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Packet Loss Visibility Across SD, HD, 3D, and UHD

Video Streams

A.O. Adeyemi-Ejeye, M. Alreshoodi, L. Al-Jobouri, M. Fleury, J. Woods

Abstract

The trend towards video streaming with increased spatial resolutions and
dimensions, SD, HD, 3D, and 4kUHD, even for portable devices has impor-
tant implications for displayed video quality. There is an interplay between
packetization, packet loss visibility, choice of codec, and viewing conditions,
which implies that prior studies at lower resolutions may not be as relevant.
This paper presents two sets of experiments, the one at a Variable BitRate
(VBR) and the other at a Constant BitRate(CBR), which highlight differ-
ent aspects of the interpretation. The latter experiments also compare and
contrast encoding with either an H.264 or an High Efficiency Video Coding
(HEVC) codec, with all results recorded as objective Mean Opinion Score
(MOS). The video quality assessments will be of interest to those consider-
ing: the bitrates and expected quality in error-prone environments; or, in
fact, whether to use a reliable transport protocol to prevent all errors, at a
cost in jitter and latency, rather than tolerate low levels of packet errors.

Keywords: Video streaming, packet loss visibility, objective MOS, Beyond
HD

1. Introduction

Packet Loss Visibility (PLV) [1][2] appraises video quality according to
the network response and in doing so may cut across assessments based on
the bitrate and/or compression ratio. For example, we have found that when
packet loss is taken into account, video compressed at a lower quantization
parameter (QP), which would normally result in a higher video quality may
result in lower-quality video than video compressed with a higher QP. This
assumes that the packetization structures are the same for both QPs and that
’video quality’ refers to objectified Mean Opinion Score (MOS) [3]. (Objec-
tified MOS, herein, results from a direct mapping from either the Structural
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SIMilarity (SSIM) index [4] or the Video Quality Metric (VQM) [5].) In fact,
PLV also may change in response to variations in: bitrate; content type; and
codec [6]. However, in this paper, the main focus is upon the relationship be-
tween spatial-resolution and PLV, because the current trend is towards video
streaming at ever higher resolutions, including HD (1280× 720 pixels/frame
progressive (p) scanning), 3D (both Standard Definition (SD) (480 × 720p)
and HD), and 4k Ultra High Definition (UHD)(4096 × 2160p )[7].

That trend extends to portable devices, which must operate in error-
prone wireless environments subject to packet loss. System-on-chips have
been designed [8] for HD video on smart phones and mobile 3D video has
attracted researchers [9]. Indeed, HD video has a 3.1 × picture height for an
ideal viewing distance compared to 7.1 × picture height for SD [10], mak-
ing HD video particularly appropriate for portable displays. (For example,
at a distance of 3.1 multiplied by the HD picture height the scan lines be-
come invisible, whereas at a closer distance a viewer can distinguish between
them. Viewers tend to select that viewing distance at which the scan lines
first become invisible.) The video plus depth format for 3D TV [8] is also
appropriate for portable devices, as the main obstacle to auto-stereoscopic
(glasses-free) displays [11] is the need for a restricted viewing angle, which is
already present on portable devices, as they are rarely used for social view-
ing by more than one viewer. Furthermore, UHD broadcast transmission to
portable devices has already been demonstrated at the 2014 Broadcast Asia
conference employing Digital Video Broadcast terrestrial second-generation
(DVB-T2) transmission. Compression was through an High Efficiency Video
Coding (HEVC) standard codec, which was designed with higher resolutions
in mind [12], because, as is well-known, it achieves up to 50% bitrate savings
over the prior H.264/Advanced Video Coding (AVC) standard. However, as
this paper details, there also may be a cost in terms of exposure to packet
loss, and in commercial terms there is also a risk if a service to portable
devices is not appreciated by its audience.

Thus, user expectations of mobile displays extend up to broadcast quality
owing to both the apparent sophistication of smart phones and the ability
to offload high-intensity computation to cloud processing [13]. Despite those
expectations, the reality is that video is still streamed to such devices over
error-prone wireless networks, where it is impossible to make ’less error-prone’
by altering the physical channel. It is true that TCP-based pseudo-streaming
with some form of HTTP Adaptive Streaming (HAS) [14] can be applied to
wireless communication. When an error occurs packets are retransmitted.
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However, though there are no errors present at the receiver, large buffers are
required, implying start-up delay affecting short video clips, and, for other
than short video sequences, there is a risk of increased and annoying jitter.
The impact of jitter is particular noticeable in interactive services such as
mobile video gaming, teleconferencing, and telemedicine. Alternatively, if an
Internet Protocol (IP)/User Datagram Protocol (UDP)/Real-time Transport
Protocol (RTP) variety of streaming is employed [15] then packet loss can
impact upon the receiver.

This paper also investigates another form of video transmission over a
network, namely by packing MPEG-2 Transport Stream (TS) media con-
tainer packets (maximum size 188 B) directly into UDP network packets.
Though this paper studies PLV rather than jitter, all three forms of stream-
ing (HAS, IP/UDP/RTP and MPEG-2 TS/UDP) run the risk of complaints
published on the Web, which can escalate in their impact [16]. Therefore,
it becomes important to study PLV because higher spatial resolutions are
becoming more common.

However, most video quality evaluation studies were concerned with video
resolutions below or occasionally up to HD and not beyond that, see [17] [18].
Nevertheless, there is indirect evidence that changes in coding format result in
differing responses to packet loss. Thus, [6] showed that H.264/AVC quality
drops dramatically for even low packet loss rates (0.02%), while MPEG-2
quality drops by much less. The implication is that for equivalent transmitter
HD quality the older codec achieves a better receiver quality once packet loss
is taken into account. It is also important to notice that Pinson et al. [6]
did this with experiments that adjusted for the expected coding gain between
MPEG-2 and H.264/AVC to allow the PLV of video of expected equal quality
to be compared. Thus, for MPEG-2 a bitrate of 6 Mbps was compared with
an H.264/AVC bit-rate of 2 Mbps amongst others. The same approach is
also taken in [19] in that bitrate savings between codecs are compared across
equal objective video quality. We have, thus, selected bitrates that adjust for
expected coding gains to achieve a comparison across equal quality video. To
the best of our knowledge, the current work is the first to compare HD and
4kUHD video quality in respect to PLV for H.264/AVC and HEVC codecs.

Comparing between resolutions rather than between codecs, contrasting
views emerge. [1] noted that packet loss was more visible at HD than at SD,
because HDTV occupies a larger field of view. However, [2] suggested that
the quality degradation as a result of a packet loss in HD is much lower than
in SD because the relative amount of information carried in that packet is
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smaller. As a result, a lost packet affects less macroblocks (MBs) in HD,
and, therefore, causes less spatio-temporal error propagation. Consequently,
it is incumbent upon researchers to establish how packet structure affects
video quality, irrespective of differences in bitrate, especially at 3D and UHD
resolutions.

Ideally, subjective assessment is required to assess video quality. Unfor-
tunately, managers of video streaming normally do not have access to a panel
of viewers [20] [21], owing principally to: time restrictions; and the difficulty
of assembling a suitable set of viewers. Subjective testing also does not allow
a real-time response to changes in packet loss rate (PLR) or packet structures
and is not repeatable. However, objective subjective ratings can approximate
the results of subjective testing with a high degree of correlation. For ex-
ample, the Video Quality Experts Group (VQEG) Full-Reference Television
(FR-TV) Phase II tests for VQM [22] resulted in Pearson linear correlation
coefficients (PCCs) with Difference MOS (DMOS) from subjective tests, of
above 0.9 [5]. Following the VQEG evaluation procedure SSIM also resulted
in correlations well above 0.9 and in [4] outperformed four other models on
the authors’ still image database. Since the original SSIM presentation [23],
a number of refinements have also occurred. These give good confidence that
SSIM along with VQM are excellent objective measures of MOS. The result
is that this paper has been able to combine experimental results originally
measured by either SSIM or VQM in one common objective MOS score. The
results are repeatable and are arrived at in a practical manner.

The contribution of this paper is to examine the relative impact of packet
loss upon PLV across SD, HD, 3D, and 4KUHD video streams. Examining
PLV rather than compression gain gives a realistic guide to what can be
expected from higher resolutions in error prone environments, especially for
portable devices. Realistic video configurations have, thus, been used and the
important influence of content type, bitrate, and packetization is exposed.
Because VQM and SSIM have been employed, the link between: packet-loss
rate; error burst length; and content type has been directly mapped to MOS
subjective ratings. In this way, the paper exposes the relationship between
packetization and video resolution.

As a motivating argument, one could consider a 20 Mbps stream, rep-
resenting a higher-resolution compressed video bitstream, and a 10 Mbps
representing a relatively low-resolution video from the same codec operating
in Constant BitRate (CBR) mode. Assuming an Ethernet frame size of 1500
B, one of the modal packet sizes for Internet transmission, with IP/UDP
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headers. Then, the former bitstream generates about 1698 packets/s, while
the figure for the latter bitstream is 849 packets/s. In terms of encoded data,
the proportion of video data contributing to the same-sized display (though
with different resolutions) is less per packet for the 20 Mbps stream than it
is for the 10 Mbps stream. Hence, for equivalent percentage packet losses,
assuming sufficient bandwidth, a greater number of higher resolution packets
survive than those from the lower resolution stream. There are many other
contingencies that will affect the outcome, but as a reason for investigating
what the actual response is according to resolution the case is clear.

Notice that in the previous brief discussion, the assumption was for CBR
transmission. CBR video (or piecewise CBR in statistical multiplexing) is
more convenient for reserving bandwidth and storage space but can be less
convenient in a test scenario comparing video qualities, as in CBR the un-
derlying coding quality can vary to match the bitrate. Therefore, we have
performed two sets of experiments in this paper, which apart from differences
in modeling and codec configuration, also differ between VBR and CBR. As
the paper brings out there are differences in interpretation of the results,
depending on whether Variable BitRate (VBR) or CBR is employed. VBR
video open-loop encoding is more efficient in terms of bandwidth and stor-
age requirements than CBR closed-loop encoding. However, when streaming
VBR presents more of a challenge because of variations in the dynamic range
of the bitrate. On the other hand, CBR may result in poor quality when com-
plex scenes occur because the QP is increased (resulting in lower quality) to
enable the bitrate restrictions to be met. In our tests, high motion occurs
for some of the test video sequences, which can result in an encoder in CBR
allocating a higher QP. (Scene changes, which also can result in lower quality
CBR, do not generally occur in test sequences.) In [24], it is also demon-
strated that temporal variations in video quality are more apparent in HD
video. Therefore, in this paper experiments are presented both for VBR and
CBR video.

The remainder of this paper is organized as follows. Section 2 mentions
related work in addition to that in this introductory Section or describes al-
ready mentioned work in a little more depth. Section 3 describes the method-
ology, video configurations, and other aspects of the video quality evaluations
in the two sets of experiments reported on in this paper. Section 4 presents
the video evaluations for the two sets of experiments and in doing so ana-
lyzes the results. Finally, Section 5 picks out some key points arising from
the evaluations and makes recommendations for further research.
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2. Related Work

As noted in [25], there has been a surge in research into video streaming
Quality-of-Experience (QoE) [26]. Though the research of [25] did employ a
simplified form of real-time subjective testing, it concentrated on the impact
of delay and jitter. The main insight was that inter-domain jitter, which
was related to periods of end-to-end packet delay, contributed to poor QoE
when it occurred. From the point-of-view of choosing between the HAS
and IP/UDP/RTP varieties of streaming mentioned in the previous section,
HAS’s use of TCP appears to imply more delay for Internet video streaming,
unless peer-to-peer streaming is employed. However, there is also the issue
of PLV which in [27]’s subjective tests of H.264 video was found to be depen-
dent on: the initial mean square error between the error-free and concealed
MBs in a slice; and the maximum number of partitions of a block; and the
frame-type, though other factors were also significant. In view of comments
in section 1 on user reaction to video quality, it was found by the same group
working with MPEG-2 video [28] that even small distortions in quality as
a result of packet loss resulted in user dissatisfaction. Comparing [28] with
[27], because motion-compensated error concealment was employed before
evaluation in the latter, the amount of motion present in lost packets was
not such an important factor. All the same, from this paper’s standpoint,
[27]’s H.264/AVC work was conducted with low-resolution imagery, namely
Source Input Format (SIF) resolution (352× 240 pixels/frame). In addition,
Nightingale et al [17], analyzed network impairment on HEVC encoded video
streams below HD resolution, while [18]’s study did not extend beyond Com-
mon Intermediate Format (CIF), possibly owing to limitations imposed by
target application.

Other works, as well as [27] [28], have tried to identify factors that im-
pact upon subjective video quality. For lower resolution video, [29] identified
packet loss and bitrate to be more important than frame rate. The research
reported in [30] broadly examined two factors: the data loss pattern; and
the content characteristics. However, from the standpoint of resolution, the
subjectively tested video sequences were confined to SD (at 25 fps). Packet
losses were mainly in I-frames, which reduces the generality of the tests.
When scene changes occurred, causing an additional I-frame to be inserted
within a Group-of-Pictures (GoP), provided the error burst was not long
enough to affect both frames, scene changes actually halted the usual tem-
poral error propagation. That finding was similar to the results of [31], which
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also noted that the presence of camera motion (zoom and pan) increased the
subsequent distortion resulting from packet loss. Otherwise, the extent of I-
frame packet loss visibility depended on the burst length in [30]. The impact
of data loss was found to be dependent on the data loss pattern, especially
the number of packets affected, which is consistent with [32].

Spatial resolution does not feature strongly in the evaluation criteria for
some studies. For example, as mentioned in section 1 in [18] some of the
set of test videos had a resolution as low as Quarter Common Intermediate
Format (QCIF) (176 × 144 pixels/frame) with few packets per frame. That
research considered wireless network errors and video content dependency
and their impact on video quality. In order of importance, PLV was found
to depend on content type, sender bitrate, block error rate, and mean error
burst length. Though the authors of [18] acknowledge that spatial resolution
does have an impact on overall quality, even for low-bitrate video, as shown
in [33], they did not choose to incorporate resolution into their video quality
prediction model. Thus, because inappropriate resolutions were employed,
the experimental configuration appears not to be relevant to future video
streaming, even that directed at mobile devices, which appear to be following
the trend towards higher resolutions, already apparent for desk-top machines.
In addition, in practical implementation of the video-quality prediction model
[18], Peak Signal-to-Noise Ratio (PSNR) was reverted to. Though PSNR is
convenient to calculate, it is not directly related to human perception [34].
For example, PSNR does not account for the masking of distortion by the
presence of texture, which SSIM does expose. However, in [35], PSNR was
again the basis of video quality assessment for video streaming over a lossy
wireless channel. The authors of [35], specify a method of apply PSNR across
a video sequence with missing frames owing to packet dropping. Further by
taking into account other network imposed impairments such as the distorted
frame rate an adjusted version of PSNR was arrived at. The result was found
to be a metric with 0.9 correlation with MOS scores in tests.

The following studies indicate interesting future directions for video qual-
ity assessment, though they are not primarily concerned with PLV. Assess-
ment of synthetic 3D images was addressed in [36]. The authors of [36] in-
troduced a method for including the temporal flicker that arises from depth
image distortion. The method’s value was confirmed by extensive subjective
tests. The database of videos in which temporal flicker is a significant issue
will be most helpful in future assessments of PLV in 3D video. Video qual-
ity based on knowledge of the brain’s processing of video was introduced in
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[37]. The response to additive impairments and detail losses was assessed
separately. Then the images were compensated for motion contrast sensi-
tivity and visual masking before assessment. The assessment also modeled
expected eye movement. A weighted metric was then calculated to achieve
good predictive performance. The work in [38] is particularly innovative in
that the brain’s electrical activity was compared with the conscious response
of video viewers. The study found that the brain appeared to detect some
impairments to the video that the viewers did not consciously respond to.
The implication is that subjective testing in the future may be conducted by
direct measurement of brain activity alone.

3. Evaluation Methodology

To judge the relationship between PLV and spatial resolution, two sets of
experiments were performed. The first set concentrated on modeling packet
loss by simulation means, while the second set performed a live streaming
experiment to judge the effect of packet scheduling when packet losses oc-
curred. In practical terms, the authors originally performed a set of simula-
tions, which they then sought to extend and endorse by including 3D video
in a live streaming scenario, along with a change in streaming mode. It is
never possible to examine every configuration of wireless video streaming but
in the two sets of experiments there is scope for extrapolation by the reader
to a configuration of interest in order to judge the likely impact of changing
spatial resolutions. The test conditions for the two sets of experiments are
summarized in Table 1.

In both sets of experiments, the content characteristics from the encoding
perspective were found through the spatio-temporal classification metrics in
recommendation ITU-T P.910 [40]. This classifier establishes a spatial index
(SI) from a video sequence by taking the luminance magnitude of a Sobel
filter’s output and forms a temporal index (TI), based upon successive frame
differences using the luminance values. The advantage of this method of
classification is that it can be performed in real-time, possibly using the soft-
ware tool mentioned in [41]. TI can range from 0 to 80, with 0 meaning very
limited motion and SI can vary from 0 to 250, with 0 implying very little spa-
tial detail. Notice that [41] also introduces a database of H.264/AVC video
bitstreams with packet losses for the purpose of subjective testing. How-
ever, the maximum resolution is 4CIF (704 × 480 pixels/frame), making the
database inappropriate for this study, as results in 4CIF cannot be compared
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Table 1: Experimental test conditions

Condition Experiment one Experiment two

Packet loss modeling By simulation By live streaming
Spatial resolutions SD, HD SD, HD, 4kUHD
3D SD, HD -
Codec H.264/AVC H.264/AVC, HEVC
Codec(s) implementation Joint Model(JM) v.15.1 FFmpeg

with FRExt extensions
Streaming mode VBR CBR
Network protocols IP/UDP IP/UDP
Maximum data-link packet size 1.5 kB 1.5 kB
Multimedia packaging RTP MPEG-2 TS [39]
Error concealment technique Previous frame Previous frame

with results for higher resolutions. In both sets of experiments also, previ-
ous frame error concealment was employed, avoiding introducing, if a more
sophisticated form of error concealment was in place, the added factor of the
form of error concealment.

3.1. Testing by simulation

For these tests, three video sequences with similar spatial complexity but
increasing motion activity were selected for encoding into SD, HD (1024×720
pixels/frame, i.e. 4:3 aspect ratio), and 3D in the two resolutions. Figure 1
shows a sample frame and depth image for the 3D version of the selected video
sequences, while Table 2 shows their associated content classification. Each
sequence of 200 frames in length was captured in YUV 4:2:0 chroma format
at 25 fps, i.e. 8 s in duration. The 3D depth sequence was encoded with the
same QP in order to avoid issues arising from asymmetric assignment of the
QPs.

Coding parameters are summarized in Table 3. The GoP size was 16 with
one intra-coded I-frame and the remainder of the frames being predictively
coded P-frames. This arrangement is commonly employed for streaming
to mobile devices in order to reduce the coding complexity and memory
references arising from bi-predictive B-frames. Context Adaptive Variable-
Length Coding (CAVLC) entropy coding was adopted to speed-up tasting,
and rate-distortion analysis was turned off for the same reason. Notice that

9



  

an H.264/AVC profile, with its IDC code number given in Table 3 is a set of
encoding capabilities, while coding levels are requirements upon a decoder’s
performance, e.g. decoding speed.

Assessing video quality for the 2D versions of the three sequences was
straightforward. Each frame was evaluated with VQM software [5] before
forming an arithmetic mean of the VQM scores. To allow comparison across
the first and second set of experiments, the VQM rating was converted into an
objective MOS scale [42]. This conversion can be accomplished by applying
equation (1).

MOS = 5 − 4 × V QM (1)

where V QM and MOS are the VQM and MOS values respectively. The
mapping arises because MOS has five quality grades ranging from 1 to 5, the
maximum value, whereas VQM usually ranges from 0 (original quality) to
1 (severe distortion). Though in the original VQM paper [5], the maximum
VQM value is taken to be 1.2, values beyond 1 rarely occur in practice, which
accounts for the form of (1).

To assess 3D video quality the 2D color images were assessed just as
before, i.e. by means of VQM. However,the depth-quality model of [43]
was adopted in preference to the direct method of [42], which, intended
for asymmetric QPs, assesses the rendered left and right images separately.
Thus, depth-map assessment took advantage of the depth-quality map of [43]
based on estimating the quality of the depth signal, which in turn requires
identification of the principal depth planes. Subsequently, the overall 3D
quality was established by the mathematical model of [43], which combines
the VQM values and their corresponding depth-map value. This quality
scale, denoted as Q, is on a continuous scale from 0 (complete loss) to 1
(original quality). The conversion to objective MOS follows according to (2).

MOS = 5 − 4 × (1 −Q) (2)

In detail, the procedure to find Q is as follows. A visual depth image is
initially segmented into depth planes. This is achieved through a histogram
of the pixel values in a depth image. In the histogram, peaks are identified, as
these represent different depth planes. The peaks in the reference image are
statistically compared with the peaks in the distorted image.The comparison
results in three different measures [44]: M1, which measures the distortion of
the relative distance within each depth plane; M2, which measures distortion
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Music Depth image

Poker Depth image

BMX Depth image

Figure 1: One representative frame from each of the three source video sequences for
experiment one

Table 2: Video sequences content type for experiment one

Video sequence SI TI Motion

Music 48.69 4.83 Low
Poker 53.26 12.17 Moderate
BMX 56.01 23.25 High
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Table 3: H.264/AVC encoding parameters for experiment one

Parameter Value

Profile IDC High (100)
Level IDC 30 (SD), 32 (HD)
GoP structure IPPP. . .
Group of Pictures(GOP) size 16
Entropy coding CAVLC
Search range 32
Slice mode Packetized (bytes)
Output file format RTP packets
Rate control Disabled

in the consistency of each depth plane; and M3, which determines the struc-
tural error of the depth. These three measures are subsequently combined
to form the Mean Disparity Distortion Model (MDDM) value. MDDM con-
tributes to the overall 3D quality, Q. That contribution is governed by the
activity in the depth map. To find the contribution over a video sequence,
the sequence is segmented into blocks of N frames, where N is the frame rate.
The standard deviation of the value of each pixel position per block is found.
Then the arithmetic mean of the standard deviations is calculated to form
the Z-direction Motion Activity (ZMA). ZMA is next normalized according
to the resolution of the depth map and the range of the pixel luminance to
give normalized ZMA (nZMA). Q is actually found through (3).

Q = f1(content).ImageQuality + f2(content).DepthQuality, (3)

where f1 + f2 = 1. In our experiments, ImageQuality was set to the VQM
value and DepthQuality was set to the MDDM value. Finally, f1 and f2
were formed using the formulas found in [43] as a result of subjective testing,
namely (4) and (5) respectively.

f1 = 1 − 0.997nZMA0.2393 (4)

f2 = 0.997nZMA0.2393 (5)

Burst packet losses were introduced into the simulated packet stream,
according to the Gilbert-Elliott model (a simplified two-state hidden Markov
model). The hidden state was modeled by a Uniform distribution in order to
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Table 4: Simulated parameters for experiment one

Parameter Value

Content type (CT) Low, moderate, high TI
Spatial resolution (R) SD (720 × 576)

HD (1280 × 720)
Encoder QP 16, 24, 32
Packet Loss Rate (PLR) 0%, 1%, 2.5%, 5%, 7.5%
Mean Burst Length (MBL) 1 to 7

produce various Mean Burst Lengths (MBL)s. The intention of this common
procedure is not to emulate a physical wireless channel, as (say) sampling
from a Rayleigh distribution might do, but to accurately reproduce [45] an
application receiver’s experience of packet loss from fading.

The resulting simulation regime is summarized in Table 4. In that Table,
an MBL of 1 signifies random packet losses, while as the MBL rises to seven so
do the ‘bursty’ conditions. The QP values recorded represent high, medium,
and low quality from an H.264/AVC range of 0 to 51. Each of the conditions
in Table 4, i.e. CT, R, QP, and PLR, were each simulated ten times by
starting from a different position in the video trace file on each occasion.
Standard deviations of the results were taken to check the validity of the
results, with for the most part error bounds plus or minus a few percentage
points of the MOS values.

3.2. Testing by Transmission

For these experiments, the choice of source test sequence was constrained
by the availability of 4k versions. Thus, in some cases 4k ‘adaptations’ of well-
known test sequences were employed well-known, reference video sequences,
i.e. Coast, Foreman, and News were selected. Figure 2 shows representative
frames from the 4K versions. Additionally, Sintel 4k was accessed at [46].
In Table 5, these are arranged in order of their motion activity, similarly to
Table 2.

In terms of choice of transmission parameters, choice of the lowest CBR
bitrate for 4kUHD video was guided by the approximate savings of 35.4% of
an HEVC codec over an H.264/AVC codec reported in [19]. As mentioned
in Section 1, adjusting for coding gain between the two codecs is in line with
Pinson et al’s [6] previous comparison of MPEG-2 and H.264/AVC equal
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Sintel Coast

News Foreman

Figure 2: One representative frame from each of the four source video sequences for
experiment two

Table 5: Video sequences content type for experiment two

Video sequence SI TI Motion

Coast 10.84 16.92 Moderate
News 17.52 21.24 Moderate
Foreman 19.71 38.29 High
Sintel 16.39 72.26 High
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Table 6: 4kUHD parameters for experiment two

Parameter Value

Packet Loss Rate (PLR) 0.1 %
PLR (0.1%) + 4kUHD HEVC bitrate 13.5 Mbps, 18 Mbps, 23 Mbps, 25 Mbps

expected video quality. Further, in-house results [47] indicated that 4kUHD
transmission is possible over recent wireless links (IEEE 802.11n [48] and
IEEE 802.11ad), because H.264/AVC can compress to 20 Mbps if average
bitrate rate control is utilized. Thus, a rate of around 13.5 Mbps for 4kUHD
with an HEVC codec is arrived at, when an additional anticipated 0.1% PLR
is anticipated. Consequently, Table 6 reports the transmission parameters
for 4kUHD video transmission over a Wide Area Network (WAN). An SCE
WAN emulator [49] using bridging mode was attached to the outbound link
of the sender, which added MPEG-2 TS/UDP/IP headers to the bitstream
payload. The tests data points were all the mean of ten tests in an isolated
network.

Notice that there are normally seven MPEG-2 TS packets per one UDP
transport layer packet dropped by the WAN emulator. Selected codec config-
urations are shown in Table 7 for CBR streaming. It will be seen that larger
GoPs were employed in the second set of experiments and the GoP frame
structure was also varied. One principal way HEVC differs from H.264/AVC
is in employing Coding Tree Blocks (CTBs) in a quadtree structure in or-
der to extract greater coding efficiency when coding homogeneous areas of
a video frame. On the other hand, in the FFmpeg implementation of both
H.264/AVC and HEVC, the same rate control method is used. This is the fast
rate-control method described in [50], originally for the x264 implementation
of an H.264 standard codec.

4. Experimental results

4.1. Findings from experiment one

To judge the impact of packet loss, encoding loss with zero PLR was found
for SD and HD resolutions in 2D and 3D formats, refer to Figure 3. For the
3D assessments, the Q metric was converted to the MOS range (1 to 5) by (2).
The effect of increasing the QP across all three video clips is to reduce the
quality, as expected. When including the depth images in the 3D evaluations,
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Table 7: Codec parameters for experiment two

Parameter HEVC H.264/AVC

Profile Main High (5.1)
Processing unit Coding tree block Macroblock
Processing unit size 64 × 64 16 × 16
GoP size 25 40
GoP frame structure IBBPBBP. . . IPPP. . .
CBR bitrates 13.5 Mbps 20 Mbps

the overall quality is diluted compared to its 2D equivalent. Referring back
to Table 2, it appears that motion-activity is not a guide to quality even
when using VQM. (SSIM does not include any motion assessment, as it was
originally designed for still images and simply takes the mean evaluation
values across a video’s sequence.) For example, Music at QP=32 is of lower
assessed quality than high motion BMX.

4.1.1. Results with isolated packet loss

For 2D imagery it was found, compared to no packet loss assessments,
that the differences between the QPs was smoothed out by packet losses, even
when these occurred in isolation. This is evident from Figure 4 across the
range of PLRs tested. The implication of this finding is that decreasing the
QP by a small amount so as to improve the delivered quality may be difficult
to justify, as packet losses can remove any gains, while an increased band-
width will also result. Conversely, for non-real-time or one-way streaming it
may be better to trade quality for content protection by means of a reliable
underlying protocol, usually TCP. If packet losses do occur then HD appears
able to tolerate packet losses better than SD does. That finding confirms the
intuitive argument in section 1 about the relative reduction in impact from
losing a packet in HD. The objective MOS ratings do not take into account
differences in viewing conditions, such as viewing difference, between SD and
HD.

3D assessments in Figure 5 followed a similar trend to the no loss evalu-
ations, i.e. quality was reduced by including a depth image but the response
pattern for random losses was similar to the 2D findings.
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a)

b)

c)

Figure 3: Objective MOS video quality assessment for SD, HD, and 3D sequences with
PLR=0, a) Music, b) Poker, c) BMX
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a)

b)

c)

Figure 4: Objective MOS video quality assessment for SD and HD with varying PLR, a)
Music, b) Poker, c) BMX

18



  

a)

b)

c)

Figure 5: Objective MOS video quality assessment for 3D SD and HD with varying PLR,
a) Music, b) Poker, c) BMX
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CT: 1=Low motion, 2=Moderate motion, 3=High motion

a) b)

Figure 6: Influence on 2D CT of a) varying MBL for fixed PLR = 0.1%, b) varying PLR
for MBL = 1. The key defines the color mapping to objective MOS scores

4.1.2. Results including ‘bursty’ packet loss

The effect of CT was compared with either keeping the the PLR fixed (at
0.1%) and increasing the burst length or retaining isolated packet losses but
increasing the PLR. These findings are summarized for 2D and 3D HD video
clips in Figs. 6 and 7 . In this case, it was evident that quality was very
dependent on the CT. For low motion video quality was acceptable up to a
PLR of 4%. For high motion video, the findings indicate that once a threshold
of 2% PLR is reached, the quality starts to become unacceptable. Compared
to the impact of PLR, MBL has a less clear effect (albeit at the low PLR
tested). It appears that as the packet burst length increases, their influence
upon inter-frame dependencies decreases, due to a relative reduction of the
impact upon temporal error propagation.

4.2. Findings from experiment two

Again in order to calibrate later findings, tests were conducted to evaluate
the video quality without packet loss impairment. In these tests, reported
in Fig 8 for HEVC CBR at 13.5 Mbps and H.264/AVC at 20 Mbps, the
findings suggest that HEVC produces marginally (as far as the viewer is
concerned) better quality video at a lower bitrate. These results appear
to differ from experiment one’s results in two ways: 1) higher resolution
video results in lower objective MOS ratings; and 2) lower motion videos
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CT: 1=Low motion, 2=Moderate motion, 3=High motion

a) b)

Figure 7: Influence on 3D CT of a) varying MBL for fixed PLR = 0.1%, b) varying PLR
for MBL = 1. The key defines the color mapping to objective MOS scores

have higher qualities. However, the results are not contradictory, because, in
this set of tests, the CBR was fixed whatever the resolution. This naturally
results in less compression for lower resolutions, as the QP varies to match the
available bitrate. Moreover, the encoder’s have been able to take advantage
of the additional bitrate to improve the quality of low-motion videos. In
other words, both codecs avoid simply increasing the bitrate artificially, by,
for example, including more intra-coded CTBs or MBs. (Notice that adding
intra-coded blocks usually takes place when high motion reveals areas in
the reference frame which cannot easily be matched through inter-coding,
whereas here we have low motion.)

Figure 9 reports random packet loss of 0.1% for a selection of the video
sequences. The H.264/AVC codec now (compared to Figure 8) appears more
resilient to packet loss than HEVC resulting in higher quality ratings for
H.264/AVC encoding. This finding strongly suggests that HEVC’s more
efficient encoding makes it more sensitive to packet loss, once the relative
coding gains have been allowed for by scaling the CBRs (with HEVC at
13.5 Mbps and H.264/AVC at 20 Mbps). Packet loss now serves to exag-
gerate the difference in quality already starting to show in Figure 8 between
lower (higher quality) and higher resolution (lower quality). Similarly, when
packet losses occur, even at a low rate of 0.1%, higher motion sequences
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Figure 8: Objective MOS video quality assessment for a range of resolutions with PLR =
0 and either H.264/AVC or HEVC codec

such as Sintel suffer in quality much more than lower motion sequences such
as Coast. Again a possible explanation, when a fixed CBR is involved, is
that lower spatial resolution and lower motion video sequences will tend to
be less compressed. Consequently, with more coded content per packet for
lower resolution and lower motion videos, error concealment is better able
to reconstruct missing packets. In addition, at higher QPs (lower quality),
packet loss has more of an impact as the effect of temporal error propagation
and difficulty in performing error concealments are compounded. Lastly, the
relationship between packet loss and bitrate is demonstrated in Figure 10
for 4kUHD resolution video. As the bitrate is increased, the trend is for the
packet loss impact to reduce so that the video quality increases. This effect
can be attributed to the amount of coded information distributed amongst
the packets. For example, a 13.5 Mbps video stream will have fewer packets
over time that a stream at a higher rate but this means that the amount of
coded information per packet is higher compared to (say) a 25 Mbps stream.
Thus, the amount of coded data in a single packet could be split into two or
more packets at a higher rate. Consequently, the trend is that the sensitivity
to packet loss is reduced.

4.3. Packet reordering and duplication

This section investigates the effect of packet reordering or packet du-
plication on 4kUHD resolution video quality encoded with HEVC, as this
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Figure 9: Objective MOS video quality assessment for a range of resolutions with PLR =
0.1% and either H.264/AVC or HEVC codec

Figure 10: Objective MOS video quality assessment for a range of datarates with PLR
= 0.1%, 4kUHD resolution, and encoding with the HEVC codec. Notice the truncated
vertical scale.
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can cause additional quality degradation, the potential for which the reader
should be aware of. According to [51], packet reordering in the Internet is
common and can be between 3 to 5% [52]. The causes of packet reordering
include load balancing, multiple network paths, and dynamic route genera-
tion [53]. The main cause of packet duplication is faults in switching/routing
equipment within the network [54]. The duplication rates are usually small,
e.g. 66 packets in 20,000 flows, though [54] mentions measurements of a rate
over one route of 10%, owing to an incorrectly configured bridge device.

In the tests, the HEVC codec configuration was the same as that in Ta-
ble 7, while the transmission and receiver/decoder set-ups were the same as
for experiment two’s packet loss tests. The FFmpeg decoder buffer size was
set to the default of 28 KB. The SCE WAN emulator allowed random reorder-
ing/duplication rates from 0.1% to 1.0% to be set, as a point of comparison
with the impact of random packet losses at the same rates. Again, there
were seven MPEG-2 TS packets to each UDP packet. The main impact of
packet reordering is upon delay in arriving at the decoder, which can result
in dropped packets if any arrival times exceed display deadlines. As dupli-
cate MPEG-2 packets bear the same timestamp, delay at the decoder arises
because of the need to drop the duplicate packets. The 4kUHD resolution
will clearly have an impact on the processing time at the decoder. This can
result in later packets missing display deadlines.

Figure 11 shows the findings for 4kUHD video. It can be observed that
the impact of the PROR is less than that of packet loss, Figure 11c, at the
lower reordering rates other than 0.1, though there is a content dependency
effect. Figure 11b for PRORs implies that for less active video sequences,
such as Coast and News (refer to the T1 column in Table 5), can accom-
modate a maximum 0.4% PROR before the quality drops steeply. (There
may also be a threshold effect related to buffering sizes.) However, the more
active two sequences experience more loss of quality after a rate of 0.1%.
Thus, for safe streaming the expected PROR would need to be no higher
than 0.1%, which may be difficult to accomplish, given reordering rates re-
ported in [51], unless (say) large buffers are in place to mitigate the potential
effect. However, larger buffers result in longer start-up/pre-roll delay unless
adaptive buffer management [55] is employed. Plots in Figure 11c suggest
that all sequences can tolerate at least up to 0.2% PDR, before the video
quality deteriorates steeply beyond the rate of 0.4%. However, as previously
mentioned, duplication rates beyond 0.2% are rare if not unknown. However,
this analysis underestimates the potential effect upon the quality of 4kUHD
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a)

b)

c)

Figure 11: Objective MOS video quality assessment for a range of rates with HEVC codec
encoding and 4kUHD resolution a) PROR, b) PDR, c) PLR. N.B. The WAN emulator
did not allow a PDR of 0.3 to be set.
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video where either packet reordering or packet duplication or both occur and
are combined with packet loss. The combination of all three effects can occur
but further investigation is beyond the scope of the current paper.

4.4. Statistical significance of the results

An analysis of variance (ANOVA) test [56] was conducted, as such a test
is useful for establishing the interactions between two or more independent
variables. Table 8 shows the results obtained from an ANOVA test of our 2D
video datasets, where the degrees of freedom are shown in the first column,
the second column is the F-statistic, and the third column is the p-value.
(The parameter abbreviations were introduced in Table 4.) The p-value is
determined from the cumulative distribution function (cdf) of F [57]. A small
p-value (e.g. p = 0.01) indicates that the video QoE is significantly affected
by the corresponding parameter. A higher F-statistic corresponds to a higher
proportion of the variance being caused by the independent variable(s) [56].

It can be observed from the magnitudes of the p-values that all five pa-
rameters had significant effects on the video QoE. In particular, it can be seen
that the PLR had the highest influence on the QoE (p-value=0), followed by
QP and CT, while the MBL had the smallest influence on the QoE. Moreover,
there were interactions between each pair of parameters, each of which was
significant. The two-way interactions between PLR and CT, and PLR and
QP had the highest influence on the QoE. In addition, the ANOVA results
showed that the combined impact of MBL and CT was also significant.

5. Conclusion

This paper has highlighted a number of considerations when video stream-
ing at higher resolutions. When VBR encoding is employed, it was found that
packet loss had less of an impact upon HD video than on SD video. Whether
isolated or bursty packet loss occurred, it was the level of motion activity
that was the most significant factor. In fact, whatever the resolution, if the
packet loss rate is above 2% and the temporal complexity is high then there
is a need for channel coding and/or error resiliency. For more static content
then PLRs approaching 4% might be tolerated. As the HEVC codec has
reduced its support for error resilience tools, compared to the H.264/AVC
standard, channel coding becomes more important. The main alternative to
protecting content is to choose HTTP Adaptive Streaming (HAS) in which no
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Table 8: Five-way ANOVA for the QoE of 2D video

Source Degrees of freedom F-statistic p-value

CT 2 132.724 0.0
R 3 95.354 0.03132
QP 4 159.584 0.0
PLR 5 402.172 0.0
MBL 2 65.991 0.01068
PLR+CT 9 20.218 0.1180
PLR+R 9 5.182 0.3132
PLR+QP 15 26.955 0.11068
PLR+MBL 20 30.466 0.2301
MBL+CT 5 2.868 0.1541
MBL+R 5 7.940 0.48223
MBL+QP 11 13.533 0.28568

errors can occur, because lost packets are retransmitted. However, for two-
way streaming or for handling HAS on a portable device, there are issues
of jitter, end-to-end delay, and implementation complexity. CBR encoding
allowed a comparison between an H.264/AVC and HEVC codec to be con-
ducted. This was achieved by normalizing the bitrates in line with the known
difference in efficiencies between the codecs. However, it should be recalled
in interpreting those results that HEVC streamed at 13.5 Mbps, whereas the
equivalent bitrate chosen for H.264/AVC was 20 Mbps. If bitrate/bandwidth
is not a restriction, such as over optical fiber or emerging high-bandwidth
WLANs, then the comparisons are interesting because H.264/AVC coding
is more tolerant to packet loss by virtue of less efficient coding. A content-
dependent aspect, that is relative motion activity, was also observed in the
CBR experiments, again making the case for careful consideration of the im-
pact of motion activity, for example in sports video, upon the likely video
quality. In terms of spatial resolutions, CBR ‘appears’ to favor lower res-
olution video, which appeared more tolerant to packet loss. However, this
was because in the experiments the same CBR was used whether transmit-
ting lower or higher resolution video, including 4kUHD video. Thus, the QP
can be lower for lower resolution video than higher resolution video at the
same CBR. Losing a packet from a lower resolution stream in those circum-
stances, has less of an impact, than losing a packet from a higher resolution
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stream. This highlights the need for careful interpretation of video quality
results depending on the streaming modalities. A statistical analysis has
confirmed the influence of all five parameters investigated, with PLR’s influ-
ence highlighted. Future work should consider choice of packet size as how
many packets and what their coding contribution is determines differences
in the display quality. GoP structure and choice of QP are also important
determinants of the eventual video quality of a video stream as a whole, once
it enters a network or is transmitted. 4kUHD is a clear candidate for investi-
gation and research in the medium to long term. Other areas of future study
are more advanced scenarios, such as multi-view 3D videos for virtual real-
ity and more advanced packet loss models in Long Term Evolution (LTE)-A
(i.e., 4.5G) wireless networks with carrier aggregation. Finally, one should
notice that channel coding is frequently employed to ameliorate the impact
of packet losses. However, there are many forms of channel coding each of
which introduces different bitrate overheads and latencies. Latency is a par-
ticularly issue for interactive applications such as mobile video conferencing.
Therefore, this issue deserves further study after this initial study.
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Highlights 

 

 Video quality is shown to result from the interplay between packetization, packet loss 

visibility, choice of codec, and viewing conditions. 

 

 The paper goes beyond prior studies on lower resolution imagery as it tests SD, HD, 

3D, and 4kUHD video. 

 

 The experiments include both VBR and CBR streaming, as well as both H.264 and 

HEVC codecs, with simulations and a network testbed. 

 

 All video qualities are reported as objective Mean Opinion Scores. 

 

 The video quality assessments will be of interest to those considering the bitrates and 

expected quality in error-prone environments. 

 

 The impact of packet reordering and duplication is also considered. 


