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Abstract
Sediments beneath modern ice sheets exert a key control on their flow, but are largely inac-

cessible except through geophysics or boreholes. In contrast, palaeo-ice sheet beds are

accessible, and typically characterised by numerous bedforms. However, the interaction

between bedforms and ice flow is poorly constrained and it is not clear how bedform sizes

might reflect ice flow conditions. To better understand this link we present a first exploration

of a variety of statistical models to explain the size distribution of some common subglacial

bedforms (i.e., drumlins, ribbed moraine, MSGL). By considering a range of models, con-

structed to reflect key aspects of the physical processes, it is possible to infer that the size

distributions are most effectively explained when the dynamics of ice-water-sediment inter-

action associated with bedform growth is fundamentally random. A ‘stochastic instability’
(SI) model, which integrates random bedform growth and shrinking through time with expo-

nential growth, is preferred and is consistent with other observations of palaeo-bedforms

and geophysical surveys of active ice sheets. Furthermore, we give a proof-of-concept

demonstration that our statistical approach can bridge the gap between geomorphological

observations and physical models, directly linking measurable size-frequency parameters

to properties of ice sheet flow (e.g., ice velocity). Moreover, statistically developing existing

models as proposed allows quantitative predictions to be made about sizes, making the

models testable; a first illustration of this is given for a hypothesised repeat geophysical

survey of bedforms under active ice. Thus, we further demonstrate the potential of size-fre-

quency distributions of subglacial bedforms to assist the elucidation of subglacial processes

and better constrain ice sheet models.
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1. Introduction
Observations of palaeo-ice sheet beds show sediment that is commonly organized into subgla-
cial bedforms (e.g., drumlins), whose shape or occurrence is thought to reflect ice flow condi-
tions [1–3]. Concurrently, these bedforms are also thought to modulate ice flow characteristics,
such as velocity (v) through their effect on subglacial hydrology, basal friction and roughness
[4–7]. In short, there is likely an association between bedform morphology and the behaviour
of the ice-sediment-water system that drives their formation.

Recently, geophysical observations from an Antarctic ice stream have revealed bed condi-
tions [8–10] and bedforms that evolve, grow, and shrink on sub-decadal timescales [11–14].
However, these observations are logistically challenging and so limited to relatively few bed-
forms at one site [13,14]. In contrast, palaeo-bedforms are abundant (i.e.,> 100,000s) and
widespread, but it is more challenging to link them securely to processes at the ice sheet bed.
Thus, our understanding of the processes occurring beneath contemporary ice sheets is incom-
plete, with some fundamental questions largely unanswered, e.g., how do bedforms grow,
evolve their shape (e.g., elongate), regulate sediment flux, and interact with basal conditions
such as 'sticky spots' (e.g., [15])?

Size-frequency statistics of observed groups of bedforms thought to be genetically linked
(Fig 1), known as ‘flow sets’ (e.g., [16]) or ‘fans’ [17], may provide an additional powerful con-
straint on such questions (e.g., [18,19]). However, these statistics are under-exploited, and fac-
tors such as the shape of the frequency distribution have been given only limited attention.
Distribution shape has been neglected as a constraint because the current conceptual and phys-
ics-based models do not predict bedform size-frequency distributions. The potential to act as a
constraint arises because not all conceptual or physics-based models (e.g., [20,21]) explaining

Fig 1. Size-frequency data and statistical distributions fitted to them. a) to c) Normalised histograms of
observed drumlin attributes on semi-log plots (black dots), to which selected statistical distributions are fitted
and plotted as probability density functions (pdfs); exponential distribution (solid blue line); gamma
distribution (dashed line) (αobs, βobs) [19]; log-normal (dotted line) (μobs, σobs) [22]. Fits to obtain the
distribution parameters, shown as Greek letters, are performed using estimators (e.g., maximum likelihood)
as detailed in Appendix B. Data source and number of observed bedforms n are indicated on the plots;
country-wide UK data (Fig 8 in [16] and Fig 5 in [31]) (black) and a well-studied sub-set (grey) of this [32] are
used. d) The typical shape; there are few small bedforms, a modal peak above this forming a `roll-over’, and
an approximately exponential tail of frequencies decreasing towards the largest sizes.

doi:10.1371/journal.pone.0159489.g001
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bedform growth will replicate the observed sizes. Statistical models [19,22], however, have
the potential to predict bedform sizes as a combined product of key aspects of the physical pro-
cess: antecedent bedform-scale topography, growth rate (e.g., exponential), and the timing of
growth. Fig 2 illustrates size distributions produced by a variety of statistical models, some of
which are consistent with the shape of observed distributions and some are not.

Hillier et al. [19] first proposed a conceptual model to explain subglacial bedforms' size-dis-
tributions, in which ice-sediment-water interaction creating bedforms is fundamentally sto-
chastic. Specifically, to explain an exponential tail to the size-distribution, this model suggests
that bedform growth processes may be a convolution of randomness with simple rules about
their rate of growth; analogous models of 'self-organized criticality' are used to explain power-
law distributions [23,24]. The subglacial model draws upon ideas of probabilistic sediment
transport [25] and an analogy to fluvial bedforms whose heavy-tailed size-distributions are
thought to originate through growth in the presence of random fluctuations associated with
turbulent flow [26–30]. As a concept this is consistent with the geophysical observations in
Antarctica, but does not necessarily exclude either ice-till (e.g., [20]) or meltwater (e.g., [21])
bedform growth models. Fowler et al. [22] formalized a first statistical model of bedform
sizes, investigating explanations for the particular case of a log-normal approximation to the
observed size-distribution under the assumption of exponential growth without shrinking.
This paper, to better understand how bedform sizes might reflect ice flow conditions, re-for-
mulates and develops Fowler's statistical model and creates a new range of other models. This
variety of models is a first exploration of the possibilities and allows, by putting each model in
context, an assessment of its relative plausibility.

The paper begins by describing the size-frequency observations of bedforms (i.e., drumlins,
ribbed moraine, MSGL), then outlines the terminology and defines a conceptual framework
necessary for statistically modelling the evolution of sets of such subglacial bedforms. It then
builds new statistical models, which are evaluated and discussed in light of observational evi-
dence, internal consistency, and their implications for theories of bedform growth and the ice-

Fig 2. Illustrative size-frequency distributions from statistical growthmodels. Semi-log frequency plot
illustrating a variety of size-frequency distributions of bedforms predicted by different types of
statistical growthmodel. They are each governed by arguably plausible glaciological or statistical
assumptions (see text for models): Dirac delta function (dot-dash line is Model 1, denoted M1); uniform
distribution (dotted line e.g., M4); exponential (solid line e.g., M8); log-normal (dashed line e.g., M7). The
power of this size-frequency data as a constraint is that only a sub-set of models produces distributions
reasonably approximating observed data (e.g., Fig 1).

doi:10.1371/journal.pone.0159489.g002
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water-sediment system under ice sheets. In addition, the models are shown to make distinctive
predictions that could be tested should a geophysical survey under active ice (i.e., [13]) be
repeated. Because growth in bedform height (H) underlies most physical modelling (e.g.,
[20,33,34]) the models are initially developed for height, but with implications for width (W)
and length (L) also discussed.

2. Size Observations
Fig 1 illustrates typical size-frequency statistics of observed groups of subglacial bedforms. Dis-
tribution shapes are similar across bedform types (i.e., drumlins, MSGL, ribbed moraine),
mappers and regions (e.g. UK, Canada, Sweden) [19]. Although a selection of statistical distri-
butions could be fitted to bedform size data (e.g., [26]), subglacial bedform sizes have been
found to be reasonably approximated as having a log-normal shape [22,35,36] or as being
exponential above their mode [19]. Large compilations of bedforms (n> 10,000) (e.g., [16])
more precisely constrain their size distribution than smaller ones as uncertainty in sampling is
reduced, but almost certainly represent the aggregation of a range of subglacial conditions. As
such, the size distributions of large compilations may simply represent the statistical effects of
aggregating samples rather than anything to do with ice flow. It is therefore important to note
that the same distribution shape and spread of sizes is still apparent within flow-sets compris-
ing 100–200 bedforms (Fig 1, grey lines) that likely represent something about glaciological
conditions at a particular location in space and time.

The parameters listed in Fig 1 for the best-fitting gamma (α, β) and log-normal (μ, σ) distri-
butions are obtained by method of moment and maximum likelihood estimators as described
in Appendix B. Country-wide UK data in Fig 1 are, quite deliberately, values digitised from
plots in the original papers [16,31]. This is done to demonstrate that the published archive of
size-distributions can be usefully re-assessed in light of statistical models. Parameters calcu-
lated from digitized values typically differ little from those used to construct the original plots
(e.g.,<3% for μ and σ). Furthermore, the data of Hillier and Smith [32] show that parameter
values are similar when calculated from either counts within size bins or from the individual
underlying data (e.g., variations<7% for μ and σ). Importantly, patterns in relative values (e.g.,
σH>σW>σL) are robustly unchanged for all parameters, and the differences between their val-
ues (e.g., for H vs.W) are always substantially larger than uncertainties caused by the method
used to derive the parameter values (see S1 File).

Initially, the parameters are simply empirical descriptors of the shape of the size-frequency
distributions; it is statistical models of bedform growth that potentially allow the parameters to
be considered in terms of subglacial processes. A conceptual framework is now created, which
outlines the elements necessary to formulate statistical models that might explain the observed
size-frequency distributions.

3. Conceptual Framework
Firm and direct observational constraints on how glacial bedforms are formed have proved
challenging to obtain. However, to formalise statistical models, a framework is needed. Geo-
physical surveys [11,13], sediment flux estimates [37], and geometric arguments [38] indicate
that forms entirely composed of sediment could arise over ~10s-100s years, and certainly
within one ice flow event (e.g., [39,40]). Thus, modelling can start by considering one flow
episode. However, substantial elements of the processes at work remain unclear. How do bed-
forms initiate? Do initial sizes determine final ones? Is growth exponential with time, charac-
teristic of linear instability? Is growth continuous or discrete, and monotonic or fluctuating,
over time? Are bedforms in equilibrium with ice flow? It is not practical to model all views held
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on these questions, so these topics are introduced in order to highlight the choices made in
constructing the statistical models.

3.1. Bedform initiation: growth and location
Entirely bedrock bedforms exist, and require an erosional mechanism (e.g., [41]). The majority,
however, appear to be composed mainly or entirely of glacially-derived sediment (i.e., till)
[42,43] requiring a mechanism for an origin from a till sheet (e.g., see [44]); this could involve
erosion, deposition or redistribution or a combination of any of these processes (e.g., [45]).
Subglacial bedforms might decrease in height from some set of progenitor forms (e.g., [46]).
Alternatively, if sculpted from a relatively flat surface, they must (as a net effect over a period of
time) increase their amplitude or ‘grow’ (e.g., [20]). This paper considers a sub-set of statistical
models of bedform genesis in which bedforms undergo net growth, including models that
incorporate periods were bedforms are stable or shrink. The mechanism of net growth may be
till deformation (e.g., [47,48]) but, especially in light of studies into the size distribution of flu-
vial scours (e.g., [49]), the statistical models may also apply to conceptual models of the ice-sed-
iment-water system governed by erosion or scour by meltwater (e.g., [21,50,51]).

It is known that bedforms occur more densely in some places than others, creating patchi-
ness on a scale of 10-100s of km (e.g., [52,53]). ‘Patches’ defined in this way encompass numer-
ous individual bedforms, which are typically 0.1–10 km in horizontal extent. Thus, meso-scale
(~10-100s km) ‘patches’ are envisaged for the statistical models (Fig 3), which contain a statisti-
cally useful number (i.e., 1,2,3 . . . j) of bedforms linked to relatively local conditions (black
dots) that grow in height (i.e., H). The premise of using patches as defined is consistent with
the idea of spatio-temporally variable mosaics of stable and deforming bed conditions; this is
based on observations of exposed till [54,55], but also consistent with geophysical studies that
have revealed variable bed conditions [9,10]. Spatial variation in conditions is also postulated
in bedform models that invoke meltwater [56].

Fig 3. Conceptualisation of how flow-sets of bedforms grow. a) Cross-hatched area is a meso-scale
flow-set (~10–100 km) or `patch’ of deformable or erodible subglacial material subjected to conditions
conducive to a flow set of bedforms arising in locations illustrated by black dots. Within this, bedforms from 1
to j, where j is any integer, change in amplitude through erosion, deposition, or redistribution. b) A potential,
illustrative, sequence of growth for one bedform (number j) through time (dashed line), accompanied by
selected silhouettes representing vertical cross-sections; a shrinking rate of zero (i.e., stasis) is valid within
the illustration.

doi:10.1371/journal.pone.0159489.g003
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3.2. Growth style: deterministic versus probabilistic
‘Deterministic’ growth is where proto-bedforms of a given size and shape always evolve simi-
larly with time to a predictable final morphology; i.e., initial conditions lead uniquely to a final
configuration. ‘Probabilistic’ growth is where random variability through time (i.e., dynamics)
causes individual bedforms to evolve unpredictably or ‘stochastically’, but combine to produce
predictable flow set statistics (e.g., [18,57]). In the non-turbulent conditions of ice flow, such
variability is likely to arise from time-varying boundary conditions in the coupled ice-sedi-
ment-water system (e.g., water incursions, floods, basal stick-slip events) [58–61] or interac-
tions between bedforms [62] perhaps by ice rheology inducing lateral stresses (e.g., [63,64]).
Combining this with the observed range of time-scales on which ice flow fluctuates (i.e., days
to decades) (e.g., [60,65–74]), and by analogy with established ideas in fluvial and aeolian envi-
ronments (e.g., [25,28–30,57,62]), gives a picture of potentially pervasive randomness through
time in subglacial sediment transport (i.e., flux) [19]. Either deterministic or probabilistic
growth can be readily incorporated into statistical models.

3.3. Growth rate
Bedform growth predicted by physics-based models proceeds at a rate that has an expected
characteristic mathematical form. If models relate till flux to the thickness of the till body
and an unconnected ‘field’ variable, such as basal shear stress (τ), that can vary in space (e.g.,
[20,75,76]), growth of H is initially linear with time at a constant rate (k). In this regard H is
governed by the ordinary differential equation (ODE)

dH
dt

¼ k ð1Þ

in conjunction with the initial condition

HðtiÞ ¼ Hi: ð2Þ

Integrating Eq 1. analytically, considering the initial condition, and for final height denoting
H(tf) =Hf, yields Eq 3.

Hf ¼ Hi þ kðtf � tiÞ ð3Þ
If, on the other hand, models contain positive linear feedback between bedform and ‘field’

(Eq 4), this results in a physical instability in the sediment-ice system and growth is initially
exponential with time (Eq 5) (e.g., [20,33]). Thus, the term ‘instability’ has been adopted to
describe this class of sediment growth model. Note that the term instability is used in this way
in this paper and not as strictly defined in the mathematical field of stability theory related to
dynamics.

In this regard, where physical processes are thought to be approximated by linear feedback,
H is governed by the ODE

dH
dt

¼ kH ð4Þ

in conjunction with the initial condition of Eq 2. Similarly, as with Eq 1, integrating analytically
yields

Hf ¼ Hie
kðtf�tiÞ ð5Þ

It is entirely plausible that growth does not continue according to either of these simple rate
laws, perhaps because of ‘shock formation’ asH increases, which is when a subglacial bedform
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is dramatically altered after an ice-free cavity is generated on its lee side (e.g., [77,78]). The
statistical models proposed below focus on the simple rate laws as it is not yet even well
determined which of these might apply (cf. [79,80,81]). The models are, however, presented
initially in terms of time spent growing so that they can be readily adapted for other rate laws if
required in the future.

3.4. Continuous process versus discrete events
If bedform growth is viewed as a continuous property extending over a finite time period (e.g.,
[20,48,79]) then at any time, and for finite proportions of it, bedforms either grow or shrink. In
contrast, and by analogy with other environments (e.g., [82,83]), the creation of each bedform
may occur through discrete sediment flux 'events', each of which might affect several proximal
bedforms. However, if events affect only sub-areas of a patch and are randomly located, their
impacts upon each bedform will appear as a series of independent trials through time [22],
analogous to continuous variability. Thus, and particularly because analogies between the con-
tinuous and discrete mathematics exist (e.g., [84]), either a continuous or discrete modelling
approach remains valid.

3.5. Transient versus equilibrium growth
The length of time over which a flow-set develops is not well constrained. It is therefore neces-
sary to introduce into this framework the concept of ‘transient’ flow-set growth within a time
window, between an initial time (ti) and a final time (tf). Pre-equilibrium or transient growth is
where the statistics of a flow-set evolve over time, continue to evolve, and would have contin-
ued to evolve further if the conditions for growth had persisted. This contrasts to stable long-
term ‘equilibrium’ behaviour in which the statistical characteristics of a flow set stabilise. Equi-
librium is actively sought in fluvial experimentation (e.g., [26]) and has been implicitly invoked
to infer ice properties; for example, assumed equilibrium is implicit when arguing that bedform
elongation is related to ice velocity, rather than duration of flow (e.g., [3,85]). Bedforms that
develop slowly with respect to changes in ice flow conditions at the flow-set scale (~10–100
km) will have pre-equilibrium transient statistics, whilst forms evolving much more rapidly
than patch-scale flow changes could attain equilibrium. Which behaviour predominates
amongst glacial bedforms is not yet known. Thus, statistical models containing both behav-
iours are permitted and explored here.

4. Methods
To better understand how bedform sizes might reflect formative flow conditions a new range
of statistical models are developed, including one that extends the model of Fowler et al [22].
This variety of models allows, by putting each model in context, an assessment of its relative
plausibility. The initial mode of discrimination is by the shape of the size-frequency distribu-
tion that each model creates (e.g., Fig 2) as compared to observations. Specifically, as also dem-
onstrated in Fig 1, the data are reasonably approximated by log-normal [22,35,36] and gamma
distributions, and by an exponential tail above the mode [19]. Models are therefore required to
generate at least one of these to be considered as potentially plausible. Models are developed
analytically so that the form of the size-frequency distributions they can produce is known
explicitly.
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5. Models
The models developed here contain a number (i.e., 1,2,3 . . . j) of non-overlapping bedforms
(Fig 4a, black dots) characterised as growing independently for a time period between ti and tf
within 'meso-scale’ (~10-100s km) ‘patches’ when an appropriate flow regime prevails. Statisti-
cal independence between bedforms is assumed as in previous statistical modelling (i.e., [22]),
where it is justified by randomness in the perturbing field (e.g., water influx) (see Section 3.4),
although it may also be augmented by spatial randomness in rheological properties (e.g., vis-
cosity). This is consistent with stochastic sediment flux in aeolian cellular-automata models
that has yielded randomly sized, yet spatially patterned, barchan dunes [62,86]. Effective inde-
pendence is also supported by analogy to extensive work in the fluvial environment where the
growth of spatially ordered and self-organized bedforms is statistically described and modelled
as stochastic and random [26,28,30,57,87]. We acknowledge that, with limited observational
evidence, this set-up may not ultimately turn out to be correct, but it forms a useful basis to
start an exploration with statistical models. Physically, activity within the patches is conceptu-
alised as being based on multiple, rapid (i.e., sub-decadal) and random fluctuations in basal
conditions that generate flow sets of bedforms.

Models are numbered, so that Model 4 is denoted [M4], for example. Each includes four ele-
ments, a growth rate 'law' based upon suggestions from physical models [20,33,75,76], rules
about what initial sizes are and when growth begins, and a growth style that is deterministic or
uses temporal randomness. Each aspect affects the output size distribution, and the characteris-
tics of all models are summarised in Table 1. The simplest new models created, both mathe-
matically and conceptually, are those that do not involve stochasticity in growth through time
[M1-5]. Some of these (see Table 1) can replicate size-frequency observations (Fig 1), but

Fig 4. Framework for the statistical models.Cross-hatched area in a) is a meso-scale (~10s-100s km) ‘patch’ of
deformable or erodible subglacial material subject to conditions conducive to a flow set of bedforms arising. b) and c) are
barcode style strips for the waiting time (WT) [M10] and stochastic instability (SI) [M7] models. The strips represent the
size evolution through time for one of the bedforms j in a). Specifically, the bands represent alternating `local’ (~0.1–1 km)
conditions affectingH; grey is growth, and white is shrinking or inactivity. k and kH indicate growth rate (i.e., Eqs 1 and 4).
Rapid fluctuations in c) are omitted for visual clarity, analogous to a time-series recorded at low temporal resolution.

doi:10.1371/journal.pone.0159489.g004
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require substantial ad hoc assumptions to do so; for instance, in M3 a log-normal antecedent
size distribution is needed to create a log-normal distribution of observed sizes (i.e., [M3a]). So
this preliminary exploration is detailed in Appendix A, with statistical models incorporating
probabilistic growth [M6-11] focussed on below.

If ice-sediment-water interaction leading to bedform growth is fundamentally stochastic, as
proposed by the conceptual model of Hillier et al. [19], then stochastic mathematical models
(e.g., [88,89]) may be constructed to formalise variants on this idea. Of possible types of time-
series (i.e., temporal) randomness (e.g., [90]), the two most standard and well-established
descriptions (e.g., [91]) are selected to create simple stochastic models. Models are therefore
created based on ‘white noise’ (Brownian motion) [M6 and M7], developing that of Fowler
et al. [22], and Poisson randomness [M8 to M11] as seen in natural processes such as storms
impacting land [92]. Particular attention was paid to variants capable of generating distribu-
tions that have previously been fitted as approximations to the size-frequency observations
(i.e., exponential, gamma, log-normal e.g., [19,22]).

The models employ statistical derivations from texts such as Soong [93], but also use ele-
ments from stochastic processes and stochastic differential equations (e.g., [88,94]). All analyti-
cal solutions have been validated with pertinent Monte Carlo simulations utilizing 10,000
samples compatible with the statistics of the random quantities (e.g., [95]).

5.1. Brownian motion randomness [M6 and M7]
Models M6 and M7 incorporate probabilistic growth governed by randomness of a type
known by a number of names including ‘Brownian motion’, ‘white noise’, or a ‘1D random
walk’ (e.g., [94]). This latter can be pictured as a drunkard in a long, thin alleyway, who either
stumbles ‘forward’ or ‘back’ randomly, leading to a distribution of positions that expands with

Table 1. Attributes of the models. Grey shading indicates the variable changed in each group of models. See Section 3 for a discussion of the conceptual
framework, which outlines the different parts that comprise the models. SI andWT in column 1 refer to the ‘Stochastic Instability’ and ‘Waiting Time’models,
respectively. Models 1–5 are in Appendix A. The distribution shapes each model can produce are described in sections where they are developed, and
acceptable approximations to observations are log-normal, gamma or exponential above the mode.

# Growth Rate ‘law’ Initial sizes Growth Style Growth initiation timing Can explain size-
frequency

observations?
Linear Exp. Any Dirac

(i.e.,
same)

Uniform Log-
normal

Det. Brownian Poisson Dirac
(i.e.,
same)

Uniform Gaussian Other

M1 ✓ ✓ ✓ ✓ ✕

M2 ✓ ✓ ✓ ✓ ✕

M3 ✓ ✓ ✓ ✓ ✕

M3a ✓ ✓ ✓ ✓ ✓

M4 ✓ ✓ ✓ ✓ ✕

M4a ✓ ✓ ✓ ✓ ✓

M5 ✓ ✓ ✓ ✓ ✕

M5a ✓ ✓ ✓ ✓ ✓

M6 ✓ ✓ ✓ ✓ ✕

M7
(SI)

✓ ✓ ✓ ✓ i.e., for M6-11
conditions for growth
of the flow-set start
at a single point in

time

✓

M8 ✓ ✓ ✓ ✓ Tail; not roll-over

M9 ✓ ✓ ✓ ✓ ✕

M10
(WT)

✓ ✓ ✓ ✓ ✓

M11 ✓ ✓ ✓ ✓ ✕

doi:10.1371/journal.pone.0159489.t001
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time. If each drunken step takes 1 unit of time, then the net time travelling forward will evolve
exactly as distance does, starting to differ increasingly with time, spreading out or dispersing
when plotted with predictable statistics: namely, a mean of μ and standard deviation of σ (Fig
5a). Analogously, if changes to a bedform continuously fluctuate between two states (i.e.,
growth, g, or shrinking, s) in an manner analogous to a random walk (Fig 4c) then net time
spent growing (i.e., tN(t) = Stg − Sts) is a random variable with a ‘diffusive’ part caused by ran-
dom motions that is a Gaussian or ‘normal’ distribution [94,96]. Specifically, as the size of
steps tend to zero, this is described by a Wiener process denotedW(t) [88,94,97,98] and the
Gaussian distribution has mean (μ) of 0 and variance (σ2) of t i.e.,~N(0,t). Namely, E[W(t)] = 0
and E[W2(t)] = t with the propertyW(t) −W(s)~N(0,t − s) for t> s� 0. Statistical ‘drift’ (ξ)
where the mean of the distribution increases or decreases with time (μ = ξt) can also be
accounted for (e.g., [98] p462]; this can be driven by growth being more probable, namely the
probability of growing (p) being greater than 0.5. This would represent a drunkard capable of
some ability to travel forward. Thus, the distribution of tN(t) is given by Eq 6 and illustrated in
Fig 5a as a hump that both moves or ‘drifts’ and spreads out or ‘diffuses’.

tNðtÞ ¼ 0drift0 þ 0diffusion0 ¼ xt þWðtÞ ð6Þ

Fig 5. Visualisation of the relationship between a randomwalk, a Wiener process, and the evolving
log-normal size-frequency distribution expected of bedforms in the SI model [M7]. a) Probabilities for
the number of discrete steps taken in a randomwalk (grey circles) are distributed binomially. FromWiener’s
work whatever small step length is chosen these are well approximated by normal distribution (black line) of μ
= 0 and σ2 = t i.e., net time spent growing is a normally distributed random variable. If H/ exp(tN) this defines
a log-normal distribution for H. b) Height distributions evolving through the SI model [M7] as time increases for
some illustrative constants.

doi:10.1371/journal.pone.0159489.g005
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Alternatively, the distribution of tN created by a Wiener process with drift can be described
by a stochastic differential equation (SDE) (e.g., [88,99]) (Eq 7), which integrates to Eq 6 under
the initial condition that growth starts at ti, namely tN(ti) = 0; note that this simple case can be
integrated directly since the integral of dW(t) isW(t) by definition, and it is not necessary to
use Itô’s formula. The pdf obtained by either means is more fully expressed by writing out the
equation of a Gaussian (Eq 8) with appropriate values of the mean (μ) and variance (σ2) given
by Eqs 9 and 10.

dtNðtÞ ¼ xdt þ dWðtÞ ð7Þ

f ðtNÞ ¼
1

s
ffiffiffiffiffiffi
2p

p exp � 1

2

ðtN � mÞ2
s2

� �
; �ðtf � tiÞ � tN � ðtf � tiÞ ð8Þ

m ¼ xðtf � tiÞ ð9Þ

s2 ¼ ðtf � tiÞ ð10Þ

Statistical drift (ξ) caused by varying p is given by ξ = 2p − 1. This affects the mean of tN, giv-
ing an expression for μ as in Eq 11. Two special cases illustrate this behaviour. Without any
directional bias, namely if probability of growing and shrinking are equal with p = 0.5, ξ = 0 and
no drift occurs. If all steps are in one direction, namely p = 0 or 1, then there is no randomness
and ξ = ±1 as is appropriate to set growth or shrinkage to a single deterministic rate. However,
in the limiting case of ξ = ±1 the distribution of tN cannot diffuse and spread into a Gaussian,
and so the spread (i.e., variance) of tN is also demonstrably affected by p, especially near its limits
of 0 and 1. This effect is described through well-established results; the discrete Binomial distri-
bution (n,p) is approximated as a Normal distribution (μ,σ2), where σ2 = np(1 − p) as n!1
(e.g., [84] and Fig 5a). Thus, the variance of tN in Eq 8 is given by Eq 12, where the factor of 4
arises because the step size is doubled, namely (-1,+1) in time versus (0,+1) for the Binomial,
which is squared in its impact upon the variance of a random variable (e.g., [93] p81].

m ¼ ð2p� 1Þðtf � tiÞ ð11Þ

s2 ¼ 4½pð1� pÞ�ðtf � tiÞ ð12Þ

Now, it is possible to convert back from time to height, choosing whatever growth law is
desired. Firstly, recognising that (tf − ti) in Eqs 3 and 5 is simply a specific case of net time spent
growing (i.e., tN = Stg − Sts), equations for linear and exponential growth can be re-written as
in Eqs 13 and 14, respectively. Then, tN generated by Brownian motion randomness from Eq 8
can be applied to the different growth rates by transformations of the random variables (e.g., Ch
5 of [93]) as in the simpler models in Appendix A (e.g., using Eq 29).

Hf ¼ Hi þ ktN ð13Þ

Hf ¼ Hie
ktN ð14Þ

First, consider growth that is linear with time (Eq 13). This is denoted as model M6. The
overall amount of time spent growing (tN) is normally distributed. SinceHf is a simple multiple
of this, it will also be normally distributed. As above, analytically determining the pdf ofHf

given the pdf of tN is a relatively straightforward task using the standard transformation rela-
tionship. This yields Eqs 15 to 17, which describeHf as a Gaussian drifting and diffusing as time
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passes; i.e., not gamma, exponential or log-normal.

fHf
ðhf Þ ¼

1

s
ffiffiffiffiffiffi
2p

p exp � 1

2

ðhf � mÞ2
s2

" #
; Hi � kðtf � tiÞ � hf � Hi þ kðtf � tiÞ ð15Þ

m ¼ Hi þ kð2p� 1Þðtf � tiÞ ð16Þ

s2 ¼ k24½pð1� pÞ�ðtf � tiÞ ð17Þ

In contrast, model M7 is formulated for growth that is exponential (Eq 14). Since tN is nor-
mally distributed,Hf will be log-normally distributed by definition (see Appendix A.3 ‘Variable
initiation times’). This is to say that where future increase in a variable is linearly dependent on
past progress (i.e., instability, Eqs 4 or 14) a log-normal distribution is produced (e.g., [25]) (Eqs
18 to 20). This assertion can be verified by analytically determining the pdf ofHf in Eq 14 given
the pdf of tN and by using the transformation relationship for random variables. Alternatively,
the same result can be reached using Stochastic Differential Equations (SDEs). Indeed the form
of the result using SDEs is very well established and is known as the solution of ‘Geometric
Brownian Motion’, which is used for purposes such as predicting stock prices (e.g.,
[98,100,101]). It is important to note for comparisons, however, that common treatments using
SDEs do not allow p to vary from 0.5 and, instead of k, usually use as their growth constant the

effective stochastic equivalent growth rate which for p = 0.5 is �k ¼ xþ k2=2 (e.g. [101] p546).

fHf
ðhf Þ ¼

1

shf

ffiffiffiffiffiffi
2p

p exp � 1

2

ðlnðhf Þ � mÞ2
s2

" #
; Hie

�kðtf�tiÞ � hf � Hie
kðtf�tiÞ ð18Þ

m ¼ lnðHiÞ þ kð2p� 1Þðtf � tiÞ ð19Þ

s2 ¼ k24½pð1� pÞ�ðtf � tiÞ ð20Þ
It is now possible to consider another factor that may drive statistical drift of the size distri-

bution in these models: differential rates of growth and shrinking, denoted kg and ks, respec-
tively. The influence of differential rates of growth upon μ and σ is more readily understood if kg
and kg are re-framed into the drift of the size-frequency distribution and oscillations about the
centre of the distribution (Fig 6). The oscillatory component is kav = (kg+ks)/2, the average rate
with respect to the centre of the distribution, and the drift component is knet = (kg+ks)/2, the
imbalance in rates. The oscillations behave exactly as they do for a stationary distribution; so k
becomes kav in the equations above. Drift induced this way purely displaces the distribution,
and so only affects μ, adding a term so as to cause it to increase at a constant rate with time. Eqs
21 and 22 therefore describe a model [M7] combining Brownian motion randomness in growth
with an exponential growth rate that includes the potential for overall growth of the population
to be driven by both different probabilities and/or rates of growth and shrinkage; we termM7
the ‘stochastic instability’ (SI) model. With shrinking forbidden (ks = 0) and conceptualised in
terms of discrete events, this simplifies to the model of Fowler et al. [22], which dealt with ran-
dom uni-directional equally sized steps at a single rate creating growth.

m ¼ lnðHiÞ þ t½knet þ ð2p� 1Þkav� ð21Þ

s2 ¼ k2av4½pð1� pÞ�t ð22Þ
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Values for μ and σ of the SI model [M7] may readily be estimated (see Appendix B) directly
from mapped bedform sizes (e.g., Fig 1). Through Eqs 21 and 22 the SI model therefore pre-
dicts trajectories of characteristics of the observed size distribution (μobs and σobs) through
time; specifically μobs is expected to be proportional to the square of σobs.

It is also possible to make predictions about the size differences (e.g., ΔH) of flow-sets of
bedforms across an observational window (i.e., at t1 and t2). First, all bedforms should be active
and change size, and there should be a mixture of shrinking and growing. Secondly, in spite of
the scatter caused by randomness, ΔH should relate to H (Eq 4). Thirdly, by the definition of a
diffusive Wiener process tN in any time period is normally distributed, and thus the distribu-
tion of the differences in height ΔH should be log-normal. Furthermore, since the time differ-
ence is known, parameters of the SI [M7] model (i.e., p or knet, kav, total duration of growth
period) may be uniquely constrained (Table 2).

Fig 6. Illustration of how, conceptually, unequal rates of growth and shrinking may be decomposed
into components. The components represent: i) oscillation around the centre of a distribution of the
logarithm of sizes; and ii) drift of the distribution.

doi:10.1371/journal.pone.0159489.g006

Table 2. Table of testable predictions for theWT [M10] and SI [M7] models.

Characteristic Expectation: WTmodel [M10] Expectation: SI model [M7] Test/Investigative method

1 Size-frequency
distribution

Gamma; through time or across Δt. β
constant; α / t

Log-normal through time or across Δt. μ/ σ2

/ t
Repeat survey under active ice, or
plot palaeo-forms from multiple flow
sets (e.g., μobs vs σobs)

2 Spatial pattern of ice
flow variables or
conditions

Poisson fluctuations in time, at least at a
bedform scale

Constantly fluctuating, at least at the spatio-
temporal scale of bedform genesis

Estimate basal ice conditions using
geophysics or invert for them from
satellite observations of the ice
surface (e.g., [6])

3 Fraction shrinking vs
growing

All active forms grow (i.e., ΔH is +ve) All active. ΔH a mixture of growing and
shrinking; fraction p growing.

Repeat survey under active ice; e.g.,
repeat [13]

4 Growth rate Constant. With Δt known, Δα and Δβ
are constrained and so are λ and k (Eq
26), so overall time to create flow
set also deducible.

Exponential, i.e., proportional to H. If Δt
known, Δμ and Δσ and so p or knet and kav
are constrained (Eqs 21 and 22), so overall
time to create flow set also deducible.

Repeat survey under active ice.

5 Fraction unchanged >0 for small Δt Small; depends on definition of change Repeat survey under active ice.

doi:10.1371/journal.pone.0159489.t002
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5.2. Waiting time randomness [M8 to M11]
In contrast to Brownian motion randomness, there is another well-established type of temporal
randomness called Poisson randomness (e.g., [94]). This is investigated in models M8 to M11.

In ‘Poisson’ randomness, the gaps between events that occur randomly at a given rate (λ,
number per unit time) are distributed according to the exponential or ‘waiting time’ distribu-
tion (e.g. [97] p39-40). This distribution is, for instance, used to model the times between shop-
pers arriving at a supermarket checkout. So, if the arrival or ‘event’ is the change in state (i.e.,
growth to inactivity) of a continuous process (cf. [91]) it also describes inter-event periods in
which bedforms may grow (Fig 4b). Thus, if only a single episode of growth (e.g., the last) is
preserved, net time spent growing (tN) is distributed according to an exponential distribution
(Eq 23).

fTN ðtNÞ ¼ le�ltN ; tN > 0 ð23Þ

As in Section 5.1, this is formulated in terms of time spent growing so that any desired
growth rate law can be readily applied to determine distributions for Hf. The distributions ofHf

that are generated by taking tN as a random variable can be deduced by transformations of ran-
dom variables as above (e.g., Ch 5 of [93]).

Consider first model M8, in which growth is constant with time (Eq 1). With tN as above, an
exponential distribution of heights results (Eq 24). This, however, is not so for exponential
growth (Eq 14) in model M9. This produces a distribution that is not exponential, log-normal
or Gamma. M8 predicts that the exponent of the tail of the observed pdf of final heights (Hf) is
λ/k as in Eq 24, where growth rate (k) is from Eq 13. This exponent is readily estimated from
mapped sizes [19], and is not expected to progress with time. It is predicted to be set by, vary in
equilibrium with, and therefore reflect formative (i.e. ice or water) flow conditions.

fHf
ðhfÞ ¼

l
k
e�l

hf�Hi
k

� �
; hf > Hi ð24Þ

However, instead of being in equilibrium with flow, glacial bedforms may be in a transient
state with respect to flow. This is incorporated within models M10 and M11. If bedforms are
created by a number (nb), on average, of building episodes then tN is the sum of nb exponential
distributions; this is a two-parameter Gamma distribution denoted tN ~ Γ(α,β) [84]. The Pois-
son rate (λ) as defined above is now standardly denoted β and is the ‘rate parameter’ of the
Gamma distribution. The shape parameter of the Gamma distribution (α) is simply equal to nb
(e.g. [97] p292). On average in M10 and M11 the number of building episodes is a multiplica-
tion of the rate at which they occur and the time that has elapsed, namely nb = 0.5λt, which is
illustrated in Fig 4b. The factor of 0.5 arises because two switches (‘on’ and ‘off’) are needed for
each growth period.

The distributions ofHf that are generated in these Poisson multi-event models [M10 and
M11] can be deduced by taking tN as a Gamma distributed random variable, using growth
rates in equations Eqs 13 and 14, and as in previous sections then using transformations of
random variables (i.e., Eq 29). M10 has constant growth (Eq 13), we term it the ‘waiting time’
(WT) model, and a Gamma distribution of heights results. This is not so for exponential
growth (Eq 14) upon which model M11 is based, which produces size distributions that are nei-
ther log-normal or Gamma.

The parameters of the WT [M10] model (i.e., λ, k, and t) may be constrained from the rate
(β) and shape (α) parameters of the final height distributions (Hf). They are related as in Eqs
25 and 26. Observed values are denoted βobs and αobs, are readily estimated (e.g., figure 1 of
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[19]), and are predicted to be constant and increase linearly with time respectively.

b ¼ l=k ð25Þ

a ¼ nb ¼ 0:5lðtf � tiÞ ð26Þ
It is possible to make predictions about the size differences (e.g., ΔH) expected across a time

window (i.e., at t1 and t2). First, all bedforms that have changed should have grown, and a frac-
tion should not have changed if the number of building events (nb = α) is small. Secondly,
growth should be at a constant rate and ΔH should not correlate strongly withH (Eq 1). Thirdly,
the ‘memoryless’ nature of the Poisson process dictates that ΔH should be a Gamma distribu-
tion. Furthermore, since the time difference is known, the rate constant of bedform growth (λ)
could then be estimated uniquely through the two observations of α (i.e.,Δαobs = α2 − α1 =
0.5λΔt). Then, growth rate (k) could be calculated through either observation of β (see Table 2).

6. Results
The right hand column of Table 1 lists which models produce size-frequency distributions that
have been argued to reasonably approximate mapped observations (i.e., log-normal [22,35,36],
gamma, or exponential above mode [19]). Fig 1 shows a direct comparison, illustrating how
well each of these three alternatives fit the data: solid line is an exponential distribution, gener-
ated by model M8; dashed line is a log-normal distribution generated by M7, the Stochastic
Instability (SI) model; dotted line is a gamma distribution generated by M10 the Waiting Time
(WT) model. Other models, however, can fit. By invoking substantial ad hoc assumptions (see
Appendix A), some models that do not involve stochasticity in growth through time [M3a,
M4a, M5a] can also replicate size-frequency observations. Fig 2 and Appendix A also demon-
strate some of the shapes generated by the other models. It is important to note that fitting sta-
tistical distributions as in Fig 1 in itself leads to parameters (e.g., β and ρ, or ϕ and λ) that are
only descriptive empirical quantities; it is the statistical bedform growth models that relate the
parameters to key aspects of the physical process: antecedent topography, growth rate (e.g.,
exponential), and the timing of growth.

7. Discussion
To gain additional insight into the plausibility of conceptual models of the growth of subglacial
bedforms, this paper takes well-established statistical behaviours (e.g., types of temporal random-
ness) and integrates them with plausible growth rate behaviours (e.g., [20]) to explore which
combine to produce reasonable approximations of the observed size-frequency distribution of
subglacial bedforms (i.e., exponential, Gamma, or log-normal (e.g., [19,22])). Exactly as any
model (e.g., numerical ice sheet models) these contain approximations and assumptions, but are
constructed to capture key aspects of the physical processes in order that these might be evaluated
by comparingmodelled outputs to observations. In 7.1, the statistical models [M1-M11] are evalu-
ated in terms of their ability to explain i) the size-frequency observations whilst invoking the least
number of ad hoc or arbitrary assumptions, ii) their internal consistency, and iii) their ability to
explain all other relevant observations (e.g., geophysics). The implications of the favoured model
are then discussed (section 7.2), followed by some suggestions for future work (section 7.3).

7.1 Evaluation of the models
The simplest models created [M1-5] do not involve stochasticity in growth through time. For
any of these (see Table 1) to replicate size-frequency observations (Fig 1) they require substantial
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ad hoc assumptions or special pleading, discussed in Appendix A. This we interpret as making
these models, as constructed, less plausible and giving some weight to the view that neither ‘clas-
sic’ deterministic growth nor antecedent bedform-scale topography are sufficient to explain bed-
form sizes. It should be noted, however, that the failure of one particular modelling realisation
of an envisaged process rarely excludes that process.

Models M6 to M11 follow up on the conceptual model of [19] in that they are based on vari-
ations in growth through time. Constructions M6 and M9 do not match the size-frequency
observations (Table 1) and they can be ruled out. M8 can reproduce the exponential tail, but to
allow it to fit the data fully it must either invoke selective post-formational degradation or an
argument that observational data have missed most small bedforms in order to create the roll-
over. This is debatable; first, even the ~25% recovery rate affecting small drumlins is insuffi-
cient to wholly explain the roll-over in the UK data [31,102], and second the very many small
forms expected of an exponential distribution are mapped in high-resolution data of neither
previously glaciated (e.g., [103]) nor recently uncovered [40] drumlin fields. In contrast to M8,
both types of temporal randomness, when combined with appropriate growth rates into the SI
andWT models (i.e., in M7 and M10, but not M6 or M11), fit the widespread palaeo-bedform
size data. Neither Poission nor Brownian Motion randomness in growth have yet been specifi-
cally identified under active ice, but they have been observed commonly in natural processes
including bedform evolution [25–28,30,57,80,92,96], and so are supported by analogy. This, we
argue, makes their introduction significantly less ad hoc than the arbitrary assumption of con-
venient statistical distributions in M3a to M5a. Note, for instance, that the temporal variation
that distributes tN in the SI model [M7] intrinsically creates the Gaussian distribution arbi-
trarily invoked by M5a.

Significantly, and in their favour, models M7 (‘stochastic instability’: SI) and M10 (‘waiting
time’: WT) also explain other independent observations of bedforms without any further ad
hoc additions. First, probabilistic growth decouples initial and final sizes, allowing the interven-
ing physical process to dominate the characteristics of the ultimate size-frequency distribution;
that is, illustratively, the randomness in growth shown in Fig 7 dictates the size-distribution,
not the initial size. This offers an explanation for the observation that drumlins with their typi-
cal size-distribution can originate irrespective of differences in environment (e.g., till/bedrock
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Fig 7. Evolution of bedforms including randomness through time. The evolution of sizes of ten
illustrative bedforms including randomness in their growth through time (grey lines). These differ from a
deterministic path (black line). For a sufficiently large number of bedforms, the average properties (e.g., mean
size) of a flow set closely approximate the deterministic path. Bedforms are ‘born’, last pass a threshold
minimum observable height (e.g., 1 unit, dashed line), at different times.

doi:10.1371/journal.pone.0159489.g007
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lithology) [42,43]. Secondly, the observed structure (e.g., internal stratigraphy (e.g., [12,40])),
the variety of composition (e.g., [42,43]), and the substantial (e.g., ±50%) scatter in the
sizes and elongations commonly seen for proximal palaeo-forms within a flow-set (e.g.,
[16,39,45,104]), might be expected to result from randomness and fluctuations in characteris-
tics of the ice-sediment-water system in space and time. By their design, the WT and SI models
are also consistent with the geophysical, remotely sensed, and sedimentological evidence for
spatio-temporal variability in ice flow velocity and the bed beneath ice sheets, which was out-
lined in sections 3.1 and 3.2. Thus, the widespread dataset of palaeo-bedform sizes points
towards a view where ice-water-sediment dynamics (i.e., change through time) likely has a fun-
damentally random element that physics-based models of bedform genesis could usefully
incorporate; to date, some models have been seeded with initial random height perturbations
[48,79], but what if any temporal randomness to emerge from this has not been explicitly
examined. Fowler et al. [22] demonstrated that a statistical model can reconcile observations
with the hypothesis of Hillier et al. [19], but the variety of statistical models considered here
allows us for the first time to distinguish process dynamics (i.e., randomness through time) as
the most plausible origin for the necessary variability out of the main candidates.

It is possible to argue that one type of bedform-scale dynamics is more likely, i.e., differenti-
ate between the SI [M7] and WT [M10] models. First, by visual inspection the log-normal
shape produced by the SI model arguably fits the size-frequency data than the gamma distribu-
tion of the WT model, especially for L andW, and for small sizes (see Fig 1). Secondly, it allows
bedforms to shrink as seems probable from the geophysical observations [11,12], which the
WT model does not. Thirdly, the SI and WTmodels may also be evaluated through their inter-
nal consistency between observations for the three dimensions H,W, and L. Taking the sim-
plest assumption that all dimensions change size together (i.e., t and p are the same), Eq 22 can
be used to constrain relative growth rates (e.g.,kavH/kavW) for the dimensions within the SI
model (Eq 27). Values for σ calculated for mapped UK drumlin data given in Fig 1 then indi-
cate that increasing H is the primary mode in their genesis, namely its growth rate constant is
greatest (kavH > kavL > kavW). This is plausible. In contrast, using Eq 26, α values for the WT
model [M10] imply a different number of growth episodes for each dimension. This is less eas-
ily explicable. Thus, with these factors taken together, we choose to favour the SI model over
the WT model.

sL

sW

¼ kavL
kavW

;
sH

sW

¼ kavH
kavW

;
sL

sH

¼ kavL
kavH

ð27Þ

Alternatively, stochasticity in the ice-sediment-water system may differ from the Brownian
motion of our SI model, but with exponential growth still produce log-normal size-frequency
distributions because of the central limit theorem (CLT) [22]. Fowler et al. [22] interpret this as
favouring growth through discrete 'events' of constant size, but the CLT has other interpreta-
tions (e.g. p88 of [105], p266 of [106]), so this is not necessarily required. For instance, if
growth of each bedform is governed by discrete ‘events’ of random size, selected from any fre-
quency distribution, the CLT predicts a log-normal distribution of sizes in a flow set. Similarly,
if bedforms grow by many growth periods of a random duration selected from any frequency
distribution, the CLT dictates that effective tN will be Gaussian as required. However, even
given this, the SI model is still likely to be a useful empirical approximation. If the factors dictat-
ing bedform-scale randomness (e.g., supra-glacial lake drainage patterns) relate to broader ice-
sediment-water conditions then parameters fitted as for the SI model (i.e., μ, σ) will still provide
a useful statistical link between observations at the flow-set level and theory such as in numeri-
cal ice flow models (e.g., by plotting spatial distributions).
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7.2 Implications of the SI approximation
The SI model, if it is to be accepted as most likely, has a number of implications. Bedforms are
expected to change size randomly through time in a manner approximating Brownian motion,
growing on average exponentially (Fig 7). The quantitative, observable corollaries of this are
listed in Table 2. A number of points, however, need some further explanation.

First, the SI model implies that it is not necessary to invoke a lower ‘physical threshold’ on
drumlin length or width [16] or an upper limit for H a quenching (a.k.a. ‘capping’) mechanism
to limit their upper ‘critical size’ (e.g., [20,77,78,107]). In the SI model very small sizes are sim-
ply less likely and no lower threshold is needed. As an alternative explanation for the absence
of extremely large bedforms, the SI model and its simpler variant (i.e., [22]) must invoke
growth that is ‘transient’, namely that it occurs within a time window of limited duration. Sim-
ply, insufficient time has passed for very large forms to be created. Observations of active bed-
forms do not yet indicate which means of limiting the largest sizes is most plausible, but several
mechanisms can be imagined that allow growth periods forming flow sets to be of limited dura-
tion. In a steady-state view, meso-scale patches of bedforms could be periodically flattened by
conditions adverse to the existence of bedforms. Alternatively, favourable patches may only
occur transiently (e.g., [39]) or time-transgressively (e.g., [38]) as ice sheets melt and retreat.
However, to explain bedform prevalence, these mechanisms must commonly occur. Size-fre-
quency observations give two tentative indications that a time limitation (e.g., SI model) affects
glacial bedforms rather than a physical cap in an equilibrium model (e.g., [78]). The first indi-
cation is that fluvial bedforms measured at equilibrium with flow do not have a log-normal dis-
tribution, but one that peaks at larger sizes (figure 6a of [26]) as if sizes where tending to bunch
below some fuzzy threshold. The second indication is that if glacial bedforms were to grow and
then to ‘freeze’ [78] at a sharp upper limit a peak in frequencies would be expected, but this is
not observed in Fig 1c (i.e., at 34 m).

Secondly, assuming all dimensions change size together (i.e., t and p are the same), relative
growth rates estimated from UK observations (Fig 1, Eq 27) (i.e., kavL > kavW) indicate that
drumlins elongate as they grow (e.g., [16,31]). Note that no relationship between the dimen-
sions was placed into the SI model that might have prescribed this observation. Perhaps they
continue into mega-scale glacial lineations (MSGL) as part of a genetically-linked bedform
continuum (cf. [108,109]), whereH andW are in equilibrium restricted by stochastic interac-
tions with ice and neighbouring bedforms whilst elongation continues.

Thirdly, Fowler et al. [22] put forward an explanation to demonstrate that size observations
do not necessarily falsify the exponential growth hypothesised in the physically-based till
‘instability models’ of bedform genesis (e.g., [20]). Here, a variety of different explanations are
considered, and exponential growth still features in the one that is apparently most plausible.
Thus, through this comparison, the SI model strengthens the tentative observational support
for exponential bedform growth (i.e. by linear instability). On the other hand, from two-
parameter fits to observed data collated in a small number of distributions (e.g., Fig 1) it is not
possible to distinguish between existing linear instability mechanisms, namely till or heat-flux
(e.g., [20,33]). Future work plotting the spatial distribution of parameters (μ, σ) of mapped
palaeo-bedforms against numerically modelled predictions of growth rate (k) for each mecha-
nism for a past ice sheet could, however, distinguish them. Other possible tests and applications
of the SI model are considered below.

7.3 Future Work: Testing and applying the SI model
The SI model [M7], if correct, suggests tentative analytical links between parameters fitted to
observed size-frequency distributions and ice sheet properties, such as ice velocity; the SI
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model links size observations (μ, σ) to growth rate k (Eqs 21 and 22), which relates to physical
parameters (e.g., [33]). Eq 52 of Fowler [110], for instance, related k to (AN/2η)1/2 within
which A is illustratively proportional to ice velocity. Similarly, Shoemaker [56] related k to sub-
glacial flood water velocity to a power 16

3
. Thus, predicted relationships (e.g.,k / ffiffiffi

v
p

) can con-

tribute to geomorphological debates such as the interpretation of L in terms of t or v (e.g., [3]).
Admittedly, the problem is under-constrained since there are three variables (p or knet, kav,
and t) and two observables (μ, σ). If, however, more can be learnt about one of these through
direct observation or experimentation (e.g., p) the other two (e.g., t or k) could be determined
remotely from a single morphometric analysis.

The SI model makes quantitative predictions that are distinctively different from the WT
model or deterministic ones, as detailed in Table 2. This makes it testable and falsifiable by
observations from modern subglacial environments. The predictions are, for example, testable
by repeating at t2 a past (i.e., at t1) geophysical survey under active ice (i.e., [13]). In addition,
plots of size-frequency parameters obtained for a number of observed flow sets are diagnostic
of different models (see Section 5); for instance, in the SI model μ/ σ2, so plots of μ against σ2

will display linear trends if t varies whilst the other variables are held constant. Plotting spatial
variations in parameters could also be an additional constraint upon physics-based models of
bedform genesis. Illustratively, consider a numerical model used to estimate ice flow in a past
ice sheet (e.g., [111]), a physics-based model of bedform genesis (e.g., [33]), and a hypothesised
set of conditions (e.g., based on basal shear stress) for drumlin formation. Then, the modelled
ice-sheet conditions set t for flow-sets geomorphologically mapped for that ice sheet, and in
conjunction with the model of bedform genesis they also set a numerical prediction for k. Fur-
thermore, since t is constrained in the context of this test, k and p can be determined for the
mapped flow sets by using a statistical model (see above). Thus, through the spatial distribution
of k, a way exists to quantitatively compare models and observations. Patterns in k could either
be of absolute or relative values, and k and pmay relate to properties of ice flow (e.g., v) or pos-
tulated floods depending upon the drumlin formation model selected. In particular, the ability
or not to correctly predict the distribution and properties of flow sets may help to further con-
strain which ice sheet models, or members of an ensemble of potential realisations, is most
valid.

Since we do not attempt to develop all possible models here, the wider point is that statistical
modelling provides a tool to develop and falsify conceptual models of bedform growth. The
same is true for other bedforms where measurement of key processes is challenging (e.g., in-
situ on barchan dunes) and where time-series of digital elevation models are becoming avail-
able but statistical work is limited (e.g., [18]). With respect to fluvial environments, developing
our analytical work could create statistical distributions reflecting underlying mechanics,
improving upon existing distributions as descriptors (e.g., [26]) and allowing more to be
extracted from field observations.

8. Conclusions
The emergence and growth of subglacial bedforms is difficult to observe, significantly limiting
our ability to accurately parameterise basal processes beneath ice sheets. In this paper, a novel
approach has been taken, developing new probabilistic growth models and comparing their
predictions with observed distributions of palaeo-bedform sizes. The variety of explanations
both permits a number of models to be discounted and the relative plausibility of the rest to be
assessed for the first time. The ‘stochastic instability’ (SI) model, modified from Fowler et al.
[22] and extended to encompass bedforms shrinking, is argued to provide the best fit to obser-
vations. Not only does it fit the size observations [22], but it appears to do so with fewest ad
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hoc assumptions whilst being internally self-consistent between metrics (e.g., height and width)
and in accord with other observations (e.g., geophysical). Thus, our analysis strengthens a view
[19,22] where the ice-sediment-water dynamics and sediment flux have significant elements of
randomness in space and time (i.e., not continuous or monotonic) and cause both erosion and
deposition. This view is developed to explicitly argue that (i) flow-related processes at the ice-
bed interface rather than initial bedform-scale topography govern bedform sizes and (ii) drum-
lins elongate with time. Furthermore, parameters of mapped size-frequency distributions are
explicitly linked with ones related to flow (i.e. ice and water) for the first time, accompanied by
an illustration of an avenue for how this may be used to improve calibration of basal conditions
in numerical ice sheet models and achieve a better understanding of conditions at the base of
ice sheets. Lastly, we demonstrate that it is possible to provide testable, distinctive predictions
that will allow models to be distinguished using a hypothesised repeat geophysical survey of
bedforms under active ice. Note that none of the work presented here precludes or conflicts
with observations of structured spatial patterning in the bedforms.

Appendix A: Preliminary Exploration
Following the trajectory of work that developed stochastic sub-aerial landscape evolution mod-
els to explain topography’s typical fractal statistics [112], this appendix formalises statistically
for the first time simple models representing the prevailing ‘classic’ view that bedform growth
through time is not random, which has not yet been undertaken for subglacial bedforms. In
these simpler models, elements of the potential spectrum of randomness within the proposed
meso-scale patches are, effectively, turned off.

The first models [M1-3] represent the more plausible realisations of the ‘classical’ view
where bedform growth through time is not random. M1 considers the simplest, entirely deter-
ministic, case. It is possible that the bedform-scale topography prior to bedform creation is
not planar, so models M2 and M3 include variability in initial bedform height. It has also been
proposed that bedforms are not ‘born’ at the same time (cf. [11,113]), so models M4 and M5
assess the possibility that each bedform could start to grow at a different time. The models are
described then evaluated.

A.1. Entirely deterministic growth [M1]
Model M1 considers multiple independent bedforms all of a single initial height (Hi) growing
according to any given deterministic mechanism; the ‘classical’ view that has yet to be explicitly
tested. The bedforms will all reach the same final height (Hf) as each other after any time has
elapsed (i.e., tf—ti), whatever their growth rate (Fig 8). This model starts with a Dirac delta
function as the pdf (probability density function) ofHi and produces the same pdf ofHf at a
later instant in time tf, namely a single vertical spike on plots such as Figs 2 or 8.

A.2. Variable initial topography [M2 and M3]
Models M2 and M3 are designed to give insight into whether or not the observed final size-fre-
quency distribution may simply arise as a result of an inherited distribution of initial sizes,
without recourse to stochastic behaviour during growth. These models are stochastic in the ini-
tial conditions only; that is, the initial condition of Eq 2 is modelled as a random variable fol-
lowing a prescribed pdf that reflects a chosen initial size distribution.

Proto-bedforms of initial height Hi follow a uniform distribution, that is they are equally
distributed across a range of heights between a and b (Eq 28), which is the width of the grey
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boxes on Fig 9, and grow deterministically.

fHi
ðhiÞ ¼

1

b� a
; for a < hi < b

0; elsewhere

8<
: ð28Þ

Fig 8. Probability density functions (pdfs) for the simplest model [M1]. In this model drumlins have a
single initial height Hi, then grow deterministically through time.

doi:10.1371/journal.pone.0159489.g008

Fig 9. Pdfs for models with deterministic growth and variable initial topography a) linear growth [M2]
b) exponential growth [M3]. Initial H distribution Hi (grey, dashed line) changes to the final oneHf (black
outline) as time progresses. Dotted lines are an arbitrary function. Cases shown are where smallest Hi is
zero; a = 0.

doi:10.1371/journal.pone.0159489.g009

Statistical BedformModels

PLOS ONE | DOI:10.1371/journal.pone.0159489 July 26, 2016 21 / 29



So defined, Hi is a random variable; thus, since Hf in Eqs 3 and 5. is a function ofHi, it is
also a random variable whose distribution can be determined. Determining the pdf of Hf given
the pdf of Hi is a relatively straightforward task. To this aim, the standard transformation rela-
tionship

fYðyÞ ¼ fXðg�1ðyÞÞ d
dy

g�1ðyÞ
����

���� ð29Þ

relating random variables y and x is invoked assuming a relationship of the form y = g(x) (e.g.,
Ch 5 of [93]).

If growth is linear with time (Eq 1) [M2], the shape of the initial distribution is not altered
(Eq 30) and it moves right as illustrated in Fig 9a. So, if any non-trivial growth (e.g., 4 m) has
occurred, it is not possible to construct a pdf for Hi that still contains low amplitude bedforms;
for example, even the smallest initial height of 0 m would have grown to 4 m. For mapped size
data the mode (ϕobs) would increase linearly with time, but the exponent of the right-hand tail
(λobs) [19] would stay constant.

fHf
ðhfÞ ¼

1

b� a
; for aþ kðtf � tiÞ < hf < bþ kðtf � tiÞ

0; elsewhere

8<
: ð30Þ

If growth is caused by linear instability [M3] (i.e., is exponential as in Eq 4) then the distri-
bution elongates (Eq 31, Fig 9b) but does not alter the relative abundances of different bedform
sizes (e.g., 5th, 50th and 95th percentiles of H). Indeed, the pdf can be imagined as being drawn
on a sheet of elastic material so that, even if it is any arbitrary function (dotted lines), it will be
elongated but not otherwise distorted. Thus, to end up with an approximately log-normal dis-
tribution as observed for bedforms (e.g., Fig 1), a landscape must start with a log-normal distri-
bution; this ad hocmodification of M3 is denoted M3a. For mapped size data M3a would have
both ϕobs and 1/λobs increasing linearly proportional to each other and with the duration of
the bedform building episode, and this would happen along a trajectory set by the shape of the
initial distribution.

fHf
ðhfÞ ¼

1

ðb� aÞekðtf�tiÞ
; for aekðtf�tiÞ < hf < bekðtf�tiÞ

0; elsewhere

8<
: ð31Þ

A.3. Variable initiation times [M4 and M5]
Models M4 and M5 formalise the glaciological hypothesis in which bedforms are not ‘born’ at
the same time and therefore, at any point in time, will have been growing for different dura-
tions [11,113]. Proto-bedforms of an initial (constant) size Hi start growing at times distributed
according to a uniform distribution from an earliest time defined as c; i.e., a constant number
are created per unit time as the building of the flow set progresses. All continue growing until a
final, constant time (tf). The time at which bedforms’ growth starts, ti, is now a random variable
(Eq 32) making final height (Hf) also a random variable since it is a function of ti. The pdf ofHf

can be determined similarly to the previous section by resorting to the transformation
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relationship of Eq 29.

fTiðtiÞ ¼
1

tf � c
; for c < ti < tf

0; elsewhere

8<
: ð32Þ

If growth is linear with time (Eq 1) [M4], then a uniform distribution of final heights is pro-
duced (Fig 10a, Eq 33). In general, ad hocmanipulation of the form of the pdf of ti will be
directly reflected in the output form ofHf. A linearly increasing production rate (number per
unit time), for instance, would produce a linearly decreasing frequency with increasing Hf

because the larger number of recently produced forms have not yet had time to grow. Thus, an
approximately Gamma distribution (e.g., Fig 1), for instance, could be created by a production
rate that started slowly, built approximately exponentially to a peak and then died rapidly
before tf; this variant is denoted M4a. If interrupted at any point before the distribution was
fully formed, the distribution would have its left side missing as this part would not yet have
been created. In terms of mapped size data, ϕobs would remain at ~0 until the roll-over was cre-
ated, and 1/λobs would remain constant if the right hand tail were well-approximated by an
exponential distribution.

fHf
ðhfÞ ¼

1

kðtf � cÞ ; forHi < hf < Hi þ kðtf � cÞ

0; elsewhere

8<
: ð33Þ

If growth is exponential (Eq 4) [M5], the frequency of remnant forms is not exponential,
but is inversely proportional to final height (Eq 34, Fig 10). This is verifiable intuitively since
frequency in any height band is less the faster bedforms pass through it; specifically, bedform
frequency is inversely proportional to their growth rate (i.e., 1/kH, Eq 4). In order to replicate
an approximately log-normal distribution ofHf (e.g., Fig 1) with exponential growth, ti must
have a roughly Gaussian (i.e., normal) distribution [M5a]; a log-normal distribution is defined
as that of a random variable whose logarithm is normally distributed, and Eq 4 can be written
to give the logarithm of Hf as log(Hf) = log(Hi)+k(ti − c) where everything on the right hand
side is constant here except ti which is a normal distribution. This can be verified by appropri-
ate transformations of the random variables (e.g., Ch 5 of [93]). Giving ti a normal distribution
would, strictly, allow it to take values from −1 to +1, and so to apply to a period of bedform
creation ranging between c and tf only ad hoc Gaussians with small values outside this range
could be employed. For mapped size data M5a predicts that 1/λobs would increase linearly with
time along a trajectory set by the shape of the initial distribution, and ϕobs would remain at ~0
until the roll-over was created, then increase exponentially. Note that the SI model [M7] gives
a mechanistic explanation for a Gaussian distribution of net growth durations rather than an
ad hoc assumption of this in M5a.

fHf
ðhfÞ ¼

1

hfHiekðtf�cÞ ; forHi < hf < Hie
kðtf�cÞ

0; elsewhere

8<
: ð34Þ

A.4. Evaluation of models M1 to M5
With no randomness or variation [M1], the observations cannot be replicated. That is, no
sharply spiked peaks are observed in size frequency distributions (Fig 1), casting serious doubt
upon an entirely deterministic model. Thus, M1 is rejected. M2 and M3 are based on variations
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in initial bedform sizes, Hi. Linear deterministic growth with uniformly distributed initial
heights [M2] does not retain the small forms that are observed. Indeed, as explained above,
there is no distribution of initial heights that can do so. Similarly, linearly unstable (i.e. expo-
nential) deterministic growth [M3] does not intrinsically create an appropriate, exponentially
tailed, size-frequency distribution. A progenitor landscape with log-normal Hi must be invoked
to give the required log-normal Hf [M3a], but this ad hocmodification is somewhat question-
able in a world where fractals (i.e., power-law distributions) dominate topography (e.g., [114]);
even when suggesting that earlier progenitor log-normally sized forms may exist to be altered,
the first set needs explaining. Thus, we provide the first observational constraint to indicate
that something more appears to be needed than the ‘classic’ deterministic view of bedform
growth and more obvious variants represented by models M1 to M3.

M4 and M5 are based on variations in growth initiation times, ti. Linear deterministic
growth with a uniform distribution of initiation times [M4] does not match the size-fre-
quency distribution. Ad hocmanipulation [M4a] is therefore needed. However, M4a invokes,
without supporting evidence or analogy, a ‘reflected’ log-normal distribution of frequency
that starts slowly, builds approximately exponentially to a peak, and dies rapidly before tf.
Exponential growth, as illustrated by a uniform distribution of initiation times [M5], does
not intrinsically lead to an approximately Gamma or log-Normal distribution of bedform
sizes that is observed. A Gaussian distribution (i.e., ti * N(μ,σ)) would explain the observa-
tions [M5a], but it must be arbitrarily invoked. Thus, if bedforms are ‘born’ at different times
(see [11,113]), it is demonstrated that a very specific pattern of ‘births’ is needed. Arguably, it
would be preferable to have some process-related explanation for the required distribution of
their initiation times.

Fig 10. Pdfs for models with deterministic growth where bedforms have constant initial heights, but a
uniform distribution of initiation times (i.e., initiation rate is constant through time). a) linear growth
[M4] b) exponential growth [M5]. Initial distribution (grey, dashed line) changes to the final one (black outline).

doi:10.1371/journal.pone.0159489.g010

Statistical BedformModels

PLOS ONE | DOI:10.1371/journal.pone.0159489 July 26, 2016 24 / 29



Appendix B: Parameter Estimation
Descriptions of the calculation of the exponent (λ) above a mode () and parameters of a
gamma distribution (αobs, βobs) are given in Hillier et al. [19], which explicitly includes how
counts from previously published size-frequency plots can be utilized. Fowler et al. [22] relays
the standard formulae for a log-normal distribution where individual data are available (μobs,
σobs), and how this may be done for digitisations of previously published size-frequency plots is
given below. Worked examples for all parameters and all the data sets used in this paper are
provided in EXCEL sheets as S1 File.

Maximum likelihood estimation of log-normal distribution parameters (μ, σ) using binned
data, such as that digitised in Fig 1, adapts standard formulae used to calculate μ and σ for indi-
vidual data in various areas of research (e.g., [22,115,116]). The mean, �x , and standard devia-
tion, sx, of the sample are calculated to estimate μ and σ, respectively, using Eqs 35 and 36. n is
the total number of data with counts, cj, of bins at xj.

m̂ ¼ �x ¼ 1

n

X
cjlnðxjÞ ð35Þ

ŝ ¼ sx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n� 1

X
cj½lnðxjÞ � lnðxÞ�2

r
ð36Þ

Supporting Information
S1 File. Zip file, containing data and worked examples of parameter calculation in EXCEL
sheets, and a README file explaining its contents. Also includes a summary table of nota-
tion used in the manuscript.
(ZIP)
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