P  or Q  are picked as a ‘reference set’ and matches are 

found from the other set. For instance, if we pick P as a reference 

then for each pi we find a corresponding match from Q and add it 

to C if any exists. But we would not do vice versa – Q would not 

be used as a reference, and this is done for consistency, since we 

want to have consistent matches in order to make the fused scores 

consistent. 

 

 

 

 

 

 

Figure 6 shows an example of correspondences found after 

following the procedure above. The first row in the figure (a, b) 

shows a colour image pair while the second row in the figure (c,d) 

represents the green channel extracted from each image in the 

first row. Note that the candidates are matched from the image on 

the right column (b, d) to the image on the left column (a, c). The 

annotation numbers represent the matches from P to Q (A visual 

representation of C). Candidates annotated with “-1” in the right 

image represent a candidate that has no correspondence in the 

other image (no match found in C). The blue circle in the figure 

represents a true candidate. It can be seen that a match has been 

found between the true candidate in (b) and its corresponding 

candidate in (a). Furthermore, it is observed that the candidate has 

a much higher contrast in the right image than it does on the left 

one. The MA candidate is still visible in the left image but it 

much more subtle. Nevertheless, a combination of information 

from both candidates will give us higher confidence that is a true 

candidate. 

In fact, human retinal graders often switch between both 

views of the retina when they have suspicions regarding one 

candidate. The existence of signs in both images would give 

graders more confidence about it being a microaneurysm. The 

process of matching in the proposed method attempts to replicate 

this. 

2.4. Scores Fusion 

Given that correspondences have been established between 

candidates and that each classifier has produced scores for each 

candidate we now need to find a final fused set of scores that 

represent a combination of information from both images. 

Suppose we have two matched candidates a and b from images I1 

and I2 respectively. Furthermore, assume that I2 is our reference 

image –i.e. we are currently interested to classify the candidates 

in I2. We define the function fuse as follows (Figure 7): 

fuse(𝑎, 𝑏) = {  
max(𝑎, 𝑏) 𝑖𝑓 𝛽1 < 𝑏 < 𝛽2 

𝑏, otherwise
 

Where β1 and β2  are algorithm parameters specified between 

0 and 1. In other words, given 2 matching candidates, the 

maximum of both their scores is taken only if b lies between the 

two threshold parameters (β1 and β2). The parameters  β1 and β2 

are used to limit the number of false candidates that get their 

scores maximized in the final set. This is because maximization 

of scores should only be done for true candidates 

(a) 

 

(b) 

 
(c) 

 

(d) 

 
Figure 6. An example of the candidate detection result. a) A colour image 

from an optic disc centered image. b) The fovea centered view of (a). (c) The 

green channel image of (a). d) the green channel image of (b). The numeric 

annotations on (b) represent the result of the matching operation with a). ‘-1’ 

represents no match. Candidate #113 is a true candidate and it has been 

correctly matched in both images (b). The candidate has variable contrasts 

in both images as can be seen in (c) and (d). The matching will hence 

improve the confidence regarding this candidate.  

If a candidate in a reference image has no match in the other 

image then its score is simply copied over to the fused set (Figure 

7). Once the fused score set is computed we can perform a final 

threshold at an operating point 𝛼  to find the final set of 

classifications as described in Section 2.1. 

 

Figure 7. The method employed for the scores fusion phase. 𝜷𝟏 and 𝜷𝟐 are 

parameters set for the model. 

r 

Figure 5. An illustration of the tolerance added while matching 2 

candidates. The dashed circles represent two candidates from two views 

of the retina. It is assumed that they are misaligned due to registration 

inaccuracy. The solid circle represents a tolerance region around the 

first candidate and using this method a match is made. 
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3. Results 

3.1. Dataset 

The dataset used for evaluation consists of 40 patients imaged 

imaged as a part of UK NHS DESP. 4 images are available for 

each patient: fovea and optic disc centered images for 2 eyes. 

Hence there are 4 images per patient. The total amount of images 

is 160 images (Figure 8). The images were captured using 

different fundus cameras (including Canon 2CR, EOS and 

Topcon cameras) and hence were of different resolutions (Table 2) 

however they all had the same aspect ratio of 1.5. Moreover all 

the images had the same field of view (45 degrees).  

The images in the dataset were split into 80 images for 

training the model and 80 images for validating it. The training 

set consisted of 112 MAs and the testing set consisted of 95 MAs.  

Research Governance approval was obtained.  Images were 

pseudonymized, and no change in the clinical pathway occurred.  

 
Figure 8. An illustration of the types of images available in the spatial 

dataset. OD centered – optic disc centered. 

The same test set was used to validate both the proposed 

technique that takes into account spatial information and the 

normal technique. The classifier model was generated using the 

training set and the same model was used for both cases of with 

and without spatial information. To clarify, the same model was 

used to generate the scores for both the single-image method and 

the spatial-information method. 

Table 2 The image resolutions of the dataset. All the images had an aspect 

ratio of 1.5. 

Image Resolution Count 

3888 x 2592  24 

2592 x 1728 48 

3872 x 2592 12 

4752 x 3168 32 

4288 x 2848 20 

3504 x 2336 24 

TOTAL 160 
 

3.2. Evaluation 

In this section details regarding the evaluation of the 

registration transformation model and spatial information 

combination phases are presented. Section 3.2.1 details the 

selection of the appropriate transformation model objectively. 

Section 3.2.2 will describe the process for evaluating the spatial 

information combination and present its results. 

3.2.1. Registration 

As shown in Figure 4 it is difficult to decide which 

transformation model achieves best performance. Therefore we 

need a more objective measure of registration performance. 

During the registration we have a reference image Ir  and a 

moving image Im  which is transformed to be in the coordinate 

space of Ir . After the image is transformed to the coordinate 

space of Ir  we define an overlapping region as all the pixel 

coordinates where both Ir and Im exist (overlap).  

The Centreline Error Measure (CEM) [36] quantifies the 

mean of the minimum distance between each pixel along the 

centreline of the reference image and the closest pixel in the 

moving image. Given a set of coordinates in the reference image 

that lie on its vessel centreline (Figure 9) and are on the 

overlapping region of the two images: V= {v1, v2, … , vN; vi ∈

(x, y)}. Similarly, let U={u1, u2, … , uL; uj ∈ (x, y)} be the set of 

points on the moving image that lie on its vessel centreline and 

belong to the overlapping region. Let t(p) be a transformation 

that transforms a point p from the moving image space to the 

reference space. We calculate the centreline error metric for a 

transformation  t(p) on the moving image as follows: 

𝐶𝐸𝑀 =
1

𝐿
∑ │𝑀(𝒖𝑖) −  t(𝒖𝑖)│

𝐿−1

𝑖=0

 

𝑀(𝒖𝒊) = argmin
𝑗=1..𝑁

 d(𝒗𝑗, 𝑡(𝒖𝑖))  

Where d(𝒙, 𝒚)  represents the Euclidean distance between 

coordinates 𝒙 and 𝒚. Therefore the CEM calculates the average 

distance between each point on the reference image and the 

nearest points on the registered moving image (in the overlapping 

region).  

A box and whisker plot of CEM values for each registration 

model in the same view was plotted in Figure 10. This plot is 

helpful to summarize the data since it shows the median value 

and the spread of the values (upper-quartile, lower quartile and 

the highest and lowest value). Based on this plot it is observed 

that while the polynomial model contains some of the lowest 

CEM values (highest accuracy) compared to other models, the 

distribution of its values also contain the highest spread (as can 

be seen by the height of the polynomial ‘box’, as well as the 

highest and lowest values). This can also be seen by the number 

of outliers in the polynomial plot. This high variance in values is 

also expressed by the standard deviation of the values as can be 

seen in Table 3. This suggests the undesirable “instability” of the 

polynomial model. We also see that the lowest standard deviation 

values are exhibited by both the affine and the similarity models 

(with the similarity model having a slightly lower standard 

deviation). Both the mean and standard deviations of these 

models are similar to each other which makes their performance 

comparable. The similarity model was selected since its values 

exhibited the lowest standard deviation. 
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Figure 9 An example of overlapping vessel centerlines for computing 

Centerline error after registration. The distance between each red pixel and 

the nearest blue pixel is computed and the average of all distances is a 

measure of alignment accuracy. 

Table 3 Centerline Error Metric (CEM) mean and standard deviation 

values for various transformation models. Std – Standard deviation. 

 Similarity Affine Polynomial RADIC 

Mean 4.40 4.50 4.74 4.49 

Std 1.51 1.536 3.82 1.536 

 

Figure 10. A Box and Whisker plot of the Centerline Error Measure (CEM) 

values 

3.2.2. Spatial information combination 

The method for fusing the scores has been discussed in 

Section 2.4. In order to evaluate the effectiveness of this method 

we need a baseline method to compare against. The baselines in 

our case would be the original proposed method that detects the 

candidates from a single image [1]. The goal was to provide a 

direct comparison between the performance when spatial 

information is accounted for and when it is not accounted for. 

The method used to compare [1] with the proposed method of 

this paper was as follows: 

1- A tree ensemble model was generated using the training 

set.  

2- Features were generated from the validation set and the 

ensemble model (decision tree ensemble) was used to 

assign scores to each candidate in the 80 images of the 

validation set. 

3- In the case of the original image that used single images, 

an FROC (Free-Receiver operating) curve [38] was 

generated using these scores alone. This is the solid 

curve in Figure 11. 

4- To incorporate spatial information, each image pair 

(optic disc centered and fovea centered) had their 

corresponding candidate scores fused as explained in 

the methodology section. The fused scores were then 

evaluated collectively for each image pair and this was 

used to generate the FROC curve in Figure 11. 

The parameters for scores fusion were β1 = 0.4  and β2 =
0.95. Automating the process of selecting these parameters is left 

for future work. We see a slight increase after spatial information 

is incorporated. This increase can be captured quantitatively 

using the ROC score measure [39]. This score measures the 

sensitivity values at various x-axis intervals. The measured ROC 

score shows an increase of 0.02 after adding spatial information, 

which is a 2% increase. This increase can be explained intuitively 

as follows: Some candidates appear very subtle in the optic disc 

centered image, especially at the edge towards around the fovea 

region. This is because the retina is spherical and would get 

distorted during image acquisition. This distortion would affect 

the candidates towards the edge of the image. But these same 

candidates would appear more clearly in the Fovea centered 

image. This is because the same candidates now lie in the centre 

of the captured image, and hence their appearance will be 

obvious in the image. Intuitively, we expect the classifier to give 

higher scores to the more obvious candidates in terms of 

appearance. However, when the scores are fused, we take the 

maximum score of both candidates, and this will give us a higher 

score for the more subtle candidate that was originally given a 

lower score. This is why the FROC curve for the fused candidates 

shows a better performance. 

 

Figure 11 A comparison of performance between the technique applied to 

single images (solid) and after incorporating spatial information (dashed) 

Figure 12 shows this intuitive concept by showing a plot of 

the corresponding pairs of scores. The figure shows a 

correspondence of scores for the test set where “score 1” and 

“score 2” on the axes refer to the methodology scores in Figure 2. 

Furthermore true candidates are labelled in blue while false 

detections are labelled in orange. Let us assume Score 2 is the 

reference image and that the candidate scores are being matched 

to score 1. Since in our case β1 = 0.4 and β2 = 0.95 we are only 

interested in this cross section from the score 2 axis. If we look to 

the extreme right of the graph we will see some candidates that 

have received scores within this range in the score 2. These 

receive higher scores along the x-axis. Hence, the maximum of 

both scores in the fused set will improve their scores and this will 

result in a higher FROC curve. 

http://www.astesj.com/


M.M. Habib et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 2, No. 3, 642-649 (2017) 

www.astesj.com     648 

 

Figure 12 The scores from each corresponding spatial pair of images (these 

are the same scores as illustrated in Figure 2). True candidates are labelled 

in blue while false detections are labelled in orange. The orange line 

represents the linear line for the equation x=y. 

The additional processing involved is the time for Image 

Registration, Candidates Matching and Score Fusion. These are 

the blue ellipse stages in Figure 2. The image registration is 

dependent on the algorithm of choice. In this work since it is 

based on manual control points the overhead is the control point 

selection and the time to solve a series of equations. An 

automated registration method may require an optimisation step 

and hence more time will be required for this step [40]. Given a 

spatial image pair, let 𝑚 be the number of candidates detected in 

one image, and 𝑛 be the number of candidates detected in the 

other image. The candidates matching step requires calculating 

the distance between each pairs of candidates detected in both 

images and hence has a complexity of 𝑂(𝑚 × 𝑛)  (using Big O 

notation). The Score Fusion phase will fuse the scores together 

from one image (𝑛 fusions) and then fuse the scores from the 

other image (𝑚 fusions) and therefore will have a complexity of 

𝑂(𝑚 + 𝑛). In practice, on a core i5-4590 @ 3.30GHz CPU with 

8GB RAM and an SSD hard drive, the time per image for each of 

the three stages was as follows:  

1. Image Registration: 0.02 s   

2. Candidates Matching: 1.30s   

3. Scores fusion: 0.001s. 

The sum of the above timings is 1.321s. The total time for test 

dataset was computed and then the average value per image pair 

was found. The average time per pair for the entire process was 

4.141s. This means that the average overhead is about 32% of the 

time required per image (1.321s out of 4.141s). This does not 

take into account the time for manual control point selection, 

however, automated registration will be implemented in future 

work. Methods for optimising the speeds of the other stages are 

also left for future work. 

4. Conclusions and Future Work 

In this work a novel algorithm that combines spatial 

information from two views of the same retina for the purpose of 

microaneurysm (MA) detection is proposed. Most of the 

published work in the field of MA detection has been on 

detection from a single fundus image. The problem has been 

redefined to assume that two are available and the objective is to 

use the information from both to detect the microaneurysms in 

both images. The clinical application of this work would be its 

incorporation into diabetic eye screening programmes, thereby 

assisting the National Health Service in the detection of diabetic 

retinopathy. Screening in England has a recommendation of at 

least 2 images per eye so the assumption that two views are 

available would be valid in this context.  ETDRS grading [41] is 

based on a categorical variable.  Accurate counts of 

abnormalities could lead to a more refined grading/risk 

prediction using a continuous variable, or more accurate 

estimates of ma turnover that may better predict progression of 

disease.  Accurate alignment of images would be an essential 

prerequisite to allow such scoring systems to develop. We 

propose a method for aligning the images, detecting candidates, 

matching candidates from both views and then combining the 

information from both views to perform microaneurysm 

detection from both views simultaneously. The proposed method 

was evaluated on a Diabetic Eye Screening Programme dataset 

of 160 images that contained 207 microaneurysms. The 

combination of information from multiple images was shown to 

increase the performance in comparison to depending on single 

images only. An account of the computational overhead required 

for the combination of information is also presented. Some of 

the limitations of the present work are: 1) The computational 

overhead required for the additional steps of the proposed 

method, 2) The accuracy of the registration method can be 

improved, 3) The control point selection of the image 

registration step can be automated to reduce manual labour work 

and 4) The scores fusion stage can be further improved to reduce 

more false positives and increase true positive detections.  

Future work will involve an exploration of other ways to 

combine information from spatial images, including multi-image 

features, or mosaicing images together to enhance the contrast of 

subtle MAs. Furthermore, this concept will be extended to 

include temporal images of the same patient as well. 
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