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A B S T R A C T

This paper introduces, and reports on the performance of, a novel combination of algorithms for automated
microaneurysm (MA) detection in retinal images. The presence of MAs in retinal images is a pathognomonic sign
of Diabetic Retinopathy (DR) which is one of the leading causes of blindness amongst the working age population.
An extensive survey of the literature is presented and current techniques in the field are summarised. The pro-
posed technique first detects an initial set of candidates using a Gaussian Matched Filter and then classifies this set
to reduce the number of false positives. A Tree Ensemble classifier is used with a set of 70 features (the most
commons features in the literature). A new set of 32 MA groundtruth images (with a total of 256 labelled MAs)
based on images from the MESSIDOR dataset is introduced as a public dataset for benchmarking MA detection
algorithms. We evaluate our algorithm on this dataset as well as another public dataset (DIARETDB1 v2.1) and
compare it against the best available alternative. Results show that the proposed classifier is superior in terms of
eliminating false positive MA detection from the initial set of candidates. The proposed method achieves an ROC
score of 0.415 compared to 0.2636 achieved by the best available technique. Furthermore, results show that the
classifier model maintains consistent performance across datasets, illustrating the generalisability of the classifier
and that overfitting does not occur.
1. Introduction

Retinal Image Analysis (RIA) is an active area of research due to its
application in screening programs for Diabetic Retinopathy (DR) – one of
the leading causes of blindness in the developed world. During the
screening process, fundus images of the retina are captured for the pur-
pose of detection of diabetic retinopathy. The presence of micro-
aneurysms (MAs) in retinal images is an early indicator of DR (Fig. 1).
The automated detection of MAs from retinal images can aid in screening
programs for DR diagnosis. Several algorithms have been proposed for
the detection of MA, however, MA detection is still a challenging problem
due to the variance in appearance of MAs in retinal images [1].

Through our review of MA detection in the literature, we have
identified three main stages in MA detection algorithms: 1) preprocessing
2) MA candidate detection and 3) candidate classification. Preprocessing
corrects non-uniform illumination in retinal images and enhances the
contrast of MAs in the image. MA candidate detection seeks to detect an
initial set of candidate regions where MAs are likely to exist. MA candi-
date classification applies machine learning techniques in order to
improve the specificity of the algorithm by filtering out false positives
from the candidate detection phase. Some of the proposedmethods in the
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literature are unsupervised methods, which means they do not require
the third classification stage [1–7]. A summary of MA candidate detec-
tion algorithms presented in the literature is listed in Table 1. For each
algorithm the table describes image type, the initial candidates method,
the classifier used, and the reported performance for each classifier. Most
of the literature has differences in the method used to evaluate their al-
gorithms or the dataset used, which makes it difficult to compare any 2
algorithms together. One of the earliest proposed techniques for MA
detection was applied to fluorescein angiograms [8]. A Gaussianmatched
filter was used to detect the initial set of candidates. Finally, each initial
candidate was classified as either a true candidate or a spurious one using
some features, producing the final classification result. Cree [9] applied
Spencer's technique [8] to multiple longitudinal florescence images in
order to detect the ‘MA turnover’ – the appearance or disappearance of
MA objects over time.

More recent techniques have tackled the problem of MA detection in
colour fundus images. The main reason for this is that colour images are
more common in screening programs and are also non-invasive to cap-
ture, unlike fluorescein images. The following methods are all based on
MA detection in colour fundus images.

A number of techniques have adapted Spencer's approach in terms of
arman).
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Fig. 1. Examples of various microaneurysms with varying appearances and locations.
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applying morphological vessel removal followed by a Gaussian matched
filter. Hipwell [10] performed a modification of Cree [9] in order to
apply the algorithm to colour fundus images. Streeter [11] used a method
based on Cree [9]. However, during the classification phase, 80 features
are extracted and Linear Discriminant Analysis (LDA) was used to
perform the classification. Feature Selection was performed to filter the
features down to 16 features. Feature Selection is a process to reduce
redundant features in order to reduce computational time and decrease
chances of overfitting. Another Spencer-based approach was introduced
in Fleming [12]. This technique introduced a novel region-growing step
based on gradient values, rather than a simple threshold. In addition a
paraboloid was fitted to each candidate using a parameter optimization
process. The paraboloid parameters are used to compute many of the
features used in the candidate classification phase. Instead of using a
single Gaussian matched filter, Zhang [13] applied multiple Gaussian
filters at multiple scales and computed themaximum response to produce
a probability map of the likelihood of presence of MA candidates. This
probability map was then thresholded to produce the initial set of MA
candidates. Finally a rule-based classifier using 30 features was used to
perform the final classification. Li [4] used an unsupervised method
based on a Multi-orientation Sum of Matched Filter (MSMF). This filter is
a modification of the classical Gaussian Matched filter. This modified
filter is anisotropic in nature and is applied in multiple directions. Hence,
this filter is better at suppressing responses to blood vessels than the
Gaussian Matched filter. Wu [14] modified the MSMF filter to take into
account the varying size of MAs.

S�anchez used a mixture model-based clustering technique to detect
the initial MA candidate regions [7]. The technique fits three normal
distribution histograms to the retinal image histogram. These histograms
correspond to foreground, background and outliers. The foreground
histogram pixels are considered as the initial set of MA candidate regions.
Finally, logistic regression was used to classify each MA region as
belonging to either a foreground or background region. Quellec [15]
based his technique on wavelet transforms applied in different sub-bands
of the colour image.

A double-ring filter was used in Mizutani [16] to detect the initial
candidates. The filter used the property that MAs are dark circular re-
gions within a brighter region to detect the MA candidates. It consists of
an inner ring and an outer ring. A given pixel is considered to be a MA
pixel if the average intensity of the inner ring is smaller than the average
intensity of the outer ring. After the initial candidates are detected,
classification is performed using 12 extracted features and an Artificial
Neural Network (ANN).

Initial candidates were detected using a simple thresholding in
Giancardo [5,6]. A novel Radon-based transform was used to extract the
features of the initial candidates and a Support Vector Machine (SVM)
classifier was used to perform the final classification. An initial set of 31
features were computed for classification. The dimensionality of the
features was reduced to 10 dimensions using Principle Component
Analysis (PCA), and this reduced representation was used to perform the
classification. A reduced dimension for the features reduces the risk of
overfitting and also makes the classification more computation-
ally efficient.

Sinthanayothin [17] used a ‘moat operator’ to enhance red lesions in
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the image and then these regions were segmented. Vessel regions were
then removed to produce the final set of candidates. Note that this
method detected both MAs and haemorrhages. The moat operator was
not defined in the paper and we were unable to find the exact definition
in the literature.

AbdelAzeem [18] used a Hessian matrix in order to detect the initial
MA candidate set. A rule based classifier is then used to detect false MA
detections. The rule is simply based on the candidate ‘energy’. The exact
definition of the computed ‘energy’ was not mentioned in the paper,
however, it is likely to be the same definition as in Fleming [12]. Inoue
[19] relied on a Hessian matrix in order to detect the initial candidates
and an Artificial Neural Network (ANN) was used to classify the features.
A group of 126 features were fed into the ANN for classification. However
this group of features was reduced using Principle Component Analysis
(PCA) in order to reduce computational complexity and avoid overfitting.
Moreover, Srivastava [20] used the eigenvalues of the hessian matrix in
order to detect the initial candidates. Recently, Adal has used a hessian
matrix in order to detect the initial set of MA candidates. A combination
of SURF, Radon and scale-space features were extracted from the initial
candidates. Multiple classifiers (Support Vector Machines, K-Nearest-
Neighbours, Naive Bayes and Random Forest) were also experimented
with in this technique.

An adaptation of Spencer [8] and Frame [22] is presented in Nie-
meijer [22]. Two main contributions were added: A pixel based classi-
fication system for the initial candidate detection phase and an extended
set of features used for pixel classification.

A unique method was introduced in Lazar [1,2] since it is an unsu-
pervised technique that does not require any training or classification
steps. Moreover the reported results of this technique are comparable to
other supervised methods, which make it a promising method. The
essence of this technique is to discriminate between vessels and MAs by
using a 1D scanline at different directions for each pixel. While a MA will
have local minima in all directions of the rotated scanlines, a vessel will
have only one minima corresponding to when the scanline is perpen-
dicular to the vessel. Hence, using this property, a probability map is
produced at each pixel and then simple thresholding is applied to pro-
duce the final set of candidates.

Garcia [30] compared the accuracy of four neural network variants:
Multilayer Perceptron (MP), Radial Basis Function (RBF), Support Vector
Machine (SVM) and Majority Voting (MV). The initial candidates were
detected using a local thresholding technique based on the mean pixels of
the entire image compared to mean intensity in a small window around a
pixel. According to their experiments, the RBF was suggested as the
preferred classifier among all 4. An interesting approach that relies on
visual dictionaries was presented in Rocha [24]. The use of visual dic-
tionaries (bag of words) makes this approach more generalizable since it
does not rely on specific features during the classification. Therefore, the
same approach can be used to perform detection of lesions other than
MAs as well. The disadvantage of this is that it requires a larger training
set. Haloi [29] recently applied deep neural networks to detect MAs in
colour images. Deep neural networks have gained popularity in the field
of computer vision in the recent years since they do not require manual
feature engineering (selection of features). Moreover, algorithms based
on deep learning have produced results that out-perform other state-of-



Table 1
Summary of MA detection algorithms in the literature. The performance superscripts are defined as follows: a) Lesion-based measure b) Image-based measure c) Pixel-based measure. Key:
AUC – Area Under the Curve, FP/image - False positives per image, PPV – Positive Predictive Value.

Paper Image Type Initial candidates method Classifier used Reported Performance

Dataset Performance

Spencer, 1995 [8] Florescence Gaussian Filter Rule-based Private dataset (4 images) Sensitivitya: 0.25
FP/imagea: 1.0

Cree, 1997 [9] Florescence Gaussian Filter Rule-based Private dataset (20 images) Sensitivitya: 0.6
FP/imagea: 1.0

Hipwell, 2000 [10] Colour Basic Thresholding Rule-based Private dataset (3783 images) Sensitivitya: 0.6
FP/imagea: 1.0

Sinthanayothin, 2002 [17] Colour Moat operator N/A Private dataset (14 images) Sensitivityb: 0.885
Specificityb: 0.997

AbdelAzeem, 2002 [18] Florescence Hough transform Rule-based Private dataset (3 images) Sensitivitya: o.6
FP/imagea: 17.67

Streeter, 2003 [11] Colour Gaussian filter Linear Discriminant Analysis Private dataset Sensitivitya: 0.3
FP/imagea: 1.0

Niemeijer, 2005 [21] Colour Gaussian Filter pixel classification K-Nearest-Neighbours Private dataset (100 images) Sensitivitya: 0.83
FP/imagea: 1.0
Sensitivityb: 1.0
Specificityb: 0.5

Fleming, 2006 [12] Colour Gaussian Filter K-Nearest-Neighbours Private dataset (1441 images) Sensitivitya: 0.51
FP/imagea: 1.0
Sensitivityb: 0.91
Specificityb: 0.5

Quellec, 2008 [15] Colour N/A N/A ROC dataset Sensitivityc: 0.90
Specificityc: 0.898

Mizutani, 2009 [16] Colour double-ring filter Neural network ROC dataset Sensitivityc: 0.15
PPVc: 1.0

S�anchez, 2009 [7] Colour Mixture model-based clustering N/A ROC dataset ROC score: 0.332
Sensitivitya: 0.30
FP/imagea: 1.0

Zhang, 2010 [13] Colour Multiscale Gaussian Rule-based ROC dataset Sensitivitya: 0.11
FP/imagea: 1.0
ROC: 0.201

Giancardo, 2010 [5] Colour Basic Thresholding N/A ROC dataset Sensitivitya: 0.22
FP/imagea: 1.0

Lazar, 2011 [2] Colour Local Maxima scanlines N/A ROC dataset Sensitivitya: 0.38
FP/imagea: 1.0
ROC score: 0.355

Sopharak, 2011 [23] Colour extended-minima Naïve Bayes Private dataset (45 images) Sensitivityc: 0.816
Specificityc: 0.99

Giancardo, 2011 [6] Colour Basic Thresholding N/A ROC dataset Sensitivitya: 0.43
FP/imagea: 1.0
ROC: 0.375

Lazar, 2013 [1] Colour Local Maxima scanlines N/A ROC dataset Sensitivitya: 0.41
FP/imagea: 1.0
ROC: 0.423

Rocha, 2012 [24] Colour N/A Support Vector Machine DIARETDB1 v1 Sensitivityc: 0.91
Specificityc: 0.5

MESSIDOR Sensitivityc: 0.93
Specificityc: 0.5

Sopharak, 2013 [25] Colour extended-minima Bayesian Private dataset (80 images) Sensitivityc: 0.86
Specificityc: 0.99

Akram 2013 [26] Colour Gabor filter Hybrid classifier DIARETDB0, DIARETDB1 v1 Sensitivitya: 0.99
Specificitya: 0.997
Accuracya: 0.994

Li, 2013 [4] Colour Multi-orientation Gaussian (MSMF) N/A ROC dataset Sensitivitya: 0.05
FP/imagea: 1.0

Junior, 2013 [3] Colour Extended Minima N/A DIARETDB1v1 Sensitivityc: 0.87
Specificityc: 0.92

Inoue, 2013 [19] Colour Hessian Matrix Eigenvalues Neural network ROC dataset Sensitivitya: 0.18
FP/imagea: 1.0

Adal, 2014 [21] Colour Hessian Matrix Eigenvalues Support Vector Machines, K-
Nearest-Neighbours, Naïve
Bayes, Random Forest

ROC dataset ROC score: 0.363
Sensitivitya: 0.364
FP/imagea: 1.0

Ram, 2015 [27] Colour Morphological reconstruction K-Nearest-Neighbours ROC dataset Sensitivitya: 0.31
FP/imagea: 1.0

DIARETDB1 v1 Sensitivitya: 0.73
FP/imagea: 1.0

Private dataset Sensitivitya: 0.18
FP/imagea: 8.0

Wu, 2015 [14] Colour Multiscale Multi-orientation
Gaussian (MMMF)

Support Vector Machines, K-
Nearest-Neighbours, Linear
Discriminant Analysis

ROC dataset Sensitivitya: 0.23
FP/imagea: 1.0
Sensitivityc: 0.92
Specificityc: 0.50

(continued on next page)
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Table 1 (continued )

Paper Image Type Initial candidates method Classifier used Reported Performance

Dataset Performance

Srivastava, 2015 [20] Colour Frangi-based filters Support Vector Machines MESSIDORþ
DIARETDB1 v1

Sensitivityc: 1.00
Specificityc: 0.50

Romero, 2015 [28] Colour Hit-or-miss transform Neural networks DIARETDB1v2.1 Sensitivityc: 0.93
Specificityc: 0.94

ROC dataset Sensitivityc: 0.88
Specificityc: 0.97

Haloi, 2015 [29] Colour N/A Nearest-mean classifier DIARETDB1v2.1 Sensitivityc: 0.88
Specificityc: 0.97

ROC dataset AUCc: 0.98
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the-art algorithms in other computer vision applications. However, deep
learning requires massive datasets for training [31] and such large
labelled datasets are not yet available for retinal images.

Ram [27] used a dual classifier in order classify the initial candidates.
The initial candidates were detected using a simple thresholding opera-
tion after preprocessing. Two classification stages are then applied. The
first classification stage was applied in order to separate MAs from ves-
sels. The features used for this purpose are a second derivative Gaussian
at multiple orientations, difference of Gaussians and inverted Gaussians.
The second classification stage was applied in order to further separate
MAs from other types of noise for the MA classification on a pixel level
rather than at a candidate level. This means that each pixel gets classified
as either anMA or not, rather than each initial candidate as a whole. After
preprocessing, the extended-minima transform is used to detect the
initial candidates, and a Bayesian classifier was used to perform the pixel-
based MA classification. Similarly, Junior [3] presents the same tech-
nique as Sopharak, but does not apply a classification stage. Akram [26]
used a Gabor filter for the detection of the initial candidates. The Gabor
filter is applied at multiple scales and rotated at various angles, and the
maximum response is computed. This causes a large response for vessels,
microaneurysms and haemorrhages. Vessel segments are removed using
a vessel segmentation technique. A hybrid classifier is used for to reduce
the false positives in the initial candidates. The technique has reported a
lesion-based specificity and accuracy measure, even though it is not
possible to measure the number of true negatives at the lesion level [8].

The objective of the present work is as follows: 1) to present a new
technique for MA detection based on an ensemble classifier for classifi-
cation. 2) Introduce 70 of the most common features used in the litera-
ture and perform feature ranking in order to identify the features that are
most important for discriminating MA candidates from spurious objects.
3) To introduce a new groundtruth dataset for MA detection based on the
MESSIDOR dataset.

Section 2 describes the methodology of the proposed algorithm. In
Section 3, a new dataset of MA groundtruth images is introduced and the
experiments performed to evaluate the algorithm are discussed and the
results presented. A final discussion is presented in Section 4 and
concluding remarks are presented in Section 5.

2. Methodology

The proposed method is based on the method suggested by Fleming
[12]. The main modifications that were made to Fleming's algorithm will
be stated throughout the methodology section. This work is an extension
of the algorithm published in Ref. [32] and includes a more extensive
evaluation as well as detailed feature analysis. The proposed methodol-
ogy consists of three phases: 1) preprocessing 2) MA Candidate Detection
and 3) MA Candidate Classification. During the preprocessing stage non-
uniform illumination is removed from the image using background
subtraction. Noise removal is also performed during this stage. In the MA
Candidates Detection phase an initial set of MA candidates are detected.
Ideally all the candidates in the image should be detected with as few
false positives as possible. Most of these false positives should then be
removed during the Candidate Classification phase. The three stages of
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the proposed algorithm will be explained in the following sections.
Despite being published in 2006, Fleming's reported per-lesion per-

formance on a large private dataset is comparable to recently published
methods. This makes it reasonable to use Fleming as a baseline for
comparison with the proposed technique. These methods include Wu
(2015) [29], Adal (2014) [28], Inoue (2013) [20] and Li (2013) [14].
This is also illustrated in Table 1, and discussed in Section 5.1.

2.1. Preprocessing

The preprocessing steps are as follows: Given a colour retinal image
(Fig. 2(a)) the green channel is extracted (Fig. 2(b)) since MA candidates
appear with high contrast in this channel. Salt-and-pepper noise is
removed by applying 3 � 3 median filter. Contrast-Limited Adaptive
Histogram Equalisation (CLAHE) [33] is applied in order to improve the
contrast in the image. Further noise removal is performed by applying a
3 � 3 Gaussian filter to the image. Let the resulting of the previous op-
erations be Iadapt . Shade correction (Ishade ) is performed by dividing the
image by an estimate of the background:

Ishade ¼ Iadapt
�
Ibg (1)

where Ibg is the background estimate calculated by applying a 68 � 68
median filter to Iadapt . The filter size is chosen to be large enough in order
to eliminate vessels and other features in the image. Finally, global
contrast normalization is performed on the resulting image by dividing it
by its standard deviation:

Icon ¼ Ishade
stdðIshadeÞ (2)

where stdðIshadeÞ represents the standard deviation of the shade corrected
image. The result of these operations is illustrated in Fig. 2(c). Following
these operations we need to detect an initial set of MA candidates from
the preprocessed image. This is described in the following section.

2.2. MA candidate detection

After performing noise removal and shade correction, an initial set of
MA candidates can be detected. The method used is based on that pro-
posed by Fleming [12]. A Gaussian matched filter (σ ¼ 1) is used in order
to enhance circular dark regions in the image. Since blood vessel cross-
sections have intensity profiles similar to MAs, they need to be
removed before applying the Gaussian matched filter. The following
morphological operations are applied for vessel removal.

A closing operation is applied using a linear structuring element at
multiple directions. The minimum of the application of closing operation
at multiple operations was then subtracted from the shade corrected
image [12].

Ibothat ¼ Ishade �min
i¼0::7

ðIshade⋅strelðπi=8; nÞÞ (3)

where strel(x,n) represents a linear structuring element at an angle of x



Fig. 2. An example of the preprocessing stage. a) The colour image, b) the green channel image, c) the preprocessed image. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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degrees and of length n. The size of the structuring element should be
chosen to be larger than the largest vessel in the images (in our case a size
of 11 pixels was selected through direct measurement in the images).
This operation causes vessels to be removed from the image while
retaining circular objects which resemble the shape of MAs (Fig. 2 (a)
and (b)).

A Gaussian matched filter (σ ¼ 1:0) is then convoluted with Ibothat in
order to enhance circular dark regions Igauss ¼ Ibothat*gaussð1:0Þ
(Fig. 2(c)). The resulting response probability is then thresholded
as follows:

Ithresh ¼ thresh
�
Igauss; 5τ

�
(4)

The value of τ is chosen to be the threshold value at which the top 5%
of pixels are selected [12]. A region growing operation based on Fleming
[12] is performed in order to enhance the shapes of the detected MA
candidates. The set of initial candidates are used as input. The procedure
involves iteratively growing along the 8-connected pixels from the
minimum intensity pixel of the candidate until a stopping condition. In
our case, the stopping condition is when a maxima point of the “energy
function” is reached. The energy function is defined as the average value
of the gradients around the boundary of the grown region. All the pa-
rameters at this stage have been kept the same except the maximum
grown size.

Through our experiments it was found that the maximum grown size
of 3000 pixels suggested by Fleming resulted in large blood vessel regions
being falsely identified. We empirically found that a value of 100 pixels
was a more suitable value for the maximum area and this parameter
modification decreased the number of false positives appreciably, while
achieving almost the same sensitivity. The value was chosen to be over
twice the size of the average MA size in the groundtruth images (Fig. 3
(d)). The region growing operation causes the intensity profile of the
boundary to be detected more accurately.

2.3. MA candidate classification

The initial candidate detection phase will inevitably produce false
positives. The main reasons for this are: 1) vessel cross sections or vessels
that were not removed before the Gaussian filter and 2) noise in the
image that looks similar to MAs. For these reasons a classification phase
was required in order to reduce the number of false positives that were
detected during the candidate detection phase.

The proposed method uses a Tree Ensemble classifier for classifica-
tion. A Tree Ensemble classifier is an ensemble classifier based on deci-
sion tree learning. An ensemble classifier combines the decisions of
multiple weak classifiers. Our main motivation for the use of this clas-
sifier are: 1) Successful application in other fields [34,35], 2) it can rank
features while performing classification, giving insights about the most
important features, and 3) robustness to outliers and the ability to cope
with small training sets [36].

Given a training set L consisting of data fðyn; xnÞ; n ¼ 1…; Ngwhere y
represents the classification label (1 or 0 in our case), a given CART
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(Classification And Regression Trees) classifier Tðx; LÞ will predict y
given unlabeled data x.

However, in the case of an ensemble of trees we are given a sequence
of training sets fLk; k ¼ 1…; Kg and a sequence of classifiers fTkðx; LkÞg is
produced. The jth classifier Tjðx; LjÞ in the set will produce a label yj. The
set of labels fykg produced by the K classifiers need to be aggregated to
produce a final label y for unlabeled data x. In our case a majority vote of
the set of class labels fykg is used to produce the final classification y. It
has been shown that combining the results of a set of weak classifiers
fTkðx; LkÞg often outperforms using a single classifier on the whole
training set Tðx; LÞ [37].

The final point that needs to be addressed is that given a training set L,
how can we produce a set of training sets fLkg that will be used to train
each tree classifier Tjðx; LjÞ. A sampling technique known as Bootstrap
aggregation (or bagging) [37] was used in order to sample the training
data during the training process. In bagging, the jth training set Lj is ob-
tained by drawing M samples (with replacement) from the set of N
training data, L (whereM � N). In practice, in order to produce Lj a set of
M random numbers frm; rm � N; m ¼ 1…Mg, and then Lj is drawn using
Lj ¼ fðyrm ; xrm Þg. There is no restriction that the generated random
numbers are unique and therefore each sample in the set fðyn; xngÞ may
be used more than once or not at all in Lj. After producing K training sets
from L, there will be a set of samples in L that have not been drawn in any
of the samples in the jth classifier Lj. These unused features can be used to
estimate the classification error (out-of-bag-error) for each tree and also
estimate the “importance” of each feature (based on each tree and then
averaged over all trees) [38]. The bagging approach is used to increase
the diversity of training samples across the trees, which leads to
increased prediction accuracy for unstable classifiers (including decision
trees) [37,39].

We have extended Fleming's [12] feature set of 10 features to include
a set of 70 features. These were based on the features that have been
reported in the literature. Table 2 displays a list of the 70 features that
were fed into the classifier. These features are explained below in the
same order of appearance as Table 2:

� Fleming's features: These are the features introduced by Fleming in
his technique [12]. These features rely on fitting a paraboloid to each
candidate's intensity profile in order to estimate some parameters
from the paraboloid. These features are based on both the shape and
intensity of the object. A detailed explanation of these features can be
found in the original paper [12].

� Shape features & Moment Invariants: These features describe
various shape properties of the detected candidates. Moment In-
variants (10) are 7 features that represent various shape properties of
an object [40]. Other shape features include Aspect Ratio (major axis
length/minor axis length), major axis length, minor axis length,
Perimeter, Area, Eccentricity, Compactness. Some of these are com-
mon to Fleming's features, however these are calculated at a pixel
level rather than after fitting a paraboloid to the candidate. To elab-
orate, Fleming estimates a paraboloid for each candidate and then



Fig. 3. An example of the candidate detection phase a) The preprocessed image, b) The result of the bottomhat operation, c) the Gaussian filter response d) The thresholded image e) the
result of the region growing operation. The highlighted region is a true microaneurysm.

Table 2
Features list. The symbols below (G,t,seed,c,σ) are defined in Section 2.3. Key: std - standard deviation, max - maximum, min - minimumç.

Category Index Description Parameters Feature count

Fleming 1 Number of peaks N/A 1
2 Major Axis length N/A 1
3 Mean of minor and major axis N/A 1
4 Eccentricity N/A 1
5 Depth of candidate in the original image N/A 1
6 Depth of candidate in the preprocessed image N/A 1
7 Energy N/A 1
8 candidate depth/mean diameter of MA candidate N/A 1
9 Energy with depth correction N/A 1

Moment Invariants 10 7 moment invariant features N/A 7
Shape features 11 Aspect ratio N/A 1

12 Major axis length N/A 1
13 Minor axis length N/A 1
14 Perimeter N/A 1
15 Area N/A 1
16 Eccentricity N/A 1
17 Compactness N/A 1

Gaussian features 18 Gaussian seed pixel response: GσðseedðcÞÞ σ ¼ 1 1
19 mean

ðx;yÞ2c
ðGσðx; yÞÞ 1

20 std
ðx;yÞ2c

ðGσðx; yÞÞ 1

Gaussian Features 1D 21 Max 1D Gaussian response at various angles:
max
t2θ

ðG1D
1;t ðx; yÞÞ

θ 2 f0;10;20; …; 180g 1

22 Min 1D Gaussian response at various angles:
min
t2θ

ðG1D
1;t ðx; yÞÞ

1

23 Mean 1D Gaussian response at various angles:
mean
t2θ

ðG1D
1;t ðx; yÞÞ

1

24 Std of 1D Gaussian response at various angles:
std
t2θ

ðG1D
1;t ðx; yÞÞ

1

25 1D gaussian response at angle perpendicular to the maximum response (30) N/A 1
26 max (29,33) N/A 1

Intensity features 27 Sum of candidate intensities Applied to red, blue, green, hue, saturation,
value and preprocessed channels.

7
28 mean candidate intensity 7
29 standard deviation of the candidate intensity 7
30 Range (Max - min candidate value) 7
31 candidate contrast 7

Morphological features 32 maximum candidate response of the morph close ratio N/A 1
33 minimum candidate response of the morph close ratio N/A 1
34 mean candidate response of the morph close ratio N/A 1

Total 70
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computes the values of eccentricity and major & minor-axis length
from the paraboloid. In contrast, these features are calculated from
the binary image.

� Gaussian Features: Features that are based on Gaussian filters have
been extensively used in the literature [12–14,25,30]. In our case we
have experimented with features that rely on σ ¼ 1 since that is
parameter used during the initial candidates detection phase. Some
definitions related to these features will follow. The symbols
mentioned below also appear in Table 2. Let Ishade be the shade cor-
rected image (Section) and:

Gσ ¼ Ishade*gaussðσÞ (5)
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be the Gaussian filter response for sigma ¼ σ and Gσðx; yÞ be the filter
response at coordinates ðx; yÞ. Let C be a set of initial candidates detected
(after region growing). Each candidate (cÞ is a set of coordinates ðxi; yiÞ.
Let seedðcÞ be the coordinates ðxs; ysÞ of the minimum intensity defined
as follows:

seedðcÞ ¼ ðxs; ysÞ ¼ argmin
ðx;yÞ2c

ðIshadeðx; yÞÞ (6)

A 1-Dimensional Gaussian is a special case of Gσ applied linearly in
one direction. G1D

s;t ðx; yÞ is the 1D Gaussian applied at angle t and a scale
(standard deviation) of s. In our case we have applied the 1D Gaussian at
a constant scale (s ¼ 1). Let the set θ be the set of angles applied at each



Fig. 4. Examples of DIARETDB1 groundtruth candidates that do not correspond to the microaneurysm shape in the original image. The first row shows patches MA groundtruth in the
dataset. The second row shows corresponding patches from the retinal images. The retinal image patches have been enhanced to improve MA contrast.

Table 3
Distribution of DR grades (a) and resolutions (b) of images in the dataset.

Retinopathy Grade Number of
Microaneurysms

No. of images
(training)

No. of images (test)

DR0 0 8 8
DR1 1–5 3 4
DR2 6–14 3 3
DR3 >15 2 1

TOTAL 16 16
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coordinate. In our experiments:

θ 2 fθi : θi ¼ 10*i; i ¼ ½0…18�g (7)

� Intensity Features: These are calculated directly from the intensity
in the image at multiple bands: the red (R), blue (B), green (G) band in
the RGB colour space; the Hue (H), saturation (S) and value (V) bands
of the HSV space [13].

� Morphological Features: These three features are based on applying
a linear morphological close operator (15 px size has been empirically
chosen to be larger than the largest vessel in the dataset) at different
angles (θ 2 fθi : θi ¼ 22:5*i; i ¼ ½0::7�g) and are aimed at discrimi-
nating vessels from MAs. This is because the linear structures of
vessels would respond differently to different angles of the linear
operator, while the circular nature of MA objects would cause the
response of the morphological operator to be more uniform.

3. Experiments

This section explains the methodology that has been followed in order
to evaluate the proposed algorithm. An overview of the publicly available
datasets for microaneurysm detection is presented in Section 3.1. An MA
groundtruth dataset based on a subset of the MESSIDOR dataset [41] is
also introduced in this section. Details of the evaluation method are
explained in Section 3.2.
1 The groundtruth dataset can be downloaded using the following link: http://blogs.
kingston.ac.uk/retinal/?p¼311.
3.1. Dataset

To the best of our knowledge, there are two public datasets for MA
detection: the Retinopathy Online Challenge dataset (ROC dataset) [1]
and the DIARETDB1 v2.1 dataset [42]. The ROC dataset contains 100
images split into 50 training images and 50 test images. Groundtruths are
only available for the training set. The test set groundtruths are not public
since the contest organizers used those to evaluate submissions. More-
over, the groundtruth of this dataset has generated discussion in the
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literature [6,16] due to the fact that many of the MA candidates marked
in the groundtruth are invisible to the viewers or could not be seen by
other expert observers. This made it difficult to rely on this dataset as a
benchmarking dataset for MA algorithms. The DIARETDB1 v2.1
(henceforth DIARETDB1) dataset is a general-purpose dataset for the
detection of diabetic retinopathy (DR) from retinal images. The dataset
includes groundtruths for various lesions in the image including MAs,
haemorrhages and exudates, as labelled by 4 experts. However, in order
to reduce the bias in labelling, the experts were not instructed to mark a
specific shape for each lesion. Hence, some of the experts marked large
regions around a group of MAs as groundtruths and others did not. Thus,
labelling of some of the MAs resulted in unusual shapes after the 4 expert
labels were fused together (Fig. 4). To address the shortcomings in the
current public datasets we introduced a new public dataset of MA
groundtruths for the purpose of benchmarking MA detection algorithms.
This is described in the next section.

Due to the reasons mentioned above, as well as to add more variety to
the existing datasets, we have produced a new public MA groundtruth set
based on theMESSIDOR database1 [41]. Thirty-two images were selected
from the MESSIDOR dataset to cover a wide range of retinopathy. A
summary of the images in dataset in terms of retinopathy grade and
number of MAs included in the set is shown in Table 3. The grade is
predominantly based on the number of MAs (the presence of haemor-
rhages and new vessels is also factored in) [41]. We have included 16
healthy images (without MAs) in order to maintain a balanced dataset
while performing per-image MA evaluation (evaluating whether or not
an MA candidate exists for each image). A summary of the distribution of
retinopathy grade in the 32 images is presented in Table 3. The images
belonged to the same resolution of 1440 � 960 px.

The images were groundtruthed by an expert grader. The dataset has
also been made publicly available 1. All the visible MAs were marked
during the process. A circular marker was used rather than pixel-based
marker [43]. The main reason for the use of a circular marker is that
majority of the literature has relied on lesion-based metrics to measure
the accuracy of detection. Using lesion-based metrics makes the results
more sensible since the measure is informative of the amount of MA
candidates that were detected by a given algorithm. In contrast, reliance
on pixel-based metrics can be misleading due to the imbalance in pro-
portion between very few MA pixels and a large number of back-
ground pixels.

Motivated by the Retinopathy Online Challenge [43], each MA
candidate was labelled using one of the following categories: Obvious,
Regular or Subtle and Close-to-Vessel (Fig. 1). The labels Obvious,

http://blogs.kingston.ac.uk/retinal/?p=311
http://blogs.kingston.ac.uk/retinal/?p=311
http://blogs.kingston.ac.uk/retinal/?p=311


Fig. 5. Out of bag (OOB) classification error as a function of the number of trees in the Tree Ensemble classifier.

Fig. 6. An example of a candidate (dotted circle) that is considered to match a ground-
truth (solid circle). There is a match since the centre of the candidate lies within the
groundtruth region.3.
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Regular or Subtle are based on the relative visibility and/or local contrast
of the corresponding MA in the image. Close-to-Vessel is a label given to
MA candidates that lie close to a blood vessel. A detailed explanation of
each category is mentioned in Ref. [43].
3.2. Evaluation

We have used the public MESSIDOR dataset mentioned in the pre-
vious section to train and measure classifier model error. Hence we have
built our models using the training set and measured the accuracy of the
Fig. 7. An example of variability in results everytime a Tree ensemble model is built for classi
minimum and median results are displayed.
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model using the 16 images in the MESSIDOR test set. In order to ensure
that our model is not overfitting the MESSIDOR dataset we have also
measured the performance of our model on the DIARETDB1 test set. In
the case of an overfit model the error on the DIARETDB1 test set would be
greater than the error on the MESSIDOR test set [35]. Hence we want to
ensure that the error on both the MESSIDOR and the DIARETDB1 sets
was similar for our model. The following procedure was followed in
order to perform the evaluation on the dataset:

� The MESSIDOR dataset was split into 16 images for building the
model (training set) and 16 images for measuring the model classi-
fication error (test set) as shown in Table 3.

� The procedure outlined in Section 2.3 was used to generate the 70
features. The training groundtruth was used to label the features.
These features were used to train the Tree Ensemble classifier and
generate the model. Note that the training set was undersampled in
order to maintain a balance between the positive and negative sam-
ples. One parameter that needs to be set for the Tree Ensemble clas-
sifier is the number of generated trees (N). Fig. 5 shows the out-of-bag
(OOB) classification error as a function of the number of trees in the
Tree Ensemble classifier. We have selected a value ofN ¼ 40 based on
Fig. 5. This is also within the range recommended by Brieman [37].
The value of N is chosen from the plot at the point where there is no
more significant decrease in the OOB error.
fication. In this example the Tree ensemble classifier was run 11 times and the maximum,
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� For each image in the MESSIDOR test set, the procedure outlined in
Section 2.2 was used to find the set of candidates and their corre-
sponding features. Each candidate feature vector was then fed into the
classifier in order to classify it as a true candidate or a false positive.

� The final classified set of candidates was then compared against the
ground truths in order to assess the performance.

In addition to the proposed algorithm, we have also implemented
Fleming's algorithm [12] in order to compare it against the proposed
technique. Fleming uses a K-Nearest-Neighbours classifier with 9 fea-
tures. We call this the “basic feature set”. In addition, we have also used
the K-Nearest-Neighbours classifier with all 70 features, and we call this
Fig. 8. Examples of microaneurysm detection algorithms applied to the MESSIDOR dataset. Th
with the algorithm results highlighted. The blue circle represents the groundtruth labelled micro
circle represents an MA candidate that was detected as a candidate MA but classified as a false
QUARTZ software [44]. (For interpretation of the references to colour in this figure legend, th
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the “extended feature set”.
In order to measure the accuracy of the algorithm, we measured the

sensitivity of the proposed method [8]. Given image Ii in a test set (for i ¼
½1::t�, where t is the number of images in the test set), let Gi be the set of
true MA objects (groundtruth) for image Ii and Ci be the set of detected
candidates after classification (Section 2.3) for image Ii. The sensitivity is
defined as:

Sensitivity ¼
Pt

i¼1jGi∩CijPt
i¼1jGij

(8)

where jxj represents set cardinality of x. Thus the sensitivity is the
e first column shows the colour image patch. Columns 2–4 show the preprocessed image
aneurysm. The green circle represents an MA candidate detected by the algorithm. The red
positive by the classifier. The yellow boundaries shows the vessel regions detected by the
e reader is referred to the web version of this article.)



Fig. 9. Free-Receiver operating curve (FROC) for all microaneurysm candidates in the test set. In f) the black lines represent the performance of each respective model on the DIARETDB1
test set by training on the DIARETDB1 training set, while the blue lines represent the performance of each model on the DIARETDB1 test set after training on the MESSIDOR training set.
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proportion of true candidates detected in proportion to the total number
of true candidates. A candidate c 2 C is considered to be equivalent to g 2
G if the pixel coordinates of g and c overlap by at least 1 pixel (Fig. 6).
Note that we are measuring the sensitivity at a candidate level rather
than at a pixel level (lesion-based sensitivity). Since we cannot determine
the number of true negatives, we used a Free Receiver Operating Curve
(FROC) rather than a traditional ROC curve [9]. In an FROC curve, the x-
axis is replaced with the average number of false positive candidates per
Table 4
ROC scores for multiple categories in the set.

Category Method

Fleming (basic feature set)

MESSIDOR - All candidates 0.2479
MESSIDOR (Obvious Only) 0.1916
MESSIDOR (Regular Only) 0.2479
MESSIDOR (Subtle Only) 0.0298
MESSIDOR (Close-to-vessel Only) 0.0060
DIARETDB1 (test set) 0.1143
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image instead of the specificity. Fig. 9 shows FROC curves for both the
proposed method (using the Tree Ensemble classifier) (solid) and Flem-
ing's method (using K-Nearest Neighbours) (dotted) for multiple cate-
gories in the dataset. Each curve was generated by evaluating the trained
model on the test set. The dotted curve represents the performance of
Fleming's state-of-the-art algorithm on the MESSIDOR dataset, the
dashed curve represents the performance of Fleming's algorithm (using
the K-Nearest-Neighbours classifier) with the extended feature set. A
Fleming (extended feature set) Proposed method (Tree ensemble)

0.3125 0.3923
0.2238 0.4321
0.3125 0.3923
0.0509 0.0593
0.0060 0.1148
0.1132 0.2109
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value of K ¼ 15 was used for the K-Nearest-Neighbours classifier [12].
Each classifier produces a probability value (PÞ between 0 and 1 repre-
senting the likelihood of a candidate belonging to 0 or 1. We use a
threshold value Pt to produce the final classification (i.e. class ¼ 0 if
P � Pt , otherwise class ¼ 1). The value of Pt was varied in order to
generate the FROC curve. Tree Ensembles generate trees at random and
generates the attribute splits at random as well [34,35]. Due to this
feature of the classifier, every run produces results with slightly different
accuracy (Fig. 7). To overcome the varying results, we have applied the
Random Forest classifier multiple times and, for each run in the curve, we
calculate the Area Under each Curve. Finally we display the curve with
the median AUC value. This helps reduce the variability in the FROC
curve. For our experiments we found that applying the classifier 11 times
was sufficient to reduce the variability in the results. In an experiment
run on the MESSIDOR dataset the Tree Ensemble classifier was run 100
times and the average mean squared error (MSE) for all the curves was
found to be 0.0124, which shows that the variability in the classifier can
be considered negligible.

4. Results

In this section experimental results of the proposed algorithms are
presented. Both visual and quantitative results are presented. Section 4.1
presents patches of the algorithm which show detections of micro-
aneurysms and the classification results. The patches are compared to
both Fleming and an extended version of Fleming. Section 4.2 will pre-
sent some quantitative results for both the MESSIDOR and DIARETDB1
datasets. An analysis of the features and the discriminative ability of each
feature will be listed in Section 4.3.
4.1. Visual results

Fig. 8 shows example patches from the MESSIDOR images for the
three methods mentioned in Section 3.2. The figure shows several
patches from multiple colour images. The patches are scaled by 200%
and for each patch the groundtruth, the MA candidates (after region
growing) and the result of the classification have been highlighted. For
the purpose of comparison the results are shown for the proposed
method, Fleming's algorithm with the basic feature set, and Fleming's
algorithm with the extended feature set.

The colour codes of the labels in Fig. 8 are as follows: The blue circle
represents the groundtruth labelled microaneurysm. The green circle
represents an MA candidate detected by the algorithm. The red circle
represents an MA candidate that was detected as a candidate MA but
Fig. 10. Feature importance measure
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classified as a false positive by the classifier. An analysis of these patches
will be presented in Section 5.1.
4.2. Quantitative results

Fig. 9 shows the FROC curves for the three algorithms: Tree ensemble,
Fleming (basic feature set) and Fleming (extended feature set). The
model was built using the training set of the MESSIDOR dataset and the
performance was measured using the MESSIDOR test set. The first FROC
curve in Fig. 9 was generated by evaluating the classification model
performance on the test set (16 images, 128 microaneurysms) after
training using the entire set of MA labels in the training set (16 images,
128 microaneurysms).

In addition, evaluations for the subsets of the MESSIDOR ground-
truths are also presented: obvious candidates, regular candidates, subtle
candidates and close-to-vessel candidates. Each reported performance for
a subset of the MESSIDOR dataset was trained on the respective subset of
microaneurysm groundtruths in the dataset. This was done to highlight
the variation in performance for each category of microaneurysms.
Finally, the classification models were tested on the test set of the DIA-
RETDB1 set. In order to demonstrate the overfitting process, we gener-
ated two models for each classifier: once by training on the MESSIDOR
training set and the second by training on the DIARETDB1 training set.
The models were then evaluated on the DIARETDB1 test set (61 images,
169 microaneurysms). In Fig. 9(f) the black curves represent the per-
formance of each respective model on the DIARETDB1 test set using a
model which was trained on the DIARETDB1 training set (28 images, 85
microaneurysms), while the blue curves represents the performance of
each model on the DIARETDB1 test set using a model which was trained
on the MESSIDOR training set. It is observed that the blue curve per-
formance is comparable to the dashed black curve, which represents the
performance Fleming (extended feature set) on the DIARETDB1 dataset.
This shows that the Tree Ensemble classifier is generalizable across
datasets since the performance is still comparable using a model trained
on a different dataset.

In order to quantify the results further, we present the ROC Scores for
each method in Table 4. The ROC Score [43] calculates the average
sensitivity of the curve at multiple False Positive Rate intervals (1=8, 1=4,
1=2, 1, 2, 4, 8). In other words, the ROC score measures the average
sensitivity of a technique at low False Positive rates. The ROC score
simply captures the first section of the FROC curve (until 8 FP/image) as
a simple quantifiable result. The ROC score focuses on the algorithm
performance at low false positive rates. An extended discussion of the
quantitative results will be presented in Section 5.1.
d using the MESSIDOR dataset.
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Tests were performed to measure the computational performance on
the two datasets. The machine used for the tests was a core i5-4590 @
3.30 GHz CPU with 8 GB RAM and an SSD hard drive. The average time
required by the algorithm for each image in the MESSIDOR dataset was
166 s, while the average time per image in the DIARETDB1 dataset was
65 s. The algorithm's average performance on the DIARETDB1 dataset is
around 40% of the time required for the MESSIDOR dataset. The main
reason for this discrepancy is that the number of microaneurysms
labelled per image in the DIARETDB1 is 2.85 (89 images and 254 labelled
candidates) compared to 8 microaneurysms per image for MESSIDOR (32
images and 256 labelled microaneurysms). Intuitively this implies that
less initial candidates will be detected per image in the DIARETDB1
dataset, which results in less computation for region growing and feature
computation, since this needs to be computed for less candidates on
average in DIARETDB1. Fleming has proposed several postprocessing
methods and on average the reported performance in a dataset of 422
images was between 58 and 100s per image. The time performance of the
hybrid classifier used by Akram [26] has been reported. The hybrid
classier required 1:4� 10�3s per candidate. One of the advantages of an
ensemble classifier is that it is very efficient to train and test. The
ensemble classifier requires less than a second for training in both DIA-
RETDB1 and MESSIDOR datasets. Furthermore, classification is also very
efficient for decision trees and it takes 4� 10�5s on average.

4.3. Feature analysis

Since a large number of features are used in the proposed algorithm a
presentation of the discriminative ability of each feature would be
insightful to understand the most impactful feature and also for other
researchers developing microaneurysm detection algorithms. Fig. 10
shows the feature importance of the features in the same order of
appearance as in Table 1. The features are categorised by type. This
performance was measured based on the trees generated from the tree
ensemble classifier. A rough visual analysis of the chart shows that there
are some important features for each category of features. A more
detailed analysis of the chart is described in detail in Section 5.2.

5. Discussion

5.1. Visual and quantitative results

Fleming [12] is used as a baseline for comparison with the proposed
technique. Fleming's reported per-lesion performance on a large private
dataset is comparable to recently published methods. This makes it
reasonable to use it as a baseline for comparison. Recent methods which
are comparable to Fleming include Wu (2015) [29], Adal (2014) [28],
Inoue (2013) [20] and Li (2013) [14]. While it is difficult to compare 2
FROC curves for 2 methods, the per-lesion sensitivities in Table 1 are all
reported based at a value of 1 False positive/Image. This value was
chosen since it is the median value of the 8 samples used while
computing the ROC Score [43]. Using this value of 1 False Positives/
Image makes it possible to compare between Fleming and other methods
that have reported lesion-based sensitivity. The sensitivities for these
methods at 1 FP/image are: Fleming (2006) 0.51, Wu (2015) 0.23, Adal
(2014) 0.36, Inoue (2013) 0.23. In this section both a quantitative and
visual analysis of the results of the proposed method is discussed.

In order to further analyse the results, we can understand the FROC
curves in Fig. 9 by observing the patches in Fig. 8. An observation of the
patches in Fig. 8 will help us understand the FROC curves in Fig. 9. It is
observed that the Tree ensemble classifier is superior to the K-Nearest-
Neighbours classifier in terms of eliminating the false positives in the
image. This is observed more evidently in rows (e), (g) and (f), since the
second column shows more red circles that do not intersect with a true
candidate (blue circle). To elaborate, a red circle which does not intersect
with a blue circle is a true negative. A blue circle which intersects with a
green circle is a true positive. A blue circle which intersects with a red
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circle, or does not intersect with anything is a false negative.
The patches show that most of the time, the three methods equally

detect the true positive candidates in the image. In fact, Fig. 8(c) shows
that the proposed method has marked a true candidate MA as a false
positive while the K-Nearest-Neighbours classifier correctly marked it as
a true candidate. The conclusion drawn is that all methods are almost
equivalent in terms of maintaining true positive candidates while the
proposed method is superior in terms of eliminating false positives. This
is important from a clinical perspective since a reduction in the number
of false positives while maintaining the same sensitivity will avoid over-
referral of the patients. One more interesting observation is that of
Fig. 8(d) which shows an example of a close-to-vessel candidate. The
figure shows that during the preprocessing phase the candidate merges
with the vessel and therefore remains undetected as a candidate. This
indicates why the performance of close-to-vessel candidates is very low
for all methods.

The analysis of the patches in the previous paragraph will help us
explain the FROC curves in Fig. 9. The FROC curves show that the pro-
posed method performs better when all candidates are considered. In
addition, it is also better at distinguishing close-to-vessel candidates.
However, the curves intersect in the case of Obvious, Regular and Subtle
candidates. This makes it difficult to judge which method performs
better. For this purpose we needed a numerical measure in order to
compare the curves in a more objective manner.

The ROC Score [43] calculates the average sensitivity of the curve at
multiple False Positive Rate intervals (1=8, 1=4, 1=2, 1, 2, 4, 8). Table 4
shows the ROC scores for the corresponding ROC curves in Fig. 9. As
illustrated by the FROC curves, the ROC score for the proposed method is
better in terms of all candidates and close-to-vessel candidates. It also
achieves a better score for regular, obvious and subtle candidates.

Fig. 9(f) shows that the proposed method can build a model that is
generalizable across datasets. In this figure the black lines represent the
performance of each respective model on the DIARETDB1 test set by
training on the DIARETDB1 training set, while the blue curves represent
the performance of each model on the DIARETDB1 test set after training
on the MESSIDOR training set. It can be seen that the proposed method is
much more generalizable than the Fleming technique since the perfor-
mance does not deteriorate significantly even when the classifier is
trained on a different dataset (training on MESSIDOR and testing DIA-
RETDB1). This fact increases the confidence that overfitting does not
occur on the model that was trained on the MESSIDOR dataset.

5.2. Feature analysis

The extended feature set of 70 features that we have used is based on
features that have been applied in the literature. We have attempted to
collect the most common features that were present in the literature.

However, a question which arises is whether all of the features are
important features that contribute to the performance of the Tree
ensemble classifier [45]. Some features may not contribute much infor-
mation to the classifier and hence may be ignored. We have performed an
experiment to rank the features according to the Predictor Importance.
The Predictor Importance for a given attribute is calculated by computing
the entropy (or Information Gain) for each tree in the Tree ensemble and
then computing the average entropy for each tree. The predictor
importance can be computed while building the Tree ensemble model
and provides an indication of the importance of features. Fig. 10 shows
the measured predictor importance for the 70 features in Fig. 10. We
observe that there is varying importance for the features in the dataset.

In general by visualizing the graph it is observed that there are some
important features for each category of features. It is observed that the
Gaussian 1D and the Shape features are in general less important than the
rest of features (though visual observation). This does not imply that they
should be ignored, however, since to decide which features need to be
removed a feature selection method should be utilized, and this step is
left for future work 46].



Table 5
The 5 most (a) and least (b) discriminative features according to the bagging feature
importance measure.

Feature number Feature description Category

(a)
65 The intensity range in the value channel Intensity
66 Intensity range in the preprocessing channel Intensity
6 Depth of candidate in the preprocessed image Fleming
19 minor axis length Shape
2 Major axis length Fleming
(b)
46 Mean candidate intensity in red channel Intensity
36 Range in the hue channel Intensity
12 3rd moment invariant Moment
14 5th moment invariant Moment
15 6th moment invariant Moment
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The top 5 and least 5 features in terms of discriminative ability are
listed in Table 5. Some interesting observations can be made based on
this table. Firstly, it is observed that intensity features appear twice in the
most discriminative list and also twice in the least discriminative list. The
intensity features that appear in the most discriminative list are
computed from the processing channel, suggesting that computing fea-
tures from this channel will help produce discriminative features.
Another observation is that 2 of 9 Fleming features appear as most
discriminative. The minor axis length feature also appears to be in the list
of most discriminative features. Interestingly, there is another Major axis
length feature that appears in the shape feature category (feature 18).
The difference between the major axis length in Fleming (2) and the
shape feature list (18) is that the first is measured after fitting a parab-
oloid to each candidate whereas the latter does not fit a paraboloid. It is
observed that feature 18 is ranked low in the graph whereas feature 2 is
among the most discriminative features. This raises the question about
whether they are both correlated features which causes the feature to be
ranked high while the other being under ranked [46]. If that is the case,
then one may utilize this fact and eliminate some of the Fleming features
by substituting them with shape features that are more efficient since
they are calculated at the pixel level.

A final remark about the least discriminative features is that 3 out of
the least 5 discriminative features are moment features, which suggests
that the use of moment features does not help in the classification pro-
cess. The process of experimenting with feature elimination and selecting
a smaller set of the 70 features is left for future work.

6. Conclusion

In this work a new approach for MA detection is proposed. The new
approach is based on Fleming's method. The proposed method relies on
using a Tree ensemble classifier (ensemble classifier with bagging). The
proposed method uses an extensive set of 70 features in order to perform
the classification. A new public dataset of MA groundtruths is introduced
based on the public MESSIDOR dataset. This set of groundtruths for 32
images is categorised according to MA appearance and closeness to blood
vessels. The proposed method is evaluated using two datasets: including
the new MESSIDOR dataset and DIARETDB1 (v2.1) dataset. The pro-
posed method is compared to Fleming's method and another variant of
Fleming. Results show that the proposed method is superior in terms of
eliminating false positives (while maintaining the same sensitivity as the
other methods) from the images and this is reflected in the plotted Free-
Receiver Operating Curves (FROC). Furthermore, results show that the
Tree ensemble classifier produces a model that is generalizable across
datasets – this if verified by measuring error of the model trained on the
MESSIDOR dataset on the DIARETDB1 dataset. The importance of the
features is discussed to identify the most discriminative features among
the 70 features. Feature selection for the reduction of the feature set is left
for future work. The purpose of feature selection would be to increase the
algorithm efficiency and reduce the chances of classifier overfitting. A
56
summary of the performance of the algorithm on both MESSIDOR and
DIARETDB1 is presented and areas which can be optimized
are discussed.
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