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Abstract 

Background and Purpose 

The level of cell surface expression of the meningococcal vaccine antigen, Factor H binding 

protein (FHbp) varies between and within strains and this limits the breadth of strains that can 

be targeted by FHbp-based vaccines. The molecular pathway dictating expression of FHbp at 

the cell surface, including its lipidation, sorting to the outer membrane and export, and the 

potential regulation of this pathway have not been investigated until now. This knowledge 

will aid our evaluation of FHbp vaccines.  

Experimental Approach 

A meningococcal transposon library was screened by whole cell immuno-dot blotting using 

an anti-FHbp antibody to identify a mutant with reduced binding and the disrupted gene was 

determined. 

Key Results 

In a mutant with markedly reduced binding, the transposon was located in the lnt gene which 

encodes apolipoprotein N-acyl transferase, Lnt, responsible for the addition of the third fatty 

acid to apolipoproteins prior to their sorting to the outer membrane. We provide data 

indicating that in the Lnt mutant, FHbp is diacylated and its expression within the cell is 

reduced 10 fold, partly due to inhibition of transcription. Furthermore the Lnt mutant showed 

64 fold and 16 fold increase in susceptibility to Rifampicin and Ciprofloxacin respectively. 

Conclusion and Implications 

We speculate that the inefficient sorting of diacylated FHbp in the meningococcus results in 

its accumulation in the periplasm inducing an envelope stress response to down-regulate its 

expression. We propose Lnt as a potential novel drug target for combination therapy with 

antibiotics. 
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Ligands  

Ceftriaxone  Erythromycin 

Glucose Penicillin G 

Rifampicin  

 

These Tables of Links list key ligands in this article that are hyperlinked* to corresponding 

entries in http://www.guidetopharmacology.org, the common portal for data from the 

IUPHAR/BPS Guide to PHARMACOLOGY (Southan et al., 2016), and are permanently 

archived in The Concise Guide to PHARMACOLOGY 2015/16 (Alexander et al., 2015). 

 

  

http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=5326
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=1456
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4536
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=4796
http://www.guidetopharmacology.org/GRAC/LigandDisplayForward?ligandId=2765
http://www.guidetopharmacology.org/
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Abbreviations 

 

FHbp, Factor H binding protein,  

SBA, serum bactericidal antibody 

Lnt, apolipoprotein N-acyl transferase 

Transposon, Tn 

DNA uptake sequence, DUS 

Mosaic End, ME 

Hexahistidine, His 

Tris buffered saline, TBS 

Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis, SDS-PAGE  

Minimum Inhibitory Concentration, MIC 

Lipoprotein Outer membrane Localisation apparatus, Lol 

Diacylglyceryl transferase, Lgt 

Lipoprotein signal peptidase, Lsp 

Braun’s lipoprotein, Lpp 

Peptidoglycan, PGN 

Whole cell, WC 

Monoclonal antibody, Mab 
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Introduction 

 

Neisseria meningitidis is a leading cause of bacterial meningitis (Beernink and Granoff, 

2008). This organism is classified into 13 different serogroups depending on its capsular 

polysaccharide. Invasive meningococci typically express polysaccharides, A, B, C, W135, X 

or Y (Jolley et al., 2007). Effective protein-polysaccharide conjugate vaccines are available 

against serogroup A, C, W135 and Y meningococci (Snape and Pollard, 2005) however the 

capsular polysaccharide of serogroup B strains is poorly immunogenic making this type of 

vaccine ineffective (Yongye et al., 2008). Thus non-capsular, conserved, surface antigens 

such as the lipoprotein, Factor H binding protein (FHbp), have been tested for their ability to 

protect against organisms expressing the group B capsule.  

 

Lipoproteins are a diverse class of multifunctional, membrane-associated molecules which 

constitute a significant fraction of the outer membrane of Gram-negative bacteria (Nakayama 

et al., 2012). Their diverse functions range from maintaining envelope architecture and 

stability to mediating host-pathogen interactions (Okuda and Tokuda, 2011, Zuckert, 2014, 

Nakayama et al., 2012). FHbp, as its name suggests, binds human factor H which enables the 

meningococcus to evade killing by human complement (Madico et al., 2006). Importantly 

immunisation with FHbp induces serum bactericidal antibody (SBA) responses that confer 

protection against the meningococcus (Borrow and Miller, 2006). 

 

FHbp is lipidated by three palmitoyl fatty acids (Mascioni et al., 2010). Non-lipidated FHbp 

is part of the Bexsero vaccine (Novartis) which was licenced in Europe in 2013 (reviewed by 

McNeil et al., 2013). Fletcher et al., (2004) demonstrated the immunogenic potency of the 

lipid moiety of FHbp by directly comparing lipidated and non-lipidated versions in mice and 
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showing that the lipidated form elicited profoundly greater immunogenicity and breadth of 

protection compared with the non-lipidated form. Pfizer then developed a vaccine composed 

of 2 common variants of lipidated FHbp which was licenced in the US in 2014. However, it 

is uncertain whether, in the very young, these serogroup B vaccines can induce sufficiently 

robust, broad and sustained immune responses. It is also not clear in adolescents, (an age 

group clearly having a role in the carriage and transmission of meningococcal disease) 

whether these vaccines elicit sufficient breadth of coverage and potency of the immune 

response to interrupt transmission (McNeil et al., 2013). Limitations in the breadth of 

coverage could be explained by the fact that not all strains express FHbp and different strains 

express different variants of FHbp which furthermore are expressed at different levels 

(Biagini et al., 2016). Importantly Koeberling and co-workers demonstrated that a “critical 

threshold” of FHbp expression is required to elicit broad protective SBA responses 

(Koeberling et al., 2011). 

 

Whilst the influence of environmental factors affecting FHbp expression levels, such as 

oxygen, temperature and iron availability has been established (Sanders et al., 2012, Oriente 

et al., 2010, Loh et al., 2013), the molecular pathway for FHbp expression, including 

transport across the inner membrane followed by lipidation and sorting to the outer 

membrane and export to the cell surface, is unknown. This pathway inevitably requires a 

plethora of proteins whose genes may themselves be subject to regulation subsequently 

affecting FHbp expression levels. This study explores the molecular pathway governing 

FHbp expression which will ultimately improve our understanding of the variability in FHbp 

expression and aid us in our evaluation of FHbp-based vaccines. 
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Methods 

Bacterial strains and culture conditions 

N. meningitidis MC58, serogroup B:15:P1.7,16, ST-74; ET-5 strain was purchased from LGC 

Standards and L91543 serogroup C:2aP1.2, ST-11; ET-37 strain was kindly provided by 

Professor McFadden (University of Surrey). All meningococcal strains were grown on GC 

agar plates (Difco) containing Kellogg’s glucose and iron supplements (Kellogg et al., 1963) 

in a moist atmosphere containing 5% CO2, at 37°C or at 30°C for transformation 

experiments.  

For each experiment, meningococcal cell suspensions were made by resuspending a loop of 

cells from a freshly grown overnight plate in PBS (137 mM NaCl, 16 mM phosphate, 2.7 

mM KCl, pH 7.4) and adjusting to the required optical density at A600. Serial dilutions of 

inocula were plated to verify consistency in colony forming unit (cfu) counts between strains. 

Escherichia coli strain JM109 single use competent cells (Promega) were grown on Luria-

Bertani (LB) agar or LB broth (Merck) at 37°C with shaking at 200 rpm.  

Antibiotics were added at the following concentrations; Kanamycin, 30 and 60 μg/ml; 

Erythromycin, 300 and 0.3 μg/ml for E. coli and N. meningitidis respectively. 

 

Molecular Methods for DNA manipulations 

Genomic DNA was extracted from N. meningitidis using the Gentra Puregene Yeast/Bact Kit 

(Qiagen) and plasmid DNA was extracted from E. coli using the QiaPrep Spin kit (Qiagen). 

DNA samples were analysed by agarose gel electrophoresis and visualized by staining with 
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SYBR Safe (Invitrogen). Restriction enzymes (New England Biolabs), T4 DNA ligase 

(Promega), Antarctic Phosphatase (NEB) and T4 Polymerase (Thermo Scientific) were used 

according to the manufacturer's recommendations. PCRs were performed using HotStar 

HiFidelity polymerase kit (Qiagen) in a Perkin- MJ Research PTC-200 Peltier Thermal 

Cycler. Primers were purchased from Sigma and their sequences are listed in Table S1. PCR 

products and restriction digested DNA were purified using the PCR Mini Elute kit (Qiagen). 

E. coli was transformed by heat shock (Froger and Hall, 2007). 

 

Construction of the Transposon library in strain MC58 

Modification of EZ::Tn5<KAN-2> transposon to incorporate DUS 

The transposon (Tn) from the EZ::Tn5<KAN-2> insertion kit (Epicentre), was modified to 

incorporate the DNA uptake sequence (DUS) known to facilitate the uptake of DNA in 

Neisseriaceae (Frye et al., 2013). This was achieved by PCR amplification of the 

EZ::Tn5<KAN-2> Tn using forward primer HindIIIkan2for which incorporates a HindIII site 

and anneals immediately downstream of the 5’ mosaic end (ME) of the Tn and the reverse 

primer EcoRIDUSkan2rev which incorporates an EcoRI site and DUS element and anneals 

downstream of the stop codon and upstream of the 3’ ME.  

The PCR product was cloned into the EcoRI, HindIII sites of plasmid pMODTM-2<MCS> 

(Epicentre). The ligation mixture was used to transform E. coli and transformants were 

selected by growth on Kanamycin. Clones were verified by PCR using primers PCRFP and 

PCRRP (Epicentre) and by sequencing (MWG Biotech). The resulting plasmid was 

designated pMODTM-2<Tn5KAN-2DUS>. Phosphorylated primers PCRFP and PCRRP 
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(Sigma) were used to amplify the region encompassed by and including the MEs from 

plasmid pMODTM-2<Tn5KAN-2DUS>. 

In vitro transposition and transformation of strain MC58 

1 µg of DraI digested and purified genomic DNA of strain MC58 was mixed with 0.6 µg of 

phosphorylated PCR product, Ez-Tn5 reaction buffer and 4 U of transposase (Epicentre) in a 

total volume of 40 µl. The reaction was incubated at 37ºC for 2 hours then stopped according 

to the manufacturer’s instructions. The DNA was purified and 3’ overhangs were repaired by 

adding 5 U of T4 DNA polymerase to 1 µg of the DNA, 100 µM of each dNTP and T4 DNA 

polymerase buffer to a total volume of 50 µl. The reaction was incubated at 37ºC for 5 

minutes followed by heat inactivation at 75ºC for 10 minutes. The DNA was purified and 6 U 

of T4 ligase and ligase buffer were added to the DNA to a total volume of 50 µl and the 

reaction was incubated at 21ºC for 2 hours. The DNA was again purified and 250 ng used to 

transform N. meningitidis as described by Zhang et al., (2010) with selection on LB-

Kanamycin.  

 

Construction of pGCC4SfHbpHis  

Adopting the approach of Kurokawa et al., (2012), a truncated version of the FHbp protein, 

incorporating just the first 100 amino acids (from the cysteine at +1), fused to a His tag was 

expressed in N. meningitidis strains to differentiate between di- and tri-palmitoylated FHbp. 

The fHbp N-terminal region containing the N terminal signal peptide sequence which is 

predicted by the program DOLOP (Babu et al., 2006) to be 

MTRSKPVNRTAFCCLSLTTALILTAC, was PCR amplified from genomic DNA of strain 

MC58 with primer BamfHbpfor which anneals upstream of the signal peptide and 
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incorporates a BamHI site and primer XhofHbprev which anneals 298 bp downstream of the 

signal peptide and incorporates a XhoI site to reduce the size of the translated product from 

280 amino acids to 125 amino acids, prior to processing, and 100 amino acids after 

processing. The PCR product obtained was cloned into the BamHI, XhoI sites of pET28b and 

transformed into E. coli with selection on Kanamycin. The resulting plasmid, pET28bSfHbp 

was verified by DNA sequencing. The SfHbp-His region was PCR amplified from plasmid 

pET28bSfHbp using primers PacfHbpfor incorporating a PacI site and PmepET28brev 

incorporating a PmeI site. The PCR product was cloned into the PacI, PmeI sites of Neisseria 

complementation vector, pGCC4 (Addgene) (Mehr and Seifert, 1998) and transformed into 

E. coli with selection on Erythromycin. The resulting plasmid, pGCC4SfHbpHis was verified 

by DNA sequencing and the plasmid used to transform N. meningitidis strains as described 

by Zhang et al., (2010) with selection on Erythromycin. Transformant strains were verified 

by PCR then grown on GC agar containing 0.5 mM Isopropyl β-D-1-thiogalactopyranoside 

(IPTG) for expression studies. 

 

Construction of the apolipoprotein N-acyl transferase, lnt complementation plasmid 

The lnt gene of strain MC58 was cloned into the FseI and PacI sites of pGCC4 (Addgene). 

Briefly, primer lntFseIfor incorporating an FseI site and primer lntPacIrev incorporating a 

PacI site were used to amplify a region from 158 nucleotides upstream of the start codon to 

18 nucleotides downstream of the stop codon from genomic DNA of strain MC58. The PCR 

product obtained was cloned into the FseI, PacI sites of plasmid pGCC4. Cloning of lnt in the 

opposite direction to the lacZ promoter of pGCC4 allowed transcription from the native 

promoter of lnt and avoided over-expression of lnt by the lacZ promoter. Following 

transformation of E. coli with selection on Kanamycin, clones were verified by PCR and 
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sequencing then correct clones designated pGCC4lnt. The plasmid was linearized with NcoI 

which cuts pGCC4lnt uniquely in the Kanamycin resistance gene then used to transform 

strain MC58Lnt. 

 

Primary antibodies 

The following primary antibodies were used; mouse anti-FHbp-monoclonal antibody (Mab) 

JAR4 (National Institute for Biological Standards and Control), rabbit anti-RecA antibody 

(Abcam) and rabbit anti-His antibody (Santa Cruz Biotechnology).  

 

Immuno-dot blotting to screen the Transposon library 

Cell suspensions of the meningococcal strains were heat killed at 65ºC for 30 minutes and 5 

µl were spotted onto a Nitrocellulose membrane (Thermo Scientific), dried then blocked in 

PBS containing 0.05% (v/v) Tween 20 (PBST) and 2% BSA (w/v) (Sigma) with gentle 

shaking for 1 hour. Three 2 minute washes in PBST were conducted then the membrane 

incubated in PBST containing 2% BSA (w/v) and 1 µg/ml of anti-FHbp antibody, JAR4, with 

gentle shaking for 3 to 4 hours. The washes were repeated and the membrane incubated in 

anti-mouse alkaline-phosphatase conjugated secondary antibody solution (Invitrogen) for 1 to 

3 hours, washed as before then developed with 5-bromo-4-chloro-3-indolylphosphate, nitro-

blue tetrazolium liquid substrate (Invitrogen). 
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Locating the Transposon in the mutant strain with altered binding to anti-FHbp 

antibody 

In order to locate the Tn in the selected mutant strain and to verify the insertion of only one 

Tn in its genome, Ion Torrent genome sequencing was performed. The sequencing library 

was prepared using 0.5 µg of genomic DNA and the “fragmentation and library preparation 

kit” (New England Biolabs), according to the manufacturer’s instructions. The adapter ligated 

library fragments were separated by gel electrophoresis followed by extraction of 

approximately 500 bp fragments from a 2% (w/v) E-gel (Life Technologies). The gel 

extracted DNA fragments were PCR amplified using 6 cycles as described in the 

“fragmentation and library preparation kit”. 

The size and concentration of the amplified library were checked using the BioAnalyser and a 

high sensitivity DNA kit (Agilent). The library concentration was adjusted to 20 pM and used 

for template preparation using the One Touch 2 system (OT2, Life Technology). The ion 

particles were enriched using an automatic system (OT2, Life Technology), loaded onto 

314v2 chip and the sequencing was run using 400 bp sequencing kit and IonTorrent PGM 

with 850 flows. The reads were assembled using IonTorrent assembler plugin. 

The contigs generated were analysed using CLC Genomics Workbench software v. 7. The 

contigs containing the Tn sequence were identified using BLASTn program running the 

extracted Tn sequence against the IonTorrent assembly. The contig containing the Tn 

sequence was further analysed using NCBI BLASTx and non-redundant amino acid sequence 

database to determine the genes flanking the Tn insertion site. 
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SDS-PAGE and Western immunoblotting  

Whole cell (WC) lysates were prepared by mixing 600 µl of cell suspension, from each 

strain, standardised to A600 1 with 300 µl 3X Laemmli sample buffer and heated to 95°C for 5 

minutes. Cell lysate proteins were then separated by 12% (w/v) SDS-PAGE and transferred 

to PVDF or nitrocellulose membranes as appropriate. Membranes were then incubated with 

Tris-buffered saline, TBS (50 mM Tris, 150 mM NaCl, pH 7.5) containing 0.1% (v/v) 

Tween-20 (TBST) and 5% (w/v) non-fat dry milk for 2 hours at room temperature. 

Membranes were then incubated with either mouse anti-FHbp JAR4 (1 µg/ml) or rabbit anti-

RecA (Abcam) primary antibody diluted (1:1000) in TBST containing 1% (w/v) non-fat dry 

milk overnight at 4°C. Membranes were washed for 60 minutes with TBST at room 

temperature and then incubated for 2 hours at room temperature with either sheep anti-mouse 

or donkey anti-rabbit HRP-linked secondary antibodies (GE Healthcare, UK), respectively. 

Membranes were washed with TBST for 30 minutes and specific protein bands were detected 

by enhanced chemiluminescence (GE Healthcare, UK). Band intensity was quantified using a 

GS-800 calibrated densitometer and Quantity One® 1-D analysis software v 4.6.2 (Bio-Rad). 

 

Immunofluorescence microscopy 

 

Bacterial suspensions from each strain were standardised to A600 0.5 and 50 µl spotted onto 

13 mm circular glass coverslips. Once dry, these were transferred to 24 well plates and cells 

fixed with 4% (v/v) paraformaldehyde for 20 minutes. The coverslips were washed in PBS 

then blocked with 500 µl PBS containing 1% (w/v) BSA for 30 minutes. The blocking agent 

was removed and 500 µl PBS containing 1% (w/v) BSA and 5 µg/ml of mouse anti-FHbp 

antibody, JAR4 added. This was incubated for two hours with agitation. The wells were 

washed three times in PBS then PBS with 1% (w/v) BSA containing 1:500 dilution Alexa 



 
This article is protected by copyright. All rights reserved. 

Fluor 555 labelled donkey anti-mouse IgG secondary antibody (Abcam) was added (to 

fluorescently label the FHbp-bound JAR4 antibody) and 1:500 dilution of FITC-labelled 

rabbit polyclonal IgG raised against WC N. meningitidis (Abcam) to detect meningococcal 

cells. After incubation for 1 hour with agitation, wells were washed as before, and the cover 

slips dipped in deionised water then mounted onto glass slides using fluoroshield mounting 

medium (Abcam). Fluorescence microscopy was performed using a Nikon Eclipse i80 and 

images captured using NIS-Elements Viewer (version BR 3.00). 

 

Quantitative RT-PCR (qRT-PCR) 

RNA was extracted from 1 ml cell suspensions of each strain standardised to A600 0.65 

(containing approximately 2 x 10
8
 cells) using the RNeasy Mini kit (Qiagen) with enzymatic 

lysis and Proteinase K digestion. On column DNA digestion was performed using the RNase 

Free DNase set (Qiagen).  

One µg of cDNA was synthesised using the QuantiTect reverse transcription kit (Qiagen) 

with the initial genomic wipe-out step included. qRT-PCR was performed in a 15 µl reaction 

mixture with Quantinova SYBR Green PCR Master Mix (Qiagen), 22.5 ng of cDNA and 0.7 

µM of each primer (Sigma). For amplification of cDNA of fHbp, fHbp forward primer and 

fHbp reverse primer were used and for amplification of recA, recA forward primer and recA 

reverse primer were used. PCR was performed in a Prime Pro 48 Real Time PCR machine 

with the following thermocycling conditions; 95°C for 2 min followed by 40 cycles of 95 °C 

for 5s (denaturation) and 60°C for 10s (combined annealing/extension). Six biological 

replicates from 6 independent RNA extractions from each of the 3 strains were run in 

duplicate along with the corresponding no reverse transcriptase control for each of these 

samples and a no RNA control. Relative quantification of gene expression was performed 
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using the Comparative CT Method (ΔΔCt) (Livak and Schmittgen, 2002) whereby fHbp 

expression levels were normalized to the mean levels of control (recA) transcripts.  

 

Antibiotic susceptibility assays by Microbroth Dilution  

Meningococcal strains were compared for their susceptibility to a panel of antibiotics by the 

Microbroth Dilution method. For each antibiotic, the concentration range was centered 

around the Minimum Inhibitory Concentration (MIC) value according to the Clinical and 

Laboratory Standards Institute (CLSI). The antibiotics tested were Tunicamycin, Ceftriaxone, 

Penicillin G, Chloramphenicol, Sulfanilamide, Globomycin, Ciprofloxacin and Rifampicin. 

Bacterial suspensions were standardised to A600 0.4 then 5 µl added to 95 µl of Mueller 

Hinton broth containing doubling dilutions of antibiotic in a Thermo Scientific sterile 96 well 

plate (Nunclon Delta surface). Negative controls included no bacterial suspension and no 

antibiotic. For each MIC assay, all conditions were performed in triplicate and each assay 

was repeated at least 5 times. A gas permeable seal was placed over the plate and the plate 

incubated at 37°C in 5% CO2 with gentle shaking for approximately 20 hours.  

 

Statistical Analysis 

The data and statistical analyses comply with the recommendations on experimental design 

and analysis in pharmacology (Curtis et al., 2015). 

Data are shown as mean ± SEM. Multiple comparisons among groups were performed by one 

way ANOVA followed by Tukey’s HSD test. A value of p≤0.05 was considered statistically 
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significant. Post-hoc tests were only run if F achieved p<0.05 and there was no significant 

variance in homogeneity. All statistical analysis tests were performed in IBM SPSS Statistics 

(v. 23). 

Blinding and randomisation were not used as these were considered inappropriate for the in 

vitro experiments on bacteria conducted. 

 

Results 

 

Reduced binding to the FHbp-specific antibody following Tn insertion into lnt   

 

A random Tn library of mutants was constructed in N. meningitidis strain MC58 known to 

express FHbp strongly at the cell surface (Newcombe et al., 2014). The first 100 mutant 

strains from the library were individually screened by WC immuno-dot blot using an anti-

FHbp antibody, JAR4, as a probe for FHbp expression. The level of binding or reactivity with 

the antibody was compared with that of the parent strain MC58 and with that of strain 

L91543 known to express FHbp very weakly at the cell surface (Newcombe et al., 2014). 

Mutant 80 showed a marked reduction in reactivity to the antibody (Fig 1).  

To identify which gene had been insertionally inactivated by the presence of the Tn in the 

mutant with reduced binding to the antibody, and to verify if only one Tn was present in this 

strain, Ion Torrent whole genome sequencing was performed. The single Tn identified was 

located at chromosomal position 745462, in the middle of gene NMB0713, annotated as lnt, 

which lies at chromosomal position 744476 to 746050. The mutant was designated MC58Lnt. 
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The lnt gene encodes the integral membrane protein, apolipoprotein N-acyl transferase (Lnt) 

which transfers the third fatty acid to the amide group of the N terminal conserved cysteine of 

apolipoproteins in bacteria (Chahales and Thanassi, 2015). In this mature form, lipoproteins 

that are destined for the outer membrane are then translocated by the lipoprotein outer 

membrane localisation (Lol) apparatus. Given that lnt was found to be the single disrupted 

gene in the mutant strain which was affected in its ability to bind an FHbp antibody, we 

predicted lnt is involved in FHbp acylation specifically in the addition of the third amide-

linked palmitoyl fatty acid to the N terminal cysteine of FHbp. 

 

FHbp is not fully mature in strain MC58Lnt 

To test if Lnt is involved in FHbp acylation, truncated FHbp fused to a hexahistidine (His) 

reporter was expressed in strains MC58 and MC58Lnt using the approach of Kurokawa et al., 

(2012) and LoVullo et al., (2015) to generate sufficiently small recombinant lipoprotein to 

differentiate between diacylated and triacylated forms after separation by SDS-PAGE and 

detection by Western immunoblotting. Genomic DNA encoding the first 125 amino acid 

residues of FHbp, including the N terminal signal peptide, was cloned into pET28b to fuse 

this sequence to a C terminal His tag then the fusion construct was cloned into Neisseria 

vector, pGCC4 (Mehr and Siefert, 1998) for transformation into strains MC58 and MC58Lnt. 

The preprolipoprotein would be cleaved to yield a lipoprotein of 106 amino acids including 

the His tag, with a MW of 11.4 KDa as calculated by Expasy (Gasteiger et al., 2005) (not 

accounting for the attached fatty acids). 

WC extracts from each strain were separated by SDS-PAGE and immunoblotted with anti-

His antibody. As shown in Fig 2, the mobility of the reporter protein was greater in the 
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MC58Lnt transformant (lane 4) than in the wild type transformant (lane 3). The increase in 

mobility of the lipoprotein of the mutant strain was consistent with the expected change in 

acylation state at the N terminus, as such increased mobility has been shown by Mass 

Spectrometry to equate to the loss of a fatty acid (Kurokawa et al., 2012). Thus it appears that 

FHbp is diacylated in the Lnt mutant strain. 

 

Disruption of Lnt strongly reduces FHbp cell surface expression 

To confirm if the marked reduction in binding of whole cells of strain MC58Lnt to JAR4 (as 

shown by immuno-dot blotting) was due solely to the disruption of lnt in this strain, the 

mutant strain was complemented with an intact copy of the lnt gene from strain MC58. The 

lnt gene was cloned into vector pGCC4 (Mehr and Seifert 1998) such that expression was 

under the control of its own putative promoter to generate native levels of Lnt and used to 

transform strain MC58Lnt. Transformants were verified by PCR and sequencing and 

designated MC58LntC. 

The expression of FHbp on the cell surface of individual cells of the strains was compared by 

immunofluorescence microscopy using JAR4. Cells of  MC58Lnt showed very low levels of 

expression compared with that of the parent strain and cells of strain MC58LntC showed 

restored levels like that of the wild type (Fig 3). We concluded the disruption in Lnt alone 

was responsible for the poor expression of FHbp at the cell surface.  

To further assess the level of surface expression of FHbp in strain MC58Lnt, its binding to 

JAR4 was compared with another meningococcal strain, L91543, known to express FHbp of 

the same variant 1 group (Masignani et al., 2003) and the same subfamily B (Beernink and 

Granoff, 2009; Fletcher et al., 2004), as strain MC58, with nucleotide and amino acid 
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identities of 95% and 93% respectively (Karlyshev et al., 2015), but very poorly at the cell 

surface (Newcombe et al., 2014). An immuno-dot blot using JAR4 was performed from 

standardised cell suspensions. Both strains MC58Lnt and L91543 showed weak reactivity to 

JAR4 but the level of reactivity was significantly lower for L91543 (p≤0.0001) compared 

with MC58Lnt (Fig 4). Confirming our initial immuno-dot blot and our immunofluorescence 

microscopy results, the level of antibody binding of strain MC58Lnt was significantly lower 

compared to the parent strain (p≤0.0001) and was restored in the complemented mutant 

strain. Together the results confirm that strain MC58Lnt expresses markedly reduced levels 

of FHbp at the cell surface compared to the parent strain and importantly reveal this strain 

expresses a higher level of FHbp at the cell surface compared with strain L91543 (Fig 4). 

This finding suggests that although FHbp is diacylated in strain MC58Lnt, it still sorts to the 

outer membrane to be exported to the cell surface although the quantity of the exported apo- 

(diacylated) form of FHbp is low. 

 

Disruption of Lnt causes major reduction in total cellular levels of FHbp  

To test if the low level of FHbp at the cell surface in strain MC58Lnt is due to inefficiency in 

the sorting of the apo-form of FHbp to the outer membrane we initially tested FHbp 

expression in WC extracts of the mutant strain before proceeding to investigate its 

localisation in the inner or outer membrane.   

WC extracts of strains MC58, MC58Lnt and MC58LntC were fractionated by SDS-PAGE 

and immunoblotted with JAR4 (Fig 5). Surprisingly MC58Lnt showed a significant 10 fold 

reduction in band intensity (p≤0.0001) and this was restored in strain MC58LntC. A 
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consistent level of expression of the house-keeping protein RecA (Loh et al., 2013) was 

observed between the 3 strains. 

The reduction in ability of the diacylated FHbp to bind JAR4 is unlikely due to loss of the 

fatty acid affecting conformation of the epitope known to bind this antibody (previously 

characterised by Beernink and Granoff, (2009)), since recombinant, non-acylated FHbp 

(lacking the signal peptide) strongly binds this antibody (data not shown). Thus we concluded 

that the mutation of Lnt in strain MC58 indeed results in a profound reduction in the cellular 

levels of FHbp. 

 

Disruption of Lnt causes a reduction in fHbp transcription  

To test if the marked reduction in FHbp in strain MC58Lnt could be attributed to 

downregulated transcription of fHbp, RNA was extracted from strains MC58Lnt, MC58 and 

MC58LntC and the level of transcription of fHbp compared between the strains and with the 

house-keeping gene, recA. Strain MC58Lnt showed a significant 53% reduction in the level 

of fHbp transcript relative to the parent strain (p≤0.0001) (Fig 6).    

 

The Lnt mutant is more susceptibility to antibiotics  

 

Since the disruption of Lnt likely affects a whole plethora of lipoproteins and lipoproteins are 

important for the integrity of the cell envelope, we predicted that the loss of Lnt would result 

in greater cell envelope permeability and therefore increased susceptibility of the mutant 

strain to antibiotics. The MICs of eight antibiotics were compared for strain MC58Lnt and 

the parent and complemented strains by the Microbroth Dilution method.  
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Strain MC58Lnt showed the following significant increases in antibiotic susceptibility; 64 

fold to Rifampicin, 16 fold to Ciprofloxacin, 4 fold to both Globomycin and Sulphanilamide 

and 2 fold to Ceftriaxone, Penicillin G and Chloramphenicol (Table 1). There was no change 

in MIC for Tunicamycin.  

 

Discussion 

In this study we set out to identify genes involved in meningococcal cell surface expression 

of the vaccine antigen FHbp. A random Tn library was constructed in strain MC58 and 

individual Tn mutants were screened by WC immuno-dot blot using the anti-FHbp antibody, 

JAR4, as a probe. A mutant strain was identified with markedly reduced binding to the 

antibody. The Tn was located, by Ion Torrent whole genome shot-gun sequencing, in the lnt 

gene which encodes apolipoprotein N-acyl transferase, Lnt. 

The activity of Lnt is the third step of the biosynthetic pathway for post-translational lipid 

modification of apolipoproteins that has been documented for E. coli (Kovacs-Simon et al., 

2011) (Fig 7). This processing begins with translation in the cytoplasm of the precursor or 

preprolipoprotein which carries a cleavable N-terminal signal peptide possessing the 

conserved lipobox ([LVI][ASTVI][AGS][C]) at its C terminus. The preprolipoprotein is 

transported from the cytoplasm across the inner membrane usually by the general secretion 

pathway which is mediated by the Sec translocon (Fig 7). In the periplasm, the thiol group of 

the invariant cysteine residue of the lipobox is diacylated by a preprolipoprotein 

diacylglyceryl transferase, Lgt forming a prolipoprotein. Lipoprotein signal peptidase, Lsp, 

cleaves the signal peptide such that the di-acylated cysteine residue becomes the new N 
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terminal residue. Lnt then adds an additional amide-linked fatty acid to this residue 

generating a triacylated protein. The mature lipoprotein can then be recognised by Lol which 

transports it to the outer membrane, the default destination for lipoproteins. However if 

lipoproteins contain a “Lol avoidance” signal, (for example an aspartic acid at the +2 residue 

in E. coli or a lysine and a serine at positions +3 and +4 respectively, in Pseudomonas spp 

(Narita and Tokuda, 2007, Seydel et al., 1999), they are retained and anchored at the inner 

membrane (Hara et al, 2003). In E. coli the Lol apparatus consists of LolCDE, an ABC 

transporter which releases mature lipoproteins from the inner membrane, LolA, a chaperone 

or carrier protein which shuttles lipoproteins from the inner membrane to the outer membrane 

and LolB, an outer membrane lipoprotein receptor which inserts the lipoprotein into the outer 

membrane (Narita and Tokuda, 2006) (Fig 7). Most outer membrane lipoproteins are thought 

to face into the periplasm however some are exposed on the outer surface to face 

extracellularly, such as FHbp.  

The generally accepted model, based largely on experiments performed in E. coli, is that 

complete triacylation of lipoproteins by Lnt is essential in Gram-negative bacteria, as it 

permits the LolCDE-dependent release of lipoproteins from the inner membrane for their 

sorting to the outer membrane (Fukuda et al., 2002, Robichon et al., 2005, Zuckert et al., 

2014). Experiments using a conditionally lethal E. coli Lnt mutant showed that loss of Lnt led 

to incomplete maturation of lipoproteins and the retention in the inner membrane of those 

normally destined for the outer membrane, in particular, the retention of the highly abundant 

Braun’s lipoprotein, Lpp, which subsequently cross-linked with peptidoglycan (PGN) 

causing lethality (Robichon et al., 2005, Yakushi et al., 1997).  

In our study, firstly we show that unlike in E. coli, Lnt is not essential in N. meningitidis. This 

supports a recent study by LoVullo et al., (2015) who challenged the above model. LoVullo 
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and coworkers demonstrated Lnt was not essential in several Gram-negative bacteria they 

investigated including Francisella novicida, Francisella tularensis and Neisseria 

gonorrhoeae (LoVullo et al., 2015).  

We confirmed the role of Lnt in adding a fatty acid to FHbp, by adopting the approach of 

Kurokawa et al., (2012) and LoVullo et al., (2015) to differentiate diacylated from triacylated 

lipoproteins. A truncated version of FHbp consisting of the N-terminal portion of FHbp 

(including its upstream signal peptide) fused to a His-tag was expressed in the wild type and 

Lnt mutant strain. We could infer from the mobility differences observed upon SDS-PAGE 

fractionation and Western immunoblotting that FHbp was diacylated in strain MC58Lnt (Fig 

2).  

We confirmed that the disruption of Lnt was directly responsible for the large reduction in 

binding of whole cells to JAR4, shown by immuno-dot blotting, by complementing strain 

MC58Lnt with an intact copy of the lnt gene. Immunofluorescence microscopy of 

meningococcal cells with JAR4 showed a low level of FHbp expression in the Lnt mutant 

and a restored level of expression in the complemented strain, like that of the wild type (Fig 

3).  

The level of expression of FHbp of strain MC58Lnt was assessed relative to strain L91543 

which is known to express FHbp at the cell surface very poorly (Newcombe et al., 2012). 

Strain MC58Lnt showed a significantly higher level of reactivity to JAR4 compared to strain 

L91543 in WC immuno-dot blot studies (Fig 4). This result suggests that N. meningitidis has 

the ability to sort diacylated lipoproteins to the outer membrane prior to export to the cell 

surface although the quantity of exported FHbp was low. 
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Together our findings agree with those of LoVullo and co-workers (2015) who demonstrated 

that mutation of Lnt in F. tularensis resulted in lipoprotein Tul4 (LpnA) shifting from a 

triacylated form to a diacylated form and that this lipoprotein as well as others still sorted to 

the outer membrane.  

LoVullo et al., (2015) showed that the Lol system of F. tularensis lacks a gene for LolE, 

which in E. coli forms a heterodimer with LolC to form the membrane component of the 

ABC transporter complex. They showed that the absence of lolE is not unique to Francisella 

but instead was represented by more than half of the bacterial genomes they analysed 

(LoVullo et al., 2015). Based on protein sequence analysis, LoVullo et al (2015) concluded 

that the single LolC present in bacteria such as Francisella spp contains features found in 

both LolC and LolE proteins. This suggests that the single LolC is a hybrid protein, which 

they named LolF. LoVullo et al., (2015) proposed that a homodimer formed by LolF enables 

the LolFD transporter complex of Francisella to recognise diacylated as well as triacylated 

lipoproteins and to transfer either type of substrate to LolA for sorting to the outer membrane 

(Fig 7). To test if their hypothesis could be extended to another Gram-negative bacterium, 

Neisseria gonorrhoeae, which has the same LolFD genomic organisation as found in 

Francisella, LoVullo et al., (2015) demonstrated that viable Δlnt mutants could be 

constructed in this organism, with proper lipoprotein-dependent functionality. LoVullo et al., 

(2015) proposed that the LolFD transporter may have a looser specificity for acyl chains and 

can recognise both with almost equal affinity in contrast to the LolCDE transporter of E. coli 

(Narita and Takuda, 2011). Narita and Takuda (2011) demonstrated that LolCDE of E. coli 

does have some affinity for apolipoproteins but this is very low, and required over expression 

of LolCDE for apolipoproteins to be released from the inner membrane and sorted to the 

outer membrane in their Lnt null mutant strain (lacking Lpp or the transpeptidases that cross 

link Lpp to PGN). 
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N. meningitidis has the same LolFD genomic organisation as that of N. gonorrhoeae and F. 

tularensis however given the low level of FHbp observed at the cell surface of strain 

MC58Lnt, we questioned if the LolFD transporter in this strain had low affinity for 

apolipoproteins resulting in inefficient sorting to the outer membrane and thus a low level of 

export to the cell surface. To test this, we investigated FHbp expression initially in WC 

extracts prior to assessing the compartmentalisation of FHbp in the inner and outer 

membrane. Surprisingly the total cellular level of FHbp expression of the mutant strain was 

reduced 10 fold compared to that of the parent and complemented strain (Fig 5). This finding 

suggests that transcription or translation of the partially acylated FHbp was being affected. 

We investigated fHbp transcription by qRT-PCR in the Lnt mutant and showed that fHbp 

transcription was significantly downregulated by over 50% in strain MC58Lnt compared to 

the parent strain (Fig 6). However given the 10 fold decrease in FHbp levels in WC extracts, 

we predict that translation of FHbp is also downregulated or proteolysis of the apo-form of 

FHbp is induced or both. 

To combat the problem of envelope stress caused by altered proteins translocated from the 

cytoplasm to the inner membrane, Gram-negative bacteria employ two major responses, one 

mediated by transcription factor σ
E
 and the other by Cpx to down regulate and degrade these 

proteins  Whilst the σ
E
 response senses and mediates adjustments to changes in the biogenesis 

of proteins in the periplasm specifically outer membrane proteins (Ruiz et al., 2005), the Cpx 

response is activated by the over-expression of proteins or misfolded proteins that aggregate 

at the inner membrane (MacRitchie et al., 2008). Both responses result in the activation of 

proteases to degrade these altered proteins and both can upregulate small RNAs (sRNA) to 

downregulate the synthesis of these proteins by interfering with their transcription or 

translation (Walsh et al., 2003, Barchinger and Ades, 2013, Lima et al., 2013, Zhang et al., 
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2003, Raivio et al., 2013). For example, σ
E
 regulated sRNA, MicL specifically targets Lpp of 

E. coli by decreasing lpp translation and accelerating the degradation of lpp mRNA (Guo et 

al., 2014). There is a growing body of evidence that σ
E
 regulated pathways are adopted by the 

meningococcus (Huis in 't Veld et al., 2011, Hopman et al., 2010, Fagnocchi et al., 2015). 

Our study led us to propose the following model. The meningococcus can be grouped with F. 

tularensis and N. gonorrhoeae, and likely all other organisms that possess the LolFD 

transporter and can sort both di- and triacylated lipoproteins (LoVullo et al., 2011) negating 

the essentiality of Lnt however meningococcal LolFD has a higher affinity for triacylated 

lipoproteins than diacylated lipoproteins (Fig 7). We speculate that in strain MC58Lnt, the 

inefficient sorting of partially acylated lipoproteins such as the apo-form of FHbp to the outer 

membrane (indicated from its strongly reduced surface expression) results in their 

accumulation in the periplasm inducing envelope stress responses to downregulate their 

expression and promote their degradation. Comparative quantification of total cellular 

apolipoprotein levels in Lnt mutants of other Gram-negative bacteria (with that of their 

corresponding parent strains) will provide insight into whether apolipoproteins of these 

bacteria are also downregulated or proteolysed, due to the loss of Lnt, and whether our model 

therefore applies to other microorganisms. It is also important to note that the specific fate of 

apolipoproteins may vary if LolFD has different affinities for different apolipoproteins 

perhaps depending on their protein moiety, as has been suggested for LolCDE (Narita and 

Tokuda, 2011) or on their lipid moiety, or both.   

Despite differences in the efficiency of sorting of diacylated lipoproteins in Gram-negative 

bacteria possessing the LolFD apparatus, the important question we now ask is whether these 

bacteria have the ability to naturally generate both di- and triacylated lipoproteins by 

regulation of Lnt. Whilst the lipid moieties of bacterial lipoproteins play an important 
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structural role by anchoring the lipoprotein to the cell wall, during infection lipoproteins can 

dissociate from the bacterium freeing the exposed lipid moieties to exert their immuno-

modulatory activities (Luo et al., 2016). Diacylated and triacylated lipoproteins induce cell 

signalling by interacting with two different Toll-like receptor 2 (TLR2) heterodimers on 

antigen presenting cells. Specifically diacylated lipoproteins signal via TLR2/TLR6 

heterodimers (Kang et al., 2009) and triacylated lipoproteins signal via TLR2/TLR1 

heterodimers (Jin et al., 2007) and the latter was recently demonstrated for tripalmitoylated 

FHbp of Trumenba (Luo et al., 2016). This difference in signalling impacts on the ability of 

lipoproteins or lipopeptides to activate macrophages and subsequently to activate B cells 

(Metzger et al., 1995, Muhlradt et al., 1997, Muhlradt et al., 1998, Zeng et al., 2010). Thus 

the ability to generate two lipid moieties with different immunomodulatory activities and 

potencies would likely confer a fitness advantage to the bacterium in the host. 

The intrinsic structure of the cell envelope of Gram-negative bacteria presents a significant 

barrier for the penetration of antibiotics (Graef et al., 2016). However in the meningococcal 

Lnt mutant strain we anticipated that the inefficient sorting of FHbp to the outer membrane 

and the potential inefficient sorting of other apolipoproteins would result in a structurally 

weaker outer membrane that would be more permeable to antibiotics. The antibiotics 

commonly used as initial therapy, particularly in adolescents, to treat invasive meningococcal 

infection are Penicillin G and third generation Cephalosporins, Cefotaxime and Ceftriaxone, 

and Chloramphenicol can be used in cases of Penicillin allergy (Nadel, 2016). The antibiotics 

often used for follow up treatment are Ceftrixone, Ciprofloxacin or Rifampicin (Nadel, 

2016). We selected five of the above antibiotics as well as Tunicamycin, Sulfalinamide and 

Globomycin to compare the MICs for the Lnt mutant, parent and complemented strains. 
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The Lnt mutant was 64 fold more susceptible to Rifampicin, 16 fold more susceptible to 

Ciprofloxacin, 4 fold more susceptible to Globomycin and Sulfalinamide and 2 fold more 

susceptible to Penicillin G, Ceftriaxone and Chloramphenicol. The results support our 

prediction that the cell envelope of the Lnt mutant is weaker and more permeable to 

antibiotics. This highlights the importance of developing antimicrobials that target enzymes 

involved in constituting envelope integrity that could be used in combination with antibiotics. 

An inhibitor of Lnt would target all meningococcal strains since this protein is highly 

conserved between N. meningitidis strains as demonstrated by their 99% to 100% amino acid 

sequence identity across the entire protein (BLASTp analysis not shown). Importantly this 

enzyme is absent in humans.  

Interestingly LoVullo et al., (2015) reported only small increases in susceptibility of their 

ΔLnt mutant of N. gonorrhoeae to Rifampicin, Globomycin, Polymixin B and Vancomycin 

amongst the antibiotics and chemical compounds they tested. The greater increase in 

sensitivity of the meningococcal Lnt mutant to antibiotics, shown in this study, compared 

with the small increase observed for the gonococcal ΔLnt mutant (LoVullo et al., 2015) 

supports the difference in the two models proposed for these organisms that LolFD of N. 

gonorrhoaea (as well as F. tularensis) sorts di- and triacylated lipoproteins efficiently 

maintaining the integrity of the outer membrane, in contrast LolFD of N. meningitidis appears 

to have a lower affinity for diacylated lipoproteins compared to triacylated lipoproteins and 

downregulates their expression resulting in a weaker outer membrane which is more 

permeable to antibiotics.  

To conclude, from this study we show that for the meningococcus Lnt is a promising drug 

target and for the gonococcus we highlight the importance of targeting enzymes that act 

earlier in the lipoprotein processing pathway, such as Lgt, to prevent any sorting of diacylated 
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lipoproteins to the cell surface. Our study is very timely given the continuing rise in antibiotic 

resistance in both N. meningitidis and N. gonorrhoeae and the ever increasing need to 

develop new antimicrobials against these organisms (Zapun et al., 2016).  
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Figure 1 Immuno-dot blot of whole cell suspensions of individual Tn mutants of strain MC58 probed 

with anti-FHbp antibody, JAR4. Strains MC58 and L91543 were included as positive and negative 

control strains for reactivity to JAR4. 
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Figure 2. Western immunoblot of whole cell lysates from strains MC58 and MC58Lnt transformed to 

express His-tagged truncated FHbp, probed with anti-His antibody (lanes 3 and 4 respectively). Lanes 

1 and 2 are non-transformed MC58 and MC58Lnt strains. Data are representative of 5 independent 

experiments. 
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Figure 3. Immunofluorescence microscopy of whole cells of strains MC58, MC58Lnt and 

MC58LntC. To confirm the presence of meningococcal cells, cells were incubated with FITC-labelled 

rabbit polyclonal IgG raised against whole cell N. meningitidis (left and right panel). To compare 

FHbp cell surface expression between the strains, cells were also incubated with anti-FHbp antibody 

JAR4 which was detected by Alexa Fluor 555 labelled donkey anti-mouse IgG secondary antibody 

(right panel). 
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Figure 4. A. The binding of standardised whole cell suspensions of strains MC58, MC58Lnt, 

MC58LntC and L91543 to anti-FHbp antibody, JAR4, in an immuno-dot blot assay to compare the 

level of cell surface expression of FHbp between these strains. The image is representative of multiple 

independent experiments (n=6). B. The reflective density was measured by a GS-800™ calibrated 

densitometer. All columns represent mean •} SEM, ****p≤0.0001. NS Not significant. F achieved 

p<0.05, no significant variance in homogeneity seen. 
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Figure 5. A. Western immunblot of whole cell lysates from strains MC58, MC58Lnt and MC58LntC 

probed with anti-FHbp antibody, JAR4. Equal protein loading was confirmed by the determination of 

RecA protein in each sample. The image is representative of multiple independent experiments (n=8). 

B. The expression of FHbp was determined in MC58, MC58Lnt and MC58LntC by densitometry and 

normalised to RecA protein. The reflective density was measured by a GS-800™ calibrated 

densitometer. All columns represent mean •} SEM, *p≤0.001 vs strain MC58. NS, Not significant. F 

achieved p<0.05, no significant variance in homogeneity seen. 
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Figure 6 Determination of fHbp mRNA levels in bacterial strains MC58, MC58Lnt and MC58LntC 

by qRT-PCR analysis. The data was obtained from 6 independent biological replicates (n=6) with 

each including 2 technical replicates and normalised against the house-keeping gene, recA. All 

columns represent mean •} SEM, ****p≤0.0001 vs strain MC58. NS, Not significant. F achieved 

p<0.05, no significant variance in homogeneity seen. 
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Figure 7 Model for lipoprotein processing and sorting of tri- and diacylated lipoproteins in N. 

meningitidis. The signal peptide at the N terminus of the preprolipoprotein signals for its translocation 

across the inner membrane by the Sec apparatus. Once in the periplasm, Lgt adds a diacylglyceride to 

the conserved cysteine, the last amino acid of the lipobox at the C terminus of the signal peptide. 

LspA cleaves the signal peptide exposing the diacylated cysteine which becomes the +1 residue to 

which Lnt adds the third acyl chain. Both the fully mature lipoprotein or the apolipoprotein resulting 

from mutation of Lnt are recognised by the LolFD transporter complex (LoVullo et al., 2015). The 

LolA chaperone receives the lipoprotein or apolipoprotein and delivers it to the outer membrane 

anchored lipoprotein LolB which inserts it into the outer membrane. The mechanism of transport 

across the outer membrane for export to the cell surface remains to be investigated (Wilson and 

Bernstein, 2015). 


