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Abstract

This paper presents results on the stability of the wage dispersion model presented in
Mortensen (2003). Specifically, four learning processes are tested on a single parame-
terisation of the underlying model, and the most successful is submitted to a sensitivity
analysis. The results illustrate an important problem in evolutionary dynamics first
highlighted in Nelson and Winter (1982) - that to play a role in equilibrium, a strat-
egy must be consistent with a previous disequilibrium. The results are ambiguous
concerning the applicability of the equilibrium method of Mortensen (2003), as some
of the learning processes are stable, whilst others are extremely unstable and exhibit
complex dynamics.
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1 Introduction

This paper examines the stability under learning of a simple wage posting model. Specif-
ically, the static version of the Burdett and Mortensen (1998) wage posting model is con-
sidered, following Mortensen (2003: 16-20). Whilst a relatively small literature studies the
stability under learning of dispersed price equilibria, such models are arguably not as im-
portant, or at least are not as widely used, as search models in the labour market. Given
this, a natural question is whether or not the stability results of price setting models carry
over to models of the labour market. If they do not, then the use of wage posting models
to explain observed wage dispersion must be called into question.

The key paper examining the stability of dispersed price equilibria is Hopkins and Sey-
mour (2002). They note a common characteristic of dispersed price equilibria, which they
call the “rock-scissors-paper” property, that moves the behaviour of price setters away from
the Diamond (1971) result of uniform monopoly pricing. If, for example, some consumers are
relatively well informed, Bertrand-style competition allows a price setter to steal customers
from a rival by charging a slightly lower price. However, eventually this strategy will lead
to a price so low that it is more profitable to charge relatively badly informed consumers a
high price; hence the law of one price breaks down. Hopkins and Seymour (2002) examine
the price dispersion models of Varian (1980) and Burdett and Judd (1983), using a general
learning process of the following form:

∆xt = Q(xt)π(xt). (1)

Here, x is a vector whose components are the proportions of agents playing each strategy.
Changes in the proportions of agents playing each strategy through time are then given by
the positive-definite matrix Q(xt) multiplied by the pay-off function π(xt). In this way, rela-
tively successful strategies expand in the population at the expense of relatively unsuccessful
strategies. For a more recent paper that proceeds along these lines, see Lahkar (2011).

The process described by (1) subsumes a number of well known learning processes,
including fictitious play, reinforcement learning, and imitation learning (ibid.: 1164). Given
this, the authors are able to demonstrate the stability under learning of the dispersed price
equilibria in question with a very general approach (with an important caveat regarding
the proportion of informed consumers). However, the results rely on an assumption that
all strategies present in the initial distribution are present in the limiting distribution - in
other words, the support of the strategy set is the same as the support of the equilibrium
distribution (ibid.: 1166). This is not the case for the model considered in this paper, as in
general, the support of the strategy set will not be the same as the support of the equilibrium
distribution. Whilst it is true that any distribution can be approximated by a distribution
with full support (ibid.), there is a more general, and more interesting, problem at play.
This problem is an important one in evolutionary dynamics, and appears to have first been
observed by Richard Nelson and Sidney Winter:

“There is . . . the problem that certain episodes of an industry’s evolution
may be characterized by negative profits for virtually all firms. For example,
assume that there is a once-and-for-all drop in the demand for a product, or an
increase in factor prices. Even if the profit ranking of routines were invariant
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with respect to prices, the firms that would have survived in equilibrium may
drop out of business before equilibrium is achieved . . .

. . . There are two analytically distinct problems here. The first is that the
routines of extant firms determine, to some degree at least, the environment that
selects on routines. The second is that in order to play a role in actual equilib-
rium, a routine must be consistent with survival in a previous disequilibrium.”
(Nelson and Winter 1982: 160)

In the context of price posting models, including the wage posting model examined
below, all of the strategies that are optimal in equilibrium must be at least viable during the
disequilibrium adjustment, and the disequilibrium adjustment itself must weed out those
strategies that are not optimal in equilibrium. Given that the support of the equilibrium
distribution will not be the same as the support of the strategy set, the best way to approach
the learning problem would appear to be numerical simulation. This approach follows Cason
et al (2005) and Waldeck and Darmon (2006). Cason et al (2005) study the stability under
learning of the Burdett and Judd (1983) model, using replicator dynamics and gradient
dynamics. The former is fairly standard in the learning literature, whilst the latter supposes
that firms adjust their strategies according to profitability relative to a nearest neighbour.
Interestingly, this dynamic adjusts to a low amplitude limit cycle around the equilibrium
distribution. The replicator process, on the other hand, does not converge to the equilibrium
distribution, but does converge to a stationary distribution qualitatively similar (i.e. key
moments are the correct sign, in this case positive skew).

Cason et al (2005) conduct numerical simulations where the proportion of agents playing
each strategy is updated recursively - that is, the model is specified in agent proportions,
rather than individual agents. Waldeck and Darmon (2006), on the other hand, study
the stability of the Varian (1980) price equilibrium using a fully specified microsimulation
of reinforcement learning. They consider a model with 1000 buyers and 20 sellers, where
each seller posts a price from a set of size 100 (buyers have a fixed sample search size,
and a reservation price, and do not learn). The computational cost of such a model is
relatively high, and for this reason, presumably, the authors only consider one learning
algorithm. They conclude, similarly to Cason et al (2005), that the adjustment process does
not converge on the equilibrium distribution, but that the limiting distribution to which the
process does converge is qualitatively similar to the equilibrium (key moments are of the
correct sign).

Cason et al (2005) and Waldeck and Darmon (2006) can be seen as early applications of
techniques commonly used in agent based computational economics - the numerical explo-
ration of complex systems of adaptive agents. This type of analysis is becoming increasingly
popular in finance and economics, and has a particularly important link to evolutionary
economics, with recent examples in Russo et al (2015) and Assenza et al (2015). As with
Cason et al (2005) and Waldeck and Darmon (2006), the present paper is not an exercise
in agent based modelling per se, but rather applies agent based modelling techniques to a
model of evolutionary learning. Given this, the existing numerical studies of price dispersion
models offer mixed results concerning the stability of dispersed price equilibria. Particularly,
the stability of the respective equilibrium distributions appears to be sensitive to the exact
learning algorithm chosen. Therefore, instead of considering a single learning process, the
approach followed in this paper is to conduct numerical simulations of a number of processes.
The models are specified in strategy proportions, as with Cason et al (2005), in order to
reduce the computational cost of such a study. Section 2 describes the model, and four
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candidate learning processes. Section 3 presents the results, including an initial comparison
of the learning processes, and a sensitivity analysis of the most successful. Finally, section
4 concludes, and suggests avenues for further research.

2 The Model

2.1 A Simple Wage Posting Model

The model described here is the “Pure Wage Dispersion” model of Mortensen (2003: 16 -
20), which is a simplification of the original Burdett and Mortensen (1998) model1. The
model consists of a single period, in which m firms face n households. Each firm posts a
single wage offer to a randomly chosen household, and each household accepts the highest
offer received (if any). Denoting the marginal revenue product of labour as p, firms earn p−w
given recruitment. Given the above, the number of offers received by any given household
will be binomially distributed, with “probability of success” equal to 1/n, and “sample size”
equal to m. In large markets, this can be approximated by the Poisson distribution, where
λ = m/n denotes the ratio of firms to workers, and x denotes the number of offers received:

Pr(X = x) =
e−λλx

x!
. (2)

Given (2), workers are not able to choose from the whole distribution of wage offers, but
equally, it is not certain that a worker will receive only one offer. This means that the law of
one price will fail. To see this, consider a situation in which all firms offer w = p. No firm will
offer a higher wage than this, as it will guarantee a loss. On the other hand, it is profitable
to earn a positive expected profit by offering the reservation wage b, as the probability that
the worker contacted will receive no other offer, e−λ, is positive. Now consider the case
where all firms offer b. In this case, it is profitable to deviate slightly by offering b + ε, as
this offer will be accepted with certainty. As the probability of the worker accepting b, given
all other firms offering b, is strictly less than unity, this means that the deviating strategy
is relatively profitable. This line of reasoning is just the Hopkins and Seymour argument
described in the introduction, applied to wage offers rather than price offers, and relies on
continuity in the strategy space.

The foregoing implies that the wage distribution will be non-degenerate, with lower
support given by b. Clearly, this is a result of the inability of workers to view each firm’s
offer, or, equivalently, the inability of firms to contact every worker. Denoting the offer c.d.f
as F (w), the probability of acceptance for any given wage is equal to the probability that
an offer w exceeds the x other offers received, F (w)x, given the distribution of x:

P (F (w), λ) =
∞∑
x=0

e−λλx

x!
F (w)x = e−λ[1−F (w)]. (3)

1The simplified model is similar to Butters (1977).
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Given (3), the equilibrium offer distribution can be found by appealing to an equal profit
condition2. As the reservation wage will only be accepted if it is the only offer received, the
expected profit of offering the reservation wage is independent of the offer distribution, and
determines the expected profit of all other offers:

π(p, w, 0) = (p− b)e−λ = (p− w)e−λ[1−F (w)] = π(p, w, F (w)). (4)

Solving (4) for F then yields the unique offer c.d.f.,

F (w) =
1

λ
ln

(
p− b
p− w

)
, (5)

which can be solved for F = 1 to yield the upper support of the distribution, w̄:

w̄ = p− e−λ(p− b). (6)

(5) and (6) describe the wage offer distribution that results from the static Mortensen
(2003) model. Note, as mentioned above, that the support of the equilibrium distribution
differs from the strategy set when p > b and λ < ∞ (assuming that the supremum of the
strategy set is p; this seems intuitive). Although the model is, in a structural sense, extremely
simple, the situation it describes is rather complex from the point of view of the individual
firm. As a lower wage offer trades off a higher profit given acceptance against a lower
probability of acceptance, an individual firm has to know the probability of acceptance,
conditional on all wage offers, in order to make an informed decision in regards to its
individual offer. Unless one assumes that firms are aware of the profit function described
by (4), and thus the equilibrium offer distribution, ex ante, this problem does not have an
obvious solution. Following the literature outlined in the introduction, the general approach
is to utilise processes based on reinforcement learning and replicator dynamics, i.e. an
evolutionary approach. Section 2.2 presents four different processes, which are subjected
to an initial test in section 3.1 for a single fundamental parameterisation of the underlying
model. The most successful process is then subjected to a sensitivity analysis in section 3.2.

2.2 Candidate Learning Processes

Consider a large number of firms, facing a large number of households, such that the ratio
of firms to households is λ. The environment is analogous to that described above: each
firm posts a wage offer to a randomly picked household, and each household subsequently
accepts the highest offer received (if any). The marginal revenue product of a match is p,
and the reservation wage b is public knowledge. The set of possible wage offers is an equally
spaced grid: S = {w1, ..., wi, ..., wl}, with wi+1 > wi, w1 = b, and wl = p. Given the above,
assume that the number of firms and households is much larger than l, such that there is,

2See the appendix for a detailed derivation of (3).
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at any point in time, a large number of firms playing each strategy3. The time t average
profit of each strategy is then given by the following:

πit(p, wi, F̃t) = (p− wi)e−λ[1−F̃t(i)]. (7)

Here, F̃t denotes the cumulative distribution of firms across the strategy set at time t, which
may or may not be different from the equilibrium distribution F . Likewise, F̃t(i) denotes
the value of F̃t evaluated at strategy i, i.e. the proportion of firms playing strategies 1 to
i inclusive at time t. The processes that are examined here borrow from the reinforcement
learning literature in supposing that each strategy has a fitness measure associated with
it, and that these fitness measures determine the proportion of firms playing each strategy.
There are then two separate problems in constructing learning processes: first, how the
proportions of firms playing each strategy are determined, given the fitness measures, and
second, how those fitness measures are determined.

Learning Process:

Consider a function A that determines the proportions of firms playing each of the l strate-
gies, and a function B that determines those strategies’ fitness measures (these functions
are defined in detail below). The general learning process can then be described by the
following algorithm:

1. f̃it = Aa[φ1t, ..., φit, ..., φlt].

2. F̃t ← f̃t.

3. πit = (p− wi)e−λ[1−F̃t(i)].

4. φit+1 = Bb[φ1t, ..., φit, ..., φlt, π1t, ..., πit, ..., πlt].

As above, F̃t denotes the cumulative distribution of firms over strategies, and f̃it denotes the
proportion of firms playing the ith strategy, at time t. This is determined by A, which takes
fitness measures as arguments, denoted φit. These fitness measures comprise the model’s
l state variables, and thus an initial distribution of fitness levels is required for the model
to be fully specified. Given these values, which determine F̃1, intra-period expected profits
are updated for each strategy, which allows the fitness measures to be updated. This is
determined by B, which allows f̃t+1 to be calculated. Hence, the process can be iterated,
given initial conditions, to examine its limiting distribution. Note that two functional forms
for A and two functional forms for B are considered, hence the indices a and b above.

3Given this, we do not have to specify the exact number of firms and households, just the ratio λ. Note,
as well, that l must be reasonably large, as the argument for the existence of the equilibrium distribution
described by (5) and (6) relies on continuity. As the set of possible wage offers S in the computational model
is not continuous, wage dispersion is not guaranteed a priori.
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Strategy Selection Functions:

Two possible functional forms for A are considered:

A1: f̃it =
φit∑l
i=1 φit

.

A2: f̃it =
eφit/τ∑l
i=1 e

φit/τ
.

Denoting by Φ the space of vectors [φ1t, ..., φit, ..., φlt], and by Z the space of vectors
[f̃1t, ..., f̃it, ..., f̃lt], A1 and A2 are mappings from Φ → Z. With A1, in any given period,
the proportion of agents playing strategy i is equal to the relative fitness of that strategy.
This is straightforward, and follows the usual manner in which replicator dynamics and
reinforcement learning determine the proportion of agents over strategies. With A2, the
proportion of agents playing strategy i is exponentially related to strategy i’s relative fit-
ness; that is, a strategy i that is twice as fit as a strategy j is played by more than twice
the number of agents. The extent to which this is the case is determined by the intensity
parameter τ , such that a lower τ increases the rate at which agents choose relatively prof-
itable strategies. This is variously known as softmax selection (Sutton and Barto 1998: 30)
or logit dynamics (Cason et al op. cit.).

Fitness Updating Functions:

Two possible functional forms for B are considered:

B1: φit+1 =

{
φit + α(πit − φit) if φit + α(πit − φit) > 0
0 if φit + α(πit − φit) ≤ 0

.

B2: φit+1 =

{
φit + α(πit − π̄t) if φit + α(πit − π̄t) > 0
0 if φit + α(πit − π̄t) ≤ 0

.

Denoting by Π the space of vectors [π1t, ..., πit, ..., πlt], B1 and B2 are mappings from Φ×Π→
Φ. With B1, fitness levels are updated as per the standard reinforcement learning rule, where
the fitness measure of strategy i in any period is an exponentially weighted moving average
of past profitability. B2 is known as a “reinforcement comparison” algorithm in the machine
learning literature (Sutton and Barto 1998: 41), where the fitness measure of strategy i
is updated by comparing that strategy’s intra-period profit to the intra-period arithmetic
average of all strategies’ profits, π̄t. In the model considered here, this becomes a type
of social learning, similar in spirit to replicator dynamics. The foregoing, by the different
possible combinations of updating functions, gives four separate learning processes, which
will be referred to as processes A1B1, A1B2, A2B1, and A2B2. Section 3.1 compares the
convergence results of the four learning processes for a single parameterisation of the under-
lying model. In general, their performance is as expected, given the results of the existing
literature. However, A2B1 is found to perform extremely well for certain parameterisations,
and this is the process that is subjected to further analysis in section 3.2.
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Figure 1: A1B1, Distributions and KS Statistics

3 Results

3.1 Comparative Analysis

The four learning processes defined above are iterated numerically to generate their limiting
distributions4. In order to measure both the similarity between the limiting distributions
and the equilibrium distribution, and the speed at which the processes converge on their
respective limiting distributions, the Kolmogorov-Smirnov (KS) statistic is used (recall that
F is the theoretical equilibrium distribution given by (5) and (6)):

KSt = sup
i
|F (i)− F̃t(i)|. (8)

The KS statistic is the supremum of the set of absolute differences between F and F̃t in
any given period, and the KS statistic at a process’s limiting distribution is the greatest
absolute difference between that distribution and the equilibrium distribution5. Instead of
measuring “qualitative similarity” by recourse to an arbitrary set of moments, it will be
defined only in a relative sense; that is, a process with a lower KS statistic at its limiting

4Pseudo-code for the simulations discussed in this section is presented in the appendix.
5Alternative distance metrics could have been used here; the KS statistic is chosen to allow comparability

with the relevant literature, particularly Waldeck and Darmon (2006).
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Figure 2: A1B2, Distributions and KS Statistics

distribution is more similar to the equilibrium distribution than a process with a higher KS
statistic. In turn, as the KS statistic approaches zero, the limiting distribution will be said to
“quantitatively match” the equilibrium distribution. The following four subsections describe
the convergence results of the four learning processes, with the fundamental parameterisation
as follows: λ = 1, b = 1, and p = 2. Although different learning parameters are considered,
the size of the strategy set l = 1000 throughout, and initial fitness measures are equal to
unity for each strategy. Note that the initial values for the fitness measures do not appear
to have a significant effect on the results - this is discussed in section 3.2.

3.1.1 A1B1

Panels A - D in figure 1 illustrate the convergence properties of A1B1. Panels A and B
show the limiting distribution of the learning process (dashed line) against the equilibrium
distribution (solid line) for α = 0.1 and α = 0.5 respectively. Panels C and D show the
evolution of the KS statistic over iterations 1 - 1000 for the same parameter values. It is
apparent, from visual inspection of panels A and B, that the limiting distribution of A1B1

is not particularly close to the equilibrium distribution, and does a particularly bad job of
estimating w̄, with no wage offers disappearing from the strategy set at all. That this is
the case follows from a combination of factors. First, at the limiting distribution, each wage
offer in the set S earns a non-negative expected profit. Given this, the fitness updating
function B1 means that the fitness of any strategy i cannot go to zero; combined with the
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Figure 3: A1B2, Fitness Measures at Limiting Distribution

conservative strategy selection function A1, this ensures that no strategy disappears from
the offer distribution. Furthermore, the limiting distribution is invariant to α, the sole
effect of which is to determine the adjustment speed, and the KS statistic at t = 1000 is
approximately 0.21. Although A1B1 is very stable around its limiting distribution, therefore,
it is not particularly successful at learning the equilibrium distribution.

3.1.2 A1B2

Panels A - D in figure 2 illustrate the convergence properties of A1B2, for the same two
parameterisations as above. As with A1B1, the limiting distribution is invariant to the
choice of α, which governs the adjustment speed. With this learning process, however, the
limiting distribution is much closer to the equilibrium distribution, with the KS statistic at
t = 1000 approximately 0.085. Moreover, the process does a relatively good job of estimating
w̄, with the majority of wage offers above w̄ disappearing from the limiting distribution. The
increased success of this process compared to A1B1 is due to the potential for fitness measures
to equal zero, given the fitness updating function B2, and subsequently drop out of the offer
distribution permanently, given strategy selection function A1. Whereas, in A1B1, the fact
that high wage offers earn a non-negative expected profit leads to those offers being present
in the limiting distribution, with A1B2 the fact that high wage offers earn a non-negative
expected profit does not lead to those offers being present in the limiting distribution, as
those profit levels become considerably less than the average profit level at some point over
the adjustment path, and thus their fitness falls to zero given B2. This is further illustrated
in figure 3, which plots the fitness measures over the strategy set at the limiting distribution
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Figure 4: A2B1, Distributions

of A1B2 with α = 0.5; each wage offer wi in the strategy set S for which i > 692 has
fitness measure φi = 0, and is thus not played. Correspondingly, the wage offer distribution
F̃ (i) = 1 for all i > 692 in figure 2. However, where A1B1 smoothly approaches its limiting
distribution, A1B2 exhibits a degree of cyclical adjustment in the KS statistic. This is
indicated by the KS statistic rapidly falling to 0.1 in each parameterisation, after jumping
up again and steadily approaching 0.085 over the remaining iterations. Correspondingly,
A1B2 takes a significantly greater number of iterations to reach its minimum KS statistic
than A1B1. Particularly, where A1B1 with α = 0.5 exhibits extremely rapid convergence,
A1B2 takes approximately 600 iterations. Despite this, A1B2 does a relatively good job
of learning the equilibrium distribution, with particular success at estimating the upper
support. This result is in line with the existing literature referred to above.

3.1.3 A2B1

Unlike A1B1 and A1B2, A2B1 has two parameters governing the learning process: the adjust-
ment parameter α as before, and the strategy choice parameter τ . Figure 4 shows the limit-
ing distribution of the learning process for four parameter combinations: {α = 0.1, τ = 0.5},
{α = 0.1, τ = 0.05}, {α = 0.005, τ = 0.05}, {α = 0.005, τ = 0.005}. As before, α does not
affect the limiting distribution (compare panels B and C). However, the strategy choice pa-
rameter does have an effect on the limiting distribution, and a judicious choice can greatly
improve the ability of this learning process to match the equilibrium distribution. In general,
it is the case that the KS statistic increases with τ ; that is, the ability of A2B1 to learn the
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Figure 5: A2B1, Fitness Measures at Limiting Distribution

equilibrium distribution improves as τ decreases. This is an interesting result, as the rate
of flow of agents from low to high fitness strategies increases as τ decreases. It also means
that A2B1 works in a rather different manner to A1B2. Now, the combination of strategy
selection function A2 and fitness updating function B1 means that the fitness measure of
every wage offer in the strategy set S is positive in the limiting distribution, unlike in A1B2

where the fitness measures of high wage offers eventually fall to zero. The softmax selection
of A2, however, ensures that any wage offer with a fitness measure less than the average
fitness measure is played very infrequently, and this effect increases as τ decreases. This is
further illustrated in figure 5, which plots the fitness measures over the wage offer set at the
limiting distribution of A2B1 with {α = 0.005, τ = 0.005}.

This learning process, in which fitness measures do not fall to zero, but those wage offers
with relatively low fitness measures are played extremely infrequently, appears to perform
better than A1B2, where fitness measures do fall to zero, but the remaining strategies are
played in proportion to relative fitness. Unfortunately, as τ passes a certain threshold,
A2B1 fails to converge at all, and can display extremely complex dynamics. An example
is given in panel A of figure 6, which plots the KS statistic over iterations 1 - 150 for
{α = 0.5, τ = 0.02}. Furthermore, the threshold value of τ at which the process becomes
unstable is dependent on α, and panel B of figure 6 provides a stability plot for different
combinations of α and τ , from which the relatively large region of unstable parameterisations
is immediately apparent6. Despite this, the success of the stable parameterisations of A2B1

is unambiguously greater than the processes examined thus far. In fact, jointly decreasing α
and τ results in an extremely low KS statistic - the parameterisation illustrated in panel D of

6In the stability plot, instability is defined as an absolute difference of 0.001 or more between the KS
statistics at iterations 999 and 1000.
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figure 4, for example, has a KS statistic of 0.0115 at its limiting distribution. At this point,
therefore, the tentative conclusion is that A2B1 has the ability to quantitatively match the
equilibrium distribution described by (5) and (6).

3.1.4 A2B2

The final learning process incorporates softmax selection into the reinforcement compari-
son fitness updating algorithm. As incorporating the former into the basic fitness updating
algorithm significantly improved its performance, it might be imagined that A2B2 would
emerge as the most successful process. Unfortunately, the tendency of A2 towards instabil-
ity appears to interact with the cyclical adjustment of B2 in such a way that A2B2 does not
converge to a limiting distribution for any combination of parameter values. Instead, the
process produces explosive cyclical motion in the KS statistic. Panels A and B of figure 7
illustrate this for the parameterisations {α = 0.1, τ = 0.3} and {α = 0.5, τ = 0.5}, respec-
tively. A2B2, therefore, is not successful as a learning process in the context of the wage
dispersion model considered here.

3.1.5 Discussion

To summarise, A1B1 is stable around its limiting distribution, but that distribution is rel-
atively dissimilar to the equilibrium distribution, with a KS statistic of 0.21. At the other
extreme, A2B2 produces explosive cyclical motion for all parameterisations, and thus fails
completely as a learning process. The two relatively successful processes are A1B2 and A2B1.
The former converges reliably, albeit slowly, with a KS statistic of 0.085 at its limiting dis-
tribution. In comparison, A2B1 can achieve an extremely low KS statistic by reducing α
and τ jointly. Interestingly, this works by the strategy selection function A2 taking consid-
erable advantage of small differences in fitness measures, despite the fact that those fitness
measures do not go to zero; this appears to work more successfully than playing strategies
in proportion to fitness measures which may fall to zero. This is a delicate process, however,
as after a certain threshold any reduction in τ with α fixed causes extreme instability.
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Figure 7: A2B2, KS Statistics

Given the above, it is not clear a priori which of the evolutionary learning processes A1B2

and A2B1 is the most successful. At this point, it is worth returning to the Nelson and Winter
passage quoted in the introduction, above. In a more general process - with occasional
structural change, for example - A1B2 may be expected to perform poorly compared with
A2B1. This is because strategies in the former process permanently disappear from the set
of possible strategies - that is, they are not necessarily “consistent with survival in a previous
disequilibrium” (Nelson and Winter op. cit.). Whereas A2B1 - which works by retaining
all strategies in the set of possible strategies, but playing the relatively profitably strategies
extremely frequently - may be expected to perform better in a more general model. As
such, and given its quantitative success over at least some of the parameter space, this is the
process that is subjected to a sensitivity analysis in section 3.2. Particularly, its ability to the
learn the equilibrium distribution for four different fundamental parameterisations is tested,
and the region of unstable {α, τ} combinations for those parameterisations is calculated.

3.2 A2B1 Sensitivity Analysis

As demonstrated above, the KS statistic corresponding to the limiting distribution of A2B1

increases with τ . Given this, the threshold value of τ at which the process becomes unsta-
ble increases with α; hence for the fundamental parameterisation considered above, the KS
statistic is minimised in the most south-westerly corner of the stable region of panel B in
figure 6. When considering the sensitivity of the performance of this learning process, there-
fore, the primary question of interest is whether the region of unstable {α, τ} combinations
significantly differs for different fundamental parameterisations. The four parameterisations
of the underlying model that A2B1 is tested against are as follows:

P1: λ = 0.5, p = 2, b = 1.

P2: λ = 1.5, p = 2, b = 1.

P3: λ = 1, p = 3, b = 1.

P4: λ = 1, p = 2, b = 1.5.
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Figure 8: A2B1, Stability Plots

That is, in comparison to the parameterisation considered in section 3.1, P1 decreases λ,
P2 increases λ, P3 increases (p − b), and P4 decreases (p − b). Figure 8 presents stability
plots for each of these parameterisations, calculated in the same way as panel B of figure 6,
above. As can be seen in panels A and B of figure 8, varying λ with p and b fixed does have
an effect on the region of unstable {α, τ} combinations, but the effect is not particularly
pronounced. In contrast, varying (p − b) with λ fixed has a significant effect; reducing the
difference between the marginal revenue product and the reservation wage decreases the
unstable region substantially, whilst increasing this difference enlarges the region. It is not
clear what the economic intuition for this result is, although it is worth noting that (p− b)
determines the size of the strategy set, whilst λ does not, and it is possible that increasing
the size of the strategy set increases the tendency towards instability. In addition, it is worth
noting that the instability generated still corresponds to cyclical motion in the KS statistic,
as in panel A of figure 6.

The foregoing indicates that the success of the learning process is relatively unaffected
by the choice of λ, and rather more sensitive to the choice of p and b. However, for an
appropriate choice of α and τ , the limiting distribution to which A2B1 converges can still
achieve an extremely low KS statistic for both P3 and P4. This is illustrated in figure 9,
which compares the limiting distribution and equilibrium distribution for P3 and P4, with
{α = 0.005, τ = 0.01} and {α = 0.003, τ = 0.003}, respectively. The KS statistic for the
former is 0.0154, and the KS statistic for the latter is 0.0146. Finally, although the results
are not presented here, the process is largely unaffected by the fineness of the strategy set.
Reducing l substantially (e.g. < 100) does affect the stability properties, but mainly in the
time taken to convergence rather than the fact of convergence itself. Increasing l past 1000,
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Figure 9: A2B1, Limiting and Equilibrium Distributions

on the other hand, has no material effect on the results. Similarly, randomising the initial
distribution of fitness measures, rather than specifying an equal initial fitness measure for
each strategy, appears to have no effect on the limiting distribution.

The conclusions of this section are, it is fair to say, mixed. Not only is the most successful
process considered in section 3.1 unstable over a relatively large parameter region, but this
region is itself affected by the fundamental parameterisation of the underlying model. An
important consequence of this is that, for a given parameterisation of A2B1, this learning
process will not dominate the alternative processes examined in section 3.1 for any random
fundamental parameterisation. Thus there is an issue, so far unexamined here, concerning
learning under parameter uncertainty. On the other hand, as mentioned above, this learn-
ing process may be able to deal better with occasional structural breaks, as no strategies
permanently leave the set of possible strategies. Given this, it remains the case that for a
judicious {α, τ} combination, A2B1 can achieve an extremely low KS statistic at its limit-
ing distribution for a variety of fundamental parameterisations. As such, the justification
remains for concluding that the most successful process considered here can converge on a
limiting distribution that quantitatively matches the equilibrium distribution of Mortensen’s
simple version of the Burdett and Mortensen (1998) wage dispersion model. Moreover, the
second most successful process, A1B2, still does a reasonable job of learning the equilibrium
distribution, and does so in a completely different manner.

4 Concluding Remarks

The four candidate learning processes considered in this chapter vary widely in their ability
to learn the equilibrium distribution of Mortensen’s simple wage posting model. The two
basic processes, A1B1 and A1B2, are in line with results reached by Cason et al (2005) and
Waldeck and Darmon (2006), that is, convergence to a limiting distribution qualitatively
similar to the equilibrium distribution. The least successful process, A2B2, generates explo-
sive cyclical motion for every parameterisation, which is a failure that has not been reported
in the existing literature. The most successful process, on the other hand, can converge on a
limiting distribution that can quantitatively match the equilibrium distribution. Although
this learning process suffers from instability over a rather wide range of the parameter space,
the instability appears to be bounded, and for a judicious choice of parameters the process
is extremely successful.
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This study highlights an important problem in evolutionary dynamics first highlighted in
Nelson and Winter (1982) - that to play a role in equilibrium, a strategy must be consistent
with a previous disequilibrium. To recap, the support of the equilibrium distribution of
the Mortensen (2003) model is not the same as the strategy set. Given this point, two
evolutionary learning processes considered in the present study have the ability to learn
the equilibrium distribution of the Mortensen (2003) model relatively successfully. The first
does so by eliminating a large number of strategies from the strategy set, such that the
support of the process’s limiting distribution is similar to the support of the equilibrium
distribution, whilst the second does so by playing relatively successful strategies extremely
frequently, with no strategies disappearing from the strategy set. Whilst the latter would
seem to address the Nelson and Winter problematic, it does so at the expense of potential
instability and complex dynamics.

The implications of these results for the Mortensen (2003) equilibrium model are ambigu-
ous. On the one hand, learning processes have been found that approximate the equilibrium
distribution relatively well, lending support to the equilibrium model as an approximation
to a more general underlying model. On the other hand, the achievements of the learning
processes are extremely varied, and it is not obvious which is the most empirically relevant.
At the same time, some learning processes exhibit complex dynamics, and do not converge
to stable limiting distributions at all. Given this, a possible line of research is to find a
learning process that achieves the success of A2B1 without the associated instability. How-
ever, it is not a priori clear whether or not such a process exists; it may be the case that
one faces a trade-off between accuracy and reliability in this type of model.

Finally, there are two interesting possibilities that would increase the empirical ground-
ing of the model. First, the stability of more complicated, empirically relevant versions of
the Mortensen (2003) model could be examined. In particular, the stability under learning
of dynamic versions of the model could be studied. Second, the simple wage posting model
could be conducted in a lab setting, and learning processes could be inferred from observed
behaviour. As well as increasing the empirical content of the study, the observed learn-
ing behaviour might also provide evidence for processes that achieve convergence without
instability. The explorations of these possibilities is left to future research.

Appendix

Deriving the Probability of Acceptance

Given the probability of offers received in (2), the probability of acceptance is equal to the
probability that an offer w exceeds other offers received, F (w)x, given the distribution of x.
To derive (3), the following steps are required:

P (F (w), λ) =
∞∑
x=0

e−λλx

x!
F (w)x

⇒ P (F (w), λ) =
∞∑
x=0

e−λ[λF (w)]x

x!
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⇒ P (F (w), λ) =
∞∑
x=0

e−λ[1−F (w)]e−λF (w)[λF (w)]x

x!

⇒ P (F (w), λ) = e−λ[1−F (w)]e−λF (w)

∞∑
x=0

[λF (w)]x

x!
. (9)

Finally, note that the infinite sum in (9) is equal to eλF (w). So the probability of acceptance
simplifies to P (F (w), λ) = e−λ[1−F (w)], as in (3).

Pseudo-Code for Simulations

The following pseudo-code describes the method by which the models in section 3 are sim-
ulated. Matlab code is available from the author on request.

1. Initialise parameters: T , p, b, l, α, λ.

2. Define w̄ according to (6).

3. Define the grid of possible wage offers: S = {w1, ..., wi, ..., wl}, with wi+1 > wi, w1 = b,
and wl = p.

4. Compute the equilibrium distribution F :

(a) If wi < w̄, then F (wi) =
1

λ
ln

(
p− b
p− wi

)
.

(b) If wi ≥ w̄, then F (wi) = 1.

5. Simulate the model. For each time period 1 to T :

(a) Given the fitness distribution φ inherited from the previous period, compute the
proportions of firms over offers f̃ following either A1 or A2.

(b) Cumulate f̃ to yield the offer distribution F̃ .

(c) Given F̃ , compute the profit distribution π(wi) = (p− wi)e−λ[1−F̃ (i)].

(d) Given the fitness distribution φ inherited from the previous period, and the profit
distribution π computed at step (c), compute next period’s fitness distribution
φ′ following either B1 or B2.

(e) Calculate this period’s KS statistic: KS = supi|F (i)− F̃ (i)|.

6. Step 5 results in an l by T matrix of the offer distribution F̃ at each time period and a
vector of KS statistics of length T . These can be used to plot the figures in the main
body of the paper.

Note that the equilibrium distribution and offer distribution are defined on proportions of
firms playing each strategy, rather than number of firms, hence the actual number of firms
does not have to be specified (but the number of strategies, l, does have to be specified).
Also note that an initial fitness distribution (fitness level per strategy) has to be specified
to simulate the model (these initial fitness levels comprise the model’s l state variables).
Finally, note that the simulation is deterministic.

18



Compliance with Ethical Standards

This study was funded by the UK Economic and Social Research Council (grant number:
ES/J500148/1). The author declares that no conflict of interest exists.

19



References

[1] Assenza, T., Delli Gatti, D., and Grazzini, J. 2015. Emergent Dynamics of a Macroe-
conomic Agent Based Model with Capital and Credit. Journal of Economic Dynamics
and Control, 50, 5-28.

[2] Burdett, K., and Judd, K. 1983. Equilibrium Price Dispersion. Econometrica. 51, 955-
969.

[3] Burdett, K., and Mortensen, D. 1998. Wage Differentials, Employer Size, And Unem-
ployment. International Economic Review. 39, 257-273.

[4] Butters, G. 1977. Equilibrium Distributions Of Sales And Advertising Prices. The Re-
view of Economic Studies, 44, 465-491.

[5] Cason, T., Friedman, D., and Wagener, F. 2005. The Dynamics Of Price Dispersion,
Or Edgeworth Variations. Journal Of Economic Dynamics And Control. 29, 801-822.

[6] Diamond, P. 1971. A Model of Price Adjustment. Journal of Economic Theory. 3,
156-168.

[7] Hopkins, E., and Seymour, R. 2002. The Stability Of Price Dispersion Under Seller
And Consumer Learning. International Economic Review. 43, 1157-1190.

[8] Lahkar, R. 2011. The Dynamic Instability of Dispersed Price Equilibria. Journal of
Economic Theory. 146, 1796-1827.

[9] Mortensen, D. 2003. Wage Dispersion: Why Are Similar Workers Paid Differently?
Cambridge MA: MIT Press.

[10] Nelson, R., and Winter, S. 1982. An Evolutionary Theory Of Economic Change. Cam-
bridge, MA: Harvard University Press.

[11] Russo, A., Riccetti, L., and Gallegati, M. 2015. Increasing Inequality, Consumer Credit
and Financial Fragility in an Agent Based Macroeconomic Model. Journal of Evolu-
tionary Economics. DOI: 10.1007/s00191-015-0410-z.

[12] Sutton, R., and Barto, A. 1998. Reinforcement Learning: An Introduction. Cambridge
MA: MIT Press

[13] Varian, H. 1980. A Model Of Sales. American Economic Review. 70, 651-659.

[14] Waldeck, R., and Darmon, E. 2006. Can Boundedly Rational Sellers Learn To Play
Nash? Journal Of Economic Interaction And Coordination. 1, 147-169.

20




