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Abstract 

This study was designed to evaluate the status, distribution, spatial variability, controlling 

factors, storage, and change in the levels of soil organic carbon (SOC) in two major alluviums 

of Bangladesh. The two alluviums—the Brahmaputra and the Ganges—were selected because 

they occupy a large area of Bangladesh with a wide diversity of agro-ecosystems. SOC levels 

were studied across the four sub-sites in the aforementioned alluviums at 0-30 cm depths to 

evaluate their spatial and temporal variability. The sub-sites, Delduar and Melandah, are in the 

Brahmaputra alluvium. The other two sub-sites, Mirpur and Fultala, are in the Ganges 

alluvium. Additionally, SOC and total nitrogen (TN) distribution were studied across eight soil 

profiles (0-120 cm depths) under the two alluviums.  

  

The results revealed that the SOC contents were very low in all the sites. The classical statistics 

showed that the variability of the SOC was moderate across the four sub-sites. The SOC 

distribution was positively skewed across all the sub-sites except Fultala. A semivariogram 

model showed there was generally a weak spatial correlation (R
2
<0.5) of SOC in the study 

sites. A relatively large sampling grid (1600m) and intensive soil management were perhaps 

responsible for the observed weak spatial dependency.  

 

SOC variability is lower across the highland (HL) and medium highland (MHL) sites than the 

medium lowland (MLL) and lowland (LL) sites. Changes in land use and land cover were also 

more intensive in the HL and MHL sites than the MLL and LL sites. The reason for low SOC 

in the HL and MHL sites may be due to their lower inundation level, e.g., land levels in 

relation to flooding depths, together with greater intensity of use. Temporal variability of SOC 

datasets revealed that SOC has declined across all the sites during the last 20-25 years due to 

the intensive land use with little or no crop residue inputs. It is plausible that SOC has declined 

to an equilibrium level, and further decline may not occur unless land use intensity changes 

further.  

 

The findings show that SOC is positively related to the TN and clay contents in the soils. This 

is not surprising as SOC is a major pool of TN, and soil clay fraction is known to protect SOC 

degradation. SOC and TN storage is higher in the surface soil horizon (0-20 cm) than the sub 

surface soils. Topsoil horizon is tilled and receives greater crop residue inputs which are 

subsequently mineralized resulting in higher accumulation of SOC and TN.  
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It appears that inundation land types and land management practices may be the major driving 

factors of SOC storage and distribution across the study sites. 

 

              

Key words: SOC distribution, spatial variability, temporal variability, SOC storage, 

Inundation land types, Land use and land cover, C sequestration 
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CHAPTER 1 

 

1. Introduction  
 

1.3 Rationale and Statement of the Problem 
 

 Bangladesh is a land-scarce agricultural country with a high density of population. Its net 

cultivated area (NCA) is 8.50 million hectares and the per capita NCA is about 0.060 ha (FAO, 2013; 

BBS, 2014), less than one-fourth of the estimated contemporary world per capita NCA of around 0.26 

ha. The expanding population is putting stress on the land resources and facilitating unscrupulous 

exploitation. For this reason, double and triple cropping areas are an increasing trend. Cropping 

intensity has gradually increased during the last two decades at an alarming rate in Bangladesh (BRRI, 

2013; BBS, 2014). Since there is an acute shortage of land in Bangladesh, conversion i.e., or 

competition is very common (Hasan et al., 2013). Agriculture, being the dominant land use, is in 

constant conflict with other land uses. So, the net result is a decrease in total agricultural land (Hasan et 

al., 2013). Thus, good quality agricultural lands are being used for non-agricultural purposes where 

such land cannot be returned into its original form. In this situation, Islam (2013) noted that land use 

change can be grouped into two broad categories—irreversible and reversible uses. Incremental 

increase in irreversible land-use is pushing the country into a famine.  

 

Land use changes can be defined as conversion of existing land cover to another due to the 

changes in edaphic nature. Land use change is a dynamic process that plays a crucial role in relation to 

global carbon dynamics and at the same time, land use change has become a global concern due to its 

adverse affect on climate through emission of greenhouse gases (Post and Kwon, 2000). Many studies 

have demonstrated that changes in land use are inevitably followed by changes in carbon stores 

(Houghton, 1999; Canadell, 2002; Guo and Gifford, 2002; Grunzweig et al., 2004). Land use thus is an 

important factor in controlling and affecting global climate change. Eswaran et al. (1995) stated that 

the quantification of soil C losses and gains resulting from land use changes is a prerequisite to the 

understanding of greenhouse gases fluxes in different ecosystems. Soil is the largest terrestrial pool of 

organic carbon, with global estimates ranging from 1115 to 2200 Pg of C (Batjes, 1996), 1576 Pg of C 

(Eswaran et al., 1995), and 1220 Pg of C (Sombroek et al., 1993). Because of the significant capacity 

for C storage, soil has been the focus of increasing efforts in assessing the C sequestration associated 

with land use change and ecosystem succession (Post et al., 1982; Degryze et al., 2004; Sun et al., 

2004). Lal (2009) reported that the source and sink of atmospheric carbon depends upon land use and 

land management. As a result, land use changes and land management can modify soil organic carbon 

(SOC). Soil organic carbon is thus an important component of the overall global carbon cycle. 
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 Soil organic carbon is an index of sustainable land management (Woomer et al., 1994; 

Nandwa, 2001) and is simultaneously a source and sink for plant nutrients and plays a vital role in soil 

fertility maintenance (Bationo et al., 2005). Soil organic carbon (SOC) management can help lower the 

levels of greenhouse gases (GHGs) by increasing sequestration, while providing many other positive 

benefits such as improving crop yields, reducing erosion, lowering needs for external inputs, and 

increasing environmental and social aspects (FAO, 2001). In this aspect, Bationo et al. (2005) also 

noted that C sequestration has gained momentum in the recent decade and the amount of C in a system 

is a good measure of sustainability. Estimates of C stocks within different land management and 

cropping systems are an important element in the design of land use systems that promote sequestering 

C. Thus, the sequestration of carbon in soils is a win-win strategy. In this connection, Sanchez (1999) 

stated that the nature and quantity of soil organic carbon may affect many of the physical, chemical, 

and biological properties of soils. Soil pH, buffering capacity, nutrient supplies, and the activity of soil 

biota are all intimately related to soil organic carbon. Due to the importance of these relationships, soil 

organic carbon is considered a critical component when assessing soil quantity (Karlen et al., 2008).   

 

In Bangladesh, low organic matter content is a general problem in most agricultural soils.  

Almost 50% of the soils in Bangladesh have <1% organic matter (FRG, 2012). This low organic matter 

content is related to many biophysical attributes of soils, particularly their aeration, structure, resilience 

and productivity. The depletion of organic matter is mainly caused by low input of organic 

material/residue and high cropping intensity. The characteristic hot humid climatic condition prevailing 

in this country encourages rapid mineralization and thus loss of organic matter. In Bangladesh, the cost 

of land degradation in terms of loss of soil productivity is estimated to be about US $685 million per 

year (Karim and Iqbal, 2001).  

 

Information on soil carbon management, loss, or sequestration—although highly important—is 

very scarce in Bangladesh. It is therefore highly important to develop a carbon dynamics database for 

the soils of Bangladesh so that SOC changes can be monitored/managed. The most important 

agricultural lands in Bangladesh exist on the two major alluviums formed by the deposition of 

alluvium from the two mighty Rivers—the Ganges and the Brahmaputra. The Ganges River system 

emerges from the southern slope of the Himalayas while the Brahmaputra emerges from the northern 

slope of the same mountain range. The total area of Brahmaputra alluvium is estimated to be around 

1.6 million hectares whereas that of the Ganges alluvium is about 1.4 million hectares (FAO-UNDP, 

1988). These two alluviums are very diverse regarding cropping patterns and inundation land types. 

Cropping intensity in the Brahmaputra and the Ganges alluviums are more than 200%, indicating that 

most of the soils are used for agricultural purposes throughout the year (BBS, 2014). The soils of the 

Ganges alluvium are mildly calcareous and the clay fraction is dominated by smectite type of clay. The 
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soils of the Brahmaputra alluvium, on the other hand, are mildly acidic and the mineralogy is different, 

e.g., kaolinite and mixed-layer minerals from those of the Ganges (Brammer, 1996; FRG, 2012). 

 

Therefore, it is quite important to understand the dynamics of the soil carbon as well as its role 

in the carbon balance and the global carbon cycle. In developing countries like Bangladesh, where land 

use change is quite frequent, one would expect it could have a severe impact on the carbon sequestered 

/sink in soils. The amount of carbon stored in soils can be affected by changes in climate and 

atmospheric CO2 concentration and land use practice.  Thus, it is quite essential to identify the land use 

changes and quantifying their impact on soil carbon storage or loss. This project will also identify at-

risk areas in Bangladesh that need to be managed carefully and ultimately the influence of soil carbon 

sequestration.  

 

1.2 Research Aims and Objectives 

 The aim of this research is to examine the distribution of soil organic carbon and their stocks in 

the two major alluviums of Bangladesh. A major thrust of the work is to assess the impact of land use 

change on soil organic carbon (SOC) loss or storage. This will be achieved using current land use and 

SOC levels and comparing them with their historical records. The research has the following specific 

objectives: 

 

● To estimate the SOC contents and their spatial distribution in the study sites. 

● 

 
To assess storage and distribution of SOC across the inundation land types as well as the alluviums 

at 0-30 cm depths. 

 

● To find out how inundation land types and cropping intensity affects SOC. 

● 

 
To identify the land use as well as cropping intensity changes over the period 1989-1992 and 

2012. 

● 

 
To evaluate the SOC loss or sequestration by comparing the historical SOC datasets (1989-1992) 

with their current (2012) contents. 

● To determine the SOC and total nitrogen (TN) distribution and storage across the study sites at 0-

120 cm depths. 

● 

 
To reveal the impact of inundation land types and soil depths on SOC and TN distribution and 

storage. 
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CHAPTER 2 

 

Land Cover, Land Use, and Soil Carbon Management – A Literature 

Review 

 

2.1 Introduction 

 Greenhouse gas emissions and climate change are important issues to agriculture, both 

because of their potential impacts on agricultural production and because agriculture is a major 

contributor to the build-up of greenhouse gases (GHGs) in the atmosphere. In 1995, according to the 

Intergovernmental Panel on Climate Change (IPCC) assessment, agriculture was estimated to be 

responsible for 20% of the annual increase in total anthropogenic GHGs emissions. Above all, soils 

being the largest terrestrial carbon pool, it is important to understand the dynamics of soil carbon as 

well as its role in the carbon balance and the global carbon cycle. In developing countries like 

Bangladesh, where land use change is quite frequent, one would expect that it could have considerable 

impact on soil carbon, and thus it (soil organic carbon, SOC) should be considered carefully while 

assessing or developing agricultural and environmental management policies and their implications on 

climate change. The amount of carbon stored in soils can be affected by change in climate and land use 

practices. In the Kyoto protocol, an agreement made under the United Nations Framework Convention 

on Climate Change (UNFCCC), signatory nations are required to produce accurate estimates of their C 

store and monitor changes with time. Several approaches have been used to estimate terrestrial C stores 

and many studies have used a combination of soil and vegetation, land cover and model predictions 

(Batjes, 1996; Milne and Brown, 1997; Scott et al., 2002; Bradley et al., 2005). It is thus important that 

accurate, reliable, and authentic data are needed for their estimation.  

 

The content of soil organic carbon (SOC) is affected by a range of factors such as climate 

(Homann et al., 2007), topography (Tan et al., 2004), biota (Finzi et al., 1998; Wu et al., 2009), parent 

material (Sleutel et al., 2007; Wagai et al., 2008), time (Schlesinger, 1990), and land management 

(Blumfield et al., 2006; Gao et al., 2008; Xu et al., 2008; Yang et al., 2008). Many of these factors are 

mutually interactive (Sollins et al., 1996). Among the various factors, climate—especially temperature 

and precipitation—is the most important factor regulating SOC as it strongly influences vegetation 

type, biomass production, and decomposition of plant litter (Alvarez and Lavado, 1998). SOC in 

cropland is also strongly dependent upon crop and soil management practices, such as crop species and 

rotation, tillage methods, fertilizer and manure application, pesticide use, irrigation and drainage, and 

soil and water conservation (Heenan et al., 2004). All these practices control the input of organic 

carbon from crop residues and organic amendments, and the SOC output through decomposition into 

gaseous forms and transportation into aquatic ecosystems via leaching, runoff, and erosion (Turner and 

Lambert, 2000).  
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Soil management has a considerable impact on soil carbon.  Much of the soil‘s original organic 

C loss from agricultural land can be attributed to reduced inputs of crop plant residues and their 

increased mineralization and tillage effects that decrease the amount of physical protection for soil 

organic carbon (Davidson and Ackerman, 1993). Land management practices can affect soil 

temperature and surface water regimes (Al-Kaisi and Yin, 2005), which can directly influence soil 

organic carbon content. Especially in dry areas, soil cover has an important role in water management, 

where it decreases the temperature, thus slowing the rate of organic matter mineralization (FAO, 2001). 

The selection of annual crops and the inclusion of annual and perennial pastures or fallow in rotation 

with annual crops can significantly impact SOC levels. In a long-term crop rotation trial at the Waite 

Institute in Australia, SOC contents have increased under permanent pasture and declined to varying 

degree under cropping systems (Tisdall and Oades, 1982). Crop rotation also affects soil C and 

complex/mixed rotations can maintain higher C contents than monocultures (Morari et al., 2004).  

Agboola (1981) reported a rapid decline in soil organic matter content and plant nutrient reserves with 

intensive cropping.  

 

2.2 An Overview of Global Carbon  

Organic carbon is a key component of terrestrial ecosystems and any variation in its abundance 

and composition has important effects on many of the processes that occur within the system (IPCC, 

1990; Legros et al., 1994). Carbon is a highly versatile element that occurs abundantly in a number of 

geo-spheres such as biosphere, hydrosphere, atmosphere and lithosphere. The reserves of carbon in the 

geo-spheres of the earth are huge and are in dynamic equilibrium with each other (Eswaran et al., 

1993). Geochemically carbon is a lithophile element (where carbon is found in the earth crust) and, in 

the form of carbon dioxide and methane, is one of the atmophile elements. The most conspicuous 

geochemical feature of carbon, however, is its strong bio-phile character; it is a primary constituent of 

all living matter. With the advance of time, more and more reliable estimates of the C contents in 

various geochemical reservoirs are now available. Disturbance in any of these pools has a direct effect 

on others because of the inter linkages among the various reservoirs.  Eswaran et al. (1993) and Lal et 

al. (1995) presented an estimate of the global carbon pools (Table 2.1).  From these estimates (Table 

2.1), it is worth noting that oceans contain by far the largest part of the total global carbon pools. At the 

global scale, Eswaran et al. (1993) and Lal et al. (1995) estimated that the upper 1 m of mineral soils 

contain 1550 Pg C whereas according to Post et al. (1982) and Schlesinger (1986) the estimate 

was1300-1500 Pg C. The values, however, are more than twice the C stored in terrestrial plant 

biomass. Estimates of 1456 Pg SOC by Schlesinger (1984) and 1395 Pg by Post et al. (1982) were 

based on land area classified by major vegetation types or life zones, while estimates of 1576 Pg by 

Eswaran et al. (1993) and 1220 Pg by Sombroek et al. (1993) were based on global soil maps.  
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  Table 2.1: Estimated global carbon pools  

 
Sources Quantity (Pg*) % 

Oceans 38,000 92.7 

Atmosphere 750 1.8 

Soils (as organic carbon) 1550 3.8 

Biota (Terrestrial vegetation) 550 1.3 

Others (Geological formation; mineral carbon, fossil carbon) 150 0.4 

Total 41,000 100.0 
*Pg (Petagram) = 10

15
 grams (one billon tonnes)  Adopted from Eswaran et al. (1993) and Lal et al. (1995) 

 

 There has been no detailed estimation of global C stocks in cultivated soils. Data compiled by 

Bouwman (1990) regarding the distribution of FAO soil groups on cultivated lands, SOC contents by 

soil group from Sombroek et al. (1993), and additional data of Histosols (Cole et al.,1996), all of them 

estimated pre-cultivation C stocks of 222 Pg in the total area of land under cultivation. Accounting for 

C losses due to cultivation, the estimate of current agricultural soil C stocks at 168 Pg (Paustian et al., 

1997) was very close to the 167 Pg estimated by Post et al. (1982). Houghton (1999) showed an 

estimation of carbon in the various vegetation and soils eco-zones of the world (Table 2.2). Whittakar 

and Likens (1973) and Schlesinger (1984) estimated C contents in some major ecosystems of the earth 

(Table 2.2). Tropical forests differ from forests of temperate and boreal zones in that more of the 

carbon of tropical forests is contained in vegetation than in soils. When inventories of soil carbon are 

not limited to the top 1m, this difference between regions may no longer apply because the temperate 

ecosystems are low temperature environments with consequential very slow organic matter 

decomposition, thus favouring an accumulation of organic carbon (Houghton, 1999). The author 

further added that tropical evergreen forest has the highest quantity of carbon per hectare (including 

soils, trees and other vegetation). The swamp soils of the world have the maximum accumulation of 

organic carbon per unit area among the ecosystems considered (Table 2.2). Because of poor drainage, 

the decomposition of organic matter is very much slow in the swamps and marshes. 

 

In soils, carbon occurs mainly in two forms, inorganic soil carbon (SIC) and soil organic 

carbon (SOC). SIC is relatively ‗inert‘ form of carbon, which is hardly involved in carbon 

transformations, while the other form is decomposable and biochemically active (Korschens, 1980). 

The global total soil C pool for the top 1-metre depth has been estimated to be about 2500 Pg, of which 

SOC is 1550 Pg, and SIC is 1000 Pg. The soil carbon pool is considerably larger when compared to 

about 550 Pg C in the biotic pool and 750 Pg C in the atmospheric pool (Korschens, 1980). Several 

authors (e.g., Bohn, 1976; Buringh, 1984; Kimble et al., 1990) have made attempts to estimate the total 

carbon content in various tropical and subtropical soils. Because of their varying premise and basis of 
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calculation these estimates differ widely in some cases. According to estimates by Bohn (1982), 

22х10
14

 kg C occurs in the mineral soils and 4х10
14 

kg C occurs in the global peat.  

 

Table 2.2:  Area, total carbon, and mean carbon content of vegetation and soils in major ecosystems of 

 the earth 

 

 

Major ecosystems 

Area 

(x10
6
 ha) 

Carbon in 

vegetation 

(Pg) 

Carbon 

in soil 

(Pg) 

Mean 

vegetation C 

(Mg C/ha) 

Mean  

soil 

carbon  

(Mg C/ha) 

Tropical evergreen forest 602 107 62 177 104 

Tropical seasonal forest 1,459 169 125 116 86 

Temperate evergreen forest 508 81 68 161 134 

Temperate deciduous forest 368 48 49 131 134 

Boreal forest 1,168 105 241 90 206 

Tropical fallows(shifting cultivation) 227 8 19 36 83 

Tropical open forest/woodland 307 15 20 50 64 

Tropical grassland and pasture 1,021 17 49 16 48 

Temperate woodland 264 7 18 27 69 

Temperate grassland and pasture 1,235 9 233 7 189 

Tundra and alpine meadow
1
 800 2 163 3 204 

Desert scrub
1
 1,800 5 104 3 58 

Rock, ice, and sand
1
 2,400 0.2 4 0.1 2 

Cultivated, temperate zone 751 3 96 4 128 

Cultivated, tropical zone 655 4 35 7 53 

Swamp and marsh
1
 200 14 145 68 725 

Total 13,765 594 1,431 - - 
1
From Whittaker and Likens (1973) and Schlesinger (1984).  Soil depth is 1 m (Source:  Houghton, 1999) 

 

 Eswaran et al. (1995) estimated organic and inorganic C mass in soils of the world (Table 2.3), 

according to the US Soil Taxonomy (Soil Survey Staff, 1993). According to these estimates the 

Histosols and the Inceptisols together contain slightly less than half of the global soil C. From these 

estimates, it is clear that Histosols, Oxisols, and Spodosols contain most of the carbon in SOC form 

whereas Aridisols and Mollisols contain most of the carbon as soil inorganic carbon (SIC) form. On 

the other hand, Inceptisols, Entisols, and Alfisols have both SOC and SIC almost in equal quantities 

(Table 2.3). Eswaran et al. (1993) estimated organic carbon mass in the mineral and organic soils of the 

tropics (Table 2.4), which show that the wet soils of the world contain a huge quantity of organic 

carbon pool. Aquepts that occur extensively in the world contain high quantity of organic carbon.  The 

wet mineral soils occupy about 6% of the land mass, of which about 5.8% is present in the tropics. 

About a third of the organic soils, which occupy about 1.9% of the global land mass, are present in the 

tropics and dominantly in South East Asia (Lal, 1995). Armentano et al. (1986) estimated that non-

tropical soils occupy about 88% of the global organic soils. The stock of carbon in the wetlands is 

estimated to be about 498 Pg of which about 12% is in the wet mineral soils. The remaining 88% in the 

Histosols is slowly being reduced due to drainage of the land for agriculture. Armentano et al. (1986) 
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also estimated that about 5 to 6 Pg would be lost in the next 30 years, i.e., by the year 2016 due to 

burning of peat and utilization of peat lands for agriculture. Tropical soils contain 32% of the total 

global soil carbon, and deforestation causes a considerable loss of organic carbon in the tropics (Brown 

and Lugo, 1984).  

 

       Table 2.3:  Organic and inorganic carbon mass (Pg) in the world soils based on soil orders* 

 

           Soil Orders Organic carbon 

(SOC) 

Inorganic carbon 

(SIC) 

Total carbon 

(SOC+SIC) 

Histosols 390 0 390 

Andisols 69 1 70 

Spodosols 98 0 98 

Oxisols 150 0 150 

Vertisols 38 25 63 

Aridisols 110 1,044 1,154 

Ultisols 101 0 101 

Mollisols 72 139 211 

Alfisols 136 127 263 

Inceptisols 267 285 552 

Entisols 106 117 223 

Rocky land 13 0 13 

Shifting sand 5 0 5 

Miscellaneous land 18 0 18 

Total 1,573 1,738 3,311 
      (Source: Eswaran et al., 1993) 

 * A brief description of the soil orders is given in Appendix 1 

 

    Table 2.4: Estimates of organic carbon mass in the wet mineral and organic soils of the Tropics  

      (Values in parentheses are percentages of the total land mass)  

 

Soil Sub-Orders Area (km
2
) Organic C 

Global (Pg) Global x 10
3
 Tropical x 10

3
 

Aquods 210 (0.16) - 4 

Aquerts 84 (0.06) 84 (0.17) 1 

Salids 1,130 (0.84) 134 (0.27) 5 

Aquults 563 (0.42) 501 (1.01) 5 

Aquolls - - - 

Aqualfs 701 (0.52) 69 (0.14) 6 

Aquepts 4,644 (3.44) 2,050 (4.13) 67 

Aquents 1,362  (1.01) 30 (0.06) 20 

Total 8,808 (6.53) 2,868 (5.78) 108 

Histosols (Organic soil) 1,745 (1.9) 286 (0.57) 390 

Total  10,553 (7.82) 3,154 (6.35) 498 
 (Source: Eswaran et al., 1993) 

 

Tarnocai (1997) prepared a database of soil organic carbon and soil carbon mass of nine soil 

orders in Canada along with their US classification (Table 2.5). The highest average surface carbon 

content was found in the Histosols (18.7 kg/m
2
), followed by Gleysols and Cryosols (11.7 kg/m

2
 and 
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11.3 kg/m
2
 respectively). Spodosols have more average surface C than the Inceptisols or Entisols, 

whereas Entisols or Mollisols and Alfisols have more or less similar C content (Table 2.5). 

 

Table 2.5: Amount of soil organic carbon and its mass in various soil orders in Canada and correlation       

of Canadian and U.S. soil classification terminology 

 

Soil classification Soil carbon content 

(kg/m
2
) 

Soil carbon mass 

(Pg) 

Area (km
2
) 

Canada US Surface Total Surface Total x1000 

Brunisol Inceptisol 5.2 9.3 6.1 10.9 1170 

Chernozem Boroll 7.4 12.4 3.2 5.4 434 

Cryosol Pergelic subgropus 11.3 40.6 28.7 102.7 2530 

Gleysol Aqu-suborders 11.7 20.0 2.7 4.6 230 

Luvisol Boralf and Udalf 4.9 9.3 3.0 5.7 611 

Organic  Histosol 18.7 133.7 14.9 106.3 795 

Podzol Spodosol 9.9 19.3 12.5 24.4 1267 

Regosol Entisol 5.6 11.8 0.8 1.7 144 

Solonetz Mollisol and Alfisol 5.8 11.5 0.3 0.6 52 

Total -   72.2 262.3 7233 
 (Source: Tarnocai, 1997)  

 
 Organic carbon in soils is present in different forms, depending on their pools of stabilities. 

Based on soil carbon dynamics, Duxbury (1991) suggested four kinds of C pools (Table 2.6) in 

different soil orders of the world. The first one is an active or labile pool which is readily oxidizable. 

The controlling factors of this pool are residue inputs and climate. Agronomic factors affect the size of 

this pool. The second is a slowly oxidizable pool associated with macro-aggregates. The controlling 

factors of this pool are soil aggregates and mineralogy. Agronomic factors, particularly tillage, affects 

the size of this pool. The third one is a very slowly oxidizable pool (within micro-aggregates). The 

controlling factors of this pool are water stable micro-aggregates. Agronomic factors have little impact 

on this pool. The fourth one is a passive or recalcitrant pool. The controlling factors are complexes of 

clay minerals; microbial decomposition may have reduced this carbon to elemental form. Agronomic 

factors do not influence this pool. There are insufficient detailed studies to proportion carbon into each 

of these pools and thereby to estimate the rates of change in these pools. From the view of losses from 

the system, the active pool is the most important and consequently is the most transient (Eswaran et al., 

1995). This pool dominates the surface horizons of soils where they are not only most easily oxidized 

but also most easily lost through erosion (Lal et al., 1995). The very slowly and passive pools would be 

present in significant amounts in Andisols, and the highly weathered Oxisols and Ultisols. In the latter 

two soils, stable micro-aggregate formation with entrapped organic carbon is frequent.  

 

 

 

 

 



 

24 
 

 

Table 2.6:  Estimates of relative amounts of carbon pools in different soil orders of the globes 

 

Carbon pools in subsurface horizons 

Soil  Active Slowly oxidizable Very slowly 

oxidizable 

Passive 

Histosols ***** *** ** * 

Andisols *** *** ** * 

Spodosols ** ** *** **** 

Oxisols * ** *** **** 

Vertisols **** *** ** * 

Aridisols ** ** * * 

Mollisols ***** *** ** * 

Ultisols *** ** *** **** 

Inceptisols ***** * * * 

Entisols ***** * * * 
 (Source: Duxbury, 1991) *detectable; **low; ***moderate; ****high; *****dominance 
 

From Table 2.6, it is obvious that soils type influences the global carbon cycles depending on 

their origin, nature, and properties.  Land use change, deforestation, drainage, and cultivation lead to a 

rapid loss of C from organic soils by oxidation, volatilization, and mineralization. Dried peat and muck 

soils are also prone to burning and wind erosion. Cultivation of organic soils leads to a rapid loss in the 

thickness of the organic horizon. Regarding upland soil orders in relation to the global carbon cycle, 

Andisols, soils of volcanic origin, are young and inherently fertile soils. Because of their high biomass 

productivity, these soils have a large potential to sequester C (Lal et al., 1998). Aridisols especially 

derived from calcareous parent materials, have low SOC. Mollisols, the grassland soils are naturally 

fertile and possess granular structure. Their cultivation has greatly reduced the carbon storage, in many 

cases by 50% (Lal et al., 1998). Through conservation tillage and increased biomass return to the soils, 

they have the ability to be a major sink for carbon storage. Another group of soils that is important 

regarding the global C cycle is hydromorphic soils. These soils are inundated or they remain saturated 

or nearly saturated most of the time and their surface horizons undergo anaerobiosis; this inhibits 

carbon breakdown and thus they are rich in SOC. Hydromorphic soils are widely used for rice 

cultivation in the tropics and subtropics. Tropical ecosystems and soils of the tropics (Oxisols, Ultisols, 

and Alfisols) play a dominant role in the greenhouse effect. Deforestation of the tropical rainforest 

affects SOC dynamics directly or indirectly. The impact of biomass burning, intensive cultivation for 

seasonal or annuals, and conversion to pastures have a major impact on the SOC budget (Lal et al., 

1998).   
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2.3 Land Cover Change and SOC Stock 

The land cover of the planet can be considered as a connecting link between the geological and 

the biological cycles of carbon. After decomposition in soil, plant, and animal residues and their 

decomposition products undergo chemical and physical transformations and become closely associated 

with mineral particles especially the clay minerals to form stable aggregates. This close association 

with mineral particles in the form of stable micro-aggregates and the chemical stabilization provide 

organic carbon with self-protection from further decomposition (Lal et al., 1998). Lal et al. (1998) 

proposed that there are two sets of processes by which organic carbon in soils may either increase or 

decrease – the pedospheric processes (Fig. 2.1). Sedimentation and deposition as well as humification 

will increase organic carbon in soils. On the other hand, quick decomposition and erosion will result in 

impoverishment of organic carbon in soils. Leaching and aggregation are thus two fundamentally 

opposite processes that determine the fate of organic carbon in soils. The relative contribution of the 

above two mechanisms differs from soil to soil. It is the net balance between these SOC aggrading and 

degrading processes, as influenced by land use and anthropogenic factors that determines the net SOC 

pool in the pedosphere (Lal et al., 1998). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: Principal pedospheric processes by which organic carbon in soils may either increase or 

 decrease affecting SOC contents (Source: Lal et al., 1998) 
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Physical and chemical degradation, which are the primary processes, very often result in 

biological degradation (Robert and Stengel, 1999). Erosion by water and wind is quantitatively by far 

the most important SOC degradation process. In tropical regions, human induced soil degradation 

affects 45 to 65% of agricultural lands, depending on the continent (Oldeman et al., 1991). This soil 

degradation enhances deposition of soil materials in the lower level of landscapes. Thus, this situation 

presents a considerable scope for carbon sequestration in degraded tropical soils. Related benefits of 

carbon sequestration in such lands are improvements in chemical properties, bioavailability of nutrients 

and resilience against physical degradation in the pedospheric processes (FAO, 2001). On the other 

hand, Lal et al. (1998) noted that small changes (losses) in the SOC pool could have dramatic impacts 

on the concentration of CO2 in the atmosphere. For better quantifying the response of terrestrial C, a 

large proportion of which derives from the soil, it is essential to understand the nature and extent of the 

earth‘s response to global warming. Understanding interactions between climate and land-use change is 

very much important. 

 

Equilibrium carbon stock in soil is the result of a balance between inputs to and outflows from 

the pool. Changes in land cover are likely to alter such balance resulting in different carbon stores 

under different land cover systems in addition to the impacts of global climate change (FAO, 2001). 

The equilibrium between C inflows and outflows in soil is disturbed by land-use change until a new 

equilibrium is eventually reached in the new ecosystem, thus the land use change significantly affects 

soil C stock (Guo and Gifford, 2002).  The equilibrium dynamics of C in different land-use options are 

a function of the plant residues returned to the soil, the litter C content, the amount of soluble vs. non-

soluble C components, the mineralization rates of the C components, the placement of above-ground 

vs. below-ground inputs and the degree of soil aggregate disturbance (Post and Kwon, 2000).  

  
Various changes in land-use result in very rapid declines in soil organic matter (Mann, 1986; 

Schlesinger, 1995) and such losses can be attributed to reduced inputs of organic matter, increased 

decomposition of crop residues, and tillage effects that decrease the amount of physical protection to 

decomposition.  Because of the significant capacity for C storage, soil has been the focus of increasing 

efforts in assessing its carbon sequestration associated with land use change and ecosystem succession 

(Post et al., 1982; Sun et al., 2004). Land use change affects soil carbon stores by altering the input 

rates of organic matter in some cases, changing the decomposability of organic matter inputs that 

increase the light fraction organic carbon (Cambardella and Elliott, 1992) and enhancing physical 

protection through either intra-aggregate or organo-mineral complexes (Post and Kwon, 2000). 

Ultimately, the soil carbon and nitrogen stocks depend on whether the changed land-use is favourable 

or prohibitive to the C storage processes. 
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 Land use change often can cause a significant change in land cover and an associated change 

in carbon stocks (Bolin and Sukumar, 2000). Guo and Gifford (2002) estimated the percentage of  SOC 

stock under different  land cover change or conversion (Table 2.7) and reported that converting forest 

or grassland to crop lands caused significant loss of SOC. Conversion of forestry to grassland did not 

result in SOC losses in all cases because of granular type of soil structure, whereby the colloidal 

properties of the soils give rise to chemical bonding between organic molecules and inorganic 

materials, which leads to immobilization of C in the soils (Shoji et al., 1993; Wada 1995). Total 

ecosystem C does, however, decrease due to loss of the tree biomass C. Similar results have been 

reported in Brazil, where total ecosystem C (vegetation biomass included) losses were large, but soil C 

did not decrease following conversion of forests to grasslands (Veldkamp, 1994; Moraes et al., 1995; 

Neill et al., 1997; Smith et al., 1999).  

 

Table 2.7:  SOC stock (%) under different land cover change 

 

Land use from  Land use to Mean %  C  stock change 

Pasture Plantation -10 

Native forest Plantation -13 

Native forest Crop -42 

Pasture Crop -59 

Native forest Pasture +8 

Crop Pasture +19 

Crop  Plantation +18 

Crop Secondary forest +53 
        (Source: Guo and Gifford, 2002) 

 

 Grassland management systems possess a greater potential to store SOC than forestland 

(Franzluebbers et al., 2000). Stevenson (1982) indicated that SOC content of grassland soils was 

substantially higher than for forest soils if other factors were constant. Hence, soil C stocks could be 

higher under natural grasslands than under natural forests. Tate et al. (2000) also reported that total soil 

profile C stock was 13% higher in the grassland than in the forest. Organic soils hold enormous 

quantities of SOC, accounting for 329-525 Pg C, or 15-35% of the total terrestrial (soil and plant 

biomass included) carbon (Maltby and Immirizi, 1993). The potential for SOC loss from land use 

change on highly organic soils is therefore very large. The change from one ecosystem to another could 

occur naturally or be the result of human activity. Each soil has a carbon carrying capacity, i.e., 

equilibrium carbon content depending on the nature of vegetation, precipitation, and temperature 

(Gupta and Rao, 1994). 

 

Post and Kwon (2000) advocated that land use and vegetation type exert considerable control 

over SOC quantities and forms, as well as the aggregate with which they are associated. Sombroek et 

al. (1993) conducted a study in parts of the tropics and sub-tropics, which showed 20 to 50% loss of 
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the carbon in topsoil after clearing of forest and their conversion to farmland. These losses account for 

soil structure deterioration and increased erosion rates and decomposition of SOC in topsoil. In another 

study, Wilson (1978) reported that the conversion of land use from native vegetation to agriculture 

resulted in sharp declines in soil organic matter. Land use change and disturbance history are often 

related to the numerous processes of the carbon cycle; the recent evolution of terrestrial carbon sinks 

(Schimel et al., 2001; Nabuurs et al., 2003) and the famous ‗residual sink‘ (Caspersen et al., 2000). 

Carbon sink is carbon storage in a natural or artificial reservoir that accumulates and stores it for an 

indefinite period, whereas ‗residual sink‘ is terrestrially missing carbon released as carbon dioxide 

(CO2) by anthrpogenic activities which does not match changes observed in the atmosphere and the 

ocean. Post and Kwon (2000) observed that land use change and disturbance history govern the large 

variability of C sequestrations in soils. In an another estimation, Buringh (1984) noted the average loss 

of soil carbon after conversion of forest to cropland as 48%, of forest to grassland 28%, and of forest to 

mixed cropland and grassland 35 % over one meter depth. Similarly, Kimble et al. (2001) and Agboola 

(1990) reported that the effect of continuous maize cultivation with complete fertilizer, SOC decreased 

over time enhancing the decrease in yield (Table 2.8).  

Table 2.8: SOC changes over time and the effect on maize yield with complete fertilizer*  

 

Crops** Egveda Series Iowa Series Cambari Series 

 OC % Yield (kg/ha) OC % Yield (kg/ha) OC  % Yield (kg/ha) 

 1
st
 crop 1.61 3100 1.73 3800 1.21 2500 

 3
rd

 crop 1.03 2000 1.38 2600 0.51 1000 

7
th
 crop 0.46 1000 1.03 1800 0.34 800 

10
th
 crop 0.34 700 0.57 1000 0.17 200 

*Complete fertilizer means fertilizer containing N, P, K, the three major elements required for plant nutrition.  

**Here the land use or crop is only maize. (Source: Kimble et al., 2001; Agboola, 1990) 

 

           According to Lal (1995), the factors that are responsible for augmenting soil resilience can be 

grouped into two categories: endogenous and exogenous. The important endogenous factors that are 

responsible for enhancement of soil resilience are: unconsolidated soil mass having sufficient rooting 

depth, high organic carbon content, loam to clay loam texture, structurally active soils, and gentle to 

rolling terrain, good internal drainage and favourable microclimate. On the other hand, the exogenous 

factors include land use and crop management. Appropriate land use and adoption of suitable 

management technology can enhance and sustain high productivity, on one hand, and accentuate 

resilience of the soils on the other. Although tropical conditions favour organic carbon decline, its 

levels seldom reach a stage of complete exhaustion. Rather, over-cultivated soils tend to attain a steady 

state, described as a lower equilibrium limit by Buyanovsky and Wagner (1997). According to them, 

there is an upper limit of organic carbon, which they define as the equilibrium content typical for a 

virgin eco-system. If organic matter displacement by erosion is not a factor, then its level in properly 

managed cultivated soils fluctuates between these two extremes. Cultivation alone tends to shift this 
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towards the lower equilibrium point; organic matter additions and fertilization tilt it in the direction of 

the upper equilibrium ceiling. Hence, in the tropics, low organic matter additions as well as accelerated 

degradation and loss due to year-round prevalence of biologically active temperature and moisture 

regimes lead to rapid reductions in the soil organic carbon pool (Katyal, 2000).   

 

Effects of long-term fertilization on SOC built up in Indian soils (Table 2.9) were reported by 

Nambiar (1995) and Swarup and Gaunt (1998). Katyal (2000), who assessed the results obtained from 

long-term experiments in India, confirmed the validity of the observation on organic carbon dynamics 

in two situations like virgin sites and sites already in cultivation. In the virgin sites, with control (Table 

2.9), during the initial 5 to 7 years, soil organic carbon remained constant and corresponded to the 

initial value. During the next 7 to 8 years (up to 15 years from the start of the experiment), soil organic 

carbon fell sharply to 50% of the original value. Further decline was some-what reversed since it 

touched 34% of the base level in the next 5 to 7 years (Table 2.9). Beyond this point, soil organic 

carbon did not fall and seemed to have stabilized at a lower equilibrium level as was described by 

Buyanovsky and Wagner (1997). With fertilizers, soil organic carbon remained stable over the first 

decade, but subsequently fell to about 40% of the initial value (Katyal, 2000). This level was reached 

over a period of about 3 years. With manure (15 t ha/yr), the soil organic carbon content remained 

stable over the 25 years of the study. On the other hand, in cultivated soils, long term fertilization had 

already shifted SOC to a new equilibrium. In these soils (control treatment), SOC levels declined 

without any fertilizer application. In variance, soil organic carbon levels were either maintained or 

increased with an adequate NPK treatment, whereas i.e., SOC levels invariably increased with the 

manure treatment (Katyal, 2000).  

Table 2.9:  Effect of long-term fertilization on organic carbon built up in Indian soils 

 

Cropping system, 

 Location and Soil 

Initial 

SOC % 

                    SOC %** 

Control* NPK NPK-FYM 

Rice-rice, Bhubaneshwar, Inceptisols 0.27 0.41 0.59 0.76 

 

Rice-wheat, Pantnagar, Mollisols 1.48 0.50 0.95 1.51 

 

Rice-wheat, Faizabad, Inceptisols 0.37 0.19 0.40 0.50 

 

Rice-wheat-jute, Barrackpore, 

Inceptisols 

0.71 0.42 0.45 0.52 

Rice-wheat-cowpea, Pantnagar, 

Mollisols 

1.48 0.60 0.90 1.44 

Maize-wheat, Palampur, Alfisols 0.79 0.62 0.83 1.20 

 

Fallow-rice-wheat, Karnal, Alkali soil 0.23 0.30 0.32 0.35 
Note:  FYM = farm yard manure; * treatment without any manures or fertilizers; **after 20 years of cropping 

(Source: Nambiar, 1995; Swarup and Gaunt, 1998) 
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 Proper soil conservation measures should be addressed to minimize erosion as well as loss of 

organic matter. In the tropics, climatic conditions favour its disappearance as carbon dioxide. Measures 

are really lacking on replenishing the loss and maintaining it at acceptable levels. Farmers are really 

not entirely aware about the knowledge of SOC management as well as soil conservation measures. 

Katyal (2000) also reported that due to the lack of knowledge about the value of its use and inadequate 

communication among the farmers, largely due to competing uses and lack of well-organized system 

of returning by-product wastes to farm fields, is the key constraint to the loss of organic matter.  

 

Cheng (1984) reported the effect of different cropping systems on SOC content in South China 

(Table 2.10). From Table 2.9 and 2.10, it may be noted that in double-cropped rice areas, SOC levels 

are relatively stable, even if manure or straw residues are not practiced. Apparently, the nature of 

two/three flooded rice crops, without an upland crop phase grown in aerated soil, is enough to slow 

down C decomposition. The chemical nature of SOC at their relatively higher soil C levels, however, 

appears to be altered (Olk et al., 1996). Rice in the upland crop rotations such as rice-wheat or rice-dry 

land crops generally have lower SOC than rice-rice systems. 

 

 Table 2.10: Effect of cropping systems on organic carbon content of paddy soils in South China 

 

Location Cropping systems Organic matter (%) 

Hubei Continuous rice 2.03-2.15 

Rice-dry land crops 1.85-1.94 

Zhejiang Continuous rice 3.11-5.21 

Rice-cotton 2.01-2.87 

Taihu Lake region Rice-wheat-rice 2.74± 0.94 

Rice-wheat 2.45± 1.04 

Shanghai Suburbs Rice-rice-wheat 2.14± 0.19 

Rice-wheat 1.58± 0.14 
          (Source: Cheng, 1984)  

 

 Rasmussen and Albrecht (1997) reported the effect of different cropping systems on SOC over 

time (Table 2.11). The addition of manure improved the retention of C in soil in annual cropping as 

well as in rotations that included fallow. It appeared difficult to prevent the loss of SOC from soil with 

high C content when fallow was included in crop rotation, even with manure addition. Manure 

application to soil with lower C content maintained SOC at equilibrium when cropped to wheat-fallow 

rotation (Rasmussen and Parton, 1994). Carbon input from manure is substantial, and can represent 

from 30 to 80% of total C input which is highly variable, depending on soil type, moisture content, and 

method of application (Rasmussen and Collins, 1991). The primary factors affecting SOC in semi-arid 

soils are level of C input into soil through crop residue and manure and frequency of fallow in crop 

rotations. In general, little C is lost from soil when cropped every year and residues are incorporated 

rather than removed. Increasing crop yield through improved technology appears beneficial as long as 
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residues are returned to the soil. But, at present, maintaining SOC at equilibrium in rotations that 

include fallow appears nearly impossible when cropped with inversion tillage. Adoption of no-till may 

be the way to produce conditions suitable for soil C aggrading (Rasmussen and Albrecht, 1997). 

 

Table 2.11: Soil organic carbon (SOC) change as affected by different cropping systems over time, 

 1931-1990, Pendleton, Oregon 

 

Cropping Systems Initial /1931 Final/1990 SOC change SOC change/year 

 t/ha 

Grass pasture 35.40 45.09 +9.69 +0.162 

Wheat-fallow (plough*) 35.40 28.49 -6.91 -0.115 

Wheat-fallow (mulch**) 33.73 30.55 -3.18 -0.080 

Wheat-pea (plough) 31.62 30.68 -0.94 -0.034 

Wheat-pea (mulch) 31.62 33.66 +2.04 +0.073 

Winter crops-wheat (plough) 36.16 35.48 -0.68 -0.011 

Winter crops-wheat (no-till) 31.45 32.29 +0.84 +0.093 
*Plough, mouldboard ploughed at 20 cm deep, **mulch, non-inversion tillage <10 cm deep; all the cropping 

systems were manured/fertilized and all crop residues for pea vines in the wheat-pea rotation were returned to the 

soil (Source: Rasmussen and Albrecht, 1997) 

 

         After land cover or use change, a prolonged period of constant management is required to reach a 

new equilibrium. The equilibrium level of SOC depends on the balance between factors and processes 

that increase or decrease SOC content. The rate of change of SOC in soil depends on the amount 

present and the land management practices (Stevenson, 1982). Thus, the SOC accretion and 

humification are influenced by i) rate of biomass return through litter fall and crop residues, ii) root 

biomass and its distribution with depth, and iii) soil fertility management including use of inorganic 

fertilizers and organic amendments. Whereas, processes leading to decline in the SOC content are: i) 

mineralization and oxidation of organic substances, ii) soil erosion and iii) leaching.  

FAO (2001) noticed that SOC stock depends on the factors of soil formation but can be heavily 

modified by land use changes and land management. Major loss of SOC is caused by conversion of 

virgin forest and grassland to cropland and the subsequent ploughing and related activities (Jenkinson, 

1991). Patterns of changing land use will have a substantial effect on terrestrial carbon storage (IPCC, 

1995). Post and Kwon (2000) indicated that land use patterns, which strongly influence SOC pools and 

flux, also vary at relatively fine spatial resolutions. According to Houghton and Hackler (2001), the net 

flux of carbon between the terrestrial biosphere and the atmosphere during the period between 1850 

and 1990 was 124 Pg C from deliberate changes in land cover and land-use. DeFries et al. (1999) 

estimated that total C loss from human induced land cover changes were almost 1200 Pg C including 

removal of vegetation and trees. Lal et al. (1998) estimated that agricultural soils globally have lost 40 

to 50 Pg C during the last century and about 80 to 117 Pg C have been released from biomass due to 

change in land use for agriculture. On the other hand, substantial amount of organic carbon can be 

sequestered in agricultural soils. For example, Cole et al. (1996) estimated that globally, between 0.4 
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and 0.8 Pg C /year could be sequestered in agricultural soils for 50-100 years through good soil 

management.  Above all, Paustian et al. (1997) calculated that the capacity for C sequestration in 

agricultural soil on a global scale is about 20-30 Pg C over the next 50-100 years. Lal and Bruce (1999) 

estimated that the total soil C sequestration potential of the world cropland is about 0.75-1.0 Pg/year or 

about 50% of the annual emissions by deforestation and other agricultural activities. IPCC (2000) 

reported that by 2040, the potential net C storage is expected to be 0.85 Pg C/year for developed 

countries and 1.32 Pg C/year for the developing countries.  

 

Thus, it can be said that the SOC pool depends on rates of renewal (source) and removal (loss) 

of carbon from the soil. The primary source of the soil carbon is through biomass produced and its 

incorporation into the soil. The principal loss of carbon is through respiration, decomposition, erosion 

and leaching. Land use and management affect both the magnitude of biomass production and rate of 

removal of SOC. Maximizing C input to the terrestrial biosphere from the atmosphere is possible in 

agricultural system (Lal et al., 1998) through a variety of management options, including i) plantation, 

ii) conservation tillage operations, iii) fertilizer management, iv) integrated nutrient management, v) 

mulching and manuring that promote the stabilization of soil aggregates which ultimately resist SOC to 

decomposition.  

2.4 Land Management Options and C Sequestration 

On crop lands, tillage is the most important practice, which can have a major effect on the soil 

carbon pool. Conventional tillage or ploughing enhances SOC loss whereas conservation tillage helps 

maintain its levels in crop lands. The favourable effects of conservation tillage are considerable in 

carbon management. Conservation tillage includes crop residue management onsite, which ensures the 

input of organic matter. The production of biomass by plant cover or mulch requires water, so the 

practice depends on rainfall. Biomass obtained after crop rotation enhances the C sequestration budget, 

which could reach 1 tonn C /ha/year (FAO, 2001). Fertilization, with the resulting increase in biomass, 

increases the C available for sequestration in soil. Thus fertilization with the use of irrigation water 

combined with good drainage permits an increase in biomass production (FAO, 2001). All the above 

practices, e.g., conservation tillage, mulching, crop rotation and fertilization, are aimed at accumulating 

carbon in croplands and restoring the degraded soils or prevent erosion. IPCC (2000) noted that 

croplands under improved management practices can help in carbon gains at the rate of 0.32 t/ha/year. 

Cole et al. (1996) introduced some best management practices (BMPs) which are important regarding 

C sequestration, (Table 2.12) biomass production, and agronomic yield.  
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Table 2.12:  Some examples of best management practices (BMPs) on SOC sequestration in different 

 regions of the world 

 

Location Land use/degradation process C sequestration rate References 

North America Best management practices 0.05-1.5 Mg/ha/yr Lal et al. (1998) 

India Fertilization and manuring 0.02-0.08 % (>25 yr) Nambiar (1995) 

Karnal, India Saline soil reclamation 0.07%/yr Singh et al. (1994) 

Northern India Alkali soil reclamation by 

afforestation 

4 Mg/ha/yr Garg (1998) 

West Africa Manuring 0.03-0.7% (long 

term) 

Smith and 

Naazie(1998) 

Northern Nigeria Fallowing 0.015%/yr Onyeanuforo (1994) 

Pampas, 

Argentina 

Cover crops , pasture 0.0225%/yr Demmi et al. (1986) 

Para, Brazil Fallowing 0.9 Mg/ha/yr Sommer (1996) 

South China Intensive rice cropping 1.0-2.4% (long term) Cheng (1984) 

Sumatra, 

Indonesia 

Manured rubber plantation 3.1 Mg/ha/yr Van Noordwijk et al. 

(1995) 

Europe Manure at 10 Mg/ha/yr 23.4x10
6
 Mg/yr  for 

100 yr 

Smith et al. (1998) 

Australia N-fertilization 0.15% over long time Grace et al. (1998) 
 (Source: Cole et al., 1996)  

 

 Agroforestry, the association of trees with crops or pastures, can represent a sustainable 

alternative to deforestation and shifting cultivation (Winterbottom and Hazlwood, 1987; Sanchez et al., 

1999; Schroeder, 1994; Sanchez, 1995).  It has a huge potential for carbon sequestration in crop lands 

(Sanchez et al., 1999). Schroeder (1994) carried out a global evaluation of the land potentially 

available for conversion to agroforestry.  Even if the potential extent is as much as 600 to 1000 million 

ha, Schroeder (1994) estimated that 160 million ha are suitable only in the tropics. The global C 

storage would be somewhere between 1.5 and 8.0 Pg (only in trees) from 600-1000 M ha. Other 

estimates of the extent of suitable land available for agroforestry are higher: 400 million ha for the next 

25 years, including 100 million ha of forest (devoted to deforestation) and 300 million ha of degraded 

agricultural lands (IPCC, 2000). The estimates consider two types of evaluation to arrive at realistic 

rates for annual land conversion.  

The first concerns the transformation of forests after slash-and-burn or other kinds of 

deforestation and estimates this at 10.5 million ha/year. Secondly, agroforestry systems can be 

established on unproductive croplands with low levels of organic matter and nutrients. Such areas are 

widespread in sub-humid areas of tropical Africa. In this case, below-ground carbon is the main 

concern. The conversion to agro-forestry would permit tripling the soil C stocks, from 23 to 70 t/ha 

over a 25-year period in Africa. In sub-humid, tropical Africa, the benefit would be around 0.04 - 0.19 

Pg C/year. As a first step, a leguminous cover crop can be used, such as Sesbania sesban, Tephrosia 

vogelii, Gliricidia sepium, Crotalaria grahamiana, or Cajanus cajan, which can supply 0.1 to 0.2 t 

N/ha/year. In principal, therefore, agroforestry would be one of the means of changes in land-use 



 

34 
 

related to C sequestration, for various reasons. First, the surface area involved is considerable and the 

rate of C gain in soil is relatively high, 0.2 - 3.1 t/ha/year (IPCC, 2000). Secondly, it can off-set the 

important CO2 emission coming from deforestation (Dixon, 1995). Thirdly, it could provide a 

sustainable system from technical, ecological, and economic points of view.  Therefore, agroforestry is 

a major contributor to carbon sequestration. 

 

Crop biomass production increases organic matter input into the soil, for example through 

introduction of new varieties as well as through agronomic management such as nutrient management 

(especially nitrogen) and crop rotation. About 70-100 kg of N is necessary for sequestering 1 ton of C 

(Swift et al., 1994). An increase in CO2 content in the atmosphere due to climatic change can have a 

similar positive influence, the so-called ‗CO2 fertilization effect‘ (Bazzaz and Sombroek, 1996). The 

soil has to be protected during the initial period of crop growth by incorporating crop biomass into the 

soil. In European countries specifically in Belgium, the above all factors, showed that without the 

application of manure and even with conventional tillage practices, the organic matter content 

increased in the cultivated soils using crop biomass and water management (FAO, 2001). Crop residue 

management is an integral part of the conservation tillage system. FAO (2001) also reported that water 

management or irrigation, with an associated increase in productivity, can produce similar effects, e.g., 

increased biomass production, especially in semi-arid regions. 

 

Crop residue management is an important method of sequestering C in soil and increasing the 

soil organic matter. Residue burning has negative consequences, even if they are sometimes mitigated 

by the great stability of the mineral carbon which is formed. The positive effects of using crop residues 

to induce C sequestration have been estimated by Lal (1997) at the rate of 0.2 Pg C/year. Crop residues 

applied on the surface, decompose more slowly than those that are incorporated by tillage, because 

they have less contact with soil microorganisms and soil water. Angers et al. (1995) reported that 

conversion of maize residue C into soil organic matter in the 0 to 24 cm layer  was about 30% of the 

total input which is higher than the  above estimation (0.2 Pg C/year) by Lal (1997). Evidently, there 

are qualitative differences between the crop residues, depending on the crop types. The lignin content 

of the residue has a highly positive effect on the accumulation of carbon (FAO, 2001).   

 

Mulch farming and plant cover are land management practices allowing both coverage of the 

soil by specific plants, giving protection against erosion, and providing biomass residues to increase 

soil organic matter. The quantity of mulch should be in the range of several dozens of t/ha/year in order 

to provide an important carbon soil input of up to 0.1 C t/ha/year, depending on the climatic zone (Lal, 

1997). The quality of the plant residues is also an important factor, providing mulch or covering crops 

(Heal et al., 1997; Drinkwater et al., 1998). The soil cover or mulch increases the water infiltration rate 

and prevents water evaporation (FAO, 2001), and hence soil moisture storage and conservation is 
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increased. Green manures and cover crops provide an important contribution to soil carbon where  

45,000 farmers in Central America  have adopted Mucuna (Velvet bean) based systems, in which 150 

kg N can be fixed per ha per year and 35-50 tonnes of biomass added to the soil per/ha/year, 

representing a very large sequestering of carbon (FAO, 2001).  

 

Apart from climatic factors, the main processes causing losses in soil carbon are soil erosion 

and mineralization of organic matter. Leaching of dissolved organic and inorganic carbon is another 

important mechanism of loss of carbon from the soil. Soil erosion by water and wind, represents the 

most important soil degradation process and affects more than 1 billion hectares globally (FAO, 2001). 

The soil loss through erosion generally ranges from 1-10 t/ha/year (FAO, 2001).  Hence, a decrease in 

erosion through soil conservation and management practices can help soil organic C sequestration. 

FAO (2001) reported that tillage has a long history, dating back millennia that stimulate N release from 

soil organic matter (SOM). The increase in aeration of the soil and the intense disturbance are the main 

factors stimulating the mineralization of organic matter by the soil micro-organisms. Balesdent et al. 

(2000) demonstrated that tillage plays a main role in the ‗deprotection‘ of organic matter present in 

macro and, to some extent, in micro aggregates. Tillage practices have been causing the general 

decrease in SOM of intensively cultivated soils (FAO, 2001). Conservation agriculture favours 

biological functioning of the soil, the most evident change being the increase in soil fauna and micro-

flora. The function of conservation agriculture (including zero tillage systems), is to protect soil 

physically from the action of sun, rain and wind, and feed soil biota. The result is to reduce soil erosion 

and improve the soil organic matter and as well as carbon content. Robert (1996) noted that organic 

matter and the biological activity have a major influence on the physical and chemical properties of 

soils.  Thus the stock of organic carbon present in natural soils represents a dynamic balance between 

the input of dead plant material and loss from decomposition. Lal (1999) summarized different land 

management options and their impacts on SOC sequestration in dry lands and tropical areas (Table 

2.13). 

Table 2.13:  Impacts of land management practices on carbon sequestration (t/C/ha/yr) in the dry  

     lands and tropical areas 

 

Land management practices Dry lands Tropical areas 

Conservation tillage 0.1-0.2 0.2-0.5 

Mulch farming or plant cover 0.05-0.1 0.1-0.3 

Conservation agriculture 0.15-0.3 0.3-0.8 

Composting 0.1-0.3 0.2-0.5 

Nutrient management 0.1-0.3 0.2-0.5 

Water management 0.05-0.1 - 

Grassland and pastures 0.05-0.10 0.1-0.2 

Agroforestry - 0.2-3.1 
         (Source:  Lal, 1999)   
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Thus, it can be concluded that appropriate land use management options like conservation tillage, 

mulch farming, cover crops, agroforestry farming, biomass production farming as well as crop residue 

management etc. all enhance SOC. The above management practices decrease decomposition, improve 

soil structure and aggregation, decrease soil degradation processes, and increase nutrient cycling and 

other ecosystem restorative mechanisms.  

2.5 Main Consequences and Impact of C Sequestration 

Carbon sequestration and a consequential increase in soil organic matter have a direct positive 

impact on soil quality and fertility and ultimately the agro-environment (FAO, 2001). Organic matter is 

of particular interest for tropical soils having a very low cation exchange capacity. Increase in organic 

matter increases soil cation exchange capacity, as organic colloids being rich source of charges on 

them. With regard to physical properties, organic matter and living organisms associated with SOC 

play a major role in soil aggregation (Tisdall and Oades, 1982; Robert and Chenu, 1991). Aggregation 

and carbon sequestration processes are strongly associated (Golchin et al., 1994).  Carbon sequestration 

improves soil‘s aggregate stability and thus has a considerable influence on a range of soil physical 

properties. Many properties depend on the soil aggregate and on its stability, water retention and its 

release to plants, infiltration rate and resilience to erosion, and other physical degradation processes.  

 

Soil structure has a major influence on the ability of soil to support root development, to 

receive, store and transmit water, to cycle carbon and nutrients, and to resist soil erosion and the 

dispersal of chemicals of anthropogenic origin (Kay, 1990). Particular attention must be paid to soil 

structure in managed ecosystems because of its sensitivity to land use practices. Management practices 

can alter soil structure directly by processes like tillage. Sustainable land use practices must maintain 

the structure of soil, over the long term, in a state that is optimum for a range of processes related to 

crop production and environmental quality. A key consideration in designing such practices must, 

therefore, be management of the organic carbon in soils. Kay (1990) also noticed that the dominant 

factors influencing soil structure are characteristics such as texture, clay mineralogy, composition of 

exchangeable ions, and organic carbon content. Other factors influencing soil structure include climate, 

biological processes, and management practices. An assessment of the influence of organic carbon on 

soil structure must, therefore, be considered in the context of other factors—specifically, texture 

controls structure because aggregate size and stability depend on the balance between plasma (mostly 

clay and silt) and skeleton (mostly sand and gravel) soil constituents (Buol et al., 1997). The finer- 

textured soils accumulate more organic C for several reasons: i) they produce more plant biomass, ii) 

they lose less OC because they are less well aerated, and iii) more of the organic material is protected 

from decomposition by being bound in clay humus complexes. 
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 The mechanisms responsible for stabilizing SOC can be categorized as i) biochemical 

recalcitrance, ii) chemical stabilization, and iii) physical protection (Christensen, 1996). Biochemical 

recalcitrance may be due to the chemical characteristics of the substrate itself which means lignin 

derivatives (Stott et al., 1983) or melanin‘s produced by fungi and other soil organisms (Martin and 

Haider, 1986) or may result from transformations during decomposition, including incorporation into 

the excrement of soil meso- and micro-fauna (Kooistra and van Noordwijk, 1995). Chemical 

stabilization occurs because of chemical and physico-chemical associations between the decomposable 

compounds and soil mineral components. For example, organic compounds sorbed to clay surfaces 

often by polyvalent cation bridges, or those intercalated between expanding layers of clays are quite 

resistant to degradation (Martin and Haider, 1986; Christensen, 1996; Tisdall, 1996).  

 

In addition, the drying of organics may cause them to be denatured or polymerized, thereby 

protecting them chemically from decomposition (Dormaar and Foster, 1991). Soil structure, however, 

plays a dominant role in the physical protection of soil organic matter by controlling microbial access 

to substrates, microbial turnover processes, and food web interactions (Elliott and Coleman, 1988). 

Relatively labile material may become physically protected from decomposition by incorporation into 

soil aggregates (Oades, 1984; Gregorich et al., 1988) or by being deposited into micro-pores 

inaccessible even to bacteria (Foster, 1985). Because of the physical protection afforded by soil 

structure, significant interactions exist between SOC dynamics and the formation, stabilization, and 

degradation of soil aggregates. In soils, where organic matter is the major aggregate binding agent, 

plant growth and the decomposition of organic inputs lead to the development of a hierarchical 

aggregate structure (Tisdall and Oades, 1982; Oades and Waters, 1991). The exact nature and stability 

of this structure in a given soil depends on the relative amounts and strengths of various types of 

organo-mineral associations that function as aggregate binding and stabilizing agents at each 

hierarchical level of organization. At the same time, the nature of these organo-mineral associations 

and their spatial locations within the aggregate hierarchy determine the degree to which SOC is 

physically protected from decomposition and, consequently, result in organic pools with various input 

and turnover rates.  

  

Carbon sequestration in agricultural soils counteracts the desertification process through the 

role of increased soil organic matter in structural stability and water retention, and the essential role of 

soil surface cover by plant debris or mulch in preventing erosion and increasing water conservation. 

Wetland rice culture represents the most complex system in relation to carbon sequestration. If OC is 

accumulated in wetland soil, CH4 is also formed. The greenhouse effect of methane is far greater than 

that of CO2. According to IPCC (1995), methane (CH4), in terms of its global warming potential, is 21 

times more potent than carbon dioxide (CO2). The usual strategy for preventing CH4 formation is to 
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decrease the duration of water logging so that OC will be less protected and CO2 and N2O or NH3 can 

be emitted (Paustian et al., 1997). In view of these various effects, it seems very difficult to 

concurrently manage wetland rice production and C sequestration. Recent developments in 

conservation agriculture for rice-wheat systems are very positive, where rice yields can be maintained 

or improved without the need of keeping the fields submerged or saturated, by puddling with major 

water savings in the rice growing periods (FAO, 2001). Natural wetlands have similar anaerobic 

conditions with a smaller CH4 emission than wetland rice fields and a greater potential for C 

sequestration. When fresh organic matter in the form of mulch or plant residues is present at the soil 

surface, there is an increase in the different categories of fauna, mainly of decomposers. An increase in 

carbon sequestration causes an increase in the operational biodiversity and more effective soil 

biological functioning. An increase in CO2 concentration in the atmosphere induces an increase in 

biomass or in the net primary production (NPP) by carbon fertilization, playing a major role in plant 

photosynthesis and growth (FAO, 2001).  

 

With regard to soil C sequestration, another factor that plays an important role is temperature, 

which has seen increases over part of the globe in the last few decades (FAO, 2001). Such an increase 

provokes a higher rate of organic matter mineralization by microbes and a higher respiration rate by 

roots. This effect of temperature on mineralization is very significant in cold countries, where 

temperature is often a limiting factor in organic matter mineralisation, and thus, an increase in CO2 

emissions may be expected, i.e., increase in global temperature will increase mineralisation (in cold 

areas) and consequential increase in CO2 emissions from the soil system (Van Ginkel et al., 1999). Soil 

carbon is in steady state equilibrium in natural forest, but as soon as deforestation or afforestation 

occurs, the equilibrium will be affected. It is estimated that currently 15 to 17 million ha/year are being 

deforested, mainly in the tropics (FAO, 1993) and very often part of the soil organic carbon is lost, 

giving rise to considerable CO2 emission. Therefore, where deforestation cannot be stopped, proper 

management is necessary to minimize C losses. Afforestation, particularly on degraded soils with low 

organic matter contents, will be an important method of long-term C sequestration both in biomass and 

in the soil. Agroforestry practices also have considerable potential to increase the soil content of 

sequestered carbon, in both temperate and tropical regions. The magnitude of the changes that can be 

attained depends on several soil factors.  
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2.6 SOC Management Challenges in Bangladesh 

For attaining sustainable agricultural development, it is essential to maintain an optimum 

fertility level in the soils (Abrol and Katyal, 1990). In a low-input agriculture, the gradual net loss of 

nutrients from soils is a common phenomenon (Karim and Iqbal, 2001) and may have an adverse 

impact on food grain production (Karim et al., 1999). Agriculture in Bangladesh is practiced on 

moderately fertile soils, often without application of adequate quantities of farmyard or organic 

manures. As a consequence, the crop yields have started to become stagnant or even declining in many 

areas (Pagiola, 1995). The decrease in yields has been estimated to be around 1% per year, and in the 

more adversely affected areas it is higher than that (Asaduzzaman, 1995; Duxbury et al., 2000). During 

the last few decades, the total grain crop production has gradually increased in Bangladesh. According 

to the estimate of the World Bank, over the last 10 years, growth in total agricultural output in 

Bangladesh has been only 2.1%, and average rice yields have increased by 2.5% (World Bank, 1995).  

 

There has been a steady increase in the yields of high-yielding rice cultivars and the rice yield 

increases have come mainly from the transition from local to high yielding varieties (Pagiola, 1995). 

Nutrient mining in soils has been thus noted as a serious and widespread problem (Ahmed and 

Hassanuzzaman, 1998). In this regard, Karim and Iqbal (2001) estimated a total loss of 1.25 million 

tons of nitrogen, phosphorus and potassium from the agricultural lands of Bangladesh every year. Loss 

of potassium alone from the soils is the highest and has been reported to be more than one million tons 

per year. The growing demand of ever increasing population of Bangladesh for the need of more food, 

fiber and fuel has resulted in rapid loss of SOC as well as nutrients in soils. The net result is the decline 

in soil structure development at an alarming rate which ultimately accelerates top soil degradation. 

Rijpma and Jahiruddin (2004) also noted that in Bangladesh the level of organic carbon is low and in 

about 60% of arable land organic carbon has decreased to 0.87%. Khan (2008) reported that several 

factors are responsible for such situations which are intensive cropping, rapid decomposition of organic 

matter, deforestation, soil erosion, removal of crop residues, etc. Gradual decrease of organic carbon in 

the agricultural soils of Bangladesh is a serious concern for agricultural scientists (Hossain, 2001). 

Karim and Iqbal (2001) showed a simplified SOC status of Bangladesh soils (Table 2.14). Almost 50% 

of the agricultural land in Bangladesh have <0.6% soil organic carbon (Table 2.14). Such a low level of 

organic carbon in most of the mineral soils of Bangladesh is alarmingly low. The reason for low SOC 

is perhaps due to the low residual input with higher cropping intensities without any fallow periods.  
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     Table 2.14: A simplified picture of organic carbon status of Bangladesh soils 

 

SOC  Level Organic carbon 

(%) 

Total area 

(million ha) 

% of net cultivated 

area 

Very low <0.6 4.05 45 

Low 0.6-0.98 1.56 17 

Medium 0.98-2.03 1.94 21 

High including peat soils >2.03 1.56 17 
(Source: Karim and Iqbal, 2001) Note: % SOM = % SOC*1.72 

 In Bangladesh, the use of imbalanced fertilizer in agricultural soils with the target of higher 

cropping intensity causes the porosity and permeability of the soils to decrease (Hussain, 2002). As a 

consequence, the physical fertility of the soils regarding loss of SOC either remains stagnant or 

worsens. Organic carbon is lost from the surface soils mostly by erosion when flood water passes over 

them and the eroded materials are deposited in the lower part of the landscape. While some parts of the 

landscape may lose carbon, others may gain carbon. This causes a gradual and hidden degradation of 

the soils, resulting in soil carbon loss. This causes a general decrease in the yield of crops per unit area 

all over the country. Lal and Bruce (1999) reported that when a soil is continuously cultivated, the 

SOC content declines until an equilibrium level is reached and the magnitude of the equilibrium state 

depends on the climate, land use and cropping systems. Mia et al. (1993) reported a gradual depletion 

of SOC due to the increase of cropping intensity over time in different agro-ecological zones (AEZs) of 

Bangladesh (Table 2.15). The surface organic carbon content in the highland and medium highland 

areas has been declining over time (Table 2.15). 
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Table 2.15:  Depletion of soil organic carbon (SOC) under different land types and cropping intensity 

 in some agro-ecological zones (AEZs) of Bangladesh 

 

Name of AEZs Land type Average cropping 

intensity (%) 

SOC % (average) Total SOC 

depletion (%) 

1969-70 1989-90 1969-70 1989-90 

Madhupur Tract 

(AEZ 28) 

 

High land 150-200 150-300 1.06 

(0.75-1.38) 

0.67 

(0.35-0.98) 

36.79 

Level Barind 

Tract 

(AEZ 25) 

 

High land and 

medium high 

land 

 

100-200 

 

100-200 

 

0.88 

(0.61-1.15) 

 

0.66 

(0.51-0.80) 

 

25.00 

Old Himalayan 

Piedmont 

Plain(AEZ 1) 

 

 

High land 

 

100-200 

 

200-300 

 

0.76 

(0.57-0.96) 

 

0.67 

(0.46-0.87) 

 

11.84 

Tista Meander 

Floodplain 

(AEZ 3) 

High land and 

medium high 

land 

 

 

150-200 

 

200-300 

 

0.89 

(0.84-0.93) 

 

0.67 

(0.46-0.87) 

 

24.71 

 

Northern and 

Eastern Hills 

(AEZ 29) 

 

 

High land and 

medium high 

land 

 

100-200 

 

200-250 

 

1.14 

(0.86-1.42) 

 

0.72 

(0.58-0.87) 

 

 

36.84 

Old Meghna 

Estuarine 

Floodplain  

(AEZ 19) 

 

High land 200 200-300 1.3 

(1.10-1.50) 

0.72 

(0.58-0.87) 

44.61 

High Ganges 

River Floodplain 

(AEZ 11) 

High land 100-150 200-300 0.65 

(0.37-0.93) 

0.49 

(0.18-0.80) 

24.61 

Old Brahmaputra 

Floodplain  

(AEZ 9) 

 

Medium high 

land 

 

150-250 

 

200-300 

 

0.93 

(0.62-1.24) 

 

0.70 

(0.52-0.89) 

 

24.73 

   (Source:  Mia et al., 1993) 

 According to Ali et al. (1997), a similar situation in organic carbon depletion was observed in 

the intensive cropping areas of Bangladesh. It is believed that soil productivity is declining due to the 

depletion of organic carbon by increasing cropping intensity, higher rates of decomposition of organic 

matter under the prevailing hot and humid climate, little or no use of organic/green manure practices 

(Hossain, 2001). Crop residues and animal manures are widely used as fodder and fuel, thus these are 

not returned to the soil. Eighty-one per cent of the total biomass fuel is consumed in Bangladesh for 

domestic cooking (Mia and Karim, 1995). The past 20 years of intensive rice cultivation has resulted in 

SOC decline in the top soils (Ali et al., 1997). Karim and Iqbal (2001) developed scenarios of SOC 
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content in different agro-ecological zones of Bangladesh using the National Agricultural Research 

Systems (NARS) database (Fig. 2.2). 

       
 

Figure 2.2:  Scenarios of SOC (%) in  different  agro-ecological zones (AEZs) of Bangladesh during 

 1969-2005 (AEZ 28, Madhupur tract; AEZ 25, Level Barind tract; AEZ 1, Old Himalayan piedmont 

plain; AEZ 3, Tista meander floodplain; AEZ 29, Northern and Eastern Hills; AEZ 19, Old Meghna estuarine 

floodplain; AEZ 11, High Ganges River floodplain; AEZ 9, Old Brahmaputra floodplain) 

(Source: Karim and Iqbal, 2001)  

 Saheed (1994) noted that the notable land degradation processes such as soil erosion, soil 

salinization, continuous water logging, river bank erosion, acidification, plough pan formation, organic 

carbon reduction, deforestation, etc. are caused by inappropriate land management practices. Karim 

and Iqbal (2001) reported a comprehensive estimation regarding land degradation hazards in 

Bangladesh (Table 2.16). Among the estimated land degradation processes, organic carbon depletion is 

a major cause of land degradation, as is soil fertility depletion (Table 2.16). Decreased organic carbon 

causes degradation of soil physical properties including water-holding capacity and reduced nutrient 

retention capacity, leading to reduced release of nutrients from mineralization (FAO-UNDP, 1994). In 

the recent past, the introduction of high-yielding rice cultivars with frequent irrigation over the year, 

the SOC increased in some lowlying areas of Bangladesh, and in this situation SRDI (2001) reported 

that organic carbon tends to show a slight increase in lowland rice areas under water logged conditions. 

Kirk and Olk (2000) also reported that crop intensification from one to two or two to three crops grown 

per year affects the amount of organic matter recycled as crop residues.  
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Table 2.16:  Estimated land degradation (as area in M ha) hazards in Bangladesh 

 

Land degradation Trends of degradation Total area 

(M ha) Low Moderate Strong 

Water erosion 0.1 0.3 1.3 1.7 

Soil fertility decline 3.8 4.2 - 8.0 

Organic carbon depletion 1.9 1.6 4.0 7.5 

Water logging 0.7 - - 0.7 

Salinization 0.30 0.43 0.12 0.85 

Plough pan formation  - 2.82 - 2.82 

Acidification - 0.06 - 0.06 

Deforestation - 0.3 - 0.3 

Total 6.8 9.7 5.4 21.9 
         Source: (Karim and Iqbal, 2001) 

 

Thus, the low organic carbon content is related to many biophysical attributes of soils, 

particularly their aeration, structure, resilience, and productivity. The depletion of organic carbon is 

mainly caused by low organic residues inputs and high cropping intensity. Proper technical options are 

necessary to restore the SOC levels in soils. As soil quality is related to organic matter, without 

increasing the level of organic matter, the soil quality cannot be enhanced. 

 

2.7 Soil Degradation, Sedimentation, and Carbon Dynamics 

 

 Soil erosion is a major form of soil degradation (Coote, 1984; Sparrow, 1984). Eroded soils 

reduce plant yield due to high bulk density, poor tilth, reduced organic matter content, low nutrient 

availability, and reduced water-holding capacity (Dormaar et al., 1986; Tanaka and Aase, 1989).  

Studies in Alberta (Larney et al., 1995) using an artificial erosion approach, demonstrated drastic 

reductions in crop yield for every increment in erosion level. The study suggested that soil productivity 

could be restored by replenishing nutrients with commercial fertilizers or manure (Izaurralde et al., 

1994). Restoring the productivity of eroded soils brings the potential of not only increasing economic 

benefits to producers but also storing atmospheric carbon in soil organic matter (Lal, 1995; Cole et al., 

1996). Soil organic carbon concentration is a direct reflection of factors that affect plant growth such as 

erosion level, topography and texture (Izaurralde et al., 1998).  

 

In the context of C dynamics, it is the magnitude of soil displaced and its carbon contents that 

are more relevant than the land area affected. Brown (1984) estimated that the world‘s cropland area is 

losing about 23x10
9
 Mg of soil in excess of new soil formation each year. Walling (1987) revised these 

data and estimated that total material transport to the oceans by the world‘s river is about 19x10
9
 

Mg/year, comprising 14x10
9
 Mg/year as suspended load, 4x10

9
 Mg/year as dissolved load, and 1x10

9
 

Mg/year as bed-load or surface load. The sediment load carried by the world‘s rivers originates over 

the land due to several processes of soil erosion. Out of the total sediments detached, only a fraction is 
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transported into the major river system and finally into the ocean. The sediment delivery ratio is a 

complex problem due to several sinks or storage systems within the watershed (Walling, 1983; Meade, 

1982). It is generally believed that the sediment delivery ratio may be as low as 10% e.g., only 10% of 

the sediment originating over the watershed is eventually transported to the ocean (Lal, 1995). There is 

a wide range of total load carried in Rivers of the world. Lal (1995) stated that the major rivers—the 

Ganges-Brahmaputra, the Hwang Ho, and the Amazon—are carrying the highest total sediment load. 

Among them, the Amazon carried the highest load. The total sediment load in major rivers is in the 

following order: Hwang Ho>Ganges-Brahmaputra>Magdalena>Irrawdy. Some of the lowest 

suspended and dissolved loads are carried by the rivers in Central and Western Africa (Walling and 

Webb, 1987). 

 

 Lal (1995) presented an estimation of the impact of global soil erosion by water on C 

dynamics (Table 2.17). It is also noted that world soil contain about 1500x10
15

 g C in the top 1 m depth 

over the total land area of 14.8x10
9
 hectares or 29% of the earth‘s surface (Schlesinger, 1984; Buringh, 

1984). The global sediment transport to the ocean of 19x10
15 

g /year is equivalent to 190x10
15

 g /year 

of soil displaced from terrestrial ecosystems assuming the mean delivery ratio of 10% (Walling, 1987). 

Lal (1995) reported that with a mean C content of 3%, total C displaced in soil from the terrestrial 

ecosystems is 57x10
15

 g/ year. It is assumed that C in soil displaced is easily decomposed, and as much 

as 20% is mineralized each year and released into the atmosphere as CO2. Therefore, C flux into the 

atmosphere from soil physically displaced by erosion processes from terrestrial ecosystems is 

estimated at 1.14x10
15

 g/ year. Assuming mean organic C content of 3%, organic carbon transported 

with sediments to the ocean is about 0.57x10
15

 g/year. With a total global runoff of 42.4x10
3 

km
3
 

containing mean dissolved C content of 6 mg/L, this amounts to a rate of 0.254x 10
15

 g/ year of 

sediment-borne organic C transport to the ocean. Annual rate of soil displacement by erosion in 

terrestrial ecosystems accounts for only 0.38% of the C stored in world soils. Organic carbon 

transported to the world oceans accounts for one-tenth of the displaced carbon or 0.038% of the C in 

world‘s soils (Lal, 1995).  
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   Table 2.17:  Soil erosion and C dynamics 

 

References  Statistics Total C  

(10
15 

g/ yr) 

Soil erosion  Delivery ratio of 10% 

 Total sediment displaced = 190x 10
15

 g /year 

 Organic carbon content of 3% 

 

 

5.7 

Decomposition  20% of the C displaced is biodegraded, 

mineralized, and released as CO2 over the 

watershed. 

 

1.14 

Sediment  Global sediment transport to the oceans is 

19x10
15 

g/ year. 

 Organic carbon content of sediment is 3% 

 

0.57 

Runoff  Total runoff is 42.4x 10
3
 km

3
 

 Total C is 6 mg/L 

0.255 

 

   (Source: Lal, 1995) 

 

Mean rates of soil erosion over the tropics are difficult to estimate. On the basis of literature 

surveys (Lal, 1990; 1995), the data presented in Table 2.18 show the SOC loss due to soil erosion in 

the tropical watersheds.  Using these data, the total transport or movement of C displaced with soil 

erosion is estimated at 1.59x10
15

 g /year. These estimates range from a low of 0.80x 10
15

 g /year to a 

high of 2.40x 10
15

 g /year. However, only a fraction of soil moved from its original place is transported 

out of the watershed. The delivery ratio for tropical watersheds may also be as low as 10%. This 

implies that as much as 0.16x 10
15

g C /year may be transported out of tropical watersheds with a range 

of 0.08x 10
15

 g C /year to 0.24x 10
15

 g /year. Schlesinger and Melack (1981) estimated that world‘s 

river transport about 0.37x 10
15

 g C /year. The estimates for tropical rivers are at 0.16x 10
15

 g C/year, 

implying thereby that about 40% of C transported in world‘s rivers is contributed by those draining 

tropical watersheds. 

 

 Table 2.18: Organic carbon loss in soil erosion from tropical lands 

 

Land use Area 

(10
6
 ha) 

Soil erosion 

rate 

 (t /ha/year) 

Carbon content 

or eroded 

sediment (%) 

Transport of 

carbon 

(10
12

 g/ year) 

Arable 418.4 15 2.5 156.9 

Permanent crops 51.4 12 3.0 18.5 

Permanent pastures 1226.0 15 2.0 367.8 

Forest and woodland 1867.5 10 3.5 653.6 

Other lands 1320.5 15 2.0 396.2 

Total - - - 1593.0 
 (Source: Lal, 1995)  
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 In the USA, the total suspended sediment transport was about 400 MMT/yr in the 1980s 

(Meade and Parker, 1984). The load in 12 major US Rivers in 1991 was estimated at 336 MMT/yr for 

suspended load and 113.5 MMT/yr for dissolved load (Leeden et al., 1991). Assuming that 75% of the 

suspended load (mostly due to erosion) is contributed by cropland, sediment transport attributed to 

cropland is about 250 MMT/yr. Assuming a delivery ratio of 10% and SOC content sediment of 3% 

(Lal et al., 1998), total SOC displaced by soil erosion from cropland in the USA is 75 MMT/yr. If 20% 

of the SOC displaced and redistributed over the landscape is mineralized, C exposed by disruption of 

aggregates is easily accessible to microorganisms, and the erosion caused emission amounts 15 

MMTC/yr. However, erosion based emission can be mitigated through adoption of effective erosion 

control measures. 

 

In Bangladesh, there is no estimate of soil erosion regarding soil C dynamics. However, water 

erosion is the most widespread form of soil degradation, affecting some 25% of agricultural land 

(Karim and Iqbal, 2001). Accelerated soil erosion has been remarkably encountered in the hilly regions 

of the country which occupy about 1.7 million hectares. Though the loss of topsoil due to water erosion 

is evident in the vast floodplain areas, only a very limited research results are available for the 

quantification of soil loss and associated C dynamics. The huge supply of sediment to the Bengal basin 

is provided mainly by the Ganges-Brahmaputra Rivers originating from the Himalayas. Many 

estimates of sedimentation rate in the Bay of Bengal have been made; whilst all support the 

enormousness of sedimentation, they are considerably variable (Table 2.19). The Ganges, the 

Brahmaputra and the Meghna (GMB), World‘s largest River systems (Wells and Coleman, 1984) 

discharge about 35,000m
3
 of water per year (Siddiqui, 1989). The estimated total sediment volumes 

supplied to the central zone of Bangladesh range from 1099 to 2180 million tons /year to the Bay of 

Bengal (Barua, 1991; Milliman and Meade, 1983). These sediments due to dynamical processes 

accrete in one place and erode in another place. Due to flat terrain, the rivers in the floodplain of 

Bangladesh have low gradients causing deposition of substantial quantities of river-borne sediments on 

the river beds forming sandbars, while the rest of the 2.5 billion tons of the sediments annually move to 

the offshore areas through the Meghna estuary (Coleman, 1969).  

 

Table 2.19: Estimates of sedimentation (t/yr) in the Bay of Bengal, Bangladesh 

 

Names of River systems Sedimentation rate t/yr Sources 

Ganges-Brahmaputra-Meghna 2.46  billion t/yr Coleman, 1969 

Ganges-Brahmaputra-Meghna 1.5-2.4 billion t/yr Siddiqui, 1989; Nishat, 1989 

Ganges-Brahmaputra-Meghna 1.3 billion t/yr Anwar, 1989 

Ganges-Brahmaputra-Meghna 1.0-2.1 billion t/yr Barua, 1991 

Ganges-Brahmaputra-Meghna 2.5 billion t/yr Hossain, 1992 
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In addition to its on-site and off-site economic impacts, global soil erosion also has a major 

impact on C dynamics. Ecological and environmental effects of erosion induced changes in soil carbon 

warrant serious and planned effort to reduce soil erosion risks, and minimize transport of sediments 

into Bangladeshi waterways.  

2.8 Land Use and Distribution of SOC  

Land use and its impact on the SOC pool and its dynamics are important and should be 

addressed in making appropriate policy decisions. Most studies done so far were limited to the surface 

layers of soil profiles. However, pedogenesis of lower horizons can be affected by disturbances to the 

surface horizon. Lantz et al. (2001) reported that any disturbance in the surface horizons affects soil 

porosity, internal ped faces as well as water movement and even SOC in the sub-soil. Therefore, 

studies on quantifying the SOC contents in subsoil may provide information on how land use affects 

the SOC pool, and such data may help better estimate the potential of different land uses as source or 

sink for C. Lantz et al. (2001) also studied the differences in SOC pools in cropped, pastured and 

forested sites in Ohio, up to the depth of 170 cm, where pastured sites showed higher SOC pools than 

the forested ecosystems. Cultivation reduced the SOC pool in the top 0-10cm layer and increased it in 

the 10-25 cm layer, not decreasing the total SOC pool. Smith et al. (2000) reported that SOC levels are 

known to be influenced by a large number of factors, many of which are mutually interactive e.g., soil 

colour, soil texture, land use, management, climate, topography and drainage etc. Manipulation of 

some of these factors, especially management related ones, may be used to increase C sequestration in 

soils and thus mitigate climate change commitments (Smith et al., 2000). Landscape units influence 

water movement and the nature and extent of erosion or deposition processes occurring at any given 

location in a field (Mermut et al., 1983; Pennock and Jong, 1987). The degree of erosion affects the 

distribution of organic matter in the soil profile and its aggregates (Bajracharya et al., 1998).  

 The morphologic significance of soil colour has been widely recognized by soil scientists 

(Simonson, 1993). This is supported by Franzmeier (1983) who noted relationships between organic 

matter concentration, soil colour and soil texture for Indiana soils. He also outlines an equation 

correlating organic matter and Munsell colour value and chroma. On the other hand, Nichols (1984) 

examined Southern Great Plains soils to determine if SOC concentrations could be predicted from 

several environmental factors. The percentage of clay content was found to be the best predictor of 

organic carbon in this study (r= 0.86). Franzmeier (1983) also noted that organic matter concentration 

generally increased for Indiana Ap horizon soils with increasing clay content. Konen et al. (2003) also 

reported that clay contents was highly correlated (r
2
= 0.71) with SOC in Iowa soils and that the SOC 

increased linearly with the clay content. 

 

 



 

48 
 

Land use change alters the inputs of organic matter, thus affecting SOC and soil organic 

nitrogen (SON) stores accordingly (Zhou et al., 2007). Net losses of SOC and SON due to land use 

change may occur as a result of decreased organic residue inputs and changes in plant litter 

composition and increased rates of SOM decomposition and soil erosion (Lugo and Brown, 

1993).There is a good relationship between SOC and SON. In this aspect, Jenkinson (1981) noted that 

immobilization of nitrogen takes place when the C/N ratio of the residues is greater than 30/1. This 

ratio can be decreased by adding fertilizers or by using the residues and even the nitrogen containing 

waste. Jenkinson (1981) and Himes (1998) reported increased quantities of C and N sequestered in the 

fertilized Broad Balk field at Rothamsted over the non-fertilized field (Table 2.20).The findings are 

based on a long-term (1843 to 1963) continuous wheat trial. The concentration of organic carbon in the 

un-manured plot did not vary in the 120 years. The annual application of N, P, K and Mg increased the 

total C by about 15%. The ratio of the C and N sequestered was 12.8/1. To sequester the 4000 kg of C, 

314 kg of N was required. The quantity of C sequestered will be limited if there is insufficient nitrogen. 

Thus, C/N ratio is a good indicator of the degree of decomposition and quality of the organic matter in 

the soil. 

 

Table 2.20:  Carbon and nitrogen sequestered in the fertilized Broad Balk Plot at Rothamsted under 

 continuous wheat since 1843-1963 

 

Treatment Organic C % Nitrogen % kg C/ha kg N/ha 

Unmanured 0.90 0.098 20.160 2.195 

Manured NPKMg annually 1.08 0.112 24,192 2,590 

Element sequestered - - 4,032 314 
 (Source: Jenkinson, 1981; Himes, 1998) 

 

Batjes (1996) estimated world‘s soil carbon and nitrogen pool (Table 2.21). The average SOC 

stored in the upper 100 cm was estimated to be between 1462 and 1548 Pg C. Based on this study, 

SOC in the tropics was estimated to be 201-213 Pg C, 384-403 Pg C and 616-640 Pg C in the 0-30, 0-

100 and 0-200 cm layers, respectively. Batjes (1996) also used the same methodology to estimate soil 

nitrogen as that for C pools, with global estimates of 63-67 Pg N at 0-30 cm depths and 133-140 Pg N 

to a depth of 100 cm. The latter values are greater than the 92-117 Pg N calculated using an ecosystems 

approach (Zinke et al., 1984), possibly because most profile descriptions in World Inventory of Soil 

Emissions Potentials (WISE) used by Batjes (1996) for agricultural soils may have been amended with 

N fertilizers. 
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Table 2.21:  World soil carbon and nitrogen pools (Pg) 

 

Regions Soil C and N Depth range (cm) 

0-30 0-100  0-200 

   

Tropical regions 

Soil Organic C 201-213 384-403 616-640 

Soil Carbonate C 72-79 203-218 - 

Total 273-292 587-621 - 

Soil N 20-22 42-44 - 

Other Regions Soil Organic C 483-511 1078-1145 1760-1816 

Soil Carbonate C 150-166 492-530 - 

Total 633-677 1570-1675 - 

Soil N 43-45 91-96 - 

World Soil Organic C 684-724 1462-1548 2376-2456 

Soil Carbonate C 222-245 695-748 - 

Total 906-969 2157-2296 - 

Soil N 63-67 133-140 - 
 (Source: Batjes, 1996) 

 

 Soil texture specifically clay affects SOC because of its stabilizing properties. Lal (1998) 

reported that clay offers chemical protection to organic matter through adsorption onto clay surfaces, 

which prevents organic matter from decomposition. Organic matter trapped in the very small spaces 

between clay particles making them inaccessible to micro-organisms and therefore slows down its 

decomposition. Soils with high clay content therefore tend to have higher SOC than soils with low clay 

content under similar land use and climatic conditions. This can be explained by the fact that soils with 

high clay content have higher potential to sequester C than soils with low clay content. Stevenson 

(1982) noted that clays tend to retain organic substances using mechanism such as clay-organic 

complexes, adsorption to mineral surfaces (through cation exchange, bridging by polyvalent cations, 

hydrogen bonding or Van der Waals forces) or within the interlayers of expanding type clays 

(Stevenson, 1982). This means the type of clay will have a strong effect on the sequestration of C.  

 

Granular structure refers to soil aggregates that have a spherical arrangement. Developing 

stable granular aggregates usually requires intimate mixing between the mineral matrix and organic 

matter. For soils of the temperate and cold regions, SOM (Duchaufour, 1982) and soil fauna (Pawluk, 

1985) have a dominant influence in soil aggregation processes. Among mineral soils, Mollisols are 

particularly effective in sequestration and stabilization of C through humification and aggregation 

processes.  

 

Bulk density is critical for converting SOC percentage by weight to content by volume, but it 

varies with structural condition of the soil. The bulk density is strongly influenced by soil 

characteristics such as texture, organic carbon content and management practices. When other factors 

are constant, site-specific studies show that the total porosity or bulk density generally increases with 
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increasing organic carbon content (Lal et al., 1994; Schjonning et al., 1994). Neill et al. (1997) noted 

that forest conversion to pasture in Rondonia, Brazil had a large and predictable effect on pH and 

cation exchange capacity (CEC) due to plant-derived C inputs to surface soils, where soil pH in the top 

10 cm increased by 1 to 2 units within 3-5 years and CEC showed a similar increase in young pastures. 

The finding revealed that land-use conversion from forest to pastures impacts on soil pH and CEC. 

FAO (2001) also noted that cation exchange capacity (CEC) increases as a function of increase in 

organic matter.  

 

2.9 Potentials of Carbon Sequestration 

 The sequestration of organic carbon in soil indicates the addition of carbon, which involves the 

formation of complex organic structures with mineral materials. Reddy and Hodges (2000) outlined the 

major agricultural activities that may lead to enhancement of SOC content and thus C sequestration in 

cropland soils. They use conservation tillage, residue management, restoration of salt affected soils, 

and restoration of degraded lands, irrigation management and adoption of improved cropping systems, 

liberal use of organic amendments. Wetland rice cultivation represents the most complex system in 

relation to carbon sequestration (Golchin et al., 1994) where residue management is an important 

method of sequestering C in soil and increasing the soil organic matter content. Crop residues vary in 

their inherent decomposability due to differences in their physicochemical characteristics (Andren and 

Paustian, 1987).Thus, the use of different crop types represents a potential management control method 

of decomposition.  

 

Tillage affects decomposition processes through the physical disturbance and mixing of soil, 

by exposing soil aggregates to disruptive forces, and through the distribution of crop residues in the 

soil (Oades, 1984; Elliot, 1986; Beare et al., 1994). Tillage also affects soil temperature, aeration and 

water relations by its impact on surface residue cover and soil structure (Paustian et al., 1997). By 

increasing the effective soil surface area and continually exposing new soil to wetting/drying and 

freezing/thawing cycles at the surface, tillage makes aggregates more susceptible to disruption and 

physically-protected inter-aggregate organic material becomes more available for decomposition 

(Elliott and Coleman, 1988; Beare et al., 1994). In this connection, Lal (2004a) additionally suggested 

that potentials for C sequestration include erosion prevention and control through conservation tillage 

and residue management, improved cropping systems, land restoration, land conversion and irrigation 

and water management. Lal (2004a) showed strategies of SOC sequestration through land use change 

and soil and vegetation management (Fig. 2.3). 
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Figure 2.3:  Strategies of soil carbon sequestration through land use change, soil and vegetation 

 management (INM: Integrated Nutrient Management (Source:  Lal, 2004a)  

 

Changes in the soil organic carbon content result from carbon input (via plant litter and 

manure) and carbon loss (via decomposition and leaching).To bring out a net gain in C storage there 

must be an increase in the amount of carbon entering the soil or there must be suppression in the rate of 

soil carbon loss due to erosion, which redistributes carbon across the landscape.This way, upland 

landscapes may lose carbon while the lowlands may gain carbon but the overall situation is not likely 

to change from this redistribution. Breaking down of soil aggregates leads to rapid mineralization of 

carbon previously encapsulated within the aggregates. Hussain (2002) reported that four main 

strategies can be followed for increasing SOC in the agricultural lands of Bangladesh which were: (a) 

reduction in tillage intensity to control surface erosion, (b) reduction in use of cropping systems, (c) 

adoption of yield promoting practices including high doses of nutrients and amendment, and (d) re-

establishment of permanent perennial vegetation like forestry and pasture.  

 

The decomposition of SOC is also very fast, partly due to the local climate and also 

unsustainable land management practices. However, if properly managed, croplands in Bangladesh or 

elsewhere can be a major source for C sequestration. Aggregate formation and organic matter storage 

in soils are intimately associated with each other. The organo-mineral associations function as 
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aggregate binding and stabilizing agents. The nature of various organo-mineral associations and their 

spatial locations within soil aggregates determine the extent to which SOC is physically protected and 

chemically stabilized which results in its storage. A close understanding of the nature and dynamics of 

organo-mineral associations are necessary for a better understanding of soil structural dynamics and of 

C cycling and sequestration in soils (Bruce et al., 1999). Likewise, Lehmann et al. (2007) noted that 

stabilization of C in soil is mainly achieved through two processes—clay-organic interactions and 

occlusion of these aggregates by clay particles. Thus, stabilizing C has great importance for 

biogeochemical cycles of an ecosystem as well as sequestration potential. Through adoption of holistic 

approaches and identifying and implementing appropriate policies, the vast potential of Bangladesh 

cropland to sequester carbon and mitigate greenhouse effect can be realized (Ali, 1997; Hussain, 2002). 

Soil organic carbon, like other components of an ecosystem should be considered as a valued 

commodity (Lal, 2006). The economic importance of SOC will depend on several on-site and off-site 

factors. In other words, SOC is a dynamic entity and is affected by many interacting factors. In the 

temperate region soils, according to Rasmussen and Collins (1991), the SOC accretion and 

humification are influenced by the following measures: (i) rate of biomass return through litter fall and 

crop residues, (ii) root biomass and its distribution with depth, (iii) activity of soil micro fauna, and (iv) 

soil management including the use of inorganic fertilizers and organic amendments. 

           

Since agricultural soils in Bangladesh presently have very low organic carbon, there exists a 

very high potential for sequestering organic carbon because the average annual temperature and even 

hyperthermic nature (soil temperature <25
0
 C) is suitable for crop growth throughout the year and the 

average annual rainfall is 2100 mm (Hussain, 2002) which is favourable for C sequestration – but loss 

too because that will inevitably cause erosion.Thus appropriate land management practices can 

enhance agricultural production as well as sequestration of organic carbon in soils to a significant 

extent. It is important to note that carbon sequestration in soils is a slow process and may take centuries 

to build up a stable stock of organic matter. From the above discussions, it is apparent that soils‘ 

potential to sequester carbon appears to be linked with the formation of durable organo-mineral 

complexes leading to the stabilization of aggregates and imparting increased resistance to their 

breakdown by physical and chemical forces. The strength and stability of organo-mineral bonds tend to 

increase with complexity of organic compounds, possibly through more intimate physical interaction 

and chemical protection. Thus, a combination of physical occlusion and chemical recalcitrance 

(Cambardella and Elliott, 1992) likely results in the stabilization of SOC within the aggregate 

hierarchy.  
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2.10 Soil Carbon Sequestration and Global Food Security 

Global hotspots of soil degradation with a high priority for soil restoration and C sequestration 

are Sub-Saharan Africa, central and south Asia, China, the Caribbean, and the savannas of South 

America (Lal, 2004b). Complete crop residue removal for fodder and fuel is common in south Asia and 

Africa. Thus, depletion of SOC stock from the root zone has adversely affected the soil productivity 

and environmental quality of these regions. Lal (2004b) highlighted that ―the poor farmers passed on 

their suffering to the land through extractive practices where they cultivate marginal soils with 

marginal inputs, produce marginal yields and perpetuate marginal living and poverty.‖ As a source of 

nutrients for growing crops, the SOC pool is a means of production in subsistence farming systems of 

Sub-Saharan Africa, which accounts for only 2.5% of the fertilizer consumption and 2% of the world‘s 

irrigated land area, both essential to SOC sequestration. Benefits of recommended management 

practices (RMPs) cannot be realized in severely degraded soils due to depletion of their SOC stock.  

Lal (2004b) also noted that an optimum level of SOC stock is needed to hold water and nutrients, 

decrease risk of erosion and degradation, improve soil structure and tilth, and provide energy to soil 

microorganisms. Fertilizer application is an important strategy of increasing crop yield in Sub-Saharan 

Africa (Pieri, 1986), but its effectiveness is enhanced when used in conjunction with crop residue 

mulch (Yamoah et al., 2002).  

An increase in SOC stock increases crop yield even in high-input commercial agriculture 

(Bauer and Black, 1994) but especially in soils where it has been depleted (Johnston, 1986). High SOC 

stock is also needed to maintain consistent yields through improvements in water and nutrient holding 

capacity, soil structure and biotic activity. The critical limit of SOC concentration for most soils of the 

tropics is 1.1 % (Aune and Lal, 1997). Increasing SOC concentration from a low of 0.1-0.2 % to a 

critical level of 1.1 % is a major challenge for tropical ecosystems. Yet, a drastic reduction in the SOC 

pool in Sub-Saharan Africa and elsewhere must be reversed in order to advance food security (Lal, 

2004b). The beneficial impact of increasing the SOC pool on soil quality and agronomic production is 

often more on degraded soils with severely depleted SOC pool than those with slightly or moderately 

depleted SOC reserves. Lal (2006) showed an estimate of the magnitude of increase in the crop yield in 

developing countries like Bangladesh (Table 2.22) with increase in SOC in the root zone at the rate of 

1ton C/ha/yr. Lal (2004b) reported that an increase in SOC could enhance food production, which may 

help meet the current and projected food demands. He also introduced a vicious cycle of depleting 

SOC stock (Fig. 2.4) and crop yields, as well as degradation of soil and environmental quality, which 

ultimately scaled on poverty, malnutrition, hunger, and substandard living. 
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Table 2.22: Improvement in crop yields in developing countries by increase in soil organic carbon 

 through adoption of recommended management practices (RMPs) 

 

 

Crops 

Potential yield increase 

 (kg/ha per ton of SOC) 

Maize (Zea mays) 200-400 

Wheat (Triticum aestivum) 20-70 

Soybean (Glycine max) 20-30 

Cowpeas (Vigna unguiculata) 5-10 

Rice (Oryza sativa) 10-50 

Millet (Pennisetum  purpureum) 50-60 

Beans (Phaseolus spp.) 20-30 
            (Source: Lal, 2006) 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Vicious cycle of soil organic matter (SOM) depletion, declines in environmental quality,  

 Agronomic and biomass productivity, enhancing food insecurity, malnutrition and hunger 
 (Source: Lal, 2004b) 

 
 An important strategy of soil C sequestration is to reverse the degradative trends, restore 
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land use is an important strategy of SOC sequestration (Singer et al., 2000). Research conducted in 

Central Asia has documented the impact of several technological options on improvement in soil 

quality and SOC pool (Table 2.23). Conservation agriculture in the broadest sense (e.g., elimination of 

intensive tillage and summer fallow, integrated nutrient management, efficient use of irrigation water, 

improved cropping systems) and phytoremediation of degraded soils and ecosystems are important 

options in enhancing SOC sequestration. Afforestation and improving degraded rangelands are equally 

important (Kuliev, 1996). The SOC concentration is often higher underneath the shrubs than around 

them (Zayed, 2000). Thus, tree species affect the SOC pool (Faituri, 2002) where pasture is another 

option in increasing SOC concentration. Teryukov (1996) observed in Western Kazakhstan that 

improved pastures should comprise a mixture of shrub species and perennial grasses. Grasses are 

especially important to enhancing soil fertility. In Uzbekistan, Mirzaev (1984) observed that green 

manures (winter pea, winter rape) together with N and P fertilizers and perennial grasses increased soil 

organic matter content. The conservation farming with residue mulch includes increasing the available 

water storage in the root zone by enhancing infiltration rate and reducing soil temperature (Bakajev et 

al., 1981), reducing evaporation losses (Al-Darby et al., 1990) and improving water-use efficiency 

(Lopez and Arrue, 1997). However, conservation farming or no till does not always produce the best 

yield, and the appropriate tillage methods may be soil and crop specific (Suleimenov et al., 1997; 

Hemmat and Oki, 2001). The effectiveness of enhancing the SOC pool and improving crop yield is 

accentuated by including legume-based rotations elimination of summer fallow, and controlled grazing 

(Jenkinson et al., 1999; Murrillo et al., 1998). 

 

Soil C sequestration is a strategy to achieve food security through improvement in soil quality.  

It is a by-product of the inevitable necessity of adopting ‗recommended management practices 

(RMPs)‘ for enhancing crop yields on a global scale.While reducing the rate of enrichment of 

atmospheric concentration of CO2, soil C sequestration improves and sustains biomass or agronomic 

productivity. From a global policy perspective, it must be recognized that a programme that restores 

degraded croplands and increases soil carbon as well as contributing to reduction of atmospheric CO2, 

represents an enormous opportunity. Such a programme could simultaneously increase agricultural 

productivity especially in developing countries and reduce the rate of climate change. Soil C 

sequestration is thus very cost effective and could take effect very quickly (FAO, 2008). It also 

constitutes a valuable win-win approach combining mitigation (CO2 is removed from the atmosphere) 

and adaptation, through both increased agro-ecosystem resilience to climate variability and more 

reliable and better yields.  
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Table 2.23: Technological options for soil restoration and carbon sequestration in Central Asia 

 

Technology Ecosystems/Soil/ 

Terrain 

Region/Country References 

Afforestation Foothill plains Balkan range Lalymenka and Shadzhikov 

(1996) 

Integrated Nutrient 

Management (INM) 

 

Chernozem Central Asia Kogut et al. (1998) 

Phyto amelioration Degraded pasture Kazakhstan Teryukov (1996) 

 

Rangeland restoration Volga-Ural sands Kazakhstan Makulbekova and West (1996) 

 

Soil reclamation Solonetz soils  Kazakhstan Okorokov and Abileva (1995) 

 

Conservation or 

minimum tillage 

Light and heavy soils Kazakhstan,  

Monocco 

Suleimenov et al. (2003) and 

Marabet (2002) 

 

INM/Compost Irrigated crops Kyrgyzstan,  

Spain 

Zoloev et al. (1993) and  

Coelho et al. (2002) 

 

Organic farming Ecological agriculture Tajikistan,  

Egypt 

Odinayev (1995),  

El-Shalweer et al. (1998) 

 

No-till farming Irrigated agriculture in 

sandy desert areas 

 

Turkmenistan Babaev and Ovezliev (1994) 

Afforestation Desertification control Turkmenistan Kuliev (1996) 

 

Agroforestry Plain and mountain 

 

Uzbekistan Alibekov (2000) 

Phyto amelioration Degraded rangeland Uzbekistan Reizvikh and West (1995) 

 

2.11 Conclusion 

 Inappropriate land use and land management can render world soils as a major source of 

greenhouse gases. Soil degradation, caused by land misuse, ecologically incompatible farming 

systems, and inappropriate soil management practices, can be a major cause of fertility depletion and 

gaseous emissions from soil (Lal, 1999). Soil degradation and desertification are serious problems in 

several tropical ecosystems, especially in dry and hot climates. Soil degradation in the tropics is 

responsible for total emission of about 130 Tg C/yr. Tropical deforestation may cause an additional 

loss of 100 to 200 Tg C/yr (Lal, 1993). Total emission from soils of the tropics may be 0.5 Pg C/yr. In 

addition to increasing emissions of greenhouse gases from soils, soil degradation reduces the net 

primary productivity (NPP) of land, that is, the rate of carbon uptake by plants or biota from the 

atmospheric pool of carbon.  
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Consequently, the current rate of loss of carbon from plant and soils in the tropics is about 10 

times that of temperate regions e.g., 2 Pg C/yr vs. 0.2 Pg C/yr (Houghton and Skole, 1990). 

Agricultural practices that exacerbate emission include: mechanized methods of deforestation, plough-

till farming, continuous cropping on marginal lands and ecologically-sensitive eco-regions, low-input 

and resource-based shifting agriculture and subsistence farming leading to fertility depletion and soil 

degradation, and overgrazing. In contrast,  agricultural practices that replenish SOC and restore soils 

capacity as a carbon sink include afforestation, conservation tillage and mulch farming, use of cover 

crops, judicious use of chemicals, agro-forestry etc.  

 

World soils can be a major source or sink of atmospheric CO2 depending upon the land use and 

management.  Soils are an important sink of CO2 and CH4 through conversion to a restorative land use 

and adoption of RMPs which create positive C and elemental budgets. FAO (2001) reported that 

proper land management can profoundly affect soil C stocks and careful management can be used to 

sequester soil C. As with all human activities, the social dimension needs to be considered when 

implementing soil C sequestration practices. Since there will be increasing competition for limited land 

resources as world population increases, soil C sequestration cannot be viewed in isolation from other 

environmental and social needs. IPCC (2007) have noted that global, regional, and local environmental 

issues such as climate change, loss of biodiversity, desertification, stratospheric ozone depletion, 

regional acid deposition, and local air quality are inextricably related. The best option is to identify and 

undertake measures that increase C stocks whilst at the same time improving other aspects of the 

environment (improved soil fertility, decreased erosion, or higher profitability, improved yield of 

agricultural and forestry products). There are a good number of holistic approaches of  management  

available that could be implemented to protect and enhance existing C sinks now and in the future.  

 

The quantification of soil carbon losses and gains resulting from land use changes is a 

prerequisite to the understanding of greenhouse gases fluxes in different ecosystems (Eswaran, 1995). 

Modeling the fluxes of greenhouse gases, specifically due to land use changes, requires detailed 

knowledge of the factors regulating carbon and nitrogen cycles.Thus, C sequestration has gained 

momentum in the recent decade and the amount of C in a system is a good measure of sustainability. 

Estimates of C stocks with different land management and cropping systems are an important element 

in the design of land use systems that protect or sequester carbon (Bationo, 2004). 
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CHAPTER 3 

 
Materials and Methods 
 

 This chapter outlines the materials and methods used in this PhD project as well as other 

relevant information. It includes soil sampling, laboratory methods, and data/spatial analysis. 

 

3.1 Sampling synopsis 

Three soil sampling strategies were employed in this PhD project. They were grid sampling, 

targeted composite sampling, and profile sampling. Grid sampling is a systematic method of soil 

sampling and is considered useful for mapping soil parameters‘ spatial variability within the sample 

site, and is thus helpful in spatial analysis. The purpose of using grid sampling was to map SOC spatial 

varibility by collecting 268 grid soil samples at the latitude and longitude intersection points by one-

minute intervals. 

Grid sampling can be very resource-intensive if the grid size is small, relative to the size of 

study area. A greater grid size may not capature the spatial structure and variability, leading to biasness 

and uncertainity in the data. Further limiations in grid sampling may arise where geographic features 

like settlements, industry, woodlands, water bodies, river channels and other infrastructue obstacles 

prevent sampling from the exact grid locations.  

Composite soil sampling is a widely used technique that combines a number of discrete 

samples collected from a spatial location to make a single homogenized/composite sample. Here, 

targeted composite sampling was used because the previous sampling was done by the Soil Resource 

Development Institute (SRDI) of Bangladesh using the same methodology.This is essentially revisiting 

the previously sampled sites so that any change in SOC during the two sampling periods can be 

assessed. This part of the study, which is separate from the grid sampling described above, involved 

collecting 190 composite soil samples by revisiting the earlier sampled locations. While composite 

sampling is a widely used soil sampling method, one major drawback of such sampling technique is 

the variability around the sampling location is lost due to compositing. Ideally all samples collected 

from a location should be individually analysed to make better assessment i.e., mean and standard 

deviation. This however would have increased the number of samples by a factor of 5, as each 

compiste sample was comprised of 5 sample cores. 

 

Soil profile sampling was used to assess the distribution and storage of SOC and TN in the 

whole soil profiles. Soil profile samplings can be done in three ways: horizon sampling, incremental 

sampling and fixed depth sampling. The profile sampling in this work followed fixed depth 
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sampling.The main objective of this sampling was to account vertical SOC and total nitrogen (TN) 

storage and distribution. This resulted in 48 soil samples, collected based on 4 inundation land types 

across the two alluviums – 8 soil profiles in total, and the sampling depths were: 0-20 cm, 20-40 cm, 

40-60 cm, 60-80 cm, 80-100 cm, 100-120 cm.  

 

The main limitation of the profile samping in this study is one soil profile from each land type 

from each alluvium is not likely to be representative of the land type. Ideally a soil profile should have 

been opened at each grid location (n=268) but that would have been very resource-intenstive and time-

consuming. Nonetheless attempts were made to select these 8 soil profile locations in a way that under 

each inundation land type, land use, texture and cropping intensity were similar. It should be noted that 

the soil profile sampling was used mainly to supplement the information gathered from the grid 

sampling.  

Overall, 506 soil samples (268 grid samples, 190 targeted composite samples and 48 soil 

profile samples) in the study.  

 

3.1.1 Grid Sampling 

 Soil samples were collected in one-minute latitude and longitude interval (1 minute = 1600 m 

and 1 second = 26.5 m), equating to a grid size of 1600 m. Whilst a smaller size grid would have better 

captured the spatial variability, resource and time contraints prevented the use of a more intensive 

sampling strategy. GPS Magellan (Model: 320) was used to identify the geographic coordinates as well 

as sampling locations. Land and soil resource utilization guides (LSRUG) of the Soil Resource 

Development Institute (SRDI) were used as a base material during field visits and soil samplings. Four 

Upazilas or sub-sites (Delduar, Melandah, Fultala, and Mirpur) were selected across the two major 

alluviums of Bangladesh (Fig. 3.1) where they fall under the diverse agro-ecological regions. Delduar 

and Melandah Upazilas under the Brahmaputra alluvium covered 66 and 80 grid points respectively 

(Figs. 3.2-3.3). Mirpur and Fultala sub-sites under the Ganges alluvium covered 96 and 26 grid points 

respectively (Figs. 3.4-3.5). Thus, 268 soil samples were collected at the 0-30 cm depths (on a grid 

basis) across the four sub-sites. It may be noted that SOC is mainly concentrated in the upper 30 cm of 

the mineral soil horizon which may be readily depleted by soil erosion and anthropogenic activities. 

Inundation land types, soil texture, and drainage data were identified during field visit as described by 

FAO, (2006).  
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Figure 3.1: Location maps of the four sub-sites across the Brahmaputra and the Ganges alluviums of 

Bangladesh 
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Figure 3.2: Soil sampling sites across the Delduar sub-site of the Brahmaputra Alluvium 
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Figure 3.3: Soil sampling sites across the Melandah sub-site of the Brahmaputra Alluvium 
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Figure 3.4: Soil sampling sites across the Mirpur sub-site of the Ganges Alluvium 
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Figure 3.5: Soil sampling sites across the Fultala sub-site of the Ganges Alluvium 
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3.3.1.1 Spatial Analysis  

In the spatial analysis, geostatistical methods such as semivariogram construction, kriging, and 

mapping have been widely used. A flow chart as shown below depicts the procedural steps in the 

spatial analysis (Fig. 3.6). The semivariogram analysis was estimated using the software Gamma 

Design (Robertson, 2008). Data interpolation through kriging and Inverse Distance Weighting (IDW) 

were performed in ARCGIS 9.3 (ESRI, 2000). When the spatial structure is strong, krig interpolation 

was done and on the other hand, when the spatial structure is weak, then IDW interpolation was used. 

Details on semivariogram model, its parameters, and data interpolation are discussed in Chapter 4.  

 

 
 

Figure 3.6: Flow chart showing the geostatistics and data interpolation of SOC in the study sites 
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3.1.2 Composite Sampling 

          A total of 190 composite (0-30cm) soil samples were collected from the four sub-sites under the 

two major alluviums. These sites were previously sampled by the Soil Resource Development Institute 

(SRDI) during the period between 1989 and 1992. The main purpose of revisiting these previously 

sampled locations was to assess the changes in SOC and cropping intensity (CI) between the two 

sampling periods i.e., 1989/92 and 2012. The land and soil resource utilization guide (LSRUG) maps 

of SRDI were used in the field for revisiting the sampling sites. These LSRUG maps were used to 

identify the sampling location by geo-coordinates (using latitudes and longitudes) in the respective 

sites. Global Positioning Systems (GPS) device was used in the field to locate the exact locations of the 

sampling sites. At each location, five randomly slected soil cores were collected with a 10m radius; 

they were mixed together to form a composite sample for the location. 

   

3.1.3 Profile Sampling 

 
 Forty eight soil samples from four inundation land types under the two alluviums (eight soil 

profiles in total) at different soil depths (0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm, 80-100 cm and 100-

120 cm) were collected. These samplings at different soil depths were used for the purpose of SOC and 

TN storage and distribution as affected by soil depths and inundation land types. The inundation land 

type is a unique feature in Bangladesh and has to be taken into account in land management (FAO-

UNDP, 1988). In Bangladesh, five categories of inundation land types were identified by FAO-UNDP 

(1988). These were highland (HL), medium highland (MHL), medium lowland (MLL), lowland (LL), 

and very lowland (VLL), as outlined in Table 3.1.  
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Table 3.1: Classification of land types in Bangladesh based on inundation flood level 

 
    Land Types  Flooding depth Bangladesh 

% 

(Total) 

Brahmaputra 

Alluvium 

(%) 

Ganges 

Alluvium 

(%) 

Highland  (HL) Land which is above normal flood 

level 

29 1.6 4.2 

Medium highland 

 (MHL) 

Land which normally is flooded up to 

about 90 cm deep during the flood 

season 

 

35 12.2 13.7 

Medium lowland 

(MLL) 

Land which normally is flooded up to 

between 90 cm and 180 cm deep 

during the flood season. 

 

12 2.4 2.4 

Lowland (LL) Land which normally is flooded up to 

between 180 cm and 300 cm deep 

during the flood season. 

 

8 3.6 <1 

Very lowland 

(VLL) 

Land which is normally flooded 

deeper than 300 cm during the flood 

season. 

1 1.0 <1 

 

These inundation land types are regarded as the biophysical units of a landscape. Thus, four soil 

profiles along with their present land uses of the Brahmaputra alluvium were shown in plates 3.1-3.4. 

Another four soil profiles along with their present land uses of the Ganges alluvium were shown in 

plates 3.5-3.8. 
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Plate 3.1:  Highland (HL) site of the Delduar sub-site under the Brahmaputra Alluvium:  

              (a). Banana plantation-Fallow as present land use/cover; (b) Sonatala soil profile 
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Plate 3.2: Medium highland (MHL) site of the Delduar sub-site under the Brahmaputra alluvium:  

             (a). HYV Boro rice-T. Aman rice as present land use/cover; (b)  Silmandi soil profile 
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Plate 3.3: Medium Lowland (MLL) site of the Delduar sub-site under the Brahmaputra alluvium: 

             (a) HYV Boro rice- Fallow as present land use/cover; (b) Ghatail soil profile 
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Plate 3.4: Lowland (LL) site of the Delduar sub-site under the Brahmaputra alluvium: 

            (a) HYV Boro rice-Fallow/grazing grass as present land use/cover; (b) Balina soil  profile  

 

 



 

72 
 

 

 

 

 

Plate 3.5:  Highland (HL) site of the Mirpur sub-site under the Ganges alluvium:  

(a) Banana/Orchards-Fallow as present land use/cover; (b) Sara soil profile 
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Plate 3.6:  Medium Highland (MHL) site of the Mirpur sub-site under the Ganges alluvium:  

               (a) HYV Boro rice- Tobacco/T. Aman rice/Pulses as present land use/cover; (b) Ishurdi soil  

                Profile 
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Plate 3.7: Medium Lowland (MLL) site of the Mirpur sub-site under the Ganges  alluvium:  

             (a) HYV Boro rice-T. Aman rice/Fallow as present land use/cover; (b) Gheor soil profile  

 

 



 

75 
 

 

Plate 3.8: Lowland (LL) site of the Mirpur sub-site under the Ganges alluvium:  

(a)T. Aman rice/Rabi vegetables-Fallow as present land use/cover; (b) Garuri soil profile 

 

 

 



 

76 
 

3.2 Sample Processing  

 Soil samples from each sampling strategy (grid, composite and soil profile sampling) site and 

each soil depths were collected in polythene sample bags. The bags were sealed properly precluding 

moisture loss from the samples and transferred as quickly as possible to the laboratory for relevant 

analyses. Prior to analysis, the representative soil samples were spread on a polythene sheet and big 

lumps were broken and air dried under shade. The soil samples were then gently ground by rolling a 

wooden rod and also with a wooden hammer, passed through a 2-mm (10 mesh) sieve, and mixed 

thoroughly. The samples were then preserved in plastic bags for laboratory analysis. 

 

3.3 Analytical Methods  

Soil Organic Carbon (SOC): Organic carbon in soil was determined by the wet oxidation 

method of Walkley and Black (1934) as described by Nelson and Sommers (1982). Organic C 

determinations are often used as the basis for organic matter estimates through multiplying the organic 

C value by a factor. It may be noted that the Van Bemmelen factor of 1.724 was used on the 

assumption that organic matter contains 58% organic carbon.   

Soil pH: 20 gm of air-dry soil sample was taken in a beaker and 50 ml of distilled water was 

added. The contents were mixed thoroughly with a glass rod and allowed to stand for one hour. The 

soil pH was then measured in a calibrated Hanna-212 pH meter (Page et al., 1982). 

Bulk Density: Soil bulk density is the ratio of the oven-dried mass of soil to its volume either 

at time of sampling or at specified moisture content. It is usually expressed in terms of grams per cubic 

centimeter (g/cm
3
). Bulk density was measured by the core method as described by Blake and Hartge 

(1986).  

Particle Size: Particle size distribution was determined by hydrometer method after 

pretreatments as described by Gee and Bauder (1986). Soil textural class was determined using USDA 

texture triangle.  

Total Nitrogen (TN):  TN was determined using Micro-Kjeldahl apparatus as illustrated by 

Bremner and Mulvaney (1982).  

SOC and TN stock or storage: The SOC and TN storage were calculated using the equations 

of Batjes, (1996); Chen et al. (2007) and Zhang et al. (2013), the details of which are given in chapter 

7.  
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CHAPTER 4 

 
Spatial Variability of Soil Organic Carbon in the Agricultural Soils  

 
4.1 Introduction 

 Soils are inherently variable over time and space; therefore, an understanding of the 

distribution of soil properties at the field scale is important for refining agricultural management 

practices and assessing the effects of agricultural land use on soil quality (Cambardella et al., 1994). 

Natural variability of soil results from complex interactions between geology, topography, climate as 

well as soil use (Jenny, 1980; Quine and Zhang, 2002). As a consequence, soils can exhibit marked 

spatial variability (Brejda et al., 2000; Vieira and Paz-Gonzalez, 2003). Soils are characterized by the 

high degree of spatial variability due to the combined effect of physical, chemical or biological 

processes that operate at different intensities and scales (Goovaerts, 1998). Soil chemical and physical 

properties are highly variable, often displaying spatial structure over many scales of observation 

(Grigal et al., 1991; Goovaerts, 1998; Ettema and Wardle, 2002). The causes of this spatial 

heterogeneity are diverse and include both abiotic and biotic processes (Stark, 1994).  

 

 Soil organic carbon (SOC) has an important influence on the physical, chemical and biological 

properties of soil and is critical for improving soil fertility and quality, increasing the water holding 

capacity of soil, reducing soil erosion, and enhancing crop productivity (Rossi et al., 2009; Wang et al., 

2010). With climate change and environmental issues dominating global concerns, SOC has received 

increasing attention worldwide because of its important role in the global carbon cycle and its potential 

feedback on the global warming (Schlesinger et al., 1996; Amundson, 2001; Davidson and Janssen, 

2006; Su et al., 2006). As one of the largest and most dynamic components in the global C cycle, the 

SOC stock is at least two times the amount of C stored in the vegetation and atmospheres (IPCC, 

2000).Thus a small loss of SOC pool due to changes in fertilization, cropping system, farming 

practices, and soil erosion could significantly increase the atmospheric CO2 (Li et al., 2004; Zhang and 

McGrath, 2004; Don et al., 2007; Liu et al., 2011).  

 Reliable assessment of the spatial patterns of SOC is essential for understanding the potential 

of soils to sequester C, for quantifying the SOC sink or source capacity of soils in changing 

environments, and for developing strategies to mitigate the effects of global warming (Venteris et al., 

2004; Hoffmann et al., 2012). A better understanding of the spatial variability of SOC is also important 

for refining agricultural management practices and for improving sustainable land use. It provides a 

valuable base against which subsequent and future measurements can be evaluated (Liu et al., 2006). 
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Soil organic carbon and its relation to site characteristics is important in evaluating regional, 

continental, and global soil C stores and projecting future changes (Feng et al., 2002). However, due to 

high soil heterogeneity, it is difficult to obtain an accurate assessment of SOC stock (Don et al., 2007). 

As a result, there is a considerable interest in understanding the spatial variability of SOC in different 

terrestrial ecosystems (Arrouays et al., 2001; Liu et al., 2006). Geostatistics has been widely used to 

assess the spatial characteristics of SOC (Evrendilek et al., 2004). SOC is a determinant of SOC stock 

(Don et al., 2007), and its spatial distribution is intimately related to the changes in environmental 

factors (Wheeler et al., 2007; Throop and Archer, 2008). However, the relative importance of the 

edaphic factors as drivers or constraints of spatial heterogeneity of SOC content in the alluvium soils of 

Bangladesh is not well understood.  

 

 Describing the spatial variability has been difficult until new technologies such as Global 

Positioning Systems (GPS) and Geographic Information Systems (GIS) were introduced. The emphasis 

of spatial analysis is to measure properties and relationships, taking into account the spatial localization 

of the phenomenon under study. GIS is useful to produce interpolated maps for visualization, and for 

raster GIS maps; algebraic functions can calculate and visualize the spatial differences between the 

maps (Wang et al., 2008). For studies on the spatial distribution patters of SOC, geostatistics have been 

widely applied (Saldana et al., 1998; McGrath and Zhang, 2003; Sepaskhah et al., 2005; Liu et al., 

2006) and based on the theory of regionalized variables (Webster and Oliver, 2007), geostatistics 

provides tools to quantify the spatial features of soil parameters and allows for spatial interpolation.  

 

 This study makes use of GIS in combination with classical statistics and geostatistics to assess 

the spatial variation characteristics of SOC in the Brahmaputra and the Ganges alluvium of 

Bangladesh. The specific objectives of this chapter were (i) to estimate the SOC contents in the study 

sites; (ii) to reveal the spatial variability or distribution of SOC through semivariogram models; (ii) to 

make the spatial distribution of SOC through spatial interpolation in the study sites. 
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4.2 Materials and Methods 
 

4.2.1 Description of the Study Area 

 
  The study sites are situated in the Bengal basin; the Ganges-Brahmaputra (G-B) delta (Fig. 4.1) 

represents the world‘s largest delta system, comprising about 100,000 km
2 

of riverine channels, 

floodplains, and delta plains. An important feature of this G-B delta system is the huge sediment load 

of about 1 billion tonnes/year delivered to the basin (Goodbred et al., 2003). The Bengal Basin in the 

northeastern part of Indian sub-continent, between the Indian Shield and Indo-Burman Ranges, 

comprises three geo-tectonic provinces: (1) The Stable Shelf, (2) The Central Deep Basin and (3) The 

Chittagong–Tripura Fold Belt (Fig. 4.1). Due to location of the basin at the juncture of three interacting 

plates, viz., the Indian, Burma and Tibetan (Eurasian) Plates, the basin-fill history of these geo-tectonic 

provinces varied considerably. Precambrian Meta sediments and Permian–Carboniferous rocks have 

been encountered in the stable shelf province. After Precambrian peneplanation of the Indian Shield, 

sedimentation in the Bengal Basin started in isolated graben-controlled basins on the basement. With 

the breakup of Gondwanaland in the Jurassic and Cretaceous, and northward movement of the Indian 

Plate, the basin started downwarping in the Early Cretaceous and sedimentation started on the stable 

shelf and deep basin and since then sedimentation has been continuous for most of the basin. 

Subsidence of the basin thus attributed to differential adjustments of the crust, collision with the 

various elements of south Asia, and uplift of the eastern Himalayas and the Indo-Burman Ranges. 

Movements along several well-established faults were initiated following the breakup of 

Gondwanaland and during downwarping in the Cretaceous. 

By Eocene, because of a major marine transgression, the stable shelf came under a carbonate 

regime, whereas the deep basinal area was dominated by deep-water sedimentation. A hinge zone- 

demarcated the stable shelf and the deep basinal area (Fig 4.1). A major switch in sedimentation 

pattern over the Bengal Basin occurred during the Middle Eocene to Early Miocene as a result of 

collision of India with the Burma and Tibetan Blocks. The influx of clastic sediment into the basin 

from the Himalayas to the north and the Indo-Burman Ranges to the east rapidly increased at this time; 

and this was followed by an increase in the rate of subsidence of the basin. At this stage, deep marine 

sedimentation dominated in the deep basinal part, while deep to shallow marine conditions prevailed in 

the eastern part of the basin. By Middle Miocene, with continuing collision events between the plates 

and uplift in the Himalayas and Indo-Burman Ranges, a huge influx of clastic sediments came into the 

basin from the northeast and east. Throughout the Miocene, the depositional settings continued to vary 

from deep marine in the basin to shallow and coastal marine in the marginal parts of the basin. From 

Pliocene onwards, large amounts of sediment were filling the Bengal Basin from the west and 

northwest; and major delta building processes continued to develop the present-day delta morphology. 
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Thus, the Bengal basin is being thus deformed by the Indo-Burman fold belt that impinges from the 

east and the over thrust block of Shillong Massif to the north. This compressional deformation and 

associated faulting has forced the uplift of terraces in the various parts of the regions (Barind tract, 

Madhupur terrace, and Comilla terrace etc.; Fig. 4.1). These features partition the delta into sub basins 

that are often poorly connected and thus lead to alternating sediment inputs and starvation as the rivers 

avulse to different portions of the delta system. Another important feature in the Bengal basin is the 

‗Swatch of No Ground‘ (Fig. 4.1) which represents a shelf canyon that deeply incises the Bengal shelf 

near the Ganges-Brahmaputra river mouth, cuts the forestbeds of the subaquous river delta and acts as 

temporary depocenter between river mouth and Bengal fans. 

 

 The current research was conducted across the two major alluviums—the Brahmaputra and the 

Ganges—as much of the agricultural land in Bangladesh belongs to these two alluviums. Table 4.1, 

summarizes the geographic location, soils, the mean annual temperature and precipitation, soil types, 

and nature of parent materials of study sites. 

 

Table 4.1: Geographic location, area, and climate and soil information across the alluviums 

 

Study sites Sub sites Geographic 

locations 

Area 

(ha) 

Annual 

mean T 

˚C*  and 

ppt** (mm) 

Soil 

 types 

Nature of 

parent 

materials 

Brahmaputra 

Alluvium 

Delduar 23˚ 14ʹ to 24˚ 03ʹ 

N; 

89˚ 50ʹ to 90˚ 02ʹ E 

 

18,097 25.2˚C; 

2275 mm 

Inceptisols 

and 

Entisols 

Non-

calcareous 

Melandah 24˚ 51ʹ to 25˚ 04ʹ 

N; 

89˚ 43ʹ to 89˚ 54ʹ E  

 

23,992 25.6˚C; 

2275 mm 

Inceptisols 

and 

Entisols 

Non-

calcareous 

Ganges 

Alluvium 

 

 

 

 

 

 

Fultala 22˚ 54ʹ to 23˚ 01ʹ 

N;  

89˚ 23ʹ to 89˚ 31ʹ E  

 

7,438 25.7˚C; 

1458 mm 

Inceptisols, 

Entisols 

and 

Histosols 

Calcareous 

Mirpur 23˚ 47ʹ to 24˚ 01ʹ 

N;  

88˚ 51ʹ to 89˚ 07ʹ E  

30,454 25.7˚C; 

1842 mm 

 

Inceptisols 

and 

Entisols 

Calcareous 

*T, temperature; ** ppt, precipitation in mm 
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Figure 4.1:  Map of the Bengal basin showing physiography and geology of the Ganges– 

 Brahmaputra alluvium and its surrounding area (Source: Goodbred et al., 2003). 
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4.2.2 Soil Sampling 

 Soil samples were collected on one-minute latitude and longitude intervals. Hence, a total of 

268 soil samples were collected on a one-minute regular grid throughout the study area. GPS Magellan 

(Model 320) was used to identify the exact coordinates. Details on soil sampling are given in Chapter 3 

(Section 3.1.1). 

4.2.3 SOC Analysis 

 
 SOC in soils was determined by the dichromate oxidation method (Nelson and Sommers, 

1982), as described in Chapter 3 (Section 3.3). 

 

4.2.4 Geostatistics 

  Geostatistical methods such as semivariogram construction, kriging, and mapping have been 

widely applied in the study of SOC distributions (Bond-Lamberty et al., 2006; Loescher et al., 2014). 

The semivariogram is a mathematical description of the relationship (structure) between the variance of 

pairs of observations (data points) and the distance separating the observations (h). It describes the 

between–population variance within a distance class (y-axis) according to the geographical distance 

between pairs of populations (x-axis) (Fig. 4.2). The semivariographic model can be described through 

different parameters: the sill, the nugget variance, the scale, and the range (Fig. 4.2). The most 

important part of a semivariogram is its shape near the origin until the range, as the closest points or 

group of pairs are given more weight in the interpolation process. The sill corresponds to the model 

asymptote (scale and the nugget variance) and should be equal to the variance of the data set. The 

range is the value of h at which y attains the maximum value where the sill occurs and so represents the 

separation distance over which no more spatial dependence is apparent.  

 

Nugget represents the undetectable measurement error, inherent variability or the variation 

within the minimum sampling distance. Samples separated by distances smaller than the range are 

spatially related, whereas samples separated by larger distances are not spatially related. Four 

representative groups of pairs are enough to represent a relevant semivariogram with a significant R
2
 

and a good ‗nugget-to-sill‘ ratio (Dinel and Nolin, 2000). Directional dependence has to be tested in 

the spatial autocorrelation.The isotrope (no directional dependence) or anisotrope (directional 

dependence) characteristic of the semivariogram has to be determined. If no anisotropy is found, it 

means that the value of the variable varies similarly in all directions and the semivariance depends only 

on the distance between sampling points (Emery, 2006).  
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Figure 4.2: An ideal semivariogram model and its parameters 

         

           Finally, the best semivariogram model (spherical, linear etc.) and its parameters (nugget, sill, 

scale, range, etc.) have to be determined in order to validate the modeling of the spatial autocorrelation 

through the semivariogram parameter optimization. Mabit and Bernard (2007) noted that two major 

indicators can be used: the coefficient of correlation and the nugget to sill ratio (Co/C+Co), which 

tends to 1. It means the Co (the nugget) should tend towards 0. Some authors also use the nugget-to-sill 

ratio (Co/(Co+C), which should tend towards 0. If the nugget-to- sill ratio is less than 25%, then the 

variable can be considered to have a strong spatial dependence. If this ratio is between 25% and 75%, 

the spatial dependence will be considered as moderate and if the ratio equals or exceeds 75% then the 

spatial dependence will be considered as weak (Cambardella et al., 1994). Some software like GS
+
 

takes into account the distance between the group of pairs and the fitted model called the residual sum 

of squares (RSS). The RSS is very useful as it allows the comparison of the different semivariograms 

tested. Lowest RSS is also an indicator of spatial relationships. To summarize, the coefficient of 

regression (R
2
) should be greater than 0.8 and the scale to sill ratio should be close to 1, meaning that 

the nugget variance has to be as close as possible to the origin (Cambardella et al., 1994; Duffera et al., 

2007). Thus, the semivariogram with the best RSS reduction has to be selected to represent the 

autocorrelation between the data.  
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4.2.5 Data Interpolation 

        Kriging is based on the assumption that the parameter being interpolated can be considered as a 

localized variable, the regionalised variable theory (Matheron, 1963). It is assumed that, given an 

adequate population, variables will exhibit a degree of continuity within a finite region. It is also a key 

assumption that the regionalized variables are subject to a statistically normal distribution. Krig 

interpolation provides an optimal interpolation estimate from observed values and their spatial 

relationships (Wackernagel, 1995). Kriging uses nearby points weighted by distance from the 

interpolate location and the degree of autocorrelation or spatial structure for those distances, and 

calculates optimum weights at each sampling distances (Isaaks and Srivastava, 1989). On the other 

hand, other interpolation techniques e.g., Inverse Distance Weighted (IDW), and triangulation with 

linear interpolation are used when the spatial structure is weak (Mabit and Bernard, 2007). IDW also 

called Inverse Distance to a Power is a weighted average interpolator which assigns more weight to 

nearby samples for estimating the attributes of the variables at unsampled locations. Thus the weights 

are inversely proportional to a power of the distance. The weights assigned to the data points are 

fractions and the sum of all the weights is equal to 1. The value of the power is frequently set to 2 

(Isaaks and Srivastava, 1989). 

 

  

4.2.6 Methods   
 

SOC variability was tested within the sub-sites where a classical statistical analysis was used. 

This illustrates the trends and the overall variation of the SOC variables. This test includes descriptions 

of the minimum, maximum, mean, skewness, kurtosis, standard deviation (SD), coefficient of 

variations (CVs), histogram and Q-Q plots. All the above analyses were done using the statistical 

package SPSS version 20.0 (SPSS Ins., Chicago, IL, USA). Geostatistical analysis, construction of 

semivariogram, and spatial structure of SOC variability were performed with GS
+
 version 10.0 

(Gamma Design Software, Plainwell, Michigan, USA). Spatial interpolation through kriging and IDW 

(details are given in section 3.3.1.1) were done with the GIS software ArcGIS version 9.3 (ESRI Inc., 

Redlands, California, USA).  
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4.3 Results and Discussion 

4.3.1 Classical Statistics  

         Classical statistics of the SOC dataset of the four sub-sites are summarized in Table 4.2. Mean 

contents of SOC across the four sub-sites of the two alluviums were different and ranged from 0.69 to 

1.14%. From the Table 4.2, it may be noted that Delduar and Fultala sub-sites have very similar mean 

SOC and Melandah and Mirpur sub-sites have similar mean SOC as well. SOC variation is higher in 

the Delduar and Fultala sub-sites than the other two sub-sites. Co-efficient of variation (CV) across the 

four sub-sites varies from 30.9 to 47.8% indicating a moderate variability in SOC. CV values also 

indicate the trends of mean SOC across the four sub-sites i.e., Delduar and Fultala sub-sites have 

similar CV whereas Melandah and Mirpur sub-sites have similar CV. Overall, the extent of SOC 

variability across the sub-sites of the Brahmaputra and the Ganges alluvium soils can be considered as 

moderate. The moderate CV of SOC across the study sites may be due to the heterogeneity of 

topographic land units and soil types (Liu et al., 2006).  

 

Table 4.2: Summary statistics of SOC contents in the four sub- sites of the Brahmaputra and the 

Ganges  Alluviums  

 

 

Variables 

SOC (%) 

Delduar Melandah Fultala Mirpur 

Mean 1.14 0.75 1.13 0.69 

Minimum 0.40 0.40 0.30 0.38 

Maximum 2.60 1.35 2.30 1.39 

SD 0.553 0.246 0.511 0.214 

CV(%) 47.8 32.8 45.1 30.9 

Skewness 0.30 0.27 0.44 0.25 

Kurtosis 0.59 0.53 0.858 0.49 
SD= Standard Deviation, CV= Coefficient of Variation,  

 

It is important to test whether the SOC contents followed a normal distribution or not. To test 

this, two methods were used. First, the histograms of SOC across the sub-sites were plotted with a 

normal distribution curve (Figs. 4.3-4.6). This shows that SOC is positively skewed across the three 

sub-sites except at Fultala. Second, a Quantile-Quantile (Q-Q) plot was used, which also shows that the 

SOC is normally distributed only in the Fultala sub-site with a straight line (Fig. 4.5). From these tests, 

it is important to note that SOC datasets do not fall on a straight line in the sub-sites of Delduar, 

Melandah, and Mirpur; thus Fultala is the only sub-site where SOC is normally distributed.  
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Figure 4.3: Histogram and Q-Q plot of SOC (%) in the Delduar sub-site across the Brahmaputra 

 Alluvium 
 

 
Figure 4.4: Histogram and Q-Q plot of SOC (%) in the Melandah sub-site across the Brahmaputra  

 Alluvium 
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Figure 4.5: Histogram and Q-Q plot of SOC (%) in the Fultala sub-site across the Ganges alluvium 

 

 

 
 

Figure 4.6: Histogram and Q-Q plot of SOC (%) in the Mirpur sub-site across the Ganges alluvium 
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4.3.2 Geostatistics and Spatial Structure of SOC Variability 

 In recent years, spatial dependence models of geostatistics have gained popularity as they 

allow the quantification of landscape spatial structure from point-sampled data. One such model that 

has received much attention and is used here is the semivariogram (Cressie, 1993). The semivariogram 

reveals the randomness and structural aspects of the spatial dispersion of a given variable and is a plot 

of the average squared differences between the values of a spatial variable at pairs of points separated 

by a lag distance (Davidson and Csillag, 2003). The empirical semivariogram describes the overall 

spatial pattern of sample data (Fortin, 1999) and a variety of theoretical semivariogram models can be 

used to describe spatial structure of a landscape attribute. These then provide powerful capabilities that 

can be used to analyze realistically the complex spatial relationship in any ecological systems. Thus, 

the understanding of the spatial variability of SOC levels between and within farms is very important 

for refining the farm management practices and implementing precision farming. The spatial 

dependence of SOC was determined by the semivariogram analysis. In the current study, the tested 

SOC in each sub-sites was modeled with linear, spherical, Gaussian or exponential semivariograms 

with a nugget effect.The values of the different semivariogram parameters i.e., nugget (Co), sill 

(C+Co), range (Ao), and nugget/sill ratio are given in Table 4.3. Generally, the nugget effect can be 

defined as an indicator of continuity at close distances.  

 

Table 4.3: Parameters of the semivariogram models estimated for the SOC contents across the study 

 sites 

 

Sub sites Model  Nugget 

(Co) 

Sill 

(C+Co) 

Co/C+Co Range 

(Ao) (m) 

RSS* R
2
 

Delduar Spherical 0.037 0.330 0.113 0.02 0.006 0.233 

Melandah Linear 0.067 0.067 1.00 0.10 0.005 0.138 

Fultala Gaussian 0.064 0.296 0.216 0.03 0.001 0.946 

Mirpur Exponential 0.029 0.058 0.499 0.07 0.002 0.055 
*RSS= Residual Sum of Squares 

 The semivariogram for SOC across the four sub-sites are shown in Figs. 4.7-4.10.The 

semivariogram of the Fultala sub-site appears to have strong structure and a gradual approach to the 

range, with the Gaussian model providing the best fit. It shows a nugget (Co) of 0.064; a sill (C+Co) 

equal to 0.296; range (Ao) equal to 0.03; coefficient of determination (R
2
) of 0.946; a residual sum of 

squares (RSS) equal to 0.001. This semivariogram appears to exhibit a pure nugget effect, possibly 

because of too sparse a sampling to adequately capture autocorrelation. On the other hand, the other 

three sub-sites (Delduar, Melandah and Mirpur) show similarity to the Fultala sub site regarding the 

nugget effect, sill, range and RSS. However, the coefficient of determination (R
2
) clearly shows that 

SOC datasets at these three sub-sites do not adequately fit to any of the semivariogram models. The 

lowest RSS value is one of the criteria of selecting the best fitted models (Robinson and Metternicht, 
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2006). In the case of Fultala, R
2
, RSS and nugget-to-sill ratio reveal that at this sub site SOC is strongly 

spatially dependent (Table 4.3). The other sub sites i.e., Delduar, Melandah, and Mirpur, show a weak 

spatial dependency as they have R
2
<0.5.     

 

 
Figure 4.7: The semivariogram model of SOC at the Delduar sub-site of the Brahmaputra alluvium 

 
Figure 4.8: The semivariogram model of SOC at the Melandah sub-site of the Brahmaputra alluvium 

 
Figure 4.9: The semivariogram model of SOC at the Fultala sub-site of the Ganges alluvium 
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Figure 4.10: The semivariogram model of SOC at the Mirpur sub-site of the Ganges alluvium 

 

        Besides, the SOC semivariograms indicated a smaller nugget effect (Co) in the study sites, 

implying that they had lower undetectable experimental error, short range variability, and random and 

inherent variability of SOC concentrations (Schlesinger, 1996; Liu et al., 2006). In the current study, 

the isotrope or omnidirectional semivariogram characteristics have been found in the Delduar, 

Melandah, and Mirpur sub-sites; this means that no directional dependence occurs in the study sites. If 

no anisotropy is found, it means that the value of the variable varies similarly in all directions and the 

semivariance depends only on the distance between sampling points (Burgos et al., 2006; Emery, 

2006). On the other hand, anisotropic characteristics have been found in the Fultala sub-site which 

means that the covariance between the SOC values depends both on the direction and distance of the 

sampling sites. Cambardella et al. (1994) noted that the spatial variability of soil properties may be 

affected by both intrinsic i.e., soil forming factors such as parent materials and extrinsic factors i.e., 

soil management practices such as fertilization. They also added that strong spatial dependency of SOC 

can be attributed to intrinsic factors whereas weak spatial dependency can be attributed to extrinsic 

factors.Thus, the strong spatial dependence of SOC across the Fultala sub-site may be attributed by the 

structural or intrinsic factors which is governed by the larger resolution sampling design.This structural 

or intrinsic factors are the topographic units, SOC contents, mineral composition and soil type etc. The 

possible causes of the spatial variability in SOC may be the topographic land units and soil types, 

though other factors like land use and management are also associated. The spatial variation in SOC 

may be partly attributed to the complex topography in the landscape (Liu et al., 2006). The Fultala sub-

site occupies three diverse physiographic units, Ganges tidal floodplain i.e., saline soils, peat soils with 

high SOC contents and non-saline soils. Due to its inherent low fertility nature (FRG, 2012), this sub-

site bears a relatively low cropping intensity. Hence, tillage and crop management activities are much 

lower than any other sites.  
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 As a result, the spatial structure of SOC in the Fultala sub-site is not influenced by the soil 

fertilization and cultivation practices. As such, the spatial dependence remains strong in this sub-site. 

On the other hand, agricultural activities (such as tillage, irrigation practices; and land use 

intensification by higher cropping intensity), are the random factors which prevail across the other 

three sub-sites. Thus, it would appear that the lack of spatial dependence of SOC in the three sub sites. 

This is possibly attributed due to extrinsic factors of soil fertilization, which weakened their spatial 

correlation after a long history of cultivation. The weak spatial dependence of SOC across the Delduar, 

Melandah and Mirpur sub-sites is likely attributed by the human activities such as tillage, cropping 

system management, irrigation practices, land use cover, manure and fertilizer, crop residue 

management and cropping intensity etc. (Kilic et al., 2004).   

 

4.3.3 Spatial Interpolation and Cross Validation of SOC 

 In order to apply agricultural practices precisely and appropriately, it is important to 

investigate the spatial distribution of SOC across the four sub-sites. The parameters derived from the 

geostatistical models were used for kriging and inverse distance weighted (IDW) i.e., spatial 

interpolation by which spatial distribution maps of SOC across the study sites were produced (Figs. 

4.11-4.14). The maps of SOC distribution clearly show how the predicted values are spatially 

distributed. The interpolated krig map for Fultala (Fig. 4.11) showed strong spatial dependence. SOC 

concentration in this sub-site decreased from south to north, which was apparently related to the nature 

of soil and topographic conditions. On the other hand, weighted interpolation SOC maps were prepared 

for the other three sub-sites (Figs. 4.12-4.14) which showed weak spatial dependence. It may be noted 

that weighted interpolation is used where data have weak spatial dependence or no spatial dependence. 

IDW is based on values at nearby locations weighted only by distance from the interpolation location, 

Bulls eye effect was found in this IDW datasets. Thus, IDW helps to compensate for the effects of data 

clustering, assigning individual points within a cluster less weight than isolated data points or treating 

clusters more like single points. IDW-interpolated maps for the other three sub-sites indicate that the 

spatial structure is dispersed due to the continuous management of the soil resources i.e., a weak SOC 

spatial dependency. Besides, it should be mentioned that the SOC were concentrated in some particular 

areas or land types of the Delduar, Melandah and Mirpur sub-sites which may be due to their local 

variability of land types and differences in land management practices and intensities. Thus, land 

management activities by the local stake holders enhance the isotrope semivariances of SOC in these 

sites. Similar spatial distribution observations have been made for some soil properties of Bangladesh 

(Rahman et al., 2005).   
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Figure 4.11: Distribution of SOC contents (%) in the Fultala sub-site using Kriging 

 

 Figure 4.12: Distribution of SOC contents (%) in the Delduar sub-site using IDW 
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 Figure 4.13: Distribution of SOC contents (%) in the Melandah sub-site using IDW 

 

Figure 4.14: Distribution of SOC contents (%) in the Mirpur sub-site using IDW 
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            It is a common practice to use cross-validation to validate the accuracy of an interpolation 

(Voltz and Webster, 1990). Cross validation is achieved by eliminating information, generally one 

observation at a time, estimating the value at that location with remaining data and then computing the 

difference between the actual and estimated value for each data location (Robinson and Metternicht, 

2006). Cross validation is an excellent scheme for solving the inconvenience of redundant data 

collection (Webster and Oliver, 2007), and hence all of the collected data can be used for estimation. 

The mean error should ideally be zero, assuming the interpolation method is unbiased (Robinson and 

Metternicht, 2006). Cross validation analysis was used to evaluate the effectiveness of ordinary kriging 

and IDW interpolations. The cross validation is determined by coefficient of correlation between the 

measured values and the cross validation values, which were predicted, based on the semivariogram 

and neighbor values (Robertson, 1987). For an acceptable cross-validation, the regression coefficient 

(r
2
) that measures the goodness of fit for the least squares model describing the linear regression 

equation needs to be as close as possible to 1 (Mabit and Bernard, 2007).  

 

In the current study, during kriging, the number of closest samples chosen was 15 for all the 

sites. The best found kriging parameters for the Fultala sub-site were selected from the cross validation 

results (Table 4.4). For SOC, the lowest root mean square error (RMSE) was found with a 

neighborhood of 15 points. The mean error (ME) suggests that the predictions are completely unbiased 

because the ME value is close to.  Robinson and Metternicht (2006) noted that the mean error (ME) 

should ideally be zero, if the interpolation method is unbiased. They also reported that RMSE would be 

less than 1 which is also recorded from the current interpolations. On the other hand, the precision of 

IDW is also affected by the choice of the number of the closest samples used for estimation; hence, this 

number is 15. The best weighting parameter was found to be for Delduar, Melandah and Mirpur (Table 

4.4). This suggests that the weights diminish slowly from the sample point over the chosen radius. 

IDW, the power of one was the best choice (over powers of two, three and four), which is possibly due 

to the relatively low skewness inherent soil properties (Kravchenko and Bullock, 1999). 

 
Table 4.4: Parameters of cross validation from the Kriging and IDW interpolation across the study sites 

 

Sub sites Neighbors Power Mean Error  

(ME) 

Root mean square  

error (RMSE) 

Fultala 15 - -0.01193 0.02002 

Delduar 15 1 0.0172 0.5744 

Melandah 15 1 0.004427 0.274 

Mirpur 15 1 0.001995 0.2293 
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          In this study, the weak spatial dependent sites possess a relatively flat topography (only 2 m 

elevation variation), the SOC distribution should not only be linked to water erosion processes, but also 

to tillage erosion. Indeed, widespread adoption of mechanized agriculture that promotes more intensive 

continuous tillage accelerates SOC oxidation (Polyakov and Lal, 2008) and predisposes soils to 

increased erosion (Rasmussen et al., 1998). Tillage, especially the conventional 30-cm deep tillage, is 

one of the major practices that affects SOC. Tillage thus accelerates runoff during the rainy season and 

destroys natural soil aggregates. This traditional tillage does not leave any residues on the soil surface 

to reduce rainfall erosivity. Thus, conventional tillage disturbs on soil porosity, aeration and reduces 

the decomposition of organic matter that exacerbates the soil pulverization during the dry periods 

which are also reported by Bot and Benites (2005) in case of conventional tillage. Interpolated values 

of SOC in the surface layer (0-30 cm), obtained by kriging ranged from 0.39 to 2.02% in the Fultala 

sub-site (Fig. 4.12). The highest SOC tended to occur in the Fultala sub-site, where the landscape is 

diverse with low cropping intensity. This sub-site belongs to the south-western coastal plain of 

Bangladesh where the major land use is the rice-shrimp integrated farming (Fig. 4.12). This 

topographic diversity mainly causes high variability in SOC. On the other hand, SOC interpolated by 

IDW ranged from 0.40 to 2.60% in the Delduar sub-site, 0.40 to 1.35% in the Melandah sub-site and 

0.38 to 1.39% in the Mirpur sub-site respectively (Figs. 4.13-4.15). The lower SOC levels in these sub-

sites may be attributed to more intensive cropping with HYV rice.  

 

4.3.4 Potential limitations of spatial interpolation methodology 

The interpolation methodology employed and results may have been influenced by several 

potential limitations. Most important among these limiations is grid size. While some variables may 

inherently have weak spatial structure (crucial for interpolation), it i.e., spatial structure tends to 

become weak with increasing grid size. Clearly sample size i.e., grid size affects the reliability of the 

interpolation methods. The larger the sample size from which the variogram is computed, the more 

precise is the estimate. In the present study, sampling grid is much wider e.g., 1600 m distance covers 

one sample which is not highly precise, and this may have been the reason for the weak SOC spatial 

structure/dependence observed for 3 of the 4 sites investigated.  

 

The nature of physical surface can also influence spatial dependence of SOC and hence its 

interpolation. The study sites are widely variable with diversified land types e.g., HL, MHL, MLL and 

LL. Such variability in land types is likely to weaken SOC spatial structure by soil erosion from higher 

lands (e.g., HL, MHL) and deposition in lower lands (e.g., MLL and LL), which may influence the 

interpolation processes.  
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The physical and geographic barriers that exist in the landscape, like waterbodies, settlements and 

woodlands present a particular challenge when mapping using interpolation. In the study sites, a lot of 

features such as settlements, ponds, woodlands and industry exist within the sampled landscape; they 

create barriers and a sudden interruption in the interpolation process.  

 

4.4 Conclusions 

          Understanding the spatial variability of soils is important to best manage and target precision 

agricultural practices. Geostatistical analyses coupled with geographic information systems (GIS) are 

effective tools in assessing the spatial variability and mapping of SOC. This study showed that SOC 

concentrations in the Fultala sub site have strong spatial dependence. This strong spatial dependence 

may be attributed mainly due to the structural factors of soils such as topographic land units, soil types, 

and diverse physiography, though other factors may have also influenced this. The other three sub- 

sites (Delduar, Melandah, and Mirpur) showed weak spatial dependence. Agricultural activities such as 

tillage, cropping system management, land use intensification by high inputs, etc. are the random 

factors that prevail at these sub-sites, which may be responsible for the weak spatial dependence after a 

long history of agricultural use. Thus, it is possible to make an accurate estimation of SOC carbon loss 

or storage at the study sites by comparing these SOC maps with subsequent SOC measurements. 

Moreover, this spatial information can be used to design and implement effective measures in terms of 

soil and water management, based on the quantitative spatial variability of SOC associated with 

topographical nature, and land use and soil types. Clearly, the sites where SOC loss is intensive, a 

pragmatic policy may be adopted to maximize SOC sequestration Therefore, the spatial variability of 

SOC can help better manage agricultural land by targeting management practices appropriate to the 

SOC levels. 
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CHAPTER 5 
 

Soil Organic Carbon in the Brahmaputra and the Ganges Alluvium: 

Storage, Distribution, and Controlling Factors 
 

5.1 Introduction 

 Carbon sequestration potential of soils is one of the inventories of soil organic carbon (SOC) 

stock and its contents (Eswaran et al., 1993; Houghton, 1995; Batjes, 1996). Moreover, it is important 

to investigate the impact of the key factors of climate, hydrology, parent material, soil fertility, 

biological activity, vegetation, and land cover-all of which control the levels of SOC in soils in order to 

identify optimal strategies for land management (Jenny, 1980). Any land management decisions should 

be directed at enhancement of SOC stocks in soils and so offer a potential mitigation of climate change 

while fostering the main soil functions (e.g., Nannipieri et al., 2003). Spatial and temporal patterns of 

SOC are a function of soil redistribution, vegetative productivity, mineralization of SOC, landscape 

position and management (Gregorich et al., 1998; Sauerbeck, 2001; West and Marland, 2003; Jacinthe 

et al., 2004). Water, tillage, and erosion contribute significantly to the redistribution of soil and SOC 

across the landscape, with both soil and SOC being redeposited within the field as well as being moved 

off the field (Harden et al., 1999; Smith et al., 2001; McCarty and Ritchie, 2002; Ritchie and McCarty, 

2003). Understanding the patterns and processes involved in SOC redistribution across agricultural 

landscapes is the key to understanding the potential for SOC sequestration in agricultural systems as 

well as SOC distribution patterns on the landscape. Most studies have concentrated on the field scale 

using grid sampling and various mapping techniques to study the relationship between soil 

redistribution and SOC (VandenBygaart, 2001; Hao et al., 2001; Pennock and Frick, 2001; Ritchie and 

McCarty, 2003).  

 

Many factors such as topography, land use, soil texture, field management, and vegetation may 

influence the spatial variability of SOC (Tan and Lal, 2005; Liu et al., 2006; Wang et al., 2010; Chuai 

et al., 2011). SOC content of surface soils is sensitive to human interference and changes in land use 

and soil management to protect or increase the existing soil carbon pool by sequestration of carbon 

from the atmosphere could become crucial in terms of future policies to mitigate the global greenhouse 

effect (IPCC, 2000). Therefore, it is critical to understand how SOC varies in response to factors such 

as topography, land use, and soil texture, when evaluating the role of terrestrial ecosystem processes in 

alternating the global carbon cycle and carbon accumulation in the atmosphere (Jiao et al., 2010). 

Wang et al. (2010) found that the influence of soil texture on SOC was more important where there 

was significant positive correlation between SOC and clay or silt content but negative correlation 

between SOC and sand content. Land use changes have profound influences on the physical, chemical, 

and biological environment of soils (Buschbacher et al., 1988; Solomon et al., 2000). Soils can be a 
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source or sink for atmospheric carbon depending on land use and management (Mishra et al., 2010). It 

has been reported that about one fourth of anthropogenic CO2 emissions are due to land use changes, 

especially deforestation, and the rest are due to fossil fuel burning in the past 20 years (Barnett et al., 

2005). Long-term experimental studies have confirmed that SOC is highly sensitive to land use 

changes from native ecosystems, such as forest or grassland, to agricultural systems, resulting in the 

loss of organic carbon (Conant and Paustian, 2002; Jiao et al., 2010).  

 

The present research was undertaken with the following objectives: (i) assessing distribution of SOC 

across the alluviums as well as the inundation land types (ii) whether the inundation land types or 

cropping intensity had an impact on SOC. 

 

5.2 Materials and Methods 

 268 soil samples were collected on a regular grid from the four sub-sites: Delduar, Melandah, 

Fultala and Mirpur, using one-minute latitude and longitude intervals (representing a distance of 

1600m between grid points) following a random grid sampling strategy. A portable GPS (Global 

Positioning Systems-Magellan, Model 320) was used to identify the sampling location in the field. The 

sampling sites exclude settlements, industry, woodlands, water-bodies and infrastructures, as the focus 

of this work was land that is used for agricultural purposes. This sampling strategy ensured that four 

land types (HL, MHL, MLL and LL) received fair representation, proportionate to their area within the 

sampling sites/landscapes. This work considered across two major alluviums – the Brahmaputra and 

the Ganges, as much of the agricultural land in Bangladesh belongs to these two alluviums. Soil texture 

and drainage conditions of the soils were measured in the field according to the guidelines of FAO 

(2006). In the field, soil texture was determined by the feel method. The soil is rubbed between thumb 

and fingers, preferably while wet. Sand feels gritty and its particles can be easily seen with the naked 

eye. The silt when dry feels like flour or talcum powder and is slightly plastic when wet. Clayey 

materials feel very plastic and exhibit stickiness when wet and are hard under dry conditions. 

Information on land types, land use, and cropping intensity were recorded during the field work.  

 

5.2.1 Soil Organic Carbon Analysis  

 Organic carbon in soils was determined by the dichromate oxidation method of Walkley- 

Black (Nelson and Sommers, 1982), as in Chapter 3.   
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5.2.2 Data Analysis  
 
 SOC data analysis was done using SPSS version 20.0. SOC data distribution across the 

alluviums (as well as the land types) was assessed by boxplots analysis. SOC and cropping intensity 

(CI), SOC and land type‘s variability were tested by using one-way analysis of variance (ANOVA). 

SOC variability within the land types was also tested by Post hoc and Tukey‘s multiple comparison 

tests. 

 

5.3 Results and Discussion 

5.3.1 SOC Distribution across the Alluviums 

 The SOC distribution across the alluviums shows that mean SOC in the Brahmaputra alluvium 

is about 0.80 % (8.0 kg/m
2
) in the 0-30 cm soil depths whereas SOC in the Ganges alluvium is about 

0.60 % (6.0 kg/m
2
) in the same depths (Fig. 5.1). So, it is observed that SOC distribution is low in both 

of the alluviums. Estimates of critical levels of SOC are available (Greenland., 1975), considered as 

2% of SOC as the minimum requirement for maintenance of satisfactory soil aggregate stability and 

above which no further increase in productivity are achieved (Janzen et al., 1992), the quantitative 

basis for such thresholds is limited (Loveland and Webb, 2003). Janseen and de Willigen (2006) 

reported 6 g/kg of SOC as the minimum limit to prevent collapse of soil structure. Karim and Iqbal 

(2001) also noted that a good soil have an organic carbon content of more than 2% but in Bangladesh, 

most soils have less than 1%, and some soils have even less than 0.60%. Brahmaputra alluvium 

possesses slightly higher SOC than the Ganges alluvium at 0-30 cm soil depths and shows symmetric 

distribution i.e., most SOC values occur at or near 0.80%. On the other hand, SOC distribution in the 

Ganges alluvium is positively skewed i.e., most SOC values are below 0.60% (Fig. 5.1). These 

differences might be due to the differences in land management activities and/or cropping intensity 

over the two alluviums or due to their inherent dissimilarities. 
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Figure 5.1: Boxplots showing SOC distribution across the alluviums of the study sites 

 

5.3.2 SOC Distribution across the Inundation Land Types of the Alluviums 

 SOC distribution under different land types were examined using boxplot analysis. SOC 

ranges from 0.50 to 1.45% depending on the land types across the alluviums. SOC varies from 0.52 to 

1.45 % across the land types of the Brahmaputra alluvium, whereas SOC ranges from 0.50 to 1.35 % 

across the land types of the Ganges alluvium. It was seen that the SOC variability was higher across 

the MLL and LL types than HL and MHL types in both the alluviums (Fig. 5.2). It appears that 

inundation land types may be an influential factor here, as SOC across the inundation land types 

follows the following decreasing order as <LL<MLL<MHL<HL (Fig. 5.2). Agriculture in Bangladesh 

is practiced mainly on the HL and MHL sites, often with the application of adequate quantities of 

chemical fertilizers instead of farmyard manures or other organic fertilizers. The HL and MHL sites are 

used for intensive cropping with intensive tillage. Their topographic position makes them more suitable 

for intensive agriculture. The higher SOC contents in the MLL and LL sites compared to HL and MHL 

sites may be attributed due to their topographic position as well as lower cropping intensity and 

management (Mia, 1995; Ritchie et al., 2007; FRG, 2012). Topographic land type affects soil 

properties mainly through its effects on water movements. In fact, in terrain depressions, soils are 

moister because they receive runoff, sediments including organic matter, and seepage from the 

surrounding, leading to a higher SOC concentration than in drier upland soil (Yoo et al., 2006). On the 

contrary, soils on steep slopes tend to lose organic carbon because the topsoil is constantly eroded. Xie 

et al. (2007) reported that the average area-weighted total SOC density in paddy soils e.g., MLL and 

LL soils were higher than HL and MHL sites. Therefore, the spatial distribution of topographic 

attributes that characterize the flow paths can help in capturing the soil variability and in predicting soil 
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properties (Moore et al., 1993; Florinsky and Kuryakova, 1996). Ritchie et al. (2007) also noted that 

upland sites have significantly less SOC than soils in deposition areas.   

 

Figure 5.2: Boxplots showing SOC distribution across the land types of the alluviums 

 

   

5.3.3 Land Use and Cropping Intensity on SOC 

 Cropping intensity (%) across the land types varies 240 to 330% in the HL sites, 200 to 240% 

in the MHL sites, 120 to 200 % in the MLL sites and 80 to 90 % in the LL sites. Thus, there is a  

higher cropping intensity exists in the HL and MHL sites and a  lower cropping intensity  in the MLL 

and LL sites (Fig. 5.3) mainly due to the nature of flooding depths. Descriptive statistics of the current 

SOC and CI revealed that the SOC content is higher (1.30%) in the lower cropping intensity sites. SOC 

content is lower (0.55%) in the higher cropping intensity sites. One-way ANOVA test of SOC and CI 

revealed that the SOC within the CI groups vary significantly (p<0.001, F ratio= 23.57). This is clear 

evidence of SOC being intimately related to the cropping intensity. Thus, SOC is lower in the higher 

cropping intensity sites i.e., HL and MHL sites. On the other hand, SOC is higher in the lower 

cropping intensity sites i.e., MLL and LL sites. Due to their inundation nature of land, the HL and 

MHL favours for growing 3 to 4 crops a year, whereas LL and MLL favours only 1 or 2 crops in a 

year. Thus, it may be said that intensive cropping promotes SOC contents to be low which is true for 

the HL and MHL sites. A similar observation was made by Song et al. (2005).  Cui et al. (2003) 

reported that SOC tended to decline in response to increased tillage and a reduction in natural organic 

debris input caused by agriculture. A similar situation prevails in Bangladesh, where crop residues are 

widely used as fuel and fodder and usually not returned to the soil.  
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Figure 5.3: Boxplots showing variability pattern of cropping intensity across the alluviums 

 In the HL and MHL sites across the alluviums, perennial crops along with other crops such as 

modern varieties of rice cultivars and vegetables have been grown year round. The other major crops 

are wheat, pepper, potatoes, pulses, tobacco, and mustard, high yielding ‗boro‘ and transplanted ‗aman‘ 

rice (Table 5.1). In a cropping season, three or four cropping patterns are common in the HL and MHL 

sites across the alluviums, thereby intensifying the land cover and land use by doubled or tripled crops. 

In the MLL and LL sites across the alluviums, high yielding rice crops mainly dominates with lower 

cropping intensities (Table 5.2). UNCD (1992) reported that the cropping intensity varies from 100 to 

300 percent, depending upon the quality of land across the Hindu Kush- Himalayan (HKH) region. 

Sitaula et al. (2004) also reported that HKH region presents particularly complex land use and land 

cover change processes in the fragmented and diverse socio-economic and agro-ecological subunits. 

Thus, the intensification of vegetable crops, high yielding rice cultivars and other perennial crops are 

reported in the HL and MHL sites of the two alluviums. Winter crops and vegetables are specifically 

grown under intensive management in the HL and MHL sites where as MLL and LL sites are being 

used mainly for high yielding rice cultivars under anaerobic submerged conditions.  
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Table 5.1: Land use/cover across the HL and MHL sites of the Brahmaputra and the Ganges alluvium  

 

Land units Land-use in the Brahmaputra alluvium Land-use in the Ganges alluvium 

Highland 

(HL) 

Sugarcane/Pineapple/Banana; 

Sugarcane/Banana/Potato/Wheat; 

Potato/Jute-Transplanted aman rice; 

Mustard/Wheat/Fallow; 

Wheat/Mustard/ Transplanted aman rice; 

Mustard/Potato/Cowpea-Mixed aus and 

Aman rice; 

Mustard/Cowpea/Pulses/ Transplanted 

aman rice; 

Potato/Tobacco- Transplanted aman rice; 

Homestead vegetables; 

Banana/Sugarcane/Betel nut/Date 

tree/Coconut; 

Jute/ Transplanted aman rice; 

Transplanted aman rice-Fallow/Rabi crops; 

Tobacco/Wheat/Maize-Transplanted Aman 

rice; 

Maize/Wheat/Jute/Vegetables; 

Wheat/Mustard/Maize/Vegetables-Fallow; 

Wheat/Mustard/Kharif vegetables; 

Medium 

highland 

(MHL) 

 

HYV Boro rice-Transplanted aman rice; 

Mustard/Potato/Cowpea-Mixed aus and 

aman rice; 

Mustard/Potato/Pulses/HYV Boro-

Transplanted aman rice; 

Mustard/Cowpea/Pulses-T. Aman rice; 

Wheat- Transplanted aman rice; 

Potato-Jute- Transplanted aman rice; 

Wheat/Jute- Transplanted aman rice; 

Potato/Pulses-Boro rice; 

Potato/Tobacco- Transplanted aman rice; 

Wheat/Pepper/Mustard- Transplanted 

aman rice; 

HYV Boro rice-Transplanted aman rice; 

Mustard/Cowpea-HYV Boro rice-

Transplanted aman rice; 

Tobacco-Transplanted aman rice; 

Tobacco/Pulses-Transplanted aman rice; 

Tobacco/Wheat/Jute/Pulses-Transplanted 

aman rice; 

Mustard/Potato/Pulses/HYV Boro-

Transplanted aman rice; 

Wheat/Pepper/Mustard- Transplanted aman 

rice; 

 

 

 

Table 5.2: Land use/cover across the MLL and LL sites of the Brahmaputra and the Ganges alluvium 

  

Land units Land use in the Brahmaputra alluvium Land use in the Ganges alluvium 

 

Medium 

Lowland 

(MLL) 

  and  

Lowland 

(LL) 

Mustard/Cowpea/Pulses-HYV Boro rice; 

HYV Boro Rice-Fallow; 

HYV Boro rice-Deep transplanted aman 

rice; 

HYV Boro rice-Fallow 

HYV Boro rice-Transplanted aman rice; 

HYV Boro rice-Fallow; 

Shrimp/Hogla (Fencing plant); 

Shrimp/HYV Boro rice 

 

 In Bangladesh, pressure from an increasing population has forced the production of two to four 

crops every year on the same land of HL and MHL sites resulting in a very short fallow period for 

agricultural use. This very short fallow period is not sufficient for the land to regain its natural 

attributes (Hussain et al., 2002), which are essential for its good health or biophysical conditions and 

productive capacity. Use of chemical fertilizers instead of organic manures or fertilizers negatively 

impacts the biophysical conditions of the lands specifically the HL and MHL types. Technological 

developments e.g., the release of short duration cultivars also influences the cropping intensity (CI) in 

the above land types. Farmers are easily motivated to cultivate these cultivars or varieties in between 
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the major crops within a cropping season. Decrease in the depth and duration of inundation level also 

enhances the cropping intensity especially in the HL and MHL sites (Brammer, 2002). The farmer‘s 

awareness programme by the department of agricultural extension (DAE) of Bangladesh promotes 

such intensification by providing various incentives to increase the CI. With the advent of modern 

electronic technologies, i.e., mobile phone, smart phone, and other electronic devices, it becomes very 

easy to advertise the seeds/fertilizers/varieties which play a role in increasing cropping intensity. Local 

farmers lack awareness of the capability of soil quality but they only want to grow more food by 

increasing the cropping intensity. Also, modern rice varieties were developed by Bangladesh Rice 

Research Institute (BRRI), which are of a short duration, encourage farmers to cultivate multiple rice 

crops in a cropping season.  

 

5.3.4 Impacts of Inundation Land Types and Cropping Intensity on SOC 

 The influence of inundation land types on SOC was tested using a one-way ANOVA which 

shows that SOC across land type varies significantly (p<0.001, F = 40.51) for the study sites. Further 

post hoc tests show that SOC differences between the HL and MHL (least significant difference, LSD 

= 0.103), HL and MLL (LSD = 0.128), HL and LL (LSD =0.230), MHL and MLL (LSD = 0.110), and 

MHL and LL (LSD = 0.221) types were statistically significant (p = 0.05). However, the SOC in the 

MLL and LL sites was similar (LSD =0.234). Tukey‘s multiple comparison test on the SOC data also 

revealed that, except between the MLL and LL sites, SOC comparisons across all other land types were 

statistically significant (p<0.01). From this analysis, it is clear that SOC is lower in the HL and MHL 

than in the MLL and LL land types. In the HL sites, CI varied from 240-330 % where the mean SOC 

content is 0.56%. In the MHL sites, CI varied from 200-240% and the mean SOC content is 0.84%. In 

the MLL sites, CI varied from 120-200% and the average SOC content is 1.26%. In the LL sites, CI 

varied from 80-90% whereas the mean SOC content is 1.30%. Clearly there is an intrinsic link between 

inundation land type and CI, as SOC declines with increasing CI. The trend in SOC variation across 

the land types (LL>MLL>MHL>HL) is thus at least partly driven by CI, which is highest in 

HL<MHL<MLL<LL (Fig. 5.4). So, the above datasets reveal that SOC is decreasing in the HL and 

MHL sites with the increasing trends of CI whereas SOC is not declining in the MLL and LL sites with 

the slow increment of CI. Therefore, it may be said that inundation land types had impacts on the SOC 

and CI in the study sites. This statement coincides with the findings of Jian-bing et al. (2008) where 

they noted that SOC variability depends on topographic variability and land use. This is consistent with 

the findings of other researchers (Bationo et al., 1995; Pagiola, 1995; Patil, 2011) where intensive 

cultivation of crops was found to accelerate the SOC declines. Wang et al. (2008) noted that upland 

eroding areas have significantly less SOC than soils in deposition areas. Here, HL and MHL sites may 

be regarded as the upland erosion areas which have less SOC than soils of the deposition areas i.e., 
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MLL and LL sites. Micro topography and vegetation are the dominant factors of SOC variability in 

small-scale units (Wang et al., 2001). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4: Boxplots showing SOC and CI variability pattern across the land types of the study sites  

 

 
 SOC storage strongly depends on land-cover types (Chaplot et al., 2010; Martin et al., 2011). 

Jobbagy and Jackson (2000) and Yang et al. (2007) reported that land cover significantly affected the 

distribution of SOC. In the current study, MLL and LL have the highest SOC, which is most likely 

related to lower cropping intensity with lower decomposition rate of SOC and high soil moisture 

contents which is in consistent with the findings of Taggart et al. (2012). Conversely, there was notable 

low SOC content in the HL and MHL, which might be the result of continuous cultivation (Song et al., 

2005). Brammer (2002) reported that inundation land level conversion is taking place in some places of 

Bangladesh due to the decrease in flooding depth; former LL into MLL, MLL into MHL, and MHL 

into HL in a more or less systematic way. These observations imply that the implementation of an 

effective plan for land management, conservation, and restoration is required for increasing local level 

C sequestration and reducing the C budget. Vegetation and topographic control on the spatial 

variability of SOC was reported by Queslati et al. (2013). Intensive agricultural activities (e.g., tillage) 

have resulted in enhanced soil mineralization (Lal, 2002), which has led to low SOC in the HL and 

MHL sites.  
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 Soil texture is closely related to the soil water holding capacity and the decomposition rate of 

organic carbon, which indicates a key role in the spatial distribution of SOC (Chaplot et al., 2010). In 

the current HL and MHL sites, soil texture varies from silt loam to silty clay loam or silty clay. On the 

other hand, in the MLL and LL sites soil texture varies from silty clay loam to clay. So, MLL or LL 

soil contains more clay than other land types. This soil textural condition governs the soil drainage as 

well as land cover and land use (FAO, 2006). Chaplot et al. (2010) and Mao et al. (2015) noted that a 

spatial pattern of SOC storage depends on the textural conditions at a small scale level. This result 

supports the observation by Jobbagy and Jackson (2000) that clay content is the best predictor of SOC 

in the lower inundation sites than the higher inundation sites. Thus, this inundation level controls soil 

textural as well as drainage conditions by controlling their biophysical activities. So, it is seen that HL, 

MHL types have higher cropping intensity and contains less SOC, whereas LL and MLL types bears 

lower cropping intensity and contains high SOC. So, it may be said that inundation land types are 

related to soil texture, drainage as well as land cover and land use or cropping intensity. So, SOC 

variability or distribution depends on land level, soil texture, land cover, cropping intensity, soil tillage 

and soil management etc. Similar observations have also been reported by Venteris et al. (2004), Smith 

(2005), Davidson and Janssen (2006), and Chaplot et al. (2010). 

 

5.4 Conclusions 

The SOC distribution over the two alluviums is low, reflecting the intensification of agriculture 

and land management practices in Bangladesh since the late 1970s. Increasing food demand due to a 

growing population is the main driver for the widely seen expansion and intensification of agriculture, 

where multiple crops (2-4) are grown with little or no crop residue or organic amendment. Cropping 

intensity, in turn, is influenced by land inundation. The lands that are not flooded or are flooded to a 

lesser extent have considerably higher cropping intensity (such as the HL and MHL types in this study) 

than lands which are regularly flooded to a greater extent (such as the MLL and LL). These differences 

in the extent of land inundation are clearly reflected in SOC distribution across the land types, as the 

SOC levels in the HL and MHL were significantly lower than those in the MLL and LL types, 

primarily because of the lower cropping intensity in the latter land types. However, in much of 

Bangladesh cropping intensity is intrinsically linked with inundation land type. SOC depletion as seen 

in the high cropping intensity sites is a major cause of stagnation in crop productivity, and poses a 

serious threat to food security in Bangladesh.   
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CHAPTER 6 

 
Soil Organic Carbon Dynamics in the Agricultural Soils  

 

6.1 Introduction  

       The terrestrial biosphere can act either as a source or a sink for atmospheric CO2, and has been 

considered to hold the key to the ∼2 Gt C year
−1

 discrepancy that persists in estimates of the global 

carbon cycle designated by the Intergovernmental Panel on Climate Change as ‗residual terrestrial 

uptake‘ (IPCC, 2000). Both the vegetation and the soil may play a part in the residual terrestrial uptake. 

Therefore, a new challenge in the context of climate change mitigation is the management of terrestrial 

ecosystem to conserve existing carbon stocks and to remove carbon from the atmosphere by adding it 

to its terrestrial stocks (Malhi et al., 1999). Documentation of the results of such management is part of 

the national greenhouse gas inventory process (IPCC, 1997) that is mandated by the framework 

convention on climate change. Changes in land use in the last few centuries have been phenomenal. In 

this regard, Richards (1990) noted that in the past 300 years: 

―… the world‘s forests and woodlands diminished by 1.2 billion ha, or 19% of the (year) 1700. 

Grasslands and pastures have declined by 580 million ha, or 8% of the (year) 1700 estimate. 

Croplands brought into cultivation show a net increase of 1.2 billion ha, or a 466% increase in 

less than three centuries. … Agricultural expansion and depletion of forests and grasslands 

were greater in absolute terms over the 35 years, between 1950 and 1985, than in the 150 years 

between 1700 and 1850.‖  

 

 In the last two centuries, land use change has been a significant source of atmospheric CO2 

through conversion of natural vegetation to farming (Esser, 1987; Houghton, 1999; Lal, 1999; Smith et 

al., 2000). In the terrestrial ecosystems, the SOC pool is greater (about twice) than living vegetation 

(Post et al., 1990; Lal, 1999). Because soil organic carbon has generally a slower turnover rate, it may 

be preserved for a longer time (IGBP, 1998). The huge carbon pool of soils and significant changes of 

SOC related to land use suggest a considerable potential to enhance the rate of carbon sequestration in 

soils through land use and management activities, and thereby to decrease the atmospheric CO2 level 

(Paustian et al., 1997; Janzen et al., 1998; Lal and Bruce, 1999; Post and Kwon, 2000). A number of 

efforts have been made to determining the changes in SOC storage induced by land use at regional 

(Mann, 1986; Esser, 1995; Fearnside and Barbosa, 1997; Houghton, 1999; Smith et al., 2000) and 

global (Houghton et al., 1987; Esser, 1987; Houghton, 1999) scales. However, because of the high 

inherent natural variability in the world‘s soils and variable dynamics of carbon loss under different 

land uses, accurate estimates of the historic loss are usually hampered by the lack of the baseline data 

on soils (Lal, 1999). More exact estimates on the size of the current SOC storage and the human-
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induced changes at regional scale are needed, especially based on greater data density with direct field 

measurements (Bruce et al., 1999). This would provide a basis for a better understanding of the future 

carbon fluxes between the terrestrial ecosystem and the atmosphere.  

  

 In Bangladesh, agricultural land use planning in terms of crop selection needs to consider the 

frequency and extent of land inundation. Brammer (1996) outlined that the inundation land types   have 

an important influence on the physical and biological environmental conditions, as well as on land use 

and agricultural potentials. FAO-UNDP (1988) also reported that inundation lands are crucial for land 

use planning when they are precisely categorized for agricultural development in Bangladesh and other 

countries.  Land use dynamics in Bangladesh began in the early 1960s with the beginning of the green 

revolution, but visible changes occurred from the 1970s. During the 1980s, rice production 

technologies such as high yielding cultivars, fertilizers, seeds, and farm machinery were implemented, 

driving the process of changes in land use, cropping intensity and cropping patterns.   

 

The expansion of high yielding rice cultivar was found increasing at a considerably rate with 

the increasing availability of modern inputs. Rahman (2010) reported that expansion of areas under 

high yielding cultivars with irrigation facilities in Bangladesh initiated the agricultural expansion. 

Thus, over the years, cropping patterns as well as cropping intensity have changed significantly due 

mainly to the changes in flooding depths and extent, and the general intensification of farming systems. 

These changes in land use and/or cropping pattern, directly or indirectly, are likely to have impacts on 

soil quality, particularly SOC (Post and Kwon, 2000). Thus, land use and management are the 

important determinants of SOC stock.  Soil organic carbon changes at farm levels over time are vital to 

assess the influence of change in land use and management practices, and to clearly define the 

mechanisms and processes of soil degradation or resilience (Li, 1995). In Bangladesh, the high 

population pressure (more than 160 million) has forced the production of two or three crops a year on 

the same land, resulting in a very short fallow period. This short fallow period leaves little or no time 

for the land to regain all its natural attributes, which are essential for its biophysical conditions 

(Hussain et al., 2002). Such intensive land use could cause widespread land degradation due to loss of 

SOC and its associated influences on soil structure and fertility, which are gradually likely to aggravate 

with time due to ever-increasing population pressure.  

 The main aims of this chapter were (i) to identify the land use as well as cropping intensity 

(CI) changes over the period 1989-92 to 2012, and (ii) to estimate the SOC loss or sequestration over 

this period of time (1989-92 to 2012) by comparing the historical SOC measurements (1989-92) with 

their current (2012) measurements. 
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6.2 Materials and Methods 

        One hundred ninety composite soil samples were collected from the same four sub-sites under 

the Brahmaputra and the Ganges alluviums, which were previously sampled by Soil Resource 

Development Institute (SRDI) of Bangladesh during 1989-92. The land and soil resource utilization 

guide (LSRUG) maps of SRDI were used in the field for revisiting the sampling sites. It may be 

mentioned that LSRUG reports of SRDI contains the historical SOC and cropping intensity (CI) 

datasets. The four sub-sites were Delduar, Melandah, Fultala, and Mirpur under the two major 

alluviums of Bangladesh – the Brahmaputra and the Ganges. These sites fall under the diverse agro-

ecological regions of Bangladesh. A list of agro-ecological regions under the studied sub sites along 

with the sampling information are presented in Table 6.1. It should be mentioned that Delduar and 

Melandah sub-sites fall under the Brahmaputra River alluvium which were previously sampled during 

1990-1991 and were re-sampled in March 2012 so that changes over time in cropping intensity (CI) 

and soil organic carbon (SOC) can be estimated. Similarly, the sub-sites Fultala and Mirpur fall under 

the Ganges River alluvium which were previously sampled during 1989-1992 and were re-sampled in 

April, 2012. The changes in SOC were assessed by the paired t-Test in IBM SPSS statistics version 

20.0, and boxplot analysis as well.  The SOC dynamics were assessed by comparing the present and 

previous SOC of individual sites, sub-sites, and individual land types, etc.   

 

Table 6.1: Sampling information across the study sites under the Brahmaputra and the Ganges 

 alluviums 

 

Sites  Sub-sites Agro-ecological regions Sampling year Number 

of 

samples* 
This 

work  

Previous 

study 

Brahmaputra 

Alluvium 

Delduar  Old  and Young Brahmaputra 

floodplains 

2012 1990 36 

Melandah  Old  and Young Brahmaputra 

floodplains 

2012 1991 60 

Ganges 

Alluvium 

Fultala  

 

Ganges river and tidal 

floodplains, 

and 

Gopalganj-Khulna peat basins 

 

2012 1989 28 

Mirpur  

 

Ganges river floodplains 2012 1992 66 

 Total number of soil samples  - - 190 

*190 samples were taken total by revisiting the previous sampling locations 
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6.3 Results and Discussion 

6.3.1 Changes in Land Use and Land Cover 

          Change in crops or cropping patterns in Bangladesh started in the early sixties with the 

beginning of the green revolution, but visible changes occurred in the 1970s onward. Over the years, 

cropping patterns have changed significantly due to changes in non-economic and economic factors. 

During the late 1960s and throughout the 1970s, breakthroughs in rice production technologies 

occurred, setting in motion changes in land use, cropping intensity, and cropping patterns. Rahman 

(2010) reported that technological development and expansion of modern crop varieties, increase in the 

use of chemical fertilizers, extension of irrigation facilities, high demand for food, and all these factors 

accelerated the changes in cropping patterns and cropping intensity. Thus, with the introduction of 

irrigation facilities, high yielding cultivars and flood protection measures in some areas, most farmers 

have switched from single crop to double or triple crops with higher cropping intensities as seen in the 

study sites (Tables 6.2-6.3). Traditional varieties of crops were replaced by the new high yielding 

varieties increasing the number of crops as well as cropping intensity specifically in the HL (high land) 

and MHL (medium high land) sites. On the other hand, MLL (medium low land) and LL (low land 

sites) sites due to their inundation level are limited to one to two crops i.e., relatively lower cropping 

intensity. It is important to note that number of crops or cropping pattern have also increased by 2-3 

times in the HL and MHL units compared to 1989-92, whereas, the cropping pattern almost remains 

the same in the MLL and LL sites (Tables 6.2-6.3), with the only difference being local or traditional 

rice varieties being replaced by high yielding rice cultivars in these sites specifically those grown under 

submerged rice conditions (Tables 6.2-6.3). Similar observations have been reported by Karim and 

Iqbal (2001). Smith et al. (2000) reported that changes in SOC in agricultural soils are influenced by 

land use, management practices, and soil characteristics. Brammer (2002) noted that the introduction 

and expansion of high yielding cultivars of rice or other crops, extension of irrigation facilities, 

construction of flood control dams and thus changes in inundation lands especially in the Ganges and 

the Brahmaputra alluviums were the major factors responsible for changes in cropping patterns and 

cropping intensity.   
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Table 6.2: Changes in land use/cover in the studied sites under the Brahmaputra alluvium 

 

Sub-sites Land  

types 

Land use *(1989-92) Present land use (2012) 

 

 

Delduar 

 

 

 

High 

land 

(HL) 

1.  Sugarcane 1. Sugarcane/Pineapple/Banana 

2. Winter vegetable 

crops-Fallow 

2. Potato/Jute-Transplanted aman rice 

3. Aus rice/Jute-Winter 

crops 

3.1 Mustard-wheat-Fallow 

3.2 Potato/Jute-Transplanted aman rice 

3.3 Mustard/Potato/Cowpea-Mixed aus and 

Aman rice 

3.4 Mustard/Cowpea/Pulses-T. aman 

 

Medium 

high land 

(MHL) 

1 Aus rice/Jute- Winter 

rabi crops 

1.1 HYV Boro rice-Transplanted.aman rice 

 1.2 Mustard/Potato/Cowpea-Mixed Aus and 

Aman rice 

1.3 Mustard/Pulses/HYV Boro- Transplanted 

aman rice 

1.4 Mustard/Cowpea/Pulses-T. aman 

2. Aman rice-Mustard- 

**HYV Boro rice  

2.1 Mustard/Potato- HYV Boro rice-

Transplanted aman rice 

2.2 Wheat-Transplanted aman rice 

2.3 Potato/Jute-Transplanted aman rice 

2.4 Potato/HYV Boro-Transplanted aman rice 

Medium 

lowland  

(MLL)  

  and 

Lowland 

(LL) 

1 Mixed aus and 

Broadcast Aman 

rice/Aus rice 

1. Mustard/Cowpea/Pulses-HYV Boro rice 

2 HYV Boro rice-Fallow 2.1 HYV Boro rice-Fallow 

 2.2 HYV Boro rice-Deep Transplanted  aman 

rice 

Melandah  

 

 

Highland  

(HL) 

1 Sugarcane 1.1 Sugarcane/Banana/Potato/Wheat 

1.2 Banana 

2 Aus rice/Jute-Winter 

vegetables 

2. Wheat/Pepper/Mustard-Transplanted aman 

rice 

3 Broadcast aman rice-

Fallow 

3.1 Potato/Tobacco-Transplanted aman rice 

 3.2 Boro-Transplanted aman 

Medium 

highland 

(MHL) 

1 Aus rice/Jute-

Transplanted aman rice 

1. HYV Boro rice-Transplanted aman rice 

2 Transplanted aus rice-

Fallow 

2. Wheat/Jute-Transplanted aman 

3 Transplanted aman 

rice-Fallow 

3.1 Potato/Pulses-Boro rice; Boro-

Transplanted aman 

3.2 Wheat/Pepper/Mustard-Transplanted aman 

rice 

4 Broadcast aman rice-

Fallow 

4.1 Pepper/HYV Boro-Transplanted aman rice 

  4.2 Potato/Tobacco-T.aman rice 

Medium 

lowland 

(MLL)  

and 

Low land 

(LL) 

1 Mixed Broadcast aus  

and aman rice-Winter 

crops 

1.1 HYV Boro rice-Deep transplanted aman 

rice 

1.2 HYV Boro rice-Fallow 

2 Grazing/Fallow 2.1 HYV Boro rice-Fallow 

  * According to previous database of 1989 and 1992; Note: Italics indicates the local name of the crops  

 ** HYV= High Yielding Varieties or cultivars 
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Table 6.3: Changes in land use/cover in the studied sites under the Ganges alluvium 

 

 Sub-

sites 

Land  

types  

Land use *(1989-92) Present land use (2012) 

 

 

 

Fultala 

 

 

 

High land 

(HL) 

 

1.  Aus rice/Jute-

Vegetables 

1.1   Date tree; Coconut; Betel nut 

1.2 Homestead vegetables 

2. Aus rice/Jute-

Transplanted aman 

2.1 Banana/Vegetables 

3. Aus 

rice/Jute/Vegetable-Rabi 

crops 

3.1 Jute-T. Aman 

3.2 Transplanted aman rice-Fallow/Rabi crops 

 

Medium 

high land 

(MHL) 

1. Aus rice/Jute-

Transplanted aman 

rice/Rabi crops 

1. HYV Boro rice –Transplanted aman rice 

2. Aus rice/Jute-

Transplanted aman 

rice-Fallow 

2. HYV Boro rice-Transplanted aman rice 

3. Transplanted aman-

Fallow 

3. HYV Boro rice-Transplanted aman rice 

4. Transplanted aman 

rice-HYV Boro 

rice/ Rabi vegetable 

crops 

4. Mustard/Cowpea-HYV Boro rice-

Transplanted aman rice 

 

 

Medium 

lowland  

(MLL) 

   and 

Lowland  

(LL) 

1. Mixed aus rice and 

Broadcast aman 

rice-Fallow/Rabi 

vegetable crops 

1. HYV Boro rice-Transplanted aman rice 

2. Mixed aus rice and 

aman rice-Fallow 

2.1 Shrimp/Hogla (Fencing plant) 

3. Broadcast aman 

rice-Fallow 

3.1 HYV Boro rice-Fallow 

 3.2 Shrimp 

Mirpur  

 

 

Highland  

(HL) 

1. Sugarcane 1. Tobacco/Wheat/Maize-Transplanted aman 

rice 

2. Transplanted aman 

rice-Rabi 

pulses/Fallow 

2.1 Sugarcane 

2.2 Maize/Wheat/Jute/Vegetables 

3. Aus rice/Jute-Rabi 

vegetable crops 

3.1 Wheat/Mustard/Maize/Vegetables-Fallow 

 3.2 Wheat/Mustard/Kharif vegetables 

Medium 

highland 

(MHL) 

1. Aus rice/Jute-

Transplanted aman 

rice-Fallow 

1.1 Tobacco-Transplanted aman rice 

1.2 HYV Boro rice-Transplanted aman rice 

2. Transplanted aman 

rice-Fallow 

2.1 HYV Boro rice-Transplanted aman rice 

3. Transplanted aus 

rice-Transplanted 

aman rice-Fallow 

3.1 Tobacco/Pulses-Transplanted aman rice 

3.2 HYV Boro rice-Transplanted aman rice 

4. Aus rice/Jute-

Transplanted aman 

rice-Rabi crops 

4.1 Tobacco/Wheat/Jute/Pulses-Transplanted 

aman rice 

 4.2 HYV Boro rice-Transplanted aman rice 

Medium 

lowland 

(MLL) 

 

1. Mixed Broadcast 

aus rice and 

Transplanted aman 

rice-Rabi 

vegetables/Fallow 

1. HYV  Boro rice-Fallow 

 * According to previous database of 1989 and 1992; Note: Italics indicates the local name of the crops 
                  ** HYV= High Yielding Varieties or cultivars 
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 Thus, the intensification of vegetable crops, high-yielding rice cultivars, and other perennial 

crops are commonly grown in the HL and MHL sites. Winter crops and vegetables are specifically 

grown under intensive management in the HL and MHL sites where as MLL and LL sites are being 

used for high yielding rice cultivars under submerged conditions. Thus, the number of crops with 

modern cultivars has enhanced higher cropping intensity (CI) in the HL and MHL sites compared to 

the MLL and LL sites.  

 

6.3.2 SOC Dynamics 

 
         SOC sampled in the 2012 across all 4 sub-sites varies from 0.31 to 2.60 % and the overall mean 

is 0.84±0.469% (n = 190). SOC in the same soils during the previous study period (1989-92) ranged 

from 0.23 to 2.78 % and the overall mean was 0.97± 0.559% (n= 190) (Table 6.4). SOC in the 

Brahmaputra alluvium in the 2012 sampling varies from 0.40 to 2.60 %, with an overall mean of 

0.92±0.521% (n = 96). SOC in the same soils during the year 1989-92 sampling varied from 0.46 to 

2.78 % and the mean was 1.09± 0.622 % (n = 96). On the other hand, SOC in the Ganges alluvium 

varies from 0.31 to 2.30 %, with an overall mean of 0.76±0.397 % (n = 94). SOC in the same soils 

during the 1989-92 sampling varied from 0.23 to 2.03 % and the mean SOC was 0.85±0.458% (n = 94) 

(Table 6.4). A comparison of the present (2012) and previous (1989-92) samples, using the paired t-test 

showed that SOC has declined significantly (p<0.001) in the two alluviums over the two sampling 

periods. It provides a clear evidence of SOC declining considerably in the Brahmaputra alluvium and 

the Ganges alluvium during the 1989-92 to 2012 period (Table 6.4). Similarly, SOC declined during 

this period significantly (p<.001) at all four sub sites (Delduar, Melandah, Fultala, and Mirpur). A 

similar analysis (paired t-Test) was used to compare the SOC measured in 2012 with past SOC levels 

across the land types, i.e., HL, MHL, MLL and LL sites which also revealed that SOC has declined 

significantly (p<0.001) in the HL and MHL sites. In the MLL and LL sites, SOC in fact has increased 

significantly (p<0.05) (Table 6.4). The depletion of organic carbon in Bangladesh is mainly caused by 

low organic residues input and high cropping intensity (CI). Crop residues and livestock manures are 

widely used as fuel since firewood is in short supply. The hot humid climatic conditions also 

encourage rapid mineralization of organic matter.  
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Table 6.4: Statistics of the paired SOC (%) values of the four sub- sites 

 

Parameters of 

SOC statistics 

Time 

level 

 

N Mean SD*  P** 

 

Whole study site 2012 190 0.842 0.469  

<.001 

 

1989-92 0.978 0.559 

Brahmaputra 

alluvium 

2012 96 0.921 0.521  

<0.001 

 

1989-92 1.099 0.622 

Ganges 

alluvium 

2012 94 0.762 0.397  

<0.001 1989-92 

 

0.855 0.458 

Delduar sub-site 2012 36 1.228 0.684  

<0.001 1989-92 

 

1.502 0.811 

Melandah sub-

site 

2012 60 0.739 0.260  

<0.001 1989-92 

 

0.860 0.276 

Fultala sub-site 2012  28 1.135 0.511  

<0.05 1989-92 

 

1.311 0.518 

Mirpur sub-site 2012 66 0.603 0.178  

<0.05 1989-92 

 

0.661 0.248 

Highland (HL) 

sites 

2012  

51 

0.553 0.174  

<.001 1989-92 0.641 0.274 

 

Medium 

highland (MHL) 

 

2012 
 

98 

 

 

0.823 

 

0.422 
 

<.001 

1989-92 

 

1.066 

 

0.589 

Medium 

lowlands (MLL) 

 

 

2012 

 

34 

 

 

 

 

1.301 

 

0.593 

 

<0.05 

 1989-92 

 

1.258 0.601 

Lowlands (LL) 2012 07 1.041 0.255 <0.05 

1989-92 0.854 0.258 

*SD= Standard deviation; **P values comes from paired T-test 
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 The results of this study suggest that changes in land use have had impacts on the SOC levels. 

This is consistent with other observations (Post and Kwon, 2000). In our study, the average SOC 

depletion has taken place in the HL and MHL sites rather than the MLL and LL sites. This is due to a 

greatly reduced input of crop residues due to the increased CI. The conversion of land use from 

traditional to high-yielding crops, gown 2-3 times a year, reduces the SOC mainly through reducing 

biomass inputs into the soil, increasing soil erosion and accelerated decomposition of SOC. Similar 

findings have been reported by other works (Martinez-Mena et al., 2002; Almagro et al., 2010). 

Furthermore, it is well known that the magnitude of SOC loss increases with tillage or cultivation 

(Celik, 2005; Martinez-Mena et al., 2008). A further point to note here is that HL and MHL sites are 

more susceptible to soil erosion than MLL and LL, which could also be responsible for SOC reduction 

in them and its accumulation in the latter group land types (Lal, 2004b), a fact corroborated by Liu et 

al. (2005). Thus it can be said that low contents of SOC in the HL and MHL sites may be attributed 

due to their high land use intensity and low organic residue inputs as well their erosion susceptibility. 

 

6.3.3 SOC Temporal and Spatial Variability  

        SOC variability was assessed using the boxplot analysis. SOC variability or change was identified 

among the alluviums, the individual sub- sites and land types respectively. The results show that SOC 

variation is low in the present (2012) SOC dataset, whereas SOC variation was high in the previous 

(1989-92) dataset of the whole study site (Fig. 6.1). It means that not only SOC has decreased its 

variability has also decreased. This is because the rate of SOC decline or decreases at low SOC levels 

and at certain low levels SOC stops declining, reaching the so-called ―system equilibrium.‖ The SOC 

in the 2012 sampling averaged to 0.70%, whereas earlier (1989-92) it was 0.95%—a decline of about 

26%.  

 

SOC distribution across the alluvium shows that SOC has decreased in the Brahmaputra 

alluvium site and the boxplot shows that its distribution changed from positively skewed to symmetric 

(Fig. 6.2). Likewise, SOC has decreased in the Ganges alluvium and the distribution changed from 

symmetric to positively skewed (Fig. 6.2). The boxplot analysis (Fig. 6.2) further shows that 

previously (1989-92) SOC in the Brahmaputra alluvium averaged to 0.95% while its measurements in 

2012 averaged to 0.75%. The rate of decrease of SOC is about 21%. Previously measured SOC in the 

Ganges alluvium averaged to 0.75% and it decreased to 0.60 % during 1989-92 to 2012 period, by 

about 20% (Fig. 6.2).  
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Figure 6.1: Boxplots showing SOC change during 1989-92 to 2012 in the whole study site  

 

 
Figure 6.2: Boxplots showing SOC change measured in 1989-92 and 2012 across the alluviums 

 (A and B: SOC at 2012 and 1989-92 in the Brahmaputra alluvium respectively; C and D: SOC 

 at 2012 and 1989-92 in the Ganges alluvium respectively) 
 

 
   SOC variation is higher in the previous (1989-92) sampling than that in the present (2012) 

SOC in the Delduar sub-site, though the SOC is positively skewed in both instances (Fig. 6.3). The 

SOC measured in 2012 averaged to 1.00% whereas it was 1.30 % in 1989-92, a decrease of about 23% 

during the 1989-92 and 2012 sampling period. The average SOC measured in 2012 is lower in the 

Melandah sub-site soils than its previous counterpart (1989-92).  
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 The boxplot of the SOC datasets show that the SOC distribution has become positively skewed 

while it was negatively skewed at sub- site during 1989-92 (Fig. 6.3). The mean SOC of present dataset 

is 0.70% whereas it was 0.90% in 1989-92. So, the rate of decrease of SOC is about 23% in the 

Melandah sub- site. SOC average is lower in the present dataset (2012) than the previous SOC dataset 

(1989-92) of the Fultala sub- site. The boxplot indicates that SOC distribution in the present dataset is 

approximately symmetric whereas SOC distribution was negatively skewed in the previous SOC 

dataset (Fig. 6.3). The mean SOC of the present dataset at this sub-site is 1.20 % whereas it was 1.50% 

in 1989-92, a decrease of 20%. The boxplot of SOC dataset show that SOC is approximately 

symmetric, with low average and low variation in the Mirpur sub-site for the both times but the present 

SOC show lower variation than the previous one (Fig. 6.3). The present SOC average is 0.55%, 

whereas it was 0.70% in 1989-92, a decrease of 21% in the Mirpur sub- site.  From the above analysis, 

it is clear that SOC has been decreased in all 4 sub-sites. The sub sites belong to a diverse agro-

ecological zone and possess very dynamic physiographic units as the SOC pattern is heterogeneous. 

Due to their topographic variability, cropping nature is also diverse. In most cases, the soils are used 

for the cultivation of three or four crops without any fallow periods.  

 

 
Figure 6.3: Boxplots showing SOC change during 1989-92 and 2012 across the sub-sites. 

 (A and B: SOC at Delduar in 2012 and 1989-92 respectively; C and D: SOC at Melandah in 

 2012 and 1989-92 respectively; E and F: SOC at Fultala in 2012 and 1989-92 respectively; G 

 and H: SOC at Mirpur in 2012 and1989-92 respectively) 
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       The CI in the Delduar sub-site increased from 180 to 270 %, Melandah sub-site from 165 to 

245%, Fultala sub- site from 130-180%, and Mirpur sub-site 130 to 230%. Clearly, cropping intensity 

increased substantially in all sub-sites except Fultala (Fig. 6.4) where it increased, but only moderately. 

The Fultala sub-site belongs to the coastal salinity prone area (Brammer, 1996; FRG, 2012). CI in this 

area remains relatively moderate, because crop production in this site is hampered by the expansion of 

salinity. Nonetheless, it would appear that increased CI across the sites is a contributory factor for the 

SOC decline observed.  

 

Figure 6.4: Changes in cropping intensity between  1989-92 and 2012 in the study sites 

 

  SOC variation across the HL sites measured in 2012 is low and is positively skewed and 

whereas in the previous HL datasets (1989-92) it was positively skewed or approximately symmetric 

(Fig 6.5). Here SOC decreased from 0.64% (mean) to 0.55%, a decline of about 17%. Variation in the 

present (2012) SOC of MHL sites is much higher than seen for HL sites (Fig 6.5). The present SOC in 

the MHL is 0.82% whereas it was 0.96% in 1989-92. Here SOC decreased from 0.96% (mean) to 

0.82%, a decline of about 14%. Present SOC variation in the MLL sites (2012) is higher than the 

previous SOC (1989-92) in these land types (Fig. 6.5). The average SOC in the MLL sites is 1.30% 

whereas it was 1.25% in 1989-92, reaming largely similar over the study period (1989-92 to 2012).  

The present SOC variation in the LL sites (2012) is low (Fig 6.5). The present SOC in the LL sites is 

0.94% whereas it was 0.50% in 1989-92 – a drastic increase of is about 88% in the LL sites.  From the 

boxplot SOC analysis, it is clear that SOC has decreased in the HL MHL sites and increased in the 

MLL and LL sites. Lal (2004) noted that SOC loss due to agricultural activities in Bangladesh between 

1967 and 1995 was 16.2 Mg C/ha, with a range of 3.8 to 30.5 Mg C/ha. For a land area of 3 Mha, the 

total SOC loss was estimated to be 42.8 Tg C within a 27-year period. This decline was attributed to 

removal of crop residue and changes in cropping systems etc. Cai (1996) and Lal (2002) reported that 
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rice cultivation enhances SOC sequestration at the rate of 0.2-0.3 Mg/ha/year, which is also seen in this 

study (MLL and LL units where rice cultivation is common). The incorporation of rice residues and 

continuous flooding has become common in tropical areas, which promotes C sequestration. Long-

term experiments in the Philippines (Pampolino et al., 2008) and China (Zhang and He, 2004) showed 

that continuous cultivation of irrigated rice with balanced fertilizer on submerged soils increased SOC. 

Minasny et al. (2012) noted that SOC content in the top soils (0-15 cm) increased with the continuous 

rice cropping in Indonesia (Java) and South Korea. Wu et al. (2003) reported that non-irrigated 

cultivated soils experienced a significant C loss, ranging from 40% to 10% relative to their non-

cultivated counterpart.  

 

 
Figure 6.5: Boxplots showing SOC change during 1989-92 and 2012 across the land types of the study 

 sites (A and B: SOC in 2012 and 1989-92 in the highland sites respectively; C and D: SOC in 

 2012 and 1989-92 in the medium highland sites respectively; E and F: SOC at 2012 and 1989-

 92 in the medium lowland sites respectively; G and H: SOC in 2012 and 1989-92 in the 

 lowland sites respectively) 
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6.3.4 Concept of SOC equilibrium 

 SOC equilibrium means that SOC remains stable when land use, land management, and 

environmental properties (such as climate, CO2 concentration or nitrogen deposition) do not change 

either. Stevension (1982) proposed an equation, which is most appropriate to explain the SOC 

equilibrium situation in the HL and MHL sites of Bangladesh. The equation is dc/dt= -kC+A. Where, 

dc/dt= rate of SOC change, k= decomposition constant, C= SOC content at a time t, A= Accretion 

constant. The magnitude of A depends on land use and management. So, the difference between kC 

and A that determines the rate of SOC change. On the other hand, Lal (1998) noted that soil 

degradation processes decrease SOC and increase the magnitude of decomposition constant k, and, in 

contrast, soil restorative processes increase SOC and decrease the magnitude of k. In Bangladesh, 

agricultural land use practices that increase k due to the effects of continuous cultivation, residue 

removal in most cases of the HL and MHL types, low input subsistence agriculture, excessive tillage 

etc. The rate of sequestration in the soils of Bangladesh is very slow in most cases because of their low 

SOC contents. If the soil is continuously cultivated (Bangladesh situation), its SOC content declines 

until an equilibrium level (Ce) is achieved. The magnitude of Ce depends on the climate, land use and 

cropping pattern etc. The equation is C= Ce + (Co-Ce)e
-rt

 Where C= SOC constant at time t, r = 

fraction of C decomposed /year, t= time in years, Ce= equilibrium level, Co-Ce= difference in 

SOC=gaseous emission into the atmosphere and losses due to soil erosion and leaching as  dissolved 

and particulate carbon.  In Bangladesh, SOC has perhaps declined to an equilibrium level, and further 

decline may not occur unless land use intensity changes further.  

 

Several studies have reported that the rate of SOC change in various agricultural soils of 

Canada has nearly reached equilibrium after several decades of cultivation (Liang and MacKenzie, 

1992; Monreal and Janzen, 1993; Nyborg et al., 1995). Janzen et al. (1998) inferred that the loss of 

SOC as a result of conversion to arable agriculture has diminished to low levels in many agricultural 

soils in Canada. They also stated that the current changes in SOC dynamics are largely a function of 

current management practices. A study also showed that conversion of forest lands to permanent 

cropping decreases the SOC stocks rapidly in the initial years and at slower rate thereafter, approaching 

a new equilibrium after 30 to 50 years (Mann, 1986; Balesdent et al., 1988; Arrouays et al., 1995; 

Nieder and Benbi, 2008). Arrouays and Pelissier (1994) demonstrated that SOC storage in the 0-50 cm 

layer soil horizon declined by about 50% after 35 years of intensive corn cropping in temperate soils. 

Decline in OC in the tropical soils due to continuous cultivation has also been reported in some studies 

(Brown and Lugo, 1990; Lugo and Brown, 1993). Bernoux et al. (2006) suggested that any 

modification of land use or land management can induce variations in SOC stocks, even in agricultural 

systems that are perceived to be in a steady state.  
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6.3.5 Challenges and limitations to SOC sequestrations 

 
 Despite the potential, and the dire need for improving soil quality, enhancing SOC pool in the 

soils of Bangladesh remains a challenge for agricultural scientists, land managers and policy makers. 

Major impediments to SOC sequestration are social and economic conditions, which ultimately related 

to: (i) continuous increment in cropping intensity; (ii) removal of crop residues for fodder, fuel, and 

other purposes; (iii) use of crop residues and manure for household cooking as fuel rather than a soil 

amendment; (iv) low external input of chemical fertilizers and organic amendment causes depletion of 

the SOC pool because nutrients harvested in agricultural products are not replaced; (v) excessive tillage 

rather than conservation tillage which makes topsoil degradation through erosion and enhanced 

mineralization; (vi)  little or no fallow periods; and (viii) crop rotations often do not have nitrogen 

fixing legumes. 

 

6.4 Conclusions 

         Estimating C change or dynamics in agricultural soils is vital to assess the sequestration or loss in 

an ecosystem. The findings revealed that loss of SOC is more prominent in the HL and MHL sites 

where SOC sequestration takes place in the MLL and LL sites. SOC in the HL and MHL sites reaches 

an equilibrium state or steady state within 20-25 years. The reason for such losses of SOC in the HL 

and MHL sites are at least partly due to intensive cropping with improper management. This SOC 

depletion causes low productivity, which is considered one of the most serious threats to the 

sustainability of agriculture in Bangladesh. Policies based on recommended management practices 

(RMPs) should be formulated for soil carbon sequestration. The RMPs should include use of cover 

crops, manure and compost, better crop residues management, liming and balanced fertilizer, etc.  
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CHAPTER 7 

Soil Organic Carbon and Total Nitrogen Storage and Distribution in the 

Agricultural Soils as Affected by Soil Depths and Inundation Land Types 

 

7.1. Introduction 

 The biogeochemical cycles of carbon and nitrogen in terrestrial ecosystems have received 

increasing attention worldwide over the past few decades because the emission of their oxides 

contributes greatly to global warming (Fu et al., 2010). As soils contain significantly more carbon than 

is present as CO2 in the atmosphere, the stability of this soil store, particularly under changing 

temperature and other climatic factors, is a major source of uncertainty in future climate change 

predictions (Giardina and Ryan, 2000; Fang et al., 2012; Knorrs et al., 2005; Davidson and Janssen, 

2006). Soil is a major pool of carbon and nitrogen and plays an important role in their global cycles 

(Batjes, 1996). The loss of C and N via the emissions of greenhouse gases, GHGs (CO2, CH4 and N2O) 

from soil to the atmosphere by natural or anthropogenic processes is a contributory factor to global 

warming. Consequently, sequestration of soil organic carbon (SOC) and conservation of total nitrogen 

(TN) are of increasingly scientific and political interests worldwide. SOC and TN, often tightly 

coupled, are controlled by a number of natural and anthropogenic factors, including climate, 

vegetation, topography, parent material, intrinsic soil properties, land use and management practices 

(Homann et al., 1995). A better understanding of SOC and TN contents and their relationships with 

these controlling factors is critical to evaluate soil C and N pools as well as potentials for C 

sequestration and N conservation to offset anthropogenic greenhouse gas emissions.  

 

SOC is one of the main factors affecting soil quality and agricultural productivity. Being a 

source as well as storage of plant nutrients, SOC plays an important role in terrestrial C cycle (Freixo 

et al., 2002). Land use has a significant effect on SOC storage, since it affects the amount and quality 

of litter input, litter decomposition rate, and stabilization of SOC (Bronson et al., 2004). Information on 

global and regional SOC pool in topsoil is generally available for a variety of land use and climatic 

conditions (Batjes, 1996). However, study on SOC and TN storage in soils as affected by inundation 

land is very scanty, particularly in Bangladesh. It is widely accepted that SOC is largely concentrated 

in the top 30 cm of the soil, but there is a growing evidence that deeper soil horizons have the capacity 

to sequester high amounts of SOC (Jobbagy and Jackson, 2000; Swift, 2001) and that this should be 

considered for SOC emission-storage analysis.The importance of SOC sequestration in sub-soils 

mitigating the greenhouse effect is related to the fact that subsoil SOC occurs in fairly stable and 

highly recalcitrant forms to biodegradation (Batjes, 1996; Kogel-Knabner, 2002; Nierop and 

Verstraten, 2003). SOC surveys usually consider a fixed soil depth, typically 1 meter. Global surveys 
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based on vegetation units (Post et al., 1982) and soil taxonomic units (Eswaran et al., 1993; Batjes, 

1996) indicate that soil store 1500-1600 Pg C in the top one meter. However, soil carbon can be 

underestimated in its global budgets by fixing a lower boundary at 1m depending on the vertical 

distribution of SOC.  

 

SOC content exhibits considerable variability spatially, both horizontally according to land use 

and vertically within the soil profile (Dhakal et al., 2010). The SOC diminishes with depth regardless 

of vegetation, soil texture, and clay size fraction (Trujilo et al., 1997). Soils of the world are potentially 

viable sinks for atmospheric carbon and may significantly contribute to mitigate the global climate 

change (Lal et al., 1998). However, the assessment of potential carbon sequestration in soil requires 

estimating carbon pools under existing land uses and its depth wise distribution in the soil profile. 

Minimizing soil disturbance generally leads to soil organic carbon accumulation, while high-

intensity/frequency of cultivation causes decline in SOC (Bajracharya et al., 1998). 

 

Climate, topography and soil properties are considered as main environmental controls of SOC 

and TN (Hontoria et al., 1999). Climate is known as the primary driver for vegetation type, plant 

growth and litter decomposition (Perry, 1994), and thereby influencing SOC loss-gain balance (Rustad 

and Fernandez, 1998). Topographical factors, such as elevation, slope and horizon depth influence 

SOC levels by controlling soil water balance and thus plant litter production and decomposition, as 

well as soil erosion and geologic deposition processes (Birkeland, 1984). Among soil properties, soil 

water regime, which integrates soil and climatic characteristics and topographical features, may be a 

critical factor determining SOC contents (Grigal and Ohmann, 1992). Soil pH influences SOC and TN 

by regulating microbial activities and higher pH value has a negative effect probably because of 

accelerated decomposition of SOC (Motavalli et al., 1995). Soil texture impacts not only SOC inputs 

indirectly by influencing vegetation productivity via water availability and soil fertility (Schimel and 

Parton, 1986), but also through the role of clay in the protection of SOC from decomposition (Bationo 

et al., 2005). It is well known that higher SOC and TN are found in finer textured soils and clay content 

has been recognized as a key factor controlling soil C and N dynamics (Homann et al., 2007).  

 

 The objectives of this study were: (i) to understand some soil properties across the land types 

of eight profiles of the two alluviums highlighting the relationships between the SOC and TN; (ii) to 

estimate the SOC and TN distribution and storage across the study sites; and (iii) to assess the impact 

of land types and soil depths on SOC and TN distribution and storage. 
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        7.2. Materials and Methods 

 Two catena were selected across the two alluviums based on the land types for the current 

study.  Fortyeight soil samples from the eight profiles of the major two catena at different soil depths 

(0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm, 80-100 cm and 100-120 cm) were collected. Prior to 

analysis, the soil samples were air-dried and gently disaggregated. The soil samples were then gently 

ground using a mortar and pestle and passed through 2 mm sieve and mixed thoroughly. The samples 

were then preserved in sealed plastic containers for laboratory analysis. An outline of the site 

characteristics of the land types are presented in Table 7.1. The HL in the both alluviums occurs in the 

upper parts of the catena. The morphological properties (color, texture, drainage, structure, consistence, 

nature and distribution of roots) of the HL sites are similar in both alluviums (Table 7.1) except pH. 

The pH in the Brahmaputra alluvium (BA) site is slightly acidic to neutral whereas in the Ganges 

alluvium (GA), it is neutral to alkaline. The MHL in the both alluviums occur in the middle part of the 

catena. The morphological properties of the MHL sites in both alluviums are similar except inundation 

depth (Table 7.1). The MLL sites in both alluviums occur in the lower middle part of the catena. The 

morphological properties of the MLL sites of both alluviums are more or less similar except the 

inundation depth (Table 7.1). The LL in the both alluviums occurs in the lower part of the catena. The 

morphological properties of the LL sites of the both alluviums are more or less same except the 

inundation depth also (Table 7.1). 

 

Table 7.1: Morphological characteristics of the inundation land types of the eight profiles of the 

 Brahmaputra and the Ganges alluvium 

 

Land 

types 

Characteristic

s 

Brahmaputra alluvium Ganges alluvium 

 

HL 

Location 24˚08‘ N and 89˚ 58‘ E 23˚ 49‘ N and 89˚ 00‘ E 

Topographic 

position 

Upper part of the ridges of a 

catena under the Brahmaputra 

alluvium 

Upper part of the ridges of a catena under 

the Ganges alluvium  

Soil color Olive grey to grey with olive 

brown in the lower depths (60-

120 cm). 

Olive brown in the 0-60 cm depth and  light 

olive brown in the lower depths (60-120 

cm) 

Texture Silt loam Silt loam 

pH  6.0 to 6.9  7.5 to 7.9 

Drainage Imperfectly drained Imperfectly drained 

Structure Varied from angular blocky to 

prismatic 

Prismatic except in the plough layer 

Consistence Friable under moist conditions Friable in the 0-60 cm and slightly friable 

in the 60-120 cm under moist conditions 

Soil series  Sonatala series (Aeric 

Endoaquepts) 

 

 

 

 

 Sara series (Aeric Endoaquepts 
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MHL Location 24˚ 06‘ N and 89˚ 56‘ E 23˚ 51‘ N and 89˚ 01‘ E 

Topographic 

position 

Middle part of the ridges Middle part of the ridges 

Soil color  Light grey to grey  Light grey to grey 

Texture  Silty clay to silty clay loam  Silty clay to silty clay loam 

pH  6.5 to 7.2  6.9 to 7.6 

Drainage Imperfectly drained Imperfectly drained 

Structure  Prismatic to angular blocky, 

except in the 0-20 cm where it is 

massive 

Prismatic to angular blocky, except in the 

0-20 cm where it is massive 

Consistence Friable under moist conditions Friable under moist conditions 

Soil series  Silmandi series (Aeric 

Endoaquepts) 

 

 Ishurdi series (Aeric Endoaquepts) 

 

MLL Location 25˚00‘ N and 89˚ 45‘ E 23˚56‘ 88˚59‘ 

Topographic 

position 

Moderately lower part of the 

ridges 

Moderately gentle lower part of the ridges 

Color Grey to dark grey with light olive 

brown in the lower depths (60-

120 cm) 

Grey to dark grey with light olive brown in 

the lower depths (60-120 cm) 

Texture Clay to silty clay loam Clay to silty clay loam  

pH  6.5 to 7.0  6.5 to 7.8 

Drainage Poorly drained Poorly drained 

Structure Angular blocky except in the 0-

20 cm depths 

 Angular blocky except in the 0-20 cm 

depths 

Consistence Sticky plastic to slightly sticky 

under moist conditions 

Sticky plastic to slightly sticky under moist 

conditions 

Soil series  Ghatail soil series (Typic 

Endoaquepts) 

Gheor soil series (Typic Endoaquepts) 

 

 

LL 

Location 24˚08‘89˚55‘ 23˚56‘ 88˚59‘ 

Topographic  

position 

Lower part of the ridges of the 

Brahmaputra alluvium 

Lower part of the ridges of the Ganges 

alluvium 

Color Grey to dark grey with light olive 

brown in the lower depths (60-

120 cm) 

Light grey to dark grey with light olive 

brown in the lower depths (60-120 cm) 

Texture Clay to silty clay loam Clay to silty clay  

pH  6.5 to 7.0  6.5 to 7.9 

Drainage Poorly drained Poorly drained 

Structure Angular blocky except in the 0-

20 cm 

 Angular blocky except in the 0-20 cm 

Consistence  Sticky plastic to slightly sticky 

under moist conditions 

Sticky plastic to sticky under moist 

conditions 

Soil series Balina series (Typic 

Endoaquepts) 

 Garuri series (VerticEndoaquepts) 
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 Morphological characteristics of the inundation land types were studied in the field using the 

guidelines of FAO (2006). Soil pH was determined in soil-water suspension (1:2.5 w/v) using a pre-

calibrated pH meter following the procedure of Page et al. (1982). SOC was determined by following 

the method of Walkley and Black (Nelson and Sommers, 1982) and the Kjeldahl method (Bremner and 

Mulvaney, 1982) was used for total soil nitrogen (TSN) determination. The particle size analysis of 

soils was carried out by the hydrometer method as described by (Gee and Bauder, 1986). Soil bulk 

density was determined by using the core method as described by Blake and Hartge (1986). Details of 

the above methods were given in Chapter 3 (Section 3.3). It may be noted that the bulk density and 

SOC concentration (%) are the two prerequisites for estimating SOC stock or storage. Thus, the SOC 

and TN storage were calculated using the following equations (Batjes 1996; Chen et al. 2007; Zhang et 

al. 2013).  

Total Soil Organic Carbon (TSOC) = SOCi x Bi x Di 

Total Soil Nitrogen (TSN) = TNi x Bi x Di 

Eq. (i)  

Eq. (ii) 

Where, equation (i) represents TSOC; SOCi is the SOC content on the i
th
 layer (g/kg);  

Equation (ii) represents TSN; TNi is the total nitrogen content on the i
th 

layer (g/kg);  

Bi is the bulk density of the i
th
 layer (g/cc), and Di is the depth of the i

th
 layer (cm).  

      

 Data is reported as mean± standard deviation. Two-way analysis of variance (ANOVA) was 

employed to assess the effects of land types and soil depths on SOC and TN storage or concentrations. 

One-way ANOVA was used to examine the effect of soil depths on SOC and TN storage. Regression 

analyses were used to test the relationships between SOC and TN storage at 0-20 cm depths, 0-60 cm 

depths, and 0-120 cm depths. All statistical analyses were conducted using SPSS, version 20.0.  

 

7.3 Results and Discussion 

7.3.1 Soil Properties across the Alluviums 

 The soil pH across the land types of the Brahmaputra alluvium (BA) ranged from 5.6 to 7.0 

with a mean value of 6.6 (Table 7.2), whereas soil pH in the Ganges alluvium (GA) varied from 6.1 to 

7.6 with a mean value of 7.06 (Table 7.3). The higher pH in the Ganges alluvium than the Brahmaputra 

alluvium is consistent with the findings of Ali et al. (2003) for agricultural soils in Bangladesh. The 

reason of higher soil pH in the Ganges alluvium than the Brahmaputra alluvium is due to the 

calcareous nature of the soils. The organic carbon (OC) content in the soils of the Brahmaputra 

alluvium ranged from 0.18% to 1.82% with a mean value of 0.66% (Table 7.2) whereas, OC varied 

from 0.14% to 1.81% with a mean value of 0.52 % in the soils of Ganges alluvium (Table 7.3). The 

OC content is slightly higher in the soils of Brahmaputra alluvium which may due to the nature of their 

biophysical conditions. The higher OC in the surface layer is due to relatively greater biomass inputs in 
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the form of manure and crop residues. The SOC content is higher in the lowland sites than the other 

land types in the both alluviums. TN contents across the land types of the Brahmaputra alluvium (BA) 

ranged from 0.03% to 0.18% with a mean value of 0.088% (Table 7.2) whereas, TN varied from 0.03 

% to 0.20% with a mean value of .066% in the land types of Ganges alluvium (GA) (Table 7.3).  

  
The C: N ratio in the surface soil (0-20 cm) was slightly higher than the subsurface horizons. 

Cultivation and residue input affects the C: N ratio in the surface soils. As a result, The C: N ratio in 

the surface soils tend to be higher than those less cultivated horizons. In the current study, the C: N 

ratio ranged from 6 to 10 across the two alluviums (Tables 7.2-7.3). This is relatively low variation in 

the C: N ratio, which may be due to the similar climatic conditions and similar agricultural 

management techniques adopted by the farmers. The bulk density in the four profile of the BA varied 

from 1.18 to1.32 g/cc where the mean value was 1.24 (Table 7.2). On the other hand, the bulk density 

in the four profile of the GA varied from 1.15 to 1.33 g/cc where the mean value was 1.23 (Table 7.3). 

The bulk density in the surface layer is relatively low and it increases gradually and becomes low in the 

depth of 100-120 cm, across the land types. The bulk density of the surface soil is low because the 

surface soils are ploughed intensively with subsequent disturbances where most of the aggregates or 

clods are destroyed. Silt content in the soils of BA soils ranged from 39% to 72% with a mean value of 

58% (Table 7.2) whereas in GA soils it ranged from 42% to 70% with a mean value of 58% (Table 

7.3). Silt is the dominant size fraction in the study sites. Clay content in the BA soils ranged from 10% 

to 48% with a mean value of 30% (Table 7.2), whereas in the GA soils it ranged from 10% to 53% 

with a mean value of 30% (Table 7.3). On the other hand, the sand content in the soils of BA ranged 

from 5% to 26% with a mean value of 12% (Table 7.2), whereas sand contents in the soils of GA 

ranged from 6% to 24% with a mean value of 8% (Table 7.3). The sand contents seem to be relatively 

low across the eight land types of the two alluviums. 
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Table 7.2:  Soil properties of the inundation land types across the four profiles of the Brahmaputra 

 alluvium 

 

Land 

types 

Depths 

(cm) 

pH 

(H2O) 

Organic 

carbon 

% 

Total 

N 

% 

*C/N 

ratio 

Sand 

% 

Silt 

% 

Clay 

% 

Bulk 

Density 

g/cc 

 

Highland 

(HL) 

0-20 6.20 0.71 0.10 7 10 64 26 1.20 

20-40 6.60 0.46 0.075 6 12 64 24 1.22 

40-60 6.60 0.40 0.076 6 14 66 20 1.22 

60-80 6.70 0.36 0.070 6 16 72 12 1.24 

80-100 6.70 0.30 0.050 6 20 68 12 1.24 

100-120 6.90 0.26 0.050 6 26 64 10 1.18 

 

Medium 

high land 

(MHL) 

0-20 6.05 0.88 0.09 9 6 64 30 1.22 

20-40 6.60 0.63 0.08 8 8 64 28 1.24 

40-60 6.75 0.54 0.07 8 10 66 24 1.24 

60-80 6.81 0.40 0.06 7 16 62 22 1.24 

80-100 6.84 0.25 0.03 7 21 59 20 1.20 

100-120 6.80 0.18 0.03 6 22 64 14 1.20 

 

Medium 

Low land 

(MLL) 

0-20 6.03 1.05 0.12 9 5 47 48 1.24 

20-40 6.80 0.68 0.08 8 7 58 35 1.28 

40-60 6.93 0.60 0.08 7 9 57 34 1.28 

60-80 6.99 0.51 0.07 7 12 56 32 1.30 

80-100 7.00 0.41 0.06 7 15 55 30 1.30 

100-120 7.00 0.33 0.06 6 17 61 22 1.20 

 

 

Lowland 

(LL) 

0-20 5.6 1.82 0.18 10 6 39 55 1.22 

20-40 6.0 1.60 0.17 9 5 45 50 1.26 

40-60 6.2 1.0 0.14 7 5 45 50 1.26 

60-80 6.5 0.91 0.13 7 7 52 45 1.32 

80-100 6.8 0.90 0.12 7 7 49 44 1.32 

100-120 7.0 0.71 0.11 6 8 50 42 1.20 
Mean 

± SD 
 6.60± 

0.38 

0.66± 

0.40 

0.08± 

0.03 

7.16±

1.16 

11.83

±6.09 

57.95± 

8.54 

30.37± 

13.31 

1.24± 

0.04 

*C/N ratio was rounded to the nearest complete figure. 
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Table 7.3:  Soil properties of the inundation land types across the four profiles of the Ganges  

 Alluvium 

  

Land 

types 

Depth 

(cm) 

pH 

(H2O) 

Organic 

carbon 

% 

Total 

N 

% 

*C/N 

ratio 

Sand 

% 

Silt 

% 

Clay 

% 

Bulk 

Density 

g/cc 

 

Highland 

(HL) 

0-20 6.98 0.80 .084 9 8 62 30 1.20 

20-40 7.20 0.38 .048 8 10 70 20 1.21 

40-60 7.26 0.30 .042 7 15 65 20 1.22 

60-80 7.31 0.28 .042 6 19 66 15 1.23 

80-100 7.30 0.21 .030 7 20 68 12 1.20 

100-120   7.30 0.20 .030 6 24 66 10 1.15 

Medium 

high land 

(MHL) 

  0-20 6.30 1.0 0.12 8 6 49 45 1.20 

20-40 6.77 0.51 .071 7 9 52 39 1.23 

40-60 6.80 0.40 .050 8 11 57 32 1.24 

60-80 7.09 0.31 .050 6 14 59 27 1.25 

80-100 7.01 0.20 .030 6 19 57 24 1.20 

100-120 7.05 0.14 .022 6 21 59 20 1.18 

Medium 

Low land 

(MLL) 

0-20 6.70 1.4 0.14 10 5 42 53 1.22 

20-40 7.20 0.61 0.07 9 7 53 40 1.25 

40-60 7.40 0.50 0.07 8 8 57 35 1.28 

60-80 7.40 0.38 0.06 8 10 60 30 1.28 

80-100 7.60 0.21 0.03 7 13 57 20 1.28 

100-120 7.60 0.20 0.03 7 16 64 20 1.20 

 

Lowland 

(LL) 

0-20 6.1 1.81 0.20 9 4 55 50 1.25 

20-40 6.7 0.79 0.09 9 5 45 50 1.28 

40-60 6.8 0.61 0.08 8 7 53 40 1.33 

60-80 7.1 0.50 0.08 8 8 57 35 1.33 

80-100 7.1 0.39 0.06 7 10 60 30 1.21 

100-120 7.4 0.39 0.06 7 10 60 30 1.21 

 
Mean 

± 

SD 

 7.06 

±  

0.37 

0.52 

± 

0.40 

0.06 

± 

0.04 

7.54 

± 

1.14 

11.62

± 

5.65 

58.0

4± 

6.89 

30.29 

± 

12.12 

1.23 

± 

0.04 

*C/N ratios were rounded to nearest complete figure  

 

 A positive relationship was found between OC and TN contents in the soils of BA (r= 0.95) 

(Fig. 7.1) and GA (r= 0.98) (Fig. 7.2) respectively. From the above data, it is important to note that 

there is a strong correlation between OC and TN which indicates that the bulk of soil N is tied up in the 

SOC pool across the study sites. Manu et al. (1991) and Bationo et al. (2005) noted that there is a 

strong correlation of OC with TN in soils. Esteban et al. (2000) noted that land use is a major 

determinant of SOC and TN distribution besides climate. Land use is governed by the inundation or 

topographic land levels. Thus topographic land types may act as the drivers of SOC and TN 

distribution. Lower SOC and TN in the HL and MHL sites depend on the variation of land types as 

well as land use and may be attributed as the result of decreased organic residues inputs. This is 

supported by Liu et al. (2012), who reported that net losses of SOC and TN occur due to the change in 
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land use, which resulted in decreased organic inputs. As reported by Cambardella and Elliot (1992), 

changes in land use and management practices may alter the distribution of SOC and TN among labile 

and stable pools with kinetically different turnover pools. They also reported intensive cultivation 

reduces the SOC and TN because of the destruction of soil aggregates by intensive levels of tillage.  

 

 

Figure 7.1: Relationship of SOC and TN across the land types of the four profiles of the Brahmaputra 

 alluvium 

 

 
 
Figure 7.2: Relationship of SOC and TN across the land types of the four profiles of the Ganges 

 alluvium 
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the stabilizing effect where SOC can be trapped in their small spaces between clay particles, making 

them inaccessible to micro-organism and thereby slowing decomposition. In addition, clay offers 

chemical protection to organic carbon through adsorption on to clay surfaces, which again prevents 

organic matter from being decomposed. In the current study, a positive relationship was found between 

SOC and clay contents in the soils of BA (r
 
= 0.87) (Fig. 7.3) and GA (r

 
= 0.82) (Fig. 7.4), whereas a 

negative correlation was found between SOC and sand contents in the soils of BA (r= -0.78) (Fig 7.5) 

and GA (r = -0.73) (Fig. 7.6). David et al. (2003) reported that the clay fraction of surficial sediments, 

Smectite is diagnostic with high values (~39%) in the Ganges and low values (~3%) in the 

Brahmaputra alluvium. In contrast, the Brahmaputra alluvium contains more kaolinite (29% vs. 18%), 

illite (63% vs. 41%), and chlorite (3% vs. 1%) than the Ganges alluvium. 

 Plante et al. (2006) found a significant relationship between clay and SOC contents where the amount 

of clay increased, the amount of C retained in soil also increased. Similar observations of SOC and 

clay interrelations were observed by other workers (Burke et al., 1989; Arrouays et al., 2006). Further, 

Kogel-Knabner et al. (2008) reported that clay protects SOC from decomposition by developing stable-

clay organic complex. From the above analysis, it is clear that soils with high clay content tend to have 

higher SOC than soils with lower clay content.  

 

 
 
Figure 7.3: Relationship of SOC and clay across the land types of the four profiles of the Brahmaputra 

 alluvium 
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Figure 7.4: Relationship of SOC and clay across the land types of the four profiles of the Ganges 

 alluvium 

 

 
 

Figure 7.5: Relationship of SOC and sand across the land types of the four profiles of the Brahmaputra 

 alluvium. 
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Figure 7.6: Relationship of SOC and sand across the land types of the four profiles of the Ganges 

 alluvium 

 

7.3.2 SOC Contents at Different Soil Depths across the Inundation Land Types 

  The highest SOC concentration was found in the topsoil (0-20 cm) across the eight land types 

of the two alluviums (Table 7.4). SOC concentration depends on the balance between OC input and 

loss from soils (Zhuang et al., 2007). Topsoil layer (0-20 cm) is tilled and receives greater residue 

inputs which are subsequently mineralized. Thus this layer possesses higher SOC than the other soil 

layers (20-120cm). Chaplot et al. (2010) reported that the topsoil layer may be able to sequester 

atmospheric CO2 and thus mitigate climate change where more biophysical activities take place. Xiao-

Wei et al. (2012) noted that surface soils are rich in SOC due to being covered by highly productive 

vegetation or subject to long-term use of organic fertilizers or flooding conditions. SOC in the top soil 

layer (0-20 cm) varies significantly (P<0.001) when tested using Tukey‘s Honestly Significant 

Difference (HSD). Besides, SOC concentration showed a decreasing trend from the top soil layer to the 

bottom layer for all land types of the two alluviums (Table 7.4).  

 

The mean SOC concentration across the Brahmaputra alluvium (BA) varies from 0.41% (4.15 

g/kg) to 1.15 % (11.56 g/kg) (Table 7.4). Lowland sites of BA show the highest SOC concentration 

than the HL and MHL sites. The mean SOC concentration across the Ganges alluvium (GA) varies 

from 0.36% (3.61 g/kg) to 0.74% (7.48 g/kg) (Table 7.4) where low land sites show the highest SOC 

concentration than the HL and MHL sites (Table 7.4). Among the two alluviums, the Brahmaputra 

alluvium (BA) contains more SOC than the Ganges alluvium (GA). Low land (LL) sites contain a 

higher SOC concentration in both the alluviums than the other land types (HL and MHL) (Table 7.4). 

Thus, lowland (LL) and even medium lowland (MLL) types of the both alluviums contain higher SOC 
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due to the nature of inundation depths. On the other hand, the HL and MHL types lose their SOC due 

to the increased decomposition being not inundated, erosion, and more intensive tillage (Houghton, 

1991; Ritchie et al., 2007).  Roose and Barthes (2001) noted that SOC is lost in the higher topography, 

through erosion, runoff and leaching where erosion and runoff contribute a large portion of carbon 

losses and these are highly accelerated in cultivated land as compared to undisturbed land.  

 

Table 7.4:  Soil organic carbon (SOC) distribution (%) at different soil depths across the eight land 

 types of the alluviums 

 

Depths 

(cm) 

Brahmaputra Floodplains Ganges Floodplains 

HL MHL MLL LL HL MHL MLL LL 

0-20 0.71 0.88 1.05 1.82 0.80 1.0 1.4 1.81 

20-40 0.46 0.63 0.68 1.60 0.38 0.51 0.61 0.79 

40-60 0.40 0.54 0.60 1.0 0.30 0.40 0.50 0.61 

60-80 0.36 0.40 0.51 0.91 0.28 0.31 0.38 0.50 

80-100 0.30 0.25 0.41 0.90 0.21 0.20 0.21 0.39 

100-120 0.26 0.18 0.33 0.71 0.20 0.14 0.20 0.39 

Mean±  

SD 

0.41± 

0.16 

0.48± 

0.25 

0.59± 

0.25 

1.15± 

0.44 

0.36± 

0.22 

0.42± 

0.31 

0.55± 

0.44 

0.74± 

0.54 

 

7.3.3 TN Contents at Different Soil Depths across the Inundation Land Types 

 
 The highest TN concentration was found in the topsoil (0-20 cm) across the eight land types 

like SOC. TN concentration across the four land types of Brahmaputra alluvium (BA) varied from 0.03 

to 0.18% (0.30 to 1.8 g/kg) where the MLL/LL types contains the highest TN concentration and the HL 

and MHL contains the lowest TN concentration. TN concentration across the land types of the Ganges 

alluvium (GA) varied from 0.02 to 0.20% (0.22 g/kg to 2.0 g/kg) where MLL and LL sites contains 

highest TN concentration and the HL and MHL sites contains the lowest TN concentrations which are 

consistent with their SOC levels. MLL and LL types contain higher TN concentrations than the HL and 

MHL land types across the alluviums (Table 7.5). Among the two alluviums, BA contains more TN 

than the GA as reported for SOC. TN in the top layer varies significantly (P<0.001) when tested using 

Tukey‘s Honestly Significant Difference (HSD). TN concentration showed a decreasing trend 

downward from the top soil layer (0-20 cm) across the land types of the two alluviums.  
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Table 7.5: Total nitrogen (TN) distribution (%) at different soil depths across the eight land types of the 

 alluviums  

 

Depths 

(cm) 

Brahmaputra alluvium Ganges alluvium 

HL MHL MLL LL HL MHL MLL LL 

0-20 0.10 0.09 0.12 0.18 0.08 0.12 0.14 0.20 

20-40 0.07 0.08 0.08 0.17 0.04 0.07 0.07 0.09 

40-60 0.07 0.07 0.08 0.14 0.04 0.05 0.07 0.08 

60-80 0.07 0.06 0.07 0.13 0.04 0.05 0.06 0.08 

80-100 0.05 0.03 0.06 0.12 0.03 0.03 0.03 0.06 

100-120 0.05 0.03 0.06 0.11 0.03 0.02 0.03 0.06 

Mean 

±  

SD 

0.07 

±  

0.01 

0.06 

±  

0.02 

0.07 

±  

0.02 

0.14 

± 

0.02 

0.04 

± 

0.01  

0.05 

± 

0.03  

0.06 

±  

0.04 

0.09 

±  

0.05 

 
The above result showed that the effect of land types and soil depths across the study sites on SOC is 

significant (Table 7.6) indicating both land types and soil depths are important factors influencing the 

SOC distribution across the inundation land types. A similar observation of the effect of topographic 

land condition and soil depths on SOC have been made by others (Chen et al., 2007; Fang et al., 2012; 

Fu et al., 2010). 

 Land types and soil depths exhibited a significant effect on SOC and TN concentration as 

tested by two-way ANOVA. The SOC and TN contents varied significantly (P<0.001) across the land 

types as well as soil depths (Table 7.6). Land types and soil depths showed a significant effect on TN 

concentration (P<0.001) (Table 7.6), and the distribution of TN in soil was similar to SOC. 

 

Table 7.6: Two-way ANOVA for the effect of land types and soil depths on SOC and TN   

 

 

Parameters 

 

df 

Soil Organic carbon (SOC) Total nitrogen (TN) 

F P F P 

Land types 7 34.949 <0.001 31.710 <0.001 

Soil depth 5 18.865 <0.001 27.808 <0.001 

 
 The current study shows that the highest SOC and TN concentration were found in the top soil 

layer (0-20 cm) in all the profiles across the alluviums. This layer is the most important part of the 

profile where maximum pedogenic activities take place. The high residue inputs in the surface soils 

may contribute to the increased SOC and TN distribution (Wu et al., 2004; Liu et al., 2005). SOC and 

TN is less variable in the deeper soil layers (60-120 cm) across the land types, than the 0-60 cm layer, 

which suggests that SOC and TN remained relatively stable in the soil depths between 60-120 cm. The 

study also shows that SOC and TN were found variable within 0-60 cm depths across the land types 

where most physical and chemical activities taken place. The SOC and TN contents across the land 

types decreased with increasing depths (Tables 7.4-7.5). On the other hand, the lowest SOC and TN 
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were found in the HL and MHL sites and the highest SOC and TN were found in the LL sites across 

the two alluviums. A moderate level of SOC and TN was found in the MLL types (Tables 7.4 -7.5).  

        
The above results agreed with other findings (Chen et al., 2007), indicating that both 

topographic nature and land use influence the SOC as well as TN contents. The lower SOC in the HL 

and MHL sites may be attributed to the reduced residue input in the soil and extensive soil erosion 

because of their higher elevation in the landscape and also due to intensive tillage, which is common in 

such land types. Guo and Gifford (2002) reported that plant roots also play an essential role in 

influencing SOC and TN distribution. Wei et al. (2009) revealed that distributions of fine roots are 

lower in higher topographic level than lower topographic level due to differences in vegetation. 

Similarly, LL and MLL types provide fine root system under anaerobic rice-rice cultivation with even 

residue decomposition which may also be responsible for higher SOC and TN contents in the MLL and 

LL types. The SOC and TN contents of the MLL and LL sites were higher than those of other land 

types, which may be attributed due to their inundation nature as well as their nature of farming. The 

topographic nature and anaerobic farming systems in the MLL and LL types may have greatly reduced 

the nutrients losses from reduced soil erosion. Erosion and leaching are more prevalent in the HL and 

MHL types because their drainage. SOC and TN losses are more prevalent in the HL and MHL sites 

due to the processes of erosion and runoff. Roose and Barthes (2001) noted that erosion and runoff 

contribute a large portion of C losses and these are highly accelerated in the cultivated land than the 

uncultivated soils. 

 

7.3.4 SOC and TN Storage at Different Soil Depths for Different Inundation Land Types 

 The average amounts of SOC storage varied from 1.70 kg/m
2
 to 4.52 kg/m

2
 in the 0-20 cm 

layer, 0.97 kg/m
2
 to 2.52 kg/m

2
 in the 20-60 cm layer and 0.33 kg/m

2
 to 2.40 kg/m

2
 in the 60-120 cm 

layer across the two alluviums of the eight profiles (Table 7.7). On the other hand, SOC storage across 

the inundation land types of the BA varied from 6.03 to 17.46 kg/m
2
. SOC storage across the 

inundation land types of the GA varied from 5.20 to11.37 kg/m
2
 (Table 7.7). Similar observations have 

been reported by several studies regarding the SOC storage. Tarnocai (1997) reported that average 

SOC content in the surface soils in Canada ranged from 4.9 to 18.7 kg/m
2
. Sakin (2012) also reported 

that SOC content varies from 3.57 kg/m
2
 to 6.47 kg/m

2
 in the Harran plain soils in Southeastern 

Turkey. In the present study, compared with the HL and MHL sites, the SOC storage in the MLL and 

LL sites was higher across the two alluviums. The SOC storage decreases with increasing depths 

across the different land types. 
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Table 7.7: Soil organic carbon storage (kg/m
2
) at different soil depths across the land types of the two 

 alluviums 

 

Depths 

(cm) 

Brahmaputra alluvium Ganges alluvium 

HL MHL MLL LL HL MHL MLL LL 

0-20 1.70 2.14 2.60 4.44 1.92 2.40 3.41 4.52 

20-40 1.12 1.56 1.74 4.03 0.91 1.25 1.52 2.02 

40-60 0.97 1.33 1.53 2.52 0.73 0.99 1.28 1.62 

60-80 0.89 0.99 1.32 2.40 0.68 0.77 0.97 1.33 

80-100 0.74 0.60 1.06 2.37 0.50 0.48 0.53 0.94 

100-120 0.61 0.43 0.79 1.70 0.46 0.33 0.48 0.94 

Total 6.03 7.05 9.04 17.46 5.20 6.22 8.19 11.37 

Mean 

± SD 

1.00± 

0.38 

1.17± 

0.63 

1.50± 

0.63 

2.91± 

1.07 

0.86± 

0.54 

1.03± 

0.74 

1.36± 

1.08 

2.91± 

1.07 

 
 TN storage in the soils was similar to SOC (Table 7.8). The average amounts of TN storage 

varied from 0.20 kg/m
2
 to 0.50 kg/m

2
 in the 0-20 cm layer, 0.10 kg/m

2
 to 0.42 kg/m

2
 in the 20-60 cm 

layer and 0.07kg/m
2
 to 0.34 kg/m

2
 in the 60-120 cm layer across the alluviums of the eight profiles 

(Table 7.8). The TN storage across the inundation land types of the BA ranged from 0.85 to 2.12 

kg/m
2
. TN storage across the inundation land types of the GA varied from 0.65 to1.44 kg/m

2 
(Table 

7.8). Similar observations have been reported by several studies. Carter et al. (1998) reported that TN 

in Canada farming soils ranged from 0.36 to 1.05 kg/m
2
 and the TN storage in the MLL and LL sites 

were higher than those HL and MHL soils. They also noted that TN storage also varied with the 

increasing depths across different land types. Liu et al. (2012) also reported that the average densities 

of SOC and TN at a depth of 1m were about 7.72 kg/m
2 

and 0.93 kg/m
2
,
 
respectively, in the 

northeastern margin of the Qinghai-Tibetan Plateau. The above situation regarding SOC and TN 

contents are consistent with Bangladesh situation because plateau margin occupies alluvial 

characteristics similar to the alluvial soils of Bangladesh.  

 

Table 7.8: Total nitrogen storage (kg/m
2
) at different soil depths across the land types of the two 

 alluviums 

 

Depths 

(cm) 

Brahmaputra alluvium Ganges alluvium 

HL MHL MLL LL HL MHL MLL LL 

0-20 0.24 0.21 0.30 0.44 0.20 0.28 0.34 0.50 

20-40 0.19 0.19 0.21 0.42 0.11 0.17 0.17 0.24 

40-60 0.19 0.17 0.20 0.35 0.10 0.12 0.17 0.21 

60-80 0.17 0.14 0.18 0.34 0.10 0.12 0.15 0.21 

80-100 0.12 0.07 0.15 0.31 0.07 0.07 0.07 0.14 

100-120 0.11 0.07 0.14 0.26 0.07 0.07 0.07 0.14 

Total 1.02 0.85 1.18 2.12 0.65 0.83 0.97 1.44 

Mean 

± SD 

0.17± 

0.04 

0.14± 

0.06 

0.19± 

0.05 

0.35± 

0.06 

0.10± 

0.04 

0.13± 

0.07 

0.16± 

0.09 

0.23± 

0.13 
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The effect of soil depths on SOC and TN storage in soils are presented in Table 7.9. Soil depths had 

significant influence (P<0.05) on SOC and TN storage as assessed by a one-way ANOVA study.  

 

Table 7.9: One-way ANOVA for the effect of soil depths on SOC and TN storage in soils  

 

 

Depths (cm) 

 

df 

Soil Organic carbon (SOC) Total nitrogen (TN) 

F P F P 

0-20 8 28.034 <0.05 17.308 <0.05 

20-60 8 6.281 <0.05 6.179 <0.05 

60-120 8 8.446 <0.05 8.560 <0.05 

F and P values, from one-way ANOVA; df is degrees of freedom;  

All values show significant at P<0.05 

 

 The relationships between SOC and TN storage among the topsoil (0-20 cm) and deeper layers 

(0-60 cm), and (0-120 cm) are shown in Figs. 7.7-7.10. All the changes in SOC and TN storage with 

increasing depths were evaluated using regression equations. The relationships of SOC storage 

between the soil depths 0-20 cm and 0-60 cm (Fig. 7.7), and 0-20 cm and 0-120 cm (Fig. 7.8) show 

strong correlations (r = 0.92 and 0.85 respectively). Likewise, the relationship of TN storage between 

the soil 0-20 cm and 0-60 cm depths (Fig. 7.9) and 0-20 cm and 0-120 cm depths (Fig. 7.10) show 

strong correlations (r = 0.86 and 0.80 respectively).  

      
In this study, mean SOC and TN storage calculations also showed that SOC was higher in the 

surface soil (0-20 cm depth) than that in the deeper layers (Tables 7.7-7.8). This is consistent with the 

findings of Zhang et al. (2011). On the other hand, SOC and TN storage was higher in the LL and 

MLL sites than that in the HL and MHL sites (Tables 7.7-7.8) across the alluviums, which indicates 

that the  topographic variability as well as their water recession conditions are related to carbon loss or 

sequestration. Ritchie et al. (2007) reported that topographic patterns and processes involved in SOC 

redistribution across agricultural landscapes are the key to understanding the potential for SOC 

dynamics. In the present study, SOC and TN storage was higher in the surface level (0-20 cm) than the 

deep layers (60-120 cm) across the study sites.  
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Figure 7.7: Relationship of SOC storage between the soil depths 0-20 cm and 0-60 cm  

      in the eight  profiles of the two alluviums  

 

 

 
 

 

Figure 7.8: Relationship of SOC storage between the soil depths 0-20 cm and 0-120 cm 

    in the eight profiles of the two alluviums 
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Figure7.9: Relationship of TN storage between the soil depths 0-20 cm and 0-60 cm in the eight 

 profiles of the two alluviums 

   

 

 
 

Figure 7.10: Relationship of TN storage between the soil depths 0-20 cm and 0-120 cm in the eight 

 profiles of the two alluviums 

 

 On the other hand, mean SOC and TN storage was higher in the Brahmaputra alluvium (BA) 

than the Ganges alluvium (GA). SOC storage increases as it progresses from HL towards LL across the 

land types of BA and GA (Fig. 7.11); similarly, TN storage increases from HL to towards LL across 

the land types of BA and GA (Fig. 7.12). The low SOC in the soils of HL and MHL sites is linked to 

the removal of crop residues, deterioration of soil aggregation due to intensive tillage (e.g., Gregorich 

et al., 1998; Six et al., 1998; Balesdent et al., 2000; Stoate et al., 2001; Hamza and Anderson, 2005). 
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The highest SOC densities were found in MLL and LL sites in each alluvium where these lands are 

utilized by irrigated paddy cultivation. Higher SOC densities in flooded paddy soils agrees well with 

previous studies (Jia-Guo et al., 2010) and is explained by natural fertility of wetlands and other 

lowlands and by the long-term use of organic fertilizers and flooding, which provide a strong supply of 

organic carbon (OC) with lower decomposition rates (Fu et al., 2001; Wang et al., 2003).  

 
Figure 7.11: Boxplots showing SOC storage (%) across the eight profiles of the two alluviums 

 (A, B, C, and D: SOC storage (%) at highlands, medium highlands, medium lowlands and 

 lowlands respectively across the Brahmaputra alluvium; AA, BB, CC, and DD: SOC 

 storage (%) at highlands, medium highlands, medium lowlands and lowlands respectively 

 across the Ganges alluvium)  
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Figure 7.12: Boxplots showing total nitrogen (TN) storage (%) across the eight profiles of the two 

 alluviums (A, B, C, and D: TN storage (%) at highlands, medium highlands, medium lowlands 

 and lowlands respectively across the Brahmaputra alluvium; AA, BB, CC, and DD: SOC 

 storage (%) at highlands, medium highlands, medium lowlands and lowlands respectively 

 across the Ganges alluvium) 

 

7.3.5 SOC Stock across the Two Alluviums 

 SOC stock in soil across the eight profile samples (0-120 cm depth) (Table 7.10) indicates that 

SOC stock is higher in the Brahmaputra alluvium (0.63 Pg) than the Ganges alluvium (0.43Pg). 

Hussain (2002) reported that soils of Bangladesh have a total of 2.2 Pg of organic carbon at the 120 cm 

depths. Lal (2004) estimated SOC pool was estimated in India at 21Pg at 30-cm depth and 63 Pg at 

150-cm depth. He also reported that SOC concentration in most cultivated soils is less than 10g/kg, 

which is consistent with the present study. The prevalent low levels of SOC concentrations are 

attributed to excessive tillage, imbalanced fertilizer use, and little or no crop residue returned to the 

soil.  

 

Table 7.10:  Carbon stock (Pg) in soils across the land types of the alluviums at 120 cm depths 

 

Land types Area (ha) SOC stock (kg/m
3
) SOC stock (Pg) 

 BA GA BA GA BA GA 

HL 2,17,097 2,49,798 6.03 5.20 0.013 0.012 

MHL 2,00,610 2,11,359 7.05 6.22 0.014 0.013 

MLL 2,27,016 2,39,788 9.04 8.19 0.028 0.019 

LL 32,597 1,93,649 17.46 11.37 0.0025 0.022 

Total 1.6 million 1.4 million 39.58 30.98 0.63 0.43 
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7.4 Conclusions 

 SOC and TN were higher in the Brahmaputra alluvium (BA) than the Ganges alluvium (GA). 

SOC and TN contents were higher in the surface soils than the other horizons.The SOC content is 

higher in LL and MLL types than the other land types of the both alluviums. A strong correlation was 

found between OC and TN in the soils of the two alluviums.The lower C:N ratio and lower bulk 

density in the surface soil is thought to be due to their intensive level of cultivation. The results showed 

that land types and soil depths significantly affect SOC and TN distribution, as well as their storages in 

soils. The SOC and TN contents in the surface layer are higher than those in the deeper layers due to 

the high residue inputs. The MLL and LL sites have higher SOC and TN than the HL and MHL sites 

across the alluviums. SOC stock calculation indicates that it is higher in the BA than the GA. Thus, the 

variation in SOC and TN distribution and storage is related to land condition and local management. 

These factors are also governed by the inundation nature across the study sites. Thus, SOC loss or gain 

in the soil profile is related to the nature of land types, soil depths, and their management.   
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CHAPTER 8 

 

8.1 Summary and Recommendations 

 
Bangladesh is an agrarian country where soil nutrient mining in agriculture is common. The low 

organic matter content is a general problem in most agricultural soils of Bangladesh. SOC depletion is 

mainly caused by low organic residue input and high cropping intensity. The high cropping intensity 

combined with limited fallow periods in cropping systems causes a rapid decline in soil biophysical 

conditions. In addition, the urgency of meeting the ever-increasing population‘s demand for 

agricultural produce is further declining soil quality and exacerbating SOC degradation. Strategies to 

address these issues involve enhancing the SOC pool to reverse the degradation processes and improve 

ecosystem functions. The release of this study is thus timely. This work investigated the SOC status, 

distribution, spatial variability, storage, stocks, flux, and factors affecting SOC change and dynamics in 

the sampled soils.  

  

To estimate SOC, their spatial distribution, variability, and controlling factors, 268 soil samples were 

collected at 0-30 cm depths on a grid basis, covering four Upazilas/sub-sites: Delduar, Melandah, 

Fultala, and Mirpur across the two alluviums. Additionally, 190 soil samples were collected by 

revisiting the sites sampled previously (1989-92) to estimate SOC change. In addition, to estimate SOC 

and TN distribution, storage, and their relationships, 48 soil samples covering eight profiles at 0-120cm 

depths were investigated across the two alluviums. The findings are summarised as follows: 

 

 SOC contents in the study sites were very low. SOC ranged from 0.50% to 1.45%, depending 

on land types across the study sites. SOC variability was higher across the MLL and LL sites 

than the HL and MHL sites in both alluviums. SOC across the inundation land types were 

found in the following order: MLL<LL<MHL<HL. Because of their suitability, mainly due to 

low-level inundation, the HL and MHL sites are used for multiple cropping with intensive 

tillage. The cropping intensity (CI) across the land types varied from 240% to 330% in the HL 

sites, 200% to 240% in the MHL sites, 120% to 200% in the MLL sites, and 80% to 90% in 

the LL sites.  Findings revealed that SOC is lower (0.55%) in the HL and MHL sites (greater 

CI), whereas SOC is higher (1.30%) in the lower cropping intensity sites of MLL and LL. It 

may be concluded that the inundation land type drives CI, which in turn influences SOC. Thus, 

the SOC storage and distribution depend on inundation land levels and cropping intensity.  
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  Statistical analysis showed that SOC varied moderately across the study sites. Histogram and 

quantile-quantile (Q-Q) plots show that SOC distribution in the Delduar, Melandah, and 

Mirpur sub-site is positively skewed but in the Fultala sub-site, SOC distribution is normal. 

Similarly, the semivariogram model revealed that Delduar, Melandah, and Mirpur sub-site 

possess weak spatial dependence, whereas the Fultala sub-site had a strong spatial dependence. 

Intensive cultivation practices prevail in the Delduar, Melandah, and Mirpur sub-sites. On the 

other hand, the Fultala sub-site belongs to the coastal region where soil salinity and 

waterlogging are common, with relatively low cropping intensity. Kriging and Inverse 

Distance Weighting (IDW) interpolations of SOC in the surface soils (0-30 cm) revealed that 

the Fultala sub-site possesses higher SOC (0.39 to 2.03%) than the other sites. The SOC 

contents in the other sub-sites are low (0.40 to 1.38%) because of their higher cropping 

intensities. It is quite possible that the relatively large soil sampling grid (1600 m/ sample) may 

also be at least partly responsible for the weak SOC spatial dependence in the study sites.  

 

 Changes in land use or land cover were intensive in the HL and MHL sites due to the extension 

and intensification of high yielding rice cultivars and other winter or vegetable crops. The CI 

in the Delduar sub-site increased from 180 to 280 %, from 165 to 245 % in the Melandah sub-

site, from 130 to 180% in Fultala sub-site, and 130 to 230 % in Mirpur sub-site. CI increased 

significantly in all sub-sites except Fultala, where it increased only moderately. The increasing 

CI is possibly related to the increasing availability of modern inputs and cultivars. Traditional 

varieties of crops have been replaced by new cultivars increasing the number of crops as well 

as cropping intensity specifically in the HL and MHL sites. On the other hand, the number of 

crops or cropping pattern remains nearly the same in the MLL and LL sites with only 

difference of local or traditional rice varieties being replaced by high-yielding rice cultivars 

under submerged conditions. Thus, the increased cropping intensity in the HL and MHL sites 

under non-submerged conditions exacerbated low crop input in these sites, resulting in greater 

decline in SOC, whereas in the MLL and LL sites, the prevalence of submerged (rice) farming 

has prevented SOC decline. 

 

 A comparison of the current (2012) and the historic (1989-92) SOC levels revealed that SOC 

declined across the study sites. Loss of SOC is severe in the HL and MHL sites whereas some 

limited SOC sequestration seemed to have taken place in the MLL and LL sites. The reason for 

such losses of SOC in the HL and MHL sites are at least partly due to intensive cropping with 

little addition of crop residues. It may also be attributed to their high land use intensity as well 

as their erosion susceptibility. It is possible that SOC may have reached an equilibrium state in 

the HL and MHL sites and that further SOC decline may not occur.    
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 SOC and TN distribution across the land types revealed a strong relationship between SOC and 

TN contents in the soils of the Brahmaputra alluvium (r = 0.95) and the Ganges alluvium (r = 

0.98).  The high correlation between SOC and TN indicates that the bulk of soil N is tied up in 

the SOC pool across the study sites. On the other hand, a strong positive correlation was also 

found between SOC and clay content in the Brahmaputra alluvium (r = 0.87) and the Ganges 

alluvium (r = 0.82) soils. MLL and LL sites contain higher SOC and TN than the HL and MHL 

sites across the alluviums, mainly due to the relatively lower cropping intensity in the former 

land types.  

 

 SOC and TN concentrations are higher in the surface soils than the sub surface soils. The 

topsoil layer (0-20 cm) is tilled and receives residue inputs that are subsequently mineralized, 

contributing some nutrients to the soil. For this reason, this layer possesses higher SOC and 

TN than the lower soil layers.  Relationships of SOC storage between the soil depths (0-20 cm 

and 0-60 cm, 0-20 cm and 0-120 cm) showed strong correlations (r = 0.92 and 0.85 

respectively). Likewise, the relationship of TN storage between the same soil depths also 

exhibited strong correlations (r = 0.86 and 0.80 respectively). Thus, relationships between SOC 

and TN storage among the surface soil and deeper layers were found, which revealed that SOC 

and TN storage depended on soil depths.  
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8.2 Recommendations 

 
Results of the soil carbon dynamics study revealed that SOC in the sites investigated has declined 

considerably over the last 20 years. This decline in SOC was found to be related to much increased 

cropping intensity and associated changes in farming practices, e.g., little or no crop residue or manure 

inputs. Such a significant decline in SOC poses a threat to food security. The findings of this study 

warrants further investigation, with the following interim recommendations:  

 

1. There is clear nation-wide need to review the current agricultural land management practices to 

find out their impact on soil organic carbon and identify factors driving cropping intensity. 

 

2. Nation-wide soil carbon assessment may not be possible, but it can be done in a targeted 

manner, focusing particularly on medium highlands and highlands, which are most intensively 

cultivated, as seen in this study. This is possible, though resource-intensive, per historical nation-

wide SOC records (measured in the late 1980s and early 1990s). 

 

3. As crop production planning in Bangladesh is dependent on inundation land types, further 

research should be initiated in all alluviums to assess the impacts of inundation land types and 

cropping intensity on SOC. 

 

4. In addition to the top soil organic carbon and nitrogen contents, national soil research initiatives 

should also consider how the current land use and management practices are affecting SOC and 

TN storage across the land types, cropping patterns, and intensities. 

 

5. As SOC was found to be low in all the study sites, thus there is a clear need of developing soil 

conservation strategies to control further loss of SOC, and where possible to sequester SOC. This 

could include a range of strategies, e.g., promoting the use of manure, following appropriate crop 

rotations for maximum crop residue inputs, and implementing conservation tillage. A fallow period 

between crops should be promoted. It should also be possible to grow short-term leguminous crops 

in between main crops for the purpose of green manuring. 

 

6. Soil sampling resolution for SOC assessment should be relatively high, as low-resolution 

sampling as in this study may not capture the variability and could also fail to capture its spatial 

dependence. There are benefits of such grid sampling as it would allow detailed mapping of SOC. 

However, it is important that the validity of such interpolation based mapping techniques (Kriging) 

should be assessed by sampling and assessing SOC at interpolated locations.  
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Appendix 1. A Brief description on the Soil Orders of the World Soils 

Soil Orders Descriptions 

Aridisols Aridsols are soils that develop in very dry environments. The main characteristic of 

this soil is poor and shallow soil horizon development. Aridsols also tend to be light 

colored because of limited humus additions from vegetation. The hot climate under 

which these soils develop tends to restrict vegetation growth. Because of limited 

rain and high temperatures soil water tends to migrate in these soils in an upward 

direction. This condition causes the deposition of salts carried by the water at or 

near the ground surface because of evaporation.  

Alfisols Alfisols form under forest vegetation where the parent material has undergone 

significant weathering. The most distinguishing characteristics of this soil type are 

the illuviation of clay in the B horizon, moderate to high concentrations of base 

cations, and light-colored surface horizons. 

Andisols Andisols develop from volcanic parent materials. Volcanic deposits have a unique 

process of weathering that causes the accumulation of allophane and oxides of iron 

and aluminum in developing soils. 

Entisols Entisols are immature soils that lack the vertical development of horizons. These 

soils are often associated with recently deposited sediments from wind, water, or ice 

erosion. In Bangladesh, these types of soils are more prominent and develop from 

deposited sediments from water. 

Histosols Histosols are organic soils that form in areas of poor drainage. Their profile consists 

of thick accumulations of organic matter at various stages of decomposition. 

Inceptisols Inceptisols are young soils that are more developed than Entisols. These soils are 

found in arctic tundra environments, glacial deposits, and relatively recent deposits 

of stream alluvium. Common characteristics of recognition include immature 

development of eluviation in the A horizon and illuviation in the B horizon, and 

evidence of the beginning of weathering processes on parent material sediments. 

Mollisols Mollisols are soils common to grassland environments. Mollisols have a dark 

colored surface horizon, tend to be base rich, and are quite fertile. The dark color of 

the A horizon is the result of humus enrichment from the decomposition of litter 

fall. Mollisols found in more arid environments often exhibit calcification. 

Oxisols Oxisols develop in tropical and subtropical latitudes that experience an environment 

with high precipitation and temperature. The profiles of Oxisols contain mixtures of 

quartz, kaolin clay, iron and aluminum oxides, and organic matter. For the most 

part, they have a nearly featureless soil profile without clearly marked horizons. The 
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abundance of iron and aluminum oxides found in these soils results from strong 

chemical weathering and heavy leaching. Many Oxisols contain laterite layers 

because of a seasonally fluctuating water table. 

Spodosols Spodosols are soils that develop under coniferous vegetation and as a result are 

modified by podzolization. Parent materials of these soils tend to be rich in sand. 

The litter of the coniferous vegetation is low in base cations and contributes to acid 

accumulations in the soil. In these soils, mixtures of organic matter and aluminum, 

with or without iron, accumulate in the B horizon. The A horizon of these soils 

normally has an eluvial layer that has the color of more or less quartz sand. Most 

spodosols have little silicate clay and only small quantities of humus in their A 

horizon. 

Ultisols Ultisols are soils common in areas with high amounts of precipitation because of 

summer thunderstorms and the winter dominance of the mid-latitude cyclone. Warm 

temperatures and the abundant availability of moisture enhance the weathering 

process and increase the rate of leaching in these soils. Enhanced weathering causes 

mineral alteration and the dominance of iron and aluminum oxides. The presence of 

the iron oxides causes the A horizon of these soils to be stained red. Leaching causes 

these soils to have low quantities of base cations. 

Vertisols Vertisols are heavy clay soils that show significant expansion and contraction due to 

the presence or absence of moisture. The strong shrinking and swelling action is 

dominated by the smectite clays in these soils. Vertisols are common in areas that 

have shale parent material and heavy precipitation.  

 

 

 

 


