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Abstract 

In this paper, two different types of unstiffened and lozenge grid-stiffened E-

glass/Epoxy composite cylindrical shells are experimentally investigated under 

lateral compression. The composite shells are compressed in two different loading 

conditions; between two rigid flat platens and between a rigid flat platen and a 

rigid cylindrical indenter which is aligned perpendicular to the shell axis. The 

effects of the grid stiffeners on the stiffness, contact force and energy absorption 

capacity of the composite cylindrical shells are investigated in the two mentioned 

loading conditions. Incorporation of grid stiffeners in the composite cylindrical 

shells leads to an increase in the structural stiffness, contact force and energy 

absorbing capacity in both loading conditions. Furthermore, it is observed that the 

effect of the stiffeners on the structural stiffness is dominant in the elastic 

deformation stage of the compression processes. The results show that stiffening 

the composite cylindrical shells with lozenge grid stiffeners can increase the 

specific energy absorption almost twice in comparison with the unstiffened 

composite shells; and among all of the specimens, the grid-stiffened structures 

compressed between two rigid flat platens have the highest specific energy 

absorption, while the unstiffened structures compressed by the cylindrical indenter 

have the least capacity to absorb energy. 
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1. Introduction 

Energy absorbing structures are widely used in many applications such as in 

automotive, aero-space, building, shipping, oil and gas industries.  The most 

important features of these kinds of structures can be mentioned as high energy 

absorbing capacity, low weight etc. Metallic energy absorbing structures under 

different loading conditions were widely investigated by many researchers. Under 

different loading conditions, these kinds of structures, as energy absorbing 

structures, may undergo several different processes such as folding, inversion, 

flattening, splitting processes and so on. For example, circular thin-walled tubes 

under axial and lateral compressions are investigated by many researchers [1-6]. 

Alghamdi [7] and Olabi et al. [8] presented reviews of the collapsible impact 

energy absorbers and the metallic energy absorbing structures, respectively. The 

lateral compression of thin-walled metallic structures was investigated by Olabi et 

al. [9] by using the nested circular tube energy absorbers under lateral impact 

loading. Morris et al. [10] presented an experimental and numerical investigation 

on the nested circular and elliptical type energy absorbers. In their work, nested 

systems consist of circular tubes or elliptical shaped tubes of different diameters 

which were placed within each other and their axes being parallel.  They also 

discussed how the circular tubes were transformed into elliptical shapes and how 

such a modified shape exhibited greater crushing efficiencies than their circular 

shaped counterparts.                      



  

 

Niknejad et al. investigated experimentally the crushing behavior of the empty and 

polyurethane foam-filled brazen tubes, [12].  They observed that polyurethane 

foam filler can considerably increase the specific energy absorption of the thin-

walled structures. Their results showed the formation of two or in some cases four, 

plastic hinges in the specimens depends on the geometrical dimensions of the 

specimens. Their theoretical model reasonably predicts the load-displacement 

behavior of the rectangular [13] and hexagonal [14] metallic tubular structures 

under lateral quasi-static compression, in comparison with the experimental data.   

Aluminum foam-filled and empty tubes made of aluminum, brass and titanium 

during the lateral compression was studied by Hall et al. [15]. Estimation based on 

initial crushing loads showed that for comparable energy absorption, filled tubes 

are lighter than thicker empty tubes. Fan et al. [16] demonstrated the advantage of 

sandwich tube. They studied experimentally the deformation behavior of sandwich 

tubes under quasi-static lateral crushing. Their results showed that tubes filled by 

aluminum foam tend to  change  the  deformation  mode  of  empty  tubes  from  a  

non- sequential to a sequential folding mode due to the plateau region of the foam. 

Composite structures are also extensively used in different energy absorbing and 

buckling resistant applications, due to to high specific strength and specific energy 

absorption capabilities. Improvements in manufacturing technologies have 

contributed in increasing the rates of production during the reinforcement-matrix 

association, notably because of high quality and reliability of the filament winding 

process, resin transfer molding (RTM) and other techniques. In the past two 

decades, these types of energy absorbing structures were widely investigated by 

many researches. Taher et al. [17] experimentally evaluated the crashworthiness 

characteristics of a novel design   for   cost-effective   crashworthy   composite   

glass   fiber- reinforced plastic sandwich structures. They described the design, 

manufacturing and crush testing of rectangular fabricated blocks. Palanivelu et al. 

[18] presented an experimental investigation of quasi-static crushing behavior of 

nine different geometrical shapes of small-scale composite tubes. Their main idea 

was to understand the effect of geometry, dimension and triggering mechanism on 

the progressive deformation of small-scale composite tubes. They found that the 

crushing characteristics and the corresponding energy absorption of the special 

geometrical shapes are better than the standard geometrical shapes such as square 

and hexagonal cross sections. Furthermore, they concluded that the tulip triggering 



  

 

attributed to a lower peak crush load followed by a steady mean crush load 

compared to the 45° chamfering triggering profile which resulted into a higher 

energy absorption in most of the geometrical shapes of the composite tubes. 

Chiu et al. [19] investigated the response of a tulip-triggered cylindrical energy 

absorbing structure undergoing crushing at increasing strain rates. In their work, 

the energy absorption was found to be independent of strain rate as the total energy 

absorption appeared to be largely associated with fiber-dominated fracture, which 

is independent of strain rate within the studied range. 

Tarlochan et al.  [20]  investigated the crushing response of composite sandwich 

structures under quasi-static compressive loads. In their work, the mechanism of 

progressive crushing of the sandwich structures and its relation to the energy 

absorption capabilities was deliberated. The aim of their study was to design and 

fabricate tubular sandwich structures that have potential as energy absorber devices 

under the axial loading. 

The stability of crushing process is of great interest in automotive applications. 

Mahdi and Sebaey [21] studied quasi-static crushing behavior of composite tubes 

with four different cross-sections to find the best cross-section in terms of the 

crushing load and the energy-absorption capacities. Their results showed that 

introducing the geometrical reinforcement inside the tubes could have a positive 

effect on the stability of the crushing process during the loading, the average crush 

load, and the crush-load efficiency. 

Investigation of composite structures under lateral loading conditions has also 

received great deal of attention. For instance, Gupta and Abbas [22] presented an 

experimental investigation on the flattening of cylindrical composite tubes. They 

studied the effects of geometrical parameters (i.e. the diameter to thickness ratio) 

on the peak crushing load, post collapse load, energy absorption and deformation 

behavior of the specimens. Also, they derived a theoretical formulation in order to 

predict the load- displacement behavior of the tubes in two different stages of 

elastic and fracture lines in the progressive fracture of multiple numbers of plies in 

each tube. Their results showed a reasonable agreement between the theoretical 

and experimental results.  



  

 

Calme et al. [23] studied experimentally and numerically the flattening process in 

the carbon-epoxy cylindrical rings made by resin transfer molding by association 

of braided three-dimensional tubular preforms with DGEBA-IPD resin. In the 

linear region, the analytical modeling of elastic stresses giving the distribution of 

hoop and transverse shear stresses were validated by finite element simulation. In 

the elastic–plastic domain, energy absorption in 3D rings was modeled by a 

phenomenological approach. The proposed energy absorption model for non-linear 

3D rings showed a good correlation with experiments. They concluded that the 

superiority of the 3D solution allows avoiding delamination problems during the 

lateral crushing. Abosbaia et al. [24] experimentally studied the effects of 

segmentation on the crushing behavior of laterally compressed composite tubes. 

They found that, segmented composite tubes, consisting of cotton fiber/epoxy and 

carbon fiber/epoxy are particularly efficient crush elements and segmented 

composite tubes including tissue mat glass fibers were found to suffer from low 

energy absorption. 

Mahdi and El Kadi [25] investigated the composite elliptical tubes experimentally 

and by using artificial neural networks (ANN) technique they predicted the 

crushing behavior and energy absorption characteristics of laterally loaded glass 

fiber/epoxy composite elliptical specimens. Their predicted results were compared 

with experimental data in terms of load carrying capacity and energy absorption 

capability which showed good agreement. They concluded that, ANN techniques 

could effectively be used to predict the response of collapsible composite energy 

absorber devices subjected to different loading conditions. Also, as is the case for 

experimental findings, their predictions obtained using ANN showed the 

significant effect of the ellipticity ratio on the crushing behavior of laterally loaded 

tubes. 

Experimental investigation on the flattening process of the empty and polyurethane 

foam-filled E-glass/vinyl ester composite tubes is presented by Niknejad et al. [26]. 

Their results showed that the presence of polyurethane foam inside the composite 

tubes suppresses the circumferential delimitation process and fiber fracturing and 

consequently, increases the specific absorbed energy by the composite tubes during 

the flattening process. Also, they observed that, injection of the polyurethane foam 

in the composite tubes causes the more regular deformation mode, comparing with 



  

 

the empty composite tubes. Hafeez and Almaskari [27] studied the filament wound 

cylindrical glass reinforced epoxy (GRE) tubes subjected to lateral indentation, 

supported by V shaped cradles at each end. It was concluded that specimen resting 

on V support experience higher loads and bigger damage area for same indentation 

displacement, which is in contrary to the observation already made in literature for 

semi-circular cradle supported specimens. 

Grid-stiffened structures are known as ultra-light structures that are used in 

applications where the structure mass is a key design factor, such as in automotive 

and aero-space industries. These kinds of structures have many advantages such as 

high strength and stiffness to weight ratios and damage tolerance. The grid of 

stiffening ribs is the primary feature in these structures and filament winding is 

employed as the most convenient manufacturing technique. 

 Kim [28] investigated reliability of a postbuckled composite isogrid stiffened shell 

structure under a compression load. His results showed that the postbuckled 

cylinder continued to resist compression loading even after one or more stiffeners 

fractured. The testing evaluation revealed that the stiffener buckling was the 

critical failure mode and it was demonstrated to be tolerant to structural damage 

due to the multiplicity of load paths. He also found that the skin resisted radial 

displacements and increased the axial stiffness of the cylinder.  

Kidane [29] analyzed the buckling behavior of grid stiffened composite structures 

by theoretical, experimental and numerical approaches. He studied the effects of 

skin thickness, skin winding angle, stiffener orientation angle and longitudinal 

modulus on the buckling load of these structures. His results demonstrated that the 

variation in shell winding angle had different effects on stiffened cylinders failing 

in different failure modes; for a stiffened cylinder failing in local skin buckling 

failure mode, increase in winding angle decreased the load resistance of the 

structure, while for a stiffened  cylinder  failing  in  stiffener  crippling  failure  

mode,  improvement  in  load  resistance  was noted  with  increase  in  shell  

winding  angle. Furthermore, based on his results, for a stiffened cylinder failing in 

global buckling failure mode, an optimum shell-winding angle of 54° was 

observed.  Also, he observed that increase in skin thickness increased the buckling 

resistance of the stiffened structure continuously, while an optimum skin thickness 

of 2.2 mm was resulted in the highest specific buckling load. 



  

 

Zhang et al. [30] developed a progressive failure methodology to simulate the 

initiation and propagation of multi-failure modes for advanced grid stiffened 

(AGS) composite plates/shells on the basis of a stiffened element model. The 

methodology was able to simulate initiation and propagation process of multi-

mode failures based on a set of 2D stress-based polynomial failure criteria.  An 

equivalent degraded stiffness rule after delamination was deduced, which can 

weaken the ability of buckling resistance but have a little influence on the in-plane 

load-carrying ability. 

The complete cycle of manufacturing and testing of three different types of 

cylindrical structures; unstiffened shell, lattice cylinder and grid-stiffened shell 

with the emphasis on the stiffened structures were presented by Buragohain and 

Velmurugan [31]. They concluded that the efficiency of these structures was 

greatly enhanced by the stiffening ribs and, as reflected by the highest specific 

buckling loads, the grid-stiffened shells, especially the lattice cylinders, remain the 

most efficient structure. 

Yazdani et al. [32] investigated experimentally the buckling behavior of 

unstiffened and stiffened shells with hexagonal, triangular and lozenge grids 

manufactured by a special-designed filament winding machine. Based on their 

experimental results, the critical buckling load was higher  for  the  shells  with  

hexagonal  and  triangular  grids  while  the  unstiffened  shells  and  stiffened 

shells with lozenge grids exhibited much lower critical buckling loads. 

Furthermore, they observed that in very small skin thicknesses, when the specific 

buckling loads for all specimens were compared, the unstiffened shells showed the 

highest specific buckling load. 

In the present work, unstiffened and grid-stiffened composite cylindrical shells 

under compression loads applied by either between two flat plates or a rigid 

cylindrical indenter that is aligned perpendicular to the specimen axis and a flat 

platen are investigated experimentally. To the best of our knowledge, this is the 

first investigation on the flattening and indentation of the grid-stiffened composite 

cylindrical structures with the focus on their energy absorption and deformation 

behavior under quasi-static compression load. 

 



  

 

2. Experimental Studies 

2.1. Materials 

The composite shells were fabricated from E-glass fibers and an epoxy matrix by 

mixing of CY-219 epoxy and HY-5161hardner with a mixing ratio of 2:1, 

respectively. A wax release agent was used three times in order to easily separate 

the outer mold parts and the specimens. 

The material properties of the glass fiber and epoxy matrix were obtained by 

performing standard tensile tests according to ASTM D-2256 and D-638 standards, 

respectively. Typical load-displacement curve and engineering stress-strain curve 

obtained from the fiber and matrix are shown in Figs. 1 and 2. Tables 1 and 2 show 

the material properties of the fiber and matrix, respectively.  

 

Fig 1. A typical load-extension diagram of the E-Glass fibers. 

 



  

 

 

Fig 2. A typical engineering stress-strain curve of the epoxy matrix. 

 

 

Table 1. Average material properties of employed E-glass fibers. 

Elastic modulus 

(GPa) 

Tensile strength 

(MPa) 

Density 

(g/cm
3
) [33] 

Peak force 

(N) 

Breakage 

displacement (mm) 

53.6 1000 2.58 42.6 4.4 

 

Table 2. Mechanical properties of the employed epoxy matrix. 

Elastic modulus 

(MPa) 

Tensile 

strength 

(MPa) 

Density of  CY-

219 epoxy 

(g/cm3) 

Density of HY-

5161 hardener 

(g/cm3) 

Density of 

matrix 

(g/cm3) 

1020 15.1 1.1 1.0 1.067 

 

 

 



  

 

2.2. Specimen manufacturing 

Two different types of unstiffened (US) and lozenge grid-stiffened (GS) cylindrical 

composite shells were manufactured by using a filament winding machine. In order 

to fabricate the specimens, at first a cylindrical polyethylene mold, as the outer part 

of the mold, was machined which contains 3 clock-wise and 3 counter clock-wise 

helical grooves. The outer part of the mould is made from many separated pieces 

screwed onto the inner part of the mould as can be seen in Fig. 3a. The cross 

section of helical grooves and therefore the cross section of the grids was a square 

each side 6 mm. The final manufactured mold system is shown in Fig. 3a and can 

be used several times. The mold was placed on the filament machine mandrel 

which had two different adjustable rotational and horizontal movements. Table 3 

tabulates the geometrical dimensions of the mold system.  

 

Table 3. Geometrical dimensions of the mold system. 

Length of the inner 

mold (mm) 

Length of the outer 

grooved mold (mm) 

Groove pitch 

(mm) 

Groove cross-section 

(mm
2
) 

410 360 720 6×6 

 

 For manufacturing the specimens, at first, the grooves were filled by E-glass fibers 

impregnated by matrix in order to produce the helical grids, by using an especial 

feeder which guides three sets of glass fibers with three fibers in each feeder’s hole 

(fissure). After filling the grooves in 80 back and forth movements, the outer shell 

of the specimens was wound around the whole filled mold with a winding angle of 

± 62°. The outer shell was wound by 80 back and forth winding movements. Fig. 4 

depicts the manufacturing processes of the specimens. Afterwards, the whole 

system of mold and specimen were placed on a motor shaft and the specimens 

were cured at room temperature. Finally, after separating the inner and outer parts 

of the mold by using an especial fixture shown in Fig. 3b, manufacturing of the 

grid-stiffened specimen was completed. Geometrical characteristics of the final 

specimens and indenters are shown in Table 4. Fig. 5 illustrates the fabricated 

unstiffened and lozenge grid-stiffened specimens with an outer shell thickness of 

nearly 1 mm.  



  

 

 

Table 4. Geometrical characteristics of the final specimens and indenters. 

Shell 

Type
*
 

Part 

no. 

Inner diameter of 

the outer shell 

(mm, ±1) 

Shell 

thickness 

(mm, ±0.1) 

Length 

(mm, ±1) 

Mass 

(g, ±0.1) 

Indenter type 

(diameter in 

mm) 

US 
1 

160 1.5 344 

294.9 

Cylindrical  

(90) 

2 290.7 

GS 

1 449.7 

2 435.3 

3 424.3 

USF 
1 291.4 

Flat platens 

 

2 288.3 

GSF 

1 440.7 

2 417.8 

3 441.4 

*: 

US: Unstiffened specimens indented by cylindrical indenter 

GS: Grid-Stiffened specimens indented by cylindrical indenter 

USF: Unstiffened specimens compressed between tow rigid flat platens 

GSF: Grid-Stiffened specimens compressed between tow rigid flat platens 

 

 

 



  

 

Fig 3. The complete inner and outer mold system (a) and the special fixture used to 

separate the specimen and the outer grooved mold from inner mold (b).  

 

 

Fig 4. Manufacturing processes of the grid-stiffened tube, before starting the 

process (a) after manufacturing the lozenge grids (b) the close view of the grid 

intersection (c) during the outer shell winding (d). 

 



  

 

 

Fig 5. The fabricated unstiffened (US) (a) and grid-stiffened (GS) (b) composite 

shells. 

2.3. Compression tests 

Two kinds of unstiffened (US) and grid-stiffened (GS) structures were compressed 

using either two flat steel platens or a flat steel platen with a rigid cylindrical steel 

indenter with outer diameter of 90 mm. In the second testing procedure, the rigid 

cylindrical indenter was limited to have horizontal movement. For the sake of 

symmetric loading condition, in both of testing procedures, the specimen was 

placed under the platens and indenter in such a manner that the two adjacent grid 

intersections were adjusted in both sides of the compression punch equally (i.e. the 

initial loading point). Fig. 6 shows the specimen GS-1 and the closed view of the 

initial loading point. An Instron universal testing machine was employed to carry 

out the experiments with a quasi-static displacement rate of 10 mm/min. Each 

testing procedure was repeated two or three times in order to mitigate the probable 

affecting defects which may be produced by manufacturing or testing 

imperfections. The average data of repeated tests are reported in this article. 



  

 

 

Fig 6. The GS specimen indented by the rigid cylindrical indenter (a) and the close 

view of the initial loading point (b). 

 

3. Results and discussion  

Load-displacement diagram of the energy absorbing structures is the key factor in 

their design and application. Structures with a high mean crushing load and a low 

initial peak load are known as the most efficient energy absorbers. Thus, in this 

section the crushing behavior and consequently, the load-displacement diagrams of 

the tested specimens are discussed.    

3.1. Compression between a flat platen and a rigid cylindrical indenter 

The load-displacement diagrams of the unstiffened and grid-stiffened specimens 

indented by the rigid cylindrical indenter are shown in Fig. 7.  In order to show the 

variation of the actual data obtained in repeated tests, in this figure all three data 

with their average for grid-stiffened specimens (GS-1, GS-2, GS-3 and GS) are 

sketched. Also, all two load-displacement curves with their average for unstiffened 

specimens (US-1, US-2 and US) are plotted in this figure. 

 

 

  



  

 

  

 

 

 

 

Fig 7. Load-displacement diagrams of the US and GS specimens compressed 

between a rigid cylindrical indenter and a flat platen. 

 

As can be seen from the Figure 7, the grid-stiffened specimen has a higher contact 

force during the whole indentation stroke. This can be explained by this fact that 

the existence of the lozenge grids leads to more material contribution in the 

compression process of the stiffened specimen than the unstiffened one. In other 

words, in the indentation process of the grid-stiffened cylindrical shells, in contrast 

with the unstiffened specimens, the grid stiffeners distribute the local contact force 

to the whole length of the specimen. This process was observed in the experiments 

and can be seen in Fig. 8. Also, according to Fig. 7, in the elastic part of the 

diagram, the slope of the load-displacement curves of the grid-stiffened shell is 



  

 

steeper than the slope of the unstiffened shell, which means a higher stiffness of 

the stiffened shell. 

During the experiments, specimens made some cracking sounds which can be 

corresponded to the load downfalls of the load-displacement diagrams (Fig. 7). 

During the compression processes, two local plastic hinges were produces at both 

sides of unstiffened shells and under the indentation area, while two plastic hinges 

were produced at full length on each side of the grid-stiffened specimens.  

 Also, it is worth notice that in the grid-stiffened specimens, after removing the 

compression load, the specimens sprung back and formed an elliptical shape cross-

section, while no spring back observed in the unstiffened specimens. 

 

Fig 8. Final deformation of the US (a) and GS (b) specimens under indentation. 

 

The energy-displacement and the specific energy-displacement of the US and GS 

specimens indented by the cylindrical indenter are depicted in Figs. 9 and 10, 

respectively. The value of energy is manually calculated from the force-

displacement data obtained from the machine by integrating the area under 

the load-displacement curve. It can be seen from these figures that the presence of 

the grid stiffeners leads to higher energy absorption as well as specific energy 

absorption, when indented by a cylindrical indenter laterally.   



  

 

 

Fig 9. Energy absorption diagrams of the US (a) and GS (b) specimens versus 

compressed lateral displacement under rigid cylindrical indenter. 

 

 

Fig 10.Specific energy absorption diagrams of the US and GS specimens versus 

compressed lateral displacement under rigid cylindrical indenter. 

 

 

3.2. Compression between two rigid flat steel platens 



  

 

In order to investigate the contact force and the energy absorption in the flattening 

process of the USF and GSF specimens, in this section the two types of specimens 

are compressed between two rigid flat steel platens. Fig. 11 shows the unstiffened 

and grid-stiffened specimens during the compression between two rigid steel 

platens. 

 

Fig 11. Unstiffened (a) and grid-stiffened (b) specimens during flattening process 

between two flat steel platens. 

 

In these cases, two plastic hinges produced in both the front and back sides of the 

specimens. During the tests, it was observed that in both sides of the grid-stiffened 

shells, the helical ribs separated from the outer cylindrical shell by occurrence of 

tearing process in the outer shell. The load-displacement and variation of the 

energy absorption of these experiments are shown in Figs. 12 and 13, respectively. 



  

 

 

Fig 12. Load-displacement diagrams of the USF and GSF specimens compressed 

between two rigid flat steel platens. 

 

Fig 13. Energy absorption versus lateral displacement of the USF and GSF 

specimens compressed between two rigid flat steel platens. 

 

As can be seen from Figs. 12 and 13, the grid stiffened specimens are stiffer than 

the unstiffened specimens and in the same lateral displacement they can absorb 

more than twice energy in comparison with the unstiffened specimens. The 



  

 

specific energy absorption diagrams versus the lateral displacement of the USF and 

GSF composite shells are depicted in Fig. 14.  

 

Fig 14. Specific energy absorption diagrams of the USF and GSF specimens versus 

lateral displacement compressed between two rigid flat steel platens. 

 

3.3. Effect of loading condition 

In order to investigate the effect of loading condition on the deformation behavior 

and energy absorption capacity of the composite shells, Figs. 15 and 16 

respectively show the load-displacement diagrams of the grid-stiffened and 

unstiffened composite shells. 

 



  

 

 

Fig 15. Load-displacement diagrams of the GS specimens compressed in two 

different loading conditions. 

 

 

 

Fig 16. Load-displacement diagrams of the US specimens compressed in two 

different loading conditions. 

According to the figures, load downfalls appeared in the load-displacement 

diagrams of the US and GS specimens when indented by rigid cylindrical indenter, 

while no load downfall occurred in both US and GS specimens when indented by 

two rigid flat platens. These downfalls can be attributed to the sever deformation 



  

 

under the punch area which can be corresponded to the cracking sound heard 

during the experiments.  

In order to have a better comparison, Figs. 17 and 18 show the specific energy 

absorption (SEA) of the US and GS specimens under two different mentioned 

loading conditions. These figures illustrate the average values of specific absorbed 

energy by all tested specimens in two different lateral displacements of 40 mm 

(δ/D= 0.25) and 100 mm (δ/D= 0.625), respectively.  

 

 

Fig 17. Specific absorbed energy of the tested specimens in a lateral displacement 

of 40 mm (δ/D= 0.25). 
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Fig 18. Specific absorbed energy of the tested specimens in a lateral displacement 

of 100 mm (δ/D= 0.625). 

 

Based on the previous research on the grid-stiffened composite cylindrical shells 

[32], existence of the grid stiffeners negatively affected the specific buckling load 

of the structure. In contrast, based on the above figures, it can be obviously seen 

that existence of the grid stiffeners leads to a remarkable increase in the specific 

energy absorption.  

Also, it can be seen that the grid stiffened composite shells compressed between 

two rigid flat platens have the maximum specific energy absorption in the whole 

compression process, while the unstiffened composite shells indented by the rigid 

cylindrical indenter have the minimum value of the specific energy absorption. It 

should be noted that, the effect of the grid stiffeners on the stiffness, contact force 

and consequently on the energy absorption capacity of the composite shells is more 
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significant when the structure is compressed locally between a rigid cylinder and a 

rigid flat platen than between two rigid flat platens. Furthermore, it can be realized 

from the results that the effect of the stiffeners on the stiffness, contact force and 

energy absorption capacity of the structures is more significant in the elastic 

deformation stage of the compression process, i.e. in the lateral displacement of 40 

mm (δ/D= 0.25). 

 

Conclusion 

In this study, unstiffened and lozenge grid-stiffened composite cylindrical shells 

were investigated experimentally. The composite structures were compressed in 

two different loading conditions; between two rigid flat platens and, a rigid flat 

platen with a rigid cylindrical indenter. The experimental results showed that 

existence of the grid stiffeners led to distribution of the lateral load along the whole 

length of the specimen, especially when indented locally by cylindrical indenter. 

Also, it was observed that the grid-stiffened shells were stiffer than the unstiffened 

shells, especially in the elastic stage of the deformation. The stiffness, contact force 

and consequently the energy absorption capacity of the grid-stiffened structures 

were compared with the unstiffened shells. The results showed that the stiffness, 

contact force and the energy absorption capacity of the grid-stiffened specimens 

were significantly higher than the unstiffened ones in two different loading 

conditions. Experimental data revealed that existence of the grid stiffeners led to an 

increase in the specific energy absorption of the composite cylindrical shells. 

In summary, the grid-stiffened structures had the highest specific energy 

absorption capacity when compressed by two rigid flat platens, while the 

unstiffened shells had the least capacity to absorb energy when indented by the 

rigid cylindrical indenter.  
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