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Abstract
Most studies of magmatic intrusions concentrate on geometry and internal architecture: only
a few pay particular attention to emplacement-related deformation structures in the host
rock that record how magma is accommodated within the crust. This research aims to
develop a greater understanding of how igneous intrusive bodies are emplaced and
accommodated within the shallow crust, using classic exposures found in the Henry
Mountains, Utah. Two satellite intrusions to the Mt Hillers intrusive centre show highly
contrasting geometries, host-rock deformation and accommodation structures and apparent
emplacement mechanisms. Trachyte Mesa, the most distal satellite intrusion of Mt Hillers, has
a relatively simple elongate (NW-SE) geometry, concordant with the Entrada Sandstone it
intrudes. The intrusion is comprised of multiple, stacked intrusive sheets. Syn-emplacement
deformation structures observed in the host rocks consist of a conjugate set of intrusion
margin-parallel deformation bands and extensional brittle faults, the latter occurring at the
tips of intrusive sheets. These structures, along with a post-emplacement set of intrusion
margin parallel and perpendicular tensile joints, indicate extensional strain normal to the
intrusion margin, consistent with a two-stage growth mechanism for individual sheets as well
as the overall intrusion. In comparison, Maiden Creek shows a more complex intrusion
geometry, including: lobate morphologies; steps and broken bridges; inclined sill sheets; and
concave-upwards ‘laccolithic’ morphologies. A new model is proposed for the emplacement,
evolution and final geometry of the intrusion, with a central elongate NE-SW lobe resulting
from a principal north-easterly propagating magma flow. Lateral growth of the Maiden Creek
intrusion resulted from radial spreading of magma from this main north-easterly flow trend
towards the east and north-west. It is proposed that the southern Maiden Creek intrusion is
comprised of two westerly-derived (saucer-shaped?) sills. Overlying these deeper-rooted sills
is the newly identified Maiden Creek Shear Zone (MCSZ). This structure is an antithetic
accommodation structure to magma flow. Substantial amounts of strain observed through
microstructural analysis of shear zone samples suggest that the MCSZ played a critical role in
accommodating magma emplacement. This study suggests that much can be learnt about
intrusion geometries and emplacement mechanisms through detailed structural and

kinematic analyses of the host rocks and intrusion—host rock contact.
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All the girls, all dance with the boys from the city
And they don't care to dance with me
Now it ain't my fault that the fields are muddy
And the red clay stains my feet

And it's under my nails and it's under my collar
And it shows on my Sunday clothes
Though | do my best with the soap and the water
But the damned old dirt won't go

But when | pass through the Pearly Gate
Will my gown be gold instead?
Or just a red clay robe with red clay wings
And a red clay halo for my head?

Now it's mud in the spring and it's dust in the summer
When it blows in a crimson tide
Until trees and leaves and the cows are the color
Of the dirt on the mountainside

But when | pass through the Pearly Gate
Will my gown be gold instead?
Or just a red clay robe with red clay wings
And a red clay halo for my head?

Now Jordan's banks, they're red and muddy
And the rolling water is wide

But | got no boat, so I'll be good and muddy
When | get to the other side

And when | pass through the Pearly Gate
Will my gown be gold instead?
Or just a red clay robe with red clay wings

And a red clay halo for my head?

I'll take the red clay robe with the red clay wings
And a red clay halo for my head

Red Clay Halo - by Gillian Welch & David Rawlings
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Chapter 1 - Introduction

1.1. Shallow Level Intrusions

The evolution of magmatic systems (i.e. the ‘magmatic cycle’; Marsh, 1989) can be
divided into five distinct phases: (1) magma formation/ melting; (2) magmatic
segregation; (3) ascent; (4) emplacement (intrusion); (5) and in some cases eruption
(extrusion). The emplacement of magma into the upper few kilometres of the crust is an
important process in magma storage and differentiation, which may ultimately feed
surface volcanism (Fig. 1.1; Breitkreuz & Petford, 2004; Thomson & Petford, 2008). Such
shallow level intrusions can also play an important role in economic geology, through the
formation of mineral deposits (e.g. Ramirez et al., 2006; Sparks et al., 2006), geothermal
energy (e.g. Wohletz & Heiken, 1986), and source rock maturation and reservoir
properties in hydrocarbon systems (Schutter, 2003a, b; Rodriguez Monreal et al., 2009;
Jones et al., 2007).

Shallow level intrusion complexes (i.e. large volumes of igneous rock (magma) emplaced
within the upper 2-10 km of the crust) comprise an important part of the sub-volcanic
plumbing system (Fig. 1.1) in which magma is emplaced as a series of sub-horizontal,
sheet-like intrusions (Hutton, 1996; Cruden & McCaffrey, 2001; Morgan et al., 2008).
Shallow level intrusions include sills, laccoliths and lopoliths (Fig. 1.1c, d). Corry (1988)
produced a geographical index of all the known laccoliths of the world (~900, 600 of
which are situated in North America) and extrapolated the numbers to infer that there
may be >5000 laccoliths globally, assuming that the proportion of laccoliths remains
roughly equal from one continent to another. If true, this supports the idea that laccolith

emplacement is an important intrusion process.

Fundamental to our understanding of the emplacement of magma into the subsurface is
reconciling the intrusion ‘space-problem’ (Hutton, 1996). First recognised by Charles Lyell
in the nineteenth century (Pitcher, 1993), the ‘space-problem’ (or ‘room-problem’) refers
to the physical processes that allow the addition of substantial new volumes of magma
into the crust. Shallow-level intrusions form in the upper crust, and therefore even with
the additional thermal effects of the magmatic system, deformation processes are
predominantly brittle. The role of faults and fractures in the emplacement of intrusive
rocks is therefore an important process (Pollard & Johnson, 1973). Fracture-mediated
intrusions generally fall into two categories (Ablay et al., 2008): (1) exploitation of pre-

existing structures, aided by tectonic and buoyancy forces (e.g. Hutton et al.,, 1990;
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McCaffrey, 1992; Tikoff & Teyssier, 1992; Magee et al., 2013); and (2) the development of
juvenile fractures due to hydraulic and buoyancy loads intrinsic to the magma itself (e.g.

Pollard & Johnson, 1973; Clemens & Mawer, 1992; Ablay et al., 2008; Schofield, 2009).

40-80 mm yr !
—

Wedge

40 U"'“L"‘W

= @ partial melts
of sediments

80 |- [0) dehydration fluid
flux

|- no vertical
exaggeration

120

Erruptive periodicity
~10 to 100 years

G5

Andesite to dacite
differnetiation
over a few 1000 years

Crustal residence
times <100 years
for andesites

d Eroded Volcano Lava Flow
(d) A :
(Extrusive) (Extrusive)

Differnetiation
during magma ascent
(basalt to basaltic-
andesite to andesite)

depth (km)

lithosphere

Magma ascent
<1000 years
at 10-100 m/yr

asthenosphere

Feeder Dyke

é Dyke (Intrusive -
§ (Intrusive - accolith Lopolith Discordant)
5 +Ra Discordant) (Intrusive - sill (Intrusive -

£

100

Melting due to

Concordant) (Intrusive - Concordant)
Concordant) Magma Chamber

Figure 1.1. Images of magmatic systems. (a) Schematic cross-section across a subduction zone, illustrating
the inferred mantle wedge dynamics and fluid fluxes (from Turner et al., 2000). (b) Schematic cross-section
of the plumbing and reservoir system for an andesitic volcano with reference to magma transport and
residence time-scales (from Turner et al., 2000, after Gill, 1981). (c) A central complex intrusive network
(Hincks, 2004). (d) Schematic sketch showing the various types of minor intrusions and their possible
relationships to a sub-volcanic magma chamber (modified from Thorpe and Brown, 1985). Sills, laccoliths
and lopoliths are relatively concordant with sedimentary strata, whereas dykes are discordant. Note, the

basal magma chamber depicted in the cartoon is generally accepted as being incorrect.
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Many field-based studies of intrusions have focused on the geometry and internal
architecture of sills, laccoliths and plutons, using a variety of methods including: field
mapping of internal contacts and external margins (e.g. Morgan et al., 2008; Magee et al.,
2012); geochronological studies (e.g. Coleman et al., 2004; Westerman et al., 2004); and
magnetic and macroscopic fabric studies (e.g. de Saint Blanquat & Tikoff, 1997; Horsman
et al., 2005; Stevenson et al., 2007b). In comparison, only a relatively small number of
studies have paid significant attention to the structural processes that occur in the host
rocks as these intrusions are emplaced (e.g. Anderson, 1951; Johnson & Pollard, 1973;
Jackson & Pollard, 1990; Morgan et al., 2008; Thomson & Schofield, 2008). Furthermore,
most papers that include observations on host-rock deformation structures do not
consider the kinematic pathways and associated strains that can potentially preserve
information concerning the emplacement mechanism and magma movement (flow)

directions.

1.1.1. Descriptive vs Genetic Definitions of Sills and Laccoliths

Sills are defined as tabular igneous intrusions that are concordant with planar structures
(bedding, cross-bedding, unconformities, and cleavage; Fig. 1.1) in the surrounding host
rocks and display large length: thickness ratios (Corry, 1988). Laccoliths and lopoliths are
also concordant intrusions with a concave-upwards upper contact and a concave-
downwards lower contact respectively (Fig. 1.1). Corry (1988) distinguished laccoliths
from sills by the non-linear, inelastic, large-scale deflection of roof host rocks that
accompanied the emplacement of laccoliths (Fig. 1.2). Corry also made a distinction using
an arbitrary thickness of 30 m: laccoliths are 230 m thick; sills are < 30 m.

See the Glossary in Appendices for further definitions of the various types of intrusions.

Figure 1.2. (overleaf)

Images of idealised laccoliths. (a) Half-stereogram sketch of Mount Ellsworth, Henry Mountains, Utah from
Gilbert (1877), illustrating uplifted roof rocks following igneous intrusion emplacement (background) prior
to erosion leading to the current morphology of the landscape and exposure of the intrusion (foreground).
(b) Gilbert’s ideal laccolith (Gilbert, 1877; redrawn by Jackson & Pollard, 1988). (c) Revised schematic
diagram of Gilbert’s ideal laccolith following detailed mapping in the Henry Mountains (Jackson & Pollard,

1988).
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Fig. 1.2

1.1.2. Geometry and Morphology of Sills and Laccoliths

Gilbert (1877) described a single type of laccolith with a planar lower contact and
concave-upwards upper contact, whilst also noting that laccolith intrusions may be
stacked one above another. Figure 1.2 shows the ‘ideal’ form of a laccolith, as envisaged
by Gilbert (1877), with the later revision of this sketch by Jackson and Pollard (1988),
based on detailed mapping of the Henry Mountains, Utah, for comparison. Although
visually similar, there are distinct and interesting differences between the models of

5
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Gilbert (1877) and Jackson and Pollard (1988). Gilbert (1877) envisaged almost all of the
intrusive system to be concordant with bedding, with the exception of a main feeder
structure. In contrast, Jackson and Pollard (1988) showed an amalgamated dyke and sill
model. Furthermore, in the model of Gilbert (1877), magma itself helps accommodate
some of the doming and flexure of the overriding stratigraphy (i.e. magma/ sill sheets
infilling space within fold hinge domains), enabling constant bed thicknesses to be
maintained over the dome. Comparatively, in the model of Jackson and Pollard (1988),

accommodation is entirely by flexural slip within the host rock.

Corry (1988) suggested that the various geometries of laccolith intrusions observed in the
field form a continuous series between two distinct end members, these being punched
(also known as bysmaliths) and Christmas-tree laccoliths (Fig. 1.3a). Punched laccoliths
are described as roughly vertical cylindrical shaped intrusions, characterised by the
development of shear fractures/ faults along the peripheral margin. The Black Mesa
intrusion in the Henry Mountains, Utah is a classic example of a punched-laccolith, its
southern margin defined by peripheral faults and a vertical cliff face, ~ 130 m high (de
Saint Blanquat et al., 2006). In comparison, Christmas-tree laccoliths are the resulting
structure formed from stacked sills, each tapering away from a central intrusive body.
Corry (1988) characterised Christmas-tree laccoliths as domes, lacking any peripheral
faults, and with continuous bedding overlying the intrusion. Westerman et al. (2004)
presented the late Miocene granitic porphyry intrusive complexes on western Elba, Italy,

as an example of a Christmas-tree laccolith.

Figure 1.3. (overleaf)

Images of intrusive geometries. (a) Models for two end-member laccolith geometries (punched and
Christmas-tree laccoliths), after Corry (1988). (b) Schematic sketch of the morphology of saucer-shaped sills,
based on intrusive complexes in the Karoo Basin, South Africa (from Malthe-Sgrrenssen et al., 2004; after
Chevallier & Woodford, 1999). (c) Oblique-view and cross-section schematic diagrams for the evolution of
magma fingers with time as fluidisation of host rock leads to the cessation of hydro-fracturing, this being
replaced by a viscous-viscous magma to host rock relationship and the formation of an instability (from

Schofield et al., 2012).
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In two studies of intrusion dimensions and geometries, McCaffrey and Petford (1997),
and Cruden and McCaffrey (2001) suggested that there is a scale-dependent relationship
between the (vertical) thickness and (horizontal) length of intrusions (Fig. 1.4). This
relationship could be explained if the formation of sills and laccoliths play an important
role in the formation of larger plutonic bodies. If sills grow mainly by lateral propagation,
while laccoliths seem to grow by vertical thickening, it can be inferred that differing
growth processes may be active across the scales of intrusion (e.g. Menand, 2008). A
growing body of geochemical, geochronological and field textural evidence supports the
idea that magma chambers and plutons develop and grow by amalgamation of numerous
but distinct episodes of intrusion (Pitcher, 1970; Coleman et al., 2004; Glazner et al.,

2004; Morgan et al., 2008.
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Figure 1.4. Schematic graph showing the scaling relationship between the various forms of shallow crustal/
high-level intrusions (from Menand, 2008; based on Cruden & McCaffrey, 2002, and McCaffrey & Cruden,
2002). Intrusions are linked following an S-shaped growth law covering several orders of magnitude. Sills

grow mainly by lateral propagation, while laccoliths seem to grow by vertical thickening.

Tabular and concave-upwards sill morphologies have been recorded in numerous studies
(e.g. Du Toit, 1920; Leaman, 1975) and there is increasing evidence that saucer-shaped
and stepped geometries are common for sills (Fig. 1.3b; e.g. Francis, 1982; Cartwright &
Hanson, 2006; Thomson & Schofield, 2008; Schofield, 2009). Interpretation of 3D

reflection seismic data has had a huge impact on our understanding and visualisation of
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sub-surface intrusive geometries (Fig. 1.5; Thomson & Hutton, 2004; Cartwright &
Hanson, 2006; Thomson, 2007; Thomson & Schofield, 2008; Schofield, 2009; Magee et al.,
2013). Igneous bodies are typically characterised by very high amplitude seismic
reflections (Thomson & Hutton, 2004) due to their high density and seismic velocity
compared to the surrounding sediments (Fig. 1.5). These clear seismic signatures have
provided geologists with the opportunity to visualise the 3D subsurface architecture of
intrusive systems (Fig. 1.5b), with the most common geometry observed being saucer-
shaped sill sheets (Cartwright & Hanson, 2006; Thomson & Schofield, 2008; Schofield,
2009). A limiting factor of the high density contrast between intrusions and the
sedimentary host rocks is that, in most cases, only the geometry of the top surface is
clearly imaged, and so the basal contact is less certain. It is possible that, for this reason,

few laccolithic bodies have been described using seismic methods.

Recent studies have shown that tabular and saucer-shaped sill intrusions are often
emplaced by the amalgamation of magma fingers, sheets and lobes (Pollard et al., 1975;
Thomson & Hutton, 2004; Horsman et al., 2005; Stevenson et al., 2007a; Morgan et al.,
2008; Schofield et al., 2010; Schofield et al., 2012a, b). Pollard et al. (1975) first reported
finger-like geometries for a number of intrusions on the Colorado Plateau, having noted
step-like geometries at intrusion contacts (initially referred to as ‘straps’ by Farmin, 1941;
later termed ‘Broken Bridges’; by Delaney & Pollard, 1981; Hutton, 2009; Schofield et al.,
2012a, b). Magma fingers typically display short lengths, between 1 and 10 m (Pollard et
al., 1975; Horsman et al., 2005), whereas lobate bodies range in size from hundreds of
metres to kilometres in scale (Schofield et al., 2012a). For this reason, Schofield et al.
(2012a) highlighted that magma fingers are a sub-seismic feature, whereas lobes can be
resolved in seismic. Schofield (2009) proposed that fingers are an integral part of sill
intrusions, with magma fingers growing to form lobes, and lobes coalescing to form sills
(Fig. 1.3c). Schofield (2009) and Schofield et al. (2010) showed excellent field and seismic

examples of magma fingers and lobate geometries forming saucer-shaped sills.
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1.2. Models for Sill and Laccolith Emplacement

1.2.1. Gilbert’s Early Work

Gilbert’s (1877) paper on the intrusions of the Henry Mountains, Utah is most likely the
earliest detailed study of sill and laccolith intrusions and emplacement mechanisms. It
was during his ground-breaking geological studies in the Henry Mountains that Gilbert
(1877, 1896) first coined the term “laccolite”, and the region is now regarded as one of
the type localities for sill and laccolith intrusions. Gilbert (1877) described laccoliths as the
result of magma that “...insinuated itself between two strata, and opened for itself a
chamber by lifting all the superior beds”, further suggesting that the creation of laccolith
intrusions can be divided into two, mutually exclusive, phases: (1) emplacement of the
intrusion as a tabular sill or sills; and (2) vertical growth through thickening of the sill
sheets and a coincident cessation in radial spreading. More than a century later, much of
the laccolith literature largely supports Gilbert’s model for the genesis of laccoliths (e.g.

Johnson & Pollard, 1973; Corry, 1988; Figs 1.2 & 1.4).

Gilbert (1877) proposed that the level at which sills and laccoliths are emplaced is
controlled by the density contrast between the rising magma and the weight of the
overburden, suggesting three alternative scenarios: (1) magma that is less dense than all
the crust above it will migrate up through to the surface and build volcanoes; (2) if the
upper portion of the crust is less dense than magma, but the lower portion is more dense,
then the upwards migrating magma will stop at the level of the crustal density contrast,
passing between the dense and less dense crust, or lifting upwards the lighter crust; and
(3) if the crust is comprised of heterogeneous beds of alternating density, magma will be
emplaced at a level where the beds above and below have a greater mean specific gravity
than its own. Other authors (e.g. Bradley, 1965) have also proposed this model for sill and
laccoliths occurring along isobaric surfaces (i.e. where magma pressure is the same as
lithostatic pressure). However, this model for the ‘level of neutral buoyancy’ has, in more
recent times, been proven fundamentally incorrect (e.g. Vigneresse & Clemens, 2000;
Thomson & Hutton, 2004). If emplacement at a level of neutral buoyancy was the primary
control, we would not see sills and laccoliths emplaced at multiple levels within a basin
(Thomson & Hutton, 2004), nor would basaltic magmas have erupted at the Earth’s
surface as they are always more dense than the upper- and mid-crust. Magma pressure,
rather than buoyancy, is likely the primary driving force for intrusion emplacement

(Vigneresse & Clemens, 2000).

11
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1.2.2. Mechanisms of Emplacement

Similar to Gilbert (1877), Corry (1988) divided the genesis of laccoliths into two cycles: (1)
emplacement; and (2) growth. He further divided the emplacement phase into two
stages: Stage 1 — the migration of magma vertically through the lithosphere; and Stage 2 —
initiation of horizontal spreading following reorientation of the magma. The following
sections (1.2.2.1 — 1.2.2.3) discuss the various stages and associated mechanisms of

emplacement and growth in more detail.

1.2.2.1. Magma Generation and Ascent

The processes involved in magma generation and ascent are strongly coupled with the
composition and rheology of the magma. Here we shall focus on intermediate (dacitic)
magmas, akin to those observed in the Henry Mountains, Utah. Andesitic and dacitic
magmas are most commonly associated with subduction zones (Fig. 1.1a), with dacitic
volcanic rocks and granodiorite/ tonalite intrusions the dominant rock types. Andesites
are rarely primary magmas. Instead they are usually derived from the differentiation of
basaltic parental magmas (Grove & Kinzler, 1986; Ellam & Hawkesworth, 1988). Although
basalt is the input, dacite and andesite are volumetrically the most dominant shallow

level and extrusive rocks in subduction zones (Turner et al., 2000).

Annen et al. (2006) showed numerically that intermediate and acidic melts are generated
from two distinct sources; partial crystallization of basalt sills to produce residual H,O-rich
melts; and partial melting of pre-existing crustal rocks. When basalt magmas are
emplaced into continental crust, melting and generation of silicic magma can be
expected. Melting occurs in the solid roof and the adjacent thermal boundary layer of the
intrusive body, while at the same time there is crystallization in the convecting interior.
Thus the magmas formed can be highly porphyritic (Huppert & Sparks, 1988). The time-
scales for melting and crystallization in basalt-induced crustal melting are in the order of
100-1000 years (Huppert & Sparks, 1988), which is relatively short in the context of the
lifetimes of large silicic magma systems (>1 m.y.) or to the time-scale for thermal
relaxation of the continental crust (>10 m.y.). As crystallisation can occur deep in the
crust, several of the features of silicic igneous systems can be explained without requiring
large, shallow-level, long-lived magma chambers (a feature commonly drawn on images

depicting magmatic systems, e.g. Fig. 1.1c, d). Every addition of basaltic melt to the

12
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chamber will trigger rapid formation of silicic magma. This magma will freeze again in
time-scales in the order of 100-1000 years, unless it ascends to higher levels (Huppert &
Sparks, 1988). Therefore most dacitic volcanic rocks and granodiorite/ tonalite intrusions
in the upper crust are likely fed by rapid ascent from deep feeder systems (Huppert &

Sparks, 1988; Menand et al., 2015).

Silicic magmas commonly ascend tens of kilometres from their source to upper crustal
emplacement levels (or in a few cases, extrusion at the Earth’s surface; Fig. 1.1b). The
magma ascent rate is a function of pressure in the magma storage region, rheological and
physical properties of the magma (e.g. viscosity, density), and the size and resistance to

flow within the feeder conduit (Rutherford & Gardiner, 1999).

The classical view of silicic eruptions fed by long-lived magma reservoirs that slowly
differentiate between mafic recharges has generally been ruled out by recent studies
(Clemens & Mawer, 1992; Vigneresse & Clemens, 2000; Petford et al., 1994; Menand et
al., 2015). The currently accepted model is that granitic magmas ascended via
propagating fractures, as dykes, over extremely short time periods. Clemens and Mawer
(1992) discounted the concept of long-distance diapiric transport of granitoid magmas, on
the basis of thermal and mechanical grounds, and noted that there is the distinct lack of
field evidence to support diapiric rise of such magmas. Furthermore, studies such as
Marsh (1984), Mahon et al. (1988) and Menand et al. (2015) suggested that magma
ascent through fractures would be >100 times faster than diapiric ascent, and is therefore

the more efficient method.

Various studies have also emphasised the role played by active faults and shear zones,
and pre-existing country rock structures in controlling the emplacement and growth of
magma bodies at depth (e.g. Hutton et al., 1990; McCaffrey, 1992; Neves et al., 1996;
Holdsworth et al., 1999; Snoke et al., 1999; Passchier et al., 2005). Active tectonics leads
to permeability anisotropies in the source rock, in addition to localised mineral reactions

that form reaction channels (Daines, 2000; Burchardt, 2009).
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1.2.2.2. Initiation and Level (Depth) of Sill Emplacement

To form horizontal sills and flat-floored laccoliths, magma transport must reorient from
vertically climbing (i.e. ascent via dykes) to horizontally spreading. Sill emplacement
preferentially occurs in the brittle upper-crust by a process of tensile fracture between
stratigraphic units (Anderson, 1938), allowing magma to propagate in a horizontal
orientation (Roberts, 1970). Assuming that dykes are the likely feeder systems, for a sill to
form, a rotation of the maximum principal compressive stress is required. Factors
influencing the development of this sub-horizontal maximum stress are likely to be both
internal (e.g. magma-pressure/ buoyancy; Anderson, 1951; Francis, 1982) and external
(e.g. lithological and mechanical contrasts; MacCarthy, 1925; Mudge, 1968; Kavanagh et
al., 2006; Menand, 2008). Anderson (1951) proposed a mechanism for the reorientation
of magma whereby repeated injection of dykes leads to rotation of the stress field at a
given point, causing magma intruding vertically to rotate onto a horizontal plane.
Anderson’s mechanism for the initiation of horizontal sill emplacement has been
corroborated by recent studies, such as Parsons and Thompson (1991), Valentine and

Krogh (2006), and Burchardt (2009).

MacCarthy (1925) noted the regularity with which laccoliths intrude into shale beds or
along planes of unconformity. Other studies have also suggested that crustal anisotropies
controlled the level at which sills and laccoliths might form from an ascending dyke.
Analysing data from 54 sill and laccolith intrusions, Mudge (1968) reported two important
observations: first, the palaeo-depth of emplacement ranged from c. 900 to 2300 m; and
second, that most intrusions had intruded along well-defined bedding planes and were
covered by beds of impermeable mudstone and siltstones, concurring with the
observations of MacCarthy (1925). Mudge (1968) suggested that the overlying mudstones
and siltstones acted as an impermeable barrier to magma and steam, halting vertical
migration, and forcing the magma to spread laterally along the base of the impermeable
horizon. Mudge (1968) further argued that the palaeo-depth of emplacement is, to some
extent, controlled by the palaeo-depth of the impermeable mudstone/ siltstone horizon,
and changes in the mechanical strength of key minerals with varying depth. In his model,
mudstone/ siltstones behave in a brittle manner above 900 m (ductile at depths >900 m)

and fracture to allow channelised flow of magma through the impermeable horizon.
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Kavanagh et al. (2006) used gelatine-based laboratory experiments to show that
lithological discontinuities and rigidity contrasts can control the formation and dynamics
of sills, and that magma is most likely to propagate at interfaces separating upper, rigid
strata from lower, weaker strata. Menand (2008) subsequently built upon the work of
Kavanagh et al. (2006), highlighting that formation of a sill itself provides a favourable
rigidity anisotropy for the emplacement of subsequent sills, thus supporting the
amalgamation of sills by accretion (e.g. as seen at Trachyte Mesa, Henry Mountain, Utah;

Morgan et al., 2008).

1.2.2.3.  Sill Propagation and Growth

Once a sub-horizontal sill has developed, it is thought to propagate laterally by tensile
fracturing in the direction of least resistance (Gilbert, 1877; Anderson, 1938). Through
their studies in the Henry Mountains, Johnson and Pollard (1973), and Pollard and
Johnson (1973) concluded that sill thickness is a linear function of their length, and once a
sill reaches a critical length/ diameter it will inflate vertically. This vertical inflation stage
then leads to the formation of a laccolith. Koch et al. (1981), Jackson and Pollard (1988,
1990), Kerr and Pollard (1998) and others have suggested that the radial extent of the
intrusion may be controlled by the effective thickness of the overburden and the elastic
properties of the overlying sandstone. However, as discussed by Corry (1988), other
factors such as magma viscosity, strain rate and sheet thickness should also be

considered.

Hunt (1953) proposed three models for laccolith emplacement and growth (Fig. 1.6a—c):
(1) radial growth only, with magma emplaced at a constant thickness, and country rocks
displaced both vertically and laterally (i.e. a “bulldozing” mechanism; Model B of Hunt,
1953, fig. 70, p. 142); (2) simultaneous vertical and horizontal growth (Model C of Hunt,
1953); and (3) two-stage growth, comprising radial growth of a thin sheet, followed by
dominantly vertical growth and associated vertical uplift of the overriding host rocks (i.e.
a “two-stage growth” mechanism; Model A of Hunt, 1953). Hunt (1953) preferred
simultaneous vertical and horizontal growth having identified flaws in both end member

cases (models 1 and 3 in Fig. 1.6; see p.142 in Hunt, 1953).
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Figure 1.6. Growth models for laccolith intrusions (modified from Hunt, 1953, and Corry, 1988). (a), (b) and

(c) correspond to Models B, C and A of Hunt (1953) respectively, and show three different mechanisms of

laccolith growth: (a) bulldozing; (b) simultaneous growth; and (c) ‘two-stage’ growth. Based on the three

models of Hunt (1953), (d), (e) and (f) correspond to Models 1, 2, and 3 of Corry (1988) for laccolith growth

and expected deformation of the country rock.
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Building on the work of Gilbert and Hunt, Corry (1988) offered three possible modes of
laccolith growth and expected deformation in the overlying sediments (Fig. 1.6d — f). He
advocated a ‘two-stage’ growth model (Model 3 — with radial growth only until t2,
followed by vertical growth only) as being best supported by field observations. In this
scenario new hinge zones are created at the top and front edge of the intrusion margin.
Corry (1988) argued against the other two models (Model 1 — radial growth only while
thickness remains constant; Model 2 — simultaneous radial and vertical growth) predicting
that a wake of remnant hinge zones would be expected behind the laterally expanding
intrusion and finding no evidence for these remnant hinge zones in the field. Corry (1988)
noted that the plate bending models of Pollard and Johnson (1973) would result in a
sequence of laccolith intrusion similar to Model 2 (simultaneous radial and vertical
growth), highlighting that no evidence for remnant hinge zones has been observed in

their studies.

Pollard and Johnson (1973) presented a theoretical model using continuum mechanics to
explain the formation of peripheral dykes at the tips of laccolith intrusions (Fig. 1.7a)
using field observations from the Henry Mountains. They suggested that dykes forming at
the periphery of the intrusions result from flexural/ elastic bending of the overburden
layers (contractional over the centre and extensional over the periphery). Thompson and
Schofield (2008) suggested that the main control on the development of faults at sill
sheet terminations is the depth of formation (Fig. 1.7b). In their model, at shallower
depths, cohesive strength along bedding planes is less, and thus favours the development
of flexural slip folding. In their model, as depth increases, higher shear stresses are
required for flexural slip, thus favouring mechanical failure of the rock through fracture/

faulting (cf. Stearns, 1978).

Sill propagation rates and resultant geometries may be a consequence of viscous
dissipation and viscosity-controlled dynamics (Menand, 2008). Modelling of Kavanagh et
al. (2006) showed that for this reason sills propagate quickly, which may thus induce non-
elastic deformations in the surrounding rocks that could allow them to deviate upwards
from their horizontal interface, and assist in the formation of step structures and saucer-
shaped sills (Fig. 1.7a; Malthe-Sgrrenson et al., 2004; Menand, 2008). Schofield (2009), in
contrast, suggested that fluidisation of the host-rock plays an intrinsic part in the process

of sill propagation and deviation (e.g. sill climbing).
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Figure 1.7. Models of sill emplacement and propagation (and ramp-flat morphologies). (a) Four models for

the emplacement of saucer-shaped sills (after Schofield, 2009; derived from seismic data and models from a

number of papers, noted in the figure). (b) Schematic model for sill propagation within sedimentary basins

(from Thomson & Schofield, 2008). Localised sill-climbing occurs when magma makes contact with and

propagates along open fractures associated with forced folds in the overlying sediments (stages e—g), or

faults associated with faulting of roof rocks (stages j—m). At some point the magma will again reorient and

propagate once more along a horizontal plane (sill-flattening).
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1.3. Historic Expeditions to the Henry Mountains

1.3.1. Gilbert and the Powell Expeditions

In 1869 intrepid explorer, scientist and decorated Civil War hero John Wesley Powell,
along with nine companions, embarked on a daringly adventurous, three month
expedition of the American West: travelling almost 1000 miles down through unchartered
canyons along the Green and Colorado Rivers in four small boats (Fig. 1.8a; Gilbert, 1877;
Powell, 1961; Dolnick, 2001). Embarking on their journey along the Green River, the ten
men tackled dangerously strong currents and roaring rapids, losing one of the boats and
supplies less than 80 miles into the trip. Four crew members left the company during the
expedition: one leaving after a month; three leaving at a place now known as Separation
Canyon, never to be seen again (Hunt, 1953). Two days after Separation Canyon, Powell
and his five remaining crew emerged from the Grand Canyon at the mouth of the Virgin
River (now below Lake Mead), succeeding in their venture to become the first known
group of non-indigenous men to travel down the Colorado River through the Grand

Canyon (Dolnick, 2001).

After securing funding, Powell with nine companions (only his cousin returning from the
original company of men from the 1869 expedition) embarked on a second expedition of
the Green and Colorado Rivers in 1871: this time carrying out mapping and more detailed

scientific studies that would later be published (Powell, 1895, 1961).

During both expeditions, Powell was afforded a good view of the Henry Mountains in
south-eastern Utah (Fig. 1.8). The last of the mountain ranges to be added to the map of
the contiguous lower 48 United States, the Henrys did not appear on any map until 1872,
following their discovery by Powell in 1869. Initially referred to as the Unknown
Mountains, Powell officially named the range after Joseph Henry, a physicist at the
Smithsonian who helped Powell secure funding for the expeditions (Hunt, 1988).
Observing the two southern Henry Mountains from distance, Powell commented that
they were structural domes associated with “lavas”. With a long-standing debate on the
nature of volcanoes as controversial “craters of elevation” (Lyell, 1830; von Buch, 1836)
still unresolved, Powell organised for Gilbert to visit the Henrys to investigate the “lavas”

further (Hunt, 1988).
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Figure 1.8. (previous page)

Route of Powell’s Expeditions and proximity to the Henry Mountains, Utah. (a) Map from Google Earth™
showing Powell’s 1869 expedition route through the Wild West along the Green and Colorado rivers,
starting from Green River City, Wyoming in the north, travelling south through Utah, then west through the
Grand Canyon and finishing at the once mouth of the Virgin River in Arizona. Location pins highlight route
start and end points, Separation Canyon and the Henry Mountains (also see Google Earth™ kmz project in
Appendices for locations). State borders and grid lines are shown. Inset: (top left) simplified map showing
the location of the Henry Mountains within Utah and on the Colorado Plateau (adapted from Morgan et al.,
2008). (b) Topographic map of the Henry Mountains region in south-eastern Utah. Note the Colorado River
(and modern day Lake Powell) to the south and east. Key geological structures and features are highlighted.

Location of (b) shown on (a).

Between 1875 and 1876, Grove Karl Gilbert (Fig. 1.9) carried out field studies in the
Henrys. Gilbert and his party travelled from Salt Lake City to the Henrys as a pack train (a
team of mules and horses), from Salina Canyon, south via Fishlake and east via Rabbit
Valley (Gilbert, 1877; Hunt, 1988). Gilbert spent only one week in the Henrys in 1875, and
then two months when he returned in 1876 (Hunt, 1953). Figure 1.10 shows Gilbert’s
1875 and 1876 expedition routes on a map of the Henrys (Hunt, 1988). In 1875, Gilbert
approached the Henrys from the south-west, initially looking at the southern flank of
Mount Hillers, and then onto Mount Ellsworth, before traversing northwards via the
north-easterly satellite intrusions of Mount Hillers, through the Pennellen Pass and finally
over the crest of Mount Ellen. Following the reconnaissance trip in 1875, the longer trip in
1876 followed a far more complex route, weaving around the five mountains and

appearing to re-visit certain localities on a number of occasions.

Gilbert navigated his way about the ruggedly harsh Utahn desert by following often faint,
prehistoric Indian trails and secondary trails made by various wildlife (including coyotes,
foxes, mule deer and jack rabbits), the latter trails normally leading to sources of water
(Hunt, 1988). Enduring the unrelenting heat of the arid climate, interspersed with
thunder and lightning storms that can turn slot canyons and dried up river beds into
torrents with flash flooding (even when miles away, but within the same catchment area),
Gilbert explored the geology of the challenging and rugged landscape. Although access to
the area is now far easier, many of these risks are still applicable today. In addition to the
unforgiving nature of the natural environment, Gilbert and his party also had to endure

the threat of hostile native western Indians: three explorers were murdered by Shivwits
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Indians in the lower Grand Canyon after leaving the Powell expedition, 7 years prior to
the Gilbert expeditions; and a further three explorers were killed by Mojave Apache

Indians when the Wheeler expedition party were ambushed in Arizona 5 years earlier

(Hunt, 1953).

N

Yol

Grove Karl Gilbert A éilhbertrir‘ri the Henrys ( 185.;1) o
(1843-1918)

Figure 1.9. Photographs of highly-esteemed, American geologist and twice President of the Geological
Society of America, Grove Karl Gilbert. Left, photograph from Hunt (1988). Right, photograph of Gilbert on a
horse while visiting the Henry Mountains in 1894 (courtesy of US National Academy of Sciences Archives)
with Gilbert’s drawing of one of the mules from his 1875-1876 pack-train expeditions to the Henrys,
entitled “Lazarus, Duke of York” (Hunt, 1953, 1988; Gilbert’s Notebook 2).

Gilbert’s 10 notebooks from his two trips to the Henrys are equal in stature to his ground-
breaking publications (1877; 1896) that transpired from them, with incredibly detailed
note making, not only describing the geological features and interpretations, but also
reporting the locations of camps, distances between them, incidents of note (e.g.
recounting each time one of the mules took a tumble off a cliff), ration provisions,
encounters with other people, and the weather. In addition to this is Gilbert’s excellent
art work (mostly line drawings; Figs 1.11-1.13), accurately depicting the various
landscapes and geological structures (compare field sketches with photos in Figs 1.11-
1.13). Such is the quality of Gilbert’s notebooks, Charles Hunt dedicated time to typing
them up and scanning the numerous field sketches, publishing the memoir on Gilbert’s
Henry Mountains notebooks in the late 1980s (Hunt, 1988). Gilbert’s published sketches
are both beautiful works of art, as well as excellent illustrative examples of geological

architectures (Fig. 1.14).
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Figure 1.10. Map showing Gilbert’s 1875 and 1876 expedition routes through the Henry Mountains (Hunt,

1988).
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(a) Field sketch from Gilbert’s Notebook 8 - view of Mount Elleswoth, looking South

(c) Field sketch from Gilbert’s Notebook 8 - view of Mount Holmes, looking South

Figure 1.11. Examples of Gilbert’s line-drawings from his 1876 Notebooks on the Geology of the Henry
Mountains (from Hunt, 1988). (a) and (c) are line-drawings of Mounts Ellsworth and Holmes respectively,

with (b) and (d) recent field photographs for comparison.
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(a) Field sketch from Gilbert’s Notebook 8 - view of Mount Hillers, looking WNW

(c) Field sketch from Gilbert - Southern margin of Mt Hillers, (d)
viewed from Starr Springs Camp grot:‘nd

. Yl

Figure 1.12. Examples of Gilbert’s field sketches of Mount Hillers as viewed from the ESE, both of the whole
mountain (a) and zoomed in on the southern margin and the sandstone “teeth” (c). Recent photographs (b)

and (d) are provided for comparison.

Figure 1.13. (overleaf)

A series of images of the Trachyte Mesa intrusion, Henry Mountains. (a) Field sketch of the south-western
margin of Trachyte Mesa (originally referred to as Howell Laccolith) from Gilbert’s 1876 Henry Mountains
Notebooks (from Hunt, 1988), with a schematic diagram showing the intrusion—host rock geometry. (b)
Photograph for comparison. (c) Photograph from 1936 of the Hunt party and their pack train, surveying the

south-western margin of Trachyte Mesa (Hunt, 1997). (d) Colour photograph for comparison.
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(a) Field sketch from Gilbert’s Notebook 8 (30 Sept 1876) - Howell Laccolith (aka Trachyte Mesa) looking East

=7y, X
.'\,///'//W/ /// i

Fig. 1.13.
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Figure 1.14. Examples of Gilbert’s published illustrations (1877). (a) Mount Hillers, as viewed from the
south. (b) The elongate Trachyte Mesa intrusion (Howell Laccolith) as viewed from the north. (c) The south-

western lateral margin of Trachyte Mesa, looking to the NE.

1.3.2. Hunt's 1930's USGS Expeditions

Charles Hunt (Fig. 1.15b) was the next geologist to carry out significant studies of the
Henry Mountains, 60 years after the revolutionary work of Gilbert. The last of the big
pack-train surveys, Hunt carried out field studies in the Henrys for a few months each
year from 1935 to 1939 (Fig. 1.15a; Hunt, 1953, 1997). With the invention of the
motorised vehicle, base camps were established in spots that where reachable by truck,
these largely situated to the north of the Henrys (e.g. Hanksville). For mapping of more
inaccessible parts of the northern mountains, and for all of the southern mountains,
camps could only be reached and supplies carried by pack-train, using 12 to 15 pack
mules (Fig. 1.15c; Hunt, 1953). Over the course of the survey, Hunt and his party stayed at
over 200 camps. Research publications, including the first detailed geological map of the

area, were delayed until 1953 due to the Second World War (Fig. 1.16; Hunt, 1953).
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1936 USGS Field Party

Charlie '
H‘ank‘s .W.W». Simmon_s Christensen

(Pack Tl o (Gevlogist) (Cook)

Figure 1.15. Field photographs from the 1936 USGS Field Party to the Henry Mountains (Hunt, 1997). (a)
The field party at one of their 200 plus campgrounds. (b) Charles Hunt examining an intrusion—host rock
contact near Mount Ellen, north Henry Mountains. (c) Pack train carrying supplies to a spike camp at

Fourmile Spring.
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Figure 1.16. Digital scan of an original copy of Hunt’s geological map of the Henry Mountains region, Utah.
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1.3.3. Recent Field Studies

Following the work of Hunt, the next group of geologists to carry out significant research
in the Henry’s were a group from Stanford University (Arvid Johnson, Dave Pollard and to
a lesser extent, Attila Kilinc). Their field activities focused mainly on Mounts Hillers,
Holmes and Ellsworth during the late 1960s and early 1970s, working on an NSF project
‘Mechanical Analysis of Rock Deformation Associated with High-level Intrusions’ (Johnson

& Pollard, 1971).

Many geologists have worked more recently in the Henrys, with notable recent studies
including: Nelson et al., 1992; Nelson and Davidson, 1993; Habert and de Saint Blanquat,
2004; Horsman et al., 2005; de Saint Blanquat et al., 2006; Morgan et al., 2008; and
Wetmore et al., 2009. Other geologists have had the opportunity to visit the classic
outcrops of the Henrys thanks to publically organised field excursions, such as the GSA
2005 and 2010 LASI (Laccolith and Sill Intrusions) IV field excursions (Morgan et al., 2005,

Horsman et al., 2010).

1.4. This Study
1.4.1. Project Aims
This research aims to develop a greater understanding of how igneous intrusive bodies
are emplaced and accommodated within the shallow crust. Key questions that will be
addressed in this thesis include:
e What is the effect of emplacement of shallow-crustal intrusions on the
surrounding country rock?
e How is the additional volume of magma accommodated within the crust, the so
called “space problem”?
e Can we use style of deformation to infer sub-surface intrusion geometries?
e What can the style of deformation tell us about emplacement mechanism?
e What controls the emplacement mechanism?
Figure 1.17 shows an initial model for emplacement-related deformation envisaged
following a reconnaissance study of the Henry Mountains (LASI IV field trip, summer

2010). This model will be tested in the thesis.
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Figure 1.17. Model from a reconnaissance study of the Henry Mountains (LASI IV field trip, summer 2010)
to be tested in the thesis. (a) Schematic cartoon summarising the styles of host-rock deformation structures
expected in different zones surrounding a laccolith intrusion. (b) Photograph showing a lateral flank of the
Trachyte Mesa intrusion (laccolith). Note correlation of deformation features with those predicted in (a).

Inset photos highlight key features in the host-rocks (yellow) and within the intrusion (red).
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1.4.2. Methods
Figure 1.18 provides a summary of the workflows applied during this research, from pre-

fieldwork planning, to post-fieldwork analysis and integration.

1.4.2.1. Field Work

Field work for this study was carried out over two field seasons in the Henry Mountains,
Utah (Fig. 1.8) during the summers of 2011 and 2012. Field work focused on two satellite
intrusions to the Mount Hillers Intrusive Complex: the Maiden Creek and Trachyte Mesa
intrusions. Alongside these detailed studies, a wider regional reconnaissance of the area
was also carried out (see Appendices for locations). Field work comprised of observations
and note taking, detailed structural data collection, rock sampling, and also the
acquisition of terrestrial laser scans (TLS; Jones et al., 2005; Hodgetts et al., 2005; Jones et

al., 2009).

A combination of conventional and digital mapping methods (McCaffrey et al., 2005) was
applied during field work. Outcrop localities, bedding data and sample stations were
recorded on a tablet PC using FieldMove™ (Clelland et al., 2011; Fig. 1.19). Some outcrop
details were also recorded using the Field Note application within FieldMove™ (Fig.
1.19b). However, detailed structural data were recorded into a field notebook and
transferred to an Excel spreadsheet each evening, and analysed using stereonet plotting

software.

Google Earth™ has been used at various stages of the project as a quick reference tool for
both visualisation and shared learning. Due to its increased usability, Google Earth™
proved very useful for pre-field work reconnaissance and planning. Published maps (Fig.
1.20a—c) and cross-sections can be easily georeferenced to overview the geological
setting (though precision and accuracy are an issue for detailed studies). Post-field work,
outcrop and sample locations may be quickly loaded as Google Earth™ pins with attached
summary balloons populated with photos, images, and descriptive text (Fig. 1.20d, e). The
project can then be shared with colleagues, regardless of location, via a kmz file (see

Appendices).

Figure 1.18. (overleaf)

Work flow of methodologies.
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Figure 1.19. Example screen captures of the Maiden Creek digital mapping project in FieldMove™. (a)
Georeferenced bedding measurements (in yellow) and intrusion outline (as suggested by Horsman et al.,
2005) mapped onto an aerial image of the field area (in white). (b) An example of a Field Note outcrop

record.

1.4.2.2. Structural Data

Detailed kinematic and geometrical analyses were carried out at outcrops across the
study areas. Constraining the geometric, kinematic and spatial distribution of
emplacement-related deformation structures is fundamental to answering the 5

questions outlined above (section 1.4.1).
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Figure 1.20. A series of images from the Maiden Creek Google Earth™ project (see Appendices for the kmz
file). (a) Published geological map (Larson et al., 1985) draped over topography in Google Earth™. (b) and (c)
The southern margin of Mount Hillers, Henry Mountains, as seen in Street View, with the geological map
draped over the topography in (c). (d) Igneous outcrop draped over the topography (in red) with locations
of labelled structural stations marked by yellow pins. (e) An example of a pop-out balloon with a

photograph of an outcrop and field observations.

At each structural station, a representative structural dataset (including: deformation

type; geometry; kinematics; phase/ timing; character) was collected (minimum of 30
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measurements per station; >50 in areas of high intensity deformation). In total, 6045
structural measurements were recorded across 120 structural stations. Of these, 3986/
80 (structure/ stations) were recorded at Maiden Creek, 1656/ 34 at Trachyte Mesa, and
403/ 6 across the wider region. These data were then analysed using MyFault™ stereoplot
and kinematic inversion software. The structural database is available in the Appendices.
Note, structural measurements were recorded using the following format: planar data
(e.g. bedding, faults) as dip direction and dip (e.g. 151/83); and linear data (e.g.
slickenlines, pencil cleavage intersection lines) as plunge and azimuth (e.g. 83-151). Any

reference to structural data throughout the thesis will be presented in this format.

1.4.2.3.  Rock Sampling

Systematic rock sampling was carried out during both field seasons. Sampling during Field
Season 1 primarily focused on the collection of igneous intrusive samples for petrographic
and textural studies (e.g. crystal size distribution and core-rim textures), following an
initial pilot study (see Appendices) carried out on a small (5 in total) suite of intrusive
samples collected during the LASI IV field trip to the Henry Mountains in the summer of
2010. A smaller suite of structural (rock deformation) samples was also collected for
preliminary microstructural studies. An additional suite of structural samples, including
deformation band samples for a fracture spacing study (see Chapter 4), was collected
during Field Season 2. In total, 72 igneous rock samples and 49 structural samples were

collected (see Appendices).

1.4.2.3.1. Textural Studies & Crystal Size Distribution (CSD)

Textural characteristics of igneous rocks are the outcome of a complex and dynamic
interaction between crystal nucleation and growth (Cashman & Marsh, 1988) and can
reveal much about a magma’s history, storage, mode of transport and emplacement.
Core-rim textures of zoned phenocrysts reflect changes in physical conditions and
composition of the magma with time (e.g. Davidson et al., 2007). These textures can be
used to document the history of ascent (mineral cores) and emplacement (mineral rims)
within intrusions, i.e. magma pathways (Morgan et al., 2006). Crystal size is a measure of
growth rate and age, and as such, the population of crystal sizes within an igneous rock

provides important information regarding crystal size, nucleation and time residence
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histories within a magma system (Marsh, 1988a). Quantitative three-dimensional, Crystal
Size Distribution (CSD) data can provide considerably more information on petrological
issues than mean, modal or maximum crystal size data (e.g. Cashman & Marsh, 1988;

Marsh, 1988a, b; Cashman, 1990; Higgins, 2000).

Consistent CSD throughout an intrusive body would suggest that the textural
characteristics of the magma had already been determined before being emplaced.
Conversely, varying CSD would imply that the magma was still in a state of flux during
emplacement, continuing to crystallise and cool during and/ or post emplacement.
Therefore, CSD can provide important clues as to the viscosity and rheological properties
of the magma being emplaced. In order to test the above hypothesis, 72 igheous samples
were collected for both textural and CSD studies (36 of these from Trachyte Mesa, 30
from Maiden Creek). For both satellite intrusions, samples were collected systematically:
across the entire length of the exposed intrusions and, where identifiable, from vertical
sections through multiple sill sheets (see Appendices). In addition, a suite of samples have
been provided by Prof. Steve Nelson (Brigham Young University, Utah). These include
samples from all five intrusive centres, and satellite intrusions of the northern intrusive
centres (Mounts Ellen and Pennell), including The Horn, which is composed of syenite

(The Horn being the most evolved intrusion in the range).

Note, although a full suite of samples were collected for CSD studies, the decision was
made to focus analytical studies towards host-rock deformation, and so only a small
number of CSD samples were analysed. A summary of the CSD samples are available in

the Appendices, which are planned to be analysed at a future date.

1.4.2.3.2. Microstructures

As a rock deforms, accumulating strain is accommodated by specific deformation
processes occurring at the microscale. These processes facilitate changes in the rock’s
internal structure, shape and/ or volume (Fossen, 2010). Study of the resulting
microstructures can reveal much information about the deformation mechanisms (i.e.
brittle versus plastic) associated with the various emplacement events. A total of 49
oriented samples (20 from Trachyte Mesa, 29 from Maiden Creek) were collected for

microstructural analysis. The aim of this analysis was to provide further insights into the
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accommodation and deformation mechanisms (e.g. volume reduction through cataclasis)
and by proxy, the emplacement mechanism. Microstructural studies included: (1)
transmitted optical microscopy analysis of deformation structures and fault kinematics;
(2) SEM studies to resolve sub-grain deformation textures and fabrics; (3) optical
microscopy, reflected light microscopy, and both qualitative and quantitative scanning
electron microscopy (SEM) studies to analyse alteration products associated with contact

metamorphism and fluidisation. See Appendices for a summary of these samples.

1.4.2.4. Laser scanning

Terrestrial laser scanning (TLS) techniques are becoming more widely applied for
geological field studies (e.g. McCaffrey et al., 2005; Buckley et al., 2008a; Jones et al.,
2009; Seers & Hodgetts, 2013). TLS provides a means of acquiring high resolution spatial
information data, which allows geological outcrops to be digitally captured and
interpreted away from the field environment (e.g. virtual outcrops; Buckley et al., 2010b).
These digital images allow 3D photorealistic models to be created for interpretation and
visualisation. These 3D outcrop models are a valuable tool for integrating outcrop data

with intrusion geometries and their extrapolation into the subsurface.

At selected localities, at both Trachyte Mesa and Maiden Creek, regional (360° panorama)
and high resolution laser scans were acquired to capture the 3D complexity of the
intrusion geometries (Fig. 1.21). TLS was carried out using a Leica ScanStation C10, in
combination with an AshTech Pro2 DGPS (Fig. 1.21a, b). A more detailed account of the

methodology and scan locations is presented in the Appendices.

1.4.2.4.1. 3D Modelling

Laser scan data provide unprecedented detail and allows spatial variation of fracture
attributes to be quantified. The laser scan data (georeferenced and registered using
Cyclone™) was interpreted using RiSCAN PRO™, Gocad™ and Move™ software to create a
3D geological framework model of emplacement-related deformation structures. As well
as capturing the overall geometry of exposed intrusive bodies, TLS also helped to capture
fracture and bedding geometries from inaccessible outcrops (Figs 1.22—1.25). Examples of

this are shown in Chapter 6 and in Appendices.
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Figure 1.21. Field photographs of laser scanning in the field. (a) Setting up the Leica ScanStation C10. (b)
The AshTech Pro2 DGPS base station. (c) and (d) Panorama views of the laser scan areas for the Trachyte

Mesa (c) and Maiden Creek (d) intrusions.

Figure 1.21. (overleaf)

A series of images showing the laser scan data and interpretation. (a) Field photograph of the view from
Scan Station 1 in the southern Maiden Creek intrusion study area (see kmz file in Appendices for Scan
Station locations). Laser scanner height is ~1.6 m. (b) Interpreted point cloud data (intrusion outcrops
highlighted in teal colour) in RiSCAN PRO™. View similar to (a). (c) Field photograph of deformed sandstones
at the head of the gully, visible in (a). (d) Equivalent interpreted laser scan point cloud in RiISCAN PRO™
(intrusion in purple). (e) Same view as (d) with reduced point cloud density in order to highlight fault
interpretation. (f) Equivalent view to (d) and (e), showing 3D fault planes and intrusion surface interpreted
from point cloud data (in GoCAD™). (g) Field photograph of complex intrusion—host rock contact. (h)
Interpreted point cloud data of outcrop shown in (g) in RiISCAN PRO™ (intrusion in teal; fractures picked in
deformed sandstone in green). (i) Equivalent view to (h) showing 3D fault planes in deformed sandstone (in

GoCAD™).
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Figure 1.23. (overleaf)

Laser scan interpretation processes. (a) Cleaning (removing vegetation and non in-situ rocks) the point
cloud database in RiISCAN PRO™. (b) Structural interpretation (picking fault traces and contacts) in RiSCAN
PRO™. (c) Fault surface creation: extrapolating 2D/ 2.5D interpretations into 3D surfaces in GoCAD™. (d)

Creating pseudo-wells in GoCAD™ to extract azimuth and dip data from 3D planes.

Figure 1.24. (overleaf)

Example laser scan interpretations from the Trachyte Mesa intrusion study area. (a) Screen capture of
RiSCAN PRO™ project of laser scan point cloud data. (b) Zoom in of structurally complex zone showing dip-
slip faults associated with sill sheet terminations; area highlighted in (a). See inset photo for comparison. (c)
Zoom in of a climbing sill, propagating along a syn-emplacement fault, area highlighted in (a). (d) Active
interpretation of laser scan point cloud data (same view as (a)). Inset shows zoom-in to highlight fracture
picking. QR code provides link to fly though movie of the TM laser scan project (see also Appendices for fly

through movie). See Chapter 3 for more details.

Figure 1.25. (overleaf)

Example laser scan interpretations from the Maiden Creek intrusion study area. (a) Screen capture of
RiSCAN PRO™ project of laser scan point cloud data. (b) Zoom in of structurally complex zone where a shear
zone (MCSZ) separates low-/ moderately-deformed sandstones above from highly deformed sandstones
below and between two igneous lobes, area highlighted in (a). See inset photo for comparison. (c) Zoom in
of folded sandstone units around irregular lateral margin of igneous lobe, area highlighted in (a). (d) Active
interpretation of laser scan point cloud data (same view as (a)). Inset shows zoom-in to highlight fracture
picking. QR code provides link to fly though movie of the MC laser scan project (see also Appendices for fly

through movie). See Chapter 6 for more details.
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1.4.3. Thesis Layout
Chapter Two provides a detailed geological setting for the Henry Mountains, Utah with a
synopsis of their tectonic and geological evolution with respect to the Colorado Plateau

and the North American continent.

Chapter Three presents field observations and structural data of the Trachyte Mesa
intrusion (satellite intrusion to Mount Hillers, Henry Mountains) and tests the
emplacement models of Hunt (1953) and Corry (1988) in relation to host rock

deformation, in order to identify the mode of emplacement.

Chapter Four gives a detailed fracture spacing study in the host rocks to the Trachyte
Mesa intrusion and discusses the importance of the results with respect to fluid flow

modelling of host rocks to igneous intrusions.

Chapter Five uses field observations and structural data from the Maiden Creek intrusion
(satellite intrusion to Mount Hillers) and discusses host rock deformation and fault

kinematics in relation to intrusion geometries and emplacement mechanisms.

Chapter Six presents a further detailed study of the southern section of the Maiden Creek
intrusion, in particular the Maiden Creek Shear Zone, and discusses accommodation

structures that tackle the intrusion ‘space problem’.

Chapter Seven summarises and discusses the main implications of the thesis as a series of
short discussions, linking intrusion geometries and host rock deformation structures to
emplacement mechanisms, while addressing the intrusion ‘space problem’ and how the

addition of magma is accommodated at depth.
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2.1. Regional Geological Setting

The Henry Mountains are situated in south-eastern Utah on the Colorado Plateau (Fig.
2.1). The Colorado Plateau Province is centred on the Four Corners region of the south-
western USA and covers much of southern and eastern Utah, western Colorado, north-
western New Mexico and northern Arizona states (Fig. 2.1), spanning an area of 337,000
km?. The Plateau is one of the three physiographic provinces of the Intermontane
Plateaus (comprising the Columbia Plateau, Colorado Plateau, and Basin and Range
Provinces), with an average elevation of ~1525 m (~5000 ft) above sea level. The Plateau
is bound on all sides by significant topographical/ structural features, making it a distinct
terrain (Fig. 2.1). To the east, the Plateau is bounded by the Southern Rocky Mountains in
Colorado, and to the north-east, by the Uinta and Wasatch Mountains of Utah (Fig. 2.1b).
In southern Colorado and New Mexico, the eastern margin of the Colorado Plateau is
defined by the Rio Grande rift: a “N-S trending continental rift zone that separates the
Plateau from the intercontinental American craton to the east (Fig. 2.1). The Mogollon
Rim, an approximately 320 km (200 mile) long escarpment, marks the south-western
edge of the Plateau (Fig. 2.1b). To the west, the Colorado Plateau is bounded by the Basin

and Range Province in western Utah and Nevada (Fig. 2.1).

2.2. Tectonic and Geological Evolution of Utah, the Colorado Plateau and N. America
Although not exempt from deformation and magmatism, the Colorado Plateau has,
relative to its surrounding regions, behaved as a separate terrane throughout much of the
Phanerozoic era, experiencing a long period of relative tectonic quiescence (Allmendinger
et el., 1987; Burchfiel et al., 1992; Nelson et al., 1992). This is supported by the
sedimentary record, which indicates that Utah and the western edge of the Colorado
Plateau, with a relatively flat landscape, remained near sea-level (slightly above, or
slightly below), throughout most of the last 2 billion years (Figs 2.2 & 2.3; Hintze &
Kowallis, 2009). Only during the last 80 million years has the Colorado Plateau risen to
significantly above sea-level (Liu & Gurnis, 2010; Roberts et al., 2012). However, despite
being a separate terrane, many of the tectonic events that shaped North America
impacted (directly or indirectly) on the plateau. Hintze and Kowallis (2009) divided Utah’s
geological history into 9 key phases, all of which can be related to the broader tectonic
history of North America. These phases are depicted in Figure 2.4, and are discussed in

more detail in the following sections. Figures 2.2 and 2.3 show palaeogeographic maps
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and tectonic reconstructions (from Cambrian to present) for North America (Miall &

Blakey, 2008) and the Colorado Plateau (Blakey & Ranney, 2008).

(a)

Yellowstone :
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Figure 2.1. Location maps of the Colorado Plateau (CP). (a) Present day map of the CP in relation to the
North American continent. The image is from Google Earth™ and shows current USA state borders. The
outline of the CP is highlighted by the dashed yellow line. Key geological areas are highlighted. Kinematics
are shown for the west coast. Inset: simplified cratonic map for North America (from the USGS). (b)
Enlarged map of the CP. The location of map (b) is shown by the white box in (a). Kinematics for the SW
region of North America are indicated by the arrows. The main topographical/ structural features that
bound and denote the rim of the CP are shown. The location of the Henry Mountains on the CP is indicated

by the small white box.
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Figure 2.2. (overleaf)
(a) Palaeogeographic and tectonic history of North America (Miall & Blakey, 2008), including: most of the
Arctic; the Caribbean; the Pacific Margin; parts of Europe; South America; and Africa (© Ron Blakey,

Colorado Plateau Geosystems; http://cpgeosystems.com/namkeypaleogeography.html). (b) Palaeolatitude

history of North America from the later Neoproterozoic, through the Phanerozoic, to present day (after
Hintze & Kowallis, 2009). Palaeolatitudes are shown every 40 million years. Utah’s position is highlighted.
Palaeolatitudes were produced using palaeomagnetic records. The present-day outline of North America is
shown for reference. The tectonostratigraphic “Phases” shown below the geological timescale correspond

to the 9 key phases of Hintze and Kowallis (2009), illustrated in Fig. 2.4.

Figure 2.3. (overleaf)
Palaeogeographic and tectonic history of southwestern North America (Blakey & Ranney, 2008), including:
the Colorado Plateau; Southern and Central Rocky Mountains; Basin and Range; and Pacific Margin (© Ron

Blakey, Colorado Plateau Geosystems; http://cpgeosystems.com/namkeypaleogeography.html).
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(@) Palaeogeographic and Tectonic History of North America:
North America including most of the Arctic, the Caribbean, the Pacific Margin,
and parts of Europe, South America, and Africa

1000 km
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Palaeogeographic and Tectonic History of Southwestern North America:
Colorado Plateau, Southern and Central Rocky Mountains, Basin and Range, and Pacific Margin

Early Cretaceous Late Cretaceous to Early Turonian highstand Eocene Eocene to Oligocene

125 Ma (120-130) 90 Ma (89 -91) 50 Ma (48 - 52) 35Ma(33-37) 5Ma (4-6)

Early Permian Early Triassic Late Triassic Early Jurassic Late Jurassic
280 Ma (280 - 285) 245 Ma (245 - 248) 215 Ma (213 -219) 180 Ma (176 - 183) 150 Ma (148 - 152)

Early Cambrian Middle Ordovician Late Devonian Early Carboniferous (Middle Mississippian)  Late Carboniferous (Middle Pennsylvanian)
525 Ma (521 - 542) 470 Ma (461 - 472) 370 Ma (360 - 385) 340 Ma (330 - 345) 310 Ma (308 - 310 HS)

© Ron Blakey, Colorado Plateau Geosystems (http://cpgeosystems.com/swnampaleogeography.html)

Fig. 2.3
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Figure 2.4. Nine key tectonostratigraphic phases of Utah’s geologic history as outlined by Hintze and
Kowallis (2009). Phase 1 (Early Proterozoic) — Foundation of metamorphic basement terranes; Phase 2
(Neoproterozoic) — Uinta Rift basin and ice-house earth conditions; Phase 3 (Cambrian—Devonian) — shallow
carbonate seas; Phase 4 (Carboniferous—Permian) — far field tectonics of the Alleghanian Orogeny and
formation of the Oquirrh and Paradox basins; Phase 5 (Triassic—Jurassic) — arid deserts and the intermittent
shallow seaway to Canada; Phase 6 (Cretaceous) — the Sevier Orogeny and the coal swamps on the flanks of
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the Cretaceous Interior Seaway (foreland basin); Phase 7 (Early Palaeogene) — plateau uplift, Laramide
folding and formation of the Uinta mountains; Phase 8 (Oligocene—Early Miocene) — Tertiary intrusions and

volcanism; Phase 9 (Neogene—present) — eastwards extension along the Wasatch Fault.

2.2.1. Palaeoproterozoic to Mesoproterozoic (c. 2000 to 950 Ma)

The early- to mid-Proterozoic era was dominated by orogenic accretionary events with
the assembly and growth of the North American continent: part of the globally significant
assembly of the Proterozoic supercontinent of Rodinia (Fig. 2.5; Li et al., 2008). This
timeframe represents Phase 1 of Hintze and Kowallis (2009) for their geological evolution
of Utah (Fig. 2.4). During the early Palaeoproterozoic Orosirian period (c. 2050 to 1800
Ma), the Slave, Rae-Hearne and Superior major cratons, along with smaller fragments of
Archean continental crust, were sutured together, marking the onset of the assembly of
the N. American (Laurentian) Archean core (Fig. 2.5; Hoffman, 1988; Bleeker & Hall,
2007). This was the start of a long period (~1 billion years) of continental accretionary
events, as a series of arcs and associated flanking sediments were subsequently added to
the south-eastern edge of the growing N. American continent during three significant
orogenic events. The first of these accretionary events was the Yavapai orogeny (1710 to
1680 Ma) during the Statherian period, adding the 1.8—-1.7 Ga Yavapai terrane to the
south-eastern edge of the continent (Fig. 2.5; Whitmeyer & Karlstrom, 2007). This was
shortly followed after by the Mazatzal orogeny (1650 to 1600 Ma) during the Calymmian
period, resulting in the accretion of the 1.7-1.65 Ga Mazatzal arc and flanking sediments
along the south-eastern margin of the Yavapai terrane (Fig. 2.5). Voluminous, subduction-
related granitic magmatism accompanied these accretionary events. The final orogenic
event of the Proterozoic was the prolonged Ectasian to Stenian, Grenville orogeny (1300
to 950 Ma). During this orogeny, the 1.3—1.0 Ga Llano-Grenville province, along with an
unidentified continent (long since rifted away; Whitmeyer & Karlstrom, 2007), was

accreted onto the eastern and south-eastern edge of the N. American continent (Fig. 2.5).

The oldest known rocks of the Colorado Plateau are Palaeoproterozoic gneisses and
schists, with metamorphic ages dating from ~1.7-1.5 Ga (Hintze & Kowallis, 2009;
Fillmore, 2011). However, these rocks also preserve older Archean signatures within
zircon crystals. These Palaeoproterozoic rocks are found in Utah, south of the Archean
Wyoming shield (Fig. 2.4, Phase 1). As shown in Figure 2.2b, throughout much of the

Proterozoic, the Laurentian continent lay within the southern hemisphere.
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Figure 2.5. Simplified map showing the basement terranes and cratons of North America (adapted from
Hoffman, 1988; and Bleeker & Hall, 2007). Outline of Utah State is highlighted in black, along with the

location of the Henry Mountains (red star) for reference.

Kinematics during the Mesoproterozoic reflected “NW directed thrusting (Fig. 2.6)
associated with the various accretionary events on the eastern margin of the craton. NE—
SW trending contractional structures developed along the eastern continental margin
with coincidental NE-SW directed extension within the continental interior (Fig. 2.6b).
Such NE-SW directed extension created a series of NW-SE striking normal faults (Fig.
2.6). Marshak and Paulsen (1996) proposed two phases of rift development during the
Mesoproterozoic: NE-SW extension (1.5-1.3 Ga), as mentioned above; and NW-SE
extension (1.1 Ga), coeval with the Grenvillian orogeny and opening of a NE-SW trending

mid-continental rift system (MCR; Fig. 2.6a, b). Timmons et al. (2001) also described the
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earlier of these two events, with NE-SW extension, although their timing for this event
was younger (1.3-1.0 Ga) than the 1.5-1.3 Ga age assigned by Marshak and Paulsen
(1996).

2.2.2. Neoproterozoic (c. 950 to 541 Ma)

Phase 2 of Hintze and Kowallis (2009) falls within the Neoproterozoic period (Fig. 2.4).
Following the Grenville orogeny, N. America experienced a time of relative tectonic
quiescence and stability from the Tonian through to the Cryogenian (c. 950—-800 Ma), as
the final assembly of the Rodinia supercontinent ensued elsewhere (Li et al., 2008). This
stability, however, was relatively short-lived and by 800 Ma, extension and rifting had
commenced, creating a series of N-S trending normal faults across the N. American
continent (Fig. 2.6c; Marshak & Paulsen, 1996; Marshak et al., 2000). By 750 Ma, the
break-up of the Rodinia supercontinent was underway (Timmons et al., 2003; Li et al.,
2008). A continent (possibly Australia or China) rifted away from the western margin of N.
America (Laurentia), initiating the opening of the proto-Pacific Ocean and establishing a
passive margin on the western edge of N. America. The upper hinge of this passive margin
forms the western edge of the present-day Colorado Plateau province (Figs 2.3 & 2.4;
Hintze & Kowallis, 2009). By the Ediacaran (~635-541 Ma), rifting was occurring on the
eastern edge of N. America, with the collapse of the Grenville orogeny at ~600 Ma, and
the opening of the lapetus Ocean (precursor to the Atlantic Ocean) by ~550 Ma (Li et al.,
2008).

In summary, by the end of the Proterozoic, three dominant basement trends had been
established: NW-SE, NE-SW and N-S (the earlier two trends common across the whole
craton, whilst the latter system was more localised to the Colorado Plateau; Fig. 2.6).

These basement fabrics played an important role during the Phanerozoic.
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2.2.3. Cambrian to Permian (541 to 252 Ma)

Fragmentation of Rodinia continued during the Cambrian period, giving rise to the
continents of Laurentia, Baltica, and the southern supercontinent of Gondwana (Fig.
2.2a). During the Cambrian, N. America (Laurentia) partly straddled the equator, and the
Colorado Plateau was situated at latitude ~30° S (Fig. 2.2b). A period of slow marine
advance of shallow seas across N. America culminated in the near complete submergence
of the continent (Figs 2.2-2.4, Phase 3; Hintze & Kowallis, 2009). The continent was
surrounded by ocean (Fig. 2.2a): the Panthalassic Ocean to the north and west; the
lapetus Ocean to the south; and the Khanty Ocean to the east (Miall & Blakey, 2008). The

seas reached western Utah by the late Early Cambrian (Hintze & Kowallis, 2009).

By the Ordovician, the continents and smaller fragments were on the move again as the
assembly of the Pangea supercontinent began (Fig. 2.2a; Miall & Blakey, 2008). The
eastern-side of N. America was again subjected to most of the collisional activity (Fig.
2.2a), with four successive orogenic events (building the Ouchita-Appalachian mountain
belt; Fig. 2.5; Hatcher, 2010) spanning much of the early Phanerozoic: the Taconic; the
Acadian; the Ouachita-Marathon; and the Alleghanian orogenies (Fig. 2.5). The Ordovician
Taconic Orogeny (~550-440 Ma; Hatcher, 2010) resulted in the Taconic (Bronson Hill)
island arc being accreted/ thrust onto the eastern margin of Laurentia as the lapetus
Ocean began to close (east-dipping subduction zone). The effects of the Taconic orogeny
were focused from Newfoundland to Georgia. The Devonian Acadian Orogeny (~425-375
Ma; Hatcher, 2010) involved the collision of a series of Avalonian continental fragments
with Laurentia. The effects of the Acadian orogeny were focused in New England and
Newfoundland, reaching as far south as Alabama. The Carboniferous to early-Permian
Ouachita-Marathon Orogeny (~350-290 Ma; Poole et al., 2005) resulted from the South
American continent colliding with Laurentia after the intervening ocean was subducted,
forming the Ouachita Mountains. The effects of this orogeny were focused from Arkansas
to Texas (Fig. 2.5). The mid-Carboniferous to Late Permian Alleghanian Orogeny (~325-
260 Ma; N. American equivalent to the European Varsican/ Hercynian orogeny; Hatcher,
2010) resulted from the African continent colliding with the Euramerica supercontinent,
forming the Appalachian Mountains (Fig. 2.5). The Alleghanian orogeny was focused on a

region from Alabama to New Jersey, extending north and southwest.

During the Palaeozoic era, western N. America was relatively stable and tectonically

guiescent. The palaeolatitude was sub-tropical (Fig. 2.2b), with deposition taking place in
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dominantly shallow-marine environments (Fig. 2.3). During Devonian times, these
environments led to the deposition of a number of economically important petroleum
source rocks (including the Bakken Formation; Webster, 2011), which supply the recent

shale gas/ oil boom in the USA.

At some point, likely during the Late Devonian, a subduction zone established along the
western edge of the N. American continent as the oceanic Farallon Plate was forced
beneath the continental N. American Plate (Fig. 2.3). This resulted in the Sierra Nevada
Arc magmatism in eastern California and Oregon, and the Late Devonian to early
Carboniferous (Mississippian) Antler Thrust Belt in Nevada and Idaho (Dickinson &

Lawton, 2003).

During the Carboniferous period (Late Mississipian to Pennsylvanian; ~330 to 300 Ma),
progressive orogenic activity along the eastern margin of N. America led to inversion of
many Proterozoic rifts in the continental interior, raising a chain of basement-cored
uplifts: the Ancestral Rockies, stretching from Texas to Oklahoma and northwest to
Oregon (Fig. 2.4, Phase 4; Dickinson & Lawton, 2003; Hintze & Kowallis, 2009). These
topographic highs were accompanied by significant, adjacent flexural basins. Two of these
uplifts, the Uncompahgre and Piute Uplifts, were situated on the present-day Colorado
Plateau; and the Paradox Basin associated with, and located on the southern margin of

the Uncompahgre Uplift.

In Utah, two large (~5 km thick) NW-trending basins continued to develop (Fig. 2.4, Phase
4): the Paradox Basin (to the southeast); and the Oquirhh Basin (in the northwest).
Deposition in the Paradox Basin was in a sabkha (supratidal/ arid; characterised by
deposition of evaporites) coastal environment, while the Oquirrh Basin was entirely
marine dominated (Hintze & Kowallis, 2009). The stratigraphy of both the Iate
Carboniferous and the Permian displays a cyclic sequence, likely linked to global sea-level
fluctuations in response to global icehouse cycles (Hintze & Kowallis, 2009). The final

culmination of the Pangea supercontinent occurred during the Permian (Fig. 2.2a).

2.2.4. Triassic to Jurassic (252 to 145 Ma)
Phase 5 of Hintze and Kowallis (2009) covers the Early Mesozoic era. Pangea began to

break apart in the Triassic (Fig. 2.2a), with rifting first occurring along the Appalachian-
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Ouachita-Marathon orogeny in N. America (Fig. 2.5; Moulin et al., 2010). Consequently,
significant syn-rift volcanoes grew in Texas, and rift shoulders rose along the entire rift.
Once again, Utah and the Colorado Plateau were relatively unaffected by such rifting and
the associated volcanism to the east. It was also largely unaffected by the short-lived
localised compressional deformation of the Late Permian to Early Triassic Sonoma
Orogeny along the west margin (~250 Ma; Gabrielse et al., 1983), which was focused in

western Nevada and southern Oregon (Figs 2.2a & 2.3).

During the Triassic and Jurassic, N. America moved progressively northwards, with the
continent crossing the equator sometime during the Permo-Triassic (Fig. 2.2b). The
Triassic stratigraphy of Utah marks a transition from dominantly marine to non-marine
deposition (Fig. 3; Hintze & Kowallis, 2009). The Triassic rock record on the Colorado
Plateau opens with shallow marine deposits of the Moenkopi Formation, and closes with
petrified forests, river flood plain and swampy lake deposits of the Chinle Formation (a
phase of erosion separates these two vastly different environments; Fig. 2.7a; Hintze &

Kowallis, 2009; Fillmore, 2011).

The Jurassic stratigraphy of the Colorado Plateau reflects varying depositional
environments. The early Jurassic was dominated by significant aeolian (desert) sand dune
deposits of the Glen Canyon Group, covering the entire region. These deposits include
The Wingate, Kayenta, and Navajo sandstones (known as the Greater Navajo Erg; Figs 2.3
& 2.7b, c). By the middle Jurassic, a shallow finger-like seaway began to extend
southwards from Canada, covering much of Utah (Fig. 2.2a; Hintze & Kowallis, 2009;
Fillmore, 2011). This shallow marine incursion led to the deposition of the San Rafael
Group. Marine sediments (e.g. Carmel Formation) were deposited on the floor of this
narrow seaway, while arid environments still dominated its margins, leading to the
deposition of evaporites and further aeolian sandstones (e.g. Entrada Sandstone; Fig.
2.7d). The Late Jurassic saw the deposition of the world-renowned (dinosaur-rich)
Morrison Formation. The Jurassic Morrison River marked a distinct change in drainage
patterns in N. America (from westward-dominated to eastward-dominated; Fig. 2.3),
marking the onset of the early development of a magmatic arc (in California) and the
Nevadan Orogenic Belt (Fig. 2.4, Phase 5; Hintze & Kowallis, 2009; Fillmore, 2011). Muddy

deposits dominate the stratigraphy of the Morisson Formation (e.g. Fig. 2.7e).
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Figure 2.7. Photographs of selected sedimentary rocks of the Henry Mountains region. (a) Triassic
sediments: Capitol Reef National Park. View looking SE from Chimney Rock. From the base of the cliff
upwards the stratigraphy units are: the Moenkopi Formation; the Chinle Formation (the slope forming unit);
and the Wingate Sandstone (the steep cliff unit) of the Glen Canyon Group. A sharp discontinuity exists
between the Chinle and the Wingate. Height of cliff face is ~250 m. (b) Lower Jurassic sediments: Navajo
Sandstone of the Glen Canyon Group, view looking south from Rt. 276 towards Mount Holmes (peak in
background). The photo shows the distinctive rounded dome geomorphology characteristic of the Navajo
Sandstone. (c) Cross-bedding in the Navajo sandstone. (d) Mid-Jurassic sediments: Entrada Sandstone of the
San Rafael Group (a road-side outcrop along Rt. 276, east of the Henry Mountains). (e) Late Jurassic
sediments: the multi-coloured (“tie-dyed”) Brushy Basin Member of the Morrison Formation along the San
Rafael Swell, to the north of Rt. 24, near Caineville. Height of mound is ~100 m. (f) Cretaceous sediments:
Factory Butte. View from Rt. 24, looking north. The most photographed geological feature in Utah, Factory
Butte is one of many buttes and mesas found on the bluish badlands of the Upper Blue Hills (just to the
north of the Henry Mountains). The buttes and mesas are comprised of the Blue Gate Shale Member
topped by the resistant Emery Sandstone (or Muley Canyon Sandstone Member) of the Mancos Shale (Fig.
2.18). Factory Butte is ~350 m high.
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Figure 2.8. Palaeogeography and depositional environment map of North America during the late
Cretaceous (80—100 Ma; from Hintze & Kowallis, 2009). Note the Late Cretaceous Interior Seaway dividing
North America into two landmasses, and the Sevier Orogenic Belt to the west. Outline of Utah is highlighted

in black.

2.2.5. Early- to mid-Cretaceous (145 to 80 Ma)

The era of relative tectonic quiescence in western N. America came to an end in the
Jurassic with the onset of the Sevier orogeny (~ 140-50 Ma; Armstrong, 1968), and marks
the transition to Phase 6 of Hintze and Kowallis (2009; Fig. 2.4). Opening of the Atlantic
Ocean to the east (Fig. 2.2a) caused a significant increase in the horizontal compressive
stress (far-field stress) on the west coast subduction zone (Figs 2.2a & 2.3; Coney &
Evenchick, 1994). This increased compressive stress initiated the rise of the Cordilleran
thrust belt along the west coast (Fig. 2.5), which in turn accreted various arcs and
continental fragments onto the western edge of the N. American continent (Figs 2.2a &
2.3; Coney & Evenchick, 1994). The Cordilleran thrust belt continued to grow over a
period of about 100 million years from the Jurassic to the Eocene, eventually forming the
high altitude mountain chain that exists today, running the entire length of the west coast

of Canada, N. America and Mexico (Figs 2.2a, 2.3 & 2.5). Over the course of the Sevier
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orogeny, frontal thrusts propagated progressively in an easterly direction, ceasing at a
point just to the east of the former Neoproterozoic passive margin hinge line (Fig. 2.4,
Phase 6). In Utah, this point is known as the Sevier thrust belt (Armstrong, 1968; DeCellas
& Coogan, 2006) or the Sevier Orogenic Mountains (Figs 2.4, 2.8 & 2.9; Hintze & Kowallis,
2009), which is entirely thin skinned.
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Figure 2.9. A—E show predicted dynamic topography over western USA showing subsidence and uplift of the
Colorado Plateau, based on a model of Farallon slab subduction(from Liu & Gurnis, 2010). F shows a model
for present-day topography which includes active mantle upwelling (note, this model closest resembles
present-day elevation of the Plateau; from Liu & Gurnis, 2010). Reds and yellows are indicative of positive

dynamic topography.

In response to the development of the Sevier Orogeny, a seaway developed across N.
America, known as the Cretaceous Interior Seaway (Figs 2.3 & 2.8): dividing the continent
into two large landmasses (Fig. 2a; Kauffman, 1984; Weimer, 1986; Hintze & Kowallis,
2009). This epicontinental seaway extended from Arctic Canada to Texas. Clastic influx
was predominantly from the west, draining the western Cordilleran Mountain Chain of
the Sevier Orogenic Belt (Fig. 2.8). In Utah, these deposits include the Cedar Mountain
Formation and the dominant bluish-grey Mancos Shale (which includes the Ferron and
Muley Canyon/ Emery sandstone members; Hintze & Kowallis, 2009; Fig. 2.7f). Much of
the Cretaceous sedimentary record has been stripped from eastern and southern Utah
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through erosion by the Colorado River and its many tributaries (Hintze & Kowallis, 2009).
This erosion has created some of Utah’s most distinctive erosional features, including the

buttes and mesas of the badlands (e.g. Factory Butte, Fig. 2.7f) and the Book Cliffs.

2.2.6. Late Cretaceous to Palaeogene (80 to 35 Ma)

By the late Cretaceous, plate boundary conditions on the western margin of the N.
American continent were in a state of flux, as the arrival of a buoyant oceanic plateau (Liu
& Gurnis, 2010) resulted in flattening of the previously steep-angle of the subducting
Farallon plate (Severinghaus & Atwater, 1990; Liu & Gurnis, 2010). Consequently, the
Farallon plate began to scrape along the base of the N. American lithosphere. Tracking
the leading edge of the subducting plate, magmatism swept inboard to the east (ceasing
abruptly along the Sierra Nevada arc; Humphreys et al., 2003). Coincident with the
flattening of the Farallon Plate, basement-cored uplifts (Fig. 2.10) started to rise in the
foreland of the Cordilleran thrust belt, creating the Southern Rocky Mountains of
Wyoming, Colorado, and New Mexico (Figs 2.2a & 2.3); this event is known as the
Laramide Orogeny (Fig. 2.4, Phase 7; Armstrong, 1968; Bump & Davis, 2003; Hintze &
Kowallis, 2009; Davis & Bump, 2009). The uplifts reactivated older structures and fabrics
in the basement, including some of the Proterozoic normal faults (compare Proterozoic
basement trends in Figure 2.6 with Laramide fold structures in Figure 2.10; Marshak et al.,
2000; Bump & Davis, 2003; Davis & Bump, 2009). Timings of the Laramide Orogeny are a
matter of some debate, with the event beginning in the late Cretaceous, ~80-70 Ma, and

ceasing in the Eocene ~55—-35 Ma (Davis & Bump, 2009).

On the Colorado Plateau, the Laramide Orogeny resulted in the creation of large
monoclinal structures (Fig. 2.10; Bump & Davis, 2003; Davis & Bump, 2009; Fillmore,
2011). In south-eastern Utah, these include the Comb Ridge, Escalante, San Rafael,
Teasdale, Uncompahgre, Upper Valley and Waterpocket monoclines (Fig. 2.10b ; Bump &
Davis, 2003; Davis & Bump, 2009; Hintze & Kowallis, 2009; Fillmore, 2011).Dynamic uplift
of the Colorado Plateau commenced ~80 Ma (Fig. 2.9; Liu & Gurnis, 2010; Roberts et al.,
2012), raising the plateau by ~1 km over a period of approximately 30 million years

(Roberts et al., 2012).
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Figure 2.10. Laramide folding on the Colorado Plateau. (a) Structural map showing Laramide tectonic
elements of the Four Corners area on the Colorado Plateau (from Fillmore, 2011). Location of the Henry
Mountains shown by a red star. (b) Schematic block diagram showing the proposed relationship between

structures in the basement and cover (from Bump & Davis, 2003).

2.2.7. Latest-Palaeogene to Present (~35 to 0 Ma)

Thrusting in both the Cordillera Mountains and the southern Rocky Mountains ceased
during the Eocene, as the next change in the plate boundary conditions brought to an end
the Sevier and Laramide orogenies respectively. This change was the result of the
spreading centre between the Pacific Plate and the already subducting Farallon Plate
coming into contact with the subduction zone (Fig. 2.11; Irwin, 1990). The spreading
centre (or ridge), a system of spreading segments and transform faults, was at an oblique
angle to the “N-S trending subduction zone (Atwater, 1970; Severinghaus & Atwater,

1990).

At ~30 Ma, the westward moving North American Plate began to override the spreading
ridge between the Farallon and Pacific plates (Atwater, 1970), and the Farallon Plate was
divided into two smaller plates: the northern Juan de Fuca Plate; and the southern Cocos
Plate (Fig. 2.11; Irwin, 1990). With continued subduction, triple junctions (intersections of
three tectonic plate boundaries) developed and began to migrate apart. The zone
between the two triple junctions displayed strike-slip movement (i.e. the San Andreas

Fault), while the segments to the north and south remained as convergent subduction
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zones (Fig. 2.11; Irwin, 1990). In this zone between the two triple junctions (i.e. where the
spreading centre had been subducted), spreading ceased, creating a window in the
subducting slab (this expanded to form a slab gap with continued subduction of the
spreading centre; Fig. 2.11; Severinghaus & Atwater, 1990). This allowed upwelling of hot
asthenosphere to come into contact with the continental lithosphere of the overriding N.
American plate (Dickinson, 1997). The addition of heat to the freshly hydrated lithosphere
produced a significant burst of magmatism that followed the track of the subducting slab
window (Figs 2.12 & 2.13; Humphreys et al., 2003; McQuarrie & Oskin, 2010). At the
surface, explosive andesitic and dacitic volcanics erupted along the Reno-Marysvale, San
Juan and Mogollon-Datil belts, producing voluminous (5 x 10° km?>; Johnson, 1991)

ignimbrite and tuff deposits (the ignimbrite flare-up of the Oligocene; Nelson & Davidson,

1997).
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Figure 2.11. The geological evolution of the San Andreas Fault along the western coast of North America
from ~30 Ma to present (modified after Irwin, 1990; re-drawn by  USGS

http://pubs.usgs.gov/gip/dynamic/Farallon.html).

As a combined result of lithospheric heating and the removal of compressive stress, the
over-thickened crust of the Cordilleran hinterland (to the west of the Sevier fold-thrust

belt) began to collapse, extending in a westerly direction, creating the Basin and Range
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Province of western Utah and Nevada (Figs 2.1-2.3; Stewart, 1998; Stewart et al., 1998;
Sonder & Jones, 1999; Dickinson, 2002).

Colorado
Plateau

1414 dpuein ory

Kilometres

-,

-

Farallon plate
motion

.

,emmmm——— o=
—_
oo
=
Y

Figure 2.12. A series of maps depicting magmatism and volcanism across western North America from 42
Ma to the present. (a) Simplified map showing the location of the Henry, La Sal and Abajo Mountains and
their relationship to tectono-magmatic elements in south-western USA (modified from Nelson et al., 1992).

(b) Map showing plate boundary volcanism for SW USA (from 36 to 18 Ma) based on plate reconstruction
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models of McQuarrie and Oskin (2010). SW movement of magmatic systems linked to slab roll-back of the
subducting Farallon plate. Dashed lines show location of Farallon plate spreading axis at 24 and 20 Ma,
while grey areas depicts the proposed slab window. Image from McQuarrie and Oskin (2010). (c) Map
showing south-westward migration of magmatism (36 to 24 Ma; from McQuarrie & Oskin, 2010). Outlines

of the Sierra Nevada—Great Valley block (left) and Colorado Plateau region (right) are shown.

During the Oligo—Miocene (~34-15 Ma), the Colorado Plateau underwent a second phase
of uplift (Fig. 2.9; Liu & Gurnis, 2010; Roberts et al., 2012), raising the plateau by a further
~1.5 km (Roberts et al., 2012). This was coincident with the emplacement of the
magmatic intrusions on the plateau (Fig. 2.4, Phase 8 and Fig. 2.14; Hintze & Kowallis,
2009), including the emplacement of the Henry Mountains igneous centres (Nelson et al.,

1992).

During the Neogene (~17 Ma), the extensional Wasatch Fault Zone (still active today)
developed in Utah, following the Cambrian shelf/ hinge line (old passive margin), resulting
in westward extension (Fig. 2.4, Phase 9; Hintze & Kowallis, 2009). This was accompanied
by further uplift and erosion of the plateau. Most of the Utahn landforms that we see
today developed over the last 5 million years, partly in response to this most recent uplift

(Hintze & Kowallis, 2009).

Figure 2.13. (overleaf)

A series of map view reconstructions of volcanism across western North America from 36 Ma to the present
(McQuarrie & Oskin, 2010). Underlying map grid is a palinspastic reconstruction showing plate deformation
through time. Blue line depicts active plate boundary (spreading centre) of subducting Farallon plate.
Various coloured dots show the locations of volcanic deposits of varying geochemistry through time. Note
the relative lack of volcanism on the Colorado Plateau (CP) with respect to surrounding regions, with the

exception of 24 Ma and 18 Ma maps.
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Figure 2.14. Magmatism of the Colorado Plateau. (a) Simplified map showing selected magmatic and
structural features on the Colorado Plateau (Ross, 1997). (b) Ternary diagram plotting normative
compositions of laccolith complexes of southeastern Utah, including the Henry Mountains (from Nelson &
Davidson, 1997). (c) Cartoon diagram highlighting differences in crustal structure, composition and magma
volumes across south-western USA (the Basin and Range province, across the transition zone, and the

Colorado Plateau interior; from Nelson & Davidson, 1997).
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2.3. Uplift and Magmatism on the Colorado Plateau

2.3.1. Dynamics (uplift) of the Plateau

The geological and tectonic history of the Colorado Plateau during the last 80 million
years (late Cretaceous through to present) has been dominated by dynamic uplift and
magmatism. The present elevation of the Colorado Plateau is ~2 km (Roy et al., 2009; Liu
& Gurnis, 2010, Roberts et al., 2012). Timing of the uplift has remained the subject of
debate: Wolfe et al. (1998) proposed that the present elevation was attained in the
Eocene (from palaeobotanical studies); whereas Sahagian et al. (2002) suggested a much
later Miocene timing (from basalt vesicularity). A recent exhumation study by Flowers et
al. (2008), carrying out (U-Th)/He apatite thermochronology, potentially provides the
most accurate date for uplift yet, with ~1 km of elevation over the SW Colorado Plateau
by the latest Cretaceous. Roberts et al. (2012) have also published timings for uplift based
on the inversion of river profiles (the assumption being that the resultant profiles are
controlled by uplift rate and moderated by erosion) and correlation with field
observations and dating of stratigraphy. They proposed that a first phase of uplift
occurred between 80 and 50 Ma, with 1 km of uplift at a rate of ~0.03 mm/yr. Their river
profiles also identify a second phase of uplift between 35 and 15 Ma (~1.5 km uplift at

~0.06 mm/yr), followed by a final phase of uplift over the last 5 million years.

The mechanical reasons for the dynamic uplift of the plateau have also been hotly
debated over the decades, and have been the focus of a number of publications in recent
years, with various models proposed in order to explain the vertical motion, including:
crustal thickening (Bird, 1988; McQuarrie & Chase, 2000); removal of mantle lithosphere
(England & Houseman, 1988; Spencer, 1996; Roberts et al., 2012); chemical alteration of
the continental lithosphere (Humphreys et al., 2003; Roy et al., 2004); and active mantle
upwelling and dynamic topography (Parson et al., 1994; Moucha et al., 2009; Liu &
Gurnis, 2010). Recent estimates for crustal thickness across the Colorado Plateau do not
appear to support the thicker than normal crust estimates (i.e. 45 km) previously
proposed (e.g. McQuarrie & Chase): therefore the present elevation of the Colorado
Plateau cannot be explained by crustal thickening (Roberts et al., 2012). Liu and Gurnis
(2010) used inverse models of mantle convection to predict the impact of the subducting
Farallon plate on the vertical motion on the plateau. In the model of Liu and Gurnis
(2010), the arrival of the flat-lying Farallon slab ~100 Ma results in dynamic subsidence of
the continental crust, sweeping from west to east, reaching a maximum at ~86 Ma (Fig.

2.9). Subsidence is followed by two stages of dynamic uplift in the early Palaeogene (~56
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Ma; Fig. 2.9) and in the mid-Palaeogene (Eocene, ~42 Ma; Fig. 2.9), following the removal
of the Farallon slab below the plateau and buoyant upwellings, resulting in an overall
uplift of ~1.2 km, suggesting that the Colorado Plateau attained its present-day elevation
during the Oligocene (Fig. 2.9; Liu & Gurnis, 2010). In contrast, Roberts et al. (2012)
suggested that the uplift history is likely to be consistent with episodic convective
removal of lower lithospheric mantle beneath the region, and associated with the hot

spot currently beneath Yellowstone.

2.3.2. Magmatism

Accompanying the uplift of the Colorado Plateau have been three periods of magmatism,
though in comparison to surrounding areas in western N. America, the volumes have
been minor (Fig. 2.13; Nelson & Davidson, 1997; McQuarrie & Oskin, 2010). The first
event was the mid-Tertiary intrusive andesite/ diorite magmatism between ~30 and 23
Ma, creating the Henry, La Sal and Abajo Mountains of south-eastern Utah (Figs 2.12 and
2.14; Nelson & Davidson, 1997). This period of intrusive magmatism was followed in the
late Cenozoic (<17 Ma) by a period of basaltic magmatism around the margins of the
plateau (Fig. 2.13; Nelson & Davidson, 1997; McQuarrie & Oskin, 2010) associated with
extension in the Rio Grande and Basin and Range rift systems. A final period of basaltic
volcanism, including the San Rafael Dyke Swarm to the north of the Henry Mountains,
occurred over the last ~ 5 Ma (Steve Nelson, personal comments). The San Rafael Dyke
System has a distinct N-S trend, suggesting E-W extension: this is both kinematically and

temporally consistent with the presently active Wasatch fault zone (see Fig. 2.4, Phase 9).

Igneous activity of the Colorado Plateau has been, along with greater magmatism in
western N. America, the subject of much discussion over the last 40 years: the tectonic
processes that gave rise to the voluminous Cenozoic magmatism still the subject of hot
debate (Nelson & Davidson, 1993; McQuarrie & Oskin, 2010 and references therein).
Cenozoic volcanism in western N. America must account for the significant changes along
the Pacific plate boundary (Fig. 2.11; McQuarrie & Oskin, 2010). McQuarrie & Oskin
(2010) made the observation that magmatism in the Basin and Range province is strongly
linked to plate boundary effects relating to the subduction of the Farallon plate and its

developing slab window (Figs 2.12b & 2.13; McQuarrie & Oskin, 2010).
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Mid-Tertiary magmatic fronts swept across the western United States (Fig. 2.12; Cross &
Pilger, 1978; Burke & McKee, 1979; Glazner & Bartley, 1984; Nelson & Davidson, 1997):
from the north, in a south-westerly direction (from 36 to 24 Ma; Fig. 2.12c; McQuarrie &
Oskin, 2010); and the from the south in a westerly direction (from 36 to 18 Ma; Fig. 2.12b;
McQuarrie & Oskin, 2010). McQuarrie & Oskin (2010) suggested that the most logical
explanation for these patterns can be related to slab roll-back and steepening of the
subducting Farallon Plate. Roll-back of the once flat subducting slab not only explains the
movement of the magmatic fronts, but is also a key driver for the extension seen in
western US (Dickinson, 2002), as well as the later influx of basaltic magmatism (Harry et

al., 1993).

Using geochemical signatures, Nelson and Davidson (1993, 1997) suggested that both the
Cenozoic intrusive rocks of the Colorado Plateau and the volcanic rocks in the surrounding
region to the west have strong affinities to arc rocks. They proposed that the intrusions of
the Colorado Plateau are part of an E-W oriented magmatic belt (Fig. 2.12), and the
relatively minor volumes of magma on the plateau are due to a thickened crust beneath

the plateau (Fig. 2.14).

The Yellowstone—Snake River Plain (YSRP) system to the north of the Colorado Plateau is
believed to be related to a hotspot plume (Armstrong et al., 1975; Pierce & Morgan,
2009), though the exact mechanisms are still unresolved (Fouch, 2012). Rhyolitic volcanics
of the YSRP began erupting ~12 Ma (Puskas et al., 2007; Shervais & Hanan, 2008) and
young eastwards. This migration pathway corresponds to the present-day movement of
the North American plate (Puskas et al., 2007; Pierce & Morgan, 2009; Fouch, 2012).
There appears to be little expression of the YSRP magmatism on the Colorado Plateau
(Fig. 2.13; McQuarrie & Oskin, 2010), though time equivalent basaltic magmatism is
present locally (e.g. San Rafael dyke swarm). Roberts et al. (2012) did however link most

recent uplift of the plateau to potential plume related activity.

2.4. Geology of the Henry Mountains

The Henry Mountains are located in south-eastern Utah (Figs 2.12, 2.14 & 2.15), and are
one of more than ten mountain ranges located on the central and eastern Colorado
Plateau (Fig. 2.14) that are composed of sedimentary domes with igneous cores, encircled

by satellite dykes, sills and laccoliths (Fig. 2.16; Hunt, 1953; Engel, 1959; Jackson &
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Pollard, 1988; Nelson et al., 1992; Nelson & Davidson, 1993; Horsman et al., 2005). The
Henry Mountains range trends north—south and is about 60 km in length (Fig. 2.15;
Jackson & Pollard, 1988). West of the Henry Mountains lies the Circle Cliffs Uplift and
Waterpocket Monocline, to the north the San Rafael Swell, and to the southeast and east
Monument Uplift and the Canyonlands (Figs 2.15 and 2.17). The range consists of 5
principal peaks reaching heights greater than 3350 m (the elevation of the plateau ~1525
m), from north to south these are: Mt Ellen; Mt Pennell; Mt Hillers; Mt Holmes; and Mt
Ellsworth (Figs 2.15 & 2.16c). Each peak represents a distinct intrusive centre emplaced
into nearly flat-lying stratigraphy on a gently dipping (~2°) eastern limb of an
asymmetrical syncline that also trends north—south (Jackson & Pollard, 1988). The
Waterpocket Monocline, part of the Laramide Circle Cliffs Uplift (Figs 2.10, 2.15a &
2.16b), forms the western limb of the basin (Figs 2.15a & 2.18; Hunt, 1953), trending sub-

parallel to the range.

Figure 2.15. (overleaf)

Location and geology of the Henry Mountains, Utah. (a) Topographic map of the Henry Mountains region in
south-eastern Utah. Key geological structures and features are highlighted. (b) Simplified geological map of
the Henry Mountains and their location within Utah (map to the right; adapted from Morgan et al., 2008).
40Ar/39Ar age determinations are the various Henry Mountains igneous intrusions are provided (from Nelson

et al,, 1992).

Figure 2.16. (overleaf)
Contour maps for the Henry Mountains (excluding Mount Ellen) and Navajo Mountain, accompanied by a
series of diagrams illustrating the space occupied by intrusive stocks and the theoretical space available for

them (from Hunt, 1953).

Figure 2.17. (overleaf)

Photographs showing significant geological structures of the Henry Mountains area in south-eastern Utah,
including the: (a) San Rafael Swell Uplift, to the north of the Henry Mountains; (b) Waterpocket Fold, part of
the Circle Cliffs Uplift, just to the west of the Henry Mountains; and (c) Five peaks (intrusive centres) of the

Henry Mountains.
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2.4.1. Stratigraphy

The stratigraphy of the Henry Mountains region is dominated by an approximately 3—6
km thick succession of Permian to Cretaceous sandstones and shales (Fig. 2.19; Hunt,
1953; Hintze, 1963; Peterson et al., 1980; Stokes, 1980; Jackson & Pollard, 1988;). The
exposed sedimentary succession starts at the base of the Permian Cutler Formation and
ends with the Cretaceous (Campanian) Mesa Verde Formation (Fig. 2.19; Jackson &
Pollard, 1988). About 100 km to the west of the Henry Mountains, in western Garfield
County, an approximately 1 km thick sequence of lower- to mid-Palaeogene (lower
Tertiary) sediments overlies the Mesa Verde Formation (Fig. 2.19a; Doelling, 1975).
Therefore, a maximum of about 3.7 km of sedimentary strata are estimated to have
overlain the Permian Cutler Formation during the late Palaeogene (Oligocene) at the time
of emplacement of the Henry Mountains intrusions (Hunt, 1953; Hintze, 1963; Doelling,
1975; Peterson et al., 1980; Stokes, 1980; Jackson & Pollard, 1988). Roughly 1.3 to 1.9 km
of stratified sediments are estimated to lie between the base of the Permian Cutler
Formation and crystalline basement rocks (from stratigraphic sections; Fig. 2.19; Hintze,

1963; Doelling, 1975; Jackson & Pollard, 1988).

The intrusions of the Henry Mountains are emplaced at various levels in the Permian to
Upper Jurassic stratigraphy (Fig. 2.19a). The base of the main intrusive bodies lie within
the Permian stratigraphy (e.g. in the Cedar Mesa Formation for Mount Hillers; Figs 2.18
and 2.19a; Jackson & Pollard, 1988), whilst the satellites to the NE of Mount Hillers are
hosted within shallower strata (e.g. Jurassic Entrada, Summerville and Morrison
Formations; Fig. 2.19a; Jackson & Pollard, 1988). The following sections provide a basic

summary of these key host rock intervals.

Figure 2.18. (overleaf)
Simplified geological cross-section through the Circle Cliffs Uplift, Capitol Reef National Park, and the Henry

Mountains (from the USGS; poster available in the Capitol Reef National Park Information Centre).
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Figure 2.19. Stratigraphy of the Henry Mountains region. (a) Stratigraphic column for SW Utah and the

Henry Mountains region (modified from Jackson & Pollard, 1988). (b) Stratigraphic column for the Henry

Mountains, with ages and thicknesses of units (from Hintze & Kowallis, 2009).

2.4.1.1.

Cutler Formation (Roof Rocks to Mount Hillers)

The Cutler Formation is Permian in age, consisting of a heterogeneous sequence of

dominant arkosic conglomerates, and lesser amounts of arkosic sandstones, siltstones

and mudstones (Condon, 1997). The Cutler Formation was deposited by dominantly west-

flowing rivers, draining the Uncompahgre Mountains to the East (Condon, 1997; Fillmore,
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2011). In the Henry Mountains region, the Cutler Formation can be divided into three
distinct units: Lower Cutler beds and Cedar Mesa Sandstone Member (~200 to 460 m
thick); Organ Rock Tongue (<80 m thick); and White Rim Sandstone Member (~60-85 m
thick; Fig. 2.19b; Hintze & Kowallis, 2009; Fillmore, 2011). The Cedar Mesa Sandstone
consists largely of red and white cross-bedded aeolian (wind-driven) sandstones
deposited in a vast (>50 km?; Condon, 1997) dune field (Stanesco & Campbell, 1989;
Condon, 1997; Fillmore, 2011). The sandstones are predominantly quartz arenite/ sub-
arkosic sandstones and exhibit large-scale cross-bedding. In stark contrast to the
underlying, lighter-coloured, Cedar Mesa Sandstone Member, the Organ Rock Formation
has a dark brown-red colour. Organ Rock is composed of mostly silty sandstones and
sandy siltstones, with lesser amounts of limestone-nodule conglomerate and mudstone
(Condon, 1997; Fillmore, 2011). Alternating resistant and less resistant beds result in
distinctive horizontal banding (Condon, 1997). Until the recent studies of Stanesco,
Dubiel, Condon and others (including: Stanesco & Dubiel, 1992; Dubiel et al. 1996;
Condon, 1997; Stanesco et al., 2000), the depositional environment of the Organ Rock
Formation was poorly understood. Deposition occurred in a variety of fluvial, alluvial, and
aeolian environments, changing considerably with location: southwest-flowing rivers
(draining the Uncompahgre Mountains) separating various ergs (see fig. 22 in Condon,
1997). The White Rim Sandstone Member (the uppermost unit of the Cutler Formation)
consists of fine- to coarse-grained, greyish-white to white sandstones (Condon, 1997;
Fillmore, 2011). These sandstones were also deposited in an aeolian dune environment

and display large-scale, high-angle cross-beds and flat beds (Condon, 1997).

2.4.1.2. Entrada Sandstone (Host Rocks to Trachyte Mesa and Maiden Creek)

The Entrada Sandstone is Late Jurassic in age, constituting the central part of the San
Rafael Group (Fig. 2.19). The Entrada extends over a vast area, making it the largest of the
Colorado Plateau ergs; the only one to extend eastwards of the Uncompahgre Highlands
(Kocurek & Dott, 1983). The Entrada Sandstone ranges in thickness from 170 to 220 m
(560-720 ft; Fig. 2.19b; Hintze & Kowallis, 2009) and is composed of white to red cross-
bedded aeolian sandstone and red/ brown silty sandstone beds, interlayered with thin
siltstone and shale beds (Figs 2.7d & 2.20a; Aydin, 1978). It weathers to form vertical cliffs
and steep-rounded mounds of ‘slick rock’ (Fig. 2.20a; Wright et al., 1962; Fillmore, 2011).
The average grain size of the quartz-dominated Entrada Sandstone is ~0.15 mm (Fig.

2.20b, c), although larger grain sizes are measured in some layers (Aydin, 1978). The
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Entrada Sandstone is poorly cemented and therefore relatively friable in character (Aydin,
1978; Hintze & Kowallis, 2009). Calcite is the most common cement, although siliceous

and pelitic (mud) cements are abundant in some layers (Aydin, 1978).

Figure 2.20. Rock types of the Henry Mountains. (a) Example outcrop of the Entrada Sandstone Formation

of the Glen Canyon Group, showing range of lithological types (muddy, friable red sandstones at base;
bleached sandstone unit; and more indurated, red-stained, quartz-arenite sandstones above). (b) Hand
specimen of red-stained, quartz-arenite (Entrada) sandstone with deformation banding (sample from
Trachyte Mesa). (c) Photomicrograph of thin section of Entrada Sandstone, seen through plane polarised
light. Note, well-sorted, sub-angular to sub-rounded grains; ranging in the size from 50-250 pum. Grain
composition almost 100% quartz (black colour in thin section reflects Fe-staining around grains). The thin

section has been impregnated with blue dye to highlight the significant pore space within the Entrada
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sandstone (18-20% in this sample). (d) Outcrop example of intermediate (diorite) intrusive rocks which
comprise most (~98%) of the Henry Mountain intrusions (locality example from the Trachyte Mesa
intrusion). (e) Hand specimen of plagioclase-hornblende porphyry (sample from Trachyte Mesa intrusion).
(f) Photomicrograph of thin section of sample shown in (e). Note zoning within plagioclase phenocrysts. (g)
Hand specimen of the rare syenite (more rhyolitic/ acidic) intrusive rocks of the Horn intrusion, Mount
Pennell. (h) Hand specimen example of cm-scale mafic xenolith; these commonly found throughout the

various intrusions of the Henry Mountains.

The Entrada Sandstone is typically highly porous (Fig. 2.20c) and, as a result, is the ideal
lithology for the formation of deformation bands (see section 2.5.1 for more on the
formation of deformation bands). As a result, along with the Navajo Sandstone (Fig. 2.19),
it has been the focus of studies on such structures (including: Aydin, 1978; Aydin &
Johnson, 1978; Aydin & Johnson, 1983; Fossen et al., 2007). The typical thickness of
deformation bands within the Entrada Sandstone is about 1-1.2 mm (Aydin, 1978).
Displacement along the deformation bands is usually only a few millimetres (Aydin, 1978).
The deformation bands are mostly easily identifiable in the field as they are usually lighter
in colour than the surrounding parent rock (Fig. 2.20b) and stand proud of the parent rock
as thin ribs; this is due to compaction of grains resulting in relatively higher resistance to

erosion (Aydin, 1978).

2.4.1.3. Summerville Formation (Host Rocks to Black Mesa).

The Summerville Formation is the uppermost member of the Upper Jurassic San Rafael
Group, lying above the Entrada Sandstone in the stratigraphic column (Fig. 2.19; Bazard &
Butler, 1992). A thinner unit than the Entrada at ~58 m (190 ft; Fig. 2.19b; Hintze &
Kowallis, 2009), the Summerville Formation consists of heterolithic red beds comprised of
alternating reddish-brown shale, siltstone and sandstone layers (Fig. 2.19; Blakey, 1989;
Hintze & Kowallis, 2009). Interbeds of white gypsum are also common and contribute to
its needle-like appearance (Kowallis, 2011). The Summerville Formation was deposited in
a tidal-influenced, low-relief coastal plain environment (Caputo & Pryor, 1991), and

commonly exhibits symmetrical ripples and mudcracks.
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2.4.1.4. Morrison Formation (Host Rocks to Sawtooth Ridge)

The Morrison Formation, the youngest of the Jurassic sediments, is comprised of three
members, from base to top these are: the Tidwell Member; the Salt Wash Sandstone
Member; and the Brushy Basin Shale Member (Fig. 2.7e & 2.19; Peterson et al., 1980;
Robinson & McCabe, 1997; Hintze & Kowallis, 2009). The rocks of the Morrison Formation
unconformably overlie the older Jurassic sediments of the San Rafael Group (J-5
Unconformity in Fig. 2.19; Bazard & Butler, 1992; Hintze & Kowallis, 2009). The Tidwell
Member, not present in the stratigraphy for much of the Henry Mountains region (varying
thickness between 0 and 37 m (0-120 ft); Fig. 2.19b; Hintze & Kowallis, 2009), is
composed of heterolithic lacustrine and fluvial red mudstones and sandstones (Fig. 2.19;

Peterson, 1980; Robinson & McCabe, 1997; Hintze & Kowallis, 2009).

The Salt Wash Sandstone Member is comprised of vyellowish-brown sandstone,
mudstones and conglomerates of fluvial origin (Peterson, 1980; Robinson & McCabe,
1997; Hintze & Kowallis, 2009). The thickness for this unit varies between 122 and 152 m
(400-550 ft; Fig. 2.18b; Hintze & Kowallis, 2009). In the Henry Mountains region, the Salt
Wash Member is comprised of well-bedded, resistant sandstone beds ranging in thickness
from 0.5 to 5 m, interlayered with thinner beds of sandy shale and shale (Johnson &

Pollard, 1973).

The youngest member of the Morrison Formation, the Brushy Basin Member, is
composed of a mixture of variegated mudstone and conglomerate units of lacustrine and
fluvial origin, with minor sandstone (Figs 2.7e & 2.19; Peterson, 1980; Robinson &
McCabe, 1997; Hintze & Kowallis, 2009;). The Brushy Basin Member is a highly distinctive
unit, forming ‘tie-dyed’ mounds of maroon and cream in the dry (Fig. 2.7e), and a deep
purple and cream in the wet. The Brushy Basin Member varies in thickness from 37 to 137

m (120-450 ft; Fig. 2.19b; Hintze & Kowallis, 2009).

Only very slight contact metamorphism of the sediments occurs as a result of the
emplacement of the Henry Mountains intrusions (Hunt, 1953; Engel, 1959; Horsman et al,
2010). Some of the shales and siltstones adjacent to intrusions appear to have baked
margins and are reconstituted at, and within, ~0.5 to 1 m of the contact (Engel, 1959).

This metamorphism is weak and there is no significant increase in grain size.
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2.4.2. Henry Mountains Intrusions

Igneous rock composition throughout the Henry Mountains is incredibly consistent with
~95% comprising of a bulk diorite composition (58-63% SiO,), the remaining ~5% largely
rhyolite porphyry and syenite and found cross-cutting earlier diorite on Mount Pennell
(Fig. 2.20e—h; Hunt, 1953, 1988; Engel, 1959; Nelson & Davidson, 1992). The diorite has a
porphyritic texture with phenocrysts constituting 25-55% of the rock: 20-40% plagioclase
feldspar (An20 to An60); 5-15% hornblende; and 1-3% epidote or clinopyroxene, titanite
and oxides (Fig. 2.20e, f; Engel, 1959; Nelson & Davidson, 1992; Horsman et al., 2005,
2010). The matrix accounts for 45—-75% of the rock and is a fine-grained, equigranular
groundmass comprised of plagioclase, hornblende, quartz, alkali feldspar, oxides, and
trace apatite and titanite (Nelson & Davidson, 1992; Horsman et al., 2005, 2010).
Xenoliths are largely mafic (amphibolite, garnet amphibolite and tonalite; Fig. 2.19h) in
composition, although rare felsic xenoliths occur (Nelson & Davidson, 1992; Horsman et
al., 2005, 2010). Occurrences of sedimentary xenoliths are rare, suggesting that stoping is
not a significant emplacement mechanism (Horsman et al., 2010). Despite the consistent
bulk dioritic composition throughout the Henry Mountains, significant textural variations
(in particular phenocryst size and phenocryst: matrix modal abundance ratio) can be used
to characterise the diorite of the different intrusions and, in places, to identify distinct

magma pulses within an intrusion.

The intrusions of the Henry Mountains are Oligocene (late-Palaeogene) in age (Nelson &
Davidson, 1992; Paquette et al., 2010). Hornblende OAr-*Ar and fission-track data for the
Henry Mountains intrusions give ages ranging from 31.2 to 23.3 Ma (Nelson & Davidson,
1992; Fig. 2.15b). Preliminary U/Pb ages for zircons from Mount Hillers cluster around
24.75 + 0.50 Ma suggesting that assembly of this entire intrusive centre occurred in less
than ~1 Myr (Paquette et al., 2010). The preliminary U/Pb zircon ages of Paquette et al.
(2010) are in good agreement with published fission track ages on zircon and sphene from
the same Mount Hillers laccolith intrusion of 21 to 29 Ma (Sullivan, 1997). However, the
U/Pb zircon age of 24.75 + 0.50 Ma is significantly younger than, and therefore in poor
agreement with, the “°Ar-**Ar age of 29.35 + 0.33 Ma published by Nelson et al. (1992)
and Nelson and Davidson (1997). On the other hand, this poor agreement of results can
be accounted for by the presence of excess argon and xenocryst contamination, as

emphasised by Nelson et al. (1992) and Nelson and Davidson (1997).
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Throughout the Henry Mountains, the diorite igneous rocks show extensive alteration,
the effects of which are either deuteric or hydrothermal (Engel, 1959). The alteration is
principally of the phenocryst population with sericitisation of feldspars and replacement
of hornblende by chlorite, calcite, epidote, iron oxides and minor serpentine (Engel,
1959). The degree of alteration varies spatially and is greatest in parts of the central
stocks (intrusive centres/ domes) and surrounding shattered zones, in the roof sections of
laccolith satellite intrusions, and in some of the dykes forming outlying intrusive bodies
(Engel, 1959). Minor to moderate alteration only is observed in many of the internal parts
of the central stocks, laccoliths and bysmaliths (cylindrical intrusions bounded by vertical

faults) collectively.

2.4.2.1. The Five Igneous Centres

2.4.2.1.1. Mount Ellen

Mount Ellen is the most northern of the five intrusive centres comprising the Henry
Mountains (Figs 2.15, 2.17c & 2.21). Having a maximum elevation of 3512 m (with a
prominence above the plateau of 1786 m) and a diametre of ~20 km, the Mount Ellen
intrusive complex is the largest of the five Henry Mountains. The central/ main intrusive
centre and shattered zone are situated along the southern section of the complex, with
satellite intrusions being localised in the north-east (Engel, 1959). Hunt (1953) reported
that the central ‘stock’ of Mount Ellen is roughly circular in map view, surrounded by a
shattered zone consisting of sedimentary breccias variously injected by igneous rocks,
with proportions of sedimentary to igneous rocks varying widely in this zone. The Mount
Ellen intrusive centre is locally well exposed, but the majority is covered in brush and

forest and, therefore, poorly exposed.

The Bull Creek laccolith is situated at the north-eastern edge of Mount Ellen (Fig. 2.21b).
The laccolith is exposed for ~2.7 km along Bull Creek, in a valley or depression ~275 m
deep at the bulged northeast part of the intrusion (Fig. 2.21b; Engel, 1959). Bull Creek
laccolith adjoins with Bull Mountain bysmalith (Fig. 2.21b, c). In contrast to the consistent
diorite igneous rock of the Henry Mountains, quartz is fairly abundant in samples
collected along the floor of Bull Creek, which contain euhedral quartz phenocrysts large

enough to be identified in hand specimen (Engel, 1959).
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Figure 2.21. A series of figures relating to the northern three Henry Mountains: Mt Ellen; Mt Pennell; and

Mt Hillers. (a) Simplified igneous map of the five Henry Mountains (adapted from Morgan et al., 2008). Map
area for (b) highlighted. (b) Generalised geological map showing the northern intrusive centres and key
satellite intrusions of the Henry Mountains (from Engel, 1959; after Hunt, 1953). (c) Photograph of Mount
Ellen and its northern satellite intrusions. (d) Photograph of Mount Pennell and its northern satellite

intrusions.
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Bull Mountain bysmalith (Fig. 2.21b, c) is a prominent topographic landmark and stands in
isolation between Bull Creek to the west and Granite Creek to the south-east (Fig. 2.21b;
Engel, 1959). The bysmalith rises ~610 m above the creeks. The western margin of Bull
Mountain and the contact between the intrusion and the sedimentary country rock is
poorly exposed. However, a steep cliff face defines the northern margin of Bull Mountain
(Fig. 2.21c), and here the intrusion can be observed to be emplaced against steeply
dipping beds of the Morrison Formation (Engel, 1959). The floor of the bysmalith is not

exposed.

Adjacent to Bull Creek laccolith and Bull Mountain bysmalith are Horseshoe Ridge and the
Wickiup Ridge laccoliths (Fig. 2.21b). The Horseshoe Ridge laccolith adjoins Bull Creek
laccolith on the west, but is poorly exposed and fairly inaccessible (Engel, 1959). Wickiup
Ridge laccolith lies between the Mount Ellen central intrusive centre and both the
Horseshoe Ridge and Bull Creek laccoliths. Table Mountain, a large bysmalith, is the most

north-westerly satellite intrusion (Fig. 2.21c).

2.4.2.1.2. Mount Pennell

Mount Pennell is the second highest of the Henry Mountains, at 3467 m, and is situated
directly south of Mount Ellen (Figs 2.15, 2.17c & 2.21). Similar to Mount Ellen, Mount
Pennell is comprised of a central intrusive centre and shattered zones, surrounded by
laccoliths and numerous dykes and sills radiating from the centre (Figs 2.16 & 2.21b;
Engel, 1959; Nelson and Davidson, 1993). However, in contrast to Mount Ellen and the
southern Henry Mountain intrusive centres, several igneous rock types (Fig. 2.20e-h) are
found here (Hunt, 1953; Nelson, 1991; Nelson et al., 1992; Nelson & Davidson, 1993;
Horsman et al., 2010). In addition to the typical plagioclase-hornblende porphyritic diorite
accounting for ~95% volume of the igneous rock of the Henry Mountains, a nepheline
(Ne-) to quartz (Q-) bearing normative sodium-rich (Na-) syenite and a number of rhyolite
porphyries (Fig. 2.19g, h) are also found at Mount Pennell, occurring in a composite stock
that cross-cuts the dominant plagioclase-hornblende porphyry (Nelson & Davidson,
1993). This cross-cutting intrusive body exhibits intricate internal intrusive relationships

with a variety of petrographic types (Hunt, 1988; Nelson, 1991; Nelson & Davidson, 1993).
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The Horn laccolith is the most northerly satellite intrusion of Mount Pennell (Fig. 2.21b, d;
Engel, 1959). The Coyote Creek laccolith is also located to the north of the intrusive

centre, extending north-east from Mount Pennell (Fig. 2.21b).

2.4.2.1.3. Mount Hillers

Mount Hillers (Figs 2.15, 2.16, 2.17c, 2.21b, 2.22, & 2.23) displays the best exposure of
the five Henry Mountains intrusive centres, and as a result is also the most studied. The
intrusions of Mount Hillers have resulted in an approximately 2.5 km cumulative vertical
displacement of the surrounding country rock (Figs 2.22b & 2.24; Hunt, 1953; Jackson &
Pollard, 1988; Horsman et al., 2005). Presently, the dome of Mount Hillers has a diametre
of ~15 km (Hunt, 1953; Jackson & Pollard, 1988; Horsman et al., 2005). Cross-sections
through many intrusions that radiate away from the centre of the Mount Hillers dome
exist as a result of several steep, narrow canyons that cut into the mountain (e.g. Gold

Creek Overlook; Fig. 2.23b).

Figure 2.22. (overleaf)

Mount Hillers and its satellite intrusions. (a) Simplified geological map of Mount Hillers and its satellite
intrusions (modified from Larson et al., 1985). Line A—A’ shows the location of the cross-section (b). In (a),
the various intrusions that comprise the Mt Hillers intrusive complex are numbered, using the names given
by Hunt (1953): 1 — Mt Hillers central complex; 2 — Bulldog Peak intrusion; 3 — Stewart Ridge intrusion; 4 —
Specks Ridge intrusion; 5 — Chaparral Hills Laccolith; 6 — Specks Canyon; 7 — speculated feeder system to the
Trachyte Mesa intrusion; 8 — Sawtooth Ridge intrusion; 9 — Black Mesa intrusion; 10 — Maiden Creek
intrusion; and 11 — Trachyte Mesa intrusion. (b) Interpretative geological cross-section through Mount
Hillers and the Black Mesa satellite intrusion, based on geological maps of Hunt (1953) and Larson et al.,
(1985; see (a)). Adapted from de Saint Blanquat et al., 2006. (c) Topographic aerial image from Google
Earth™ of the north-eastern satellite intrusions to the Mount Hillers complex. Area highlighted on map (a).

Map areas for Figures 2.26, 2.30 and 2.32 are shown.

Figure 2.23. (overleaf)
Photographs of Mount Hillers. (a) Photograph of Mount Hillers and its satellite intrusions to the north and
north-east. (b) Photograph of the eastern side of the Mount Hillers intrusive complex. (c) Photograph of the

southern side of Mount Hillers showing the ‘teeth’ (near-vertical sediments).
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Figure 2.24. Southern margin of Mount Hillers. (a) Aerial photograph (left; from Google Earth™) and
geological map (right; from Jackson & Pollard, 1988) of southern Mount Hillers. Note radial outcrop pattern
of host rocks around the intrusion. (b) Photograph of the sub-vertically dipping host rocks to Mount Hillers
forming “teeth” like outcrops. (c) Geological cross-section through southern Mount Hillers, showing
steepening of host rock bedding around the intrusion margin (adapted from Jackson & Pollard, 1988). For

location, see line C—C’ in (a).
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Small satellite intrusions outcrop on the north and north-eastern flank of Mount Hillers,
up to 10 km from the centre of the mountain (Figs 2.22 & 2.23a; Horsman et al., 2005).
These are: Bulldog Peak intrusion; Stewart Ridge intrusion; Specks Ridge intrusion;
Chaparral Hills Laccolith; Specks Canyon; Black Mesa intrusion; Sawtooth Ridge intrusion;
Maiden Creek intrusion; and Trachyte Mesa intrusion and its speculated feeder (names
after Hunt, 1953; Figs 2.22 & 2.23a). According to their three dimensional geometries,
Hunt (1953) and Johnson and Pollard (1973) characterised Sawtooth Ridge as an elongate
laccolith, Black Mesa as a bysmalith or “punched” laccolith, Maiden Creek as a sill, and

Trachyte Mesa as a transitional sill-laccolith.

2.4.2.1.4. Mount Holmes

Mount Holmes is located to the south east of Mount Hillers (Figs 2.15, 2.16, 2.17c, & 2.25)
and is significantly smaller than the three more northern Henry Mountains peaks (Fig.
2.15), with a height of 2438 m and a significantly smaller diametre (<10 km; Hunt, 1953;
Fig. 2.16). Mount Holmes comprises two domes, both capped by Jurassic sediments that
dip outwards in a symmetrical manner (Jackson & Pollard, 1988). The larger of the domes
forms the mountain summit and comprises three vertical diorite dykes that are between
20 and 30 m thick and strike radially that can be observed as outcrops that extend down
the flanks of the mountain (Jackson & Pollard, 1988). The dykes crop out in discrete
segments, the edges of which plunge steeply, suggesting upward propagation of the
dykes along steeply inclined trajectories (Pollard et al., 1975). Porphyritic sills and small
laccoliths intrude the stratigraphy of the more steeply dipping (~20°) central limb of the
flexure, such as Buckhorn Ridge (Figs 2.16 & 2.25; Hunt, 1953; Jackson & Pollard, 1988;)
and Theater Canyon Laccolith (Fig. 2.16; Hunt, 1953)

It is important to note that no large central igneous body crops out at the top of the
dome (Fig. 2.25b; Jackson & Pollard, 1988). Furthermore, the location of an intrusion that
might core the intrusive centre can only be inferred. Dip directions of beds, collected
largely on truncated surfaces of large sandstone dunes, are radially symmetric about the
western half of the mountain. Jackson and Pollard (1988) combined this structural dataset
with the structure contour map of Hunt (1953) to suggest that at least the western part of

the Mount Holmes intrusive complex underlying the dome is roughly circular in plan.
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Figure 2.25. A series of figures relating to the southern two Henry Mountains: Mt Holmes; and Mt
Ellsworth. (a) Simplified map of the five Henry Mountains intrusive complexes (adapted from Morgan et al.,
2008). Map area for (b) highlighted. (b) Geological maps of Mt Holmes and Mt Ellsworth (from Jackson &
Pollard, 1988). (c) Photograph of Mounts Holmes and Ellsworth, viewed from the NW (Starr Springs

campsite, Mount Hillers).
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The deepest stratigraphic unit exposed on Mount Holmes is the Triassic Chinle Formation
(Jackson & Pollard, 1988). The Jurassic Navajo Sandstone is observed outcropping near
the mountain summit. The Navajo Sandstone is continuous over the dome, apart from
where is it cut by dykes and locally eroded. The intrusions of Mount Holmes have resulted
in an approximately 1.2 km cumulative vertical displacement of the surrounding country

rock (Jackson & Pollard, 1988).

2.4.2.1.5. Mount Ellsworth

Mount Ellsworth (Figs 2.15, 2.16, 2.17c, & 2.25) is the most southerly of the five Henry
Mountains peaks, lying just to the south-west of Mount Holmes (Fig. 2.25). Mount
Ellsworth, similar to Mount Holmes, is significantly smaller than Mounts Ellen, Pennell
and Hillers (Fig. 2.15). It has a diametre of <10 km (between 5 and 7 km; Figs 2.16 &
2.25b; Hunt, 1953; Jackson & Pollard, 1988) and a height of 2543 m. The intrusions of
Mount Ellsworth have resulted in an approximate 1.8 km cumulative vertical

displacement of the surrounding country rock (Jackson & Pollard, 1988).

2.4.2.2. North-eastern Satellite Intrusions to Mount Hillers

2.4.2.2.1. Sawtooth Ridge

Sawtooth Ridge is the closest of the satellite intrusions to the intrusive centre (Figs 2.22,
2.26 & 2.27). The intrusion is a highly elongate and narrow body, trending roughly ENE—
WSW (Figs 2.26 & 2.27) and has a jagged topography from which it gets its name:
Sawtooth (Figs 2.27b; Hunt, 1953; Johnson & Pollard, 1973; Horsman et al., 2005).
Sawtooth Ridge intrudes the Upper Jurassic Morrison Formation (Fig. 2.26; Hunt, 1953;
Johnson & Pollard, 1973). A significant amount of the intrusion has been removed by
erosion and weathering (Johnson & Pollard, 1973). However, the north-eastern distal
margin of Sawtooth Ridge is exposed along a cliff face about 30 m high (Fig. 2.27c). This

cliff face exposes and displays the complex cross-sectional shape of the intrusion.

Both the bottom and top contacts of Sawtooth Ridge are locally concordant (Johnson &
Pollard, 1973). However, the contact at the periphery cross-cuts the Morrison Formation
to become a vertical fault (slickensides in the vertical direction), continuing upwards
vertically for ~25 m before flattening out to form the top of the intrusion (Johnson &

Pollard, 1973). There is a strong correlation between jointing in the main body of the
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intrusion and the peripheral contact shape: vertical joints existing close to the near
horizontal lower and upper contacts, radiating to remain nearly perpendicular to the

contact where forming a vertical fault (Johnson & Pollard, 1973).
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Figure 2.26. (previous page)

Fence diagram showing the subsurface geometries around Sawtooth Ridge, Black Mesa and Maiden Creek,
as envisaged by Hunt (1953). (a) Map showing the location of cross-sectional fences shown in (b). (b)
Isometric fence diagram of the Sawtooth Ridge, Black Mesa and Maiden Creek satellite intrusions (adapted

from Hunt, 1953). (c) Stratigraphic column, as in Fig. 2.19a, and key to colours in (b).

2.4.2.2.2. Black Mesa

The Black Mesa intrusion is located on the north-eastern flank of Mount Hillers, similar to
Sawtooth Ridge (Figs 2.22, 2.26 & 2.28). It intrudes just below the Morrison Formation
within the upper section of the Summerville Formation (Fig. 2.26; Hunt, 1953; de Saint-
Blanquat et al., 2006). The Black Mesa intrusion is a cylindrical body (Fig. 2.28), 1.7 km in
diameter, increasing in thickness from ~150 m in the north-west to ~250 m in the south-
east (de Saint-Blanquat et al., 2006). Sub-horizontal strata surrounding the intrusion
abruptly change orientation close to the contact with the intrusion to become steeply
dipping to sub-vertical (de Saint Blanquat et al., 2006). To the west of Black Mesa, this
folding is evident by a synclinal structure (Fig. 2.28b, c). In contrast, the eastern contact of
the intrusion is defined by vertical faults and morphologically by a cliff face,
approximately 130 m high (Fig. 2.28; de Saint-Blanquat et al., 2006). The roof of the
intrusion is relatively flat, dipping slightly to the north, and is largely covered by
concordant sedimentary beds of the Morrison Formation (Fig. 2.28b, c; de Saint-Blanquat
et al., 2005). Hunt et al. (1953) concluded that the floor of the Black Mesa intrusion must
be close to the current bottom exposure due to the presence of the Morrison Formation
both at the base and top of the exposed intrusive rock. If this statement is correct, then
the volume of intrusive rock can be estimated between 0.3 and 0.5 km?® assuming a

cylindrical geometry (de Saint-Blanquat et al., 2006).

The Black Mesa intrusion is complicated to define with regards to intrusion terminology,
in that it is not strictly a laccolith or a bysmalith, neither in terms of its shape nor its
growth mechanisms (de Saint-Blanquat et al., 2006). Following the terminology of Corry
(1988), de Saint-Blanquat et al. (2006) described Black Mesa as a hybrid between a

punched and sheeted laccolith.
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Figure 2.27. Sawtooth Ridge intrusion. (a) Map showing igneous outcrop to the NE of Mount Hillers. (b)
Photograph of the Sawtooth Ridge intrusion, showing its elongate geometry and jagged top. (c) Photograph
of the eastern end of the Sawtooth Ridge intrusion showing a faulted periphery against the Morrison

Formation (outline of igneous intrusion modified from Johnson & Pollard, 1973).
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Figure 2.28. Black Mesa intrusion. (a) Map showing igneous outcrop to the NE of Mount Hillers. (b)
Geological map and (c) two perpendicular cross-sections of the Black Mesa intrusion (from de Saint
Blanquat et al., 2006). (d) Photograph of the Black Mesa intrusion. Inset: growth model of de Saint Blanquat
et al., (2006).
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2.4.2.2.3. Maiden Creek

The Maiden Creek intrusion, characterised as a sill (Hunt, 1953; Johnson & Pollard, 1973;
Horsman et al., 2005), is a small intrusion (~1 km? in map view) and one of the most distal
of the satellite intrusions of the Mount Hillers intrusive centre (Figs 2.22, 2.26 & 2.29).
Maiden Creek intrudes the Entrada Sandstone of the Jurassic San Rafael Group (Fig. 2.26;
Gilbert, 1877; Hunt, 1953; Johnson & Pollard, 1973; Horsman et al., 2005).

From the abundance of lateral contacts of the Maiden Creek intrusion with surrounding
wall rocks, it can be inferred that the current map pattern of the intrusion corresponds
closely to the original geometry of the intrusion. Horsman et al. (2005) divided this
original intrusive geometry into two discrete parts: the main body of the intrusion; and
finger-like lobes projecting outwards from the main body of the intrusion (Fig. 2.29b). The
main body of the Maiden Creek sill has a somewhat elliptical shape when considered in
terms of its map view (Fig. 2.29b). This geometry is one that is commonly associated with
laccolithic intrusions (Corry, 1988; Horsman et al., 2005). A tabular shape, concordant
with the bedding in the surrounding Entrada Sandstone, is observed in cross-sectional
view. Horsman et al. (2005) have suggested the presence of three large finger-like lobes

and provide evidence for the existence of a fourth lobe (Fig. 2.29b, e).

Further detailed analysis of Maiden Creek is the focus of Chapters 5 and 6.

Figure 2.29. (overleaf)

Maiden Creek intrusion. (a) Map showing igneous outcrop to the NE of Mount Hillers. (b) Geological map of
the Maiden Creek intrusion and the inferred map view geometry with a circular shaped main body (sill) and
four finger-like intrusive lobes (from Horsman et al., 2005). (c) Photograph along the top surface of south-
eastern igneous lobe. (d) Photograph of the same igneous lobe seen in (c), from within Secret Nap Gorge
(height of cliff face ~40 m). (e) A series of cross-sections through the Maiden Creek intrusion (from Horsman
et al., 2005). No vertical exaggeration to the cross-sections. Note, location of photos (c) and (d) shown on

section D-D’. (f) Panoramic photograph of the eastern margin of the Maiden Creek intrusion.
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2.4.2.2.4. Trachyte Mesa

Trachyte Mesa (Figs 2.22, 2.30 & 2.31) is roughly 1.5 km long and 0.6 km wide, trending
NE-SW, varying in thickness between 5 m in the northeast to greater than 50 m in the SW
(Morgan et al., 2008). The intrusion trends along a line that can be traced 12.6 km

southwest to the peak of Mount Hillers (Fig. 2.22), Trachyte Mesa being the most distal of
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the Mount Hillers satellite intrusions. The intrusion is generally concordant with the
Entrada Sandstone, into which it intrudes (Fig. 2.30; Hunt, 1953; Johnson & Pollard, 1973;
Morgan et al., 2008). The intrusion defines both the top and the edges of the Mesa, with
the exception being in the southwest where the intrusion margin is covered by sediments
(Figs 2.30 & 2.31). The top is mostly flat. However, the northeast section of Trachyte
Mesa can be divided into three geomorphic regions: a long plateau on the northeast
margin; a central plateau (2 to 3 m higher than the NE plateau, its border defined by a
cliff); and a northwest region that slopes downwards towards the NW (Morgan et al.,
2008). The southwest section of Trachyte Mesa has a more irregular topography, with a
greater amount of country rock covering the top, the intrusion rising up gently from
where it is buried by sediments to the SW (Figs 2.30 & 2.31d; Morgan et al., 2008). Similar
to many of the satellite intrusions to intrusive centres of the Henry Mountains, field
observations and mapping suggest that the present exposure of the Trachyte Mesa
corresponds closely to its original intrusive geometry (e.g. Horsman et al., 2005; de Saint-

Blanquat et al., 2006; Morgan et al., 2008).

Originally named Howell Laccolith, Gilbert (1877) first described Trachyte Mesa as a
laccolith. All subsequent workers have continued to use this term to describe the
intrusion (e.g. Hunt, 1953; Johnson & Pollard, 1973). However, more recently, Morgan et
al. (2008) refer to the Trachyte Mesa intrusion (TMI) and do not use the term laccolith as
they propose (similar to Johnson & Pollard, 1973) that Trachyte Mesa has features that
are transitional between both a sill and a laccolith, in that the body has the characteristic
convex upper surface of a laccolith, but appears to be comprised of multiple stacked thin
sills (Fig. 2.31b). Furthermore, Morgan et al. (2008) proposed that structural and rock
magnetic data (anisotropy of magnetic susceptibility; AMS) indicate that the intrusion
grew vertically and horizontally by the accumulation of multiple smaller horizontal
magma sheets (‘Christmas tree’ structure; Fig. 2.31b, d), thin (2-3 cm) cataclastic shear

bands defining the contact between sheets.

Figure 2.30. (overleaf)
Fence diagram showing the subsurface geometries at Trachyte Mesa, as envisaged by Hunt (1953). (a) Map
showing the location of cross-sectional fences shown in (b). (b) Isometric fence diagram of the Trachyte

Mesa satellite intrusion (adapted from Hunt, 1953).
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Similar to Morgan et al. (2008), Wetmore et al. (2009) also referred to the Trachyte Mesa

intrusion (rather than laccolith) in their publication on the geometry of the intrusion and

implications for the emplacement of small melt volume into the shallow crust. Wetmore

et al. (2009) used a combination of structural and geophysical data sets to re-evaluate the

proposed geometry of the intrusion. In contrast to most previous studies that assumed a

blister-shaped magma body intruded into flat and gently north-west dipping stratigraphy,

102



Chapter 2 — Geological Setting

Wetmore et al. (2009) proposed that the Trachyte Mesa intrusion instead intruded along
a series of NE-trending, upright and open folds that formed within the Jurassic Entrada
Formation (suggesting a Middle Jurassic age for the folds, as they are truncated at the
contact with the overlying Curtis/ Summerville Formations). Furthermore, Wetmore et al.
(2009) also provided a reassessment of the size of the intrusion, using magnetic and two-
dimensional resistivity survey data (Fig. 2.31d) alongside mapping (outcrop) data. They
proposed that the intrusion is 2.2 km long and 0.7 km wide with an average thickness of
~15 m (maximum ~40 m), and is confined within the axis of a syncline bound to the north-
west and south-east by anticlines. In cross-section the intrusion largely has concave-up
top and bottom surfaces (characteristic of a laccolith body). Wetmore et al. (2009)
concluded that the geometry and structural position of the Trachyte Mesa intrusion
support the idea that the emplacement of the intrusion was fundamentally controlled by
both pre-existing country rock structures and the density of the magma relative to that of
the hot rocks. Hunt (1953) proposed that the feeder system to Trachyte Mesa is exposed

as a narrow NE=SW trending ridge to the north of Black Mesa (Fig. 2.32)

Further detailed analysis of Trachyte Mesa is the focus of Chapters 3 and 4.

Figure 2.31. (overleaf)

Trachyte Mesa intrusion. (a) Satellite image showing mapped extent of the Trachyte Mesa intrusion (after
Morgan et al., 2008) and location of cross-section shown in (b). (b) Interpretative geological cross-sections
of the Trachyte Mesa intrusion (from Morgan et al., 2008). (c) Bulbous termination to an intrusive sheet on
the south-western margin of the Trachyte Mesa intrusion. (d) Geological map of the Trachyte Mesa
intrusion (from Morgan et al., 2008) with magnetic map (from Wetmore et al., 2009) overlain. (e)
Photograph of the classic outcrop from the south-western margin of Trachyte Mesa, used in the papers of
Gilbert (1887), Hunt (1953), Johnson and Pollard (1973), Morgan et al., (2008) and Wetmore et al. (2009).
Photograph corresponds to the cross-section in (b). (f) Panoramic photograph of the western margin of the

Trachyte Mesa intrusion.
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Figure 2.32. Trachyte Mesa Feeder system. (a) Topographic aerial image from Google Earth™ of the
proposed Trachyte Mesa feeder. (b) Sketch geological map and diagrammatic cross-sections of the dyke

feeder of the Trachyte Mesa intrusion (modified from Hunt, 1953).

2.5. Deformation Structures in the Entrada Sandstone

The two satellite intrusions that will be the primary focus of this study are Trachyte Mesa
and Maiden Creek, both of which intrude the Entrada Sandstone. The Entrada, and
underlying Navajo sandstones, have both long been studied for their reservoir properties
and the abundant deformation structures (Aydin, 1978; Aydin & Johnson, 1978, 1983; Fig.
2.33). These aeolian sandstones are weakly cemented and highly porous (>10%), making
them ideal candidates for the development of deformation bands (Aydin, 1978; Shipton &
Cowie, 2001; Fossen et al., 2007).

2.5.1. Deformation Bands and their Classification
The term deformation band was first used in the context of sandstones by Aydin and co-
workers in the late 1970s (Aydin, 1978; Aydin & Johnson, 1978, 1983) while studying the

deformation structures hosted by the Entrada and Navajo sandstones exposed in SE Utah.
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Since then, the term has been more widely incorporated to refer to small (sub-cm) zones
of strain localisation formed by grain re-organization and/or grain crushing (Fossen et al.,
2007, and references therein). The processes that result in the formation and evolution of
deformation bands include grain rotation and translation (Fossen et al., 2007). Both of
these processes, regardless of whether they include grain crushing or rotation and
frictional sliding along grain boundaries, require a degree of porosity. In highly porous
materials, deformation bands will result from strain localisation, whereas in materials
with a low porosity, tension fractures, slip surfaces and/or stylolites will occur (Fossen et

al., 2007).

Deformation bands in porous rocks (such as the Entrada and Navajo sandstones) are
generally low-displacement deformation zones of mm- to cm-thickness (Fig. 2.33) that
tend to have enhanced cohesion and reduced permeability compared with ordinary
fractures (Fossen et al., 2007; Skurtveit et al., 2015). Strain in such highly porous rocks
and sediments cannot be initially accommodated by fracture or slip surfaces. Instead,
deformation bands form in areas of strain localisation. Subsequent faults and slip surfaces
may then develop due to strain-hardening and brittle failure of the deformation band
zone (i.e. formation of principal slip-surfaces, PSS; Aydin & Johnson, 1978; Shipton &
Cowie, 2001, 2003). Offsets along individual deformation bands are rarely greater than a
few centimetres regardless of the length of the deformation band, which sometimes is in

excess of 100 m long (Fossen et al., 2007).

Fossen et al. (2007) discussed the various classification schemes used for describing
deformation bands: (1) kinematic-based classification; and (2) deformation-mechanism

classification (Fig. 2.34a, b).

2.5.1.1. Kinematic-based Classification

Kinematically, deformation bands can fall into the following types: dilation bands; shear
bands; compaction bands; or hybrids of these (Fig. 2.34a; Aydin et al., 2006). The most
commonly described deformation bands are compactional shear bands, caused by grain
reorganization, with or without cataclasis (Fossen et al., 2007). This compaction
contributes to strain hardening and the creation of a localised band network or zone that

precedes faulting (e.g. Shipton & Cowie, 2003).
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Figure 2.33. Photographic examples of deformation bands (Fossen et al., 2007). (a) Disaggregation bands
and cataclastic deformation bands in the Navajo Sandstone, Utah. (b) Phyllosilicate — disaggregation bands
in Jurassic sandstone (Gullfaks Field, North Sea). (c) Phyllosilicate band, Brent Group, Gullfaks Field. Note
the positive relief (increase of cohesion) and loss of porosity. (d) Photomicrograph of a single cataclastic
deformation band, showing a low-porosity cataclastic core mantled by a zone of compaction. Blue indicates

pore space.

2.5.1.2. Deformation-mechanism Classification
Although it is good to classify deformation bands by the kinematics of formation, this may

not always be easy to define. An alternative is to use dominant deformation mechanism
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(Fig. 2.34b; Fossen et al., 2007). The benefit of this classification is that different
mechanisms produce bands with different petrophysical properties, which is of particular
interest to industries (e.g. petroleum, hydrology) where permeability and fluid flow are a
key issue. The dominant deformation mechanisms are: (1) granular flow (grain boundary
sliding and grain rotation); (2) cataclasis (grain fracturing and grinding or abrasion); (3)

phyllosilicate smearing; (4) dissolution and cementation (Fig. 2.34b; Fossen et al., 2007).
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Figure 2.34. Classification of deformation bands. (a) Kinematic classification of deformation bands (Fossen

et al., 2007). (b) Deformation bands classified by deformation mechanism (Fossen et al., 2007).

Disaggregation bands (Fig. 2.34b) develop by shear-related disaggregation of grains by
granular flow or particulate flow (Rawling & Goodwin, 2003; Fossen et al., 2007). These

are commonly found in sands and poorly consolidated sandstones and are therefore a
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common structure that form during sand-box modelling experiments (Mandl et al., 1977;

McClay & Ellis, 1987; Bense et al., 2003).

Phyllosilicate bands (Knipe et al., 1997) form in sandstone where the content of platy
(phyllosilicate) minerals exceeds 10-15%. The platy minerals promote frictional grain
boundary sliding rather than grain fracturing (i.e. cataclasis). Phyllosilicate bands can
accumulate greater offsets than other types of deformation bands as the platy minerals
inhibit strain hardening, and form weak slip surfaces. If the clay content is high enough
(e.g. >40%,; Fisher & Knipe, 2001), then these structures become clay smears (Fisher &

Knipe, 2001; Fossen et al., 2007).

The classic deformation bands described by Aydin (1978) and Aydin and Johnson (1983)
fall within the cataclastic deformation band category of Fossen et al. (2007; Fig. 2.34b),
where mechanical grain fracture is a significant deformation mechanism. Aydin (1978)
identified two distinct zones within these cataclastic deformation bands: an outer zone
where the matrix, including pores and matrix material, deforms; and an inner low-
porosity zone, <1 mm thick, where the sand grains fracture and further consolidation

takes place (Figs 2.33 and 2.34; Aydin, 1978; see also fig. 1d in Fossen et al., 2007).

Dissolution and cementation may occur preferentially along a deformation band during
or, more commonly, after deformation. Solution bands (Gibson, 1998) typically consist of
tightly packed grains smaller in size than the matrix, but showing little evidence of

cataclasis.

Deformation structures, such as those outlined above, can develop in response to both
regional (tectonic) and local stresses. In this study, we focus on local host rock
deformation structures that developed in response to the emplacement of igneous
intrusions. These shall be described in more detail in the following chapters, with
particular reference to the emplacement of the Trachyte Mesa and Maiden Creek

Intrusions.
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3. Chapter 3: A synopsis of the deformation structures associated with the Trachyte

Mesa intrusion, Henry Mountains, Utah: implications for emplacement mechanisms.
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Deformation structures associated with the Trachyte Mesa intrusion, Henry Mountains,
Utah: implications for sill and laccolith emplacement mechanisms.

This chapter is written for submission to Journal of Structural Geology
Co-Authors*: Penelope I.R. Wilson, Ken J.W. McCaffrey, Robert. W. Wilson, lan Jarvis, Robert E. Holdsworth

(*note: all scientific work was undertaken by the student/ principal author P. Wilson, and input from co-
authors on this work was at an advisory/ editorial level only)

Abstract

Deformation structures in host rocks of shallow crustal igneous intrusions may record
how magma was emplaced and accommodated within the shallow crust. Trachyte Mesa,
a small intrusion in the Henry Mountains, Utah, is comprised of a series of stacked sheets.
However, new structural analysis of the kinematic, spatial and temporal distribution of
deformation structures in the host rocks of the intrusion has enabled the recognition of
three distinct phases, interpreted to represent pre-, syn-, and late-stage-emplacement
deformation. We present a new 5-stage model for the emplacement of Trachyte Mesa,
following a two-stage growth mechanism for individual sheets, with radial growth of a
thin sheet followed by vertical inflation. Syn-emplacement structures localised to the
intrusion lateral margins consist of: prolific deformation bands widespread over the
margin; and dip-slip faults restricted to the tips of individual sheets due to strain
localisation during vertical inflation. Magma preferentially exploited these faults,
initiating sill climbing. The order in which sheets are stacked impacts on the intrusion
geometry and associated deformation. Our results offer new insights into the incremental
intrusion geometries of shallow crustal magmatic bodies and the potential impact of their
emplacement on surrounding sedimentary rocks.

Keywords:

Deformation Bands; Faults; Intrusion; Sill; Laccolith; Emplacement Mechanism
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3.1. Introduction

Shallow-level (<5 km depth) sill and laccolith complexes typically consist of a series of sub-
horizontal tabular sheet-like intrusions and form an integral part of sub-volcanic plumbing
systems (Cruden & McCaffrey, 2001). Understanding the formation of these networks of
sub-horizontal intrusions is, therefore, key to assessing volcanic and sub-volcanic
processes such as magma supply and storage in the upper crust (Bachmann & Burgantz,
2008). To-date, significant insights into sill and laccolith emplacement have been made
through the characterisation of their geometry and internal architecture using field- and
seismic-based data (Du Toit, 1920; de Saint Blanquat & Tikoff, 1997; Thomson, 2004;
Thomson & Hutton, 2004; Horsman et al., 2005; Stevenson et al., 2007a, b; Thomson &
Schofield, 2008; Magee et al., 2012). A number of studies have examined the important
role played by active faults and shear zones and pre-existing host rock structures in
controlling the emplacement and growth of mid-crustal granitic intrusions (e.g. Hutton et
al., 1990; McCaffrey, 1992; Neves et al., 1996; Holdsworth et al., 1999; Passchier et al.,
2005). Several studies have examined emplacement-related deformation structures
associated with the intrusions of the Henry Mountains (Johnson & Pollard, 1973; Pollard
et al., 1975; Morgan et al., 2008), but a complete analysis of the geometry, kinematics

and sequential development of the wall rock structures has not yet been published.

The Henry Mountains, located in SE Utah on the Colorado Plateau (Fig. 3.1a), are a type
locality for the study of shallow-level igneous intrusions and their emplacement. It was
here that Gilbert (1877) famously first described and named laccoliths (coining the term
“laccolite”; Gilbert, 1896). Since the ground-breaking work of Gilbert (1877, 1896), a
number of studies have examined the geometries, geochronology and emplacement of
intrusions in the Henry Mountains (e.g. Hunt, 1953; Johnson & Pollard, 1973; Jackson &
Pollard, 1988; Nelson & Davidson, 1993; Habert & de Saint Blanquat, 2004; Horsman et
al., 2005; Morgan et al., 2005; de Saint-Blanquat et al.,, 2006; Wetmore et al., 2009;
Wilson & McCaffrey, 2013).

Following numerous field studies of the Henry Mountains, Hunt (1953) outlined three
general emplacement models for shallow level intrusions (see Fig. 1.6 in Chapter 1): (1)
radial growth only, with magma emplaced at a constant thickness, and country rocks
displaced both vertically and laterally (i.e. a “bulldozing” mechanism; Model B of Hunt,

1953, fig. 70, p. 142); (2) two-stage growth, comprising radial growth of a thin sheet,
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followed by dominantly vertical growth and associated vertical uplift of the overriding
host rocks (i.e. a “two-stage growth” mechanism; Model A of Hunt, 1953); and (3)
simultaneous vertical and horizontal growth (Model C of Hunt, 1953). Mounting evidence
suggests that many shallow-level crustal intrusions are emplaced and grow through the
incremental addition of small volumes of magma, and the amalgamation and stacking of
sill sheets (e.g. Pitcher, 1970; Mahan et al., 2003; Glazner et al., 2004; Menand, 2008;
Morgan et al., 2008). Therefore, the two-stage growth model (i.e. model A of Hunt)
appears most applicable for larger shallow level intrusions (i.e. vertical inflation with
stacking of sill sheets though under- and over-accretion; Menand, 2008; Menand et al.,
2011). However, for the emplacement of individual sill sheets all three of Hunt’s models

(1953) may still be viable.
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Figure 3.1. Simplified geological maps of the study area. (a) The Henry Mountains region (adapted from
Morgan et al., 2008) and its location within Utah (inset map). (b) Mount Hillers and its satellite intrusions
(modified from Larson et al., 1985). In (b), the various intrusions that comprise the Mt Hillers intrusive
complex are numbered, using the names given by Hunt (1953) : 1 — Mt Hillers central complex; 2 — Bulldog
Peak intrusion; 3 — Stewart Ridge intrusion; 4 — Specks Ridge intrusion; 5 — Chaparral Hills Laccolith; 6 —
Specks Canyon; 7 — speculated feeder system to the Trachyte Mesa intrusion; 8 — Sawtooth Ridge intrusion;

9 —Black Mesa intrusion; 10 - Maiden Creek intrusion; and 11 — Trachyte Mesa intrusion.

Corry (1988) further adapted the emplacement models of Hunt (1953), highlighting that
deformation structures associated with emplacement are strongly linked to the
mechanism of emplacement (Fig. 1.6 in Chapter 1). A few notable studies of

emplacement-related host rock deformation have focused on intrusions of the Henry
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Mountains; these include Johnson and Pollard (1973), Jackson and Pollard, (1988), and
Morgan et al. (2008). However, even in these cases, little consideration has been given to
the kinematic pathways and associated strains that can potentially preserve information

concerning the emplacement mechanism and magma movement (i.e. flow directions).

This paper presents a new structural analysis of the geometry, spatial distribution,
kinematics, and relative time sequences of host-rock deformation structures surrounding
the Trachyte Mesa intrusion, a small satellite intrusion adjacent to the Mount Hillers
intrusive complex, Henry Mountains, Utah, USA (Fig. 1b, intrusion 11). By integrating
observations of the host-rock structures with the sequential intrusion history, we have
created an improved model for the emplacement of Trachyte Mesa that builds on the
pioneering studies of Gilbert (1877), and the more recent work of Johnson and Pollard
(1973), Morgan et al., (2008) and Wetmore et al. (2009). The results offer new insights
into the incremental evolution of intrusion geometries in shallow-level magmatic bodies
and how their emplacement leads to deformation of the surrounding sedimentary host

rocks.

3.2 Geological Setting

3.2.1. Henry Mountains

The Henry Mountains Complex consists of five intrusive centres that form the principal
mountain peaks in the area. From north to south these are: Mt Ellen; Mt Pennell; Mt
Hillers; Mt Holmes; and Mt Ellsworth (Fig. 3.1a). Most of the intrusions have an
intermediate (diorite) composition (58—-63% SiO,; Hunt, 1953; Engel, 1959; Nelson et al.,
1992) and a porphyritic texture, with dominant feldspar (An20-An60; 20-40%) and
hornblende (5-15%) phenocrysts (i.e. plagioclase-hornblende porphyry). The textural
characteristics vary significantly from one intrusion to another (Hunt, 1953; Nelson et al.,
1992). The intrusions are Oligocene in age (31.2-23.3 Ma K-Ar ages; Nelson et al., 1992),
and were emplaced within a ~2.7 km thick section of late Palaeozoic—Mesozoic
sedimentary rocks (dominantly aeolian to shallow-marine sandstones, siltstones and
mudstones) overlying Precambrian crystalline basement (Jackson & Pollard, 1988).
Although Laramide structures, such as the N-S trending Waterpocket Fold (Davis, 1978;
Jackson & Pollard, 1988; Bump & Davis, 2003) occur locally, the strata into which the

Henry Mountains intrusions were emplaced are relatively flat lying (Jackson & Pollard,
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1988). The intrusions post-date this minor Late Cretaceous to Palaeogene Laramide
orogenic activity on the Colorado Plateau (Davis, 1978, 1999). Lack of significant pre- and
post-emplacement tectonism aids the identification of emplacement-related deformation
structures and has preserved the original magmatic and solid-state fabrics within the

intrusive bodies.

3.2.2. Trachyte Mesa Intrusion

The Trachyte Mesa intrusion, referred to as the “Howell laccolith” by Gilbert (Hunt, 1988)
is the most distal satellite intrusion of the Mount Hillers intrusive complex, located 12 km
to the NE (Fig. 3.1b). The intrusion has an elongate (~2.2 km long and 0.7 km wide)
laccolithic geometry, trending NE-SW (Fig. 3.2). Thicknesses observed in cliff exposures
range from 5-50 m (Morgan et al.,, 2008), with an average thickness, estimated from
magnetic and resistivity studies, of ~15 m (Wetmore et al., 2009). The intrusion is
generally concordant with the Entrada Sandstone Formation, within which it is emplaced
(Johnson & Pollard, 1973; Morgan et al., 2008; Wetmore et al., 2009). The Entrada
Sandstone Formation (part of the San Rafael Group) is Jurassic (Callovian) in age and
comprises a mixture of white cross-bedded sandstones, reddish-brown silty sandstones,

siltstones, and shale beds (Aydin, 1978).

Various models have been suggested for the geometry and internal architecture of the
intrusion, ranging from a single domal “laccolitic” body (Gilbert, 1887; Hunt, 1953;
Wetmore et al., 2009), to a series of stacked intrusive sheets and lobes (Fig. 3.2d, e;
Johnson & Pollard, 1973; Morgan et al.,, 2005, 2008). In the exposures described by
Morgan et al. (2008), a complex stacking history may be interpreted, with earlier sub-
horizontally stacked intrusive sheets at the top of the sequence being flexed and arched
by the emplacement of later sub-horizontally stacked tongue-like sheets beneath (i.e.
under- and mid-accretion of Menand, 2008; Fig. 3.2d, e). These were evaluated further in

the present study.
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Figure 3.2. Location of the study sections. (a) Contoured and georeferenced aerial image of the Trachyte
Mesa area showing the intrusion outline of Morgan et al. (2008). Locations of structural stations are shown
by the blue filled circles. (b) Perspective view of DEM model of the Trachyte Mesa area, looking NE. Note
viewpoint location for photo (e). (c) Contoured (heights in metres) and georeferenced aerial image (source:

http://gis.utah.gov/data/aerial-photography/) of field study area, located on the southern end of the NW

margin of the intrusion. Structural station localities, bedding measurements, structural transect lines
(TMTE, TMTW) and detailed study area (TMT3) are shown. Also see Appendices for locations of structural
stations mentioned within the paper. Note viewpoint location for photo (e). (d) Schematic cross-sections
(NW-SE) across the Trachyte Mesa intrusion, showing stacked sill sheets (after Morgan et al., 2008). (e)
Field photograph showing monoclinal upper contact and stacked intrusive sheets observed at NW margin of

intrusion. Note zoom-in image in (d) is based on the field observations at this outcrop locality.
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The present-day local geomorphology is controlled by the intrusion (Fig. 3.2a—b). This
assertion is supported by the presence of multiple intrusion—host-rock contacts on the
top and NW margins of the intrusion, although the SE margin is less well constrained
(Morgan et al., 2008). The mesa has a relatively flat top with steeper NW and SE lateral
margins. Where exposed, the base of the overall intrusion appears to be relatively
concordant with the underlying sandstones, dipping <10° to the NW. Wetmore et al.
(2009) suggested that the trend of the intrusion was controlled by a series of NE-SW
trending pre-existing (Laramide?) folds, with the axis of the intrusion located within a
synform. However, the local bedding and base intrusion contact exposures do not
support the model for a tight syncline along the axis of the Trachyte Mesa intrusion

(Morgan et al., 2008).

In contrast to the sub-horizontal stratigraphy below the intrusion, the host-rock units
above show significant distortion and deformation (Johnson & Pollard, 1973; Morgan et
al. 2008). At the NW margin of the intrusion, a clear monoclinal bending of the overlying
beds is apparent (Fig. 3.2e), which is interpreted to be the result of vertical and lateral
growth of the intrusion (Gilbert, 1887; Hunt, 1953; Johnson & Pollard, 1973; Morgan et
al., 2008).

3.3. Field Observations

This field study focused on the southern end of the NW lateral intrusion margin (outlined
in Fig. 3.2) as this area offers the best exposure of the intrusion and its contact with
overlying host rocks (Fig. 3.2b, e). Detailed kinematic and geometrical studies were
carried out at numerous outcrops, regularly spaced along two structural transects across
the NW margin (Fig. 3.2c; for individual field localities see kmz file in the Appendices),
Trachyte Mesa Transect East (TMTE) and West (TMTW); and at additional outcrops close
to intrusion contacts (including area TMT3; Fig. 3.2c). At each structural station, a
representative structural dataset (including: deformation type; geometry; kinematics;
phase (i.e. cross-cutting relationships/ relative timing; character) was collected (minimum

of 30 measurements per station; >50 in areas of high intensity deformation).
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3.3.1. Intrusion Geometry

Figure 3.3 provides an overview of the intrusion contact relationships on the NW margin
where structural transects were performed (TMTE and TMTW; Fig. 3.2c). Multiple stacked
sill sheets and sheet terminations can be observed and comprise the overall intrusive
body (Fig. 3.2d, e). Along the eastern transect (TMTE; Fig. 3.2c) from the NW to SE, the
upper sill sheets and the overriding sandstone beds display a distinct monoclinal
geometry with maximum dips of ~40° NW (Figs. 3.2c & 3.3a). Lower sub-horizontal sill
sheets are also apparent (Fig. 3.3a). Sandwiched between these upper and lower sill
sheets is a zone of highly deformed sandstone with little to no depositional characteristics
preserved (Fig. 3.3a). A number of sill sheets exhibit “bulbous” terminations (Fig. 3.3);
though others display a more planar, sub-vertical sheet termination (Fig. 3.3). Morgan et
al. (2008) provided a comprehensive review of the stacked sill sheet geometries in this

area.

The monoclinal geometry appears to be discontinuous along the margin. Along the
western transect (TMTW,; Fig. 3.2c), ~200 m SE of where the monocline is well exposed,
multiple sub-horizontal sheets can be seen to be stacked one on top of the other (Fig.
3.3b, c¢), with terminations stepping back onto the top of the overall intrusive body,
forming a “staircase geometry”. Here, the morphology of the bedding in the overlying
sandstone appears more complex and step-like, mimicking the sill sheet geometry below
(Fig. 3.3c). In this same area, an upward-inclined sheet can also be seen, which possibly
reflects sill climbing during emplacement (Fig. 3.3b). In area TMT3 (Fig. 3.2c), intrusion
geometries are less well exposed, however, the overlying sandstone units resemble the

more step-like/ terrace geometry seen along the western transect.

Figure 3.3. (overleaf)

Photographs and interpretative sketches showing outcrop geometries of stacked sill sheets on the southern
NW margin of Trachyte Mesa. (a) View looking SE from station TMTE-6 along structural transect TMTE
(viewpoint location shown in Fig. 3.2c and (d)). (b) View looking NE from station TMTW-2 onto structural
transects TMTW (foreground) and TMTE (in distance) (viewpoint location shown in Fig. 3.2c and (d)). (c)
View looking SW at TMTW-3 (viewpoint location see (d)). Key observations include: monoclinal geometry of
overriding sandstone units, (a) and (b); flexed/ monoclinal upper sill sheets (a) vs. sub-horizontal stacked sill
sheets (b, c); sub-horizontal lower sill sheets with “bulbous” terminations (a) and (b); sill climbing in upper

sill sheet, propagating along reverse dip-slip fault (b). (d) Aerial photograph of areas highlighted in photos
(a)—(c). Note contrasting intrusion margin geometries along strike of the intrusion margin, vertically

stacked-sheets in east of study area (i.e. around TMTE), and stepped stacked sheets in the west (TMTW).
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3.3.2. Deformation Structures

3.3.2.1. Structural Types and Geometry

As noted above, locally, bedding has been deformed to form a monoclinal fold across the
NW lateral margin of the intrusion, with dips ranging from sub-horizontal to ~40° NW on
the steep limb (Figs 3.2 & 3.4a). Deformation structures observed within the Entrada
Sandstone host rock include: prolific deformation bands; dip-slip faults; and tensile (Mode
1; Price, 1966) joints (Figs 3.4b—d & 3.5). Most of the deformation bands are porosity
reducing and cataclastic in character (Fig. 3.6), showing small (mm- to cm-scale) offsets.
There is a wide variation in deformation band orientation, with a dominant NE-SW trend,
paralleling that of the intrusion (Figs 3.2a & 3.4b). Locally, small populations of dip-slip
faults are observed (Fig. 3.4c), that trend parallel to the intrusion margin (NE-SW and
ESE-WNW locally. A more widely distributed system of tensile joints, striking both parallel
and perpendicular to the intrusion margin, is also observed (Fig. 3.4d). These joints
commonly show evidence for fluid migration, with fine white carbonate precipitates and/
or well-developed calcite crystals (Fig. 3.5g) on joint surfaces. Furthermore, highly altered
(i.e. rich in hydrous minerals) vertical igneous lenses (note, original phenocrysts can still
be identified) can be seen exploiting joints on the top surface of the intrusion (Fig. 3.5h).
The highly altered nature of the plagioclase-hornblende porphyry suggests that these

joint sets were also utilised by hydrothermal fluids.

Various shear zones are observed within and on the top surface of the intrusion (a
number of which were described by Morgan et al., 2008). Within the host-rock these are
restricted to the reddish-brown silty sandstone and shale unit that is commonly observed
immediately above the intrusion, and are not apparent in the more massive red
sandstone units above (Fig. 3.5b). In the upper few centimetres of individual intrusive
sheets, and at the interface between the intrusive sheets, a strongly foliated (sub-
horizontal foliation) zone occurs with significant stretched plagioclase phenocrysts (see
fig. 3a in Morgan et al., 2008). The shear sense on structures on the top surface of the
intrusion indicate a top-to-the-SE movement (i.e. reflecting the outward, NW-oriented,

horizontal motion of the underlying intrusive sheet; Fig. 3.5b).
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Figure 3.4. Summary stereoplots of field structural data. Equal area, lower hemisphere stereoplots of data
showing poles to planes (contoured) sorted by structural type: (a) bedding, (b) deformation bands, (c)
faults, (d) opening ‘Mode 1’ joints; and structural phase: (e) Phase 1, (f) Phase 2A, (g) Phase 2B, (h) Phase 3.
Mean planes for distinct cluster populations are shown for each plot. Plots (c) and (g) also show fault slip

lines with movement direction indicated (solid fill = normal fault slip; white fill = reverse slip).
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Figure 3.5. Annotated field photographs showing examples of Phase 1 (a), Phase 2 (b—d), and Phase 3 (e—h)
deformation structures. (a) Background deformation bands cutting the Entrada Sandstone distal to the
intrusion (0.2-2m spacing). (b) Deformation structures at intrusion contact, locality TMTE-9 in Fig. 3.3. Low
angle shear and reverse faults (top-to-the-SE) on top surface of the intrusion and within the highly
deformed shaley red sandstone layer adjacent to the contact. Extensional conjugate deformation bands in
massive red sandstone (also see fig. 9 in Morgan et al., 2008). (c) Closely spaced porosity reducing
deformation bands in massive red sandstone, localised to intrusion margin and host-rock overlying the top
surface of the intrusion (0.5—-5cm spacing). (d) Dip-slip normal fault (down-to-the-NW) with well-preserved
slickenlines on principal slip surface. (e) Opening ‘Mode I’ joints trending perpendicular to the intrusion
margin (NW-SE), 0.5—-2m spacing. (f) Opening ‘Mode I’ joints trending parallel to the intrusion margin (NE-
SW), 1-2m spacing. (g) Calcite crystals precipitated on margin parallel joint surfaces in (f). (h) Highly altered
(hydrous minerals) plagioclase-hornblende porphyry (note, original phenocrysts still identifiable) exploiting

joints on top surface of intrusion.
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Figure 3.6. Photomicrographs of Entrada sandstone (blue dye infilling pore space). (a) Relatively
undeformed parent host rock showing significant pore space, 18—20%. Photo taken using plane polarized
light (ppl) at x5 magnification. (b) Section across deformation band showing two distinct zones: a narrow
(0.5 mm) cataclastic deformation zone characterised by a wide range of grain sizes, angular grains and a
fine-grained matrix resulting from grain size reduction; and a wider compactional zone. Porosity reduction
is nearly 100% within the cataclastic deformation zone, while within the compactional zone reduction
ranges from 50-90% (i.e. <5% porosity). Photo taken using ppl at x5 magnification. (c) Same view as (b)
using cross-polarised transmitted light (xpl). (d) Close-up (x10 magnification, in ppl) of microstructure within
a cataclastic deformation band highlighting angular fractured grains and significant reduction in both grain

size and porosity. Note also the increase in calcite cement within the deformation band zone.

3.3.2.2. Structural Phases

Deformation structures observed within the host rocks to the intrusion may be
categorised into three distinct phases (Figs 3.4e-h & 3.5 & Table 1), according to:
structural type; deformation character; geometry; kinematics; spacing/ intensity; and

cross-cutting relationships observed in the field (Fig. 3.7).
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Figure 3.7. Cross cutting relationships between structural phases. (a) Example of large phase 1 deformation

band observed at structural station TMTE-4. (b) Zoom-in on deformation band shown in (a), note the
second system of deformation bands (phase 2A) cross cutting the steeply dipping phase 1 set. (c) Conjugate
deformation bands (phase 2A) cross cut by steeply-dipping phase 3 joints (TMTE-9). (d) Steeply dipping
extensional faults (phase 2B) cross cut by phase 3 joints (TMTW-3).

Phase 1 consists of a set of deformation bands and extensional faults, trending oblique
(ENE-WSW) to the NE-SW trend of the intrusion (Figs 3.4e & 3.5a), and were found over
a wide area away from the intrusion (>500 m). Phase 1 deformation bands are discrete
and are often identified by offsets on bedding and cross-beds. Where significant offsets
(cm- to m-scale) are seen, the sense of shear is largely consistent with extension. Phase 1
structures display a low- to moderate-intensity, with spacing between 50 cm to 100 cm.
However, high intensity (cm-scale spacing) ladder structures/ deformation corridors also
occur, similarly trending ENE-WSW. Phase 1 structures are interpreted as being related to
the regional strain that predated the intense deformation that was associated with
emplacement of the intrusion because they occur at significant distances (>500 m) away

from the intrusion.
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Phase 2 comprises a second set of deformation bands and faults (Figs 3.4f—g, 3.5b—d &
3.8) that overprint the earlier Phase 1 structures (Fig. 3.7b). Both the deformation bands
and the faults trend NE-SW, parallel to the NW lateral margin and overall trend of the
intrusion (Figs 3.4f, g & 3.9). In contrast to Phase 1 deformation bands, Phase 2 structures
are much more obvious in exposures, often occurring as resistant ridges standing proud
of the host Entrada Sandstone (Fig. 3.5c). Microstructural analysis of these Phase 2
deformation bands shows that they are the result of cataclasis and compaction, with
significant (almost 100%) porosity reduction along the deformation bands (Fig. 3.6). The
intensity (fracture density) of Phase 2 deformation bands is significantly higher than that
of Phase 1, with fracture spacing in the order of 0.5 cm to 5 cm, although intensity
decreases rapidly as you move off the intrusion margin. Phase 2 deformation bands form
conjugate sets with extensional offsets (Fig. 3.8a, b). Phase 2 faults are dip-slip in
character, showing both normal and reverse movements (Fig. 3.4c, g), but with a common
down-to-the-NW offset (Fig. 3.8c-e). Unlike Phase 1 extensional faults, these often show a
distinct principal slip surface (PSS; Fig. 3.8e), and slickenlines are commonly observed
(Figs 3.4g, 3.5d and 3.9). Phase 2 structures can be sub-divided further according to their
cross-cutting relationships. Deformation bands (Phase 2A) are consistently cross-cut by

the dip-slip faults (Phase 2B), as well as steeply dipping ladder zones (Fig. 3.8c—e).

Phase 3 comprises a system of tensile joints, often infilled with sparry calcite, which
overprint all other deformation structures (Figs 3.4h & 3.5e—h). The system of joints
consists of two sets: a NW-SE trending set, perpendicular to the intrusion margin (Fig.
3.5e); and a NE=SW trending set, sub-parallel to the intrusion margin (Fig. 3.5f). No clear

cross-cutting relationship is apparent between these two joint sets.

Figure 3.8. (overleaf)

Annotated field photographs showing additional examples of Phase 2A (a—b) and 2B (c—e) structures and
kinematics. (a) Monoclinal bedding geometries in sandstone units ~30 m above the intrusion showing
conjugate fault/ deformation band geometries consistent with flexure (note offset on bedding in paler
sandstone unit). (b) Outcrop example (~5 m above intrusion) of conjugate deformation banding showing
consistent offsets to those seen in (a). (c) Steep ladder zone (down-to-the-NW shear) overprinting
conjugate deformation bands. Note kinematics of background deformation bands and ladder zone are the
same. (d) Outcrop example of normal faults developed at the termination of sill sheets. Note total throw on
normal faults is consistent with the thickness of the individual sill sheet, implying that the faults may be
induced by sill sheet inflation. (e) Zoomed-in area outlined in (d) showing ~50 cm normal (down-to-the-NW)

offset of bedding contact (PSS — Principal Slip Surface; DZ — Damage Zone).
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ormation

3.4. Spatial Distribution of Structures

3.4.1. Structural Transect Profiles

Distinct structural domains were identified along the two structural transects (TMTW and
TMTE; Figs 3.10 & 3.11) within the host rock that reflect both temporal and kinematic
variations in deformation. The structural data at individual stations are plotted on two
composite cross sections created in Move™ (Figs 3.10 & 3.11; see also kmz file in
Appendices for locations of structural stations and transects). It is clear from these cross

sections that Phase 1 deformation structures are only identifiable at more distal
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structural stations to the intrusion margin, and are overprinted by Phase 2A, 2B and 3
deformation structures with increased proximity to the intrusion. Phase 2 structures
increase in intensity from just outboard of the intrusion margin, and onto the top surface
of the intrusion. Phase 2A conjugate deformation bands appear to rotate about a

horizontal axis in the vicinity of the flanking monocline (Figs 3.8a, 3.10 & 3.11).

Figure 3.9. (overleaf)

Field photographs and structural data demonstrating the arcuate trend of Phase 2B faults. (a—b) Equal area
lower hemisphere stereoplots, showing all fault trends of Phase 2B faults. Faults show dip-slip normal and
reverse movements, consistent with NW—-SE extension (note inclination of o3, associated with flexure along
the intrusion margin). (c) Map showing the distribution of the main outcrop localities at which Phase 2B
fault data were collected. The change in geometry and kinematics of the faults with the changing trend of
the intrusion margin can be seen from the equal area lower hemisphere plots for each outcrop showing
poles to planes, slickenlines and interpreted kinematics. Solid white lines depict areas where intrusion
margin is exposed in outcrop, dashed white lines show inferred continuation of margin beneath sandstone
beds (note, magnetic data from Wetmore et al. (2009) was used to guide this subsurface geometry). See
Fig. 3.2c for location in context of wider area. (d)—(f) Field photographs showing outcrop examples of Phase
2 dip-slip normal faults. Although individual faults are quite linear, a clear rotation in fault trend may be
seen when walking along strike. Many fault surfaces have well-developed slickenlines showing almost pure

dip-slip kinematics.

Figure 3.10. (overleaf, fold-out)

Structure along Trachyte Mesa transect TMTW. Cross section constructed in 2D Move™ (for location, see
Fig. 3.2c and Google Earth™ kmz project in Appendices). Equal area, lower hemisphere plots of poles to
planes highlight deformation structure populations collected at each station (white stars; bedding planes
highlighted in yellow). Note the stepped/ terraced geometry of the margin. Colour bars across the lower

part of the section show the spatial distribution of the different deformation phases.

Figure 3.11. (overleaf, fold-out)

Structure along Trachyte Mesa transect TMTE. (a) Cross section constructed in 2D Move™ (for location, see
Fig. 3.2c and Google Earth™ kmz project in Appendices). See Figure 3.10 for key. Note, the main intrusion is
in the SE (to the right) of the section, while a smaller distal intrusion fan be seen further outboard. (b)
Close-up of the area around the intrusion margin and corresponding field photograph of the same outcrops.
Numbers 1-5 indicate the possible timing of sheet emplacement, with 1 being the earliest sheet. Note the

monoclinal geometry of the upper sill sheets and overriding massive sandstone.
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Bedding along the western transect (TMTW) displays a stepped (‘staircase’) geometry
with each step appearing to be associated with a new intrusive sill sheet (Fig. 3.10).
Deformation structures vary across these ‘stepped’ zones, with Phase 2B (faults and steep
deformation corridors/ ladder zones) appearing localised to sill sheet terminations (Figs
3.8d & 3.10). In contrast, bedding geometry appears simpler along the eastern section
(TMTE), the monoclinal structure lacking the ‘steps’ observed for TMTW. Accordingly,

Phase 2B faults are also rare in the outcrops along the eastern transect (Fig. 3.11).

3.4.2. Variations with Intrusion Margin Trend

Phase 2B, steep dip-slip (normal and reverse) faults are most commonly observed on the
intrusion margin, associated with the tips/ terminations of intrusive sheets (Fig. 3.8d, e).
Phase 2B faults are largely observed only at structural station outcrops on the western
transect (TMTW) and additional TMT3 outcrops (Figs 3.2c & 3.9). Mapping of these faults
along strike reveal an arcuate trend that appears to match the proposed curved nature of
the ‘lobe’/ promontory of stacked intrusive sheets (Morgan et al., 2008; Wetmore et al.,
2009) emanating from the main intrusion (Fig. 3.9). There is a distinct lack of Phase 2B
faults in the vicinity of eastern transect (TMTE; Fig. 3.11). This may be due to the style of

emplacement in this area.

3.4.3. Deformation Structures at the Intrusion Contact

Deformation microstructures within the sheared upper contact of the intrusion show
predominantly brittle, and to a lesser extent brittle-ductile, deformation structures (Figs
3.12 & 3.13). At the tip and frontal edge of the intrusion contact, sub-vertical fractures
and shear bands (with down-to-the-NW kinematics) may be seen (Fig. 3.12a, d). Similar to
those observed at outcrop, stepped/ staircase intrusion geometries are observed at the
micro scale, with steps appearing to be associated with sub-vertical shear-fractures within
the host rock (Fig. 3.12a). These fractures do not appear to extend into the intrusion and
are therefore likely to be linked to the emplacement of the magma. Furthermore, magma

can also be seen exploiting these sub-vertical shear-fractures (Fig. 3.12b).
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Figure 3.12. Photomicrographs of microstructures observed at the intrusion—sandstone contact. (a) Stepped

vertical contact at the tip of an intrusive sill sheet. (b) Magma injecting upwards along an extensional
fracture. (c) Top surface of intrusion showing sharp contact and narrow altered margin. (d) Sub-vertical
fracture within host rock adjacent to contact, showing down-to-the-NW movement. (e) Oriented sample

highlighting area of thin section and location of images (a)—(d).

Further deformation structures can be found on the top surface of the intrusion. Where
the contact between intrusive sheets and the host rock can be observed, three distinct
layers can be defined (Fig. 3.13): (1) a 5-10 cm thick baked sandstone layer; (2) a <1 cm
thick chilled intrusion margin; and (3) a 1-2 cm zone of aligned (NW-SE) stretched
plagioclase phenocrysts, beneath which mineral alignment decreases significantly. Low-
angle fracture planes bisect the baked sandstone horizon (Fig. 3.13a) but do not appear to
extend into the intrusion. These fracture planes trend parallel to the intrusion margin
(NE=SW), and dip shallowly (~20°) to the SE (Fig. 3.13a). Slickenlines are preserved on the
shear planes in the baked sandstone horizon of the intrusion-host rock contact, showing

down-to-the-SE kinematics.
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These structures are interpreted to be Riedel shear (R;) fractures consistent with a top-to-
the-SE shear sense. Microstructural analysis of the stretched feldspar phenocrysts on the
top surface of the intrusive sill sheets (Fig. 3.13b) indicates significant brittle deformation
with shearing of the phenocrysts along multiple fracture planes (Fig. 3.13c, d). Kinematics
of these fracture planes are also consistent with Riedel shear fractures associated with

top-to-the-SE (140°) shear (Fig. 3.13d—f).

3.5. Kinematics

Kinematic indicators on Phase 2B dip-slip faults include offsets of bedding plane markers,
and steps on slickenlines preserved on fault surfaces (Figs 3.4g, 3.8 & 3.9). The dip-slip
faults record both normal and reverse shear sense, with a predominant down-to-the-NW
movement, consistent with an overall NW-SE extension or flexure across the margin of
the intrusion (Fig. 3.8c—e). Sense of slip on Phase 2A deformation bands mirrors the
kinematics of the Phase 2B faults (Fig. 3.8a, b), although they are distributed more widely
across the intrusion margin. Conjugate sets of extensional deformation bands commonly
have an inclined acute bisector axis, consistent with either an original moderately inclined
o3 axis dipping towards the NW, or alternatively rotation about a broadly horizontal axis
post-formation. In either case, the Phase2B fault kinematics are consistent with

accommodation of down-to-the-NW extension and rotation.

Strain inversion has been carried out following the Minimized Principal Stress Variation
method developed by Reches (1987) using MyFault™ software. This method assumes that
the stress required to cause fault slip obeys a Coulomb yield criterion. It is reasonable to
use such an approach as the overall finite strains recorded here are low, meaning that any
rotations of stress axes will be relatively minor (e.g. De Paola et al. 2005). Figure 3.9
shows the bulk inversion for all Phase 2B faults (Fig. 3.9b), as well as each individual
structural station where faults were observed (Fig. 3.9c). However, it should be noted
that significant populations of dip-slip faults were only observed at a limited number of
locations (TMTW-3, TMT3-3, TMT3-4, Fig. 3.9). Bulk inversion suggests that the main
stress acting on these faults was extensional (i.e. sub-vertical o;), with NW-SE (margin
perpendicular) oriented extension. Inclination of the stress axes also reflects the flexural

component of this extension (o3 = 338/20; o, = 160/70), with extension inclined down
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towards the NW. Comparisons of the strain inversion at individual structural stations
highlight distinct local variations. Spatial variation is observed in the orientation of dip-slip
faults, and the kinematic inversion of these individual fault populations reveals a change
in the local extensional strain along the intrusion margin (extension varying from NW-SE
to NNE-SSW; Fig. 3.9c). Local variations appear to reflect changes in the stress field,

mimicking changes in the orientation of the intrusion margin.

3.6. Discussion

3.6.1. Deformation Phases (pre-, syn-, and late-stage emplacement)

The three distinct deformation phases (Table 1) identified on the north-western margin of
the Trachyte Mesa intrusion may be directly linked to specific stages in an emplacement

model (pre- Phase 1, syn- Phase 2A and 2B, and late-stage- Phase 3 emplacement).

Figure 3.13. (overleaf)

Flow generated fabrics at the intrusion margin. (a) Outcrop photograph showing low-angle brittle
extensional faults (see inset stereoplot) cutting baked sandstone unit on top surface of an intrusive sheet.
These are interpreted to be equivalent to R; Riedel shear planes, depicted in (d). The faults are only
apparent in the baked sandstone and appear to terminate at the intrusion—host rock interface. (b)
Stretched plagioclase phenocrysts within a strongly sub-horizontal foliated zone (2—3 cm) on the top surface
of an intrusive sheet. Note also the thin (<1 cm) chilled margin zone above the stretched phenocryst/
foliated layer. (c) Photograph of thin section across sheared intrusion top surface. (d) Photomicrograph of
deformed, elongate plagioclase phenocryst within the uppermost 2—3 cm of an intrusive sheet (note section
is cut along a vertical plane oriented parallel to the stretching direction, 140°-320°). The phenocryst is
deformed mainly by brittle deformation and a series of preferred deformation planes, with offset, can be
identified. The movement and orientation of these planes are consistent with Riedel fractures associated
with top-to-the-right (SE) sub-horizontal shear. (e) Diagram illustrating incremental strain associated with
simple-shear deformation. Image on left shows initial configuration of Riedel shear fractures, while image
on right shows orientations after continued simple shear and flattening (20% pure shear). Note clockwise
rotation of fractures. (f) Schematic cartoon depicting the deformation structures observed at outcrop and in
thin section on the top surface of an intrusive sheet. The structures and kinematics are consistent with top-
to-the-SE sub-horizontal shear. This shearing is likely driven by magmatic flow within the underlying sheet,

leading to sub-horizontal shortening and shear at the intrusion contact.
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3.6.1.1. Phase 1 — Pre-emplacement Deformation

Phase 1 deformation structures are found throughout the Trachyte Mesa area, including
regions that are significantly distal to the intrusion (Figs 3.11 & 3.12). As Phase 1
structures do not show any significant spatial or geometric affinity to the Trachyte Mesa
intrusion, we suggest that these are likely to have developed prior to emplacement. This
is also supported by the consistent cross-cutting relationship observed in the field (i.e.

Phase 2 overprinting Phase 1; Fig. 3.7b).

Phase 1 deformation structures could be attributed to one or more of a number of late
Cretaceous to early Tertiary Laramide uplift deformation events (including the San Rafael
Swell, Uncompahgre, Monument, Kaibab, Circle Cliffs, and Miners Mountain uplifts)
which resulted in the formation of a series of asymmetrical anticlines (Fig. 2.10 in Chapter
2; Bump & Davis, 2003), prior to the emplacement of the Trachyte Mesa intrusion. Phase
1 deformation structures appear to have a preferred ENE-WSW trend, although regional
analysis reveals a wider spread of orientations (this study, see regional structural data and
stereoplots in Appendices; Bump & Davis, 2003), which imply a complicated pre-intrusion
deformation history, or that early deformation in the sedimentary cover may have been

controlled locally by underlying basement trends (Bump & Davis, 2003).

3.6.1.2. Phase 2 — Syn-emplacement Deformation

Strong spatial, geometric and kinematic relationships between the Phase 2 structures and
the intrusion margin lead to the interpretation that this deformation is related to the
emplacement of the Trachyte Mesa intrusion (cf. Morgan et al., 2008). The relative
timings of Phase 2 deformation structures may be further refined through their cross-
cutting relationships: Phase 2B faults and ladder zones overprint the more widespread 2A
deformation bands. We suggest that this is a result of strain localisation within the
overburden during vertical inflation of the underlying sill sheet. The observed monoclinal
geometry, and distribution and style of deformation, matches closely to mechanical
models of steeply dipping forced folds (Withjack et al., 1990; Johnson & Johnson, 2002).
As outlined for the western transect (TMTW; Fig. 3.10), Phases 2A and 2B deformation
appear to alternate across each individual sill sheet termination. We therefore interpret
this to indicate that this 2A—2B strain localisation may be related to the emplacement of

each individual sheet rather than the overall intrusion.
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3.6.1.3. Phase 3 — Late-stage Emplacement Deformation

Phase 3 tensile (Mode 1; Price, 1966) joints consistently overprint all other structures in
the study area. Phase 3 tensile joints are interpreted to represent late-stage
emplacement deformation, rather than post-emplacement deformation. The joints are
most likely associated with deflation of the host rocks as the magma body beneath
cooled, crystallised and contracted. During vertical inflation of the intrusive sill sheets and
overall intrusion, vertical stresses are exerted on the overriding strata. Following
cessation of magma flow and contraction of the sheets, this stress is removed, and the
overriding host rocks relax and tensile joints (relaxation cooling joints) open. This origin
for the Phase 3 joints fits with their wide spatial distribution over the intrusion, in
contrast to the Phase 2B faults, which are localised around sill sheet terminations. A late-
stage emplacement timing for the formation of the joints, rather than post-emplacement,
is supported by the presence of calcite crystals on the joint surface (Fig. 3.5g) and ‘flame-
like’, magma and hydrothermal fluid escape structures (Fig. 3.5h) observed on the top
surface of some intrusive sheets, suggesting that these joint sets must have developed

while hydrothermal fluids associated with the intrusion were still circulating.

3.6.2. Modes of Emplacement

Davis (1925) first proposed a model for a proto-laccolith spreading to its full lateral extent
as a thin sheet before vertical inflation. Hunt (1953) proposed two end-member models
(“bulldozing” and “two-stage growth”) for laccolith emplacement and growth from a
central feeder system. In his general description of the emplacement and growth of
laccoliths, Corry (1988) clearly favoured a “two stage growth” model (i.e. radial growth to
full lateral extent, followed by vertical growth) and stated that there is no reported field
evidence for the remnant hinge zones expected for a radial growth model. Koch et al.
(1981), Jackson and Pollard (1988, 1990), Kerr and Pollard (1998), Galland et al. (2009),
and others have suggested that the radial extent of the intrusion may be controlled by
the effective thickness of the overburden and the elastic properties of the overlying
sandstone. However, as discussed by Corry (1988), other factors such as magma viscosity,

strain rate and sheet thickness should also be considered. Although the models of Hunt
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(1953) and Corry (1988) refer to the emplacement and growth of laccoliths, the concepts

are just as applicable to a small sill sheet as they are for larger tabular intrusive bodies.

Corry (1988) made predictions on the likely deformation associated with Hunt’s (1953)
emplacement models, suggesting that deformation associated with a “bulldozing
mechanism” (i.e. radial growth of a full thickness intrusive body) will likely be more
complex and distributed than in the “two-stage growth” model. As magma “bulldozes” its
way through the host rock, it leaves in its wake a series of remnant deformation “hinge
zones” that reflect the propagating deformation front. In contrast, with a “two-stage
growth” model, most of the deformation is localised within the high-strain hinge zones at
the lateral termination. This is because only minor deformation occurs with the initial
radial growth of a thin sheet, and more intense strain developing during the secondary

inflation/ vertical growth stage.

The kinematics and spatial distribution of these deformation structures may therefore be
closely related to the mode of emplacement. Thus deformation is either focused in the
area around the periphery of an intrusion, and is less pronounced in the roof zone above
the intrusion (Corry, 1988), or, as in the classic beam-bending model for a domal intrusion
(Pollard & Johnson, 1973; Kerr & Pollard, 1998), tensile deformation is likely to be
distributed across the wider roof area due to flexure. Corry (1988) also suggested that
deformation/ accommodation structures associated with a “bulldozing mechanism” for

emplacement are likely to be compression-dominated.

At Trachyte Mesa, this study has demonstrated that the host-rock deformation structures
are strongly localised in the region at the lateral margin of the intrusion, an observation
that confirms previous studies of others (Koch et al., 1981; Corry, 1988; Morgan et al.,
2008). Although thermal alteration and compaction are apparent in host-rock exposures
on the roof of the intrusion, brittle deformation structures such as those described herein
on the NW margin are not observed above the intrusion. This, and the fact that there is
no evidence for remnant hinge zones formed by an outward propagating intrusion
margin, would suggest that Trachyte Mesa is likely to have formed by “two-stage”
growth. The term “punched laccolith” (first used by Gilbert, 1877) has been used to
describe relatively flat-topped tabular intrusions, a common characteristic of many

laccoliths (including Trachyte Mesa; Morgan et al., 2008), which have formed through

139



Chapter 3 — Trachyte Mesa: deformation structures and emplacement mechanisms

two-stage growth. In contrast, extension-dominated deformation and accommodation
structures are predicted to occur with a “two-stage”/ incremental vertical growth
mechanism. As all of the emplacement-related deformation structures observed in this
study reflect overall extensional strain, our model for emplacement clearly favours the

“two-stage” emplacement mechanism.

Morgan et al. (2008) proposed an incremental growth model for the Trachyte Mesa
intrusion, through vertical and horizontal growth by the accumulation of multiple
horizontal magma sheets. Their emplacement model has strong similarities to the hybrid
case of Corry (1988), as both include vertical stacking and lateral sheet propagation (and
an outward propagating hinge). In their model, a series of stacked sill sheets are
emplaced, with newer sheets emplaced on top of older. This vertical stacking leads to
uplift and monoclinal bending of the overlying sandstone units, while in front of the sill
sheet terminations a low-pressure triangular zone develops. Key to the development of
this low-pressure zone is the contrasting rock properties of the thinly bedded shaley units
(i.e. more deformable) along which the sills are emplaced, and the mechanically strong
(and more resistant to bending) overlying massive sandstones (e.g. Fig. 3.2d). It is
envisaged that tongue-like magma sheets would then fill this low-pressure zone, with this
process subsequently leading to lateral propagation of the intrusion (and also the

outward propagation of a deformation hinge).

The observations presented here are consistent with an incremental, “stacked sill sheet”
growth model for the overall intrusion (cf. Morgan et al., 2008). However, in contrast to
that interpretation, evidence for a “two stage” incremental growth mechanism is
observed for the emplacement of individual sheets. Furthermore, although contrasting
styles of deformation may be observed in the shaley and more massive red sandstone
host rock units, no strong evidence exists for incremental lateral sill propagation. Instead
we envisage that individual sill sheets were emplaced close to their full radial extent as

thin sheets that then vertically inflated through additional magma influx.

3.6.3. Emplacement and Structural Evolution

Based on the work of previous authors (Corry, 1988; Morgan et al., 2008) and our new

field observations of intrusion geometries and deformation structures on the NW margin,
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a new multistage model for the emplacement of Trachyte Mesa intrusion is proposed.

This emplacement model is shown in Figure 3.14 and discussed in the following sections.

3.6.3.1. Stage 1 - Onset of Sheet Emplacement and Radial Growth of a Thin “proto-sill”
Sheet

A magma feeder system propagated vertically through the sedimentary pile until it

reached a suitable interval for a horizontal sheet to propagate laterally. In the case of

Trachyte Mesa this is a thin, mechanically weak, reddish-brown silty sandstone and shale

layer occurring between thicker, massive sandstone units (Fig. 3.5b; Morgan et al., 2008).

I”

The “proto-sill” propagated as a thin sheet, with minor inflation, to its maximum lateral
extent (Fig. 3.14). In contrast, Morgan et al. (2008) suggested that lateral sill propagation
and thickening may have been episodic [i.e. similar to the hybrid model of Hunt (1953)
and Corry (1988)]. However, the lack of observable remnant deformation hinge zones on
the roof of the intrusion (and others like it; Corry, 1988) favours propagation of a thin
proto-sill sheet rather than one with significant inflation. The lateral extent of the sill was

likely governed by viscosity of the magma and the properties of the host rock (Thomson &

Schofield, 2008).

Figure 3.14. (overleaf)
Schematic diagram outlining a two-stage growth model for sill emplacement at the Trachyte Mesa intrusion

and associated deformation structures. (a) Conventional stacking model (as observed at TMTW study area;

Fig. 3.10). Stages of emplacement, as discussed in text, are: Stage 1 — Sill initiation and radial growth as a
thin “proto-“ sill sheet; Stage 2 — Thickening of the sill sheet, resulting in roof uplift and strain localisation in
the host rock at the sill sheet termination; Stage 3 — Emplacement of a second sill sheet (repetition of

stages 1 and 2 for 2" sheet); Stage 4 — Sill climbing through the exploitation of faults developed during

Stage 2; Stage 5 — Sill flattening (not observed at Trachyte Mesa) and late stage cooling and relaxation of
the intrusion. (b) Schematic illustration highlighting the impact of out-of-sequence stacking (equivalent to

Stage 2 in (a) on margin geometry and deformation structures (as observed in TMTE study area; Fig. 3.11).
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Deformation associated with this early emplacement is likely to have been minor, and
dominated by shear at the proto-sill sheet contacts (e.g. stretched plagioclase feldspars;
Fig. 3.13). As magma flowed in a NE direction, spreading out radially to the NW and SE,
shear zones developed on the top and base surfaces of the intrusion and its contact with
the surrounding host rock. These shear structures show both brittle and plastic
deformation characteristics due to the effects of hot magma being emplaced into a cold
host rock. Vergence on these shear structures is opposite to the flow direction of the
magma sheet (i.e. on the NW margin, top-to-the-SE-verging shear fabrics occur on the top
surface of the intrusion). These shear fabrics may be seen both at outcrop and in thin
section (Fig. 3.13), and have also been defined by AMS (Anisotropy of Magnetic
Susceptibility) studies (Morgan et al., 2008). Shear at the intrusion margin is likely to be

the first accommodating structure related to the onset of sheet emplacement.

3.6.3.2. Stage 2 - Vertical Inflation of Sill Sheet

Once the magma had reached its maximum radial extent, vertical inflation commenced as
magma supply continued. The thickness of the sill will be governed by the thickness of the
overburden (i.e. lithostatic pressure) and the magma pressure (Corry, 1988; Thomson &
Schofield, 2008). Thickening of the sill sheet resulted in roof uplift and deformation (e.g.
fractures and deformation bands associated with forced folding and flexural bending) of
the overlying strata (Sterns, 1978; Cosgrove & Hiller; 1999; Galland et al., 2009; Magee et
al., 2014). This is manifest as conjugate sets of extensional cataclastic deformation band
structures (Phase 2A; Figs 3.4, 3.5, 3.6 & 3.8), formed in the overlying massive sandstone
beds, localised to the developing lateral margin, increasing in intensity around the
monoclinal flank above the sill termination (Figs 3.10, 3.11 & 3.14). This is consistent with
extensional deformation structures forming in the outer arc areas of monoclinal flexural
folds, while we might expect contractional structures to predominate on the inner arc
areas (Frehner, 2011). This extension and contraction in the outer and inner arcs
respectively may help to explain the observation that deformation within the blocky
sandstone unit is predominantly extensional, while in the more shaley unit at the
intrusion contact reverse faults are apparent (Fig. 3.5b, and also noted by Morgan et al.,

2008).
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Although lateral propagation of the sill is likely to have ceased during this inflation phase
of emplacement, shear structures still continued to develop on the top surface of the
intrusion as magma flowed along the sill. Figure 3.13 shows examples of shear structures
on the intrusion top surface (and overlying baked sandstone). As these brittle structures
clearly deform the already cooled rock, this shear deformation is post initial
emplacement. However, in order to accommodate the additional volume of magma,
shear strain on the top surface will have become dominated by flattening (vertical
shortening). This is apparent in the stretching and flattening of plagioclase crystals within
the upper 2-5cm of the sill sheet (Fig. 3.13c, d). As vertical inflation continued, strain
becomes localised at the sill sheet termination resulting in the formation of Phase 2B
structures (Figs 3.8, 3.9 & 3.14). This strain localisation led to the development of steep
deformation corridors cross-cutting earlier conjugate deformation bands (Fig. 3.8c) and
eventually the development of principal slip surfaces and ultimately dip-slip faults (Figs
3.8, 3.9 & 3.14). These Phase 2B dip-slip faults observed at Trachyte Mesa therefore

played a significant role in accommodating the extra volume of magma within the crust.

In the emplacement model of Morgan et al. (2008), sill sheets intruded along a thinly
bedded muddy red sandstone and shale unit as full thickness (~1-5 m thickness) tongue-
shaped sheets with “bulbous” terminations. A temporary zone of low-pressure was
created in front of the intrusion margin as the angle between the stronger massive red
sandstone and the weaker silty sandstone and shale unit beneath increased during
vertical growth of the intrusion through the accumulation of stacked sheets. In this
scenario, magma pressure exceeds lithostatic load, and tongue-like sheets, fed from the
stacked sheets, fill the zone of low-pressure, continuing lateral propagation of the
intrusion. However, this explanation is inconsistent with the structural evidence, as a
zone of low-pressure is unlikely to develop where normal faults accommodate the strain.
Instead, it is suggested here that the smooth, curved nature of the “bulbous” sill sheet
terminations (Fig. 3.3a) are the result of inflation (akin to that of the rounded surface of a
balloon; Fig. 3.14a). Had this rounded geometry formed during the sill propagation, we
might expect to see more evidence for magma infiltrating the host rock in front of the

intrusion, rather than the presence of sheared, steeply-dipping, shaley red sandstone.

Smart et al. (2010) modelled the strain distribution of monoclinaly deformed beds

overlying a steeply dipping extensional fault. In their finite element model, Smart et al.
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(2010) noted the outer and inner arc strain domains discussed above (e.g. Frehner, 2011)
within the overlying folded units, and also identified a zone of high sub-horizontal
extensional strain within the footwall block (see fig. 11 in Smart et al., 2010). This local
extensional strain domain may provide a mechanism for the “ballooning” inflation at the
sill tip to form the observed bulbous terminations. In contrast, formation of extensional
faults at the sill tips will impede the development of bulbous terminations as this
extensional strain will be accommodated by fault extension. This model is supported by
the observation that sill sheets with a bulbous character show little evidence for fault
development (Morgan et al., 2008), while those with faults at their tips do not exhibit

bulbous terminations (e.g. Fig. 3.3c; this study).

3.6.3.3. Stage 3 - Emplacement of Additional Sill Sheets

Successive sheets were emplaced through the same two-stage emplacement (i.e. radial
followed by vertical growth) as for the first sill sheet. Along the western transect (TMTW;
Fig. 3.10), the sequence of sill sheet stacking largely appears to have occurred from the
bottom of the intrusion upwards, as each successive sill sheet was emplaced on top of the
underlying sheet, and hence creating a ‘Christmas-tree’-type laccolith. However, the
sequence and level at which successive sheets were emplaced varies significantly (the

impact of out-of-sequence stacking is discussed below).

3.6.3.4. Stage 4 - Onset of Sill-Climbing (transgression)

Following the formation of Phase 2B faults during the vertical inflation stage, magma was
able to utilise these faults and sill-climbing commenced (Figs 3.14 & 3.15; Thomson &
Schofield, 2008). If the fault plane was able to open, magma was able to propagate along
the fault (Figs 3.3b, 3.14 & 3.15). At Trachyte Mesa, examples of sill climbing can be
observed at both outcrop (Fig. 3.3b) and in thin section (Fig. 3.12b). This sill climbing
preferentially exploited reverse dip-slip faults (Figs 3.3b & 3.15). There are two likely
reasons for the magma preferentially exploiting these faults. The first is that the
geometry of the reverse faults, dipping towards the sill termination, allowed the magma
to continue its outward radial flow up along the fault plane and up through the host
stratigraphy. However, probably the most important factor controlling sill climbing along

these faults is the stresses induced on the fault due to roof uplift (Fig. 3.15). If the Phase
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2B faults have a normal geometry (i.e. dipping away from the sill sheet), vertical
compressive stress associated with uplift of the underlying footwall block (i.e. vertical
inflation of sill sheet) will keep the plane closed and prevent migration of magma along its
path (Fig. 3.15). In contrast, if the fault has a reverse geometry (i.e. dipping towards the
sill sheet) uplift of the hangingwall block reduces the vertical effective stress, thus

enabling magma to exploit the fault plane (Fig. 3.15).

(a)
Inclined Sheet
Inner Sill
(b)
Stage 1 - Sheet propagation/ emplacement
\‘\%\ ‘/'1 Initial emplacement of thin sill sheet.
N ? Bedding moderately deformed by flexure

' S and distributed deformation.

v i No faults developed.

Stage 2 - Sheet Inflation
Deformation localised at sill tip.
\;\ J.'// Normal fault develops.
' No Sill climbing (propagation of magma
T inhibited along fault due to vertical
compressive stress associated with uplift
of underlying FW block).

Deformation localised at sill tip.

Reverse fault develops.

Sill climbing (magma propagates

along fault, exploiting void space created
by uplift of FW block).

Figure 3.15. Faulting accompanying sill emplacement. (a) Schematic diagram showing the development of a
saucer-shaped sill (after Galland et al., 2009). (b) Development of dip-slip faults at sill tips during two-stage

growth model and implications for sill climbing and vertical propagation.

3.6.3.5. Stage 5 - Cooling and Relaxation of Intrusion

As the intrusive sheets (and overall intrusive body) started to cool and contract with the
cessation of magma flow, the host rocks above also relaxed. During this relaxation of the
overriding strata, and the removal of the vertical compressive stresses that had been

exerted on the overlying sediments during vertical inflation of the intrusive sheets, tensile
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joints formed and opened, allowing magma and hydrothermal fluids to circulate (Figs

3.5g, h & 3.14).

3.6.4. Sequence of Stacking

The sequence in which intrusive sill sheets are stacked plays a significant role in the
resulting geometry of the intrusion and the overlying stratigraphy, as well as the types of
deformation structures observed in the host rocks. In the two structural transects carried
out here (Figs 3.2, 3.10 & 3.11), two contrasting styles of intrusion geometry are observed
that appear to be the result of different orders of sill stacking. On the western transect,
the margin of the intrusion is characterised by a series of sub-horizontal sill sheets of
varying thickness (0.5—3 m) stacked one on top of the other (Fig. 3.10). This conventional
stacking sequence would be consistent with the order of stacking discussed above and
outlined in Figure 3.14a. In contrast, on the eastern transect the order of sill stacking
appears out-of-sequence. As discussed by Morgan et al. (2008) and highlighted in Figure
3.11b, it appears that the lower sub-horizontal sheets were actually emplaced later than
upper sheets (under- and/ or mid-accretion of Menand, 2008). The main evidence for this
out-of-sequence stacking is the fact that the upper sill sheets have been arched and
rotated upwards in a similar monoclinal geometry to the overlying sandstone beds due to
the emplacement of sub-horizontal sheets beneath. Not only does the sequence of
stacking affect the geometry of the intrusion, it also has a significant impact on the style
of deformation occurring in the overriding host rock (compare Figs 3.10 and 3.11). In a
sequentially stacked sequence (e.g. TMTW,; Fig. 3.10) a “stepped” bedding profile is
developed (i.e. terraces associated with individual sill sheets), and dip-slip faults (Phase
2B) occur at the tips of successive intrusive sheets. In areas where out-of-sequence
emplacement is apparent (e.g. TMTE; Fig. 3.11), the intrusion margin is distinctly
monoclinal (i.e. one single step), and due to the presence of the overriding sill sheets,
development of Phase 2B faults is inhibited (Fig. 3.14b). Close to the intrusion contact,
compressional deformation structures including small reverse faults are observed,
although in the more competent sandstone beds extension-dominated deformation

structures still prevail (Fig. 3.5b).
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3.6.5. Faulting at sill terminations

A significant observation from this study, previously undocumented at Trachyte Mesa, is
the presence of dip-slip faults associated with individual sill terminations (i.e. Phase 2B
structures). Thomson and Schofield (2008) suggested that the main control on the
development of faults at sill sheets terminations is the depth of formation. At shallower
depths, cohesive strength along bedding planes is less, and so favours the development of
flexural slip folding. As depth increases, higher shear stresses are required for flexural slip,
thus favouring mechanical failure of the rock through fracture/ faulting (Stearns, 1978).
The overburden thickness estimated for the Trachyte Mesa by Hintze and Kowallis (2009)
suggests that the Entrada Sandstone would have been at a paleaodepth of ~3 km at the
time of magma emplacement, therefore placing it within the brittle zone (as defined by

Schofield et al., 2012).

Pollard and Johnson (1973) presented a conceptual model for the formation of peripheral
dykes located at the tips of laccolith bodies from field observations. It was suggested that
the dykes formed at the periphery of the intrusions as a result of flexural/ elastic bending
of the overburden layers (contractional over the centre and extensional over the
periphery). Evidence for sill-climbing at Trachyte Mesa is in agreement with such
extensional strain at the periphery. However, instead of the strain being accommodated
by simple tensile joints, it is proposed that it was the Phase 2B faults that were exploited
by the magma (Fig. 3.3b). Sill climbing associated with the exploitation of peripheral faults
is likely to play a significant role in the development of saucer-shaped sills (Fig. 3.15;

Galland et al., 2009).

3.7. Conclusions

Trachyte Mesa intrusion, the most distal satellite intrusion of the Mount Hillers intrusive
complex in the Henry Mountains Utah, comprises a series of stacked sill sheets.
Deformation structures (geometry, kinematics, and spatial distribution) associated with
the emplacement of the intrusion vary in style and intensity along the intrusion margin.
Detailed analysis of the host rock deformation structures and their cross-cutting
relationships enables the recognition of three distinct phases, interpreted to represent
pre- (Phase 1), syn- (Phase 2), and late-stage (Phase 3) emplacement deformation stages.

Spatial and kinematic association of Phase 2 structures (deformation bands and dip-slip
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faults) indicate extensional strain normal to the intrusion margin during emplacement,

with the inclination of the o3 axis reflecting the flexural nature of the margin.

The preferred emplacement model of a series of stacked sill sheets is in agreement with
previous studies (Morgan et al., 2008), but a different mechanism for the emplacement of
individual sill sheets is envisaged in which dip-slip faults accommodate sill inflation/
vertical growth. All emplacement-related deformation structures observed reflect
extensional strain-dominated deformation. Each individual sill sheet is believed to have
grown to its maximum radial extent as a thin sheet, and then in a second stage, to inflate
vertically to its present thickness. It is likely that most deformation of the host rock took
place during this second stage, with faults developing at the sill terminations due to strain

localisation.

Magma preferentially exploited the faults that developed at the periphery of sill sheets,
initiating sill climbing. Extensional roof faulting and sill climbing support a two-stage
growth history for the overall intrusion. These observations are consistent with
theoretical models of sill emplacement (e.g. Pollard & Johnson, 1973; Koch et al., 1981;

Thomson & Schofield, 2008).

The order in which sill sheets are stacked has impacted on the intrusion geometry and
associated deformation. In conventionally stacked sequences (i.e. base upwards) a
“stepped”/ terraced bedding profile develops, with the presence of dip-slip faults
localised at the tips of successive intrusive sheets. By contrast, where intrusive sheets are
emplaced beneath earlier intruded sheets (i.e. out-of-sequence stacking), the resulting
intrusion and host rock geometries and emplacement-related deformation structures are
significantly different, having a monoclinal rather than stepped profile, with no dip-slip

faults at sill terminations.

Not only do the deformation structures record the strain evolution, and thus mode of
emplacement of the intrusion, they also controlled the subsequent propagation of the
intrusive body (e.g. in the form of sill climbing). These observations provide new insights
on the emplacement mechanisms of sills and laccoliths, how magma is accommodated in
the subsurface, and how emplacement of high-level intrusions can affect sedimentary

host rocks. Furthermore, the structural similarities we observe at multiple scales (i.e. thin
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section, individual intrusive sheets and the overall intrusion) may reflect a scale-
invariance which may make our models applicable to larger-scale intrusions (i.e. laccoliths

and plutons; cf. Rocchi et al., 2002).
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Fracture analysis of deformation structures associated with the Trachyte Mesa
intrusion, Henry Mountains, Utah: implications for reservoir connectivity and fluid flow
around sill intrusions.

This chapter is written for submission to Petroleum Geoscience
Co-Authors*: Penelope I.R. Wilson, Robert. W. Wilson, David J. Sanderson, Ken J.W. McCaffrey, lan Jarvis

(*note: all scientific work was undertaken by the student/ principal author P. Wilson, and input from co-
authors on this work was at an advisory/ editorial level only)

Abstract

Shallow level intrusions are a common feature of many basins currently being explored
for hydrocarbon potential. However the sub-seismic structure and reservoir scale
implications of igneous intrusions are poorly understood. The Trachyte Mesa intrusion is a
small (~1.5 km?), NE-=SW trending satellite intrusion to the Mount Hillers intrusive
complex in the Henry Mountains, Utah. It is emplaced within the highly porous, aeolian
Entrada Sandstone Formation. A conjugate set of NE-SW striking deformation bands
trend parallel to the intrusion margins. A small study of fracture connectivity has been
carried out at 6 sample stations along a ~100 m long, NW-SE trending transect across the
north-western lateral intrusion margin. Following the methodology of Sanderson and
Nixon (2015), this chapter presents results of various fracture network characteristics,
including: total number of fractures (and branch lines); total fracture (branch) length;
frequency; density (intensity); spacing; characteristic fracture length; and dimensionless
intensity. Nodal analyses were also applied to the sample areas. These quantitative
fracture studies are supplemented with petrological, porosity and microstructural
analyses. Results show a marked increase in deformation band intensity and significant
porosity reduction with proximity to the intrusion. These deformation bands are likely to
impede fluid flow, and potentially form baffles in a reservoir. A corresponding increase in
Y- and X- nodes highlights the significant increase in deformation band interconnectivity,
which in turn will significantly reduce the network connectivity and permeability
pathways of the sandstone. This study highlights that fluid flow in deformed host rocks
around igneous bodies may vary significantly from that of the undeformed host rock
reservoir. Therefore, a better understanding of the variability of deformation structures,
and their association with intrusion geometry, will have important implications for
hydrocarbon reservoir deliverability and CO, sequestration. Building digital field
analogues can bridge the gap between thin section- (pore), outcrop- (sub-seismic), and
regional (seismic) scales.

Keywords

Deformation bands; Fractures; Intrusions; Reservoir Connectivity; Fluid Flow
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4.1. Introduction

Numerous studies have shown that deformation bands can have a significant influence on
fluid flow (Fossen & Bale, 2007). Deformation bands are a common deformation structure
in many reservoir sandstones. In particular, weakly cemented and highly porous (>10%)
sandstones are ideal candidates for the development of deformation bands (Aydin, 1978;
Shipton & Cowie, 2001; Fossen et al., 2007). Due to their mode of formation (i.e. mainly
cataclasis and compaction; Fossen et al., 2007) deformation bands tend to have lower
permeabilities than their host rock sandstones and, in turn, negatively affect fluid flow
(Sterlof et al., 2004; Fossen & Bale, 2007; Rotevatn et al., 2013). Porosity and permeability
reductions due to deformation bands may significantly reduce reservoir connectivity by
creating baffles to fluid flow and even, in some cases, act as seals to hydrocarbon

accumulations (e.g. Knipe et al., 1997; Ogilvie & Glover, 2001; Parnell et al., 2004).

Deformation bands have been documented to develop in most structural and tectonic
settings provided the host rock is susceptible to their formation (Fossen et al., 2007).
Deformation bands preferentially develop in more poorly lithified layers within arenitic to
arkosic sandstones (i.e. those lacking in lithics) at shallow depths (1-3 km; Fossen, 2010).
This depth regime is coincident with the emplacement of shallow-level intrusions, and
there is good field evidence to suggest that deformation bands do develop as
accommodation structures associated with sills and laccoliths (e.g. Morgan et al. 2008;

this study).

These deformation structures may have important implications on the
compartmentalisation and fluid flow within reservoirs hosting intrusions. Quantitative
studies have previously been carried out to analyse the deformation structures associated
with salt movement (e.g. Antonellini & Aydin, 1995), but as yet no such studies exist for
igneous intrusions. This research therefore aims to carry out detailed kinematic,
geometric and spatial analyses of fracture networks in host rock sandstone, associated
with emplacement of the Trachyte Mesa igneous intrusion, Henry Mountains, Utah (Fig.

4.1).

A fracture network can be regarded as a system of fractures developed within the same
rock volume and may be made up of multiple fracture sets (Adler & Thovert, 1999).

Fractures are generally described by their geometry (e.g. orientation and length) and
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characteristic attributes (e.g. fracture type, morphology and mineral fill). These attributes
may be used to define fracture sets (Priest, 1993; Adler & Thovert, 1999; Sanderson &
Nixon, 2015) which are often used to define distinct structural events within the evolution
of a wider fracture network. In Chapter 3 the term ‘phases’ was used to describe what are
in effect the various fracture sets observed in the Trachyte Mesa study area. Through
these attributes we can gain a good understanding of the various fracture sets and
networks, however the relationships between these systems (e.g. connectivity) requires
further analysis. Sanderson and Nixon (2015) highlight the use of ‘topology’ for describing
the relationships between geometrical objects, and outline a workflow for fracture
analysis, building on the work of others (including: Mauldon, 1994; Manzocchi, 2002,
Rohrbaugh et al., 2002; Makel, 2007). This workflow has been applied as part of the

present study and is described in detail in Section 4.3.

4.2. Geological setting

4.2.1. Trachyte Mesa Intrusion

The Trachyte Mesa intrusion is a small (1.5 kmz) satellite intrusion to the Mount Hillers
intrusive complex in the Henry Mountains, SE Utah (Fig. 4.1). The Henry Mountains
intrusions are Oligocene in age (31.2 to 23.3 Ma; Nelson et al., 1992). These intrusions,
therefore, post-date the minor Laramide structuration observed on the Colorado Plateau.
The intrusions are emplaced within an approximately 3—-6 km thick section of late
Palaeozoic—Mesozoic strata overlying Precambrian basement; the Trachyte Mesa
intrusion was likely emplaced at a paleao-depth of ~3 km (Jackson & Pollard, 1988; Hintze

& Kowallis, 2009).

Trachyte Mesa has an elongate, laccolithic geometry, trending NE-SW (Fig. 4.1b) with
thicknesses varying from 5-50 m (Morgan et al., 2008). There is strong evidence to
suggest that the intrusion formed by the amalgamation and stacking of multiple thin (~1-—
5 m thick) sill sheets (Johnson & Pollard, 1973; Menand, 2008; Morgan et al., 2008; this
study, Chapter 3). The intrusion is generally concordant with the Entrada Sandstone
Formation, within which it is emplaced (Johnson & Pollard, 1973; Morgan et al., 2008;
Wetmore et al., 2009). The best exposures of the intrusion, contact and overlying host

rock can be found on the southern end of the north-western lateral margin (Fig. 4.1c, d).
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4.2.2. The Entrada Sandstone Formation

The Entrada Sandstone Formation (part of the San Rafael Group) is Jurassic (Callovian) in
age and is composed of a mixture of white cross-bedded sandstones, reddish-brown silty
sandstones, siltstones, and shale beds (Aydin, 1978; Fig.4.2). The Entrada was deposited
in an aeolian environment and extends over a vast area, making it the largest of the
Colorado Plateau ergs (Hintze & Kowallis, 2009). Entrada Sandstone is generally quartz-
dominated (Aydin, 1978), although a subarkosic composition for rock units studied
around the Trachyte Mesa intrusion may be a more appropriate lithological description
(Fig. 4.3). Calcite is the most common cement, although siliceous and pelitic cements are

abundant in some layers (Aydin, 1978).

Figure 4.1. (overleaf)

Geological setting and study area. (a) Simplified maps showing location of the Henry Mountains with
respect to Utah, and the Trachyte Mesa (TM) Intrusion with respect to the Henry Mountains intrusive
complex. The Henry Mountains regional map is adapted from Morgan et al. (2008). (b) Geological map of
the Trachyte Mesa intrusion showing surface map extent and proposed magma flow directions during
emplacement (from Morgan et al., 2008) overlain with magnetic map (from Wetmore et al., 2009) to show
subsurface extent to the SW. Arrow points to study area. (c) Aerial photograph (from Google Earth™) over
the study area (NW margin of the Trachyte Mesa intrusion). Sample stations for fracture studies
highlighted. Red lines show mappable northern limit of intrusive rocks (i.e. the northern margin). (d) Field
photograph showing monoclinal geometry of the NW intrusion margin. Note blocky, red Entrada Sandstone
units concordant with the underlying intrusion top surface, and stacked intrusive sheets below. Viewpoint

location shown in (c).

Figure 4.2. (overleaf)

(a) Panoramic photograph of study area (sampling traverse across lateral margin of the Trachyte Mesa
intrusion). Note red, cross-bedded Entrada Sandstone unit, and Trachyte Mesa intrusion outcropping to the
right. (b) Annotated sketch of (a) with sample station (TMFS-1, etc.) locations, discussed in this study,
highlighted with white stars. Note, sample stations are all within the same more massive, cross-bedded
sandstone unit. (c) Cross-section from Morgan et al. (2008) showing measured bed thickness and
corresponding reduction in porosity across the intrusion margin (see fig. 8 in Morgan et al. (2008) for

associated porosity and strain ratio plots).
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Deformation
(@) g bands B

Slickenlines
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Figure 4.3. Photograph of a hand specimen (a) and photomicrographs of thin sections (b, c) showing
deformation bands. Note principal slip surface (PSS) and associated deformation zone in (a). Impregnation
of pores with blue resin has been used to highlight pore space in thin sections (b, c). Note, ~15% porosity
(visually estimated using percentage estimation comparison charts of Tucker, 2001) in less deformed zone
between deformation bands (b), and almost 0% porosity in cataclastic deformation band (c). Pre-intrusion
porosity was likely to be >30% (Morgan et al., 2008). Note this sample is a Phase 2B fault (discussed more in
Chapter 3).
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The Entrada Sandstone, being highly porous (e.g. Fig. 4.3b), is the ideal lithology for the
formation of deformation bands and, as a result (along with the Lower Jurassic Navajo
Sandstone, also found on the Colorado Plateau and stratigraphically below the Entrada;
Jackson & Pollard, 1988), has been the focus of several studies on such structures (Aydin,
1978; Aydin & Johnson, 1978, 1983; Shipton & Cowie, 2001; Fossen & Bale, 2007; Fossen
et al., 2007). Although deformation bands are common throughout the Entrada
Sandstone, local to the Trachyte Mesa intrusion, there appears to be a strong increase in
deformation bands aligned parallel to the intrusion margin. This spatial and geometric
correlation leads to the proposal that these structures formed directly in response to the
emplacement of the intrusion (this study, Chapter 3). Deformation bands in the vicinity of
Trachyte Mesa generally form as conjugate sets trending roughly NE-SW and individual
bands are relatively discrete (<0.5 mm; Fig. 4.3c), though a few wider deformation zones
have developed which are cored by principal slip surfaces (e.g. Fig. 4.3a). In contrast,
much wider deformation band clusters (>20 cm) can be found hosted by the Entrada
Sandstone elsewhere on the Colorado plateau (e.g. see figs 1, 7 & 9 in Fossen & Bale,

2007).

4.3. Study zone, sampling and analysis methods

4.3.1. Outcrop traverse

A small study of fracture spacing was carried out along part of Structural Transect TMTE
(Fig. 4.2; for details on TMTE see Chapter 3; see also Google Earth™ project (kmz file) in
Appendices for locations) in order to try and quantify the change in fracture intensity
observed across the lateral margin of the intrusion. The study consists of six outcrops,
relatively evenly spaced, from ~80 m outboard of the exposed intrusion margin (sample
station TMFS-1; Figs 4.1c & 4.2), and up over the monoclinal lateral intrusion margin, onto
the top surface of the intrusion (TMFS-6). At each outcrop, a 1.5 m box (where possible)
was marked onto the surface of the sandstone. A metre ruler was also used for scaling
purposes. A suite of photographs were then collected for each outcrop. These
photographs were subsequently used to map out the fracture networks at each sample

station post-fieldwork using a graphics package (Adobe lllustrator).

As roughly NE-SW trending deformation bands are the dominant structural type

identified along transect TMTE (see Chapter 3), care was taken to ensure that the surfaces
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photographed, and subsequently analysed, were oriented in a similar, optimal (NW-SE)
orientation in order to sample the fracture network most appropriately. Note, due to this
sampling technique results will only be appropriate for analysing fluid flow across
(perpendicular to) the intrusion margin (i.e. NW-SE), and are not likely to be appropriate
for flow parallel to the intrusion margin (i.e. NE-SW). Further studies of other oriented

surfaces will be required for a full 3D framework to be defined.

4.3.2. Fracture analysis methods

Various analytical techniques have been proposed for the investigation of fracture
networks (e.g. Walsh & Watterson, 1993; Berkowitz, 1995; Adler & Thovret, 1999). In this
study the method of Sanderson and Nixon (2015) has been applied. The method is
described in detail by Sanderson and Nixon (2015), and only a brief description is given
here. The basic principal is outlined in Figure 4.4, and is comprised of mapping out a
fracture network, measuring fracture (or branch) lengths and quantities, and node

counting.

4.3.2.1. Fracture Network Map

Using the acquired outcrop photographs, fracture networks were mapped to the highest
level of detail attainable from the image resolution. Areas were then selected in order to
sample the fracture networks at each sample site with as little bias as possible. In areas of
more heterogeneous deformation, multiple areas were sampled at a range of scales
(ranging from 20-100 cm diametre circles) in order to capture the variability. Circular
scan-lines/ areas were used rather than squares (e.g. after Mauldon, 1994; Rohrbaugh et
al., 2002; Sanderson & Nixon, 2015) as these provide the least orientation bias, with an

equal likelihood of sampling any given fracture orientation on a 2-D surface.

4.1.1.1. Measuring Lengths and Quantities

For each sample circle, the total number of fractures and total fracture length were
recorded. In addition, the total number of fault branches (i.e. segments between
intersecting fracture points or nodes) was also recorded. Sanderson and Nixon (2015)

show preference to the use of branches as it is often difficult to recognise an individual,
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continuous fracture trace within a fracture network, whereas branches are uniquely
identifiable. Furthermore, as exposures and sampling areas are of finite size, many
fractures may extend beyond the sample area. Therefore, the frequency and length of
fractures will be subject to a sampling bias (Riley, 2005). In contrast the length of branch

lines is likely to be less, thus reducing this sampling bias issue.

Using sample area, total number of fractures (or branches) and total fracture (branch)
length, a number of fracture network characteristics can be defined. These include:
frequency (total number/ area); density (also termed fracture intensity; total length/
area); spacing (the inverse of density, i.e. area/ total length); characteristic fracture length
(mean length; total fracture length/ total number of fractures); and dimensionless
intensity (multiplying fracture density by the characteristic length). More details on the

derivation of these are outlined in Sanderson and Nixon (2015).

\ _branch A

Y X

Figure 4.4. Schematic image outlining principal method applied for fracture analysis (Sanderson & Nixon,
2015). Fracture trace (A-B), with associated intersecting fractures (dashed), showing arrangement of nodes
and branches: I-nodes (circles); Y-nodes (triangles); X-nodes (diamonds). Proportions of |-, Y- and X-nodes

may be plotted on a triangular plot to visualise different fracture network types (after Manzocchi, 2002).
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4.1.1.2. Node Counting

A given fracture network consists of lines, nodes and branches (Fig. 4.4). As outlined
above, lines will consist of one or more branches, with nodes (i.e. fracture intersections)
at either end of each branch. Three main types of nodes exist: I-nodes (isolated fracture
terminations within the host rock); Y-nodes (where one fracture terminates against
another); and X-nodes (where two fractures cross-cut one another). Within a sample
area, a fourth type of node may also be recorded, where fractures intersect the outer

perimeter of the sample area (termed E-nodes; Sanderson & Nixon, 2015).

The proportion of I-, Y- and X-nodes have been used by various authors to characterize a
fracture network (e.g. Manzocchi, 2002, Makel, 2007) and the results plotted on a
triangular plot (Fig. 4.4). As this nodal relationship will remain unchanged by any
continuous transformations (i.e. strains), this is termed a topological classification

(Sanderson & Nixon, 2015).

4.3.3. Sample Collection

A selection of rock samples were also collected at each sample station (Fig. 4.5) in order
to carry out hand specimen and thin section (i.e. petrological, porosity and
microstructural) studies. Samples were oriented in the field in order to enable thin
sectioning in a similar vertical, NW-SE oriented plane to the outcrop photo/ scan
surfaces. Ensuring that similarly orientated sample areas are studied at all scales increases
the chances of sampling the same fracture systems (i.e. NE-SW trending fracture
networks) as observed in outcrop, and thus the resulting scalar statistics should be more

appropriate.

Figure 4.5. (overleaf)

Hand specimen photos and fracture analysis (circles). (a) Sample TMFS-1. (b) Sample TMFS-2. (c) Sample
TMFS-3. (d) Sample TMFS-4. (e) Sample TMFS-5. (f) Sample TMFS-6. Fracture analysis was carried out on
freshly cut surfaces. Circular scans show the fracture network and associated |-, Y-, and X-nodes. Statistics
show total number of fractures (N), total fracture length (L), fracture density/ intensity (D), and
dimensionless intensity. Note, a wider set of statistical results (including those for branch line studies) is

shown in Table 1.

162



Chapter 4 — Trachyte Mesa fracture intensity and connectivity

b g1
w190 = (1) Y67 21mde1q je10] S’y "5
L€ = (N) Joquinn a1n1del4

wD s

w g0 = (1) Yabua aimdesy [er1o0p
9 = (N) Jaqunp ainjdely

w $87°0 = (1) Yy1bua ainideu4 |e1o]
€1 = (N) Jaquinp ainioely

0= (1) y1bua a1ndeu [erop
0= (N) JaquinN ain3dei4

wd g
wD s

IR0
>

(=]
I

w g9y'0 = (1) Yyibua aindeld [erof
NN ain1oely

w €00 = (1) Yy1bua ainideu |ero)
L = (N) Joquiny ainydesq

wd {

S
>x

0= (1) y1bua a1ndes [e10]
0 = (N) J2quinn ainidelq

S
>x

163



Chapter 4 — Trachyte Mesa fracture intensity and connectivity

It is acknowledged that by only carrying out fracture studies in one orientation we are
invoking an orientation bias into our results. However by having a common sample

orientation, the results between each sample location should at least be consistent.

4.4. Results

4.4.1. Outcrop Fracture Analysis

Figures 4.6 to 4.11 show the photographs and associated mapped fracture networks for
each sample station respectively. Each locality lies within the same red, cross-bedded
massive sandstone unit (Fig. 4.2). Various sample areas were used at each sample station,
limited in part by outcrop extent; however a consistent 20 cm diametre circular scan area
was sampled for each locality. Table 4.1 summarises the various fracture network

characteristics derived for each scan area. These are also depicted in Figures 4.6 to 4.11.

Table 4.1. (overleaf)

Summary data table showing results of circular scan fracture analyses carried out in this study.

Figure 4.6. (overleaf)

Outcrop photographs and corresponding fracture interpretations for locality TMFS-1. (a) NW-SE oriented,
sub-vertical outcrop surface with five circular scan areas defined (ranging in size from 100 cm to 20 cm).
Tape measure is extended to 1 m. (b) Zoom in to area lower left of (a). Circular scan 6 is 30 cm in diametre.
(c) Circular scans showing fracture network and associated I-, Y-, and X-nodes. Statistics show total number
of fractures (N), total fracture length (L), fracture density/ intensity (D), and dimensionless intensity for each

scan area. Note, a wider set of statistical results (including those for branch line studies) is shown in Table 1.

Figure 4.7. (overleaf)

Outcrop photographs and corresponding fracture interpretations for locality TMFS-2. (a) NW-SE oriented,
sub-vertical outcrop surface with seven circular scan areas defined (ranging in size from 100 cm to 20 cm).
Tape measure is extended to 1 m. Note, the six smaller scans are all 20 cm diametre, and the variations in
size on the photo are due to the oblique perspective of the photograph. (b) Circular scans showing fracture
network and associated |-, Y-, and X-nodes. Statistics show total number of fractures (N), total fracture
length (L), fracture density/ intensity (D), and dimensionless intensity for each scan area. Note, a wider set

of statistical results (including those for branch line studies) is shown in Table 1.
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Figure 4.8. (overleaf)

Outcrop photographs and corresponding fracture interpretations for locality TMFS-3. (a) NW-SE oriented,
sub-vertical outcrop surface with eight circular scan areas defined (ranging in size from 100 cm to 20 cm).
Tape measure is extended to 1 m. (b) Circular scans showing fracture network and associated I-, Y-, and X-
nodes. Statistics show total number of fractures (N), total fracture length (L), fracture density/ intensity (D),
and dimensionless intensity for each scan area. Note, a wider set of statistical results (including those for

branch line studies) is shown in Table 1.

Figure 4.9. (overleaf)

Outcrop photographs and corresponding fracture interpretations for locality TMFS-4. (a) NW-SE oriented,
sub-vertical outcrop surface with a 50 cm circular scan area defined. (b) Outcrop surface adjacent to (a)
with three further scan circles defined (scan circle 2 is 50 cm, while 3 and 4 are both 20 cm). (c) Circular
scans showing fracture network and associated I-, Y-, and X-nodes. Statistics show total number of fractures
(N), total fracture length (L), fracture density/ intensity (D), and dimensionless intensity for each scan area.

Note, a wider set of statistical results (including those for branch line studies) is shown in Table 1.

Figure 4.10. (overleaf)

Outcrop photographs and corresponding fracture interpretations for locality TMFS-5. (a) NW-SE oriented,
sub-vertical outcrop surface (~1.5 x 1.5 m) with a 100 cm diametre scan area defined. Visible tape measure
extent is 0.92 m. (b) Zoom-in to area in lower right of (a) for more detailed fracture interpretation (better
resolution image) in a 20 cm scan area. (c) Zoom-in to area in upper middle of (a) for more detailed fracture
interpretation (better resolution image) in a 20 cm scan area. Note sample core holes are those collected by
Morgan et al. (2008) for their study. (d) Circular scans showing fracture network and associated |-, Y-, and X-
nodes. Statistics show total number of fractures (N), total fracture length (L), fracture density/ intensity (D),
and dimensionless intensity for each scan area. Note, a wider set of statistical results (including those for

branch line studies) is shown in Table 1.

Figure 4.11. (overleaf)

Outcrop photographs and corresponding fracture interpretations for locality TMFS-6. Circular scan areas for
fracture studies highlighted in (a) and (b). Circles 1 and 2 are 20 cm diametre areas sampling a NW-SE
trending vertical rock surface, while circle 3 samples a sub-horizontal surface (note, elliptical shape of this
sample area is to account for the perspective view in the photograph). (c) Circular scans showing fracture
network and associated |-, Y-, and X-nodes. Statistics show total number of fractures (N), total fracture
length (L), fracture density/ intensity (D), and dimensionless intensity. Note, a wider set of statistical results

(including those for branch line studies) is shown in Table 1.
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Fig. 4.11

4.4.2. Hand Specimens
Similar fracture analysis methods were also applied at the hand specimen scale (Fig. 4.5).
Oriented samples were cut along a similar NW-SE sample plane to reveal a smooth

freshly exposed sample surface. Digital photographs were taken and similar to the
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method outlined above, deformation bands and fractures were interpreted. Circular
sample areas were again defined (4 or 5 cm diametre circles used depending on the size
of the sample) and fracture statistics recorded. Results are again documented in Table 4.1

and also shown on Figure 4.5.

4.4.3. Thin Section Analysis

Optical microscopy petrographical, porosity and microstructural analyses were carried
out on thin sections cut from each hand specimen (Fig. 4.12). Sections were impregnated
with blue dye in order to highlight porosity. Both compositional and porosity percentages

were visually estimated using percentage estimation comparison charts (Tucker, 2001).

4.4.3.1. Sample TMFS-1

Sample TMFS-1 is a well sorted, medium to fine grain (~250 um) sandstone, dominated by
quartz (>80%) and feldspar (plagioclase and microcline). Using the classification of
sandstones in Tucker (2001), the rock is therefore a subarkosic sandstone. Haematite can
be seen coating quartz grains. No distinct cross-laminations are apparent when viewing
the thin section under the microscope, although weak layering is visible when viewing the
whole thin section (Fig. 4.12a). The sample shows relatively high porosity (Fig. 4.12a),
however zonal variations are apparent; an average porosity of ~20%, and up to 30% in

places. The sample is relatively poorly cemented with patchy calcite spar (Fig. 4.12a).

No deformation bands are apparent within sample TMFS-1. However, the sandstone is

relatively well compacted, with embayed contacts apparent at grain contacts.

4.4.3.2. SampleTMFS-2

TMFS-2 appears to sample a slightly more coarse-grained bed within the sandstone
horizon. Laminations are clearly apparent at both the hand specimen (Fig. 4.5b) and thin
section scale (Fig. 4.12b). Thin section analysis shows a well sorted sample with similar
subarkosic grain composition to TMFS-1. Sub-rounded grains suggest that this sandstone

is relatively mature. Large patches of sparry calcite are present.
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Similar to TMFS-1, this sample also contains no deformation bands. However, porosity is
lower than that of TMFS-1, with an average porosity of ~15%. Calcite cementation
reduces porosity significantly across the whole sample with porosity for some laminations

<10%.

4.4.3.3. Sample TMFS-3

Sample TMFS-3 appears to be a very porous sample showing up to 30-35% porosity,
again displaying only patchy calcite spar cementation (Fig. 4.12c). The sample exhibits
minor deformation, though only one deformation band was sampled. This deformation
band is not well developed and shows weak deformation and grain crushing (cataclasis).
The deformation band shows significant porosity reduction (<5% porosity in the
deformation band zone), with the majority of the porosity reduction appearing to be due

to the development of the dominant carbonate cement within the deformation band.

4.4.34. Sample TMFS-4
The petrology of sample TMFS-4 remains similar to that of samples TMFS-1 to -3.
Background (host rock) porosity is variable from lamina to lamina, although the average is

relatively high at ~25% (Fig. 4.12d).

TMFS-4 samples three discrete (1 mm wide) deformation bands (Figs. 4.5d & 4.12d).
Microstructural analysis of these deformation bands shows evidence for cataclasis (grain
crushing and grain size reduction). The grain size of the undeformed rock is medium to
coarse (>250 um), while within deformation bands this is significantly reduced (<50 um).
Although porosity is considerably reduced, micro-porosity (<5%) is still apparent within
deformation bands (Fig. 5.12d). Calcite is also present within the deformation band,

accounting for some of the porosity reduction.

4.4.3.5. Sample TMFS-5
Sample TMFS-5 displays significant deformation zones. Background (host rock) porosity

within sample TMFS-5 is lower than the less deformed samples described above (~15%;
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Fig. 4.12e). This is due to greater compaction, as evidenced by greater interlocking (tightly
packed) grains, embayed contacts and possible pressure solution. Calcite cementation
within the background rock is patchy, with calcite spar accounting for only 2—-3% of

porosity reduction.

Sampling several deformation bands, these appear more diffuse (up to 1 cm wide) than
those sampled in TMFS-4. Although not well established, distinct slip zones may be
identified within deformation bands (Fig. 4.12d). Micro-porosity within the deformation
band is extremely low (~1%; Fig. 4.12e). Clear cataclasis and associated grain size
reduction can be seen within deformation bands. Although larger grains are still present
within the deformation bands, these show evidence for significant micro-fracturing and

early development of sub-grain boundaries.

4.4.3.6. Sample TMFS-6

Sample TMFS-6 shows a clear system of moderately-dipping cross-laminations (Fig. 4.12f).
Again a subarkosic grain composition is apparent (quartz grains with lesser plagioclase-
and microcline-feldspars). Embayed contacts are visible. Background porosity is
significantly reduced in TMFS-6 compared to the other 5 samples, at 5 to 10% (Fig. 4.12f).

This is largely due to both compaction and greater calcite cementation.

Multiple diffuse and discrete, anastomosing deformation bands are identifiable. Micro-
porosity within the deformation bands is <2%, again the result of cataclasis (grain size
reduction), compaction and cementation. Shearing of cross-laminations into deformation
bands can be clearly identified (Fig. 4.12f). Within deformation bands larger quartz grains
are still evident within a finer-grained cataclastic matrix. However, some of these larger
grains have ‘fuzzy’ grain boundaries which may reflect cataclasis along the boundary,
while other grains show clear sub-grain boundaries parallel to deformation band
orientations. Weakly developed slip planes are apparent within deformation bands, while
at a grain-scale, shear can also be identified (Fig. 4.12f). Haematitie is also incorporated
into the matrix within deformation bands as a result of quartz grain crushing. Note the

brownish-staining of deformation bands in Figure 4.12f.
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4.5. Interpretations and Discussion

4.5.1. Fracture Intensity and Topology Variations Across Margin

Six sample stations have been analysed across an approximately 100 m long transect over
the north-western intrusion margin (Figs 4.1c & 4.2). Nodal populations for each station
have been recorded and populated on triangular plots (Fig. 4.13; after Manzocchi, 2002).
The outcrops studied show a clear dominance of I- and Y- nodes (Fig. 4.13a), although the
dominance of these nodes varies spatially. Samples stations more distal to the intrusion
(i.e. TMFS-1 to -3) show a greater proportion of |-, and to a lesser extent, X-nodes (Fig.
4.13b, c). In contrast, there is a general increase in the dominance of Y-nodes with
proximity to the intrusion (Fig. 4.13b, c). At sample stations TMFS-5 and -6 overlying the
intrusion, I-nodes are negligible, and the nodal populations are dominated by Y- and X-
nodes. These results reflect the overall increase in conjugate deformation bands observed

at the intrusion margin (Morgan et al., 2008; this study, Chapter 3).

A clear increase in fracture abundance can be observed through a brief, visual overview of
each sample site (Figs. 4.6—4.11). Quantitative analysis supports this observation (Fig.
4.14). Results from scan station analyses show a significant increase in fracture (line)
frequency and density (intensity) with proximity to the intrusion (Fig. 4.14a). This increase
in fracture frequency and density is also observed when analysing branches (Fig. 4.14b).
Sanderson and Nixon (2015) proposed that fracture density (intensity) is the most
fundamental measure of fracture abundance and provides an unbiased estimate for
comparing fracture networks. Characteristic lengths appear to decrease towards the
intrusion margin as a consequence of the increased fracture/ branch density (Fig. 4.14a,
b). Although fracture length is somewhat dependent on the size of the sample area
(Sanderson & Nixon, 2015), this decrease in characteristic length with proximity to the
intrusion can be observed when comparing the consistent 20 cm scan areas. This
relationship is also supported by analysis of characteristic branch lengths, which are less
susceptible to sampling bias (Sanderson & Nixon, 2015). Dimensionless intensity (viewed
as a scalar invariant characteristic) has also been calculated for each scan station
population. This can be seen to increase markedly with proximity to the intrusion when
analysing fractures (Fig. 4.14a). This increase is still apparent when analysing branches,
however, the increase is less pronounced (Fig. 4.14b). The ratio of dimensionless intensity

values for faults versus branches appears to be about 2:1 (Fig. 4.15).
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Figure 4.13. Fracture statistic triangular plots. (a) Triangular plot showing ratio of |-, Y- and X-nodes. (b) As
in (a) with each sample location defined. (c) Scatter graphs showing ratio of Y-nodes to other nodes (i.e. I-
and X-) across the study area. Note the increase in the ratio of Y-nodes onto the intrusion. Triangular plots

created using Excel spreadsheet method of Graham & Midgley (2000).
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Figure 4.14. (continues overleaf)
Fracture statistics and their variation with location for: (a) fracture line; and (b) branch line statistics. Scatter
graphs showing variations in Fracture Frequency (F,, Fg), Fracture Intensity (Fl,, Flg), Characteristic Length

(C,, Cg) and Dimensionless Intensity (D, Dg). X-axis refers to sample location (i.e. 1=TMFS-1, etc.).
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Figure 4.14. (continued)

4.5.2. Microstructural Interpretation
Microstructural analysis of deformed samples (i.e. TMFS-4, -5 and -6; Figs 4.5 and 4.12)
shows dominantly brittle deformation with cataclastic flow and compaction occurring

within deformation bands. Despite significant porosity reduction from undeformed host
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rock (typically 20-30%) to within deformation bands, micro-porosity of <2% is still
apparent within deformation bands. This porosity reduction is largely the result of this
cataclasis and compaction, however, calcite cementation also plays a significant role in
many of the sample deformation bands. Of significance, a reduction in host rock porosity
is also apparent within samples TMFS-5 and TMFS-6, from sandstone beds overlying the
intrusion (>25% in samples TMFS-1 to -3 compared to <15% in samples TMFS-5 and -6).
This reduction appears to be the result of greater compaction of grains (and to a lesser
extent, an increase in cementation). This is consistent with the observed porosity
reduction and thinning of beds over the monoclinal intrusion margin of Morgan et al.

(2008).
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Figure 4.15. Plot showing the difference between fracture and branch line dimensionless intensity values.

Note the approximately 2:1 ratio.

4.5.3. Wider Implications

Shallow level intrusions are a common feature of many basins currently being explored
for hydrocarbon potential, including: NE Atlantic margin (e.g. Malthe-S@rrenssen et al.,
2004; Hansen & Cartwright 2006); West of Shetland (e.g. Rateau et al., 2013); and the
southern and north-western margins of Australia (e.g. Holford et al., 2012; Magee et al.,
2013). This quantitative study of fractures highlights the significant impact magma
emplacement can have in highly porous clastic reservoir systems. Although only a small

study, results show that fracture abundance and intensity increase markedly across the
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NW margin of the Trachyte Mesa intrusion. The methods applied provide a means of

guantifying this increase in deformation intensity across the intrusive margin.

The deformation bands show significant porosity reduction that is most apparent in the
sandstones overlying the intrusion. These deformation bands are likely to impede (though
not completely prevent) fluid flow and form baffles in a reservoir. The increase in Y- and
X- nodes highlights the significant increase in deformation band interconnectivity, which
in turn will significantly reduce the network connectivity and permeability pathways of

the sandstone.

The deformation aureole around intrusions has not been analysed as part of this study.
However, this is an important factor to consider when assessing the likely impact this
intrusion-related deformation may have on a wider reservoir system. At Trachyte Mesa,
deformation structures decrease markedly from ~5 to 10 m above the intrusion margin
(although limited outcrop extent prevents a more detailed quantification of this).
However, considering an intrusion the size of Trachyte Mesa (~1.5 km?), this ~10 m thick

zone of deformation may reduce the exploitable reservoir volume noticeably.

Although further analyses are required in order to understand the 3D connectivity of
these fracture systems, this study emphasises the potential importance of understanding
the impact of syn-emplacement deformation to localised fluid flow around igneous
intrusions. Gaining a better understanding of these emplacement-related deformation
structures will therefore have important implications for fluid flow, hydrocarbon reservoir

connectivity/ deliverability, and CO, sequestration.

4.6. Conclusions
Although deformation structures vary in style and intensity across the lateral

III

“monoclinal” margin of the Trachyte Mesa intrusion (Chapter 3, this study), there is a
clear relationship between deformation and proximity to the intrusion margin. This has
therefore led a number of authors to propose that these deformation structures
developed in response to emplacement of the intrusion (e.g. Johnson & Pollard, 1973;

Morgan et al., 2008; this study).

183



Chapter 4 — Trachyte Mesa fracture intensity and connectivity

Although only a small study, results show that fracture abundance and intensity increases
markedly across the NW margin of the Trachyte Mesa intrusion. The methods applied
provide a means of quantifying this increase in deformation intensity across the intrusive
margin. Furthermore, the application of topologic analysis (i.e. in the form of nodal
analysis) provides a means of understanding the network connectivity of deformation
structures, and thus their negative impact on reservoir permeability. The increase in Y-
and X-nodes with proximity to the intrusion likely creates a baffle or barrier to flow
perpendicular to the intrusion margin, as well as potentially forming non-producible

reservoir zones.

This study highlights that fluid flow in deformed host rocks around igneous bodies may
vary significantly from that of the undeformed host rock reservoir. Therefore, a better
understanding of the variability of deformation structures, and their association with
intrusion geometry, will have important implications for hydrocarbon reservoir
deliverability and CO, sequestration. Building digital field analogues can bridge the gap

between thin section- (pore), outcrop- (sub-seismic), and regional (seismic) scales.

184



5. Chapter 5: Intrusion — host rock deformation and contact geometries, Maiden Creek,

Chapter 5 — Maiden Creek Intrusion — host rock deformation and contact geometries

Henry Mountains, Utah

Layout:

5.1.
5.2
5.2.1.
5.3
5.3.1.
5.3.1.1.
5.3.1.2.
5.3.2.
5.3.2.1.
5.3.2.2.
5.3.2.2.1.
5.3.2.2.2.
5.3.3.
5.3.3.1.
5.3.3.2.
5.3.4.
5.3.4.1.
5.3.4.2.
5.3.4.2.1.
5.3.4.2.2.
5.3.5.
5.3.5.1.
5.3.5.2.
5.4.
5.4.1.
5.4.1.1.
5.4.1.2.
5.4.2,
5.4.3.
5.4.4.
5.5.

Introduction

Geological Setting

Maiden Creek intrusion

Intrusion geometries and deformation structures by domains
Zone 1: NE intrusion

Intrusion and host rock geometries
Syn-emplacement deformation structures

Zone 2: Eastern margin and ‘Whispering Wind Gully’
Intrusion and host rock geometries
Syn-emplacement deformation structures

Zone 2a

Zone 2b

Zone 3: Southern intrusion and ‘Rattlesnake Gully’
Intrusion and host rock geometries
Syn-emplacement deformation structures

Zone 4: NW margin

Intrusion and host rock geometries
Syn-emplacement deformation structures

Zone 4a

Zone 4b

Zone 5: SW Maiden Creek

Intrusion and host rock geometries
Syn-emplacement deformation structures
Discussion

Eastern margin (Zones 1, 2 and 3)

Lobes, Steps and Bridges

Kinematic partitioning

NW margin (Zone 4)

Unexposed SW margin (Zone 5)

A new model for development of the Maiden Creek intrusion
Conclusions

185

R R R R E R R R EEEEEEEEEEEEEEE

. 187
189
192
.194
194
194
194
198
198
204
204
205
209
209
214
217
217
225
225
226
227
227
227
. 227
232
236
237
237
240
241
. 246



Chapter 5 — Maiden Creek Intrusion — host rock deformation and contact geometries

Intrusion—host rock deformation and contact geometries, Maiden Creek, Henry
Mountains, Utah

Abstract

The Maiden Creek intrusion is a small satellite intrusion to the Mount Hillers intrusive
complex of the Henry Mountains, SE Utah. Emplaced within sandstones in the shallow
crust, deformation structures in host rocks to the intrusion imply dominantly brittle
deformation and, by proxy, intrusion emplacement mechanisms. Intense zones of
compressional deformation are associated with host rocks adjacent to and ‘squeezed’ by
lateral margins of converging intrusive bodies. In contrast, extensional deformation
structures are associated with deformation in overlying sandstones and peripheral lateral
margins. A thin (<1 m thick) shaley-siltstone horizon immediately overlies much of the top
surface of the intrusion, acting as a detachment surface, above which syn-emplacement
deformation is seemingly lacking. Detailed analysis from field studies of intrusion contacts
and syn-emplacement host rock deformation structures to the intrusion has highlighted a
complex intrusion geometry, including: lobate morphologies; steps and broken bridges;
inclined sill sheets; and concave-upwards ‘laccolithic’ morphologies. A new model is
proposed for the emplacement, evolution and final geometry of the intrusion, with a
central elongate NE-SW lobe resulting from a principal north-easterly propagating
magma flow. It is suggested that a feeder is located to the south-west of the Maiden
Creek intrusion, in line with the termination of the neighbouring NE-SW trending
Sawtooth Ridge satellite intrusion. Lateral growth of the Maiden Creek intrusion resulted
from radial spreading of magma from this main north-easterly flow trend towards the
east and north-west. This study suggests that much can be learnt about intrusion
geometries and emplacement mechanisms through detailed structural and kinematic
analyses of the host rocks and intrusion—host rock contact.

Keywords

Intrusion morphologies, Accommodation structures; Sill emplacement; Henry Mountains
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5.1. Introduction

Our understanding of shallow level igneous intrusions, their emplacement mechanisms
and morphologies, has developed significantly over the last 138 years since the
pioneering work of G. K. Gilbert (1877) on the intrusions of the Henry Mountains, Utah.
Mounting evidence from numerous studies focusing on the geometry and internal
architecture of sills, laccoliths and plutons suggests that intrusions grow as a result of
multiple magma pulses and through the amalgamation of numerous intrusive bodies
(Pitcher, 1970; Hutton, 1996; Cruden & McCaffrey, 2001; Mahan et al., 2003; Glazner et
al., 2004; Menand, 2008, 2011). The supporting evidence includes: field mapping of
internal contacts and external margins (e.g. Morgan et al., 2008; Magee et al., 2012);
geochronological studies (e.g. Coleman et al., 2004; Westerman et al., 2004); and
magnetic and macroscopic fabric analyses (e.g. de Saint Blanquat & Tikoff, 1997; Horsman

et al., 2005; Stevenson et al., 2007b).

Horsman et al. (2009), in their synopsis of the various studies of satellite intrusions in the
Henry Mountains, Utah (Horsman et al., 2005; de Saint Blanquat et al., 2006; Morgan et
al., 2008), suggested that the various forms of sill and laccolith geometries lie on a
hypothetical evolutionary timeline reflecting the addition of successive sill sheets. In this
scheme, sills (e.g. Maiden Creek) evolve to form laccoliths (e.g. Trachyte Mesa), laccoliths
grow to become bysmaliths or punched laccoliths (e.g. Black Mesa), and these eventually

grow to form plutonic scale intrusions.

Sills with tabular and concave upwards morphologies have been commonly observed in
the field (e.g. Du Toit, 1920; Leaman, 1975), and stepped- and saucer-shaped
morphologies observed in seismic sections (e.g. Francis, 1982; Cartwright & Hanson,
2006; Thomson & Schofield, 2008; Schofield, 2009). Furthermore, recent studies have
shown that tabular and saucer-shaped sill intrusions are often emplaced by the
amalgamation of magma fingers, sheets and lobes (Pollard et al., 1975; Malthe-
S@rrenssen et al., 2004; Thomson & Hutton, 2004; Horsman et al., 2005; Stevenson et al.,

2007a; Morgan et al., 2008; Schofield et al., 2010, 201243, b).

Pollard et al. (1975) first reported finger-like geometries for a number of intrusions on the
Colorado Plateau, USA. Magma fingers typically display short lengths, between 1 and 10

metres (Pollard et al., 1975; Horsman et al., 2005), whereas lobate bodies range in size
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from hundreds of metres to kilometres in scale (Schofield et al., 2012a). For this reason,
Schofield et al. (2012a) highlighted that magma fingers are a sub-seismic resolution
feature, whereas lobes can be resolved. Schofield (2009) and Schofield et al. (2012a)
proposed that fingers are an integral part of sill intrusions, with magma fingers growing to
form lobes, and lobes coalescing to form sills (Fig. 5.1a). Structural steps, parallel to the
magma transport direction, are commonly identified on the top surfaces of sills
(Rickwood, 1990; Schofield et al., 2012a). The development of steps has also been
described in terms of hackle steps on dykes and joint surfaces (Pollard et al., 1975;
Rickwood, 1990; Frid et al., 2005) and the interconnection of sill sheets propagating at
slightly different stratigraphic levels (Schofield et al., 2012a). In the case of overlapping sill
sheets, a host rock bridge or relay develops between the sheets. As these sheets inflate,
fractures develop due to flexure, which may then be exploited by magma and results in
the sheets coalescing (Fig. 5.1.b; Nicholson & Pollard, 1985; Hutton, 2009). The remnant
bridges are termed ‘broken bridges’. Schofield et al. (2012a) proposed that stepped
geometries are characteristic of brittle emplacement mechanisms, whereas magma
fingers and lobes are associated with ductile (or fluidisation) emplacement processes.
They also suggested that these brittle and ductile end member processes may be linked
both to rock rheology and depth (i.e. brittle — deeper; ductile — shallower), acknowledging
that a transition zone may exist where both processes and resulting geometries may

occur.

This study focuses on the intrusion geometries and their associated host-rock
deformation structures of the Maiden Creek intrusion in the Henry Mountains, Utah.
Here, Horsman et al. (2005) interpreted the intrusion to have elongate finger-like lobe
geometries, while Johnson and Pollard (1973) described intense host-rock deformation
structures within the sandstones immediately adjacent to and above intrusion outcrops.
The abundance of preserved intrusion—host rock contacts makes Maiden Creek an
excellent study area. Using detailed structural and kinematic studies of the host rock
deformation, the aim is to test the hypothesis that host rock deformation structures are
intrinsically linked to intrusion geometries, and their emplacement. This approach has led
to a reinterpretation of the finger-lobe model for the Maiden Creek intrusion and the

results are presented and discussed below.
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Figure 5.1. Schematic sketches illustrating geometries and evolution of: (a) magma fingers and lobes; and

(b) steps and broken bridges. Images from Schofield (2009) and Schofield et al. (2012).

5.2. Geological Setting

Emplaced within an ~3—-6 km thick section of late Palaeozoic—Mesozoic sedimentary rocks
overlying Precambrian basement (Jackson & Pollard, 1988; Hintze & Kowallis, 2009), the
Henry Mountains are located in south-eastern Utah (Fig. 5.2a) and are one of more than
ten mountain ranges on the central and eastern Colorado Plateau that are comprised of
sedimentary domes with igneous cores, encircled by smaller satellite intrusions (dykes,
sills and laccoliths; Gilbert, 1877; Hunt, 1953; Jackson & Pollard, 1988; Nelson et al.,
1992). The range consists of five principal peaks (Fig. 5.2a), from north to south these are:
Mt Ellen; Mt Pennell; Mt Hillers, Mt Holmes; and Mt. Ellsworth. Igneous rock composition

throughout the Henrys is very consistent with 295% comprising of an intermediate, bulk
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diorite composition (58-63% SiO,; Hunt, 1953, 1988; Engel, 1959; Nelson & Davidson,
1993). The diorite has a porphyritic texture with dominant plagioclase and hornblende
phenocrysts constituting 25-55% of the rock (Engel, 1959; Nelson & Davidson, 1993;
Horsman et al., 2005). Despite the consistent bulk dioritic composition throughout the
Henry Mountains, significant textural variations (in particular phenocryst size and
phenocryst:matrix modal abundance ratio) can be used to characterise the diorite of the
different intrusions and, in places, to identify distinct magma pulses within an intrusion

(Horsman et al., 2005).

Mount Hillers (Figs 5.2a) displays the best exposure of the five Henry Mountains intrusive
centres, and as a result is also the most studied (e.g. Gilbert, 1877; Hunt, 1953; Johnson &
Pollard, 1973; Jackson & Pollard, 1988; Horsman et al., 2005, 2009; de Saint Blanquat et
al., 2006; Morgan et al., 2008). Numerous satellite intrusions outcrop to the north and
north-east (Fig. 5.2). Interestingly, Sawtooth Ridge, Black Mesa and Maiden Creek satellite
intrusions are situated in close proximity to one another and yet all display very different
geometries (Fig. 5.2b). Sawtooth Ridge is the closest of the three satellite intrusions to
Mount Hillers. The intrusion is a highly elongate and narrow body, trending roughly ENE-
WSW (Figs 5.2) and has a jagged topography from which it gets its name: Sawtooth (Hunt,
1953; Johnson & Pollard, 1973; Horsman et al., 2005). Situated just to the north of the tip
of Sawtooth Ridge is Black Mesa (Fig. 5.2). Described as a punched laccolith or bysmalith,
Black Mesa is characterised by a circular shape in map view (Fig. 5.2b) and a faulted cliff
face ~130 m high constitutes its eastern margin (Hunt, 1953; Habert et al., 2004; de Saint
Blanquat, 2006; Horsman et al., 2009). Both Sawtooth Ridge and Black Mesa intrude at
the same stratigraphic level, within the upper Summerville Formation (Jurassic reddish,
brown shales, siltstones and sandstones; Hintze & Kowallis, 2009). Maiden Creek,
described as a sill for the most part (Hunt, 1953; Johnson & Pollard, 1973; Horsman et al.,
2005), is situated just to the north-east of Sawtooth Ridge and at the foot of the
domineering faulted cliff face of Black Mesa (Fig. 5.2b). Dissimilar to its neighbouring
satellite intrusions, however, Maiden Creek is intruded stratigraphically lower, within the
Entrada Sandstone Formation of the Jurassic San Rafael Group (Hunt, 1953; Hintze &

Kowallis, 2009).
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Figure 5.2. Location and geology maps of the Mount Hillers intrusive complex, Henry Mountains, Utah. (a)
Simplified geological map of Mount Hillers and its satellite intrusions (modified from Larson et al., 1985).
The various intrusions that comprise the Mt Hillers intrusive complex are numbered, using the names given
by Hunt (1953): 1 — Mt Hillers central complex; 2 — Bulldog Peak intrusion; 3 — Stewart Ridge intrusion; 4 —
Specks Ridge intrusion; 5 — Chaparral Hills Laccolith; 6 — Specks Canyon; 7 — speculated feeder system to the
Trachyte Mesa intrusion; 8 — Sawtooth Ridge intrusion; 9 — Black Mesa intrusion; 10 - Maiden Creek
intrusion; 11 — Trachyte Mesa intrusion. Inset maps show location of Mount Hillers with respect to Utah and
the Henry Mountains as a whole. (b) Aerial photograph showing location and geomorphology of the Maiden

Creek intrusion and neighbouring intrusions (Black Mesa and Sawtooth Ridge). Image from Google Earth™.
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5.2.1. Maiden Creek Intrusion

The Maiden Creek intrusion (originally Laccolite D of Gilbert, 1877) is a small intrusion (~1
km? in map view; Fig. 5.3). From the abundance of lateral contacts of the Maiden Creek
intrusion with the surrounding host rocks, it can be inferred that the current map pattern
of the intrusion corresponds closely to the original geometry of the intrusion (Horsman et
al., 2005). Johnson and Pollard (1973) provided a short summary of the intrusion and host
rock deformation in their report on the mechanics of laccolith intrusions in the Henry
Mountains from field observations. They noted its irregular shape in map view (Figs 5.2b

& 5.3).

53?000 537000

4197000

Figure 5.3. Map of the Maiden Creek intrusion and study areas. Zoomed-in aerial photograph (source:

http://gis.utah.gov/data/aerial-photography/) of the Maiden Creek intrusion. Intrusion outcrop extent

shown in blue (modified after Horsman et al., 2005). Yellow dashed line depicts subsurface intrusion extent
proposed by Horsman et al., 2005. Black circles with white outlines show structural stations analysed in this
study (also see Google Earth™ kmz file in Appendices for structural station locations). Mapped white boxes
show structural zones discussed in this paper: 1 — NE Intrusion; 2 — Eastern margin and ‘Whispering Wind
Gully’; 3 — Southern Intrusion and ‘Rattlesnake Gully’; 4 — NW Maiden Creek; and 5 — SW Maiden Creek.
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Horsman et al. (2005), using a combination of field mapping and fabric studies (both field
lineation and AMS measurements), divided this original intrusive geometry into two
discrete parts: the main body of the intrusion; and interpreted finger-like lobes projecting
outwards from the main body of the intrusion (outline in Fig. 5.3). The main body is
described as having a simple sill-like morphology, while three finger-like lobes (100 m
scale) emanate from this main sill, two in the north-east and one to the south (Horsman
et al., 2009). A fourth finger-like lobe is inferred from outcrops observed to the west of
the southern finger-like lobe (Horsman et al., 2005). Horsman et al. (2009) suggested that
these lobes cut up through the stratigraphy in the direction of magma flow with the
southern one of the NE pair cutting up gradually whereas the southern lobe, in
comparison, shows a stepped basal contact. Reporting field observations of two vertically
stacked bulbous terminations, along with a narrow band of solid-state fabrics within the
intrusion, Horsman et al. (2005, 2009) proposed that the intrusion is comprised of two
vertically stacked sheets, the second sheet intruded above the first and having an almost
identical thickness and extent to the first. Based on the relatively small volume of the
intrusion (<0.03 km®) Horsman et al. (2005) proposed that the Maiden Creek intrusion

represents the initial stages of emplacement.

Johnson and Pollard (1973) described intrusion—host rock geometries at an outcrop on
the NE edge of Maiden Creek. Here they observed an intense zone of cataclastic
deformation (~¥10 m wide) adjacent to a blunt intrusion margin. In contrast to this
intensely deformed lateral margin, they noted that deformation dies out quickly (within 1
m) on the top surface of the intrusion. However, there are few other documented
descriptions of host rock deformation structures associated with the Maiden Creek

intrusion.

Detailed kinematic and geometrical studies were carried out at a total of 80 structural
stations dispersed over the entirety of the intrusion (see spreadsheets and Google Earth™
kmz file in Appendices for locations of structural stations). At each structural station, a
representative structural dataset (including: deformation type; geometry; kinematics;
character; and cross-cutting relationships) was collected (minimum of 30 measurements
per station; >50 in areas of high intensity deformation). In total, 3986 structural

measurements were collected. This dataset enabled a detailed structural analysis of the
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intrusion. The results suggest a highly complex intrusion geometry accompanied by
equally complex and varied host rock and contact deformation structures. Consequently,
for ease of description, the intrusion has been divided into 5 separate zones (Fig. 5.3):
Zone 1 — NE intrusion; Zone 2 — Eastern margin and ‘Whispering Wind Gully’; Zone 3 —
Southern intrusion and ‘Rattlesnake Gully’; Zone 4 — NW margin; Zone 5 — SW Maiden

Creek. Each of the areas will be discussed in detail in the following sections.

5.3. Intrusion Geometries and Deformation Structures by Domain

5.3.1. Zone 1: NE Intrusion

5.3.1.1. Intrusion and Host Rock Geometries

Zone 1 comprises two distinct elongate intrusive bodies, separated by a sandstone gully
(Fig. 5.4). The main intrusive body (main lobe) displays a lobate morphology trending NE—
SW, bending to a more N-S trend at the tip (Fig. 5.5a—c). The exposed lobe is ~500 m
long, >30 m thick (basal contact is not clearly visible, though Horsman et al. (2005)
implied a vertical thinning towards the NE tip), and thins laterally from ~150 m wide in
the SW to ~45 m at the tip. The top surface is flat with convex, upper lateral margins.
Lateral margins are relatively steep, with the NW lateral margin in the sandstone gully
showing a jagged and stepped geometry (Fig. 5.5). A distinct NE-SW trending fabric is
identifiable from aerial images (Fig. 5.4b, d). This is confirmed by AMS and fabric studies
by Horsman et al. (2005).

The second intrusive body (northern ridge) appears smaller and trends approximately E—
W (Fig. 5.4a). Only the northern lateral margin is exposed, except at the tip of the
intrusion, and no basal contact is identifiable. Unlike the adjacent lobe, this body does not

exhibit a flat top surface, and its true sub-surface geometry is not well constrained.

5.3.1.2. Syn-emplacement Deformation Structures

Deformation structures were observed in both sandstones on the top surface (Fig. 5.4e, f)
and on the NW-lateral margin of the main lobe (structural stations MCSS-39, 40, 41 & 43;
Fig. 5.5), as well as in the intrusion itself (Fig. 5.5b, d, g). Deformation structures within
the host rock sandstone dominantly trend NE-SW (Fig. 5f), parallel to the main trend of

the larger of the two intrusive bodies (main lobe; Fig. 5.4a, b).
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Figure 5.4. NE Maiden Creek Intrusion (Zone 1). (a) Aerial photograph over NE Maiden Creek. Grey outcrops
are igneous, brownish outcrops are sandstone. Note NE-SW trending “Main” Lobe and E-W trending
northern ridge. Bedding strike and dip in yellow. (b) NE tip of the main lobe (structural stations MCSS-39
and -43) as seen in Google Earth™. Note, change in trend of the lobe from NE-SW to NNE-SSW towards the
tip. (c) View looking south-west from structural station MCSS-43. Note the sandstone gully between
elongate igneous bodies (Main Lobe and northern ridge). (d) NE-SW fabrics on intrusion top surface of
Main Lobe, as seen in Google Earth™. (e) Field photograph of NE-SW deformation bands and NW-SE joints
(structural station MCSS-39). (f) Lower hemisphere equal area stereoplot for planar structures recorded at
structural stations MCSS-39 and -43. Poles to planes are contoured and mean planes are shown for each

plot (black lines).
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Figure 5.5. Structural stations MCSS-40 and -41 in Zone 1. (a) Outcrop photo, and (b) schematic sketch of
the north-western lateral margin of the Main Lobe, highlighting intrusion-related deformation at the
intrusion—host rock contact and within the adjacent host sandstones (compare to fig. 13 in Johnson &
Pollard, 1973). (c) Field photograph showing the stepped, faulted intrusion—host rock contact. (d) Zoom-in
of the stepped intrusion—host rock contact. Note, fractures extending into intrusion, parallel the intrusion.
Also note the stretched, elongate feldspar phenocrysts and resulting fabrics showing drag into fault
surfaces. (e) Pencil cleavage. (f)—(h) are a series of lower hemisphere equal area stereoplots, showing poles
to planes (contoured) for: (f) NE-SW trending deformation structures (faults, deformation bands and pencil
cleavage); (g) stepped surfaces of the intrusion—host rock contacts shown in (d); and (h) reverse faults (red

planes), kinematics (red slip symbols) and pencil cleavage intersections (blue crosses). Stress axes and
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Shmin/ SHmax orientations calculated using kinematic inversion method of Reches (1987). Mean planes are

shown for each plot (black lines).

On the top surface of the main lobe, a conjugate set of deformation bands dip steeply
(>70°) to the SE and moderately (~40°) to the NW (Fig. 5.4f). Deformation bands (Fig.
5.4e) are very prominent (positive relief) and thick (up to 1 cm for an individual band; 5
cm for an anastomosing system; Fig. 5.4e). These deformation bands are cross-cut by
steeply-dipping tensile joints trending roughly NW-SE, perpendicular to the intrusion
trend and the deformation bands (Fig. 5.4e, f). These tensile joints are also apparent

within the intrusive body, and are identifiable in aerial photographs (Fig. 5.4b, d).

The NW lateral margin of the main intrusive lobe shows a stepped and faulted geometry,
with zones of high intensity deformation in the adjacent host-rock sandstone (Fig. 5.5).
The deformed sandstone can be divided into three areas (A, B, C) with distance from the
intrusion—host rock contact (Fig. 5.5b):

e A 0-1 m (fault controlled zone): altered, whitish-grey sandstone, intensely
deformed by abundant NE-SW trending, reverse faults dipping moderately to
both the SE and the NW (Fig. 5.5a—c, f, h). Offsets on deformation bands and other
faults, in addition to slickenlines, provide the kinematic data (Fig. 5.5h).

e B 1-3m (fault controlled zone): reddish sandstones also deformed by reverse
faults and deformation bands.

e C 23 m (zone of pencil cleavage): intense (mm- to cm- spacing) conjugate
deformation banding forming distinct planes (Fig. 5.5e,f, h). This area is
characterised by a zone of loose scree formed by pencil cleavage shards (Fig.
5.5a).

The geometries of deformation fabrics are similar in all three zones and the stepped
intrusion—host rock contact also exhibits these same orientations (Fig. 5.5f, g). Similar
conjugate faults/ shear fabrics can also be seen within the intrusion, although none
appear to cross-cut the contact. These shear fabrics show similar reverse kinematics to
the faults observed in the adjacent country rock (Fig. 5.5d). Kinematic inversion (Reches,
1987 method) of faults confirms a compressional system with a NNW—-SSE SHmax and an
ENE-WSW Shmin (Fig. 5.5h). Cleavage intersection from area C is coincident with o , (Fig.
5.5h).
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An apparent sub-horizontal surface is found above the deformed sandstones in subzones
A, B, and C (Fig. 5.5a, b). Sandstone beds above this within the gully show less
deformation than those below. This detachment surface is traceable onto the top surface
of the main intrusive lobe on the NW lateral margin, and is found within a more shaley-

sandstone unit.

5.3.2. Zone 2: Eastern Margin and ‘Whispering Wind Gully’

5.3.2.1. Intrusion and Host Rock Geometries

Intrusion geometries along the eastern margin are somewhat complex (Figs 5.6 & 5.7).
Zone 2 and Whispering Wind Gully mark a change in trend of the eastern margin of
Maiden Creek (Figs 5.3 & 5.6), from trending NE-SW in the north (Zone 1) to roughly
NNE-SSW to N-S in the south (Zone 3). The outer (eastern) lateral margin is steeply-
dipping and forms a cliff up to 30 m high (Fig. 5.7a). For ease of description, Zone 2 has
been further divided into two subareas: Zone 2a to the south; and Zone 2b (including
Whispering Wind Gully) to the north (Fig. 5.6b). North of Whispering Wind Gully, the
intrusion top surface is relatively flat and appears to be a continuation of the main, NE—

SW trending lobe in Zone 1 (Figs 5.3, 5.6a—c & 5.7a).

Figure 5.6 (overleaf)

Eastern margin and ‘Whispering Wind Gully’ (Zone 2). (a) Aerial photograph of the Eastern Margin of
Maiden Creek (Zone 2). Bedding strike and dip in yellow. (b) Panorama field photograph of Zones 2a and 2b,
view looking north-west. Viewpoint location provided on (d). Note the outcrop of igneous intrusion higher
than the intrusion in the foreground, with sandstones outcropping between. (c) Panorama field photograph
of Zone 2a, view looking ESE. Viewpoint location provided on (d). Note the elongate igneous ridge denoting
the edge of the intrusion. (d) Spatial distribution of deformation structures across the eastern margin of the
Maiden Creek intrusion and Whispering Wind Gully (Zone 2). Structural stations highlighted by white circles
with black outlines, sandstone—igneous contacts in red, and detachment surfaces in pink. Red and white
arrows depict inferred SHmax and Shmin orientations, based on fault and deformation band trends. Fault/
deformation band geometries are depicted in lower hemisphere equal-area stereoplots. Poles to planes are

contoured and mean planes are shown for each plot (black lines).
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Figure 5.7. Series of field photographs showing various intrusion geometries in Zone 2. (a) View looking

north-east along the eastern margin of the Maiden Creek intrusion. (b) View looking north-east from the
eastern edge of Whispering Wind Gully, Zone 2b. Note the NE-SW trending ridge of columnar jointed
intrusion in the foreground. (c) View looking west along the length of Whispering Wind Gully in Zone 2b.
Intrusion outcrops are observed on the northern flank of the gully, but are absent in the south and central
gully. Here, lateral margins and an inclined top surface to the intrusion are visible. (d) View looking north
across Whispering Wind Gully. Note flat top surface to intrusion to the north, undeformed sub-horizontal

sandstones above, and deformed sandstones in gully at same level as intrusion.

South of Whispering Wind Gully (Zone 2a) the intrusion top surface appears to be more
undulatory. Two distinct elevated elongate exposures of intrusive rocks can be observed,
separated by lower-lying sandstone outcropping in-between (Fig. 5.6). The outcrops to
the east form a pronounced ridge (Fig. 5.6¢) running along the eastern margin of the
intrusion, and appear to be onlapped by sub-horizontal sandstone beds to the west (Fig.
5.6b, c). Slightly further up the slope, we pass into another intrusive zone, lying
topographically higher than the ridge to the east (Fig. 5.6b, d). The outcrop is ~¥80 m long
and up to 3 m high (Fig. 5.6a), disappearing beneath sandstones to the north and south
(Fig. 5.6b—d). The upper contact of this outcrop appears relatively flat-lying and
concordant with the sandstone horizons above. This was interpreted in the field as an
intrusion top surface. The lower contact has a stepped geometry and is offset by faults
(Fig. 5.8). This contact was interpreted in the field to be a lateral (or basal?) contact. This

contact strikes NNE-SSW (289/62).
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Whispering Wind Gully (Zone 2b) is a topographic incision (Figs 5.6b & 5.7c, d), covering
an area ~90 m long by 50 m wide, trending “NW-SE (Fig. 5.6d). Igneous outcrops form
the northern edge of the gully, while sandstones are present in the central and southern
areas (Figs 5.6d & 5.7c, d). The sandstone within the gully lies topographically below and
adjacent to the intrusion top surfaces to the northeast, and south (Fig. 5.7c, d). The
northern edge of the gully exhibits a steep (S-dipping) intrusion—host rock contact (Fig
5.7d). At the head of the gully, a steep, faulted western intrusion—host rock contact can
also be observed: although the extent of this contact is poorly constrained (Fig. 5.9b). At
the head of the gully, a sub-horizontal, shaley-sandstone horizon is apparent, traceable
onto the top surface of the intrusion on the northern side. This marks a change in
sandstone bedding geometries from layered sub-horizontal sandstones above, to
moderately dipping (16-50°) below and within the gully (Figs 5.7c & 5.9). The intrusion
morphology of the eastern margin within Whispering Wind Gully appears somewhat
different to the neighbouring areas to the north and south. A steep ENE-WSW trending
intrusive wall can be seen (Fig. 5.7b) exhibiting columnar-style jointing. This structure and
variations in geomorphic character make it difficult to link the intrusion outcrops to the

south of the Whispering Wind Gully, to those in the north, as one continuous body.

Figure 5.8 (overleaf)

Geometries and deformation structures in Zone 2a. (a) Field photograph and schematic sketch showing a
complex intrusion margin with a jagged intrusion—host rock contact. (b) Zoomed-in field photograph and
schematic sketch showing faulted intrusion margin in Zone 2a. Note sinistral and normal movements on
fault planes. Faults can be seen continuing from the sandstone into the adjacent intrusion, and appear to
control the geometry of the intrusion—host rock contact. A sheared margin (<10 cm) can be seen within the
intrusion at the contact, while a wider (15 to 30 cm) zone of altered/ baked sandstones are found at the
contact. (c) Lower hemisphere equal area stereoplots showing: left — poles to planes (contoured) for planar
structures recorded at structural stations MCSS-43, -51, and -53; and right — extensional faults (red planes)
and kinematics (red slip symbols) in Zone 2a. Mean planes are shown for each plot (black lines). (d)
Photograph of a faulted intrusion—host rock contact. Note stretched plagioclase phenocrysts in the
sheared/ chilled intrusion margin, and the resulting fabric being dragged into the sinistral fault plane. (e)
Faulted intrusion margin and zoom-in of normal fault. (f) Zoom-in of a dip-slip fault plane within the
intrusion. Note black glassy surface (pseudotachylite?).(g) Zoom-in showing drag on sheared contact fabrics
into a sinistral fault. (h) Intrusion—sandstone interaction along sheared contact. Note thin baked aureole in

sandstone and chilled intrusion margin showing ductile shear fabrics in intrusion.
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5.3.2.2.  Syn-emplacement Deformation Structures

5.3.2.2.1. Zone 2a

MCSS-45 is a zone of bleached sandstone outcropping between the two intrusive
exposures in Zone 2a (Fig. 5.6a, d). Two main deformation trends are apparent: “NW-SE
and “NNE-SSW (Fig. 5.6d). A conjugate set of deformation bands trending “NW-SE dip
moderately (~30°) to the NE and SW. The second set of structures consists of deformation
bands, faults and fractures trending “NNE-SSW and dipping steeply to the NW (Fig. 5.8c).

Movement on this latter set appears to be dip-slip (kinematics not easily identifiable).

Structural stations MCSS-51 and -53 (Fig. 5.6a, d) are located at the intrusion—host rock
contacts of the western intrusive body (Fig. 5.8). Deformation structures at the upper
contact (MCSS-53) lie solely within the overlying host rock, and the intrusion—host rock
contact appears relatively flat lying. Deformation structures include deformation bands
and minor faults, trending roughly NE-SW and dipping moderately (~45°) to the NW (Figs

5.6d & 5.8c). Faults again show dip-slip movement with kinematics poorly constrained.

In contrast, the lower contact (MCSS-51) appears more structurally complex (Fig. 5.8a, b).
The contact is highly irregular, showing multiple stepped geometries with fingers of
highly-deformed sandstone within the igneous body (Fig. 5.8a, b). The intrusion contact
appears to exhibit two distinct trends: “N-S and “NE-SW (Figs 5.6d & 5.8c). Both trends
are consistent with faults observed in both the host-rock and the intrusion (Fig. 5.8). A
further set of NW-SE trending deformation bands can also be observed in the host-rock
sandstone (Figs 5.6d & 5.8b, c). A number of fault surfaces can be traced from the host
rock sandstone into the intrusion, and appear to displace the intrusion—host rock contact
(Fig. 5.8a, b, d), with m- to mm- scale offsets. An ultrafine, black rock (pseudotachylite?)
can be observed on some larger faults that extend from the host rock into the intrusion

(Fig. 5.8f).

The intrusion—host rock contact separates a sheared margin (up to 10 cm wide) within the
intrusion from a zone of altered sandstone and baked sandstone (up to <10 cm wide) (Fig
5.8b, e). Brittle and plastic(?) deformation fabrics can be seen within the chilled margin,
characterised by aligned, stretched, elongate feldspar phenocrysts (Fig. 5.8e—h). This
fabric parallels the intrusion—host rock contact in many places (Fig. 5.8d—h): the exception

being where the contact is faulted. Here, the fabrics terminate at the fault, and show drag
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into the shear surface (Fig. 5.8d, h). Shear fabrics on the N-S segments of the intrusion—
host rock contact show evidence for weak dextral shear (though slickenlines on fault
surfaces suggest predominantly dip-slip movements; Fig. 5.8f), while fault offsets and

associated drag on NE-SW segments show sinistral shear (Fig. 5.8d, g, h).

5.3.2.2.2. Zone 2b

Structurally, Zone 2b is best described according to structures above and below a
continuous sub-horizontal surface (dipping shallowly, <10°, to the SE) that can be traced
onto the top surface of the intrusion in the north (Fig. 5.9). Deformation structures below
this surface are steeply dipping (Fig. 5.10); while in contrast, those above display shallow-
to moderate-dips (Figs 5.6d, 5.9 & 5.11). There is also a contrast in deformation intensity
(i.e. fracture spacing): beds above this surface are less deformed that those below. Weak
shear fabrics can be observed on this sub-horizontal surface (Fig. 5.11b), which are
developed within a more muddy-sandstone unit than those above and below. These
shear fabrics are most pronounced with proximity to the intrusion top surface (MCSS-
49a). Outcrop exposures were not conducive to the collection of kinematic data. Some
low-angle faults above this surface appear to shallow-out and detach into this zone (Fig.

5.11a).

Figure 5.10 (overleaf)

Zone 2a deformation. (a) Series of lower hemisphere equal area stereoplots for deformation structures
(contoured poles to planes) observed in Whispering Wind Gully (i.e. Zone 2b), by structural station. Note
structural station MCSS-49 has been further divided into structures above (-49a) and structures below (-
49b) the detachment surface. For corresponding locations see Figure 5.6a, d, and 5.9 and the Google
Earth™ kmz file in the Appendices. (b) Series of lower hemisphere equal area stereoplots for faults within
Whispering Wind Gully, by structural station. Faults planes (red lines) and kinematics (red slip symbols)
indicate dominantly extensional deformation within the gully. Mean planes are shown for each plot (black
lines). (c)—(h) Series of field photographs showing: (c) large fault plane at structural station MCSS-46; (d)
zoomed-in photo of fault plane shown in (c) highlighting lunate fractures indicating normal dip-slip
kinematics; (e) highly deformed sandstones within the centre of the gully (note steeply-dipping NE-SW
trending deformation corridors acting as hinge lines to steepening bedding); (f) differing lateral intrusion—
host rock contacts, one faulted and one chilled; (g) Zoom-in of chilled intrusion margin with some evidence
for shear from slightly undulatory contact; and (h) fault plane with strike-slip slickenlines and shear fabrics

indicating dextral kinematics.
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Figure 5.11. Deformation structures in Zone 2a. Field photographs showing: (a) igneous outcrop in the NW
section of Whispering Wind Gully and detachment surface in line with the intrusion top surface, separating
moderately deformed, sub-horizontal beds above from intensely deformed, folded beds below; (b) close-up
of the detachment surface showing weak shear fabrics; (c) deformed host rock sandstones adjacent to
intrusion showing strike-slip displacements along faults; (d) recent E-W trending fault cross-cutting all other
structures, showing normal offsets on modern day topography; (e) zone of breccia associated with the
normal fault shown in (d); and (f) fault patterns in the host rocks sandstones adjacent to the intrusion with

dominant sinistral strike-slip displacements.

Deformation structures within the gully include deformation bands, faults, fractures and
veins (Fig. 5.10). The gully is characterised by a SE-plunging syncline, which can be easily
distinguished in outcrop by layered bleached and red-stained sandstone beds (Fig. 5.9b).
Deformation structures and kinematics vary across the gully from south to north, as one
approaches the intrusion—host rock contact (compare structural stations MCSS-46, -

47/48, -49b, and -50 in Fig. 5.6d).
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On the south side of the gully, an outcrop of bleached sandstone (MCSS-46; Figs 5.6a, d &
5.9) is highly deformed with abundant deformation bands (cm-spacing) and faults
trending NNE-SSW (Fig. 5.10a—d). Deformation bands form a conjugate NNE-SSW
trending set, dipping steeply (~80°) to the ESE and moderately (~40°) to the WNW (Fig.
5.10a). Faults also trend “NNE-SSW and dip predominantly to the west (Fig. 5.10b, c).
Slickenlines and kinematic indicators on slip surfaces (e.g. R-M shear sense criteria of

Petit, 1987) indicate normal movement on dip-slip fault planes (Fig. 5.10d).

Moving into the centre of the gully (structural stations MCSS-47- and 48; Figs 5.6a, d &
5.9), red sandstone outcrops within the syncline appear highly deformed, with
deformation bands and faults (cm-spacing; Fig. 5.10e). Here, two fault/ deformation band
systems are present, trending NE-SW and NNW-SSE. Both systems consist of steep (>65°)
structures dipping both to the east and west (Fig. 5.10a, e). The main fault planes
(exhibiting clear slip surfaces) dominantly trend NNW-SSE (Fig. 5.10b). Slickenlines and
offsets on bedding indicate normal, dip slip movement; kinematics consistent with those
at MCSS-46 (Fig. 5.10b, e). Approaching the syncline axis bedding steepens to ~50°; with
NE-SW trending deformation corridors appearing to act as hinge zones as the bedding

steepens (Fig. 5.10e).

A wider array of structures and trends are apparent on the northern side of the gully,
adjacent to the intrusion contact. Here, the outcrop appears to provide a window into the
intrusion to the north, with steep intrusion—host rock contacts identifiable on two sides
(Fig. 5.10f). Deformation structures in the adjacent host rocks consist of deformation
bands, faults, fault-related zones of cataclasite and breccia, and mineralised veins (Figs
5.10h & Fig. 11c—f). Deformation structures can be separated into three general
orientations: NW-SE; NNE-SSW; and E-W (Fig. 5.10a). The most pronounced systems of
faults trend roughly NW-SE, dipping steeply (>60°) to the SW (Fig. 5.10b). Kinematic
indicators include sub-horizontal slickenlines, shear fabrics and off-sets on other faults
and deformation bands (Figs 5.10h & 5.11c). These consistently imply a dominantly
dextral strike-slip movement (Figs 5.10b, h & 5.11c). The largest of these faults also
defines a sheared intrusion—host rock contact (Fig. 5.10f). Deformation structures
trending NNE-SSW dip steeply (>70°) to the west, and show both sinistral and normal
offsets on adjacent structures (Fig. 5.11c, f). These structures are also mimicked by the

intrusion—host rock contact: NNE-SSW intrusion—host rock contacts showing both chilled
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(intrusion) and altered/ (?) baked (sandstone) margins (Fig. 5.10g). There appears to be a
mutual cross-cutting relationship between both the NNE-SSW and the NW-SE trending

structures, and both sets clearly define/ control the intrusion geometry (Fig. 5.10a, b, f).

A system of roughly E-W faults, fractures and veins are also apparent, predominantly
dipping steeply (~80°) to the north (Figs 5.10a & 5.11a, f). One exception to this is an up
to 5 cm wide brecciated fault zone that dips steeply to the SSE (151/83; Fig. 5.11b—d). The
N-dipping faults, fractures and veins are commonly cross-cut and offset by the NW-SE
and NNE-SSW trending fault sets (Fig. 5.11f). In contrast, the S-dipping breccia zone
appears to cross-cut all other structures and also appears to displace present-day
topography (Fig. 5.11a, b—d). Kinematics on the N-dipping structures indicate a dextral
shear sense (see fault relay in Fig. 5.11f); while the S-dipping breccia zone shows normal

displacements (Fig. 5.11c, d).

Within the intrusion to the north (MCSS-50; Figs 5.6a, d & 5.9b) abundant fractures (dm-
spacing) are apparent, trending similarly to the structures in the adjacent host rock (i.e.

~“NNW-SSE and “NE-SW; Fig. 5.10a).

5.3.3. Zone 3: Southern Intrusion and ‘Rattlesnake Gully’

5.3.3.1. Intrusion and Host Rock Geometries

The morphology of the southern Maiden Creek intrusion (Zone 3; Fig. 5.3) is dominated
by a ~400 m long, roughly N-S trending ridge of igneous rock; seemingly a continuation of
the eastern margin in Zone 2 (Figs 5.12 & 5.13a, b). To the west of this ridge is a deep
(>30 m), steep-sided gully (Rattlesnake Gully; Fig. 5.12a—c) comprised of highly deformed
sandstones, outcropping at the same topographic level as the adjacent igneous rocks (Fig.
5.13a, ¢). Further igneous intrusion can be found outcropping along the western border of
the gully (Fig. 5.12a, c). Two separate bodies can be inferred from the presence of both
identifiable lateral contacts, and sandstones at the same level in-between. These igneous
outcrops flanking either side of the sandstone gully represent the southern pair of finger-

like lobes of Horsman et al. (2005).
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Figure 5.12 (overleaf)

Zone 3: Southern Intrusion and ‘Rattlesnake Gully’. (a) Aerial photograph of the southern Maiden Creek
intrusion and Rattlesnake Gully (Zone 3). Bedding strike and dip in yellow. Black points show structural
stations analysed in this study. Note igneous rock appears dark-grey in comparison to the light grey to
brown colours of the host rock sandstone. (b) Zoom-in of complex zone of folded bedding from map in (a).
Note steeply-dipping folded beds in sandstones between intrusive lobes, in contrast to shallowly-dipping
(<15°) beds in sandstones above. Inset stereoplots show poles to planes (contoured) for bedding above and
below the Maiden Creek Shear Zone (MCSZ) detachment surface. (c) Spatial distribution of deformation
structures in the host rock sandstones within Rattlesnake Gully (Zone 3). Structural stations highlighted by
white circles with black outlines, sandstone—igneous contacts in red, and shear zone in pink. Red and white
arrows depict inferred SHmax and Shmin orientations, based on fault and deformation band trends. Fault/
deformation band geometries are depicted in lower hemisphere equal-area stereoplots. Poles to planes are
contoured and mean planes are shown for each plot (black lines). (d) Panorama field photograph showing
the entire eastern margin of the Maiden Creek intrusion, viewed from the ESE (see map (c) for photo
location). Note the bleached sandstone horizon in the foreground, dipping to the NE, is the same sandstone
unit that overlies the intrusion top surface. Offset on this is sandstone horizon is <10 m at the southern tip
of the eastern lobe and increases northwards along the intrusion margin towards Zone 2 (N.B. horizon

offset geometry is similar to that of the throw on a fault, with offset increasing towards its centre).

Figure 5.13 (overleaf)

Intrusion and host rock geometries in Zone 3. (a) The western margin of the Eastern Lobe (view looking
east). Here outcropping intrusion is ~35 m at its thickest. Note the relatively flat intrusion top surface, and
narrowing towards the south. Location of Secret Nap Gorge highlighted. (b) View looking south along the
trend of the Eastern Lobe. (c) The western margin of the Eastern Lobe at the head of Rattlesnake Gully,
view looking north-east. Note the detachment/ shear surface separating less deformed sub-horizontal
sandstones above, from deformed and folded beds below and adjacent to the intrusion margin. (d) View
into Secret Nap Gorge and the Eastern Lobe, as seen from the ESE. This is the only basal (lower) contact that
can be observed. Note the irregular, hour-glass geometry to lateral intrusion margin. Beds below are sub-
horizontal and concordant with the lower intrusion contact, but are discordant (truncated) against the
lateral margin. (e) Zoom-in of sub-horizontal basal contact. (f) The eastern margin of the western intrusive
lobe, within Rattlesnake Gully. A water-cut incision provides a window into the internal architecture of the
intrusive body. Note the irregular (hour-glass) geometry to the lateral intrusion margin, and relatively flat
top surface. Deformed sandstone beds are folded and sheared into a faulted intrusion—host rock contact.
The detachment/ shear surface, MCSZ can also be identified, in line with the top surface of the intrusion. (g)
Structural zonation within the Western Lobe resulting from dominant low-angle faults and fractures in the

uppermost few metres, and predominate sub-vertical ‘cooling’ fractures below.
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The 3D geometry of the eastern intrusive lobe is well constrained, with both lateral
margins and top surface clearly identifiable (Figs 5.12d & 5.13a—c). A deep erosional
incision (~¥35 m) truncates the ridge about half way along its length (known locally as
“Secret Nap Gorge”; Fig. 5.13a, d), providing a window into the internal architecture of

the intrusive body. The floor of Secret Nap Gorge lies within the intrusion. However, on
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the outer eastern-most section, a sub-horizontal basal intrusive—host rock contact can be
observed (Fig. 5.13d, e). The width of the eastern lobe narrows from ~160 m in the north
to <30 m wide in the south (Fig. 5.12). A contrast in vertical thickness can also be
observed, from 235 m in the north to ~10 m at its southern-most tip (Figs 5.12d & 5.13a).
Although the overall trend of the ridge is roughly N-S, a clear arcuate geometry can be

defined when mapping both margins of the eastern intrusive ridge in detail (Fig. 5.12c).

The geometries of the western intrusive outcrops are more poorly constrained due to lack
of exposure. The architecture is best observed within a similar erosional cut to that in
Secret Nap Gorge (Fig. 5.12a, c). Here, an eastern lateral margin and intrusion top surface
can both be defined. The lateral contact in this area shows a distinct angular hour-glass
geometry (Fig. 5.13f, g), with upper and lower portions of the intrusion protruding further
into the adjacent host rock than the middle portion of the intrusion. The intrusion top
surface is relatively flat lying; ~300 m to the south, a small, jagged outcrop (~20 m? and ~5
m thick) of intrusion can be found (Fig. 5.12a). Although no intrusive rocks can be
observed elsewhere along the western gully-side, similar overlying bedding geometries
support the inference that a continuous intrusive body may be present in the sub-surface.
A western limit of this intrusive body cannot be defined as it is hidden by the overlying

sandstones.

A similar distinct sub-horizontal surface within the sandstone to that observed in Zones 1
and 2 can be traced onto the top surfaces of both intrusive bodies (Fig. 5.13c, f). This
surface (labelled MCSZ in Fig. 5.13b,c,f, g) marks a distinct change in the
geomorphological and structural character of the sandstones above and below (i.e. within
the gully). Above this surface, sandstone beds are relatively flat-lying, and concordant
with the intrusion top surfaces (Figs 5.12b & 5.13c, f). Whereas below this surface,
sandstone beds within Rattlesnake Gully appear folded and highly deformed (Figs 5.12b &
5.13c, f). Sandstone beds are also truncated by steep igneous contacts at the lateral
margins (i.e. the intrusion margins are discordant to bedding; Fig. 5.13a, f). The sandstone
gully also trends roughly NW-SE to N-S, reflecting the arcuate trend of the western
margin of the eastern igneous lobe (Fig. 5.12a, c). No basal contacts to the igneous bodies

can be observed within the gully (Fig. 5.13a).
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A distinct bleached white sandstone horizon can be mapped from the intrusion top
surface in the west to outboard (to the east) of the intrusion (Fig. 5.12d). On the intrusion
top surface this bleached horizon is sub-horizontal and concordant with the intrusion—
host rock contact. However, to the east of the Maiden Creek intrusion, beds dip shallowly
to the north-east (away from the intrusion), and terminate against/ are discordant with
the steep intrusive margin (Fig. 5.12d). Displacements of this sandstone horizon increase
northwards along the outer intrusive margin of the eastern lobe (Fig. 5.12d). No evidence

for monoclinal flexure can be observed over this margin.

5.3.3.2. Syn-emplacement Deformation Structures

Similar to Zone 2b (Whispering Wind Gully) and to a lesser extent the gully in Zone 1,
deformation structures in Zone 3 (Fig. 5.14a) can be separated into those above, and
those below the observed sub-horizontal detachment surface (Fig. 5.14b). Again this
detachment surface appears to lie within a more muddy/ shaley unit than the coarser
sandstone units above and below (Fig. 5.14b, c). However, in contrast to the detachment
surfaces in Zones 1 and 2b, the structure here exhibits well-developed cataclastic shear
fabrics showing top-to-the-WNW movements (Fig. 5.14a, c; note, this shear zone is

examined in more detail in Chapter 6).

Figure 5.14 (overleaf)

Deformation structures within Rattlesnake Gully in Zone 3. (a) Series of lower hemisphere equal angle
stereoplots of planar deformation structures. Plots show poles to planes (contoured) and mean planes are
shown for each dominant set (black lines). Red planes show faults and shear surfaces with slickenlines and
movements depicted by slip symbols. Results of kinematic strain inversion (using inversion method of
Reches (1987) in MyFault™ software) are shown (yellow dots show inferred stress axes and arrows show
Shmin/ SHmax orientations). (b)—(g) Field photographs of: (b) head of Rattlesnake Gully, view looking NW,
showing low- to moderately-deformed sub-horizontal sandstone beds above the detachment/ shear
surface, MCSZ, with intensely deformed and folded sandstone beds below; (c) zoom-in of the well-
developed shear zone (MCSZ) outcrop (structural station MCSS-0); (d) ‘kink-band’ geometry to deformed
sandstone beds flanking the western intrusive ‘lobe’, and increasing deformation banding with steepening
of bedding into the gully and central zone of pencil cleavage; (e) conjugate dextral and sinistral strike-slip
faults and deformation bands in sandstone beds flanking the eastern lobe; (f) zoom-in of pencil cleavage
(discrete planes) seen running along the centre of Rattlesnake Gully; and (g) stepped (jagged) intrusion—

host rock contact controlled by syn-emplacement strike-slip faulting.
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Above this shear surface, beds are sub-horizontal to shallowly dipping (<17°; Fig. 5.12b),
concordant with the detachment surface, and deformation appears to be minor in
comparison to that below. Below the shear surface, within Rattlesnake Gully (Fig. 12b),
sandstone beds dip moderately to steeply (16—81°) towards the gully axis (Fig. 5.12b),
forming a synclinal fold structure (fold axis trending roughly SSE-NNW; Figs. 5.12c &
5.14b, d, e). Although the beds dip inward, away from the gully margins (and intrusion
contacts), there is clear discordance between the moderately dipping beds and the steep

intrusive margins (Fig. 5.13a, f).

Sandstone beds on the western side of the gully steepen towards the centre of the gully,
with significant increases appearing to occur as they pass through ~SE-NW trending sub-
vertical deformation corridors (Fig. 5.14d); these deformation corridors act as hinge
zones, as seen in Whispering Wind Gully (see Fig. 5.10e for comparison). Similar
steepening is also apparent on the eastern side of the gully, though steepening appears
more rapid, and less controlled by deformation corridors (Fig. 5.14b, e). This contrast in
steepening reflects a slight asymmetry to the synclinal geometry of the gully (i.e. the
eastern side of the gully being slightly narrower and more steeply dipping; Fig. 5.12a, b,

c).

With the exception of structures in the NE corner (structural stations MCSS-3, 4, 5 and
18), and far south (MCSS-28 and 30) of the gully, moderately dipping, conjugate sets of
deformation bands strike sub-parallel to the trend of the gully and therefore, intrusion
margins: rotating clockwise from NNW-SSE in the north (head of Rattlesnake Gully) to
NNE-SSW in the south (Fig. 5.12c). In the NE-corner, these intrusion margin-parallel
deformation structures still preside, alongside a second set of ENE-WSW trending
deformation structures (Fig. 5.12c). While, in the far south of the gully, close to the

southern tip of the eastern lobe, E-W trending structures predominate Fig. 5.12c).

Principal deformation structures within Rattlesnake Gully include deformation bands,
faults, and pencil cleavage (Fig. 5.14). Two distinct trends can be seen within the
deformation bands in the gully: NNW-SSE and ENE-WSW (Fig. 5.14a). Both of these
trends appear to represent conjugate deformation band sets (Fig. 5.14a, d, e; note the
quadrimodal distribution of poles to deformation bands on stereoplot). Intense

deformation banding (dm- to cm- fracture spacing) is common throughout the gully, and
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increases in intensity towards the gully axis (mm- to cm- fracture spacing). This increase in
deformation intensity is characterised by a distinct zone of prolific pencil-cleavage (mm
spacing) running along the gully centre (Fig. 5.14a,b,d, f). Similar trends can also be seen
in the fault sets observed, although these slip-surfaces appear to favour only the north-
and west- dipping structures (Fig. 5.14a); however this observation may simply be due to
the lack of clearly identifiable slip-surfaces observed over the wider gully area (i.e. faults
were mainly only identifiable in outcrops in the NE corner of the gully). Slickenlines on
these fault sets show dominantly strike-slip shear, with conjugate dextral- and sinistral
shear seen on N-S and ENE-WSW faults respectively (Fig. 14a). The faults can be seen

offsetting the intrusion—host rock contact (Fig. 14g), similar to Zone 2a.

5.3.4. Zone 4: NW Margin

5.3.4.1. Intrusion and Host Rock Geometries

The NW margin of the Maiden Creek intrusion (Figs 5.3 & 5.15) is less well studied than
the eastern margin. The mapped intrusive margin trends from roughly NNE-SSW in the
west to roughly E-W in the north (Figs 5.3 & 5.15b). This change in trend is echoed by a
domal intrusion morphology over much of this area (Fig. 5.15c). To the east of the area
this simple domal morphology is less apparent, and the intrusion margin is characterised
by steeper cliffs, locally draped by a bleached sandstone ridge (Fig. 5.15). According to
varying morphologies and styles of deformation observed in the field, the NW margin can
be divided into two subareas (Fig. 5.15): Zone 4a, which includes the western and north-
western half-domal margin (Figs 5.15, & 5.16); and Zone 4b, the E-W trending northern

margin and intrusion top surface (Figs 5.15, 5.16-5.19).

Figure 5.15 (overleaf)

NW Maiden Creek (Zone 4). (a) Aerial photograph of Zone 4. Bedding strike and dip in yellow. Black circles
with white outlines show structural stations analysed in this study. Lower hemisphere equal area
stereoplots show bedding measurements for Zones 4a and 4b. Poles to planes (contoured), mean bedding
planes in black. Note the change in trend of the bedding, from NE-SW in Zone 4a to ESE-WSW in Zone 4b.
(b) Zoom-in aerial photograph (from Google Earth™) for areas 4a and 4b, showing intrusion outcrop extent
(grey coloured rock and red lines) and main structural stations discussed in text. (c) Panoramic field
photograph showing the NW margin of the Maiden Creek intrusion as observed from the BLM dirt road

looking SSE. Viewpoint location highlighted in (b).
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MCRD-15
O

Intrusion Top
Surface.,

-

(@) ol (h) o

Deformation Structures Faults in Sandstone Faults in Intrusion
418 Poles (contoured) 10 Planes with Slip Lines 16 Planes with Slip Lines

Figure 5.16. Zone 4a and the north-western margin of the Maiden Creek intrusion. (a) Field photograph of
the intrusion top surface in Zone 4a. Here a broad, half-domal intrusion is visible, and overlying sandstone
beds concordant with the intrusion show monoclinal folding. (b) Conjugate deformation bands in red
sandstone beds, trending ~E-W. (c) Sub-horizontal faults on the top surface of the intrusion with
slickenlines indicating top-to-the-north kinematics. (d) Faulted and baked sandstone immediately above the
intrusion top surface. (e) Zoom-in of a principal slip surface in the sandstones in (d) showing excellent dip-
slip slickenlines. (f)—(h) Series of lower hemisphere equal area stereoplots showing: (f) all planar
deformation structures recorded at stations in Zone 4a (see Fig. 5.15a, b for locations); (g) faults within
sandstone host rocks immediately above the intrusion top surface; and (h) faults within the uppermost
metre of the intrusion. Poles to planes are contoured, mean planes in black, faults in red lines and

kinematics shown by red slip lines.
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Figure 5.17 (overleaf)

Bleached sandstone ridge (Zone 4b). (a) Photograph looking at the bleached sandstone ridge from the
north-west. Location of key structural stations highlighted. (b) Outcrop and (c) zoom-in photographs at
structural station MCRD-21. Note faulted contacts and geometries of bleached sandstone and overlying red
sandstone. (d) Schematic sketch of structures shown in (c). Note steeply-dipping normal faults showing sub-
metre offsets (see also (g) & (j)), and low angle (<30°) north-dipping reverse fault cross-cutting all other
structures (see also (f) & (i)). (e) Conjugate deformation bands in bleached sandstone (structural station
MCRD-19). (f) Well developed dip-slip slickenlines on reverse fault. Kinematics constrained using lunate (R-
type) fractures of Petit (1987). (g) Steep faults showing normal offsets on bedding (MCDR-21). Outcrop is in
footwall to the large reverse fault in (c). Lower hemisphere equal area stereoplots showing poles to planes
(contoured) for: (h) conjugate deformation bands; (i) reverse faults and associated slickenlines (red slip lines
shown on their corresponding fault planes); and (j) normal faults. Stress axes and Shmin/ SHmax

orientations calculated using kinematic inversion method of Reches (1987).

Figure 5.18 (overleaf)

Intrusion—host rock geometries and deformation structures in Zone 4b and on the top surface of the
intrusion. (a) Panoramic field photograph looking WSW across the northern Maiden Creek intrusion margin
(Zone 4b), as viewed from Rt. 276. Note bedding in host rocks (inc. bleached sandstone ridge) are truncated
by the more steeply dipping intrusion margin surface. (b) Stepped intrusion top surface observed at
structural station MCRD-24 (also shown as a solid red line in Fig. 5.15b, near MCRD-24). Note that the step
on the intrusion top surface exhibits a smooth rounded geometry in outcrop, with highly deformed
sandstones in the adjacent outcrop (zone of pencil cleavage). (c) Arcuate joint pattern on the top surface of
the intrusion. Note here the intrusion is dipping gently to the north. (d) Concordant overlying beds on the
top surface of the intrusion. (e) Conjugate set of deformation banding (cm-spacing) in red sandstone. (f)
Zone of pencil cleavage immediately above the top surface of the intrusion, adjacent to and at the same
height as the lateral margin of the step-up on the intrusion top surface. (g) and (h) are lower hemisphere
equal area stereoplots of: (g) all planar deformation structures recorded on the intrusion top surface; and
(h) pencil cleavage planes. Poles to planes are contoured and mean planes in black show roughly WNW—-ESE
trends for both all deformation structures and pencil cleavage. Pencil cleavage trends infer a ~ NNE-SSW

oriented SHmax.
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(@ MCRD-18 (b) MCRD-17
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Figure 5.19. Further east on the northern margin, structural stations MCRD-17 and -18. (a) Photo of
dispersed thin beds of sandstone host rock overlying the intrusion top surface in Zone 4b. The intrusion top
surface appears relatively flat-lying. Note SE-NW trending deformation corridors at structural station
MCRD-18. (b) Photo of structural station MCRD-17. Note NE-SW deformation corridors in the overlying
sandstones. (c) And (d) show a zoom-in and schematic sketch of deformation bands and corridors in the
sandstones overlying the intrusion at MCRD-17. (e) Lower hemisphere equal area stereoplot of deformation
structures recorded at both stations. Deformation corridors (main trends) are sub-vertical, while secondary
deformation bands are more shallowly-dipping. Note the main trend for MCSS-18 is the secondary trend for

MCSS-17 and vice versa.

Along the NW and western margin of Maiden Creek (Zone 4a), igneous intrusion and
overlying sandstones crop out in nearly equal measure (Fig. 5.15b). Excellent exposure of
the intrusion—host rock contact, along with easily identifiable bedding planes between
red and bleached sandstone horizons, help constrain the surface morphology of the
intrusion in this area (Fig. 5.15b, c). The intrusion host—rock contact is concordant with
shallowly- to moderately-dipping overlying sandstone beds, forming a wide-arching
monoclinal (half-domal) morphology (Figs 5.16a & 5.20). This continuous arched (convex)

intrusive contact can be traced over a wide area and defines Zone 4a.
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Figure 5.20. Schematic cross-sections across the intrusion margin in Zones 4a and 4b. See text for

discussion.

The transition between Zones 4a and 4b is defined by a distinct N-S trending
morphological structure. Within the intrusion outcrops this marks an abrupt step up (>1
m high) on the intrusion top surface (Figs 5.18b & 5.20), while in the host rock a
distinctive ridge of bleached sandstone is apparent (Figs 5.15b, ¢ & 5.17a, b). In map view,
a clear lateral step in the margin is identifiable; the intrusion margin stepping to the south
(right-lateral) by ~50 m (Fig. 5.15b). This step is spatially coincident with the N-S trending

bleached sandstone ridge.

To the east of this ridge, the intrusion margin appears significantly steeper (Fig. 5.18a &
5.20). A shallowly N-dipping (<15°) intrusion top-surface (concordant overlying sandstone
beds) appears to abruptly stop, transitioning laterally to intensely deformed, moderately
N-dipping (~30°) sandstones. These moderately-dipping sandstones (also seen on the
ridge) appear to drape the intrusion margin. Moving eastwards, the intrusion in Zone 4b

appears to be continuous with the northern intrusive body of Zone 1.
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5.3.4.2.  Syn-emplacement Deformation Structures

5.3.4.2.1. Zone 4a

The overlying sandstones to the Maiden Creek intrusion in the NW are significantly
deformed, with abundant deformation bands (on a cm- to dm- spacing), faults and tensile
joints (Figs 5.15c & 5.16). From the SW to the NE of Zone 4a, a clockwise rotation of
deformation structures is apparent, trending predominantly NE-SW along the western

margin to E-W along the north-eastern margin, paralleling the intrusion margin.

On the steeper flanks of the intrusion host—rock monocline, conjugate deformation bands
are the dominant deformation structure within the host rock (Fig. 5.16b). On the
shallower-dipping upper flanks of the monocline, abundant (dm spacing) faults with
distinct slip surfaces are apparent both on the top surface of the intrusion and within the

overlying sandstones (Fig. 5.16c—e).

Red sandstone beds immediately (up to 5 m) above the top surface of the intrusion are
highly deformed, cleaved, and baked (Fig. 5.16d). Prominent deformation bands (cm- to
dm- spacing) trend roughly E-W, and dip moderately (>40°) to the north and south (Fig.
5.16f). Faults within the sandstone also trend E-W, dipping to the south (Fig. 5.16g); dips
ranging from shallow- (sub-horizontal) to steep- (sub-vertical). Well-defined slip surfaces
with slickenlines (Fig. 5.16e) imply dip-slip movements along the fault planes, consistent
with those observed in the intrusion. >5 m above the intrusion—host rock contact, the

overlying sandstones are less faulted and deformation bands are fewer in number.

Within the intrusion, a dominant set of roughly E-W striking faults dip shallowly (~10°) to
the south (Fig. 5.16c). Kinematic indicators include slickenlines, aligned stretched feldspar
phenocrysts and lunate fractures (R criteria of Petit, 1987) and imply normal, dip-slip
movement on fault planes (Fig. 5.16¢, h). A less dominant, roughly N-S fault trend can
also be seen (Fig. 5.16h), dipping shallowly to the west. Kinematics on these also show a

N-S movement (i.e. strike-slip).

Kinematic inversion of faults both in the intrusion and the sandstone show ~“N-S oriented

Shmin and vertical o ;: consistent with top-to-the-south shear at the intrusion—host rock

contact (Fig. 5.20).
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5.3.4.2.2. Zone 4b

The morphology of the northern margin of the intrusion is dominated by a *N-S trending,
elongate ridge of bleached white sandstone beds (Figs 5.15b, c & 5.17a) that dip shallowly
(<20°) to the north (Figs 5.15a & 5.16a—d) off the top surface of the intrusion. In contrast
to the sandstone bedding in Zone 4a, the sandstone beds on the ridge and adjacent cliff-

face to the west do not appear to be underlain by intrusive rocks (Fig. 5.20).

Structural data was collected at a series of structural stations along the ridge (MCRD-19—
21; Figs 5.15a, b & 5.17a). At the most distal, northern structural station (MCRD-19), a
well-defined system of conjugate deformation bands (cm- to dm- spacing) can be
observed (Fig. 5.17e). These deformation bands trend roughly ESE-WNW and dip
shallowly- to moderately- (~25°) to the north and south (Fig. 5.17¢, h).

Moving inboard onto the ridge (MCRD-20; Fig. 5.17a), deformation bands are still
apparent. However, a pronounced system of low-angle reverse faults can also be
observed (Fig. 5.17f, i). Dip-slip slickenlines are well defined (Fig. 5.17f) and kinematics

can be inferred using R shear criteria (lunate fractures) of Petit (1987).

Farther along the ridge (MCRD-21; Fig. 5.17a), a large (tens of metres in outcrop) low-
angle reverse fault can be seen (Fig. 5.17b—d). Although no exact tie points were
measured, offset on a bleached bedding horizon suggests a throw >5 m. A system of
steeply-dipping normal faults can also be observed at this locality (Fig. 5.17¢,d,g, j). These
faults show decimetre to metre scale offsets on bedding. Low-angle, reverse faults cross-

cut all other structures (Figs 5.17a—d & 5.20).

On the top surface of the intrusion (above the ridge; MCRD-23; Figs 5.15a, b & 5.18¢c, d),
roughly ESE-WNW trending deformation bands dominate (Fig. 5.18g). However, at
locality MCRD-24, an intense zone of pencil-cleavage can be seen, similarly trending
~ESE-WNW (Fig. 5.18f, h). This zone of pencil cleavage lies adjacent to, and
topographically at the same height as, the stepped-intrusion geometry outlined above
(Fig. 5.18b). Farther to the east (structural stations MCRD-17, 18; Figs 5.15a, b, 5.18a &
5.19), sandstones overlying the intrusion show deformation bands and ladder structures

(deformation corridors) trending both ESE-WNW and NE-SW (Fig. 5.19).
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5.3.5. Zone 5: SW Maiden Creek

5.3.5.1. Intrusion and Host Rock Geometries

The outcrops in Zone 5 (Fig. 5.3) are relatively flat-lying with excellent exposure (Fig.
5.21a—d). No intrusion outcrops in the SW Maiden Creek area (Fig. 5.21a, b), although
Horsman et al. (2005) inferred the western/ south-western margin of the intrusion may

pass through this area, following a NW-SE trend (Fig. 5.3).

5.3.5.2.  Syn-emplacement Deformation Structures

The sandstone exposures exhibit abundant deformation bands (cm- to dm- spacing). Two
dominant trends are apparent, striking NE-SW and E-W (Fig. 5.21). Both systems appear
to consist of conjugate dipping planes (Fig. 5.21g, h). Deformation banding ranges from
discrete planes (2-3 mm; Fig. 5.21g) to wider deformation corridors (~5 cm; Fig. 5.21f).
NE-SW structures are more dominant in the north-west of the area, while E-W trending
structures are more common to the south and east (Fig. 5.21b). E-W trending
deformation corridors display dominantly sinistral offsets on bedding/ cross-bedding (Fig.

5.21f).

5.4. Discussion
This detailed study of the Maiden Creek intrusion has highlighted a highly complex
intrusion geometry accompanied by equally complex and varied host rock and contact

deformation structures.

Syn-emplacement deformation structures appear to be parallel to either intrusion
margins (Fig. 5.22) and/ or, to a lesser extent, magma flow directions. Baer (1995)
proposed that if magma intrudes under a brittle regime, the final intrusion geometries
reflect the propagation history of the initial fractures. This paralleling of deformation
bands with intrusion margins matches similar observations from Trachyte Mesa (Chapter

3).
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Figure 5.21. SW Maiden Creek. Aerial photograph of the SW Maiden Creek intrusion area. Bedding strike
and dip in yellow. Black circles with white outlines show structural stations analysed in this study. (b)
Google Earth™ image showing dominant, NE-SW and E-W trending, structures in a sub-horizontal, red
sandstone outcrop covering an area of ~50 m’. (c) Zone 5 as viewed from the BLM dirt road, looking NNE.
(d) Photo of the sub-horizontal sandstone outcrop shown in (b). Note deformation structures lining up with
the elongate trend of the Sawtooth Ridge intrusion in the background. (e) Zoomed-in photo showing the

two deformation trends. (f) Sinistral shear along roughly E-W deformation corridors, suggested by off-sets
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on white sandstone horizons. (g) E-W trending conjugate deformation bands. (h) Lower hemisphere equal
area stereoplot of all planar deformation structures recorded at structural stations in Zone 5. Poles to

planes are contoured, and mean planes are shown by black lines.

Syn-emplacement deformation is largely confined to host rocks at the same structural
level as the intrusion, with syn-emplacement deformation appearing to die out rapidly >5
m above the intrusion top surface (e.g. Figs 5.9 & 5.18b), and virtually no deformation
apparent in outcrops beneath (Fig. 5.13e). However, a number of intense zones of
deformation have been observed (Fig. 5.22b) at the emplacement level and, significantly,
appear to be associated with the interaction of separate (adjacent) intrusive bodies (e.g.

at the head of Rattlesnake Gully in Zone 3; Fig. 5.14).

A number of common deformation structural types can be observed at various localities
around Maiden Creek. These include: faults and deformation bands; zones of intense
pencil cleavage; sub-horizontal detachment surfaces and shear zones. Of interest, zones
of compressional, extensional and strike-slip kinematics may all be observed across the
various localities studied. Compressional deformation structures (including intense pencil
cleavage) are consistently observed where host rock sandstones are found between two
closely situated intrusive bodies (e.g. structural stations MCSS-41, Zone 1; MCSS-6, Zone
3; and MCRD-24, Zone4). Johnson and Pollard (1973) also observed this zone of intense
compressional deformation along the intrusive margin, linking it to accommodation of
magma emplacement. As these zones are only observed at outcrops between intrusive
bodies, and not on outer margins, it is likely that the compression is the result of
‘squeezing’, associated with the lateral convergence of two bodies. In contrast, zones of
extension are more commonly found on intrusion top surfaces and around the outer

margins of the intrusion (e.g. Zones 2b and 4a).

Figure 5.22 (overleaf)

Spatial distribution of deformation structural trends over the Maiden Creek intrusion area. (a) Aerial
photograph (from Google Earth™) of the Maiden Creek intrusion overlain with lower hemisphere equal area
stereoplots for a selection of structural stations. Stereoplots show deformation structures plotted as poles
to planes (contoured) with mean planes highlighted in black. Bedding planes in maroon. (b) Aerial
photograph with structural trend defined. Structural trends are taken from mean planes from stereoplots in
(a). Extent of igneous outcrop of the Maiden Creek intrusion is shown in blue. Pink lines show mapped

shear zones/ detachment surfaces. White stars indicate zones of intense deformation (e.g. pencil cleavage).
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Chapter 5 — Maiden Creek Intrusion — host rock deformation and contact geometries

Based on the observed intrusion geometries and associated deformation styles
established in this study, Maiden Creek may be described in terms of three distinct
regions; (1) elongate lobate morphologies along the eastern intrusion margin (Zones 1-3);
(2) a half-domal north-western margin (Zone 4); and (3) an unexposed south-eastern area

(Zone 5).

5.4.1. Eastern Margin (Zones 1, 2 and 3)
Horsman et al. (2005, 2009) described the eastern margin of the Maiden Creek intrusion
in terms of finger-like lobes (two in the north-east and two in south) emanating from the

main intrusive body situated to the west (Fig. 5.23).

sw NE
A' -
A — A
] 50 100 m
NNW SSE
Py L3
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C c
- ISSUOME | 0 50 100m
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Figure 5.23. The model of Horsman et al. (2009) for the geometry and magma flow directions for the
Maiden Creek intrusion. (a) Geological map showing the Maiden Creek as a sill intrusion with a main body
located to the west with four-finger-like lobes (two in the north-east and two in the south) emanating from
the main body. Black arrows indicate lineations from both field measurements and magnetic fabric data.
Arrow length is inversely proportional to the steepness of plunge (i.e. short arrows indicate steeply-dipping
fabrics). The large grey arrows show inferred magma flow directions, radially fanning from a feeder to the
main sill in the west (below main sill body?). Locations of five cross-sections (A—A’ to E—E’) are shown on the

map.
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Igneous outcrop exposures in Zone 1 support the main NE-SW trending body having a
lobate morphology. Interestingly, this trend of the main lobe echoes the dominant trend
of Sawtooth Ridge (Fig. 5.2b). The NE-SW trending fabrics on the intrusion top surface
(Fig. 5.4d), the north-easterly narrowing of the main lobe, and its tipping out in the NE all
imply that the magma flow direction was from the SW towards the NE. This is supported
by the strong AMS fabric signatures recorded by Horsman et al. (2005) (Fig. 5.23). In
contrast, a lack of igneous outcrop exposures for the northern intrusive body in Zone 1
leaves unanswered questions about its true subsurface morphology. The highly elongate,
steep-sided and narrow nature of the outcropping body, along with the lack of a flat top

surface, does not resemble a typical lobe morphology.

Deformation structures observed at the head of the gully (structural stations MCSS-40 & -
41) indicate a compressional system (NNW—-SSE SHmax; ENE-WSW Shmin). The stepped
geometry observed for the northern lateral margin of the main lobe (Fig. 5.5b, c) suggests
that the significant faulting in the adjacent sandstone is synchronous with magma
emplacement (i.e. syn-emplacement deformation); the intrusion exploiting active faults.
Significant compression (as observed by abundant reverse faults, intense deformation
banding and a zone of prolific pencil cleavage) is likely to be the result of lateral spreading
of the main lobe resulting in ‘squeezing’ of the adjacent sandstones, in a narrow channel
confined by the northern igneous body. Such structures suggest that the two intrusive
bodies in Zone 1 are either contemporaneous, or that emplacement of the northern
intrusive body occurred before the lateral spreading of the main lobe (i.e. forming a

buttress).

Zone 3 displays many common features to those in Zone 1. The outcropping eastern
intrusive body shows a similar lobate morphology to the main lobe in Zone 1 (Fig. 5.13).
High intensity deformation can also be seen within sandstones at the level of the
intrusion in the adjacent sandstone gully (i.e. Rattlesnake Gully, Fig. 5.14). Deformation
within the gully is dominantly compressional (including a central zone of pencil cleavage
with SHmax perpendicular to the intrusion margin; Fig. 5.12c). As with Zone 1 this is
interpreted as ‘squeezing’ of the sandstones between two laterally expanding

neighbouring intrusive bodies.
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A well-established sub-horizontal shear zone has been identified in Zone 3, separating the
highly deformed sandstones in the gully from less deformed sandstones above. This shear
zone may be traced from the sandstone gully onto the top surface of both intrusive
bodies. Kinematics of this shear zone indicate a top-to-the-W/ WNW movement,
perpendicular to the main trend of the eastern intrusive lobe. A more detailed analysis of
this shear zone is provided in Chapter 6; however, it is worth noting that these kinematics

are in stark contrast to the N-S flow directions proposed by Horsman et al. (2005, 2009).

The complex nature of intrusion and host rock geometries in Zone 2 make the true 3D
geometries hard to visualise. The area was described by Horsman et al. (2005) as a
window through the intrusion (see fig. 2 of Horsman et al., 2005) to the underlying
sandstone. However, in more recent work of Horsman et al. (2009) this window appears

to be no longer highlighted (Fig. 5.23).

The geometry of the intrusion top surface along the eastern margin in Zone 2a (Fig. 5.6)
appears to reflect a stepped structure. This is in contrast to the flat-lying intrusion top
surface seen on the main lobe in Zone 1. Along this part of the eastern margin one can
observe a series of elongate ridges trending NE-SW (Fig. 5.6d). In contrast to the en-
echelon step-stair morphologies of Rickwood (1990), here, from west to east, a step-
down followed by a step-up is observed (Fig. 5.6b, c; Fig. 5.24). Schofield et al. (2012a)
attribute this non en-echelon morphology to the preferential exploitation of different
horizons by magma, rather than step formation through the creation of a fracture ahead

of the sill tip.

Assuming that the intrusion in Zone 2a has a stepped morphology, it is possible that the
complex intrusion and host rock geometries observable within Whispering Wind Gully
(Zone 2b) could be attributed to a window created by vertical separation of the sill sheet
in Zone 2a into two or three parallel sheets as they propagate in a roughly NE direction
along different structural horizons. This could explain the absence of igheous outcrops on
the southern side of the gully, the reappearance of intrusion on the northern gully side
the result of these segmented sheets once again coalescing (relay ramps and ‘broken

bridges’ of Schofield et al., 2012a; Fig. 5.24; e.g. similar to the depiction in Fig. 5.1b).
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The intensity of deformation of the sandstones within Whispering Wind Gully (Zone 2b)
resembles that observed in Zones 1 and 3. Similar to Rattlesnake Gully in Zone 3, synclinal
folding of the bedding can be seen in Whispering Wind Gully. However, in contrast to the
dominantly compressional deformation observed in Zone 3, here, fault kinematics appear
to favour extension (ESE-WNW; Figs 5.6d & 5.10). Differences in deformation style are
interpreted to reflect contrasting emplacement mechanisms and associated deformation
processes in stepped domains on intrusion top surfaces versus inter-lobe locations. A
broken bridge scenario within Whispering Wind Gully could help to explain the

extensional kinematics observed within the sandstone host rocks in the gully.

Zone 2a e .
Extension in overlying sst.

P

Sheared lateral margin
(dextral shear)

Zone 2b Weakly developed
shear surface

Sw NE

Whispering Wind
Gully

Figure 5.24. Schematic cross-sections across the intrusion in Zones 2a and 2b. (a) Schematic cross-section
(E-W) across Zone 2a depicting proposed sub-surface geometry to explain off-set (stepped) intrusion top
surface. (b) Schematic cross-section (NE-SW) across Zone 2b (Whispering Wind Gully) depicting proposed

sill geometries to explain deformation of sandstone in gully. See also Fig. 5.1b for conceptual geometries.
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5.4.1.1. Lobes, Steps and Bridges

It is likely that the main lobe in Zone 1 and the eastern margin (Zone 2) of the Maiden
Creek intrusion have lobate morphologies. However, all deformation structures observed
in this study are brittle, with faulting and associated zones of cataclasite (and to a much
lesser extent, breccia), deformation banding, pencil-cleavage, joints all observed in the
field. This dominantly brittle deformation is in stark contrast with literature supporting
ductile deformation commonly associated with magma fingers and lobes (e.g. Tweto,

1951; Pollard et al., 1975; Schofield et al., 2012a).

Fundamentally, the studies of Tweto (1951), Pollard et al. (1975) and Schofield et al.
(2012a) suggest a close relationship between magma finger and lobe formation with
certain (weaker?) host rock lithologies (e.g. clays, shales, and coal) that deform in a
ductile manner. Interestingly, the Maiden Creek intrusion is emplaced largely within more
competent (indurated) red, sub-arkosic sandstones; with a thin, more muddy-/ shaley-
sandstone horizon sitting directly above or close to the top surface of the intrusion.
Schofield et al. (2012a) provided an alternative for the fingers and lobes model,
suggesting that localised fluidisation may play a role in allowing the host rocks to behave
in a ductile manner; hydrothermal activity and associated fluidisation processes
mobilising grain boundaries within the host rocks. However, field evidence for such
fluidisation is not apparent in the host rocks adjacent to the main magma lobe (Zone 1) or
along the eastern margin (Zone 2) of Maiden Creek. The observations raise a number of
key questions. Firstly, are lobe morphologies the main intrusion mechanism for the
Maiden Creek intrusion, and if so, is magma lobe formation also facilitated by dominantly
brittle deformation processes? Secondly, is there significant evidence for fluidisation at
the microstructural scale (see Chapter 6 for more on microstructural analysis of samples

from Zone 3)?

The stepped and broken bridge morphologies proposed to explain the complexities
observed in Zone 2 are associated with more brittle deformation processes (e.g. Pollard
et al.,, 1975; Rickwood, 1990; Schofield et al.,, 2012a). This is consistent with the

dominantly brittle deformation observed over the whole of the Maiden Creek intrusion.

The palaeo-depth of emplacement for the Maiden Creek intrusion was likely ~3 km

(Hintze & Kowallis, 2009; see Fig. 2.18a, Chapter 2). This puts the depth of emplacement
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for Maiden Creek at the base of the proposed transition zone between fluidisation and
brittle processes of Schofield et al. (2012a; Fig. 5.25). Similar to their example of the Whin
Sill in the UK, this study supports the Maiden Creek intrusion displaying magma lobes as

well as stepped and broken bridge morphologies.

5.4.1.2. Kinematic Partitioning

In both Zones 2 and 3 fault kinematics appear to vary spatially. Deformation structures
adjacent to (<5 m) the intrusion appear to be dominated by strike-slip kinematics (Figs.
5.8, 5.10 & 5.14g), while in contrast farther away from the intrusion contact, faults tend
to show more dip-slip characteristics (Fig. 5.6d). This may reflect a form of kinematic
partitioning at the outcrop scale, and may be linked to the volumetric addition of magma.
This kinematic partitioning fits with the model of Teyssier and Tikoff (1999) that suggests
the range over which wrench-dominated faulting predominates at low-finite strains can

increase as pure shear is accommodated by volumetric addition of magma (Fig. 5.26).

5.4.2. NW Margin (Zone 4)

As outlined above, the NW margin (Zone 4) comprises two distinct morphological and
structural domains. In Zone 4a, the margin has a half-domal geometry trending from
roughly NNE-SSW to E-W (Figs 5.3 & 5.15b). In contrast Zone 4b displays a much steeper,
E-W trending, linear intrusion margin. Deformation structures and their orientations vary
across these zones, echoing the change in both intrusion margin trend and margin

geometry (Fig. 5.22).

The monoclinal geometries observed in Zone 4a show concordant sandstone beds draped
(folded) over a single continuous intrusive sheet. Similar geometries have also been
observed at Trachyte Mesa where ‘out-of-sequence’ stacking (‘under-accretion’ of
Menand, 2008) has occurred (Morgan et al., 2008; Chapter 3, this study). There are two
possible models for the sub-surface intrusion morphology in Zone 4a: (1) a classic domal
laccolithic intrusion with a concave-upwards upper margin resulting from vertical inflation
of a single sheet; or (2) a ‘Christmas tree’/ stacked laccolith geometry with under-
accretion beneath an initial sheet; this first sheet arched upwards as a result of inflation

of the sheets below.
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Figure 5.26. Plot showing range over which wrench dominated transtension (WDTT) may vary when magma
addition is included (Teyssier & Tikoff, 1999). Angle a is the angle of divergence between the extension
direction and a structural boundary. The normal range over which wrench dominated deformation
predominates is normally at angles where the divergence angle is <20°, however this range may increase

when volumetric addition (i.e. magma addition) occurs. EDTT = extension dominated transtension).

In contrast, the intrusion geometry in Zone 4b appears more tabular, with a steep lateral
margin (Fig. 5.18a). Sandstones are concordant over the intrusion top surface, whereas

they abut the steep lateral margin.

The transition area from Zone 4a to 4b is another highly complex area. The step-up on the
intrusion top surface (Fig. 5.18b) could, similar to Zone 2a on the eastern margin, be
attributed to a stepped-sill (Fig. 5.1b) on a top surface. However, as this step up is visible
along two different trends (N-S and ESE-WNW,; Fig. 5.15b) a stepped geometry as
depicted in Figure 5.1b is unlikely, as these steps are normally linear and parallel to the
magma flow direction. This geometry is more easily explained by the localised stacking of
adjacent intrusive sheets. Furthermore, the presence of a zone of pencil-cleavage
adjacent to the step, implies compression and ‘squeezing’, consistent with sheet
convergence (as observed in the sandstone gully in Zone 1 and Rattlesnake Gully in Zone
3); extension and strike-slip appearing to be more dominant in a stepped sill domain (e.g.

Zone 2).
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In Zone 4a, shallowly dipping faults on the intrusion top surface, and the immediate
overlying sandstones (0—3 m), show top-to-the-south kinematics (Figs 5.16 & 5.20). These
likely reflect magma flow and emplacement from south to north in this region. Similar
top-to-the-south kinematics are also apparent in Zone 4b; however here the deformation
is in the form of low-angle, reverse (i.e. thrust) faults seen along the bleached sandstone
ridge (Figs 5.17 & 5.20). This change from low angle ‘extensional’ shear (Zone 4a), seen on
the intrusion top surface, to compressional deformation, adjacent to the lateral margin, is
coincident with steepening of the intrusion margin (Fig. 5.20). The steep extensional dip-
slip faults observed in Zone 4b (bleached white sandstone ridge; Fig. 5.17) pre-date
reverse thrust faulting. These may be related to an earlier phase of emplacement, or even
pre-date emplacement (i.e. similar to regional Phase 1 structures observed at Trachyte

Mesa, Chapter 3).

Horsman et al. (2005) demonstrated that AMS fabrics are variable across Zone 4,
although two dominant trends are apparent: E-W (similar to host rock deformation

trends observed in this study); and N=S (echoing kinematics in this study).

5.4.3. Unexposed SW Margin (Zone 5)

Although no intrusion outcrops may be observed in Zone 5, evidence from the other four
zones may be applied to infer the sub-surface intrusion geometry. Deformation structures
in Zones 1 to 4 commonly parallel intrusion margins and, to a lesser extent, flow
directions (Fig. 5.22). In Zone 5, two distinct deformation trends are apparent: NE-SW;
and E-W (Fig. 5.21). Both these trends are at a high angle (near perpendicular) to the
inferred intrusion contact of Horsman et al. (2005, 2009; Fig. 5.23). Therefore, this simple
inferred contact appears unlikely. NE-SW trending structures appear to line up well with
the trend of the main lobe in Zone 1 (to the NE) and also with the trend of Sawtooth
Ridge (to the SW). From this, it may be inferred that this system may parallel the main
flow direction in the SW Maiden Creek intrusion. The E-W trending structures can be
traced laterally towards the southern elongate intrusive bodies in Zone 3. These may
reflect a southern lateral margin and/ or easterly flow direction to Maiden Creek. In
either case this would imply a distinctly different sub-surface geometry to that of
Horsman et al. (2005, 2009). An E-W trending magma flow direction (i.e. feeding the

western lobe in Zone 3) would be consistent with kinematics observed for the shear zone
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(Zone 3), as well as the roughly E-W mineral stretching lineations and AMS fabrics
recorded by Horsman et al. (2005) (Fig. 5.23). Again this would have implications for the
emplacement model proposed by Horsman et al. (2005, 2009) for the southern intrusive

lobes being fed from the north.

5.4.4. A new model for development of the Maiden Creek intrusion

Figures 5.27 and 5.28 show a preliminary evolution of the Maiden Creek intrusion based
on observations in this study. This new alternative model for the emplacement and final
geometry of the Maiden Creek intrusion has been developed through the integration of:
structural trends (consistent field relationships suggesting these parallel intrusion
margins, and to a lesser extent, magma flow directions); kinematics (these reflecting
magma flow); field observations of intrusion and host rock geometries; and locations of
zones of intense deformation (field relationships suggesting that these are localised to
transition zones between neighbouring intrusive bodies and their amalgamation).
Accordingly, the Maiden Creek intrusion can be sub-divided into 5 principal intrusive
bodies (Fig. 5.29): a main, central NE-SW trending lobe (Zones 2 and 1) displaying a
complex intrusion top surface with steps and broken bridges; a half-domal ‘laccolithic’
body comprising the western and north-western margin (Zone 4a); an inclined magma
sheet comprising the northern ridge (Zones 1 and 4b); and either two inclined magma
sheets or a combination of a lobe (eastern lobe) and inclined sheet (western lobe)

comprising the southern Maiden Creek intrusion (Zone 3).

All kinematics and structural trends appear to support a radial magma flow from a feeder
system located in the south-west. A feeder system from the vicinity of Sawtooth Ridge is
envisaged: note, the strong alignment between the main lobe seen in Zone 1, the
dominant NE-SW trending deformation structures over much of the Maiden Creek
intrusion (Fig. 5.22) and the trend of Sawtooth Ridge to the south-west (Figs 5.2b and
5.27). Growth of the intrusion from the south-west towards the north-east is then
pictured with lateral spreading of magma outwards towards the north (Zone 4) and the
east (Zone 3) as sub-horizontal stepped sheets and/ or inclined (saucer-shaped?) sheet
morphologies. Whether pairs of finger-like lobes (model of Horsman et al., 2005, 2009) or
a combination of lobe and inclined sill sheet morphologies (this model), in order to form

the zones of intense compressional deformation (with zones of pencil cleavage) observed
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in both the NE and southern Maiden Creek intrusion (i.e. Zones 1 and 3), two
neighbouring intrusions must be emplaced either contemporaneously, or the outer body
(with respect to the direction of magma flow and feeder) must be emplaced first in order
to provide confined boundary conditions (i.e. the northern ridge before the main lobe in
Zone 1, and the eastern lobe before the western body in Zone 3). Relative timings for the
western/ north-western ‘laccolithic’ body are less constrained, and the growth of the
western body could have been throughout the evolution of the entire intrusion. The final
stages of emplacement are likely to be the emplacement of the intrusion in the north-

east (i.e. the main lobe in Zone 1).

Horsman et al. (2005, 2009) suggested that the sub-surface geometry of the entirety of
the Maiden Creek intrusion is flat lying and comprises of two vertically stacked sill sheets,
perfectly matching each other in both thickness and extent (Fig. 5.25). Due to the
complex lobate geometries proposed by Horsman et al. (2005, 2009), this perfectly
matched stacked system does not seem viable. There is some evidence in the north (Zone
4) to support vertical stacking of sill sheets, however, over much of the rest of the
intrusion, no strong evidence is apparent to support the dual stacking of sill sheets
proposed by Horsman et al. (2005, 2009). Furthermore, additional complexities, both in
terms of intrusion geometries and emplacement-related deformation structures,
highlighted in this study further undermine the model for two stacked sill sheets. If the
intrusion and host rock geometries in the Whispering Windy Gully area (Zone 2b) truly
reflect a ‘window’ or gap in the intrusion created by the localised separation of coalesced
stepped- magma lobes/ sill sheets and a broken bridge, it is unlikely that a second (over-
accreted) sill sheet would mimic this complex geometry. Additionally, the observed
intrusion geometry in the NW (Zone 4a), with an expansive and continuous half-domal
intrusion top surface, suggests either one large laccolithic body, or under accretion of
later magma sheets beneath an initial sheet; not over accretion as suggested by Horsman
et al. (2005). Where an irregular lateral margin geometry (hour-glass shape; Fig. 5.13f) is
observed, analysis of the adjacent host rock deformation structures imply that this
geometry is more likely the result of the interaction of the magma with adjacent syn-
emplacement faults, rather than two separate sheets. In Chapter 6 this aspect is

discussed further using evidence from Zone 3.
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Figure 5.27. Possible emplacement evolution for the Maiden Creek intrusion based on observations,
kinematics and structural trends identified in this study, and as discussed in text. Note this evolution is

somewhat conceptual and needs further validation through additional fieldwork (inc. geophysical surveys).
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Figure 5.28. Same model as shown in Figure 5.27, annotated onto an oblique aerial view from Google

Earth™. Note alignment of Sawtooth Ridge intrusion with the main igneous lobe in Zone 1.

Further constraints of the sub-surface morphology are required to fully understand the
true emplacement evolution and final geometry of the Maiden Creek intrusion. This may
come from integration of field studies (i.e. Horsman et al. (2005) and this study) with

geophysical mapping techniques (e.g. gravity and magnetic surveys and ground-
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penetrating radar). However, complex intrusion and host rock geometries and
emplacement-related deformation structures suggest that the sub-surface extent and
morphology of the Maiden Creek intrusion could be far more complex that previously

proposed.

Northern Ridge

At e o

Figure 5.29. Conceptual 3D model for the proposed sub-surface geometry of the Maiden Creek intrusion.
Maiden Creek intrusion is sub-divided into 5 principal intrusive bodies: a main, central NE-SW trending lobe
(Zones 2 and 1) displaying a complex intrusion top surface with steps and broken bridges; a half-domal
‘laccolithic’ body comprising the western and north-western margin (Zone 4a); an inclined magma sheet
comprising the northern ridge (Zones 1 and 4b); and two inclined magma sheets (eastern and western
lobes) comprising the southern Maiden Creek intrusion (Zone 3). Magma flow directions are depicted by

red arrows.
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5.5. Conclusions

This study has provided a detailed analysis of intrusion contacts and syn-emplacement
host rock deformation structures to the Maiden Creek intrusion. A new model is
suggested for the emplacement, evolution and final geometry of the intrusion, with a
main and central NE-SW trending lobate intrusive body the result of a principle north-
easterly magma flow, originating from depth in the SW (and in line with the Sawtooth
Ridge intrusion), with lateral expansion resulting from the radial spread of magma from
the main NE flow direction towards the east and north-west. Intrusion and host rock
geometries, along with host-rock syn-emplacement deformation structures, suggest a
highly complex final geometry for the Maiden Creek intrusion, with 5 principle intrusive
zones, and the amalgamation of smaller intrusive bodies within these. Deformation
structures are dominantly brittle across the entire Maiden Creek intrusion, with magma
emplaced largely within more competent sandstones. Interestingly, a thin interlayed
shaley-silstone unit sits immediately above much of the top surface of the intrusion,
appearing to act as a detachment surface above which intrusion-related host rock
deformation is seemingly lacking, and also perhaps playing some role in controlling the

level of magma emplacement.

In addition to the new model for emplacement and final geometry, results suggest that
much can be learnt about intrusion geometries and emplacement through the detailed
analysis of these structures; these include:

e deformation structures commonly parallel intrusion margins, and in some cases
flow directions;

e kinematic analysis can give a strong indication of likely magma flow directions;

e deformation styles (e.g. compressional, extensional, strike-slip) vary according to
the local intrusion geometry (e.g. dominantly compressional between intrusive
bodies; and more extensional around steps and corrugations on intrusion top
surfaces); and

e |ocal kinematic partitioning (between pure and simple shear) is also evident in
syn-emplacement deformation structures in close proximity (< 5 m) to intrusion
margins.

Therefore, even in areas where intrusion outcrop is not available, these learnings can be

applied to infer underlying intrusion geometries (i.e. Zone 5).
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Syn-emplacement accommodation structures associated with the Maiden Creek

intrusion, Henry Mountains, Utah

This chapter is written for submission to Geosphere
Co-Authors*: Penelope I.R. Wilson, Ken J.W. McCaffrey, Robert E. Holdsworth

(*note: all scientific work was undertaken by the student/ principal author P. Wilson, and input from co-
authors on this work was at an advisory/ editorial level only)

Abstract

The Maiden Creek intrusion is a small satellite intrusion to the Mount Hillers intrusive
complex, Henry Mountains, Utah. Composed of an intermediate plagioclase-hornblende
porphyritic magma, the intrusion is emplaced within the Entrada Sandstone Formation.
These host rocks are an ideal lithology for the formation and preservation of deformation
structures that record information about the emplacement of the intrusion, magma flow
pathways and associated strains. Detailed observations of geometry and kinematics of
accommodation-related deformation of two neighbouring, c. N-S trending, elongate
intrusive bodies and host sandstones in a gully between have newly identified a sub-
horizontal shear zone which separates less deformed sandstones above from highly
deformed sandstones below in the gully, and acts as a structural detachment surface.
Structural evidence in the southern area of the Maiden Creek intrusion is consistent with
westerly-derived magma emplacement. Deformation structures in host rock sandstone
outcrops within the gully between the southern intrusive bodies are dominantly
compressional (c. E-W SHmax), while the spatial distribution and asymmetry of these
structures imply a reverse (east-verging) shear component. From observations of both
syn-emplacement deformation structures and exposed intrusion geometries, it is
proposed that the southern Maiden Creek intrusion is comprised of two westerly-derived,
deep-rooted sills. Overlying these deeper-rooted sills is the newly identified Maiden Creek
Shear Zone (MCSZ). This structure, with its top-to-the-WNW shear sense, is an antithetic
accommodation structure to the magma flow. Substantial amounts of strain observed
through microstructural analysis of shear zone samples suggest that the MCSZ played a
critical role in accommodating magma emplacement.

Keywords:
Sill emplacement; Shear zone; Microstructures, Accommodation structures; Intrusion;

Henry Mountains
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6.1. Introduction

Large volumes of igneous rock exist within the shallow upper crust (2-10 km) as intrusive
bodies, ranging in size and geometry (Cruden & McCaffrey, 2001). An intrinsic part of our
understanding of the emplacement of magma into the subsurface is reconciling the
intrusion ‘space-problem’ (Hutton, 1996). First recognised by Charles Lyell in the
nineteenth century (Pitcher, 1993), the ‘space-problem’ (or ‘room-problem’) refers to the
physical processes that allow the substantial volumetric addition of magma at depth.
Magma is commonly emplaced as a series of successive sub-horizontal tabular sheet-like
intrusions (e.g. Hutton, 1996; Cruden & McCaffrey, 2001; Morgan et al., 2008) in the mid
to upper crust. Such incremental growth means that only small volumes of additional rock
need to be accommodated at any one time (e.g. Pitcher, 1970; Mahan et al., 2003;
Glazner et al., 2004). Various studies have emphasised the role played by faults, shear
zones and pre-existing host rock structures in controlling the emplacement and growth of
magma bodies at depth (e.g. Hutton et al., 1990; McCaffrey et al., 1992; Neves et al.,
1996; Holdsworth et al., 1999; Snoke et al., 1999; Passchier et al., 2005). Furthermore,
most intrusions are syn-tectonic, and therefore emplaced into an active fault system

which may accommodate the increase in rock volume.

There are three distinct and different types of accommodation structures when
considering intrusion emplacement. There are those that are pre-existing structures
which are then exploited by the magma as it is emplaced (e.g. Hutton & McErlean, 1991;
Holdsworth et al., 1999; Magee et al., 2013). These we term ‘pre-emplacement’
accommodation structures. The second type comprises large, tectonically-driven
structures (such as transtensional faults) that are active at the time of magma
emplacement, i.e. ‘syn-tectonic’ accommodation structures (e.g. McCaffrey et al., 1992;
Neves et al., 1996; Passchier et al., 2005). The third type consists of localised structures
which develop directly in response to magma emplacement in order to accommodate the
extra volume of rock within the subsurface (i.e. the intrusion ‘space-problem’). It is this
final group of ‘syn-emplacement’ accommodation structures and associated physical

mechanisms that are the principal focus of this study.

Most field-based studies of intrusions have focused on the geometry and internal
architecture of sills, laccoliths and plutons, using a variety of methods including: field

mapping of internal contacts and external margins (e.g. Morgan et al., 2008; Magee et al.,
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2012); geochronological studies (e.g. Coleman et al., 2004; Westerman et al., 2004);
magnetic and macrosopic fabric studies (e.g. de Saint Blanquat & Tikoff, 1997; Horsman
et al.,, 2005; Stevenson et al., 2007); and numerical and experimental modelling (e.g.
Pollard & Johnson, 1973; Galland et al., 2009; Kavanagh et al., 2013). In comparison, only
a small number of studies have paid particular attention to the structural processes that
are occurring in the host rocks as these intrusions are emplaced (e.g. Johnson & Pollard,
1973; Jackson & Pollard, 1988; Morgan et al., 2008; Schofield et al., 2012). Furthermore,
most papers that include observations on host-rock deformation structures do not
consider the kinematics which can potentially preserve information concerning the

emplacement mechanism, magma movement (i.e. flow direction) and associated strains.

The present study focuses on syn-emplacement accommodation structures related to the
Maiden Creek intrusion in the Henry Mountains, Utah. This intrusion was likely emplaced
at a palaeo-depth of >3 km (based on overburden thickness estimates; Hintze & Kowallis,
2009). The study combines results from traditional field mapping and structural studies,
microstructural analysis and 3D visualisation (aided by laser scanning) in order to provide
a detailed analysis of the geometries, kinematics and spatial distribution of syn-
emplacement deformation structures in both the intrusion and importantly, the host

rocks.

6.2. Geological Setting

6.2.1. Henry Mountains

The Henry Mountains, SE Utah form part of the Colorado Plateau (Fig. 6.1a), and are a
classic region for the study of igneous intrusions and their emplacement. Following the
ground-breaking research of Gilbert in the late 19th Century (Gilbert, 1877, 1896), a
variety of studies have been carried out in the range (Hunt, 1953; Johnson & Pollard,
1973; Jackson & Pollard, 1988; Nelson & Davidson, 1993; Habert & de Saint Blanquat,
2004; Horsman et al., 2005; Morgan et al., 2008; de Saint-Blanquat et al., 2006; Wetmore
et al., 2009; Wilson & McCaffrey, 2013).
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Figure 1. Maps of Henry Mountains and Mount Hillers intrusive complex. (a) Simplified geological map of
Mount Hillers and its satellite intrusions (modified from Larson et al., 1985). Inset maps show the location
of the Henry Mountains and its five principal peaks (Mts Ellen, Pennell, Hillers, Holmes and Ellsworth). (b)
Aerial photograph of the Maiden Creek area. The extent of the igneous outcrop is shown in blue, while
proposed sub-surface outline intrusion (Horsman et al., 2005) is depicted by the yellow-dashed lines.
Numbers in (a) correspond to the intrusions that comprise the Mt Hillers intrusive complex. Using the
names given in Hunt (1953), these are as follows: 1 — Mt Hillers central complex; 2 — Bulldog Peak intrusion;
3 — Stewart Ridge intrusion; 4 — Specks Ridge intrusion; 5 — Chaparral Hills Laccolith; 6 — Specks Canyon; 7 —

speculated feeder system to the Trachyte Mesa intrusion (Hunt, 1953); 8 — Black Mesa intrusion; 9 —

Sawtooth Ridge intrusion; 10 - Maiden Creek intrusion; and 11 — Trachyte Mesa intrusion.
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Five principal peaks (from north to south: Mt Ellen; Mt Pennell; Mt Hillers; Mt Holmes;
and Mt Ellsworth) make up the Henry Mountains, each peak corresponding to an
intrusive centre (Fig. 6.1a). The igneous rocks are late-Palaeogene in age (Oligocene, 31.2
to 23.3 Ma K-Ar ages; Nelson et al.,, 1992), and most of the intrusions are of an
intermediate, diorite composition (58-63% SiO,; Hunt, 1953; Engel, 1959; Nelson et al.,
1992). They have a porphyritic texture, with dominant feldspar (An20 to An60; 20—40%)
and hornblende (5—-15%) phenocrysts. Although broadly consistent in composition, the
porphyritic textural characteristics vary significantly from one intrusion to another (Hunt,

1953; Nelson et al., 1992).

The intrusions were emplaced into a 3—6 km thick section of late Palaeozoic—Mesozoic
sedimentary rocks overlying Precambrian crystalline basement (Jackson & Pollard, 1988;
Hintze & Kowallis, 2009), and post-date minor Laramide orogenic activity (Late
Cretaceous to Early Palaeogene in age; Davis, 1978; Davis, 1999) on the Colorado Plateau.
Although Laramide structures are present locally (Davis, 1978; Jackson & Pollard, 1988;
Bump & Davis, 2003), the strata into which the Henry Mountains intrusions are emplaced
are nearly flat lying (Jackson & Pollard, 1988). Lack of significant pre- and post-
emplacement tectonism aids the identification of both intrusion geometries and
emplacement-related deformation structures. Furthermore, the original magmatic and

solid-state fabrics within the intrusive bodies are unaffected by later deformation events.

6.2.2. Maiden Creek Intrusion

A number of small satellite intrusions flank the north and northeast margins of Mt Hillers
(Fig. 6.1a). Due to their excellent exposures and 3D geometries, a number of these
satellite intrusions have been studied, and are often referred to as classic examples of sill
and laccolith intrusions (e.g. Gilbert, 1877; Hunt, 1953; Johnson & Pollard, 1973; Habert &
de Saint Blanquat, 2004; Horsman et al., 2005; Morgan et al., 2005; de Saint-Blanquat et
al.,, 2006; Morgan et al., 2008; Horsman et al.,, 2009; Wilson & McCaffrey, 2013). The
Maiden Creek intrusion is one of the most distal satellite intrusions of the Mt Hillers
complex, lying ~10 km NE from the main intrusive centre (Fig. 6.1a). Neighbouring
satellite intrusions include Sawtooth Ridge, the Black Mesa bysmalith , and the Trachyte

Mesa intrusions.
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Maiden Creek is a small (~1 km? in map view; Fig. 6.1b), sub-horizontal intrusion and has
been characterised as a sill in previous studies (Hunt, 1953; Johnson & Pollard, 1973;
Horsman et al., 2005, 2009). It intrudes, and is concordant with, the Entrada Sandstone
Formation of the Jurassic San Rafael Group (Gilbert, 1877; Hunt, 1953; Johnson & Pollard,
1973; Horsman et al., 2005). From the abundance of lateral contacts of the intrusion with
surrounding host rocks, Horsman et al. (2005) inferred that the current map pattern
corresponds closely to the original geometry of the intrusion. Horsman et al. (2005)
suggested that the Maiden Creek intrusion is comprised of a main sill-like body (with a
tabular geometry in 3D, elliptical in map view) with four finger-like lobes emanating from
this central body: a pair of lobes trending roughly NE-SW in the north-east; and a second
pair trending c. N=S to the south (Fig. 6.1b). Horsman et al. (2005, 2009) reported field
observations of two vertically stacked bulbous terminations, along with a narrow band of
solid-state fabrics within the intrusion, and further proposed that the intrusion consists of
two vertically stacked sheets, the second sheet intruded above the first (i.e. over
accretion; Menand, 2008) and with an almost identical thickness and extent to the first. It

is the southern pair of intrusive lobes that forms the focus of the present paper (Fig. 6.2).

6.2.3. Host Rock - Entrada Sandstone Formation

The Entrada Sandstone is composed of white to red cross-bedded aeolian sandstone and
red/ brown silty sandstone beds (Fig. 6.3a), interlayered with thin siltstone and shale beds
(Fig. 6.3b; Aydin, 1978). Petrographical analysis of the Entrada Sandstone in the Maiden
Creek area suggests that the sandstone is sub-arkosic (Fig. 6.3c—f) with dominant quartz
grains (>90%) and minor feldspar (plagioclase and microcline) and lithic fragments (~5-
10%). The average grain size of the quartz-dominated Entrada Sandstone is ~0.15 mm
(Fig. 6.3c—f), although larger grain sizes are measured in some layers (Aydin, 1978).
Undeformed Entrada Sandstone is highly porous, with porosities ranging between 15—
35% (visually estimated using percentage estimation comparison charts of Tucker, 2001;
Fig. 6.3c, d). Cementation is patchy (~3-5% of the rock), with calcite spar being the most
common cement (Fig. 6.3c, d), although Aydin (1978) also recorded siliceous and pelitic
cements within some layers. The Entrada Sandstone, being highly porous, is the ideal
lithology for the formation of compactional and cataclastic deformation bands (Fig. 6.3e,
f; Aydin, 1978; Aydin & Johnson, 1978; Aydin & Johnson, 1983; Fossen et al., 2007), which

may help to accommodate magma emplacement (Morgan et al., 2008).
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Figure 6.3 Entrada Sandstone Formation (host-rock). (a) Outcrop photograph showing white to red cross-

bedded aeolian Entrada Sandstone around Maiden Creek. (b) Example of thin interlayered siltstone and
shale beds (protolith to the MCSZ; see Section 6.7). (c)—(f) Photomicrographs of: (c) undeformed Entrada
Sandstone showing significant porosity (blue dye) taken under plane polarised light (ppl); (d) same view as
in (c) under cross-polarised light (xpl); (e) example of deformed Entrada Sandstone sampled ~1 m above the
top surface of the Maiden Creek Intrusion (note grain size reduction due to cataclastic deformation and

calcite cementation infilling pore space); and (f) same view as in (e) under cross-polarised light (xpl).

6.3. Digital Mapping and 3D Visualisation

Both the landscape (geomorphology) and intrusion—host rock geometries in the southern
Maiden Creek study area are highly complex and difficult to visualise through description
alone. In addition, it is also difficult to capture the 3D geometry, structural complexity and
spatial distribution of the geological framework and deformation using conventional

mapping methods. Digital mapping methods have the functionality to overcome this, and
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aid the integration of spatially accurate, multiple datasets and data types. FieldMove™
has proven useful in this study when collecting relatively simple locality data (e.g.
lithology, bedding; Fig. 6.2). Although Google Earth™ does not currently have in-built field
mapping functionality, it has worked well as a quick reference tool for both visualisation
and shared learning (see the kmz file in the Appendices for location of structural stations
discussed in this study). Terrestrial Laser Scanning (TLS), although time-consuming at all
stages (i.e. acquisition, processing and interpretation), has proved to be a valuable tool in
order to build a 3D structural framework as well as providing an excellent virtual image of

the outcrop (Figs 6.4c, d & 6.5).

TLS was carried at four Scan Stations (Fig. 6.2b) using a Leica ScanStation C10, in
combination with an AshTech Pro 3 DGPS (Fig. 6.4a, €), in order to acquire regional (360°
panorama) and high resolution laser scans of the southern Maiden Creek study area (Fig.
6.5). Structural interpretation of the laser scan data was then implemented using both
RiISCAN PRO™ and GoCAD™ software to create a 3D geological framework model of
emplacement-related deformation structures (Figs 6.4c, d & 6.5;). As well as capturing the
overall geometry of exposed intrusion (Fig. 6.4) TLS has also helped to capture fracture
and bedding geometries from inaccessible outcrops. Laser scan data provide
unprecedented detail and allows spatial variation of fracture attributes to be quantified

(e.g. fracture geometry, connectivity, and spatial correlation; see Section 6.5.3.1).

Figure 6.4c, d utilises the digital point cloud captured using TLS to map out the outcrop
extent of igneous rock within the study area, while Figure 6.5e shows the detailed

interpretations that may be achieved in areas of high resolution scans.

6.4. Intrusion—Host Rock Geometries in Study Area

Figure 6.1b shows the extent of the igneous outcrop in the southern Maiden Creek
intrusion study area. The geomorphology of the area is dominated by a roughly N-S
trending gully (Rattlesnake Gully; Figs 6.2 & 6.4), bound on either side by outcrops of
igneous rock and steeply dipping sandstones (Fig. 6.4). Cropping out to the east is a
continuous elongate, roughly N-S trending, 400 m long ridge of igneous rock (Figs 6.1b,
6.4 & 6.6a). From this elongate outcrop morphology, Horsman et al. (2005) described the

igneous ridge as a finger-like lobe, which is referred to in this study as the eastern ‘lobe’.
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This eastern lobe can be seen at the head of the gully (Figs 6.4 & 6.5) and appears to be

thicker in the north (~35 m), thinning towards its southern tip (<10 m).
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Figure 6.4 Panoramic photographs, annotated sketches and laser scan models showing outcrop geometries
of the study area. (a)—(b) view from scan station 4, looking north; (c)—(d) screen captures from 3D laser scan
models (in RiISCAN PRO) showing extent of igneous outcrop (teal colour) and extrapolated surface of MCSZ.
Oreintations roughly correspond to panoramic photo views in (a) and (e). (e)—(f) view from scan station 1,

looking west (see Fig. 6.2b for photograph and scan station locations).
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Igneous contact
Bedding

Figure 6.5 Examples of laser scan images and 3D modelling to map and visualise structural geometries in
3D. (a) Screen capture of RiSCAN PRO™ project of laser scan point cloud data across the study area.
Compare image to panoramic photo in Fig. 6.4e. San stations highlighted in blue. (b) Zoom in of structurally
complex zone in northern Rattlesnake Gully where MCSZ separates low-/moderately-deformed sandstones
above from highly deformed sandstones below and between two igneous lobes, area highlighted in (a). See
photo Fig. 6.8c for comparison. (c) Zoom in of folded sandstone units around irregular lateral margin of
igneous lobe, and neighbouring Pussycat outcrop, area highlighted in (a). See photo Fig. 6.6b for
comparison. (d) Line interpretation of laser scan point cloud data (same view as (a)). QR code is a link to an

online fly through video (https://www.youtube.com/watch?v=XnSJsytT-2Y). (e) Example of interpreted laser

scan point cloud of deformed sandstones adjacent to eastern igneous lobe at the head of Rattlesnake Gully,

viewed in RiSCAN PRO™ (intrusion outcrop extent highlighted in purple).

Igneous outcrops are also observed along the western flank of Rattlesnake Gully (Fig. 6.1b

& 6.4), although the continuous nature of these outcrops is less certain. Again, following
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the terminology of Horsman et al. (2005), these outcrops are termed the western ‘lobe’ in
this study. An E-W trending geomorphological incision formed by flash flooding provides
excellent 3D exposure through both the eastern and western intrusive bodies. The
incision cutting the eastern lobe is known locally as Secret Nap Gorge (Figs 6.2b & 6.4a, b;
see Google Earth™ kmz file in Appendices for locations), while the incision cutting the
western intrusive body has formed an amphitheatre dominated by a by a pillar-like
outcrop known as ‘The Pussycat’ (Figs 6.4, 6.5¢c & 6.6b). Within this amphitheatre, the
geometry of the eastern margin of the western lobe is well defined. Here the intrusion
top surface is relatively flat-lying (Fig. 6.6b—d). The lateral contact in this area, shows a
distinct angular hour-glass geometry (Fig. 6.6b), with upper and lower portions of the
intrusion protruding further into the adjacent host rock than the middle portion of the
intrusion. This also helps to form the geometry of The Pussycat. A distinct structural
zonation is also apparent in the cliff face within the amphitheatre: sub-horizontal faults
and fractures dominating the upper 5 m of the intrusion; and sub-vertical fractures

predominating beneath (Fig. 6.6d).

The basal (lower) intrusion—host rock contact is not observed in Rattlesnake Gully (Fig.
6.4). However, a sub-horizontal, lower basal contact is exposed on the outer eastern

margin of the eastern lobe.

Figure 6.6. (overleaf)

Intrusion outcrop geometries and fabrics. (a) view looking south along the eastern igneous lobe (Secret Nap
Gorge in foreground). (b) view looking west, from same location as (a), showing irregular eastern margin of
the Western intrusive body. Note similarity in shape of the Pussycat outcrop with the intrusion geometry in
the rock face to the left (also compare to Fig, 5c for to see quality and resolution of laser scan data). (c)
View looking north showing the MCSZ sitting on the top surface of the two intrusive ‘lobes’. (d) Structural
zonation to the western lobe resulting from sub-horizontal/ low-faults and fractures related to the MCSZ in
the uppermost few metres of the western lobe and sub-vertical fractures (cooling joints?) below these. (e)
Photomicrograph (at 5x magnification) of an undeformed intrusion (intermediate plagioclase-hornblende
porphyry) sample collected from the Maiden Creek study area. Note, large (0.5-5 mm) euhedral zoned
plagioclase (Plg.) and smaller (0.1-0.5 mm) hornblende (Hbl.) phenocrysts in a fine crystalline matrix. (f)
Photomicrograph (at 10x magnification) of zoned hornblende (Hbl.) phenocrysts. (g) Outcrop example of
freshly exposed intrusion surface showing undeformed porphyritic texture ~10cm below intrusion top
surface (note, compass-clinometer is resting on chilled intrusion top surface). Sample shown in (e) is from
an equivalent outcrop to this. (h) zoom in photograph of area outlined in (g) showing localised shear

deformation on planes sub-parallel to intrusion top surface.
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Petrographic analyses of igneous samples collected at Maiden Creek show that the
intrusion has a porphyritic texture dominated by zoned plagioclase feldspars and
hornblendes within a fine-grained matrix (Fig. 6.6e, f, g). Although, the sample shown in
Fig. 6.6e, f was collected from close to the intrusion top surface (<1 m; Fig 6.6g) of the
western ‘lobe’ internal deformation appears to be minimal, with euhedral phenocrysts

preserving crystallisation textures (e.g. twinning in the plagioclases, and cleavage in the
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hornblendes; Fig. 6.6e, f). Deformation in this upper zone appears localised to discrete

shear planes (Fig. 6.6h). In these shear planes, stretching of feldspars are apparent.

Aerial photographs of the field area show that the intrusion margins have a curved
geometry bowing outwards to the east (Figs 6.1b & 6.2). The arcuate geometry of
Rattlesnake Gully is defined by the curved geometries of the two intrusive lobes and their
margins. Sandstones in the gully appear highly deformed (Figs 6.4 & 6.6c). This contrasts
sharply with the exposures in the same sandstone units in the hillsides above (Figs 6.4 &
6.6c¢), and those at the same stratigraphic level outside the gully and adjacent to the outer
margin of the intrusion, which show only minor deformation. Detailed geological and
structural mapping shows that a sub-horizontal detachment surface, the Maiden Creek
Shear Zone (MCSZ), separates these two zones (Figs 6.4 & 6.6b, c). The bedding in the
low- to moderately-deformed overburden above MCSZ is shallowly dipping (~10°) to the
SE (Fig 6.7a), striking parallel to the largest intrusive lobe of the Maiden Creek intrusion in
the NE (Fig. 6.1b), as well as the dominant trend of the Sawtooth Ridge intrusion to the
SW (Fig. 6.1a). In comparison, there is a greater spread of measurements for bedding in
the sandstone gully below MCSZ and between the two intrusive lobes. Bedding appears
to be flexed by the two intrusive lobes, dipping into the gully, creating a synclinal fold

structure with convex limbs (fold axis trending c. SSE-NNW; Fig. 6.7c & 6.8).

Figure 6.7 (overleaf)

Summary stereoplots of field structural data. Equal area, lower hemisphere stereoplots of data showing
poles to planes (contoured) sorted by spatial location with respect to the MCSZ. (a) bedding and
deformation structures in sandstone above the MCSZ. (b) deformation structures within the MCSZ and on
the top surface of the igneous lobes (mineral stretching lineations shown in rose diagram plot; radial marks
depict 5% intervals of total percentage of measurements). (c) bedding and deformation structures in the
sandstone gully below the MCSZ and between the southern igneous lobes. Mean planes for distinct cluster
populations are shown for each plot. Fault and shear zone plots also show fault slip lines with movement

direction indicated (red solid fill = normal fault slip; white fill = reverse slip).

261



Chapter 6 — The Maiden Creek shear zone

axpyins doj snoauby

seur]dis Lg
(painojuoo) ssjod Lg
Sjined g

£8'58

() suoiesu uonossIsiUl 8
(pe.inojuoo) ssjod £r
abieaea|d j1ouad

SIUBWIBINSEIN 9E
suoneaur [eiaul

saur] dis yjm saueid g
(painojuoa) ssjod 9¢
sjined

(paunojuoo) sejod 645
spueg uonewojag

(paunojuoa) ssjod 8L
sa)jof1s

(painojuoa) ssjod 82
buippag

\
\
\
\
\

SIXY plod

(auipuis)

1 20e4Ng
sy

seur] diis yim seuerd /
(paunojuoa) ssjod €8

auoz ieays o

\\} .

(painojuod) sajod g
sjuior

seur] diis ypm sauejd £
(paunoyuoo) sejod g1
sjjned

(paunojuod) sejod LLE
spueg uoijeuriojaq

(painojuoo) sejod #z
Buippag

(ZSOW)
aU0Z IDAYS §931D) UIPID

ZSDN MOjag Sa4n)ondls

—
o
~

5

ZSDOW 2A0qY se4n)ondls

—_
T
—

Fig. 6.7

Intrusion Related Deformation Structures

6.5

Deformation structures observed in the intrusion host rocks include deformation bands,

faults, tensile joints, styolites, and pencil cleavage (Fig. 6.7). Deformation structures and

styles vary within host rocks above the MCSZ detachment surface, to those below MCSZ
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within Rattlesnake Gully. For ease of description in the following section, deformation

structures will be systematically described by zone and as depicted in Figure 6.7).

6.5.1. Deformation Structures Above the MCSZ

6.5.1.1. Deformation Bands

The sub-horizontal sandstone beds (Fig. 6.7a) above MCSZ show low- to moderate-
deformation (Fig. 6.8a, b). Deformation bands (Figs 6.7a & 6.8b), characterised by narrow
(mm-scale) zones of cataclasis, calcite cementation and resulting collapse of porosity (Fig.
6.3e, f), can be found throughout the Entrada Sandstone above the MCSZ. The spacing of
these fractures is on a decimetre to metre-scale, i.e. low- to moderate-deformation (Figs
6.8b). These deformation bands show dominant normal (extensional), centimetre- to
decimetre-scale offsets on bedding and cross-beds (Fig. 6.8b). These deformation bands
appear to exhibit a polymodal fault pattern (e.g. Reches, 1987; Krantz, 1989) with a
dominant NE-SW trend (Fig. 6.7a). Note, this NE-SW trend parallels the trend of the
largest intrusive lobe of the Maiden Creek intrusion (Fig. 6.1b), as well as the dominant

trend of the Sawtooth Ridge intrusion to the SW (Number 8 on Fig. 6.1a).

6.5.1.2. Faults

Some deformation bands exhibit clear slip surfaces (i.e. principal slip surfaces) from which
slip sense can be determined. For the purposes of this study we have classified these as
faults (Fig. 6.7a). In the sandstones above the MCSZ these faults dominantly trend N-S
and show dip-slip normal slip (i.e. E-W extension; Figs 6.7a & 6.8b) with displacements of

beds and cross-beds in the order of decimetres to metres.

6.5.1.3. Joints

A conjugate set of steeply-dipping tensile (Mode 1) joints trend WNW-ESE, and are
oriented roughly perpendicular to the polymodal deformation bands (Fig. 6.7a). These
joints are commonly found in sandstone outcrops located vertically above the intrusive

lobes with a decimetre- to metre-scale spacing (e.g. Structural Station MCSS-13).
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Figure 6.8. Field photographs showing deformation structures in the host-rock sandstones above and below
the MCSZ. (a) low- to moderate-deformation in sandstone beds ~50 m above the MCSZ. (b) zoom in of
sandstone in (a) showing extensional offsets on bedding along deformation bands. (c) head of the
sandstone gully, view looking NW, showing low- to moderately-deformed sub-horizontal sandstone beds
above the MCSZ, with intensely deformed and folded sandstone beds below. (d) ‘kink-band’ geometry to
deformed sandstone beds flanking the western intrusive ‘lobe’ and increasing deformation banding with
steepening of bedding into the gully and central zone of pencil cleavage. (e) zoom in of (d) showing ‘kink-
band’ geometry as the folded beds pass through a vertical deformation corridor. (f) rotation of deformation
banding about a horizontal axis corresponding to monoclinal folding (N.B. the lack of ‘kink-banding’
observed for the western ‘limb’) of beds flanking the eastern intrusive ‘lobe’. (g) conjugate strike-slip faults
and deformation bands on beds flanking the eastern lobe. (h) deformation banding displaying strike-slip

offsets on other deformation bands.
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6.5.2. Deformation Structures Below the MCSZ

As described above, sandstone bedding within Rattlesnake Gully is folded to form a
synclinal fold structure with convex limbs (i.e. steepening towards the axis) and a fold axis
trending c. SSE-NNW along the centre of the gully axis (Figs 6.7c & 6.8c—g). Deformation
structures within this zone include: intense (cm- to mm-spacing) deformation banding;

conjugate strike-slip faulting; and pencil cleavage (Figs 6.7c & 6.8c—h).

6.5.2.1. Deformation Bands

Porosity-reducing deformation bands are prolific beneath the MCSZ in the sandstone
gully. These deformation bands occur with centimetre-scale spacing immediately below
the MCSZ, increasing in intensity (mm-spacing) towards the centre of the gully. In contrast
to the deformation bands found above the MCSZ, those beneath show dominantly strike-
slip and reverse (compressional) offsets (cm- to dm-spacing) on bedding (Fig. 6.8e, h).
Although the orientation of deformation bands varies spatially (see section 6.6), two

distinct trends are apparent: c. SSE-NNW; and c. ENE-WSW (Fig. 6.7c).

Sandstone beds flanking the western lobe show a stepped (kink band) geometry as they
steepen into the centre of the gully (MCSS-17; Fig. 6.8c-e). This occurs due to the
presence of several vertical deformation corridors (stepped ladder zones) trending c.
NW-SE (Fig. 6.8d). This stepped geometry is less apparent on the beds flanking the
eastern lobe. Instead, a clear rotation of deformation structures into the gully is

associated with the steepening of the beds (MCSS-4; Fig. 6.8f).

6.5.2.2. Pencil Cleavage

As intensity of deformation increases towards the centre of Rattlesnake Gully,
deformation bands start to take on a character more akin to a cleavage plane (i.e.
discrete fractures planes rather than narrow zones of deformation). Two distinct
conjugate cleavage planes are apparent, trending SSE-NNW, parallel to the gully axis (Fig.
6.7c). The centre of the gully is characterised by the development of a zone of pencil
cleavage (MCSS-6; Fig. 6.8c); the result of mm-scale cleavage/ fracture spacing. Pencil

cleavage intersections plunge shallowly to the SSE, and parallel the synclinal fold axis
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within the gully (Fig. 6.7c). In this zone of pencil cleavage, bedding has been obliterated

by the intense deformation.

6.5.2.3. Strike-slip Faults

Numerous fault planes (fractures and deformation bands with clear kinematic indicators)
are observed in the sandstones flanking the eastern lobe (MCSS-5; Fig. 6.8g). These faults
form a conjugate system with two dominant trends, NNE-SSW and ENE-WSW (Figs 6.7c
& 6.7g, h). They show strike-slip kinematics (from slickenlines and cm-scale offsets on
deformation bands and cross-beds) indicating a NE-SW shortening and SE-NW extension
(Figs 6.7c & 6.8g, h). These faults can also be seen continuing from the sandstone into the

intrusion (Fig.6.9).

6.5.3. Deformation Structures at the Intrusion-Sandstone Contact

Deformation structure types observed at the intrusion—sandstone contact include: strike-
slip faults; stretched mineral lineations; low-angle faults; and styolites. These structures
have different spatial distributions relative to the nature (i.e. top surface versus lateral

margin) of the intrusion—sandstone contact.

6.5.3.1. Lateral Margin

The western lateral margin of the eastern lobe (i.e. within Rattlesnake Gully) is relatively
simple with sandstone flexed and truncated by a steep intrusion margin. Through detailed
outcrop studies at Structural Station MCSS-5 (Fig. 6.2b; see Google Earth™ kmz file in
Appendices for locations of structural stations) faults can be seen continuing from the
sandstone into the neighbouring intrusion (Fig. 6.9c, d). Conjugate faults trending parallel
to those in the neighbouring sandstone appear to control the geometry of the intrusion—
host rock contact, forming an angular (or jagged) intrusion margin (Fig. 6.9¢c, d). These
fault surfaces preserve excellent sub-horizontal, strike-slip, slickenlines (Fig. 6.9¢, f) and
also show possible evidence for pseudotachylite on fault surfaces at the intrusion-
sandstone contact (Fig. 6.9f), while within the intrusion minerals appear to align parallel

to the fault planes (Fig. 6.9d).
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Intrusion

Figure 6.9. Field photographs showing deformation structures at the intrusion-sandstone contact. (a)
intrusion-host rock contact along the western margin of the eastern lobe at the head of the gully; (b)
conjugate strike-slip faults in the sandstones adjacent to the eastern lobe, extending into the intrusion; (c)
stepped (jagged) intrusion-host rock contact controlled by syn-emplacement strike-slip faulting; (d) zoom in
of (c) showing conjugate fractures in both intrusion and host rock. Note also the rounded tip to the
sandstone protrusion with aligned elongate crystals in the neighbouring intrusive rock mimicking the
contact geometry, highlighting that structures are syn-emplacement as they were active while magma was
still able to behave in a ductile phase. (e) slickenlines indicating strike-slip movement along a fault plane
within altered sandstone adjacent to the eastern lobe; and (f) Pseudotachylite(?) along a strike-slip fault

surface within the intrusion.
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Along the eastern margin of the western lobe (within Rattlesnake Gully) a similarly
complex intrusion margin geometry is observed (Figs 6.6b & 6.10). Below ‘the Pussycat’
outcrop, faults within the sandstone can be observed dipping parallel to the intrusion
contact (Fig. 6.10). These faults appear to show reverse shear from apparent offsets and
sigmoidal shear fabrics (Fig. 6.10c). Due to accessibility issues at this outcrop, TLS was
utilised to capture fault geometries (Fig. 6.10b). Fault planes were constructed in
GoCAD™ (Fig. 6.10d) from interpreted polylines (RiSCAN™). A set of shallowly-dipping
conjugate faults were identified (Fig. 6.10d, e), trending SSE-NNW, consistent with fault

geometries at neighbouring outcrops measured in the field.

6.5.3.2. Deformation on Intrusion Top Surface

6.5.3.2.1. Stretched Mineral Lineations

At MCSS-10 (Fig. 6.2b; Google Earth™ kmz file in Appendices), below the shear zone, a
dominant E-W trending linear fabric (086°-266°; Rose diagram in Fig. 4b & Fig. 10d) from
aligned, stretched plagioclase phenocrysts can be observed on the top surface of both the
eastern and western intrusive lobes (Fig. 6.7b & 6.11a, b). Two trends are observed (Fig.
6.7b): a dominant c. E-W trend, observed at multiple locations on both intrusive lobe top
surfaces; and a weaker c. N- S trend. Stretched plagioclase phenocrysts can also be

observed within shear bands in the uppermost metre of the intrusion (Fig. 6.6h)

6.5.3.2.2. Low-angle Faults

Low angle fault planes bisect the upper few metres of the western intrusive lobe (Figs
6.6d, 6.7b & 6.11c). These fault planes trend parallel to the ¢. N-S trend of the intrusion
margin, and dip shallowly (~20°) to the west (Fig. 6.7). Slickenlines and lunate fractures on
the slip surfaces indicate top-to-the-west kinematics (i.e. normal movement; structural
stations MCSS-27, MC008 & MCO009; Figs 6.2b, 6.7b & 6.11c). At structural stations MC009
and MCSS-27 (Fig. 6.2b), similar low-angle fault planes can be seen within altered
sandstones directly on top of the intrusion (Fig. 6.11d). These low-angle faults within the
sandstone exhibit a soft, white precipitate along fault surfaces, suggesting that they likely

acted as a fluid conduit during alteration of the sandstone.
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Figure 6.11. Field photographs showing deformation structures on the top surface of intrusion. (a)
Stretched plagioclase phenocrysts in upper 5 cm of intrusion to surface. (b) Dominant E-W fabrics of
stretched plagioclase lineations on the top surface of the western intrusion, immediately below the MCSZ.
(c) Low-angle faults and lunate fractures (R1 faults; inset image from Petit, 1987) indicating top-to-the-
WNW movement on the intrusion top surface (structural station MCSS-27). (d) Low-angle faults and
fractures and sub-horizontal styolites in altered sandstone above intrusion; geometry and kinematics of
faults matching those cutting intrusive rocks on the intrusion top surface (c). (e) small outcrop of thermally
and chemically altered sandstone above the eastern lobe. (f) zoom in of styolites in the altered sandstone
outcrop shown in (e). (g) Altered sandstones with styolites and vein-filled fractures above western lobe (~30
m west of lateral margin), MCSZ not clearly identifiable. (h) zoom in photo of altered sandstones. Note

nodular alteration zones and evidence for thermal fluid alteration.
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6.5.3.2.3. Styolites

Styolites (serrated surfaces formed by the removal of material by dissolution) are
observed within ~5 m thick horizons of altered sandstone located above the intrusive
lobes (including structural stations MCSS-24, MCSS-27 and MCSS-12; Figs 6.2b, 6.7b &
6.11e—h). These Styolites occur on a decimetre- to metre-scale and are relatively simple in
character, forming a wave-like surface (Fig. 6.11f). The styolites trend roughly NE-SW,
dipping shallowly to the SE (Fig. 6.7b), and are oriented parallel to both the sandstone

beds in which they are found, and the underlying intrusion top surface (Fig. 6.7a, b).

6.6.  Spatial Distribution of Deformation Structures

The deformed sandstones in Rattlesnake Gully (i.e. between the two intrusive lobes)
display considerable structural complexity and asymmetry. Deformation structures and
geometries vary across and along the strike of the gully (Fig. 6.12). The strike of the
deformation structures generally parallels the trend of the eastern and western intrusive
lobes; trending c. SSE-NNW at the head of Rattlesnake Gully, rotating to ¢. N-S as you
move south (Fig. 6.12a). In the south, where the gully opens out, and is only bound by
intrusive rocks to the west, deformation bands switch orientation to trend ENE-WSW
(structural stations MCSS-28 and -30; Fig. 6.12a). Deformation structures throughout
most of Rattlesnake Gully are compressional. However, the E-W trending structures in
the south display more extensional characteristics (i.e. opening ‘mode 1’ joints). These
structures are perpendicular to the dominantly compressional deformation bands seen

within the rest of the gully (Fig. 6.12).

As outlined above, bedding within Rattlesnake Gully shows a synclinal fold geometry (Fig.
6.7c—g), however, there is a distinct asymmetry to the eastern and western fold limbs (Fig
6.8. Beds on the western limb display a distinctive ‘kink band’ geometry as the, already
steepening, beds pass through vertical deformation corridors (trending SSE-NNW; Figs
6.8d, e & 6.12b). These deformation corridors trend parallel to the synclinal fold axis (Fig.
6.7c). The deformation corridors show an apparent reverse movement: though, in detail,
may potentially have a dextral oblique-slip component (consistent with strike-slip faults
of a similar trend observed elsewhere in the gully). This ‘kink-band’ geometry is not
observed for the beds forming the eastern ‘limb’; these instead forming a smoother

monoclinal fold-limb dipping into the centre of the gully (Figs 6.8c, f & 6.12b).
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Figure 6.12. Spatial distribution of deformation structures across the Southern Maiden Creek sill study area. (a) Aerial photograph (from Google Earth™) over Southern Maiden Creek study area annotated to show spatial distribution of deformation
structures. Fault/ deformation band geometries are depicted in lower hemisphere equal-area stereoplots (contoured poles to planes and mean planes shown). Red lines depict sandstone-igneous contacts, lilac lines show mapped MCSZ, and dashed-
yellow line the synclinal axis (and associated zone of pencil cleavage). Red and white arrows depict inferred SHmax and Shmin orientations, interpreted from fault kinematics and structural trends. b) Geological cross-sections across the study area (no

vertical exaggeration). Surface topography comprises an aerial photograph draped over 5m DEM surface in Move™. Inset boxes depict observed geometries, while 3D sections show potential deeper subsurface extent (see section 6.8.3 for discussion).

Cross-section locations are shown in (a).
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Abundant deformation banding occurs within the sandstone beds on both sides of the
gully, increasing in intensity towards the centre. On the eastern limb, conjugate
deformation bands rotate about a horizontal axis towards the gully centre (Fig. 6.8f). A
central zone of intense pencil cleavage runs along the fold hinge zone (Fig. 6.8c, d, f). The
fold hinge zone, and zone of pencil cleavage, appear to be located closer to the lateral
margin of the eastern lobe (i.e. off centre; Fig. 6.12), reflecting the asymmetry of the

deformation in the gully.

Adjacent to the eastern lobe, or more specifically in the NE of Rattlesnake Gully
(structural stations MCSS-4, -5, & -18; Figs 6.2 & 6.12a), a system of conjugate strike-slip
faults are present within the sandstone beds flanking the intrusion (Figs 6.8f-h, 6.9 &
6.12) and at the sandstone—intrusion contact (Fig. 6.9). This strike-slip faulting is not

apparent elsewhere in the gully.

6.7. Maiden Creek Shear Zone (MCSZ)

The Maiden Creek Shear Zone is a previously undocumented shallowly dipping to sub-
horizontal structure, separating weakly deformed sandstone above the intrusion lobes
from highly deformed sandstones below and within Rattlesnake Gully (Fig. 6.13). The
shear zone can be traced along a sub-horizontal detachment surface in line with the top

surface of the intrusive lobes (Figs 6.4, 6.12 & 6.13).

6.7.1. Outcrop Observations and Spatial Extent

The best and most accessible exposure of the MCSZ can be found at the head of
Rattlesnake Gully, at the base of a small (~¥2 m high) sandstone cliff face created by the
shear zone eroding faster than the surrounding host sandstones (structural station MCSS-
0; Figs. 6.2b & 6.13a—c). Here, the shear zone separates the intensely deformed
sandstones below (within Rattlesnake gully) from less deformed, sub-horizontal
sandstone units above. The shear zone is sub-horizontal and characterised by a series of
shallowly (<25°) ESE-dipping shear planes with consistent ESE-WNW trending slickenlines
that are preserved on upper and lower shear plane surfaces (Fig. 6.7b). The shear zone

appears to be at its thickest in this location, measuring ~0.7-1 m thick (Fig. 6.13b). On
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sub-vertical surfaces that parallel the movement direction, C-type shear fabrics (cm-scale)
indicate top-to-the-WNW kinematics along the shear zone (Figs 6.7b & 6.13c). The shear
zone exhibits a strong foliated fabric with an interlayered sequence of thin (cm-scale)
muddy brown layers, more competent hard red sandstone layers, as well as stretched
quartz boudins (up to 10 cm long; Fig. 6.13c). Lithologies within the shear zone appear to
resemble those of undeformed thin siltstone and shale beds observed locally within the
Entrada Sandstone Formation (Fig. 6.3b). These layered siltstone and shale horizons were

interpreted in the field as the likely protolith for the shear zone.

MCSZ can be traced onto the top surface of both intrusive lobes, though exposures are
better on the western lobe (e.g. structural station MCSS-10; Fig. 6.13d, e). Here the shear
zone is <15 cm thick, and shear fabrics are hard to identify due to lack of 3D exposures
and inaccessibility (beneath a narrow overhang). However, slickenlines can still be
recorded on lower and upper shear surfaces, these consistently trending ESE-WNW (Fig.

6.7b).

Moving further onto the top surface of the western lobe (<5 m), a discrete shear zone
becomes harder to identify. However, deformation structures consistent with the
kinematics of the MCSZ are still abundant. These include the c. E-W stretched plagioclase
phenocrysts and the low-angle (top-to-the-west) faults in both the intrusion top surface
and the overlying altered sandstones (Fig 6.7b & 6.11). Although not exhibiting simple
shear, styolites are also spatially coincident with these structures on the top surface (Fig.
6.11e—h). These structures can be identified for some distance (up to 50 m) onto the

western lobe.

The MCSZ can also be traced further south along the eastern margin of the western lobe

(structural stations MCSS-7 and MCSS-8; Figs 6.2 & 6.12).

6.7.2. Shear Zone Microstructures

Microstructural analysis was carried out on two samples collected from the MCSZ at
structural station MCSS-0 (Figs 6.2b & 6.13). Two polished sections were cut in two
different orientations: (1) a vertical section cut parallel to the movement direction (i.e.

ESE-WNW); and (2) a section cut along a horizontal plane parallel to the shear surface.
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Figure 6.13. Outcrop photographs of the Maiden Creek Shear Zone (MCSZ). (a) Maiden Creek Shear Zone
(MCSZ) separating low-moderately deformed sandstone above from highly deformed sandstone in the gully
below (slid white lines depict zones where the MCSZ can be observed in outcrop, while dashed lines depict
inferred continuation across areas of non-exposure). Extent of MCSZ defined in photo is ~200 m. (b) MCSZ
outcrop area in the ‘sandstone-sandstone domain’, structural station MCSS-0, locality highlighted in (a). This
locality represents the best exposed area for studying the MCSZ. (c) Shear zone fabrics (inc. C-type)
observed in outcrop, showing top-to—the-west shear (area depicted in (b)). (d) MCSZ outcrop area in the
‘sandstone-igneous domain’, structural station MCSS-10, locality highlighted in (a). Note, MCSZ is a thin
deformation zone on intrusion top surface with a c¢. 3-5 m thick unit of altered sandstone above. (e) Thin

(<5cm) MCSZ zone separating intrusion from altered sandstone.

At the microstructural scale, a clear layered/ foliated fabric is apparent (Fig. 6.14a).
Localised detachment surfaces (i.e. principal slip surfaces) separate broader, more
distributed zones of deformation. These zones of deformation appear to reflect a distinct
lithological layering, with quartz-dominated (sandstone) zones dispersed between layers
of muddy, feldspar rich (shale and siltstone) zones (white and brown layers respectively in

Fig. 6.14).
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Figure 6.14. A series of photomicrographs of MCSZ microstructures and fabrics, all indicating top-to-the-
WNW movement. (a) thin section photograph of sample MCSS 0 — SZ2. Note localised detachment surfaces
and broader zones of foliation. Labelled boxes indicate locations of photomicrographs in (b) to (f). (b)
varying shear layers offset by antithetic brittle micro-fractures and faults. (c) C-type shear band fabrics. (d)
C’-type shear band fabrics. (e) cataclastic tails to quartz grains to form boudins. (f) zoom in of deformed

quartz grain in (e).

Deformation microstructures within these different zones include inclined fault surfaces
and tensile fractures (Fig. 6.14b), shear band cleavage (Fig. 6.14c—e), pressure solution
seams (Fig. 6.14e), winged objects (o-type porphyroclasts; Fig. 6.14c, e, f), and zones of

ultra-cataclasite. A number of different shear fabrics and kinematic indicators are
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apparent (Fig. 6.14). Both C-type (Fig. 6.14c, e) and C’-type (Fig. 6.14d) shear fabrics can
be identified. Cataclastic tails are also observed for some larger clasts (Fig. 6.14e, f). These
all show non-coaxial deformation with a top-to-the-WNW shear sense, consistent with

field observations.

Deformation mechanisms appear to be dominated by cataclastic flow and the effects of
pressure solution (the latter leading to the development of the distinct foliation).
Cataclastic deformation appears to predominate in the quartz-rich (sandstone) layers,
although brittle faults and tensile microfractures are apparent throughout.
Microstructural analysis therefore suggests that deformation within the shear zone is

dominantly brittle.

6.7.3. Variations in Character

As outlined above, the style of deformation associated with the MCSZ appears to vary
spatially from above Rattlesnake Gully to that on the intrusion top surfaces (Fig. 6.15).
Consequently, the MCSZ can be divided into two distinctly different domains: 1) the
‘sandstone—sandstone’ domain in Rattlesnake Gully; and 2) the ‘intrusion—sandstone’

domain on the top surface of the igneous ‘lobes’ (Fig. 6.15).

In the ‘sandstone—sandstone’ domain, the MCSZ is characterised by clear Principal Slip
Surfaces (PSS) located at the top and base of a discrete horizon of shear fabrics, typically
>10 cm to 1 m thick (Figs 6.13 & 6.15). Comparatively, in the ‘intrusion—sandstone’
domain, deformation associated with the MCSZ is partitioned across the intrusion—host
rock contact (Fig. 6.15) into zones of pure shear/ flattening (i.e. styolites; Fig. 6.11f) in the
altered host rock (Fig. 6.11d—h), and simple shear (low-angle faults; Fig. 6.11c, d) within
the uppermost few metres of the intrusion and the overlying sandstones. As a result,
deformation associated with the MCSZ in the ‘intrusion—sandstone’ domain is more
dispersed, characterised by a thicker deformation zone extending ~3 m vertically either
side of the top surface of the intrusion and a less clearly defined principal shear zone (Fig.

6.15).
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6.8. Discussion

6.8.1. MCSZ: a Syn-emplacement Accommodation Structure

The MCSZ appears to be a significant structure localised to the southern Maiden Creek
intrusion area (Fig. 6.4); however, due to erosion, the true extent of the MCSZ cannot be
mapped in detail. Spatially, the MCSZ is also coincident with the intrusion top surfaces of
both the eastern and western intrusive lobes (Figs 6.4, 6.13d, e, & 6.15). Furthermore, it
appears to define an upper limit to intrusion-related deformation of host rocks within
Rattlesnake Gully (i.e. sandstones between the eastern and western lobes; Fig. 6.15). The
kinematics of the MCSZ (i.e. top-to-the-WNW) are consistent with both shear fabrics and
deformation structures observed on both intrusion top surfaces (e.g. low angle shear

fabrics, E-W stretched plagioclase phenocrysts and low-angle faults; Figs 6.7b & 6.11).

Low-angle faults on the intrusion top surface show consistent top-to-the-WNW shear,
matching that of the MCSZ (Fig. 6.7b & 6.11c). These low-angle faults can only be seen
cutting the uppermost few metres of the intrusion. Below this, sub-vertical fractures
predominate (Fig. 6.6d). As these brittle faults cross-cut the intrusion, a post-
emplacement timing could be inferred. However, similar faults may also be identified in
the altered sandstone immediately above the intrusion (Fig. 6.11d). Fluidisation along
these low-angle faults in the altered sandstone indicates that they were present whilst
the intrusion was still hot enough to be driving thermal fluids through the host rock.
Assuming, therefore, that these low-angle faults in both the intrusion and the sandstones
are contemporaneous in age, a syn-emplacement timing may be likely for these

structures.

As the MCSZ in Rattlesnake Gully (i.e. the ‘sandstone—sandstone’ domain) appears both
spatially and kinematically linked to the deformation on the top surface of the intrusive
lobes (i.e. the ‘intrusion—sandstone’ domain), this strongly supports the MCSZ as being a
syn-emplacement structure; shear occurring in response to the emplacement and flow of

magma within the intrusive ‘lobes’.

Further evidence to support a syn-emplacement timing for the MCSZ (as opposed to post-
emplacement localisation of deformation on the intrusion—host rock contact zone) is the
lack of offset between the thermally and chemically altered overlying sandstones (Fig.

6.11d-h) with respect to the underlying intrusive bodies. If the MCSZ post-dated
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emplacement of the intrusive bodies, we would expect to see an offset (top-to-the-west).
However, this is not the case, as the spatial distribution of altered sandstone units

corresponds perfectly to zones that overly intrusion outcrops (Fig.6.15).

Horsman et al. (2005) proposed a strong relationship between mineral stretching
lineations and AMS (Anisotropy of Magnetic Susceptibility) fabrics for the Maiden Creek
intrusion. They used these to infer magma flow directions (see Chapter 5, Fig. 5.23). Using
this relationship and fabrics observed in this study, a ¢. W—E magma flow direction may
be inferred for the western lobe. This would be consistent with the top-to-the-WNW
kinematics observed in the MCSZ. This easterly magma flow direction would also be
consistent with the regional model for a westerly-derived feeder system to the wider
Maiden Creek intrusion (Horsman et al., 2005, 2009). Furthermore, a westerly-derived
magma flow direction may explain the arcuate trend observed for the intrusive lobes and

intervening Rattlesnake Gully (see Section 6.8.2; Fig. 6.16b, c).

An alternative model for the MCSZ is that it is simply a décollement or gravity-driven
basal detachment surface, where the less-deformed rocks above are sliding down-dip due
to the growth of the underlying intrusion. However, the movement on the shallowly ESE-
dipping shear zone is up-dip (top-to-the-WNW), and therefore, this gravity driven
movement appears unlikely in the absence of any evidence for a later regional tilting of
the region. Furthermore, as the spatial distribution of the shear zone appears localized to
the southern Maiden Creek intrusion, a regional décollement/ detachment surface model

is less likely.

If the development and movement on the MCSZ, as proposed in this study, is
contemporaneous with the emplacement of the southern Maiden Creek intrusion (i.e. a
syn-emplacement structure), then its presence has significant implications in terms of
magma flow directions, emplacement mechanisms and sub-surface intrusion geometries;
the shear zone most likely resulting as a back thrust to underlying magma flow (see
Section 8.3). Furthermore, if MCSZ is a syn-emplacement structure, forming directly in
response to magma emplacement, then it also plays a significant role in accommodating
the addition of magma within the shallow crust as the shear zone exhibits a substantial

amount of strain.
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6.8.2. Structural Complexity and Variations in Strain Within Rattlesnake Gully

The complex spatial distribution of deformation structures and geometries in the
sandstone below the MCSZ and between the two intrusive ‘lobes’ likely reflects variations
in strain within the gully. The strikes of deformation structures in the sandstones within
Rattlesnake Gully parallel the intrusion margin of the eastern lobe. Deformation is
dominantly compressive, with SHmax perpendicular to the synclinal fold hinge line (gully
axis) and intrusion margins (Fig. 6.12a), resulting from ‘squeezing’ of the sandstone
between the western and eastern lobes. Consequently, SHmax rotates from c. ENE-WSW
at the head of the gully in the north, to E-W towards the centre of the gully, and ESE-
WNW to the south (Fig. 6.12a). However, in the NE of Rattlesnake Gully strain is more
complex; with a conjugate set of strike-slip faults observed in sandstones adjacent to the
lateral margin of the eastern lobe (structural stations MCSS-4, -5 and -18; Figs 6.8f-h &
6.12a). The compressional (SHmax) axis associated with these conjugate sets is consistent
with the strain axis observed along the rest of the gully. However, the dominantly strike-

slip kinematics in this area suggests that strain was more non-coaxial in this area.

E-W trending extensional structures (i.e. tensile joints; structural stations MCSS-28 and
30; Fig 6.12a) observed in the south of Rattlesnake Gully are perpendicular to the
dominantly compressional deformation bands seen within the rest of the gully (Fig. 6.12).
This localised zone of extension-dominated deformation is coincident with the southern
tip of the eastern lobe (Fig. 6.12a). Therefore, changes in strain and deformation trends
(Fig. 6.12a) may reflect changes in the boundary conditions within Rattlesnake Gully: i.e.
more compressive in the north where sandstones are bound by thick (>30m) intrusive
lobes to both the west and east; and more extensional in the south where the sandstones
are less constrained due to the thinning (<10 m) and termination of the eastern lobe (Fig.

6.12).

6.8.3. Models for Emplacement and Geometry of the Southern Maiden Creek Intrusion:
a Pair of Finger-like Lobes or Deep-rooted Sills?

Figure 6.16 provides three possible models for the emplacement and geometry of the
southern Maiden Creek intrusion. Model 1 (Fig. 6.16a) is after the proposed model of

Horsman et al. (2005, 2009) for the emplacement of two N-S trending finger-like lobes. In
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this model, magma propagates in a southerly direction from a main ‘sill-like’ intrusive
body situated to the NW. In Model 2 (Fig. 6.16b) a western intrusive body (i.e. the
western lobe) is derived from depth in the west, i.e. magma flow from west to east; while
the eastern intrusive lobe propagates from the north to the south. Model 3 (Fig. 6.16c)
involves both the eastern and western intrusive bodies propagating from depth in the
WNW towards the ESE (magma flow laterally splaying from the main/ dominant SW—NE

trend (and flow direction?) of the Maiden Creek intrusion.

Interpreting fabric data (mainly magnetic foliation and lineation results from AMS studies,
coupled with field observations of linear fabrics (see figs 5, 9 & 10, pages 1433 & 1438-
1439 of Horsman et al., 2005), Horsman et al. (2005) proposed that two radial (fanning)
lineation patterns are seen at the Maiden Creek intrusion. The first lies within the main
body, the second, within the fingers. From the lineation pattern observed from the main
body, Horsman et al. (2005) speculated that, though not exposed, the feeder for the
intrusion should be located towards the west or southwest. Horsman et al. (2005)
suggested that a general alignment between lineation measurements and the N-S
elongation of the two southern intrusive lobes indicates a southern flow of magma away
from the main body out into the fingers (i.e. Model 1). Horsman et al. (2005) proposed
that these finger-like lobes initially started as small protrusions along the margin of the
main body, where swelling occurred as a result of local heterogeneity, such as fracture
sets in the host rock. As the pressure built up in these small protrusions, magma
propagation began outwards from the main body: this propagation continuing until
magma at the margin of the finger ceased to have sufficient driving pressure to move the
host rock sediments (Horsman et al., 2005). This emplacement mechanism for the finger-
like lobes is similar to that proposed by Pollard et al. (1975) for fingers around the

periphery of the Shonkin Sag Laccolith in Montana, USA.

In Model 1, compression in Rattlesnake Gully results from lateral expansion of both the
western and eastern intrusive lobes as magma propagates in a southerly direction (Fig.
6.16a). Such compression of the host rock sandstones trapped between would most likely
result in higher deformation in the sandstones immediately adjacent to the lateral
margins of the lobes with deformation intensity decreasing towards the centre of the
gully. Johnson and Pollard (1973) on studying deformation structures in host rock

sandstones adjacent to and between two intrusive bodies in the NE of the Maiden Creek
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intrusion (i.e. the north-easterly pair of finger-like lobes in the Horsman et al. (2005)
model; Fig. 6.1b), reported intense fracturing within a ‘wedge-shaped area’, as depicted

in Model 1 (Fig. 6.16a), with fracturing extending only ~10 m into the adjacent host rocks.

Model 1, although relatively simple, does not explain the spatial distribution, asymmetry,
trend and kinematics of deformation structures observed within the host sandstones in
Rattlesnake Gully. Although intense deformation banding (cm-spacing) is observed in
sandstones proximal to the lateral intrusion margins, in contrast to the predicted wedge-
shaped zone of fracturing close to the lateral margins, deformation intensity increases
towards the centre of the gully (with mm-spacing for discrete pencil cleavage planes).
Furthermore, in this model for lateral expansion and squeezing of sandstones trapped
between two magma lobes, symmetrical folding and deformation would be expected
throughout the gully (Fig. 6.16a); rather than the asymmetric synclinal fold (fold axis
steeply dipping to the WSW; Fig. 6.7c) recorded in this study, and heterogeneous
deformation, kinematics and strain (Figs 6.12 & 6.15). Model 1 could account for the
strike-slip kinematics observed in sandstones adjacent to the lateral margin in the NE of
Rattlesnake Gully (Figs 6.7c, 6.8f—h & 6.12) if the eastern intrusive lobe was emplaced
subsequent to the emplacement of the western lobe; invoking a N-S oriented, dextral
shear system within the gully. However, as the strike-slip faulting is not distributed along
the entire gully (localised to the NE section), this emplacement model is unlikely. Most
significantly, Model 1 cannot explain the kinematics of the MCSZ, as southerly
propagating magma fingers would result in top-to-the-north shear in overlying host rocks,
not top-to-the-WNW as implied from field and microstructural kinematics (Figs 6.7b,

6.13c and 6.14).

Both Models 2 and 3 (Fig. 6.16b, c) could account for the intense deformation observed in
the gully, the asymmetrical folding of the sandstone beds, the variable kinematics, and
importantly, the kinematics on the MCSZ. Model 2, similar to Model 1 after Horsman et
al. 2005, 2009), infers a lobate morphology for the eastern intrusive body (i.e. the eastern
lobe). However, in order to explain the top-to-the-WNW kinematics on the MCSZ, the
western intrusive body propagates from the west to the east, with some amount of radial
spreading (this accounting for the less dominant ¢. N-S stretched mineral lineations
recorded in this study; Fig. 6.7c). In this model, magma propagates up through the

shallow crust from a deeper feeder in the west towards the east, buttressing against the
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host rock sandstones adjacent to the eastern lobe. This model would require the eastern
intrusive lobe to have been emplaced first. Such easterly propagating magma flow from
depth can account for not only the top-to-the-WNW kinematics of the MCSZ, but also the
asymmetry of the folding in the host rocks, and the easterly-bowing (arcuate) trend of the

intrusion margins, and associated trend of the Rattlesnake Gully.

Yet certain aspects of Model 2 are also problematic. Not only does this model necessitate
a specific order in which the eastern and western intrusive bodies are emplaced, it still
requires the eastern lobe to be fed from the north (i.e. a southerly magma flow
direction). Detailed structural and kinematic mapping of the greater Maiden Creek
intrusion (Chapter 5, this study) implies a dominant north-easterly magma flow direction
(Figs. 5.26 & 5.27, Chapter 5) for the main NE-SW trending lobe (Fig. 6.1b). A north to
south magma flow seems at odds with even lateral spreading from this main north-

easterly magma flow direction.

Model 3 (Fig. 6.16c), however, with both the western and eastern intrusive bodies being
fed from depth in the WNW (i.e. an E to ESE magma flow direction) overcomes many of
the problems associated with both Models 1 and 2. Model 3 explains the high
compressive strain within host rocks in Rattlesnake Gully, as well as the deformation and
geometric asymmetry due to squeezing between two inclined magma sheets. The
synclinal geometry and associated compressional structures within the gully imply a
steeply-dipping reverse shear (i.e. the western lobe propagating in the hangingwall to the
eastern lobe). The westerly-inclined central fold axis (and zone of pencil cleavage) may
parallel a deeper, unexposed sill geometry. Model 3 also provides an explanation for the
zone of strike-slip faulting in the sandstones adjacent to the lateral margin of the eastern
intrusive body in the NE of Rattlesnake Gully (Fig. 6.12a). Assuming that the northern
outcrop exposures at the head of the gully are close to the northern lateral ramp of a

westerly-derived sill sheet, left-lateral shear would be expected along this margin.

Model 3, similar to model 2, can account for the development and kinematics of the
MCSZ; the shear zone forming as a back-thrust to the westerly propagating magma sheets
(the MCSZ acting as a sub-horizontal antithetic structure to the steeply-dipping sill
sheets). This model works if both sheets are emplaced contemporaneously, as well as if

the western body is emplaced post the emplacement of the eastern body.
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Therefore, on the merits of each model in accounting for the observations in this study,
Model 3, with two inclined sill sheets propagating from depth in the WNW towards the
ENE, is favoured. In Model 3, observed igneous outcrop at the surface represents the
steepest section at the tip of climbing sill sheets, i.e the frontal ramp. If the eastern
intrusive body were comprised of two stacked finger-like lobes, as suggested by Horsman
et al (2005), we would expect to see similar lateral bulbous geometries on both sides of
the lobe. However, what we observe from the eastern intrusive body is a steeply-dipping
flat surface on the western lateral margin (within Rattlesnake Gully; Fig. 6.4), and a more
irregular, eastern margin. The simpler, western margin is consistent with the upper
contact of a ramp section of a saucer-shaped sill. The irregular eastern lateral margins
(observed for both the eastern and western intrusive bodies) are interpreted to represent
the frontal tip of an upward propagating (saucer-shaped?) sill sheet. The irregular, hour-
glass geometry of the eastern lateral margins (as seen in the Pussycat area; Fig. 6.5b,
6.6b, c, 6.10 & 6.15) likely reflects the interaction of magma with syn-emplacement faults.
Furthermore, the curved (arcuate) margin trends of the southern intrusive bodies may be
consistent with the likely map view geometry of saucer-shaped sills (Thompson and

Hutton, 2004; Thompson & Schofield, 2008; Mathe-Sgrenssen et al., 2004).

Due to lack of exposure for the western intrusive body in particular, there are
uncertainties with all 3 models for the emplacement and geometry of the southern
Maiden Creek intrusion. Further data, such as geophysical data, are required in order to

test the two alternate models for the intrusion geometry and emplacement mechanisms.

6.9. Conclusions

Structural evidence in the southern area of the Maiden Creek intrusion is consistent with
westerly-derived magma emplacement. Deformation structures in the host rock
sandstones outcropping within Rattlesnake Gully, between the southern intrusive bodies,
are dominantly compressional (c. E-W SHmax), while the spatial distribution and
asymmetry imply a reverse (east-verging) shear component. From our observations of
both deformation structures and exposed intrusion geometries, we propose that the
Maiden Creek intrusion in the south is comprised of two westerly-derived (saucer-
shaped?) sills, in contrast to the previously suggested model for a pair of northerly-

derived finger-like lobes (Horsman et al., 2005).
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Overlying these deeper-rooted sills is the newly identified Maiden Creek Shear Zone
(MCSZ). This structure, with its top-to-the-WNW shear sense, is an antithetic
accommodation structure. The MCSZ acts as a detachment surface, separating highly
deformed sandstones below (i.e. between the sills) from less deformed sandstones
above. Although the style of deformation in the MCSZ varies from the intrusion top
surfaces (i.e. sandstone—intrusion domain) to within the sandstone gully (sandstone—
sandstone domain), kinematics are consistent and there is strong evidence to support a
syn-emplacement timing for the structure. The substantial amount of strain seen through
microstructural analysis suggests that the MCSZ is a significant structure in

accommodating magma emplacement.

The spatial distribution of deformation structures in the sandstone gully is complex and
reflects variations in strain relating to the arcuate trend of the sill-sheets. A zone
dominated by strike-slip faulting in the north may be indicative of a lateral ramp
geometry to the sill, and would be consistent with the left-lateral shear as the sill is
emplaced. In the south, a change from compressional (c. E-W SHmax) to extensional (c.
N-S Shmin) appears coincident with the southern termination of the eastern body and,

therefore, a change in the boundary conditions.

Our observations and newly proposed emplacement model may have important
implications for understanding how deformation structures accommodate the volumetric
addition of magma in the sub-surface, and the modelling of sub-seismic deformation in

and around intrusive bodies in the sub-surface.
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7.1. Summary of Project Aims
This thesis aimed to develop a greater understanding of how igneous intrusive bodies are
emplaced and accommodated within the shallow crust, and accordingly, set out five key
guestions to be addressed, these being:
e What is the effect of emplacement of shallow-crustal intrusions on the
surrounding country rock?
e How is the additional volume of magma accommodated within the crust, i.e. the
so called “space problem”?
e Can style of deformation be used to infer sub-surface intrusion geometries?
e What can the style of deformation tell us about emplacement mechanism?
e What controls the emplacement mechanism?
The following sections will draw on the data, observations, interpretations and

discussions of the previous chapters in order to provide answers to these.

7.2. Geometries and Kinematics of Deformation Structures as a Tool for
Understanding Intrusion Emplacement Mechanisms and Morphologies
Detailed geometric and kinematic studies of deformation structures in the host rocks to
two satellite intrusions (Trachyte Mesa and Maiden Creek) to the Mount Hillers intrusive
complex in the Henry Mountains, Utah, have highlighted the significant impact of the
emplacement of shallow-crustal intrusions on surrounding host rock. Both intrusions in
this study were emplaced within the Entrada Sandstone Formation, an ideal host rock for
the formation of deformation bands and the preservation of structures. As a result, these
provide an excellent record of emplacement-related deformation, magma movement

(flow) directions and associated strains.

A number of deformation structural types can be observed in host rocks to both the
Trachyte Mesa and Maiden Creek intrusions (Table 7.1). These include: faults and
deformation bands; zones of intense pencil cleavage; sub-horizontal detachment surfaces
and shear zones; and tensile (‘Mode 1’; Price, 1966) joints. Syn-emplacement
deformation is greatest along the lateral margins (and tips?) of intrusive bodies. At both
Trachyte Mesa and Maiden Creek, the intensity of deformation structures in overlying
host rocks decreases quickly within the first 5-10 m, although distortion of the overlying

beds may be apparent for a significant vertical distance beyond this (>30 m at Trachyte
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Mesa). The rapid decrease in strain above Maiden Creek is potentially due to the

presence of a significant sub-horizontal detachment surface, which locally shows high

strain shear characteristics (i.e. the Maiden Creek Shear Zone)

Results from the various studies within this thesis suggest that much can be learnt about

intrusion geometries and emplacement through the detailed analysis of syn-

emplacement deformation structures. Significant findings include:

deformation structures commonly parallel intrusion margins, and in some cases
magma flow directions;

kinematic analysis can give a strong indication of likely magma flow directions;
deformation styles (e.g. compressional, extensional, strike-slip) vary according to
the local intrusion geometry (e.g. dominantly compressional between intrusive
bodies; and more extensional around steps and corrugations on intrusion top
surfaces; Chapter 5);

in stacked sill-sheet systems, insights into the order of stacking (i.e. over-, mid-
and under-accretion; Menand, 2008) may be determined through the analysis of
associated, emplacement-related, deformation structures (e.g. differences in
structural style observed along the eastern and western structural transects, TMTE
and TMTW, at Trachyte Mesa; Chapter 3);

deformation structures can also be used in order to understand the growth
mechanism of sill sheets, i.e. dip-slip faults linked to sill sheet terminations
implying a two-stage growth model; 1) radial growth, and 2) vertical inflation
(Chapter 3; after Hunt, 1953; and Corry, 1988); and

an observation from the Maiden Creek intrusion (that may still need further
investigation) is the local kinematic partitioning (between pure and simple shear)
evident in syn-emplacement deformation structures in close proximity (<5 m) to

intrusion margins (Chapter 5).

Consequently, even in areas where intrusion outcrop is not available, these findings can

be applied to infer underlying intrusion geometries.

Table 7.1. (overleaf)

A comparison of geometries, deformation structures and emplacement models of the Trachyte Mesa and

Maiden Creek intrusions.
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7.3. The Importance of Shear Zones in Accommodating the Emplacement of
Intrusions in the Shallow-Crust
At both Trachyte Mesa and Maiden Creek, shear surfaces and shear fabrics are identified
on intrusion top surfaces at the intrusion—host rock contact/ interface. These shear
structures and fabrics include: sub-horizontal shear zones; low-angle dip-slip faults; and
stretched mineral lineations. Microstructural analysis suggests that the deformation
processes associated with these shear fabrics are dominantly brittle (i.e. cataclastic flow).
Kinematics of these shear structures are interpreted to reflect local magma flow
directions. Morgan et al. (2008) also identified the importance of shear fabrics both at
intrusion—host rock contacts, and also on surfaces internal to the intrusion (using these to

infer the interface between stacked sill sheets).

At the Maiden Creek intrusion, shear zone/ detachment surfaces have also been
identified at the level of emplacement (i.e. intrusion top surfaces) in sandstones between
two neighbouring and separate intrusive bodies, and can be traced onto the top surfaces
of the intrusions. These appear to be associated with a more shaley-siltstone horizon
within more massive red and white sandstone units. The best example is the newly
identified Maiden Creek Shear Zone (MCSZ), localised to the southern Maiden Creek
intrusion (see Chapter 6). The MCSZ acts as a detachment surface, separating less-
deformed sub-horizontal sandstone beds above from highly deformed and folded
sandstones below and between the two intrusive bodies comprising the southern
intrusion. Microstructural analysis of the MCSZ highlights a substantial amount of strain,
suggesting that the MCSZ played a critical role in accommodating magma emplacement.
Shear zone surfaces, like the MCSZ, may be important sub-seismic structures that need to

be considered when interpreting intrusive bodies in the sub-surface.

7.4. What Controls Intrusion Emplacement: Linking Intrusion Geometries, Host
Rock Deformation and Accommodation Structures, and Space Problems
Despite both the Trachyte Mesa and Maiden Creek intrusions having similar magmatic
compositions (i.e. intermediate plagioclase-hornblende porphyry) and being emplaced
within the same host rocks at a similar palaeo-depth (~1.5 km) in the shallow crust, the
two intrusions display vastly different geometries and intrusion and host rock

emplacement-related deformation (Table 7.1).
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Horsman et al. (2009), in their synopsis of the various studies of satellite intrusions in the
Henry Mountains, Utah (Horsman et al., 2005; de Saint Blanquat et al., 2006; Morgan et
al., 2008), suggested that the various forms of sill and laccolith geometries lie on a
hypothetical evolutionary timeline reflecting the addition of successive sill sheets (Fig.
7.1). In this scheme, sills (e.g. Maiden Creek) evolve to form laccoliths (e.g. Trachyte
Mesa), laccoliths grow to become bysmaliths or punched laccoliths (e.g. Black Mesa), and
these eventually grow to form plutonic scale intrusions. However, detailed mapping at
Maiden Creek suggests that this intrusion has a far more complex geometry than that
proposed by Horsman et al., (2005, 2009), and therefore is an unlikely precursor to
Trachyte Mesa. Furthermore, observed deformation structures and interpreted
emplacement mechanisms appear distinctly different (extension-dominated deformation
along the margins of Trachyte Mesa, and dominantly compressional deformation at
Maiden Creek; Table 7.1). Although the Black Mesa intrusion has not been studied as part
of this research project, synergies can be found between the stacked sill sheets at
Trachyte Mesa and the growth of a larger bysmalith (punched laccolith) such as Black

Mesa.

An interesting observation to be made at both Trachyte Mesa and Maiden Creek is that
the top surfaces of both intrusions appear to be at a stratigraphic level coincident with an
interlayered shale-siltstone unit. This observation is in fitting with the early work of
MacCarthy (1925) who noted the regularity with which laccoliths intrude along shale
beds. Recent work of Kavanagh et al. (2006) using gelatine-based laboratory experiments
showed that lithological discontinuities, such as interlayered shaley units within
sandstones, are likely to form preferential pathways for horizontal magma propagation.
As observed by Menand (2008) this modelling works well for the stacked sill-sheets of the
Trachyte Mesa intrusion (with earlier emplaced sill sheets also forming preferential

rigidity contrasts for further sheet emplacement).

However at Maiden Creek, there is less evidence for this stacked sill sheet model; with
this study providing alternate models for the structural zonation and irregular/ hour-glass
lateral margins, used by Horsman et al. (2005, 2009) to argue for stacked sill sheets (see
Chapters 5 & 6). Furthermore, the bulk of the host rocks found adjacent to, and at the

same structural level as, the Maiden Creek intrusion are massive sandstone units. Syn
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emplacement deformation structures are clearly apparent and can be seen extending
from the intrusion into the adjacent sandstones, suggesting that the magma was
emplaced directly into the sandstone units. This could potentially provide an explanation
for the dramatically different intrusion geometries observed at Maiden Creek in
comparison to those at Trachyte Mesa. It therefore appears less likely that the Maiden
Creek intrusion was emplaced solely by propagation along this upper shaley unit
coincident with the intrusion top surface. However, the fact that the Maiden Creek Shear
Zone (and other weakly deformed shear/ detachment surfaces observed elsewhere on
the intrusion) is localised within this shaley-unit still supports it playing a role in

constraining the upper level of emplacement.

idealized intrusion geometries
& magma flow paths

bysmalith

Figure 7.1 Schematic block diagrams of idealised intrusions, based on the Maiden Creek (sill), Trachyte
Mesa (laccolith) and Black Mesa (bysmalith) intrusions, from Horsman et al. (2009). This cartoon depicts a
hypothetical evolutionary timeline for the growth of intrusions, based on the addition of successive sill

sheets.

At Trachyte Mesa, various sill tip terminations may be observed (bulbous terminations,
steep-faulted terminations, and sill-climbing sheets; Chapter 3). Although not investigated
in detail, sheets with bulbous terminations appear to lie deeper, within a more muddy red
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sandstone unit, whereas faulted terminations and sill-climbing appear more common in
sheets directly beneath more massive (competent) red and white sandstones. This may
be due to the shaley units behaving in a more ductile manner, thus inhibiting brittle fault
development at the sill-tips; while the more massive sandstone deforms in a brittle

manner and is more prone to the development of faults as sill sheets inflate.

On the Colorado Plateau, three distinct basement trends are observed (Marshak &
Paulsen, 1996; Fig. 2.6 in Chapter 2): NE-SW; NW-SE; and N-S. In the Four Corners area,
and specifically the vicinity of the Henry Mountains, two distinct lineament trends are
defined: the Four Corners lineament, trending c. NW-SE; and the Cataract and San Rafael
lineaments, trending c. NE-SW (Huffman & Taylor, 1997; Fig. 2.6e, Chapter 2). Although
the five intrusive centres that comprise the Henry Mountains trend c. N-S, a distinct step-
to-the-east can be seen from Mount Pennell, through Mount Hillers, to Mount Holmes.
These three peaks line up in a NW-SE orientation and are closely coincident with the
basement lineament of the Four Corners outlined by Huffman and Taylor (1997).
Furthermore, zooming into the scale of Mount Hillers and its satellite intrusions, a strong
NE-SW orientation bias is apparent for many of the satellite intrusions (including
Sawtooth Ridge, Maiden Creek and Trachyte Mesa). Basement trends may therefore have
played a role in the location, magma ascent and emplacement of the Henry Mountains

intrusions, both at the regional and the scale of individual satellite intrusions.

7.5. Further Work

7.5.1. Geophysical surveys

This study has highlighted several issues with the previously proposed model of Horsman
et al. (2005, 2009) for the emplacement and final geometry of the Maiden Creek
intrusion, whilst proposing an alternate model based on detailed geometric and kinematic
studies of syn-emplacement deformation structures and exposed intrusion—host rock
contact geometries. In order to test both the models of Horsman et al. (2005, 2009) and
this study, additional field data is required. Geophysical methodologies could be used to

resolve the sub-surface geometry and true extent of the intrusion.

Ground penetrating radar (GPR) using a geophone, if possible, could be used in key areas

of interest across the Maiden Creek intrusion, i.e. in Rattlesnake Gully between the two
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southern intrusive bodies of the intrusion (i.e. Zone 3), and also across the south-western
area where no intrusion outcrops are present (i.e. Zone 5). GPR involves sending small
pulses of energy into the ground and recording the strength and time it takes for any
reflected signal to return to the surface and the transmitter. Using a low antenna
frequency (e.g. 16-80 MHz), GPR can reach depths greater than 30 m. This could
potentially be deep enough to explore for the presence of intrusion below the sandstone
in both these areas and help determine the depth of the contact between intrusion and
host rocks where not exposed; therefore imaging the top surface of the sub-surface
intrusion. Gravity and magnetic studies (similar to those carried out around Trachyte
Mesa by Wetmore et al., 2009) could also help to resolve the sub-surface extent of the
Maiden Creek intrusion, whilst also providing information regarding the depth of the
intrusive body. Geophysical data (i.e. sub-surface) could then be combined with the
terrestrial laser scan (TLS) data (i.e. surface) already acquired for this study in order to

produce an accurate 3D model of the Maiden Creek intrusion.

Furthermore, GPR is highly effective at detecting porosity changes and therefore, by
proxy, could potentially provide information regarding changes in the intensity of
deformation banding; deformation bands recorded in this study likely to impede fluid
flow due to the significant reduction in porosity (typically <2.5% within deformation
bands due to cataclasis, compaction and calcite cementation). Additionally, GRP also has

the potential to pick out displacements along faults and shear zones.

N.B. a collaborative project with Profs. Steve Nelson and John McBride from Brigham
Young University, Utah, to collect GPR and gravity/ magnetic is in the planning stages
(currently delayed due to unforeseen circumstances).

7.5.2. Microstructural analysis of intrusion-related deformation structures

Microstructural analyses (petrographical and SEM studies) have been carried out for a
number of samples of deformed rocks (both host rock and intrusion) collected during
field season 1; however many more were also collected during field season 2 (from
around the wider Maiden Creek intrusion study area; i.e. Zones 1, 2 and 4 in Chapter 5)
which are yet to be cut and analysed. In order to progress aspects of Chapter 5 to

publication, microstructural support may be beneficial.
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7.5.3. Fracture spacing

Further analyses, such as quantitative porosity studies (similar to those of Morgan et al.,
2008) could be carried out on the fracture spacing study samples. In addition, SEM
studies, primarily Na-K mapping of polished thin sections, would help identify the amount
of feldspar present in the samples and to see if the cataclasis along deformation bands
preferentially occurs along certain lithological bands (e.g. those more rich in feldspars, or

those more quartz-rich).

Stochastic modelling (e.g. using FracMan®) of fracture networks based on the results from
Chapter 4 could be used to simulate fluid flow models in host rocks around shallow-level
intrusions. The integration of laser scan imagery could also be considered (although

further laser scans would need to be acquired).

7.5.4. Textural studies and crystal size distribution (CSD) of the intrusions

Originally the research project, in addition to studying syn-emplacement deformation of
host rocks, also aimed to develop an understanding of the internal textural evolution of
sill and laccolith intrusions, through carrying out micro-scale textural and geochemical
studies of plagioclase-feldspar and hornblende phenocryst populations preserved within
the intrusions of the Henry Mountains. Pilot studies were carried out on textural
characteristics of igneous samples collected from the Mount Hillers intrusive complex.
These included: petrographical analyses of thin sections; scanning electron microscropy
(SEM) quantitative and qualitative studies of zoned plagioclase-feldspar phenocrysts, and
trialling of automated methodologies for carrying out crystal size distribution (CSD)
analyses of rock samples. However, it was decided to focus on the structural side of the

project due to time constraints.

The pilot studies did, however, highlight several interesting lines of investigation. X-ray
maps of zoned phenocrysts using an SEM to map qualitatively, for example, Na-rich
versus Ca-rich zones in plagioclase could provide information regarding the various stages
of magma ascent and emplacement, and time residency histories. Thermal barometry of
amphibole phenocrysts (or xenoliths) could help to determine a number of parameters,

including: temperature; pressure; depth of magma source; and rate of magma ascent.
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Following extensive background research (literature review and conversations with
experts in the field at Tata Steel laboratories in Holland), two possible effective work
flows have been formulated for carrying out CSD analyses on samples analysed in this
project. One is more automated and thus faster, but requires access to specific computer
imagery software. The other, more traditional manual method is far more time
consuming. However, the benefit of the manual methodology is that each step of the
analytical work flow is transparent, whereas with the automated work flow the ability of
the software to accurately pick out individual grains must be trusted, and the highly
altered nature of many of the hornblende phenocrysts, along with the presence of several
holes in the sections analysed, cause problems. Therefore the more laborious traditional
and manual methodology for carrying out CSD studies is preferred. It was for this reason

that CSD studies were not progressed further during the PhD project.

Of these various textural studies, crystal size distribution would be the most valuable
addition to the structural data collected in this study, and could help to provide further
insights into emplacement mechanisms of both intrusions. Magma viscosity plays a
critical role in emplacement, and CSD studies could provide answers as to the crystal to
melt ratio of the magmas as they were emplaced. Consistent CSD throughout an intrusive
body would suggest that the textural characteristics of the magma had already been
determined before being emplaced; whereas, varying CSD would imply that the magma
was still in a state of flux during emplacement, continuing to crystallise and cool during

and/ or post emplacement.
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Appendix

Appendices
Hardcopy:
e Wilson, P.L.R. and McCaffrey, K.J.W., 2013. Intrusion space problem: digital
mapping and analysis of the Maiden Creek satellite intrusion, Henry Mountains

Utah. Geoscientist, 23 (6), 16—19.

List of Digital Appendices:

Disk 1:
e Glossary of Laccolith/ Sill terminology (after Corry, 1988)
e Regional Structural Data Table
e Trachyte Mesa Structural Data Table
e Maiden Creek Structural Data Table
e Sample Database

e Conference Presentations

e Google Earth™ Project (kmz file)

e Terrestrial Laser Scan (TLS) Video Animations

e TLS methodology workflow
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